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sous le sceau de l’Université Européenne de Bretagne
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Abstract

Digital Signal Processing algorithms are implemented in VLSI systems using fixed-
point arithmetic in order to obtain cost-effective hardware with optimized through-
put and power consumption. However, the finite wordlength of the fixed-point
representation introduces a quantization error that generates a degradation of the
computational precision. The fixed-point implementation has to guarantee the per-
formance constraints required by the application while minimizing the cost. The
manual conversion of the floating-point algortihm using fixed-point data is error
prone and time consuming and continues to be one of the most important steps of
the design. An automatic source code tranformation from the floating-point repre-
sentation to a fixed-point implemenation can significantly reduce the developement
time. The goal of this thesis is to provide a method for the static analysis of the
fixed-point performance that can be integrated in an automatic floating-point to
fixed-point transformation tool. Our aim is to obtain an analytical representation
that characterizes the variability of the signal through the datapath that avoids any
type of simulation and manual code instrumentation.

At the beggining, a probabilistic approach for the dynamic range estimation
is developped. Some applications can accept occasional overflows if their probability
of occurrence is small enough. In this case, the integer part wordlength of the fixed-
point variables is optimized in compliance with their statistical description, based
on the overflow probability criteria. A real test case from the field of digital commu-
nications is analyzed as a validation procedure. The orthogonal frequency-division
multiplexing (OFDM) is a transmission technique characterized by a high peak-to-
average power ratio (PAPR). As a consequence, choosing the proper wordlength for
the fixed-point data types is a difficult task. To avoid overdimensioning the imple-
mentation, a trade-off between the dynamic range that is covered by the fixed-point
representation and the cost of the implementation has to be made.

The rest of the work is separated in two main parts. First, the case of linear-
time invariant systems is adressed. The Karhunen-Loev̀e Expansion (KLE) is used
as a discretization procedure to represent the variability of the input signal. The
KLE representation of the output is further determined using the impulse response
of the system. The dynamic range is computed from the probability density func-
tion (PDF) with respect to a coverage probability. The same KLE discretization
approach is applied to evaluate the quantization noise, extending the method to the
numerical accuracy analysis.
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The Polynomial Chaos Expansion (PCE) is introduced to treat the non-linear
operations. It is a mathematical representation that captures the entire probabilistic
description of a variable. As a first step, the random behaviour of the input is repre-
sented in the form of a PCE representation. The variability of the input is statically
propagated through the data-flow graph (DFG) of the application and the analytical
representation of the output is obtained. As opposed to the KLE, this method can
be applied to any type of system that is composed of arithmetic operations making
it possible to treat non-linear systems. Using the same probabilistic methodology
that has been introduced, the dynamic range is computed in a similar manner to
the KLE method.

The probabilistic approach for the range determination is evaluated for several
typical applications. The results show that the PDF of the signal and the probability
of overflow estimated using our method follow to a great degree of accuracy the ones
obtained using Monte Carlo simulation. Furthermore, a comparison with tradional
methods for range estimation shows that the interval of variation can be significantly
reduced using our method so that the datapath of the fixed-point application can
be optimized and the cost of the implementation reduced.
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Resumé

Les applications de traitement du signal ont connu un très fort développement dans
les dernières décennies, bénéficiant des avancées majeures de l’industrie des semi-
conducteurs. Aujourd’hui, elles sont présentes dans une grande variété de domaines
d’activité, tels que les télécommunications, le multimédia, l’électronique grand pu-
blic, le transport, la médecine, les applications militaires, etc. Les améliorations tech-
nologiques continues ont conduit à l’apparition de nouveaux produits qui utilisent
des algorithmes complexes de traitement du signal afin de répondre aux exigences
de l’application. Pour améliorer la productivité et pour satisfaire les contraintes de
temps de commercialisation, des nombreux outils de haut niveau ont été mis au point
pour toutes les étapes de la conception. Ils permettent le passage d’une description
de haut niveau de l’application à une description de bas niveau avec une exploration
rapide des solutions disponibles pour l‘implémentation.

La spécification de l’application détermine les critères de performance qui doivent
être garantis par le système. Un algorithme approprié est mis au point pour répondre
à ces besoins. Dans un premier temps, une description de haut niveau de l’algorithme
est spécifiée en utilisant une précision importante pour surpasser les problèmes liés
à la précision du calcul. Il s’agit d’un processus qui valide la fiabilité de l’algorithme
pour le problème donné. Même si l’erreur inhérente à la précision de calcul existe
encore, l’arithmétique en virgule flottante garantit une précision et une plage de dy-
namique suffisantes dans la plupart des cas. Des environnements de calcul numérique
comme Matlab, Mathematica ou Scilab sont utilisés pour simuler cette description
de haut niveau.

Toutes les implémentations pratiques utilisent l‘arithmétique en virgule fixe afin
de réduire la surface et la consommation d’énergie. En conséquence, une conversion
de la description en virgule flottante de l’algorithme en une version implémentable
en virgule fixe, ajustant la largeur du chemin de données, doit être réalisée. C’est un
processus d’optimisation qui consiste à trouver les parties fractionnaire (évaluation
de la précision numérique) et entière (estimation de la dynamique) minimales qui
satisfassent les contraintes de performance.

L’apparition d’outils de synthèse de haut niveau qui génèrent des implémentations
RTL directement à partir d’une spécification C/C++ qui utilise l’arithmétique en
virgule fixe permet de réduire le temps de développement tout en permettant une
bonne exploration de l’espace de conception. Toutefois, l’étape de conversion entre
la description en virgule flottante de l’algorithme et celle en virgule fixe doit être
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faite à la main et continue d’être l’une des parties les plus difficiles et fastidieuse
de la conception des circuits intégrés numériques. C’est un problème qui demande
beaucoup de temps et qui est sujet aux erreurs. Trouver un bon compromis entre le
coût de l’implémentation et la précision des calculs qui doit être respectée est une
tâche très difficile. Il a été montré que cela peut prendre jusqu’à 30 % de la durée
totale du développement.

Un outil de conversion automatique virgule flottante - virgule fixe qui permet
d’optimiser la surface de l’implémentation et le débit sous une contrainte de perfor-
mance est obligatoire afin de réduire l’écart entre la description en virgule flottante
des algorithmes et l’implémentation matérielle, de mâıtriser la complexité et de
réduire le temps de développement. Il s’agit d’une transformation de code source
qui peut être facilement intégrée dans le flot de conception des circuits numériques.
L’application d’entrée est décrite comme une implémentation C/C + + qui uti-
lise la représentation en virgule flottante pour toutes les variables. Séparément, les
contraintes de performance (précision de calcul) qui devraient être satisfaites par
l’implémentation en virgule fixe sont fournies par l’utilisateur. Le résultat est ob-
tenu par la génération d’une implémentation qui utilise l’arithmétique en virgule
fixe et qui permet de régler tous les tailles des variables du chemin de données.

En pratique, la taille de chaque variable représentée dans un format virgule fixe
est limitée. Cela produit une dégradation de la précision mathématique du résultat
obtenu. La précision du résultat est donnée par le nombre de bits utilisés pour
sa représentation. L’augmentation de la longueur des mots du chemin de donnée,
améliore la précision mais introduit un coût matériel supplémentaire. Un bruit de
quantification est introduit chaque fois que des bits sont éliminés par des opérations
de quantification (arrondi ou troncature). De plus, cela provoque l’apparition de
débordements chaque fois que la longueur de la partie entière est insuffisante pour
représenter la variation de la dynamique.

La conversion virgule flottante - virgule fixe devient un processus d’optimisation
qui minimise le coût de l’implémentation pour une dégradation de performances
acceptable. En d’autres termes il faut trouver les tailles minimales pour la partie
entière et la partie fractionnaire de la représentation virgule fixe de chaque va-
riable qui continuent de satisfaire la précision de calcul globale, requise par l’ap-
plication (en général le rapport signal-à-bruit (SNR) ou le taux d’erreur binaire
(BER) du système). Ainsi, le problème de la transformation peut être séparé en
deux parties différentes qui sont réalisées de faon indépendante. La longueur de la
partie fractionnaire donne la précision du calcul tandis que la longueur de la partie
entière détermine la variation de la dynamique maximale qui est autorisé par cette
représentation :

• l’Analyse de la précision numérique : optimisation de la partie fractionnaire de
la représentation

• l’Estimation de dynamique : optimisation de la partie entière de la représentation
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L’analyse de la précision numérique est liée à la notion de bruit de quantification.
Elle étudie la sensibilité de la sortie par rapport aux changements légers des valeurs
de l’entrée, traduite en une métrique d’erreur. En fait, des nombreuses méthodes
de conversion sont axées seulement sur l’optimisation de la longueur de la partie
fractionnaire en utilisant la puissance du bruit de quantification comme critère de
performance. La taille minimale de chaque mot se trouve en réalisant un compromis
entre la précision nécessaire et le coût du circuit.

L’estimation de dynamique calcule le nombre minimal de bits nécessaires pour
la partie entière d’une variable en fonction de ses valeurs maximale et minimale. Les
méthodes classiques de calcul de l’estimation se basent sur des limites théoriques
absolues (qui ne seront jamais dépassées dans la pratique) pour éviter l’apparition
de débordements. En faisant ainsi, on obtient des intervalles de variation qui sont
très pessimistes et le coût de l’implémentation est largement augmenté. Comme
l’absence de débordements est garantie, l’optimisation de la longueur de mot de
la partie entière sous des contraintes de performance devient impossible et le com-
promis précision-coût de l’implémentation est considéré uniquement pour la partie
fractionnaire.

Cependant, certaines applications peuvent toutefois accepter des débordements
occasionnels, si la probabilité d’occurrence est assez petite pour ne pas trop dégrader
les performances globales du circuit. La méthode d’estimation de la dynamique de-
vrait être en mesure de prendre en compte cette information dans le but de réduire
les coûts (la surface et la puissance consommée). Traditionnellement, il s’agit d’un
processus qui peut être réalisé en utilisant un nombre de simulations important.
Toutefois, il s’agit d’un processus itératif, qui doit être fait à chaque fois qu’un pa-
ramètre de l’implémentation a changé. Cette méthode devient vite très complexe, en
prenant beaucoup de temps et reste une source d’erreurs si les simulations ne sont
pas exhaustives.

Les méthodes classiques d’analyse, telles que l’arithmétique d’intervalle et
l’arithmétique affine ne fournissent pas d’informations supplémentaires sur la varia-
tion du signal à l’intérieur de l’intervalle de valeurs possibles. De ce fait elles restent
une mauvaise approximation de l’incertitude réelle des signaux. Les signaux qui ont
de grandes variations, mais qui ont de faibles probabilités au niveau de la queue de
leur distribution de probabilité ne sont pas bien représentés.

Dans cette thèse, une approche stochastique pour l’évaluation de la dynamique
des données est présentée. Le but est de fournir un cadre probabiliste qui permet
de réaliser une estimation de la dynamique à l’aide des critères statistiques et qui
peut être facilement intégrée dans un outil automatique de transformation virgule
flottante en virgule fixe. Nous sommes intéressés par l’optimisation de la longueur
de la partie entière des données, lorsqu’une légère dégradation des performances
est acceptable. En fait, les débordements sont autorisés si leur probabilité d’appa-
rition est suffisamment faible pour l’application donnée. La dynamique ne couvre
plus tout l’intervalle théorique de variation, et des débordements sont autorisés avec
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une contrainte quant à leur probabilité d’apparition. Les signaux qui ont des varia-
tions importantes de leur amplitude sont approximés avec des intervalles serrés pour
réduire le coût de l’implémentation.

Au lieu de représenter la variation d’un signal comme les méthodes classiques
d’analyse le font, en utilisant uniquement les limites maximales et minimales (xmin
et xmax), notre objectif est d’obtenir une représentation complète de la variabilité
qui intègre son comportement probabiliste. L’intervalle de variation des valeur d’une
variable est donc représenté par sa fonction de densité de probabilité (FDP).

Nous allons démarrer par la détermination d’une représentation stochastique (qui
intègre la FDP) de chaque entrée d’un système. Cette caractérisation de la variabi-
lité est ensuite propagée à travers le système, de façon à obtenir les représentations
correspondantes à chaque variable du système.

Ensuite, nous proposons un critère d’optimisation de la taille de la partie entière
basé sur la probabilité de débordement. L’intervalle de variation autorisée pour
toutes les variables est calculé à partir de leurs FPD pour correspondre à une proba-
bilité de débordement souhaitée. De cette façon, nous allons fournir plus d’informa-
tions sur la variation des signaux que des simples limites maximales et minimales. En
effet, une approche qui capte toute la distribution et la corrélation entre les données
peut considérablement améliorer les résultats par rapport aux approches classiques
comme l’arithmétique d’intervalle et l’arithmétique affine.

Un exemple réel, constitué d’un émetteur OFDM (Orthogonal frequency division
multiplexing) est utilisé comme test pour motiver et ensuite valider notre approche
probabiliste. Il a été choisi parce que c’est un exemple typique d’application qui
met en avant le problème d’un facteur de crête très important (appelé souvent le
PAPR (Peak-to-Average Power Ratio)). Il est défini comme le rapport entre l’am-
plitude du pic du signal et sa valeur moyenne. Lorsque les signaux ont une grande
variation de leur amplitude tout au long de l’exécution, le dimensionnement de la
longueur des mots du chemin de données devient une tâche extrêmement difficile.
Si tout l’intervalle de variation théorique est assuré, le coût de l’implémentation
matérielle peut être augmenté significativement. Pour se conformer aux exigences
de haut débit nécessaires pour l’application et en même temps obtenir un coût rai-
sonnable, la longueur de la partie entière de la représentation virgule fixe doit être
réduite sans couvrir tout l’intervalle de variation possible même si cela va introduire
des débordements occasionnels.

La conception du modulateur OFDM a été réalisée en utilisant l’outil de synthèse
de haut niveau de Mentor Graphics CatapultC. Il permet d’obtenir rapidement des
implémentations matérielles avec des tailles de données différentes pour le chemin
de données. Cela nous a permis d’analyser les effets des débordements sur le taux
d’erreur binaire de l’application. Nous avons analysé aussi le gain obtenu en termes
de surface et de puissance consommée par le circuit en diminuant la taille de la par-
tie entière. Cela se traduit par l’apparition des débordements et donc une réduction
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des performances du circuit.

Nous avons conclu à partir de cette partie pratique qu’il est possible de diminuer
largement les coûts de l’implémentation en virgule fixe et en même temps augmenter
le débit obtenu en optimisant la taille de la partie entière de la représentation. L’ap-
parition des débordements peut être tolérée si les limites maximales et minimales
de l’intervalle de variation autorisées sont choisis pour satisfaire une probabilité de
débordement qui convient pour l’application globale (c’est-à-dire que le taux d’er-
reur binaire va être conforme au standard de communication).

Dans un premier temps, une méthode pour l’évaluation de l’intervalle de va-
riation par rapport à une probabilité de débordement correspondante est présentée
pour les systèmes linéaires et invariants dans le temps (LTI). C’est le cas de nom-
breux systèmes de traitement du signal et notamment de l’émetteur OFDM que
nous avons considéré. La méthode est basée sur le développement de Karhunen-
Loève pour la représentation de la variabilité des signaux.

Dans les applications de traitement numériques du signal, souvent les signaux
d’entrée ont une correspondance à de processus physiques réels qui varient dans le
temps. La structure de corrélation du signal d’entrée va ainsi modifier la descrip-
tion statistique des variables internes et des sorties et la forme de leurs fonctions de
densité de probabilité va être fortement modifiée. En conséquence, la dimension tem-
porelle doit être prise en compte afin de fournir des résultats fiables dans la pratique.

La notion de processus aléatoire devient le modèle mathématique qui est le plus
approprié pour représenter la variabilité inhérente de l’entrée. Le signal d’entrée en
virgule flottante est modélisé comme un processus aléatoire discrèt x(t, θ), appliqué
sur un intervalle de temps [0, T ] (c’est à dire une séquence de variables aléatoires).
Cela signifie que, à chaque instant de temps t0 = 1, 2, 3, ..., n, la valeur du signal
x(t0, θ) est représentée par une variable aléatoire. θ désigne le résultat de la variable
aléatoire dans l’espace aléatoire et sera omis à partir de maintenant pour la clarté.
Le caractère aléatoire de l’entrée se propage dans tous le système et les variables
d’état et les sorties deviennent aussi des processus aléatoires.

En général, les processus aléatoires ont une dimension infinie. Afin de les représenter
dans la pratique, une procédure de discrétisation doit être réalisée. Le but étant de les
représenter par une combinaison d’un nombre fini de variables aléatoires qui est plus
facile à gérer en pratique. Plusieurs techniques de discrétisation ont été présentées
dans la littérature. Parmis eux, les développements en série sont les plus utilisées.

Dans notre approche, le développement de Karhunen-Loève (KLE) est utilisé
comme moyen de discrétisation pour les signaux d’entrée du système. La KLE per-
met de représenter un processus aléatoire par une combinaison linéaire des fonctions
déterministes avec des coefficients aléatoires orthogonaux (non corrélés) (coefficients
qui représentent le contenu probabiliste, ou la dimension stochastique).

viii



Nous avons choisi cette méthode de discrétisation pour l’estimation de la dyna-
mique parce qu’elle permet de minimiser l’erreur quadratique moyenne. En fait, la
KLE est une série convergente pour tous les processus aléatoires de second ordre (pro-
cessus avec l’énergie finie) et qui minimise l’erreur de troncature. En d’autres termes,
cela veut dire qu’il n’y a pas d’autres développements en séries qui se rapproche
mieux du processus aléatoire avec le même nombre de termes que le développement
KLE.

Puisque nous nous intéressons seulement aux systèmes LTI dans ce chapitre,
il est possible d’utiliser la propriété de superposition pour propager la variabilité des
entrées (décrite avec des KLEs) dans tout le système. Par opposition à la méthode
basée sur la simulation qui a été déjà présentée, nous montrons ici comment la va-
riabilité peut être propagée statiquement à travers les systèmes LTI en utilisant la
réponse impulsionnelle. Il devient donc possible de déterminer la représentation KLE
de chaque variable du système sans aucune simulation.

Comme décrit dans la partie pratique, nous utilisons une approche stochastique
pour l’estimation de la dynamique. L’intervalle de variation est donc calculé à par-
tir de la FDP par rapport à une probabilité de débordement souhaitée. Pour cela
nous proposons plusieurs méthodes pour l’estimation de la FDP de chaque variable
à partir de la KLE et notament la méthode kernell density estimation (KDE).

Les résultats pour plusieurs exemples pratiques sont présentés ensuite. Le cas
d’un filtre FIR, un filtre IIR et une IFFT 512 points sont traités. La précision
de la méthode est comparée tout d’abord par rapport à la simulation pour prou-
ver que les résultats sont conformes à la pratique. Ensuite nous comparons notre
méthode avec des méthodes d’estimation de la dynamique traditionnelles comme
l’arithmétique d’intervalle et nous montrons qu’en utilisant notre approche, le coût
de l’implémentation peut être largement diminué. Cela montre l’intérêt d’utiliser
une méthode stochastique pour l’estimation de la dynamique.

Comme un objectif secondaire, le problème de l’estimation de la précision des
calcules est adressé. Dans le cas des opérateurs de décision, les approches tradition-
nelles de l’analyse de la précision numérique qui calculent la puissance du bruit de
quantification ont prouvé leurs limites et toute la FDP du bruit de quantification
doit être déterminée. Afin de résoudre le problème, nous montrons comment il est
possible d’adapter l’approche stochastique pour évaluer le bruit de quantification.

En utilisant la même méthode de discrétisation (KLE) pour le bruit de quanti-
fication, la méthodologie peut être modifiée pour obtenir la FDP de la sortie d’un
système LTI. Il devient donc possible d’évaluer le bruit de quantification directement.
Le SNR est estimé à partir de la variance du bruit de quantification. Si besoin, la
FDP complète du bruit peut être calculée. La méthode a été testée sur les mêmes
exemples pratiques et les résultats ont montré sa précision.

Par la suite nous avons introduit le développement en polynômes de chaos
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(PCE : Polynomial Chaos Expansion) afin de traiter des opérations non-linéaires.
De manière similaire au cas des systèmes LTI, tout d’abord nous avons montré com-
ment le comportement aléatoire des entrées peut être représenté sous la forme d’une
PCE. Nous avons montré ensuite comment la PCE peut être adaptée pour traiter le
cas des variables aléatoires. Ensuite, le cas des entrées corrélées a fait l’objet d’une
analyse. Nous avons montré qu’en utilisant la transformée de Nataf il devient pos-
sible de décorreler les entrées.

La variabilité de l’entrée est statiquement propagée à travers le graphe des
données en utilisant des formules de propagation pour chaque opération arithmétique.
De cette manière, la représentation analytique de la sortie est obtenue statiquement.

Par opposition à la KLE, la méthode PCE peut être appliquée à tout type de
système qui se compose des opérations arithmétiques et permet également de traiter
les systèmes non linéaires.

En utilisant la même méthodologie probabiliste qui a été introduite pour la
méthode KLE, l’intervalle de variation est calculé à partir de le FDP par rapport à
une probabilité de débordement souhaitée. Les résultats montrent que les distribu-
tions obtenues sont proches des résultats obtenus en simulation. En plus, en utilisant
notre analyse probabiliste, la taille de l’intervalle est significativement réduite par
rapport à la méthode traditionnelle d’arithmétique d’intervalle.

Par rapport à la méthode KLE, l’utilisation des PCEs introduit une complexité
plus importante. De ce fait, son applicabilité aux systèmes LTI est moins intéressante.
Le nombre de termes qui sont utilisés pour une représentation précise PCE peut
augmenter de manière significative avec la dimension et l’ordre choisis pour la
représentation. Cela veut dire que pour les applications complexes et non-linéaires
il peut devenir un facteur prohibitif dans le processus d’automatisation.

Ensuite, le développement en polynômes de chaos généralisé (gPCE : genera-
lized Polynomial Chaos Expansion) a été introduit en vue de sélectionner une base
de polynômes de chaos appropriée en fonction de la distribution du signal d’entrée.
Nous avons montré comment le type de polynômes de chaos peut être choisi en fonc-
tion de la distribution de l’entrée afin de réduire le nombre de termes qui doivent
être utilisés pour une représentation précise.

Enfin, l’évaluation de la précision numérique peut être faite en utilisant la même
méthode. Le SNR est calculé à partir de la puissance du bruit de quantification.
Dans ce cas l’utilisation des polynômes de Lagrange peut avoir une importance très
grande parce que le bruit de quantification a une distribution uniforme.

En tant que perspectives, la complexité de la méthode PCE doit être réduite
en utilisant uniquement une structure creuse des polynmes qui fournit seulement
les termes les plus importants dans le développement tout en négligeant les autres
termes.
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Un autre aspect important qui doit être considéré est la mise en oeuvre du
développement adaptatif en polynômes de chaos, basé sur le schéma d’Askey. Comme
il a été présenté, le développement en polynômes de chaos classique qui utilise les
polynmes d’Hermite n’est optimal que pour la représentation de la répartition gaus-
sienne. Pour des distributions fortement non-gaussiennes, le taux de convergence
peut être faible et un nombre important de termes est nécessaire. Un développement
adaptatif qui modifie automatiquement les bases de ses polynômes, en fonction de la
distribution de l’entrée peut significativement réduire la complexité et devrait être
mis en oeuvre dans l’avenir.
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Chapter 1

Introduction

1.1 Background And Motivation

1.2 Background And Motivation

Digital Signal Processing applications have experienced a very strong development in

the last decades, benefiting from the major advances of the semiconductor industry.

Nowadays, they can be found in a large variety of fields of activity, anywhere from

telecommunications, multimedia, consumer electronics, transportation, medicine,

military applications etc. The continued technological improvements have allowed

the emergence of new products that use complex signal processing algorithms in

order to meet the application demands. To improve the productivity and to satisfy

the time-to-market constraints, various high-level tools have been developed at all

stages of the design. They enable the transition from a high-level description of

the application to a low-level description with a rapid exploration of the available

solutions for the implementation.

The application specification determines the performance criteria that must be

guaranteed by the system. An appropriate algorithm is developed to satisfy these

needs. As a first step, a high-level description of the algorithm is specified using

a theoretical infinite precision to alleviate problems related to the computational
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accuracy. This allows the validation of the mathematical algorithm. Numerical

computing environments like Matlab [44], Mathematica [77] or Scilab [66] are used

to simulate the high-level description.

However, most of the practical DSP implementations use fixed-point arithmetic

to reduce the area and power consumption and obtain a cost-effective hardware. A

conversion process from the floating-point description of the algorithm to a fixed-

point implementation that customizes every wordlength in the datapath has to be

realized.

The emergence of High-Level Synthesis tools like Catapult C from Mentor Graph-

ics [50], Cynthesizer from Forte Design Systems [23] or Symphony C Compiler from

Synopsys [71] that generate RTL implementations directly from a C/C++ fixed-

point specification of the application, reduces the development time while allowing

a good design space exploration. However, the floating-point to fixed-point conver-

sion still needs to be done by hand and continues to be one of the most difficult part

of the design. It is a time-consuming and error prone problem and finding a good

trade-off is a very difficult task. It has been shown it can take up to 30% of the total

development time [3, 11, 26, 29]. In order to reduce the gap between the algorithm

description and the hardware implementation, to control the complexity and reduce

the development time, an automatic floating-point to fixed-point conversion tool

that optimizes the area and timing under performance constraint is mandatory. It

is a source code transformation that can be then easily integrated into the digital

hardware design flow (Figure 1.1).

The limited bit-width of the fixed-point data types will introduce a quantization

error which generates a degradation of the computational accuracy. The accuracy

of the result is given by the number of bits used for its representation. Increasing

the wordlength of the datapath improves the accuracy at the expense of additional

hardware cost (area, power consumption and delay). The fixed-point conversion

becomes an optimization process [62] that minimizes the implementation cost for

an acceptable degradation of the performance. In other words it must find the

2
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Figure 1.1: Digital Hardware Desing Flow

minimum integer and fractional part wordlengths for every fixed-point variable that

still satisfy the overall computation accuracy required by the application (usually the

SNR or the BER of the system). So the transformation problem can be separated

in two different parts which are handled independently. The first part determines

the fractional part wordlength and the second the integer part wordlength:

• the numerical accuracy analysis

• the range estimation

The numerical accuracy analysis is linked to the notion of quantization noise.

It studies the sensitivity of the output to slight changes of the input translated to

a certain error metric (typically the application signal-to-quantization-noise-ratio

(SQNR)). In fact, number of works are focused on optimizing the fractional part

wordlength using the power of the quantization noise as a performance criteria. The

minimal bit-width is found based on a trade-off between the accuracy needed and

the circuit cost.

3



The range estimation computes the minimum number of integer bits for a variable

from its maximal and minimal values. Classical range estimation methods compute

theoretical absolute bounds that will never be exceeded in practice to avoid the ap-

pearance of overflows. In doing so, they provide ranges that are pessimistic and the

implementation cost will be largely increased. As the absence of overflows is guaran-

teed, the optimization of the integer part wordlength under performance constraints

becomes impossible and the trade-off accuracy-implementation cost is considered

only for the fractional part.

Some applications can however accept occasional overflows if their probability

of occurrence is small enough not to affect the overall performance. As a result,

the range estimation method should be able to take this property into account. In

addition, methods like the interval and affine arithmetic do not provide additional

information about the signal variation inside the interval of possible values making

it a poor approximation of the real uncertainty. Signals that have large variations

but have small probabilities at the tails of their probability distribution are not

well taken into account. Moreover, existing methods of numerical accuracy analysis

evaluate only the power of the output quantization noise. In some cases, like the

evaluation of the performance in systems with unsmooth operators [58], this limited

information proves to be insufficient and the entire probability density function of

the noise should be determined.

1.3 Objectives

The floating-point to fixed-point conversion has been an active research project in

the CAIRN/IRISA research laboratory. A framework for the automatic floating-

point to fixed-point transformation has been developed [28, 48, 49]. Its synoptic is

described in Figure 1.2.

The input application is described as a C/C++ implementation that uses floating-

point representations for the variables. In addition, the performance constraints

4



Figure 1.2: Fixed-point conversion tool developed by CAIRN/IRISA

(computational accuracy) that should be satisfied by the fixed-point implementa-

tion is provided by the user. It is used in the wordlength optimization part when

the cost evaluation is realized .

The flow is separated in two parts. As a first step, the dynamic range of the

variables is determined. The theoretical absolute minimal and maximal bounds are

computed using the L1 norm or the interval arithmetic. They guarantee the absence

of overflows. The number of bits necessary for the integer wordlength representation

is directly computed afterwards.

The second part realizes the actual wordlength optimization under performance

constraints. The quantization noise introduced by the limited bit-width of the data

representation generates a degradation of the overall system performance. Increasing

the width of the datapath reduces the finite wordlength effects at the expense of

additional hardware. The accuracy evaluation is computed by evaluating the signal-

5



to-quantization-noise ratio (SQNR). The optimization part consists in finding the

minimal fractional part size that still satisfies the performance constraints. Finally,

a fixed-point specification of the application is generated as a result using the data

types that have been determined.

Following the research already done by the CAIRN team, the purpose of this

thesis is to provide a probabilistic framework that solves the range estimation using

a statistical criteria and which can be easily integrated in the automatic floating-

point to fixed-point transformation tool. We are interested in optimizing the integer

part wordlength when a slight degradation of the performances is acceptable. In

fact the occurrence of overflows is allowed when their probability is sufficiently low

for the given application. The integer wordlength doesn’t cover anymore the entire

theoretical dynamic range, instead it adapts its width to the application needs from

a probabilistic stand point. It is computed from the probability density function

(PDF) using a statistical analysis. In this way, more information about the variation

of the signal than simple bounds is provided. Indeed, an approach that captures the

entire distribution and the correlation between data can significantly improve results

compared to the classical approaches like the interval and affine interval [13, 18, 51].

A real example consisting of an OFDM transmitter is used as a test case to motivate

and validate the probabilistic approach.

As a secondary goal, the problem of numerical accuracy estimation is addressed.

In the case of unsmooth operators, the traditional approaches to the numerical

accuracy analysis that compute the power of the quantization noise have proved

their limitations. In order to solve the problem, additional information about the

noise variation is needed. The same probabilistic approach can be extended to

evaluate the quantization noise, with the interest of computing the entire PDF of

the output noise.
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1.4 Dissertation Outline

The thesis is organized as follows. In Chapter 2, the effects of the finite wordlength

representation of numbers on the accuracy of the result in digital computation are

presented. Starting from a description of the floating-point and fixed-point number

representations, the quantization process is introduced. The rounding/truncation

and overflow degrade the accuracy of the computation. A state-of-the art review of

the existing methods for the wordlength optimization under performance constraints

is made.

In Chapter 3, we present our approach for the range estimation problem. The

optimization of the datapath is made in compliance with the performance require-

ments of the application and with the statistical description of the input. Using

a probabilistic framework, the necessary number of bits for the integer part repre-

sentation are computed using a desired probability of overflow. A real test case is

presented as a practical example that validates our method.

The case of linear time-invariant (LTI) systems is considered in Chapter 4. The

Karhunen-Loev̀e Expansion (KLE) is used as a means of discretization for the input

of the system. Using the superposition property and the transfer function of the

system under investigation, the output KLE description can be computed. The

overflow probability is computed from an estimation of the PDF. The numerical

accuracy is analyzed using the KLE representation of the quantization noise.

The Polynomial Chaos Expansion (PCE) is introduced in Chapter 5. Repre-

senting every variable with a PCE, the variability can be propagated through the

Data Flow Graph (DFG) from the input to the output. The advantage of the PCE

representation is the fact that the PCE arithmetic can be applied for non-linear op-

erations also. As a result the range and the numerical accuracy estimation problems

is solved for all types of systems with arithmetic operations.

Chapter 6 presents the conclusion of the work and proposes some perspectives.
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Chapter 2

Finite Wordlength Effects

In this Chapter the floating-point and fixed-point number representations are pre-

sented. A comparison between the two is realized in order to analyze the finite

wordlength effects. The floating-point to fixed-point conversion process under per-

formance constraints is introduced. The problem is divided in two separate parts

that can be treated independently: the dynamic range estimation and the numerical

accuracy analysis. A literature review of the related work is presented.

2.1 Number Representation

In digital computation, the numeral system specifies the way numbers are repre-

sented as a sequence of binary digits and the rules for performing arithmetic op-

erations (e.g. addition, multiplication etc.) between them. Most of the times,

the scientific computations provide only an approximation of the exact value (that

would be obtained having an infinite precision). This is a consequence of the limited

number of bits that can be used in practice by the numeral system. Whether the

floating-point or the fixed-point arithmetic is employed, only a finite number of bits

are used for the representation of real numbers.

The limited precision of the coding standard can be evaluated from two different

perspectives. The accuracy of the computation is given by the quantization step

of the numeral system (the distance between two successive numbers). The second

8



aspect is the maximal dynamic variation that is allowed by the representation. The

dynamic range variation of a numeral system is given by the domain of possible

values that can be represented. It is evaluated by the ratio between the largest

(XMAX) and the smallest (XMIN) magnitude that can be represented by the coding

standard using a logarithmic scale as in equation (2.1). As a result, the comparison

between the floating-point and the fixed-point standards is made by analyzing the

numerical accuracy and the dynamic range variation that they ensure.

DdB = 20 log10

(
XMAX

XMIN

)
(2.1)

For embedded systems, algorithms are generally developed using the floating-

point arithmetic, in order to avoid all the problems related to the finite wordlength.

This is a process that validates the reliability of the algorithm solution for the given

problem. Even though the inherent error in the computational accuracy still exists,

it is very small compared to the fixed-point arithmetic. As a result, the floating-

point computation guarantees an accuracy and a dynamic range variation that is

sufficient in most of the cases.

Nevertheless, most of all VLSI implementations use fixed-point arithmetic to re-

duce the area and power consumption and obtain a cost-effective hardware. As a

consequence of the limited bit-width of the data representation, a degradation of the

computational accuracy is produced. The use of fixed-point data types introduces

a quantization noise when bits are eliminated through rounding/truncation opera-

tions. In addition, it causes the appearance of overflows whenever the integer part

wordlength is insufficient to represent the entire dynamic range variation.

To better understand the problem, a description of the two coding standards is

made. A comparison between them is made with an emphasis on the dynamic range

variation that they allow and on the computational accuracy that is guaranteed.
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2.2 Floating-point Representation

The floating-point number system is the most common coding standard when a high

computational accuracy is required. It represents a real number in a scientific nota-

tion, with a fractional part called the mantissa (or the significant) and a scale factor

called the exponent. The exponent is defined as the power of the base (typically

two or ten) and is used as an explicit scale factor that changes during computa-

tions, allowing a wide dynamic range of values to be represented. The mantissa

determines the accuracy of the represented number. The general representation of

a floating-point number can be seen in Figure 2.1 and the associated value is given

by the expression in (2.2). S represents the sign of the number, M is the mantissa,

E is the exponent and b is the base of the representation.

S Ne bits Nm bits

Exponent MantissaSign

Figure 2.1: Floating-point Number Representation Format

x = (−1)(S) ×M × bE (2.2)

As there is a large number of possible values for Nm and Ne, a standardized

computer floating-point format has been introduced. The IEEE Standard for Binary

Floating-Point Arithmetic (IEEE 754-2008) is used by almost all of today CPUs. It

specifies the floating-point formats as well as the rounding modes, it describes how

arithmetic operations should be realized and the exception handling (division by

zero, overflows).

The value of a number represented in the binary IEEE 754 floating-point format

is computed using equation (2.3):

x = (−1)(S) × 1.M × 2E−bias (2.3)
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The mantissa is normalized to represent a value in the interval [1:2). As a

consequence the value of its first bit is fixed to 1 and becomes implicit, meaning

that it is not necessary to be stored. The value of the exponent is encoded as an

unsigned number, so in order to represent numbers that are smaller than 1, a bias

is introduced. The bias depends on the number of bits that are allocated for the

representation of exponent: bias = 2Ne−1 − 1. In the case of the single precision

format, it is 127 and the exponent range for normalized numbers is [-126, 127]. For

the double precision, the bias is 1023, and the range of the exponent is [-1022, 1023].

From the basic formats, the single precision (32 bits) and the double precision

(64 bits) are the most widely used. They are presented in Table 2.1.

Sign (S) Exponent (Ne) Mantissa(Nm) Bias
Single Precision 1 8 23 127
Double Precision 1 11 52 1023

Table 2.1: IEEE 754 Standard

2.2.1 Dynamic Range Variation

The dynamic range variation of the floating-point representation can be determined

as in (2.4).

DdB = 20 log10

(
XMAX

XMIN

)
w 20 log10

(
22K+1

)

with K = 2Ne−1 − 1
(2.4)

For a single precision number that has the exponent represented with 8 bits, the

dynamic range variation becomes:

DdB = 20 log10(2(28−1)) = 20 log10(2255) w 1535 dB (2.5)

2.2.2 Computation Accuracy

Because of its inherent scientific representation, as the value of exponent increases,

the distance between two successive numbers becomes larger. This means that the
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quantization step of the floating-point coding standard depends on the value that

is represented. As a consequence, the computational accuracy of the floating-point

representation is proportional to the magnitude of the number that is encoded. As

the magnitude of the number increases, the round-off error gets larger.

The maximal and minimal bounds of the quantization step (q) relative to the

value that is represented (x ) can be determined using equation (2.6). It shows how

the quantization step is adapted to the magnitude of the number. When the value

is small, the quantization step is also small, and when the value of the number is

large, the quantization step becomes also large.

2−(M+1) <
q

|x| < 2−M (2.6)

The analysis of the floating-point quantization noise is made in [74, 75]. When

some appropriate requirements are met, which the authors call the ”pseudo quanti-

zation noise” model, the floating-point quantization noise efp has a zero mean and it

is uncorrelated with the input signal, x. Its second order moment can be computed

as in (2.7). As expected, the value of the quantization error is a function of the

value of the signal.

E[efp] = 0.180× 2−2M × E[x2] (2.7)

2.3 Fixed-point Representation

The fixed-point format is a binary code word where numbers are represented using

an integer and a fractional part. The general form of a signed fixed-point number

is presented in Figure 2.2. One bit is used for the sign (S), m bits are used for the

encoding of the integer part and n bits for the fractional part.

Every bit is associated to a weight corresponding to a power of two. The frac-

tional part provides the subunit representation of the number and coincides with the

negative powers of two (2−1, 2−2, · · · ). The position of the radix point is fixed during

the processing, so the implicit scale factor used by the representation is constant and

12



the range of values that can be represented does not change during computations.

S

Integer part - m bits Fractional part - n bitsSign

b0b1bm−1 b−1 b−2 b−n

2m−1 21 20 2−1 2−2 2−n

b bits

Figure 2.2: Fixed-point Representation of a Number

Generally, fixed-point numbers are encoded using two’s complement standard.

The value of a number is given by the expression presented in equation (2.8). It

possesses some interesting arithmetical properties regarding the addition and the

subtraction operations and it also has the advantage of allowing only one possible

representation for 0. As a consequence the domain of possible values is not symmet-

rical to the origin, having 2(m+n) negative values and 2(m+n) − 1 positive values.

x = −2mS +
∑m−1

i=−n bi2
i (2.8)

The maximal and minimal values that can be represented are given by the loca-

tion of the binary point (equation 2.9). In addition, the quantization in fixed-point

arithmetic is uniform and the quantization step is not proportional to the value that

is represented, being constant for the entire dynamic scale: q = 2−n.

−2m ≤ x < 2m

x ∈ [−2m : 2m − 2−n]
(2.9)

As a consequence, the finite wordlength effect in the case of fixed-point numbers

can be separated in two different problems that are represented in Figure 2.3. The

increase of the integer part wordlength will extend the dynamic range that is covered

by the representation because of the implicit multiplication of the scale factor. At

the other side, enlarging the fractional part wordlength will enhance the accuracy

of the number representation as the quantization step is decreased.
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Integer part Fractional part b−n

2m−1 20 2−1 2−n

bm−1

2m 2−n−1

Increase the
Dynamic Range

Increase the
Computational Accuracy

︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 2.3: Effects of fixed-point wordlength variation

2.3.1 Dynamic Range Variation

For the fixed-point format, the dynamic range variation is linear with the number

of bits, b, used for the representation:

DdB = 20 log10

(
XMAX

XMIN

)
= 20 log10

(
2b−1

)
dB

DdB = 20(b− 1) log10(2) ≈ 6.02(b− 1)
(2.10)

The increase of the dynamic range variation with the wordlength is much larger

for floating-point numbers than for fixed-point numbers.

As an example, in Table 2.2 the single precision format is compared with various

fixed-point data types. An important difference between them can be observed, even

the 128 bits fixed-point number has a significantly smaller dynamic range variation

than the 32 bits floating-point representation.

Dynamic Range (dB)
Single Precision 1535

Fixed-point 16 bits 90
Fixed-point 32 bits 186
Fixed-point 64 bits 379
Fixed-point 128 bits 764

Table 2.2: Dynamic range variation comparison

In Figure 2.4 the evolution of the dynamic range variation for the floating-point

and fixed-point data types is presented. In this example, the size of the exponent

is fixed to 1
4

of the total wordlength of the representation. When the wordlength

exceeds 16 bits, the dynamic range variation for the floating-point representation

becomes larger than in the case of the fixed-point. As a result, the 32-bit floating-

point representation can be used in most applications without any risk of overflow
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Figure 2.4: Dynamic range variation comparison between the floating-point and the
fixed-point representations

The coding process of a fixed-point number can be defined as the representation

of a real value x with another value x̂ from the coding domain. Every time a real

number exceeds the allowed range of values defined by the coding standard, meaning

that x /∈ [x̂min, x̂max], an overflow occurs and an important error is introduced. The

overflow handling describes how a code word is assigned when such an event takes

place. There are two methods that can be used for the treatment of overflows.

The natural way of dealing with the problem results in a wrap-around of the value.

The process can be seen in Figure 2.5. The technique is equivalent to a modular

arithmetic as the value that exceeds the bounds is replaced with its value modulo

2b.

The second method that can be applied is the saturation arithmetic. In this

case, any value that exceeds the coding domain is replaced with its closest repre-

sentable number (the maximal or minimal bound). The process is represented in

Figure 2.6. The error that is introduced is smaller than in the case of the modular

arithmetic. However, as opposed to the wrap-around technique, the implementation

of the saturation arithmetic requires additional hardware so its use is limited in
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XmaxXmin

x̂ = Q[x]

x

Xmax

Xmin

Figure 2.5: Overflow effects using the wrap-around technique

practice.

XmaxXmin

x̂ = Q[x]

x

Xmax

Xmin

Figure 2.6: Overflow effects using the saturation technique

2.3.2 Numerical Accuracy Analysis

2.3.2.1 Quantization process

The mechanism of assigning a sequence of binary digits for the representation of a

real (analogous) value x, is realized by the quantization process. The operation is

presented in (2.11), where the value of the signal x is transformed into a fixed-point

representation denoted by x̂.

x→ x̂ = Q(x) (2.11)
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It is a nonlinear procedure that generates a loss in the precision as only a finite

number of possible values can be represented. More exactly, when b bits are used for

the fixed-point number, 2b distinct values can be represented. The error that results

from the difference between the real value x and the fixed-point representation x̂ is

called the quantization noise.

e(x) = x̂− x (2.12)

The resolution of the representation is given by the difference between two con-

secutive numbers and is denoted by q. Its value is determined by the position of the

least significant bit (LSB) (2−n). The most widely used quantization modes are the

round-off and the truncation.

Rounding quantization

When the round-off quantization is applied (Figure 2.7), the magnitude of the

signal is rounded to the nearest quantization level. The maximum error that is

introduced is ±1
2
LSB. This means that the quantization error that is introduces

(e(x)) in this case is bounded in the interval [− q
2
, q

2
].

x̂ = Q(x) = ∆i + q
2
, ∀x ∈ [∆i,∆i+1] (2.13)

x̂ = Q[x]

x

∆i ∆i+1
xi

q
2

−q
2

e(x)

x

∆i ∆i+1

Figure 2.7: Rounding quantization process
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Truncation quantization

The truncation method (Figure 2.8) consists in choosing the inferior quantization

level for the representation of the signal. As a result the quantization error is always

positive, e(x) ∈ [0, q] and an offset is introduced.

x̂ = ∆i, ∀x ∈ [∆i,∆i+1] (2.14)

x̂ = Q[x]

x

∆i ∆i+1
xi

q

e(x)

x

∆i ∆i+1

Figure 2.8: Truncation quantization process

Analysis of the quantization noise

The results presented by Widrow [72, 73] show that the quantization process can

be modelled by the introduction of an additive noise. The output of a quantizer is

equal to the input signal x, plus a random variable e, that represents the quantization

error as it can be seen in Figure 2.9.

x̂ = x + ex

e

+

Quantizer Q()
x x̂ = Q(x)

a)

b)

Figure 2.9: Addtive quantization noise model
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In the case of the round-off quantization, the authors showed that the error is

uniformly distributed in the interval [− q
2
, q

2
]. Therefore, it has a mean (µe) that is

equal to zero (2.15), and a variance (σ2
e) that can be computed using equation (2.16)

with fe the PDF of the noise.

µe =

∫ ∞

−∞
efe(e)de =

∫ q
2

− q
2

1

q
ede = 0 (2.15)

σ2
e =

∫ ∞

−∞
(e− µe)fe(e)de =

∫ q
2

− q
2

1

q
e2de =

q2

12
(2.16)

When the truncation is used, the error is uniformly distributed in the interval

[0, q] and it has a mean equal to q
2

(the offset). The variance is given in (2.18).

µe =

∫ ∞

−∞
efe(e)de =

∫ q

0

1

q
ede =

q

2
(2.17)

σ2
e =

∫ ∞

−∞
(e− µe)fe(e)de =

∫ q

0

1

q
(e− q

2
)2de =

q2

12
(2.18)

In addition, the autocorrelation function and the correlation with the signal are

also analyzed in [75]. It results that the quantization noise can be considered to

be a white noise, non-correlated with the signal and independent from other noise

sources.

Signal-to-quantization noise ratio

In DSP applications, the most common performance criteria that describes the

computational accuracy is the signal-to-quantization-noise ratio(SQNR). The SQNR

is defined as the ratio between the power of the signal (Px) and the power of the

quantization noise (Pe) and is often expressed using the logarithmic scale:

SQNRdB = 10 log10

(
Px
Pe

)
= 10 log10

E[x2]

E[e2]
(2.19)
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As the fixed-point representation has a uniform quantization, the SQNR is lin-

early dependent on the signal amplitude. When the amplitude of the signal increases,

the quantization noise ratio becomes larger and the SQNR is improved.

Consider the case of a full scale sinusöıdal signal with the amplitude A = 2n.

The variance of the signal is then: σ2
x = A2

2
. The SQNR becomes:

SQNR = 20 log10

(
2n
√

3
2

)

≈ 1.76 + 6.02n dB

(2.20)

As a conclusion, in the case of the fixed-point representation with a signal that

is fully scaled, each additional bit increases the SQNR with approximately 6 dB.

As opposed to the fixed-point case, the floating-point representation has the

advantage of having a quantization step that is proportional to the amplitude of the

signal. The value of the SQNR using a logarithmic scale is given by the expression

in (2.21). It depends on the number of bits that are used for the representation

of the mantissa. However, the SQNR of the floating-point representation is not a

function of the amplitude of the signal, and can be considered constant for all the

values of x.

SQNR = 10 log10(E[x2]
efp

) = 10 log10(5.55× 22m)

SQNR ≈ 7.44 + 6.02m
(2.21)

In Table (2.3), a comparison between the fixed-point data types and the single

and double precision is presented. It can be seen that for an equivalent number of

bits, the fixed-point representation can guarantee a larger SQNR than the floating-

point number if it is properly scaled.

SQNR (dB)
Single Precision 151
Double precision 326

Fixed-point 32 bits 194
Fixed-point 64 bits 387

Table 2.3: SQNR comparison
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2.4 Wordlength Optimization

In embedded systems the floating-point number system provides a good environment

for the development and the validation of DSP algorithms as all the problems related

to the finite wordlength effects can be mitigated. Because of the sizeable dimension

of the allowed dynamic range variation, overflows are almost inexistent. In addition,

even though it introduces a representation error, the floating-point format ensures a

SQNR (especially in double precision) that is sufficiently large for most applications.

However, all the advantages come at the expense of an increased implementation

cost. When compared to the fixed-point arithmetic, the floating-point operations

are more complex to realize because of the inherent structure of the representation.

Since the exponent varies during computations an alignment of the fractional part

of both operands has to be realized. Moreover, the mantissa must be stored in a

normalized form, so a re-normalization is required after each operation. The cost of

a simple addition in floating-point arithmetic is increased in a large extent due to

the complexity of the supplementary procedures. Multiplications do not demand an

alignment of the operands but the re-normalization of the mantissa is still needed.

As a consequence, in applications that have high throughput or area and power

consumption constraints the additional cost becomes inacceptable in most cases.

The advantage of the fixed-point arithmetic is that the wordlengths of all the

operands can be optimized so that the memory and bus sizes can be reduced. In

addition, the operations are less complex to execute so the overall implementation

cost (area and power consumption) is greatly decreased in comparison to the floating-

point. As a result, most of all practical DSP applications use fixed-point arithmetic

and a conversion process from the floating-point representation of the algorithm to

the corresponding fixed-point implementation has to be made.

The conversion process has been mathematically formulated [62] as an optimiza-

tion problem, where the hardware cost must be minimized with a constraint on the

performance criteria for the fixed-point application. In order to determine if the
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performance criteria is satisfied, the evaluation of both the numerical accuracy and

the dynamic range of the fixed-point application has to be realized. The process is

thus translated into the determination of the fractional part wordlength that ensures

a sufficiently large SQNR for the application and the integer part wordlength that

avoids the occurrence of overflows.

The SQNR is proportional to the dynamic of the signal. If the input signal is not

appropriately scaled for the fixed-point data types, it can be significantly reduced.

However, by increasing the amplitude of the signal, the probability of overflow events

becomes larger. When the wordlength of the datapath is limited to a fixed bit-size

and the signal has a large variation of its amplitude, a trade-off between a high

SQNR and the appearance of unwanted overflows has to be done.

2.5 State of the art

In this section, a review of the existing methods for the floating-point to fixed-point

conversion is presented. As it has been shown, the problem is divided in two different

parts. At the beginning, the range estimation problem is presented. Afterwards, the

case of the numerical accuracy evaluation is addressed.

2.5.1 Range Estimation

In order to avoid the occurrence of overflows, the integer part wordlength has to cover

the entire range of possible values. If the extreme values (maxima and minima)

are known, the minimum integer wordlength (IWL) for a signed variable in two’s

complement representation can be calculated as:

IWL =




dlog2(|xMIN |) + 1e if |xMIN | > |xMAX |
dlog2(|xMAX |+ 1) + 1e otherwise

(2.22)

where dxe represents the smallest integer not less than x.
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Two different cases may arise in practice if the size of the integer part is incor-

rect. If fewer bits are used for the representation, the overflows will degrade the

computational performance of the implementation. If, on the contrary, the bitwidth

exceeds the needs, the hardware implementation costs is unnecessary increased.

The existing methods can be separated in two categories:

• simulation-based methods, which estimate the range of values for each

variable using the extreme values obtained in simulation

• analytical methods, which are purely deterministic procedures that provide

theoretical results using a description of the input variability

Simulation-based methods

Methodologies proposed in [33, 35, 37, 69] for the automatic range estimation

problem are based on Monte Carlo simulation. Large amount of input stimuli are

processed and the variable bounds are estimated using the extreme values obtained

from simulation of the floating-point model.

The basic method extracts the range of the signals directly from peak-to-peak

values obtain by simulation. Improved methods consider that all data are random

variables and they try to estimate the range using their statistics estimated from

simulation. In [33] the floating-point model is simulated and the mean and standard

deviation are calculated from the sum and the squared-sum of the samples. The

actual range is estimated for every variable in the program as follows:

R(x) = |µ(x) + nσ(x)| (2.23)

where n is a user specified integer that is usually in the interval [4, 16]. A larger

value for n will give a more conservative estimation of the range. This will decrease

the possibility of overflows at the expense of larger wordlengths.

In [35] a more elaborated statistical procedure is proposed to calculate the ranges
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where the signals are differentiated from a probability density function stand point:

• unimodal/multimodal

• symmetric/non symmetric

• zero mean/non zero mean

The symmetry of a probability distribution can be determined using the skewness

coefficient (2.24). A nonzero skewness implies an asymmetrical distribution function.

s =
µ3

σ3
(2.24)

where µ3 is the 3rd order moment and σ is the standard deviation.

A function is unimodal if it has only one local maxima. This property cannot be

directly determined, so the authors propose an heuristic method. A distribution is

unimodal if its kurtosis, expressed in (2.25), is in the interval [−1.2, 5].

k =
µ4

σ4
− 3 (2.25)

where µ4 is the 4th order moment and σ is the standard deviation.

For an unimodal and symmetrical probability distributions the range can be

calculated as in (2.23). Knowing that it is dependent on the kurtosis, n is chosen in

practice to be k + 4. For all other types of distributions the above formula can not

be applied anymore. So the authors introduce a new computation method:

R(x) = R99,9%(x) + g (2.26)

where g = (R100% − R99,9%)rR is a guard value and R99,9% is a sub maximal value

which covers 99,9% of the entire samples.

This method [35] needs a large amount of data in order to obtain a reliable esti-

mation and thus the simulation time can be extremely long. In addition, correctness

for non simulated conditions is unknown. If the sequence of input patterns is chosen
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to be too short or incorrectly distributed the extreme values that are encountered

in practice are not discovered. The possibility of overflows for rare events exists and

their probability cannot be determined. Its most important advantage is that it can

be applied to any type of system.

Analytical methods are based on the principle that every input data has a

defined range of possible values which can be statically propagated through the

system. At the end, the corresponding range for every intermediate and output

variable is obtained. in other word, this means that the variability of the result of

arithmetic operations can be analytically determined from the range of the operands.

Lp norm and transfer function based methods

In [7, 31] a methodology for Linear Time-Invariant (LTI) systems is described

based on the L1 norm and using the transfer function. A LTI system can be com-

pletely characterized by its impulse response function. For a system with N inputs,

let hik(n) be the impulse response from the input xi to a certain variable yk. Then:

yk(n) =
N−1∑

i=0

hik ∗ xi(n) (2.27)

This means that its absolute value is:

max(|yk(n)|) =
m=∞∑

m=−∞
|hik|

N−1∑

i=0

max(|xi(n)|) (2.28)

Or, in a more abstract form:

‖yk(n)‖∞ = ‖hik‖1 × ‖xi(n)‖∞ (2.29)

As a result, if the maximal and minimal values of the input are known, the

dynamic range can be computed for every variable in the system. This method can

be used for any type of input signal and gives theoretical bounds for the output that
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guarantee no overflow will occur. Taking in consideration only the maximum values

of the signals and not its statistics, it will generally give conservative results. As an

example, in [33] it is shown that for a fourth order IIR filter, the L1 norm will give

results 4 bits larger than the results obtained by simulation for a real speech signal.

Interval Arithmetic

The interval arithmetic (IA) method was originally proposed by Moore [51] in

the 1960s. Every signal is represented by an interval of possible values [xmin, xmax],

meaning that the true value of x varies between the two bounds.

[xmin, xmax] = {x ∈ <|xmin ≤ x ≤ xmax} (2.30)

For every basic arithmetic operation a propagation rule is defined which provides

the interval of possible values of the output variable. As an example, the addition

and the multiplication can be computed as in (2.31) and (2.32) respectively.

x = [xmin, xmax] ; y = [ymin, ymax]

z = x+ y = [xmin + ymin, xmax + ymax]
(2.31)

x = [xmin, xmax] ; y = [ymin, ymax]

z = x× y = [min(E),max(E)]

E = (xmin × ymin, xmin × ymax, xmax × ymin, xmax × ymax)

(2.32)

It can be shown that IA is equivalent to the L1 norm method for non-recursive

LTI systems. The advantage of this method is that it computes the variable ranges at

compilation time and it is not data dependent, thus providing guaranteed accuracy.

On the other hand this method considers that all the signals are independent and

may take any value in their given interval. However, if there is a correlation between

the operands, not all the values in the obtained interval are truly possible and thus

the method will provide overestimated bounds. This is particularly important in

systems with long datapaths or feedback loops where the bounds grow with every
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iteration.

As an example, lets determine the range for y = x − x, with x = [−1, 1]. The

result that is obtained is y = [−2, 2]. So instead of being 0 the interval of possible

values has length that is twice as large as the size of the operands.

An improvement of the IA method that has been proposed is the Multi-Interval

Arithmetic [4, 8]. The method is based on the interval arithmetic but splits each

interval into P disjoint subintervals:

[xmin, xmax] =
P⋃

i=1

[xi1 , xi2 ] (2.33)

For each combination of subintervals a basic single-interval propagation is per-

formed and the total dynamic range is determined by merging all the intermediate

intervals. Because the operations are performed on smaller intervals the dimensions

of the final results is reduced in comparison to the traditional IA method. However

it does not address the correlation problem.

Affine arithmetic

One of the solutions proposed to solve the dependency problem is the affine arith-

metic (AA) method [13, 18, 21, 22]. The authors extend the classical interval arith-

metic integrating the source and the sign amplitude of all uncertainties. A variable

x̂ will take the form of an affine equation (first degree polynomial)(2.34) between

variables.

x̂ = x0 + x1 × ε1 + · · ·+ xn × εn (2.34)

where εi is an independent source of uncertainty or error in the interval ∈ [−1, 1]

which adds to the total uncertainty of the variable x̂. x0 is called the center value

of the variable while x1, x2, · · ·xn are called partial deviations associated with the

noise symbols.

For any variable that is represented with an affine form, the corresponding in-
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terval of values is determined as:

x ∈ [xmin, xmax] = [x0 − rx, x0 + rx] (2.35)

with rx = |x1|+ |x2|+ · · ·+ |xn|
The most important property of the method is that a noise coefficient can be

shared between variables, keeping track of first order correlation (also called spatial

dependency) between them. Similarly to the IA, using the affine arithmetic the

variability can be propagated through the arithmetic operations, from the input to

the output. This step is straightforward for all affine operations as they will preserve

the affine property for the result (2.36).

x̂ = x0 + x1 × ε1 + · · ·+ xn × εn
ŷ = y0 + y1 × ε1 + · · ·+ yn × εn

ẑ = x̂+ ŷ = x0 + y0 +
∑n

i=1(xi + yi)× εi

(2.36)

The example from IA is considered, y = x − x. Using the AA the value of the

results is correctly determined:

x̂ = x0 + x1 × ε1
y = x− x = x0 + x1 × ε1 − x0 − x1 × ε1 = 0

(2.37)

However non-affine operations will not conserve the affine form and the result is

required to be linearized resulting in the loss of information and oversized bounds.

For example, the multiplication operation is realized as in (2.38). Other non-affine

operations can be treated as well [22].

ẑ = x̂× ŷ = (x0 +
∑n

i=1 xi × εi)(y0 +
∑n

i=1 yi × εi)
ẑ = (x0 × y0) +

∑n
i=1(x0 × yi + y0 × xi)× εi + zk × εk

(2.38)

with zk =
∑n

i=1 |xi| ×
∑n

i=1 |xi|
The number of noise variables will increase with each non-linear operator. As
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each one of these uncertainties is independent from others, the correlation between

signals will be lost. In conclusion, due to the limited additional information about

signals variation, the correlations between signals is not very well used and the range

will explode for complex applications.

Probabilistic interval-valued computation

While analytical range estimation methods like IA and AA provide a way to

compute the dynamic range in a purely deterministic manner, they provide limited

information about signals variation. As a consequence temporal and spatial correla-

tions between signals are not very well managed and the range of values may explode

for complex applications. In [64, 65] a novel interval algebra is proposed, refining

the affine model from a statistical stand point. Range uncertainties are replaced

with confidence intervals referred to as probabilistic intervals.

The authors identify three important problems in the basic interval methods that

they try to resolve:

• symmetrical interval bounds

• large operator bounds especially for non-linear operations

• absence of a statistical foundation

To allow asymmetric ranges, the authors add two enforced bounds to the affine

model which can be computed if the result is known not to exceed certain values.

So the new representation for a variable becomes: (2.39). [xl, xh] are the enforced

bounds that are imposed to the affine model x̂. Therefore, x̂ cannot have any value

that is outside of the interval [xl, xh].

{x̂, [x]} = {x0 +
n∑

i=1

xi × εi, xl, xh} (2.39)

The computation method for a variable becomes then a two step process:

• compute the symmetrical interval from the affine from x̂

29



• find the bounds of the results [x]

In addition they propose a new method for the linearization of non-affine oper-

ations that they call the minvolume approximation which reduces the error. Every

non-affine binary function is transformed into the following form:

ẑ = Ax̂+Bŷ + C +Dε (2.40)

where ε is the new error term and A, B, C, D are constants that are determined for

the least error.

The last problem they try to solve is to provide a probabilistic foundation for the

dynamic variation of a variable. As opposed to finding maximal theoretical bounds,

the goal of their approach is to obtain tighter results with a certain probability

for the number of times the magnitude will be outside of the predicted interval.

The probabilistic nature of a variable {x̂, [x]} comes from the randomness of the

error symbols εi. Supposing that all noise terms are independent and identically

distributed random variables with uniform distributions in [-1,+1] and using the

Central Limit Theorem, the probability distribution of x is shown to converge to a

normal distribution if the number of noise terms, N is large enough. As a result, the

range of a variable can be computed for a chosen confidence level, p:

[xp, xp] = x0 + [−σxΦ−1(p), σxΦ
−1(p)] (2.41)

where Φ is the normal cumulative density function and σx is the standard deviation

of x.

These values take the form of new enforced bounds for the range of a variable

and provide tighter intervals compared to the deterministic range obtained using the

AA method.

However, in DSP applications, where the delay operations are very frequent, it is

essential to capture the temporal correlation in order to obtain thigh range intervals
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and the method doesn’t provide a way to track the temporal correlation of the data.

Extreme Value Theory Method

The Extreme Value Theory is a statistical analysis branch concerned with the

extreme deviations from the mean of the probability density function. Its purpose is

to give theoretical description of the distribution of extreme values that can be ap-

plied to model the probability and magnitude of rare events. It has been shown that

the maxima and minima of a collection of independent and identically distributed

random variables converge in distribution to the generalized extreme value (GEV)

distribution.

The Extreme Value Theory has been applied to the range estimation problem

in [10, 56, 57, 81]. Between the 3 families of distributions that compose the GEV

(Gumbel, Fréchet and Weibull), the Gumbel [27] distribution (or the type I extreme

value distribution), is used in this case. Its probability distribution has the following

form:

f(x) =
1

β
e

−(x−µ)
β e−e

−(x−µ)
β

(2.42)

where β = s
√

6
π

is the scale parameter, µ = x − βγ is the location parameter, x is

the mean, s is the standard deviation and γ ≈ 0.5772 is Euler constant.

The method is based on lightweight simulations for statistical data analysis that

provides theoretical probabilities for an overflow event. The probability of overflow

is defined as the probability that the value of a variable exceeds its assigned range.

As a consequence of the fact that the distribution of rare events has a infinite sup-

port, there is always a non-zero probability of overflow. The method provides the

possibility to reduce this probability to small values, consistent with the application

needs.

N sets of random samples are generated as inputs for the program. After simulat-

ing N times the program, N minima and N maxima are extracted for each variable.

Using the obtained results, the parameters of the Gumbel distribution are estimated.
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The user specifies the in-range probability for every variable of the application, which

will give the maximal and minimal bounds.

Pr = P (X ≤ x) = e−e
−(x−µ)

β

xmax = µ− βln(ln(1/Pr))
(2.43)

The larger the number of samples N is, the more accurate the statistical analysis

becomes. However the number of samples that should be provided for an application

is determined empirically. In [56] the authors find that 650 samples are sufficient for

reliable results for all applications while in [57] the number is raised to 8000 input

samples and in [81] the number of samples that is used varies from 300 to 10000.

Another problem that may arise if the sample size is not large enough, is that

not all the possible execution traces in the program are covered. In [57] the problem

is treated using an unique number that identifies every variable in every path in the

internal representation. When a variable has no value assigned to it, the estimation

will not be done and the default bit-width will be left.

On the positive side, the method can be applied to any kind of system and

experimental results show that this method provides good results, outperforming

AA based methods in range estimation and area reduction especially for non-linear

applications [81].

Stochastic method

A new approach is presented in [78, 79] for dealing with the range estimation

problem that takes advantage of both the random and temporal dimensions that

characterize the uncertainty of data in signal processing applications. The input of

the system is considered to be a random process that varies in time. As a consequence

all the variables in the system become also random processes. The method is based

on a stochastic discretization of the input process in terms of random variables

using the Karhunen-Loev̀e Expansion (KLE) and the Polynomial Chaos Expansion

(PCE). As a result of the solid stochastical foundation of the KLE and PCE, the
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method can capture the temporal and spatial correlation of the signals.

As opposed to all the previous range representations, the KLE is a complete

statistical description of the input process x[n] that can be used to determine the

statistical moments or the entire probability distribution. Using the superposition

property of the LTI systems, the authors showed how it is possible to determine the

corresponding KLE description of the output using a limited number of simulations.

For non-linear systems, the superposition cannot be applied anymore, so they

proposed the use of the PCE instead. With the help of a projection method, the

authors show how the PCE of the input is obtained from the corresponding KLE

representation. Introducing a PCE arithmetic, the variability of the input can be

statically propagated through the data-flow graph of the application even in non-

linear systems. At the end, the PCE representation for all the variables is obtained

and their statistics can be derived from there.

Furthermore, the authors propose a wordlength optimization criteria under SNR

constraints. However, when the overflows occur in the middle of the computation

path, this evaluation may become inaccurate. It is thus not obvious how the number

of bits for the integer part wordlength can be computed directly using their method.

Conclusion

In order to realize a comparison between the methods that have been presented,

we will analyze them in terms of the accuracy of the estimation, the time of the

evaluation and the types of system that are supported. Furthermore, the precision

of the estimation is analyzed using 4 evaluation criterias. We first examine if the

absence of overflows is guaranteed, and if the minimal and maximal bounds are

absolute or not. If the absence of overflows is not ensured, the precision of the

overflow probability estimation is analyzed. The next criteria is the data dependence

of the results and finally we examine if the estimation method takes into account

the correlation of the data.

A summary of the comparison is presented in Figure 2.10. It is to be noticed
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that only the IA and the AA are not data dependent and provide absolute bounds.

All the other methods provide local bounds and their accuracy is limited by the

amount of input data that is provided. As the stochastic method uses the SQNR of

the application for the range determination, the overflow probability is not directly

determined.

The advantage of the AI and AA methods is that the evaluation time needed

is shorter compared to the other methods. The simulation based method has an

estimation time that can be extremely long that can become prohibitive while the

stochastic and the EVT methods have an intermediate evaluation time that can be

accepted in practice.

All the methods that have been presented here can theoretically be applied to

any type of system. However, the IA and the AA may not converge to a finite value

for applications that have cycles in their DFGs.

Figure 2.10: Estimation methods comparison

2.5.2 Numerical Accuracy analysis

The fractional part wordlength of the fixed-point data types is found by evaluating

the quantization noise effects based on a compromise between the accuracy needed

and the circuit cost. The evaluation of the computational accuracy can be made

using several error metrics. Most of the times, the SQNR is chosen as the precision

criteria. It guarantees that the power of the quantization noise does not exceed a

certain threshold compared to the signal power. The method is especially attractive
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in signal processing applications, where a minimal difference between the useful

signal and the level of the noise is desired.

One of the alternatives is to chose a maximal quantization error bound. As a

result the evaluation of the computational accuracy is made using the interval of

possible values that the error can take e ∈ [emin, emax]. Its advantage is that it

ensures an absolute maximal value for the quantization noise which cannot be made

using the SQNR criteria.

Simulation-based methods

Simulation based methods [32, 34, 36] evaluate the output of a bit-true fixed-point

model of the system to random inputs. The results that are obtained are compared

to the floating-point simulation, which is considered to be a reference model (as

the computational error that is introduced by the floating-point representations is

sufficiently small for most applications). The power of the quantization noise is

directly obtained from the second order moment of the difference between the two.

A new simulation has to be done for each different numerical accuracy evaluation.

The method can provide good results but requires a long time in order to guarantee

the accuracy. The approach is presented in Figure (3.14).

Fixed-point Simulation

Floating-point Simulation

Quantization
noise evaluation

Input
Samples

Figure 2.11: Computing the range from the PDF

The simulation of the fixed-point implementation requires an emulator of the

fixed-point arithmetic. In [34] the gFix type is introduced by the means of the

C++ operator overloading. However, all the mechanism that is constructed is very

heavy, and the execution time is largely increased compared to a classic floating-

point simulation. An optimization, called pFix type is presented in [36]. It uses
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the mantissa of the floating-point data for the representation of the fixed-point

variables. As a result, the maximal wordlength is limited by the size of the mantissa

(53 bits for double precision). The simulation time is greatly reduced compared to

the previous version. However, it still remains largely superior to the floating-point

execution time. As an example, for a 4th order IIR filter, the simulation time for the

fixed-point implementation is 7.5 times larger than the floating-point version.

Another approach has been adopted in [32]. The fixed-point variables are en-

coded using the integer data types with the purpose of diminuating the simulation

time. The method is based on the optimization of the data alignment before arith-

metical operations and the implementation of the quantification and overflow oper-

ations. FRIDGE tool [32] can reduce the execution time compared to the method

based on the operator overload. Nonetheless, the simulation time remains 3.6 times

greater than the floating-point.

Affine Arithmetic

In [18, 19, 43] a method based on the affine arithmetic was proposed. The evalu-

ation of the accuracy is made using the absolute quantization error. Based on the

fact that the quantization noise introduced by a rounding or truncation operation

is bounded (Section 2.3.2.1), the range of the error can be further propagated using

the affine arithmetic described in the previous Section. The method can be applied

to the analysis of the precision in both the fixed-point [18] and floating-point [19]

systems.

As it has been shown, the problem with the AA is the linearization for non-affine

operations and the relative poor treatment of the correlation.

Perturbation Method

An approach based on the perturbation theory was presented in [62, 63]. The

quantization noise is modeled as a small deviation from the infinite precision signal.

The perturbation of the operands of arithmetic operations generates a perturbation

of the result. The first and second-order statistics of the output noise can thus be
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computed. Considering a function with n input variables (xi) and n associated noise

terms (εi):

y = ft(x1, x2, · · · , xn, ε1, ε2, · · · , εn) (2.44)

The result of the fixed-point computation, yFP is computed using a Taylor ex-

pansion at the second order:

ft(x1, x2, · · · , xn, ε1, ε2, · · · , εn) = ft(x1, x2, · · · , xn, 0, 0, · · · , 0)+

+
∑n

i=1 εi
dft
dεi

+
∑n

i,j=1 εiεj
dft

dεidεj

(2.45)

The power of the quantization noise can then be determined as:

Pe = µtBµ+
∑

i

Ci2
−2ni (2.46)

where ni is the number of bits used for the fractional part wordlength, Ci is a

constant, µ is a vector that contains the expected values of the noise and B is a Ne

size matrix (with Ne representing the number of noise sources).

However, the propagation of the noise requires a statistical evaluation through

simulation in order to compute the terms B and Ci. The number of simulations that

has to be done is proportional to the number of noise sources N2
e of the system. As a

result, the computation time can become prohibitive if the number of noise sources

is large.

Impulse response based method

In [46, 48, 49] a method based on the transfer function was presented for the

case of LTI systems. The approach is based on the automatic determination of

the transfer function from the signal flow graph (SFG) of the application and on

the quantization noise model. As a result, it can provide the power of the output

quantization noise.

Considering a system with Ne inputs xi[n] and one output y[n], and let hi be the

impulse response from the input xi[n] to y[n]. The output can then be determined
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using the equation (2.47).

y[n] =
Ne−1∑

i=0

hi ∗ xi[n] (2.47)

The quantization of each input produces a noise source bi(n). Each internal

operation that generates an elimination of bits (through rounding or truncation)

introduces an additional noise term bgj [n] with an associated impulse response hgj .

As a result, the output quantization noise has the following expression:

by[n] =
Ne−1∑

i=0

hi ∗ bi[n] +

Ng−1∑

j=0

hgj ∗ bgj [n] (2.48)

Using the quantization noise model, the power of the output noise can be com-

puted as in equation (2.49), where µbI and σ2
bi

represent the mean and the variance

of the noise, and Hi(e
jΩ) the corresponding transfer function.

Pby =

Ne+Ng∑

i=0

σ2
bi

1

2π

∫ π

−π
|Hi(e

jΩ)|2dΩ + (µbiHi(1))2 (2.49)

2.6 Conclusion

This part introduced the floating-point and fixed-point representations and pre-

sented the finite wordlength paradigm. The floating-point to fixed-point conversion

is transformed into an optimization process where the minimal number of bits for

the representation of the integer and the fractional parts is determined under per-

formance constraints. The fractional part wordlength determines the numerical

accuracy of the application, while the integer bit-width ensures the dynamic range

to avoid the appearance of overflows. A review of the existing methods for both the

range estimation and the precision analysis has been made.

In order to solve the problem related to the overestimation of the dynamic range,

the objective of this thesis is to develop a probabilistic framework for the optimiza-

tion of the integer part wordlength with a constraint on the probability of overflow.

Our approach for the range analysis is described in Chapter 3. In Chapter 4 a
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method for the range estimation in LTI systems is presented. Chapter 5 extends the

analysis to all types of system.
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Chapter 3

Stochastic Approach for Dynamic

Range Estimation

In this Chapter, the range evaluation problem is addressed. An orthogonal frequency-

division multiplexing (OFDM) transmitter is presented and the datapath wordlength

optimization problem is analyzed. It is a real application example that proves the

interest of accepting overflows in order to realize a trade-off between the cost of the

implementation and the performance of the system.

Secondly, a stochastic approach for the range estimation is proposed where the

interval of variation is determined with a constraint on the overflow probability.

For applications that can accept occasional overflows, the integer part wordlength is

optimized without covering the entire theoretical dynamic range with the purpose

of reducing the implementation cost.

3.1 Test Case Analysis - An OFDM Transmitter

The OFDM is a multi-carrier modulation scheme applied in a wide range of ap-

plications, such as digital television, wireless communications or broadband inter-

net access, which became one of the most frequent communication technologies for

high data rate transmissions. It is an efficient method for transmitting data over

frequency-selective fading channels as the channel division makes it possible to avoid
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difficult equalization schemes at the receiver.

It is a modulation method that divides the entire frequency channel into many

narrow band flat fading orthogonal sub-channels (or sub-carriers). An overview of

the OFDM modulation structure can be seen in Figure 3.1. The serial bitstream

is first separated into N different sub-carriers with a serial to parallel converter.

Each channel is then independently modulated with a traditional modulation scheme

(quadrature amplitude modulation or phase-shift keying). The multicarrier modu-

lation is realized through the means of a complexInverse Fast Fourier Transform

(IFFT). The real and the imaginary parts are then transformed into analog sig-

nals by the digital-to-analog converters (DAC) and the transmitted signal s(t) is

obtained.
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Figure 3.1: OFDM modulation scheme

The receiver realizes the inverse operation. First, a modulated signal s′(t) is

transformed into its baseband correspondent and two digital signals are obtained

using analog-to-digital converters (ADC). Using a complex Fast Fourier Transform

(FFT), N parallel sub-carriers are obtained in the frequency domain. They are
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further demodulated and transformed into N binary streams of data. The final

bitstream is obtained with a parallel-to-serial converter.

3.1.1 Application Description

The real example that has been chosen as a test case is the modulator of an OFDM

transceiver for the WirelessHD standard. This is a technology for multi-gigabit

wireless communication at distances of up to 10 meters for consumer electronics

products (wireless audio, video and data streaming). The first implementation is

designed for data rates of up to 3.0 Gbit/s, but the specification supports a theoret-

ical throughput of 28 Gbit/s. The WirelessHD uses a 7 GHz channel in the 60 GHz

radio band.

The standard is based on an OFDM modulation with N = 512 subcarriers, each

one being modulated with a QPSK or 16QAM scheme. The sampling rate of of the

application is 2.538 Gsamples/s.

The development of the entire transceiver has been done using High-level syn-

thesis tools. However, from the entire application, our focus is only on the datapath

optimization for the digital signal processing part of the transmitter, described in

Figure 3.2.
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Figure 3.2: Digital Signal Processing Modulator

The main block of the modulator is formed by the 512-point IFFT. From the total

of 512 subcarriers, only 336 subcarriers are actually used for the transmission.The

Mapper generates the QPSK or 16QAM constellations for each sub-carrier. The
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number of bits that are transmitted for each OFDM symbol depends on the modu-

lation scheme that is used for the sub-channels:

• QPSK modulation: 672 bits/OFDM symbol

• 16QAM modulation: 1344 bits/OFDM symbol

A frequency domain (FD) preamble is inserted for the channel estimation at the

receiver and a time domain (TD) preamble is introduced for synchronization. In

addition, a cyclic prefix with a length of 64 is used in order to avoid the intersymbol

interference(ISI). The non-linear effects of the DAC, like the I/Q imbalance and the

non-flat frequency behaviour are corrected using the frequency and time domain

pre-correction blocks.

3.1.2 Peak-to-average power ratio problem

One of the major problems in OFDM communication systems is the high peak-to-

average power ratio (PAPR) of the transmitted signal. This means that the peak

values that appear are much larger than the mean. Hence, so as to avoid clipping

the signal, enough bits need to be provided to cover the entire dynamic in the digital

part while in the analog parts linear amplifiers that work linearly on a large range

are required. Otherwise the signal will be clipped whenever the value will exceed

a certain threshold causing distortions and out-of-band radiation that will degrade

the overall bit-error rate performance of the system.

The peak-to-average power ratio is defined as:

PAPR =
[x(t) ∗ x(t)]

E[x(t) ∗ x(t)]
(3.1)

where ∗ represents the conjugate

Considering an OFDM signal, consisting of N subcarriers, each symbol being

modulated using an M QAM modulation scheme, it can be shown [30] that the

43



maximum PAPR will be:

PAPRmax = 3N

√
M − 1√
M + 1

(3.2)

However, the probability that this event will occur in practice is very low [55]:

PPAPRmax =
1

MN−2
(3.3)

Even though PAPR reduction techniques are used to modify the properties of

the signal, practical values of the PAPR still remain high. So using the traditional

methods for range analysis that guarantee that overflow never occur in practice

imply the use of a large integer part wordlength and the implementation cost is

largely increased. As the extreme values will rarely arise in practice, an important

part of the dynamic variation is almost never used. It is then possible to optimize

the hardware implementation without covering all the theoretical range using fewer

bits for the integer part representation. A statistical method for the dynamic range

determination should be applied, where an occasional overflow is authorized if the

overall system performance is still guaranteed in order to reduce the area and power

consumption of the application and to decrease the critical path delay.

3.1.3 Overflow Effects

Bit-error-rate (BER) analysis

If the integer part wordlength doesn’t cover the entire theoretical dynamic range,

the impact of overflows on the system performance should be analyzed. So as to

evaluate the computational degradation that is introduced, the entire OFDM modu-

lation scheme must be taken into account. The computational precision is translated

into a decoding error and a decrease of the BER of the application.

The amplitude of the modulated signal at the Mapper output (with a QPSK or

16QAM scheme) is a parameter of the modulator (Figure 3.2) that can be modified.
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Increasing or decreasing its magnitude modifies the range of the signal through the

IFFT. As it has been shown in Section 2.3.2.1, the SQNR of the application is

linearly dependent on the signal amplitude. As a consequence when the amplitude

of the Mapper is increased, the SQNR is improved. However, the wordlength for

the datapath is limited by the cost of the implementation so the dynamic range

that can be represented by the fixed-point data types is limited. As a result, the

increase of the amplitude of the Mapper causes the appearance of overflows because

the application has a high PAPR.

The phenomenon has been observed in simulation and is illustrated in Figure

3.3. The bit-width of the datapath of the IFFT has been set to 12 bits. Considering

an integer representation, the maximal and minimal values that can be represented

with 12 bits are xmin = −2048 and xmax = 2047. For the 16QAM and QPSK

modulation schemes, the absolute maximal amplitude of the input signal is varied

from 400 to 1000. The corresponding probability of overflow in the IFFT datapath is

determined in simulation. For low magnitudes of the signal, the absence of overflows

is ensured. As the amplitude increases, the number of exceedings starts to grow and

is quickly becoming very large after a certain threshold.
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Figure 3.3: Number of overflows variation with the amplitude

The SQNR variation with the amplitude is also considered in Figure 3.4. As
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expected, the increase in the magnitude of the signal generates an improvement of

the SQNR. The first point is the only one where no overflows were detected. As

it can be seen, even though the occurrence of an overflow generates an important

computational error, the global SQNR level of the application continues to grow

when their number is limited. However, when their number becomes very high, a

rapid degradation of the SQNR is noticed.
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Figure 3.4: SQNR variation with the amplitude

Because the data transmission is realized over noisy channels, the use of a for-

ward error correction (FEC) part is introduced into the communication scheme to

correct the decoding errors and improve the overall BER. The channel decoder con-

tains a Viterbi decoder followed by a Reed-Solomon decoder. The evaluation of the

BER degradation caused by overflows is analyzed after the channel decoder. The

test configuration of the OFDM modulator is presented in Figure 3.5. Several simu-

lations tests are done, each one for a different value of the amplitude of the Mapper.

Therefore the number of overflows that is observed increases and a different BER is

obtained. Each simulation is done using an input frame of 106 bytes length.

The BER results obtained for the 16QAM and QPSK modulation in the presence

of overflows are presented in Figure 3.6 and Figure 3.7 respectively.

As it can be seen, the overflow effects are more destructive for the 16QAM than
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Figure 3.5: OFDM modem test diagram
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Figure 3.6: BER variation for 16QAM modulation
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Figure 3.7: BER variation for QPSK modulation

for the QPSK modulation. However, for a desired BER efficiency of the implemen-

tation a corresponding overflow probability can be determined. Instead of trying
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to guarantee the absence of overflows it is possible to allow a limited number of

exceedings that still ensure the performance constraint of the application.

When the wordlength of the datapath is limited by the implementation con-

straints and the signal has a large variation of its amplitude a trade-off between the

fractional part and the integer part wordlength should be made. This is translated

into a trade-off between an increased SQNR for the application and a probability of

overflow.

Frequency spectrum analysis

The second aspect that is analyzed in the presence of overflows is the power

spectral density of the transmitted signal. When an overflow occurs in the IFFT,

the shape of the signal is changed and the frequency spectrum of the transmitted

signal is modified, meaning that the emission mask is not respected anymore. The

problem can be observed in Figure 3.8, where the floating-point signal at the output

of the IFFT is compared with its fixed-point corresponding, when an overflow was

produced.
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Figure 3.8: IFFT output PSD

Digital-to-analog converters have a non-flat frequency-response, meaning that

the high frequencies will be attenuated as they approach Fs/2 (where Fs is the
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sampling frequency). The frequency-response is described by a sin(x)/x (sinc(x))

roll-off that introduces at Fs/2 a −3.89 dB attenuation. The transmitted signal must

be bandlimitted, so the analog signal is further passed through a reconstruction filter

that eliminates the high frequencies.

To see if a relatively inexpensive reconstruction filter can remediate the overflow

effects, we considered a 3rd order Chebyshev low-pass reconstruction filter. The

results are presented in Figure 3.9 and show that the low-pass filter is sufficient to

guarantee the emission mask when overflows occur.
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Figure 3.9: Transmitted signal PSD

3.2 Hardware Implementation

The implementation of the OFDM modulator has been realized using Mentor Graph-

ics High-Level Synthesis tool CatapultC [50] and the corresponding fixed-point data

types (ac fixed and ac int). The RTL code generated with CatapultC is further

synthesized with Design Compiler (DC) [70] for a 65nm LP 1.2V target technology

at different frequencies. The most important part of the design is represented by

the 512-point decimation-in-time IFFT. It accounts for 80% of the total area of the

modulator and it is the heavily affected by the increase in the size of the datap-

ath. The analysis of the hardware implementation of the IFFT provides an accurate
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model for the entire modulator, as a consequence only the results for the IFFT are

presented in this section .

In order to observe the link between the performance (BER) and the cost (area

and power consumption), several implementations have been realized for different

datapath wordlengths. The size of the datapath has a direct connection to the

performance of the system. The addition of every bit increases the SQNR of the

transmitted signal which is translated into a higher BER for the overall application.

In practice, the implementation of the design has to ensure a certain throughput

generally given by the standard. The advantage of the HLS tools (like CatapultC)

is that the operation frequency can be set as a synthesis constraint in order to

respect the desired throughput. It is then possible to compare the area and power

consumption of a circuit for different synthesis frequencies very easily.

The results in terms of area after DC synthesis for different datapath wordlengths

are presented in Table 3.1 for the 65nm LP technology. The importance of gaining

even only 1 bit for the datapath of the IFFT can be easily seen and it becomes

a crucial factor in obtaining cost-effective implementations, especially for the high

frequencies that are needed for the WirelessHD standard.

The area comparison curves are plotted in Figure 3.10 and the corresponding

power consumption comparison is presented in Figure 3.11. It is interesting to

observe that there is a larger distance between the 11 and 12 bits implementations

than between the 12 and 13 bits. This is an effect of the structure of the multipliers.

As a result, passing from 11 to 12 bits has a higher impact on the circuit cost than

passing from 12 to 13 bits. Depending on the frequency, the increase of the total

area between the 11 and the 12 bits implementations is around 17-18% while the

increase from 12 to 13 bits is only 3-5%. The same conclusion can be made about

the power consumption, where a difference of about 29-32% is found between the 11

and 12 bits implementations whereas only 2-3% is observed for the 12 and 13 bits.

Another important observation should be made about the operating frequency.

For a relatively constant area, the frequency is reduced by approximately a factor of
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Datapath size Frequency (MHz) Area (µm2)
10 200 560125
11 200 623589
12 200 735169
13 200 773834
14 200 856169

10 320 661459
11 320 755184
12 320 884238
13 320 912882
14 320 977072

Table 3.1: Area comparison for different wordlength sizes

Figure 3.10: IFFT area comparison

Figure 3.11: IFFT power consumption comparison
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two when the size of the datapath is increased with two bits. The results are shown

in Table Table 3.2.

Datapath size Area (µm2) Frequency (MHz)
10 724109 375
12 735169 200
14 725277 100

11 663073 200
13 623589 100

11 755184 320
13 724844 162

Table 3.2: Frequency variation at approximately constant area size

The different comparisons that have been presented demonstrate the importance

of the datapath optimization to obtain adequate hardware implementations that

minimize the area and power consumption. In the following Section, a novel ap-

proach for the range determination is introduced, with the aim of reducing the

integer part wordlength so that the cost can be decreased.

3.3 Proposed Method for the Range Analysis

As it has been shown in the previous Section, when the signal has a high variation

of its amplitude throughout execution, dimensioning the wordlength of the datap-

ath becomes an extremely difficult task. The classical range estimation methods

determine absolute variation bounds (Figure 3.12).

Range DeterminationSystem

[Xminabs, Xmaxabs] [Yminabs, Ymaxabs]

Figure 3.12: Classical Range Determination

If the entire theoretical range is ensured, the cost of the hardware implementation

can be significantly increases. To comply with the high throughput demands of

the application and at the same time obtain a cost effective implementation, the
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wordlength of the integer part can be reduced so that not the entire interval of

variation is covered. As a consequence the occurrence of overflows is authorized

with a constraint regarding their probability of appearance. Variables that have

long tailed PDFs will be approximated with tight intervals that correspond to a

desired coverage probability.

It becomes thus very important to estimate accurately the dynamic range and

the probability of appearance of high peaks. Traditionally, this is a process that can

be done using extensive simulations. However, this is an iterative process, that has

to be done every time a parameter of the implementation has changed. Therefore

this is a method that becomes time demanding and error prone.

To solve the problem, an analytical method should be developed. It is an opti-

mization problem that can be separated into two parts. The first one corresponds

to the determination of the dynamic range for a given overflow probability while the

second is concerned with the analysis of the performance degradation generated by

the overflows.

This thesis focuses only on the first part of the integer wordlength optimization.

As a result, a probabilistic framework is developed for the determination of the

variation interval that corresponds to a desired overflow probability.

3.3.1 Probabilistic description of the system

Instead of representing the variation of a signal like the classical analytic methods

do, using only the maximal and minimal bounds [Xmin, Xmax], our aim is to ob-

tain a complete representation of the variability of the output of the system that

incorporates its probabilistic behavior from a stochastic representation of the input.

The range of a variable is thus represented by its PDF. This characterization of the

variability is further propagated through the system, obtaining the corresponding

representations for each variable in the system. An input-output view of a system

can then be represented as in Figure 3.13.

Furthermore, we propose an integer wordlength optimization criteria based on

53



Range Determination
System

Stochastic Representation
[Ymin, Ymax]

Povfl

PDF

Figure 3.13: Probabilistic Range Determination

the overflow probability. The range for all variables is computed from the PDF with

respect to a coverage probability. The probability that the values of a variable will

exceed a certain threshold can be computed from the PDF as it is shown in equation

(3.4).

Poverflow =

∫

D

pY (y)dy (3.4)

where D = {y | ymin > y and y < ymax}
The dynamic range is then determined from the PDF by the integration of its

tails in order to correspond to a desired probability of overflow as it can be seen in

Figure 3.14.

Figure 3.14: Computing the range from the PDF

With our approach, it becomes possible to realize a trade-off that can reduce the

implementation cost depending on the application performance specifications. As

opposed to the methods that provide fixed minimal and maximal limits and thus

overdimension the system, we can determine appropriate intervals of variations by

changing the allowed overflow probability. The situation is illustrated in Figure 3.15,

where an implementation cost gain can be obtained by adapting the wordlength of

the datapath to the bit-error-rate (BER) needed for the application.
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Figure 3.15: Cost-performance trade-off

3.3.2 Range determination methodology

Based on the new probabilistic approach for the variability analysis, a general

methodology for the range determination can be seen in Figure 3.16.

The statistical description of the output is obtained by propagating the variability

of the input through the system. As a result, the first part of the methodology relies

on a stochastic discretization procedure that generates a representation of the PDF

for each input variable xi, denoted here by Γi(xi).

The application, originally described using a high-level language like C++, is

transformed into a data-flow graph (DFG). The stochastic representation of the

output, Γi(yi) is computed next, relying on the input model and the DFG.

Finally, the corresponding PDF of each variable yi is estimated and the dynamic

range, [ymin, ymax] is determined according to an authorized probability of overflow

that is given as a parameter.

3.4 Conclusion

In this Chapter a real application has been presented as a validation example for

the acceptance of overflows in order to optimize the wordlength of the datapath and

reduce the cost of the hardware implementation.

A statistical approach for the range evaluation was proposed, where the necessary
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Figure 3.16: Probabilistic range determination methodology

number of bits for the integer part representation are computed with a constraint

on the probability of overflow that is allowed.
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Chapter 4

Karhunen Loève Expansion

Method For Linear Time Invariant

Systems

In this Chapter a method for the range evaluation of variables in LTI systems with

respect to a corresponding overflow probability is presented. The procedure is based

on the Karhunen-Loève Expansion as a means of representation for the variability of

signals. Furthermore, we show that the quantization noise estimation can be realized

using the same approach. The results obtained for several typical applications are

presented.

4.1 The Krahunen-Loève Expansion

4.1.1 Introduction

Random Variable

Let (Ω, F, P ) be the probability space with Ω the sample space, F an σ-algebra

and P the probability measure. A real random variable is a function X : (Ω, F, P )→
D ⊂ R. For every outcome θ ∈ Ω, a real value X(θ) is assigned. If X has a discrete

number of possible values D = {xk, k ∈ N}, the random variable is called discrete.

57



If the domain of values D is continuous, X is a continuous random variable. Any

random variable X is defined through its cumulative distribution function (CDF)

FX(x) as in equation (4.1):

FX : R→ [0, 1]

FX(x) = P{X ≤ x}
(4.1)

For a discrete random variable, the probability mass function is defined as:

P{X = xk} = pk (4.2)

The CDF can then be determined as it follows:

FX(x) =
∑

xk≤x
pk (4.3)

In the case of continuous random variables, the probability density function

(PDF) fX(x) is introduced:

fX(x) =
dFX(x)

dx
(4.4)

The CDF becomes:

FX(x) =
∫ x
−∞ fX(y)dy (4.5)

The probability between any two values ofX can then be computed as in equation

(4.6):

P{a < X < b} =

∫ b

a

fX(x)dx, ∀a < b (4.6)

with
∫∞
−∞ fX(x)dx = 1.

Moments

The expected value (mean) of a random variable is defined as:

µ = E[X] =

∫

R
x fX(x)dx (4.7)
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The variance is:

σ2 = E[(X − E[X])2] =

∫

R
(X − E[X])2fX(x)dx (4.8)

The n-th moment of X is:

E[Xn] =

∫

R
xn fX(x)dx (4.9)

The covariance of 2 random variables X, Y is a measure of the strength of the

correlation between the two variables and is given by equation (4.10).

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

=
∫
R

∫
R(X − E[X])(Y − E[Y ])fX,Y (x, y)dxdy

(4.10)

with fX,Y the joint probability distribution of the two random variables.

The correlation between two random variables X and Y is given by the correla-

tion coefficient ρ. It is obtained by normalizing the covariance with the standard

deviations σx and σy of each variable (4.11):

ρ =
cov(X, Y )

σx σy
(4.11)

Random Vector

A random vector X is a function X : (Ω, F, P ) → D ⊂ Rd where d is the size of

the vector X = (X1, X2, , Xd)
T , and whose components are all random variables.

Random Process

A stochastic (random) process is mathematically described as a sequence of ran-

dom variables indexed by a parameter t, x(t, θ) = {xt, t ∈ T}, defined on the prob-

ability space (Ω, F, P ). When the set T is countable (e.g. T = 0, 1, 2, · · ·), x(t, θ) is

called a discrete random process. Otherwise, if T is an interval (e.g. T = [a, b] ∈ R),

x(t, θ) is a continuous random process. Usually, the index t represents time, and
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then xt represents the process at the time instant t.

For a fixed t0, x(t0, θ) is a random variable while for a fixed θ0, x(t, ω0) represents

a realization (or trajectory) of the process and a curve in the Hilbert space L2.

A random process is called stationary if its statistics do not depend on the

observation interval, meaning that its joint probability distribution is not modified

by time shift operations.

The autocovariance of a stochastic process is defined as the covariance between

its value at t1 and its value at t2:

CXX(t1, t2) = Cov
(
x(t1, θ), x(t2, θ)

)
(4.12)

4.1.2 Krahunen-Loève Expansion

Generally, random processes have an infinite dimension. In order to represent them

in practice, a discretization procedure must be realized. Its purpose is to approxi-

mate the process as a combination of a finite set of random variables that is easier

to manage. Several discretization techniques have been presented in the literature

[40, 67]. Between them, the series expansion methods are the most widely used.

The Karhunen-Loève Expansion (KLE) [41] is a discretization procedure based

on the covariance function of the input process. Consider a second order random

process x(t, θ) with mean m(t) and autocovariance function CXX . It is then pos-

sible to represent the process using a spectral expansion of its covariance function,

in a similar manner to a Fourier series representation, called the Karhunen-Loève

Expansion:

x(t, θ) = m(t) +
∞∑

i=1

√
λiφi(t)ηi(θ) (4.13)

where {ηi(θ)} is a set of uncorrelated, with zero mean and unit variance random

variables. λi and φi are the eigenvalues and eigenfunctions of the covariance function

CXX , meaning that they are the solution to the homogeneous Fredholm integral
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equation of the second kind:

∫

T

CXX(t1t2)φi(t1)dt1 = λiφi(t2) (4.14)

The main difficulty of the KLE is to compute the equation (4.14). For some

particular cases, the eigenproblem can be computed analytically as it is described

in [25]. However, in most of the practical cases a numerical solution based on the

Cholesky decomposition or the QZ algorithm can be used instead.

In practice, if the mean and the covariance is not known analytically and only

a number of realizations of the process are known, the unbiased estimators are

computed using the following equation:

m(t) = 1
N

∑N
i=1 xi

and

CXX = 1
N−1

∑N
i=1(xi −m(t))T (xi −m(t))

(4.15)

where xi is the ith realization of the random process and N is the total number of

realizations used in the estimation.

The random variables {ηi(θ)} are orthogonal and have a zero mean:

〈ηi(θ)〉 = 0 and 〈ηi(θ)ηj(θ)〉 = δij (4.16)

with the inner product defined as:

〈ηi(θ)ηj(θ)〉 = E[ηi(θ)ηj(θ)] (4.17)

From the equation (4.13), an expression for each random variable can be deter-

mined:

ηi(θ) =
1√
λi

∫

T

(x(t, θ)−m(t))φi(t)dt (4.18)

{φi : D → <} is a set of deterministic functions of t and form a complete
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orthonormal basis in L2(D). The eigenvalues λi are all positive and describe the

importance of the corresponding eigenfunction in the process. They can be arranged

in a decreasing order. The decay of the eigenvalues depends on the smoothness of

the covariance and on the correlation length (the decay increases with the correlation

length).

For the specific case when the input process is Gaussian, the random variables

ηi(θ) are all independent standard normal random variables. In the general case,

however, they have an unknown distribution and are only uncorrelated.

In theory, the KLE representation has an infinite sum of random variables. How-

ever, in order to use the expansion in practice, only a finite approximate of the

process x(t, θ) is used, meaning that the KLE is truncated after a certain order M:

x(t, θ) ≈ m(t) +
M∑

i=1

√
λiφi(t)ηi(θ) (4.19)

The KLE is a mean square convergent series for all finite second order random

processes (processes with finite energy) and it can be shown that it is even optimal in

the sense that it minimizes the truncation error for a fixed order M. In other words,

there is no other series expansion that approximates better the random process with

the same number of terms.

E
[ ∫

D

(
x(t, θ)−

(
m(t) +

∑M
i=1

√
λiφi(t)ηi(θ)

))2

dt
]

=

=
∑

i>M λi → 0 as M →∞
(4.20)

One way to compute M is by choosing a truncation error that is sufficiently close

to zero:

etr = 1−
∑M

i=1 λi∑N
i=1 λi

(4.21)

where λ1, λ2, · · · , λM are the eigenvalues kept in the truncated expression from the

total of N eigenvalues.

The value M is determined by the decay rate of λi. The closer the process is

to a white noise, the more terms are needed in the expansion. At the other end, a
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random variable can be represented by a single term. It is clear that the KLE is

more efficient for highly correlated random processes.

Because the random coefficients {ηi} are uncorrelated, the variance of the KLE

approximation of the process can be computed using the Bienaymé formula as the

sum of the variances of each term:

σ2
xKLE

=
M∑

i=1

(√
λiφi(t)ηi(θ)

)2

=
M∑

i=1

λiφi(t)
2 (4.22)

given that the variance of {ηi} is equal to one.

The error of the truncated variance can be thus determined by the following

equation:

eσ2 = σ2
x − σ2

xKLE
= σ2

x −
M∑

i=1

λiφi(t)
2 > 0 (4.23)

because all the eigenvalues λi are positive.

This points out that the truncation of the KLE will always underestimate the

variance of the process.

In conclusion, the KLE approximates a random process by a linear combination

of (countable) deterministic functions (also called KL modes) {φi} with orthogonal

(uncorrelated) random coefficients {ηi} which represent the probabilistic content

(the stochastic dimension).

4.2 Stochastic Modeling

In digital signal processing applications, many times the input signals have a corre-

spondence to real physical processes that vary in time. The probability of overflow

for a variable corresponds to the number of times the values of that variable exceed

the allowed range during the execution time [0, T]. The situation is represented in

Figure 4.1.

For stationary processes, the overflow probability can be estimated directly from

the PDF integrating its tails. Reciprocally, for a chosen probability of overflow the
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Figure 4.1: Overflow occurrence

corresponding maximal and minimal bounds can be determined. Therefore, the

integer part wordlength optimization under a probability of overflow constraint can

be realized using a probabilistic approach that characterizes the dynamic variability

by associating a PDF to every variable in the design.

Digital signal processing algorithms often use delay operations. As a result, the

samples of the process are computed at different time instants, as in the case of a

FIR filter: x(n), x(n − 1), x(n − 2), · · · . The values of the signal at a particular

point in time are found to be more or less correlated with the values that proceed

and succeed them. As a result, the statistical description (PDF) of the internal and

output variables is dependent of the correlation structure of the input signal.

Consider the example of a random process with the PDF presented in Figure 4.2

and the covariance function given in Figure 4.3.

A comparison between the sum of: x(n) +x(n), x(n) +x(n− 1), x(n) +x(n− 4)

and x(n) + x(n − 10) is presented in Figure 4.4. Because the correlation between

the samples varies with the delay, the PDF of the result is different each time.

Even though the theoretical absolute minimal and maximal values obtained with

the interval arithmetic are the same, their probability of occurrence changes. With

our approach the range is determined from the PDF with respect to an overflow

probability, so the obtained interval will be different in all of the four cases. The
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Figure 4.2: Input PDF

−50 −40 −30 −20 −10 0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Covariance function

Figure 4.3: Input covariance function

importance of the temporal correlation between data is thus primordial in order

to obtain an accurate range estimation. This is why the traditional methods like

the interval arithmetic and the affine arithmetic are not adapted to this kind of

situations.

In order to incorporate the temporal correlation the notion of random process

becomes the mathematical model that is the most appropriate. The randomness

of the input propagates through the system and the state variables and the output

become also random processes. The problem of range estimation is thus equivalent

to evaluating the response of a system modeled as a deterministic function with
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Figure 4.4: PDF of the sum of delayed samples

random inputs: y(t) = f(x1(t), x2(t), · · · , xn(t)).

The methodology can then be divided into 3 different parts:

1. Represent the input variability using the KLE discretization procedure

2. Propagate the uncertainty through the system and obtain the KLE represen-

tation for every variable

3. Range determination from the PDF and according to a probability of overflow

4.2.1 Input Representation

As a primary step, the variability of the input signal is represented by the means of

the KLE:

x(t, θ) ≈ m(t) +
M∑

i=1

√
λiφi(t)ηi(θ) with t = 0, 1, 2, · · · (4.24)

Synthetic signal

In order to model the correlation of the input process the auto-regressive (AR)

time series model is used. This method is frequently applied in DSP applications

to model real physical process. It is a linear regression of the current value of the

time series against its past values. The AR of order p is described by the following
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equation:

xt = ϕ1xt−1 + ϕ2xt−2 + · · ·+ ϕpxt−p + εt (4.25)

where ϕi are the parameters of the model and εt is a white noise.

The AR of order 1 (AR(1)) is used as a test for the generation of the input

process.

xt = ϕ1xt−1 + εt (4.26)

The correlation of the process is modified by the parameter ϕ1. The temporal

length of analysis depends on the dimension of the system in order to obtain the

steady state of the output. It will give the size of the covariance matrix CXX and

it is set here to 50 time points. The number of terms that should be kept in the

expansion is given by the decay rate of the eigenvalues. This is a function of the

correlation length, for the higher correlation the decay is steeper. As an example,

the first 50 eigenvalues of the AR(1) process for two different cases: ϕ1 = 0.2 and

ϕ1 = 0.95 are represented in decreasing order in Figure 4.5a and in Figure 4.5b)

respectively. The values of the eigenvalues decrease much faster for the case when

ϕ1 = 0.95 as the correlation is more important.
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Figure 4.5: Eigenvalues arranged in decreasing order

The KLE allows to treat the deterministic variable (t) and the random character

(θ) of the input separately. The expression of the input at different time instants is

given by the value of the eigenfunctions φi(t). The first 4 eigenfunctions for the AR
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process with ϕ1 = 0.95 can be seen in Figure 4.6.
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Figure 4.6: First 4 eigenfunctions

If the input has a low correlation, the truncation of the KLE will generate a loss

in precision because every eigenvalue is important in the expansion. On the other

hand, if the process is highly correlated, the complexity can be reduced as most

of the energy is captured with only a few terms. The effects of truncation can be

seen by computing the variance for different KLE sizes. The results are plotted in

Figure 4.7. As it can be seen, the error is significantly greater for the low correlation

process. In order to obtain the same accuracy an increased number of terms is

needed in this case.

The effects of the KLE truncation can also be seen on the PDF estimation. The

results are presented in Figure 4.8 and Figure 4.9. The PDF for the highly correlated

process can be approximated with fewer terms.
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(b) ϕ1 = 0.95

Figure 4.7: Variance variation with the KLE size
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Figure 4.8: PDF estimation for ϕ1 = 0.2 with different KLE sizes

4.2.2 Variability propagation in LTI systems

A system is called LTI if it satisfies the superposition property (4.27) and it is

invariant to time shifts (4.28). Generally a system is LTI if it does not have any

non-linear operations (e.g. multiplications between variables, divisions etc.). All the

other systems will be non-linear.

The superposition property is defined as:

f(a1x1(t) + a2x2(t)) = a1f(x1(t)) + a2f(x2(t)) (4.27)
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Figure 4.9: PDF estimation for ϕ1 = 0.95 with different KLE sizes

A system is time invariant if:

f(x(t)) = y(t)⇒ f(x(t− τ)) = y(t− τ) (4.28)

In this Chapter, we only focus on LTI systems. We want to propagate the

variability of the input (represented by the means of the KLE) through the system

in order to obtain a representation of the variability for all the variables in the design.

The authors in [79] presented a method for the KLE propagation in the case of

LTI systems based on the superposition property. They showed how the correspond-

ing description of the output can be obtained using a limited number of simulations.

Considering the case of a system that has one input x(t, θ)) and one output y(t, θ)),

that is mathematically defined by a function L:

y(t, θ) = L
(
x(t, θ)

)
= y0(t) +

∑M
i=1 yi(t)ηi(θ)

where yi(t) =





L
(
m(t)

)
, i = 0

L
(√

λiφi(t)
)
, i = { 1, ... , M }

(4.29)

As a result, the KLE representation of the output can be computed using (M+1)

simulations of the system.
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In our work, we use the same KLE discretization approach to represent the

variability of the input signal. However, we show that when the operands of linear

operations are represented with KLEs, the results can be computed analytically and

thus the need of simulation is completely removed.

A linear system is completely described by its impulse response. When the inputs

are represented with KLEs, the output can be computed as the convolution of the

system impulse response and its KLE representation:

y(t) = x(t) ∗ h(t) = (m(t) +
M∑

i=1

√
λiφi(t)ηi) ∗ h(t) (4.30)

Furthermore, using the distribution property, the output becomes:

y(t) = (m(t) ∗ h(t) +
M∑

i=1

(√
λiηiφi(t) ∗ h(t)

)
(4.31)

The impulse response of a system can be computed using the approach proposed

in [49]. The output can then be computed analytically by a simple convolution and

thus the need of simulation is completely removed.

An equivalent approach is to statically propagate the KLE representation through

the data-flow graph of the application. When the operands of a linear operation are

represented with KLEs, the result can be computed using arithmetic operations be-

tween the coefficients:

Scalar multiplication

x = m+
∑M

i=1 xiηi

z = a× x = ma+
∑M

i=1(axi)ηi

(4.32)
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Addition/Subtraction

x = mx +
∑M1

i=1 xiηi y = my +
∑M2

j=1 xjηj

z = x+ y = (mx +my) +
∑max(M1,M2)

i=1 (xi + yi)ηi

(4.33)

Using one of the two proposed methods, the output KLE representation can be

computed without any sort of simulation.

4.2.3 Probability density function estimation

In [79] a trade-off between the wordlength and the application SQNR is proposed.

When the overflows occur in the middle of the computation path, this evaluation

may become inaccurate. We propose an integer wordlength optimization criteria

based on the overflow probability. The range for all variables is computed from the

probability density function (PDF) with respect to a coverage probability.

Propagating the input variability through the system, a KLE representation is

obtained for every variable in the system:

y(t, θ) = y0(t) +
M∑

i=1

yi(t)ηi(θ) (4.34)

If the input process is Gaussian, then all {ηi} become independent standard

Gaussian random variables. The output y can then be simulated directly by gener-

ating samples for {ηi} from a Gaussian distribution. For Non-Gaussian inputs, the

{ηi} are mutually dependent and have unknown PDFs. However, it is still possi-

ble to obtain the corresponding samples from the input process using the equation

(4.18).

The PDF can be approximated using one of the methods:

• Histogram

The simplest method of PDF estimation is to generate a histogram from N

samples of the output.
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• Kernel Density Estimation

This method [59] approximates the density function fX by:

f̂X(x) =
1

nh

n∑

i=1

K
(x− xi

h

)
(4.35)

Where K is the kernel, h is the bandwidth and n is the total number of

samples. They are parameters that are chosen depending on the shape of the

distribution.

• Edgeworth Expansion

If the output distribution is weakly non-Gaussian, the Edgeworth Expansion

[5] provides a good approximation for the PDF in terms of its cumulants

using the Gaussian density as a reference function. It is a truly asymptotic

expansion that allows controlling the error. As an example, the Edgeworth

expansion with the first three terms is shown in equation 4.36:

f̂X(x) = Ψ(x)
(

1 + γ1
3!σ3H3

(
x−µ
σ

)
+ γ2

4!σ4H4

(
x−µ
σ

)

+
10γ21
6!σ4H6

(
x−µ
σ

)) (4.36)

where Ψ(x) is the standard normal density, H3, H4, H6 are the Hermite poly-

nomials and γ1 and γ2 are the skewness and kurtosis respectively.

4.2.4 Comparison with the Affine Arithmetic

The Affine Arithmetic [18] was presented in Chapter 2.5.1. It is a model that keeps

track of the first-order correlation between variables by representing a variable x

with an affine form:

x̂ = x0 + x1ε1 + x2ε2 + · · ·+ xnεn (4.37)

where εi ∈ [−1,+1] are independent symbolic variables that represents an uncer-

tainty component. As they can appear in the expression of several variables in the

program, the AA model can remove the spatial dependence between the operands.

73



However, in the case of signal processing many variables are the result of a delay

in time of the input (x[n], x[n − 1], · · · ). Using the AA they are supposed to be

independent, so this method cannot keep track of the temporal correlation.

Because the noise terms εi are represented only by their maximal and minimal

values, the shape of the PDF of x cannot be determined and its variability can only

be characterized by its maximal and minimal bounds.

Similarly to the AA, the KLE represents a variable in an affine form as in equation

4.19. For the linear operations, the KLE operations are computed in a similar

manner to the AA. The difference is that the random variables that appear in the

expansion have an unknown distribution and generally have an infinite support. As

a result, the variability is represented by the entire PDF. In addition, the KLE

incorporates the temporal correlation of the input process also.

4.3 Range Evaluation Methodology

The methodology for the range determination in LTI systems is summarized in

Figure 4.10.

The input application is described as a C/C++ code that uses floating-point

representations for the variables. Using the framework for the automatic floating-

point to fixed-point transformation that has been developed by the CAIRN/IRISA

[28, 48, 49] (called ID.fix ), the application is transformed into a Signal Flow Graph.

The impulse response is determined using the method described in [49].

Separately, the range evaluation using the KLE method was developed in Matlab

[44] and has been further integrated in the automatic floating-point to fixed-point

transformation tool.

The KLE discretization of the input is realized in the following manner:

• If the covariance is not known, the unbiased estimators for the mean and the

covariance are determined

• The eigenproblem is resolved using standard techniques
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Figure 4.10: Methodology Description for the Range Determination

• From equation 4.21 the M most important terms of the KLE are determined.

Then, then KLE representation of the input is propagated through the system

analytically and the corresponding PDF is estimated for every variable in the system.

Finally, the range of the output is further determined according the authorized

overflow probability.

4.3.1 Experimental Results

In this part, we present the results obtained for several DSP applications. A 31-tap

FIR filter, a 4th order IIR filter and a 512-point IFFT are used for the tests. The

input samples are generated using the AR(1) model as described in Section 4.2.1.

The PDF is estimated using the Kernel Density Estimation method. Furthermore,
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the PDFs and the overflow probabilities are compared with the results obtained by

simulation. The size of the range interval is also measured with the traditional L1

norm method.

In order to compute the probability of overflow, the length of the impulse response

has to be taken into account. In the case of non-recursive systems, like the FIR

filters, the transient response has a finite duration and the values of the output

at the steady-state can be used for the computation of the PDF. The PDF of the

output of the FIR is plotted in Figure 4.11. As it can be seen, the PDF determined

using the KLE method is very close to the histogram obtained in simulation.
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Figure 4.11: PDF of the FIR filter output

Recursive systems have a theoretical infinite impulse response. However, practi-

cal recursive systems will have a decay of the impulse response and its computation

is made possible [49]. The variation of the output PDF for an IIR filter estimated

with our method in time is plotted in Figure 4.12. It can be seen that it will con-

verge after a finite time. This reflects the fact that the recursive filter has a stable

behavior and the output will not diverge.

Comparison with simulation

First, the variance of the output signals for the three different examples is pre-
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Figure 4.12: IIR filter output

sented in Table 4.1. The values obtained from the KLE are close to the simulation

results.

Variance KLE Simulation Error
FIR31 0.257 0.257 0
IIR4 2.137 2.146 0.41%

512 IFFT 0.8879 0.8881 0.02%

Table 4.1: Variance comparison

For a chosen probability of overflow the corresponding minimal and maximal

bounds of the signal are determined. In order to test the accuracy of the results, the

overflow probability for the obtained interval is computed from a simulation with 107

samples. The results are presented in Table 4.2. In all of the cases, the probabilities

are in the same spectrum.

Comparison with L1 norm

Next, the range evaluation is realized using the L1 norm or interval arithmetic.

The PDF from the KLE of the output of the FIR filter along with the maximal and

minimal bounds found with the classical method can be seen in Figure 4.13.

As it can be seen in Table 4.3, the classical method overestimates the ranges for
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Overflow Probability KLE Overflow Probability Simulation
10−3 0.94 ∗ 10−3

FIR31 10−4 1.14 ∗ 10−4

10−5 0.74 ∗ 10−5

10−3 0.963 ∗ 10−3

IIR4 10−4 0.971 ∗ 10−4

10−5 1.98 ∗ 10−5

10−3 0.975 ∗ 10−3

512 IFFT 10−4 1.08 ∗ 10−4

10−5 1.13 ∗ 10−5

Table 4.2: Overflow Probability comparison between KLE and simulation
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Figure 4.13: FIR filter output

all the applications that have been considered. Translated to the number of bits for

the integer part, the L1 norm increases the wordlength with 1 bit in the case of the

IIR filter or even 3 bits in the case of the IFFT.

Implementation cost

Using the bounds computed with the L1 norm method, the system would be over-

dimensioned. Based on the synthesis results already presented in Section 3.2 the

increase in the implementation cost introduced by the over-estimation is analyzed.

For the 65nm LP 1.2 V target technology, the additional cost in terms of area

and power consumption of the increase of 3 bits for the datapath of the 512-point
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Overflow Probability KLE Range L1 norm range
10−3 [-1.5659:1.6127]

FIR31 10−4 [-1.7814 :1.8282] [-8.021 :8.01]
10−5 [-1.9969 :2.0437]

10−3 [-4.4967:4.73572]
IIR4 10−4 [-5.1897: 5.4288] [-14.918:14.896]

10−5 [-5.5690 :5.8080]

10−3 [-4.3524 :4.1433]
512 IFFT 10−4 [-5.3485:5.1394] [-60.01:60.28]

10−5 [ -6.2420:6.0329 ]

Table 4.3: Range comparison between KLE and L1 norm

IFFT can be seen in Table 4.4 and Table 4.5.

Method Number of bits Frequency (MHz) Area (µm2)
KLE 10 320 661459
L1 13 320 912882

Gain ≈ 27%

KLE 11 320 755184
L1 14 320 977072

Gain ≈ 22%

Table 4.4: Area comparison

Number of bits Frequency (MHz) Power (mW)
10 320 65
13 320 99

Gain ≈ 34%
11 320 74
14 320 110

Gain ≈ 32%

Table 4.5: Power consumption comparison

This proves that the gain in terms of area and power consumption that can be

obtained using our range evaluation method is substantial, and shows the motivation

that stands behind our probabilistic approach.
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4.4 Quantization Noise And Numerical Accuracy

Evaluation

We apply the same computational approach to evaluate the quantization noise,

extending the method to the numerical accuracy estimation. Previous methods

[18, 49, 62] evaluate only the variance of the output quantization noise. In addition,

we will show that the entire PDF of the noise can be determined. This supplemen-

tary information is required in the characterization of unsmooth operators for which

the model based on perturbation theory is no longer valid [58].

Every quantization operation realized when an infinite precision value is replaced

with a fixed-point representation introduces an error that can be modeled as an

additive uniform white noise as it was shown in Section 2.3.2.1. In this work, only the

case of rounding operations is considered, where the quantization noise is distributed

in the interval
[−2n

2
, 2n

2

]
with n the number of bits for the fractional part. The

truncation can be treated in a similar manner.

The fixed-point input can thus be replaced by the expression x[t] + qx[t], where

x[t] represents the infinite precision value and qx[t] the quantization noise (Figure

4.14).

Figure 4.14: Input/output view of the system

Because the quantization noise is uncorrelated with the signal, and we are only

dealing with LTI systems, the superposition property can be applied and the signal

and the noise can be analyzed separately.

As a result, the precision analysis can be formulated in a similar manner with

the range estimation: qy(t) = f(qx1(t), qx2(t), · · · , qxn(t)), where the random input

is represented by the quantization noise.

For all the three applications presented in Section 4.3.1, the SQNR is computed
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with our method for various wordlengths of the data-path and is compared with the

values obtained with a fixed-point simulation. As it can be seen in Table 4.6, 4.7

and 4.8 the values are close to the experimental results obtained in simulation.

Wordlength 6 bits 7 bits 8 bits
SQNR KLE 39.76 dB 45.78 dB 51.79 dB

SQNR reference 39.99 dB 46.00 dB 52.03 dB

Table 4.6: FIR SQNR comparison

Wordlength 6 bits 7 bits 8 bits
SQNR KLE 33.68 dB 39.73 dB 45.77 dB

SQNR reference 33.86 dB 39.88 dB 45.88 dB

Table 4.7: IIR SQNR comparison

Wordlength 10 bits 11 bits 12 bits
SQNR KLE 35.24 dB 41.27 dB 47.29 dB

SQNR reference 35.28 dB 41.56 dB 47.77 dB

Table 4.8: IFFT SQNR comparison

In addition, the PDF of the FIR output quantization noise is determined with

our method and it is compared with the one obtained in simulation Figure 4.15.

The two match very well. It can be seen that they do not have a Gaussian PDF.

With our approach, both the range determination and the numerical accuracy

evaluation can be realized. A trade-off between an occasional error (integer part

width) and a global SQNR (fractional part width) can be made. It can be very useful

when the implementation has a limited width for the data-path and the application

has a high peak-to-average power as in the case of the OFDM transmitter.

4.5 Conclusion

In this Chapter, a method for the range evaluation in the context of LTI systems was

presented. The Karhunen-Love Expansion is used as a means of representation for

the variability of the input signal. Furthermore, we showed how the variability can
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Figure 4.15: Output quantization noise PDF

be statically propagated through LTI systems and how the corresponding output

representation is obtained.

Several methods for the PDF determination were presented which allow the

computation of a large class of PDF shapes. For systems where occasional overflows

are accepted, the dynamic range of all variables is computed from their corresponding

PDFs with respect to a desired overflow probability.

As a secondary goal, we used the same computational approach to solve the

numerical accuracy evaluation problem. The SQNR of the application is determined

from the quantization noise variance. In addition, the complete noise PDF can be

estimated if needed. The experiments show the accuracy of the method.
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Chapter 5

Polynomial Chaos Expansion

Method

In this Chapter, a method for the range determination based on the Polynomial

Chaos Expansion is presented. It will be shown how the PCE can be used to

acquire a representation of the input of the system and how the corresponding PCE

of each variable can be obtained. The advantage of the PCE representation is the

fact that the PCE arithmetic can be applied for non-linear operations also. As a

result the range and the numerical accuracy estimation problems is solved for all

types of systems with arithmetic operations. In comparison to the KLE method it

has an increased complexity so its applicability to LTI systems is less interesting.

5.1 Polynomial Chaos Expansion Introduction

5.1.1 1-dimensional Hermite polynomials

The Hermite polynomials are an orthogonal polynomial sequence, defined in equa-

tion (5.1):

Hn(x) = (−1)n
1

φ(x)

dnφ(x)

dxn
(5.1)

with φ(x) = 1√
(2π)

e−
−x2
2
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They become:

Hn(x) = (−1)ne−
x2

2
dn

dxn
e−

−x2
2 , n = 0, 1, 2, · · · (5.2)

However, it is easier to compute them using the following recursion relation:

H−1(x) = H0(x) = 1

Hn+1(x) = xHn(x)− nHn−1(x)
(5.3)

As an example, the first 10 polynomials are:

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x

H6(x) = x6 − 15x4 + 45x2 − 15

H7(x) = x7 − 21x5 + 105x3 − 105x

H8(x) = x8 − 28x6 + 210x4 − 420x2 + 105

H9(x) = x9 − 36x7 + 378x5 − 1260x3 + 945x

H10(x) = x10 − 45x8 + 360x6 − 3150x4 + 4725x2 − 945

(5.4)

The Hermite polynomials form an orthogonal basis of the Hilbert space of square

integrable functions with respect to the inner product:

〈HiHj〉 =
1√
2π

∫ ∞

−∞
Hi(x)Hj(x)w(x)dx = δij〈H2

i 〉 (5.5)

where δij is the Kronecker delta and w(x) = e
−x2
2 is the weighting function.
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5.1.2 Multi-dimensional Polynomial Chaos Expansion

The original Homogeneous Chaos was introduced by Wiener [76] as a means of repre-

sentation for the Gaussian stochastic processes using the multi-dimensional Hermite

polynomials in terms of Gaussian random variables as a basis of the random space.

Let L2(Φ, F, P ) be the Hilbert space of random variables with finite variance. The

Cameron-Martin theorem [6] proves that any second-order (L2) random variable (or

random process) can be represented as a mean-square convergent series of infinite-

dimensional Hermite polynomials in terms of Gaussian random variables, called the

Polynomial Chaos Expansion (PCE):

x(θ) = x̂0H0 +
∞∑

i1=1

x̂i1H1(ξi1(θ))

︸ ︷︷ ︸
1st order terms

+
∞∑

i1=1

i1∑

i2=1

x̂i1i2H2(ξi1(θ), ξi2(θ))

︸ ︷︷ ︸
2nd order terms

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

x̂i1i2i3H3(ξi1(θ), ξi2(θ), ξi3(θ))

︸ ︷︷ ︸
3rd order terms

+ · · ·
(5.6)

where {x̂i1i2···} are the coefficients, Hn(ξi1(θ), · · · , ξin(θ)) are the multi-dimensional

Hermite polynomials of order n in terms of the random vector ξ = {ξi1(θ), ξi2(θ), · · · , ξin(θ)}
of independent standard Gaussian random variables. They are defined in equation

(5.7). The non-Gaussian behaviour is represented by the terms that have a degree

superior to one.

Hn(ξi1(θ), · · · , ξin(θ)) = e
1
2
ξT ξ(−1)n

∂n

∂ξi1 · · · ∂ξin
e−

1
2
ξT ξ (5.7)

For notational convenience the PCE representation is rewritten as:

x(θ) =
∞∑

j=0

xjΨj(ξ(θ)) (5.8)

This is simply a reordering of the terms in the summation, with a one-to-one cor-

respondence between the Hermite polynomials Hn(ξi1(θ), · · · , ξin(θ)) and Ψj(ξ(θ))

and between the coefficients x̂i1···in and xj.
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The PCE forms a complete orthogonal basis of the L2 space of random variables:

〈ΨiΨj〉 = 〈Ψ2
i 〉δij (5.9)

where δij is the Kronecker delta and 〈, 〉 is the inner product defined as:

〈ΨiΨj〉 =

∫ ∞

−∞
Ψi(ξ)Ψj(ξ)W (ξ)dξ (5.10)

with the weighting function W (ξ) = 1√
(2π)n

e−
1
2
ξT ξ

The PCE representation has a theoretically infinite number of terms, however

in practice the expansion is truncated to a limited number of terms. The number

of random variables M of the random vector ξ = {ξ1, ξ2, · · · , ξM} is called the

dimension and the highest power p is called the order of the PCE. It becomes:

x(θ) =
N∑

j=0

xjΨj(ξ1, ξ2, · · · , ξM) (5.11)

where the number of terms N is a function of the order and the dimension:

N =
(M + p)!

M !p!
− 1 (5.12)

Using the PCE, the computation of the random variable x(θ) is replaced with

the computation of the deterministic spectral coefficients xj, as they characterize

the entire stochastic dimension of the input. A higher dimension takes into account

higher frequency random fluctuations while a higher order represents better the non-

linearities. However, the number of terms of the PCE basis increases very fast with

the order and the dimension so they have to be limited in practice. As an example,

the 2-dimensional 4th order PCE that has 15 terms is represented in Table 5.1.

A construction procedure for the M-dimensional p-order PCE basis was first

proposed in [24] based on the relation from equation (5.7). A different approach was

presented in [67, 68] that uses the fact that the M-dimensional Hermite polynomials

Ψj(ξ1, ξ2, · · · , ξM) are in fact a tensor product of the M 1-dimensional Hermite
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index (j) order (p) Ψj E[Ψ2
j ]

0 0 1 1

1 1 ξ1 1
2 1 ξ2 1

3 2 ξ2
1 − 1 1

4 2 ξ1ξ2 1
5 2 ξ2

2−1 1

6 3 ξ3
1 − 3ξ1 1

7 3 ξ2(ξ2
1 − 1) 1

8 3 ξ1(ξ2
2 − 1) 1

9 3 ξ3
2 − 3ξ2 1

10 4 ξ4
1 − 6ξ2

1 + 3 1
11 4 ξ2(ξ3

1 − 3ξ1) 1
12 4 (ξ2

1 − 1)(ξ2
2 − 1) 1

13 4 ξ1(ξ3
2 − 3ξ2) 1

14 4 ξ4
2 − 6ξ2

2 + 3 1

Table 5.1: 2-dimensional 4th order PCE

polynomials:

Ψα(ξ) =
M∏

i=1

Hαi(ξi) (5.13)

Each polynomial of the PCE basis Ψα, is thus completely defined by a sequence

of M integers α = {α1, α2, · · · , αM}. Because the order of the PCE is set to p, the

sum α1 + α2 + · · ·+ αM ≤ p and α1 ≤ 0.

First, the 1-dimensional Hermite polynomials up to pth order are computed using

the recurrence relation from equation (5.3). Then, the M-dimensional p-order PCE

basis can be generated by computing all the sequences of α = {α1, α2, · · · , αM}
whose sum α1 + α2 + · · ·+ αM ≤ p.

This PCE construction method is more adapted to the case when the output

of a system is represented as a function of several random variables that are ex-

panded separately using 1-dimensional Hermite polynomials. The output will then

be represented as a joint-expansion of the variables in terms of a multi-dimensional

PCE.
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5.2 Probabilistic framework

The range evaluation is realized using a probabilistic framework where the input

x = {x(1), · · · , x(N)} is modeled as a N-variate random vector. As a result, the

variability of each variable is computed by evaluating a function of random variables.

In [79] a method for the range estimation based on the PCE was proposed. It

represents the temporal variability when the input has a correspondence to a physical

random process that varies in time. The authors used the KLE discretization in

order to obtain a reduced-order representation of the input that still captures the

probabilistic content that characterizes the uncertainty of data. In this way the

correlation introduced by the delay operations that exist in many DSP applications

is incorporated into the PCE representation.

However, in some applications the operands do not represent the values of a pro-

cess at different time instants. As a result of its inherent relation with the use with

the KLE and the temporal discretization, the method is not adapted to the case

where the operands come from different signal sources, have different probabilistic

distributions and may be correlated. In this case, each operands should be repre-

sented by a different random variable. Furthermore, their approach for the integer

wordlength determination based on a SQNR trade-off is not always accurate.

In this Chapter, we will show how the PCE can be adapted to treat the case of

random variables. The PCE representation is obtained for every input variable and

an analytical description of the variability of the output is determined. Furthermore,

the correlation of the inputs is captured using the Nataf transform. The range is

computed using a probabilistic analysis from the PDF in the same manner as for

the KLE method.
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5.3 Input representation

5.3.1 PCE representation for independent random variables

Any L2 random variable (with finite variance) can be represented with a mean-square

convergent series of 1- dimensional Hermite polynomials as in (5.14). The order of

the expansion needed for an accurate approximation is given by the non-Gaussian

character of the distribution.

x =
∞∑

i=0

xiHi(ξ) (5.14)

where Hn are the 1-dimension Hermite polynomials and ξ is a standard Gaussian

random variable.

The problem of computing x is replaced with finding the coefficients xi. One of

the methods proposed in the literature to obtain the PCE coefficients is the Galerkin

projection [68]. It is based on the fact that the Hermite polynomials are orthogonal.

This means that if we multiply on each side by Hi and take the expectations, the

coefficients are:

xi =
〈xHi(ξ)〉
〈H2

i (ξ)〉 (5.15)

The denominator can be computed analytically:

〈H2
i (ξ)〉 = E[H2

i (ξ)] = i! (5.16)

The numerator is:

〈xHi(ξ)〉 = E[xHi(ξ)] =

∫

<
xHi(ξ)w(x)dx (5.17)

where w(x) = 1√
(2π)

e
−x2
2 is the weight function.

The random variable ξ has a Gaussian PDF g(ξ) and a CDF denoted byG(ξ). Let

the CDF of x be FX(x). Considering the isoprobabilistic transformation FX(x) =
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G(ξ), then x = F−1
X (G(ξ)) and:

xi =
1

i!

∫

<
F−1
X (G(t))Hi(t)φ(t)dt (5.18)

If the CDF FX(x) is not known analytically, it can be estimated from samples.

In the particular case when x has a Gaussian or uniform distribution, the coefficients

can be computed analytically [68]. Otherwise, the integral can be solved using Monte

Carlo techniques.

For the Gaussian distribution:

N(µ, σ)→ x0 = µ, x1 = σ, xi = 0, for i > 2 (5.19)

The PCE for x becomes:

x = µH0(ξ) + σH1(ξ) (5.20)

For the uniform distribution:

U(a, b)→ x0 = a+b
2
, x2i = 0, x2i+1 = (−1)i(b−a)

22i+1
√
π(2i+1)i!

(5.21)

The PCE for x becomes:

x =
a+ b

2
H0(ξ) +

(b− a)

2
√
π
H1(ξ) +

(−1)(b− a)

24
√
π

H3(ξ) + · · · (5.22)

Let x be a uniform random variable in the interval [-1,1]. The coefficients for the

PCE representation are computed using the Monte Carlo method using 106 samples.

The PDFs determined using both the analytical and Monte Carlo coefficients for

different expansion orders are presented in Figure 5.1.

Let x be a random variable that follows a gamma distribution with the shape

parameter k = 2 and the scale θ = 1. The PCE coefficients are determined using

a Monte Carlo simulation with 106 samples. The PDF estimation for several PCE
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(a) Theoretical coefficients (b) Monte Carlo determined coefficients

Figure 5.1: PDF comparison for a uniform random variable

orders can be seen in Figure 5.2. Compared to the uniform distribution, it can be

noticed that a lower PCE order is needed for an accurate approximation.

Figure 5.2: PDF comparison for a gamma random variable
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5.3.2 Correlated Random Variables

Nataf transform

Let x = {x(1), x(2), · · · , x(n)} be the random vector that contains all the inputs

variables. If the variables are correlated, it is not possible to expand them in a PCE

independently as proposed earlier. In order to solve this problem, a decorrelation

procedure has to be applied. A procedure that transforms the random vector x into

another random vector z with the same dimension but with independent standard

Gaussian components is employed. The transformation was introduced by Nataf

[52]. The advantage of the method in comparison to other approaches (e.g. the

Rosenblatt transform [61]) is that it only needs the marginal distributions and the

correlation structure of the random vector in order to be applied. This occurs in

most practical cases, where the joint PDF is unknown or is difficult to estimate and

only the marginal PDFs and the correlation matrix can be determined from samples.

Let the correlation matrix of x beC. The marginal PDF of each random variable

x(i) is fi(x) and the corresponding CDF is Fi(x). The isoprobabilistic transformation

is realized in two steps:

T1:

u(i) = Φ−1(Fi(x
(i))) (5.23)

x is transformed using the marginal distributions into a Gaussian vector u with

standard normal marginal distributions and correlation matrix CU .

T2:

z = uΓ (5.24)

where Γ is the Cholesky factor of CU : ΓTΓ = C−1
U .

The second step is a linear transformation that is performed in order to decor-

relate the components of u. As it is a Gaussian random vector, they will be inde-

pendent.

Once the independent standard Gaussian vector z has been determined, each
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input random variable can be represented using the Polynomial Chaos basis:

x(i) = xi0Ψ0 + xi1Ψ1(z1, z2, · · · , zn) + · · ·+ xiNΨN(z1, z2, · · · , zn) (5.25)

5.3.3 Construction of an M-dimensional PCE for random

processes

If the input is a random process, the KLE can be used to obtain a reduced order

representation in terms of M random variables as it was presented in Chapter 4.1.2.

x(t) = m(t) +
M∑

i=1

√
λiφi(t)ηi (5.26)

As it was shown in [79], the KLE obtained previously can be transformed into

an M-dimensional p-order PCE:

x(t) = m(t) +
M∑

i=1

√
λiφi(t)ηi → x(t) =

N∑

i=0

xi(t)Ψ(ξ1, ξ2, · · · , ξM) (5.27)

In the particular case, where the process x(t) is Gaussian, the set of random

variables ηi becomes a set of M independent standard Gaussian random variables.

It results that in this case the KLE is exactly the M-dimensional first order PCE.

In the general case, the random variables are non Gaussian and only uncorrelated.

However, if the distribution is not too far from the Gaussian, the independence

property can be assumed and each variable {ηi} is transformed independently into

a 1-dimension pi-order PCE in an analogous mode to Section 5.3.1:

ηi =

pi∑

j=0

ajHj(ξi) (5.28)

As a consequence of the fact that all {ηi} are supposed independent, all the

coefficients that correspond to cross terms in the PCE are zero and the expansion

is not a true M-dimensional.
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Because the independency property of {ξi} will not be guaranteed for highly non-

Gaussian stochastic processes, the error that is introduced in the PCE representation

in this case may be significant. A procedure should be used to transform the set of

uncorrelated non-Gaussian random variables into another set of independent random

variables that can be further projected into a PCE [38].

5.4 PCE Arithmetics

From the previous Section, the PCE representation of all the inputs is obtained.

Next, the arithmetic operations can be implemented using the PCE arithmetic pre-

sented in [14].

1. Scalar multiplication

Let u be a variable with the PCE representation:

u =
N∑

i=0

uiΨi(ξ1, ξ2, · · · , ξM) (5.29)

Then:

z = c× u =
N∑

i=0

c× uiΨi(ξ1, ξ2, · · · , ξM) (5.30)

2. Addition/Subtraction

Consider the following two variables u and v:

u =
N∑

i=0

uiΨi(ξ1, ξ2, · · · , ξM) v =
N∑

i=0

viΨi(ξ1, ξ2, · · · , ξM) (5.31)

The addition/subtraction is realized as:

z =
( N∑

i=0

uiΨi(ξ1, ξ2, · · · , ξM) +
N∑

i=0

viΨi(ξ1, ξ2, · · · , ξM)
)

(5.32)

=
N∑

i=0

(ui + vi)Ψi(ξ1, ξ2, · · · , ξM) (5.33)
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As an example, the PDF of the addition of two independent uniform random

variables in [−1, 1] can be seen in Figure 5.3. A comparison of the variance

obtained for different PCE orders is presented in Table 5.2.

Figure 5.3: Addition of two uniform random variables

PCE order Var PCE Var Simulation Difference Nb terms
2 0.6113 0.6669 8.33% 6
4 0.6805 0.6669 -2.05% 15
6 0.6806 0.6669 -2.06% 28
8 0.6841 0.6669 -2.58% 45

Table 5.2: Variance comparison for the addition operation

3. Multiplication

Consider the same random variables as above. The multiplication is defined

as follows:

z = u× v = (
N∑

i=0

uiΨi(ξ1, ξ2, · · · , ξM))(
N∑

j=0

vjΨj(ξ1, ξ2, · · · , ξM)) (5.34)

=
N∑

k=0

zkΨ(ξ1, ξ2, · · · , ξM)) (5.35)
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The coefficients zk are determined using the equation:

zk =
N∑

i=1

N∑

j=0

uivj
E[ΨiΨjΨk]

E[Ψ2
k]

, k ∈ {0, 1, · · · , N} (5.36)

This is a Galerkin projection that minimizes the error of the resulting PCE

representation on the space spanned by the polynomial basis up to the order

N. The expectations E[Ψ2
k] and E[ΨiΨjΨk] can be computed analytically as a

pre-processing step and stored in a table as it is detailed in Section 5.4.1.

As an example, the PDF of the multiplication of two uniform random variables

is shown in Figure 5.4 and a comparison of the variance is presented in Table

5.3.

Figure 5.4: Multiplication of two uniform random variables

PCE order Var PCE Var Simulation Difference Nb terms
3 0.0933 0.1110 15.88% 10
5 0.1145 0.1110 -3.14% 21
7 0.1157 0.1110 -4.23% 36
9 0.1167 0.1110 -5.19% 55

Table 5.3: Variance comparison for the multiplication operation

As the PCE representations are in fact only approximations, the truncation

error may become important when computing multiple multiplications.
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The division operation can be computed considering that z = u/v is in fact

equivalent to u = zv. As u and v have known PCE representations, a system of

(N + 1) linear equations can be created. Solving the system will give the PCE coef-

ficients of the result. Even other types of non-polynomials operations (exponentials

or logarithms) may be computed if needed [14].

As a conclusion, the PCE arithmetic can be used in order to statically propagate

the variability of the input through the Data Flow Graph of the application.

5.4.1 Statistical analysis

The expectations E[ΨiΨj] and E[ΨiΨjΨk] can be analytically computed using the

fact that {ξi} are all independent standard Gaussian random variables. As a result:

E[ξ2k
i ] =

(2k)!

2kk!
and E[ξ2k+1

i ] = 0 (5.37)

Furthermore, the PDF can be estimated using the same approaches presented in

Section 4.2.3.

5.5 Range Evaluation Methodology

The methodology for the range determination using the PCE is summarized in

Figure 5.5.

• The first step is represented by the input representation. Each operand is

discretized using the PCE. When delay operations appear in the data-path of

the application: x[n], x[n− 1], · · · , the input is modeled as a random process.

In this way the temporal correlation that exists between x[n] and x[n − 1]

can be captured. When the operands do not represent the values of the same

process at different time instants, the input should be modeled as a random

variable. Only independent random variables can be treated directly. If two

inputs are correlated, the Nataf transform should be used to decorrelate them.
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∑N

i=0 yiΨi(ξ1, ξ2, · · · , ξM)
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∑N

i=0 xikΨi(ξ1, ξ2, · · · , ξM)

Input
Representation

Figure 5.5: Methodology Description for the Range Determination using PCE

The corresponding PCE coefficients are computed as described in Section 5.3.3

or Section 5.3.1 depending if it is a random process or a random variable. At

the end, the dimension M of the PCE should represent the number of all

uncertainties that influence its random behavior.

• The PCE propagation is realized by applying the PCE arithmetic. The output

is the result of a function of M variables and it will be represented using an

M-dimensional PCE.
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• PDF determination

• From the PDF and the allowed overflow probability, compute the maximal

values and the number of integer part bits

The PCE method for the range evaluation has been implemented in Matlab

based on the methodology that has been presented here. However, it has not been

integrated into the automatic floating-point to fixed-point transformation tool yet.

5.6 Experimental Results

In this section we present the results obtained for some practical examples. We

concentrate on two important aspects of the range estimation: non-linear operations

and statistical correlation of the operands.

As a first example, we examine the ability of the PCE to evaluate the dynamic

variations in the case of the approximation of a non-linear function that depends

on only one random variable. Let x be a Gamma random variable with the scale

parameter k = 20 and shape θ = 0.1. The exponential function is evaluated with a

5th order Taylor expansion:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+O(x6) (5.38)

The range for different overflow probabilities is computed. In order to see if the

interval corresponds to the desired overflow probability in practice, the simulation of

the Taylor expansion with 107 samples is made. For a chosen overflow probability,

the number of times the result exceeds the corresponding interval is determined.

The results are presented in Table 5.4. In all of the cases, the simulation evalu-

ation is found to be in the same class of values. This proves that with the PCE

representation, the tails of the distribution are accurately estimated.

As a comparison, the range of the output is computed using IA. The Gamma

distribution has an infinite support. In order to propagate the variability using the
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IA, the bounds of the input variable x are set to the minimal and maximal values

found with a 107 samples simulation. The results show that our range analysis

approach provides tighter range intervals in comparison to the IA.

Overflow Probability Simulation Obtained Range IA
10−2 1.04*10-2 [4.19 : 80.25] [1.59:100.86]
10−3 0.938*10-3 [2.43 : 81.61] [1.59:100.86]
10−4 0.915*10-4 [2.43 : 81.61] [1.59:100.86]
10−5 0.78*10-5 [1.81 : 82.67] [1.59:100.86]

Table 5.4: Range Comparison For Different Overflow Probabilities

Correlated random variables

In order to generate random inputs that have different correlation structures, the

copulas theory is used [53]. Copulas are functions that describe the dependence

structure between the random variables.

In this example, a Gaussian copula is used to simulate the correlation between

the inputs. When other types of copulas are used, the Nataf transform becomes less

adapted for the situation. In this case, a generalized Nataf transform was presented

[17] and can be used depending on the corresponding copula.

As a first example, let us consider two random variables, each one following a

uniform distribution (x1 ∼ U(−2, 2) ,x2 ∼ U(−1, 1)). The correlation coefficient r

is varied modifying the dependence between them. When r = 0 the variables are

independent and when r = 1 they are totally correlated. The addition operation

between the two variables is realized using a 5th order PCE. The PDF of the result

with and without the Nataf transform for the case when r = 0 is shown in Figure

5.6. Because the variables are independent, the two distributions are similar and

match the histogram from simulation. For r = 0.8 the result is presented in Figure

5.7. Without the Nataf transform, the two variables are supposed to be independent

and the distribution is not very well approximated. As a consequence of applying

the Nataf transform, the PDFs can be approximated more accurately.

As a second example, consider two Gaussian variables x1 ∼ N (µ = 0 .3 , σ2 = 0 .2 )
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Figure 5.6: Addition of independent uniform random variables

Figure 5.7: Addition of correlated uniform random variables with r=0.8

and x2 ∼ N (µ = 0 .4 , σ2 = 0 .4 ) and the following polynomial evaluation:

y =
(

0.3 + 1.7x1 + 0.5x2
1

)(
0.2 + 2.7x2 + 0.5x2

2

)
(5.39)

In order to see the influence of the correlation on the output range, the correlation

coefficient (r) between the two variables is set from 0 to 0.75. The range interval

is computed using the PCE with the Nataf transform. As it can be seen in Figure

5.8, the size of the interval increases with the correlation of the variables. In order
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to find range intervals that are adapted for the application, the correlation must be

taken into account. Otherwise, either the range will be overestimated or it will not

guarantee the performance requirements. The result obtained using IA (as in the

first example, the support of the inputs is cut to the maximal and minimal values

found by simulation) is also presented. The size of the interval is largely increased

compared to our approach.

Figure 5.8: Range variation with the correlation and the overflow probability

The CDF and the PDF of the result are estimated from a 107 samples simulation.

The Kolmogorov-Smirnov statistic is computed between the empirical CDF (F2n(x))

and the CDF obtained using PCE (F1n(x)) (with and without the Nataf transform).

It measures the maximal difference between the two distributions:

D = supx|F1n(x)− F2n(x)| (5.40)

The results are presented in Table 5.5. It shows that the distance (D) between the

distributions obtained using the Nataf transform is smaller with at least one order

of magnitude. Furthermore, the PDFs are presented in Figure 5.9 for r = 0.75. The

PDF obtained using the Nataf transform approaches more accurately the histogram

obtained by simulation. If the independence property is assumed, the interval that

is obtained will not correspond to the real overflow probability.
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r=0 r=0.25 r = 0.5 r =0.75
Dwith Nataf — 0.0029 0.0022 0.0021
Dwithout Nataf 3.253*10-4 0.0306 0.0565 0.0795

Table 5.5: Kolmogorov-Smirnov Statistic test

Figure 5.9: PDF comparison for y with r=0.75

5.7 The Askey scheme

It has been shown that the Hermite Polynomial Chaos in terms of Gaussian random

variables is the best way to represent a Gaussian distribution. However, for the non-

Gaussian case, the convergence rate may be slow. A generalization of the original

Wiener Chaos has been introduced [80] to solve the problem and provide a more

efficient representation for the non-Gaussian processes. This generalized polynomial

chaos (gPC) uses several types of orthogonal polynomials from the Askey scheme

that are optimal for different types of distributions.

The representation becomes:

x(θ) = a0I0 +
∑∞

i1=1 ai1I1(ζi1(θ))+

+
∑∞

i1=1

∑i1
i2=1 ai1i2I2(ζi1(θ), ζi2(θ))

+
∑∞

i1=1

∑i1
i2=1

∑i2
i3=1 ai1i2i3I3(ζi1(θ), ζi2(θ), ζi3(θ)) + · · ·

(5.41)

In this case In are the Wiener-Askey polynomials of order n in terms of the
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random vector ζ = {ζi1(θ), ζi2(θ), · · · , ζin(θ)}. The correspondence between them is

given by the Askey scheme.

Distribution gPC basis Polynomials Support
Continous Gaussian Hermite (−∞,∞)

Gamma Laguere [0,∞]
Beta Jacobi [a, b]

Uniform Legendre [a,b]
Discrete Poisson Charlier {0, 1, 2, · · · , N}

Binomial Krawtchouk {0, 1, 2, · · · , N}
Negative Binomial Meixner {0, 1, 2, · · · , N}

Hypergeometric Hahn {0, 1, 2, · · · , N}

Table 5.6: The Askey scheme

5.7.1 Legendre Chaos

From all the polynomials in the Askey scheme, a very useful family is the Legendre

Chaos, which is optimal for the representation of the uniform distribution. This

means that it can approximate the distributions that have a finite support with

only a few terms. A uniform distribution is represented with only 1 term (Figure

5.10).

Figure 5.10: Uniform random variable representation with the Legendre Chaos

On the other hand, as the Legendre Chaos has a finite support it cannot represent
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accurately the long tails of the Gaussian distribution. This aspect can be seen on

the PDF approximation in Figure 5.11.

Figure 5.11: Gaussian random variable representation with the Legendre Chaos

An adaptive polynomial chaos methodology for the range evaluation can be used.

Depending on the probability distribution of the input, an appropriate polynomial

chaos should be chosen in order to optimize the number of terms that are needed

for an accurate representation. The computation of the coefficients for the gPC

can be made using a Galerkin projection approach as proposed in [80]. Further the

methodology remains similar to the classical case of the Hermite Chaos.

5.8 Numerical Accuracy Evaluation

The proposed approach can also be applied to the numerical accuracy evaluation.

The quantization noise model proposed by Widrow [72] is adopted in this Section.

Every quantization operation introduces an independent source of noise modeled

as an uniform random variable. As a result, the example of a quantized system

presented in Figure 5.12 is transformed into an equivalent version presented in Figure

5.13, where every quantization operations is replaced with a noise source qi.
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Figure 5.12: Example of quantized system

Figure 5.13: Transformed system

Using the projection method presented in Section 5.3.1, a 1-dimensional PCE

can be obtained for every quantization operation. As the quantization noise has

a uniform distribution, the Legendre polynomials are the optimal representation.

Using the Legendre Chaos only one term is needed to represent the quantization

noise, while 4 or 5 terms (depending on the accuracy needed) should be used with

the Hermite Chaos.

For linear operations, the superposition property can be applied and the quanti-

zation noise is analyzed separately from the signal. For M quantization operations,

M 1-dimensional PCE are created and the output noise is computed in exactly the

same manner as for the case of range estimation, obtaining an M-dimensional PCE.

Let the input quantization noise be: qi =
∑Pi

j=0 qijΨj(ξi).

The output will then be: qout =
∑P

j=0 qoutjΨj(ξ1, ξ2, · · · , ξM).

For non-linear systems, the superposition property cannot be applied anymore
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and signal values will influence the output noise. As a result, both the signal and the

quantization noise will appear in the PCE computation, but the procedure remains

very similar.

From the a computational point of view, the numerical accuracy and the range

estimation problem are in fact equivalent. The output of the system is the result of

arithmetic operations with the operands represented with PCEs.

5.9 Conclusion

In this Chapter we have presented a method for the range evaluation based on the

Polynomial Chaos Expansion. It has been shown that the complete probabilistic

description of the input can be obtained by the means of the PCE. The case of

correlated variables has also been treated using the Nataf transform. The variability

is statically propagated through the Data-Flow Graph from the input to the output

and the analytical representation for all the variables is obtained. As opposed to

the KLE, this method can be applied to any type of system that is composed of

arithmetic operations making it possible to treat non-linear systems.

Using the same probabilistic methodology that has been introduced for the KLE

method, the range is computed from the PDF with respect to a desired overflow

probability. The results show that the obtained distributions are close to the sim-

ulation results. Furthermore, using our probabilistic analysis, the size of the range

intervals is significantly reduced compared to the IA method.

The generalized polynomial chaos has been presented in order to select an ap-

propriate polynomial chaos basis depending on the distribution of the input signal.
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Chapter 6

Conclusions and Perspectives

Conclusions

In this thesis, a probabilistic approach for the dynamic range evaluation has

been developed in the context of wordlength optimization. In order to avoid over-

dimensioning the system, a trade-off between the dynamic range that is covered by

the fixed-point representation and the cost of the implementation has to be made.

For applications that accept occasional overflows if their probability of occurrence

is small, the integer part wordlength can be reduced without covering the entire

theoretical range.

First, the case of linear-time invariant systems was addressed. The Karhunen-

Loev̀e Expansion (KLE) was used as a means of representing the variability of the

input signal. As opposed to the method based on simulation presented in [79],

we showed how the variability can be statically propagated through LTI systems

obtaining the corresponding output representation using the impulse response of the

system. The range is further computed from the PDF with respect to a coverage

probability.

The same KLE discretization approach was also applied to evaluate the quantiza-

tion noise. The application SQNR is estimated from the quantization noise variance.

In addition, the complete noise PDF can be computed. The method has been de-

veloped in Matlab and has already been integrated in the automatic conversion tool
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of the CAIRN team.

Next, we have presented a method for the range estimation based on the Poly-

nomial Chaos Expansion (PCE). As a first step, the random behavior of the input

is represented in the form of a PCE. We showed how the PCE can be adapted to

treat the case of random variables. Furthermore, the case of correlated inputs has

also been covered using the Nataf transform. The variability of the input is stati-

cally propagated through the data-flow graph and the analytical representation of

the output is obtained. As opposed to the KLE, this method can be applied to

any type of system that is composed of arithmetic operations making it possible to

treat non-linear systems. The range is computed from the PDF with a probabilistic

analysis in similar manner to the KLE method. In comparison to the KLE method

it has an increased complexity so its applicability to LTI systems is less interesting.

Furthermore, the generalized Polynomial Chaos has been introduced and it has

been shown how the type of the polynomial chaos can be chosen depending on the

distribution of the input in order to reduce the number of terms that need to be

used for an accurate representation. Finally, the numerical accuracy evaluation can

be done using the same method. All the development has been done in Matlab and

has not been integrated into the automatic conversion tool yet.

Perspectives

The number of terms that are used for an accurate PCE representation can signif-

icantly increase with the dimension and the order. For large non-linear applications

this can become a prohibitive factor in the process of automatization. As a future

work, the complexity should be reduced by using only a sparse structure of polyno-

mials that provides only the most important terms in the expansion while neglecting

the others.

Another important aspect that should be considered is the implementation of

an adaptive polynomial chaos based the Askey scheme. As it was presented, the

classical polynomial chaos that employs the Hermite polynomials is optimal only
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for the representation of the Gaussian distribution. For highly non-Gaussian PDFs,

the convergence rate may be low and an important number of terms is needed.

An adaptive polynomial chaos that automatically modifies its basis polynomials

depending on the distribution of the input can significantly reduce the complexity

and should be implemented in the future.
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Resumé

Les applications de traitement du signal ont connu un très fort développement
dans les dernières décennies, bénéficiant des avanceés majeures de l’industrie des
semi-conducteurs. Toutes les implémentations pratiques utilisent l‘arithmétique en
virgule fixe afin de réduire la surface et la consommation d’énergie. En conséquence,
une conversion de la description en virgule flottante de l’algorithme à une implémenta-
tion en virgule fixe qui ajuste la largeur du chemin de données doit être réalisée. C’est
un processus d’optimisation qui consiste à trouver les partie fractionnaire (évaluation
de la précision numérique) et entière (estimation de la dynamique) minimales qui
satisfassent les contraintes de performance.

Dans cette thèse, une approche stochastique pour l’évaluation de la dynamique
des données est présentée. Notre objectif est d’obtenir une représentation complète
de la variabilité qui intègre le comportement probabiliste et non seulement les limites
maximales et minimales. Une méthode basée sur le développement de Karhunen-
Loève est développée pour le cas des systèmes linéaires et invariants dans le temps.
Ensuite, le développement du chaos polynomial est introduit afin de traiter des
opérations non-linéaires. Les méthodes sont appliquées à l’optimisation de la taille
de données quand une légère dégradation des performances est acceptable. La dyna-
mique retenue ne couvre plus tout l’intervalle théorique de variation : des déborde-
ments sont autorisés avec une contrainte quant à leur probabilité d’apparition. Les
signaux qui ont des variations importantes de leur amplitude sont approximées avec
des intervalles serrés pour réduire le coût de l’implémentation.
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Abstract

Digital Signal Processing (DSP) applications have experienced a very strong
development in the last decades, benefiting from the major advances of the semi-
conductor industry. All practical DSP implementations use fixed-point arithmetic
to reduce the area and power consumption and obtain a cost-effective hardware.
As a consequence, a conversion from the floating-point description of the algorithm
to a fixed-point implementation that adjusts every bit-width in the datapath must
be realized. This is an optimization process that consists in finding the minimal
fractional part (numerical accuracy evaluation) and integer part (range estimation)
wordlengths that still satisfy the performance constraints.

In this thesis a stochastic approach for the range evaluation is presented. Our
goal is to obtain a complete representation of the variability that incorporates the
probabilistic behaviour and not only the maximal and minimal bounds. A method
based on the Karhunen-Love Expansion is developed at the beginning for the case
of linear time-invariant systems. Furthermore, the Polynomial Chaos Expansion is
introduced in order to treat non-linear operations. The methods are applied to the
optimization of the integer part wordlength when a slight degradation of the perfor-
mances is acceptable. The range doesn’t cover anymore the entire theoretical interval
of variation, instead the occurrence of overflows is authorized with a constraint re-
garding their probability of appearance. Signals that have high variations of their
amplitude are approximated with tight intervals so that the implementation cost
can be reduced.

Index Terms

Range estimation, accuracy evaluation, fixed-point arithmetic, Karhunen-Loev̀e
Expansion, Polynomial Chaos Expansion, digital signal processing systems
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