S. A. Abdallah and M. D. Plumbley, Polyphonic music transcription by non-negative sparse coding of power spectra, 5th International Conference on Music Information Retrieval (ISMIR), pp.318-325, 2004.

R. P. Adams and D. J. Mackay, Bayesian online changepoint detection, pp.41-96, 2007.

S. M. Ali and S. D. Silvey, A general class of coefficients of divergence of one distribution from another, Journal of the Royal Statistical Society: Series B (Methodological ), vol.28, issue.1, pp.131-142, 1966.

S. Amari, Differential geometry of curved exponential families?curvatures and information loss. The Annals of Statistics, pp.357-385, 1982.

S. Amari, Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics, vol.28, 1985.
DOI : 10.1007/978-1-4612-5056-2

S. Amari, Information geometry of the EM and em algorithms for neural networks, Neural Networks, vol.8, issue.9, pp.1379-1408, 1995.
DOI : 10.1016/0893-6080(95)00003-8

S. Amari, Natural Gradient Works Efficiently in Learning, Neural Computation, vol.37, issue.2, pp.251-276, 1998.
DOI : 10.1103/PhysRevLett.76.2188

S. Amari, Superefficiency in blind source separation, IEEE Transactions on Signal Processing, vol.47, issue.4, pp.936-944, 1999.
DOI : 10.1109/78.752592

S. Amari, Information geometry on hierarchy of probability distributions, IEEE Transactions on Information Theory, vol.47, issue.5, pp.1701-1711, 2001.
DOI : 10.1109/18.930911

S. Amari, <formula formulatype="inline"><tex Notation="TeX">$\alpha$</tex> </formula>-Divergence Is Unique, Belonging to Both <formula formulatype="inline"> <tex Notation="TeX">$f$</tex></formula>-Divergence and Bregman Divergence Classes, IEEE Transactions on Information Theory, vol.55, issue.11, pp.4925-4931, 2009.
DOI : 10.1109/TIT.2009.2030485

S. Amari and J. Cardoso, Blind source separation-semiparametric statistical approach, IEEE Transactions on Signal Processing, vol.45, issue.11, pp.2692-2700, 1997.
DOI : 10.1109/78.650095

S. Amari and A. Cichocki, Information geometry of divergence functions, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.58, issue.1, pp.183-195, 2010.
DOI : 10.2478/v10175-010-0019-1

S. Amari and H. Nagaoka, Methods of Information Geometry, volume 191 of Translations of Mathematical Monographs, 2000.

S. Amari, K. Kurata, and H. Nagaoka, Information geometry of Boltzmann machines, IEEE Transactions on Neural Networks, vol.3, issue.2, pp.260-271, 1992.
DOI : 10.1109/72.125867

R. André-obrecht, A new statistical approach for the automatic segmentation of continuous speech signals, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.36, issue.1, pp.29-40, 1988.
DOI : 10.1109/29.1486

X. A. Miro, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland et al., Speaker Diarization: A Review of Recent Research, IEEE Transactions on Audio, Speech, and Language Processing, vol.20, issue.2, pp.356-370, 2012.
DOI : 10.1109/TASL.2011.2125954

K. A. Arwini and C. T. Dodson, Information Geometry: Near Randomness and Near Independence, Lecture Notes in Mathematics, 1953.

R. Badeau, Gaussian modeling of mixtures of non-stationary signals in the timefrequency domain (HR-NMF), IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp.253-256, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00945270

R. Badeau, N. Bertin, and E. Vincent, Stability Analysis of Multiplicative Update Algorithms and Application to Nonnegative Matrix Factorization, IEEE Transactions on Neural Networks, vol.21, issue.12, pp.1869-1881, 2010.
DOI : 10.1109/TNN.2010.2076831

URL : https://hal.archives-ouvertes.fr/inria-00555984

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, Clustering with Bregman Divergences, Journal of Machine Learning Research, vol.6, pp.1705-1749, 2005.
DOI : 10.1137/1.9781611972740.22

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.2778

O. E. Barndorff-nielsen, Information and Exponential Families in Statistical Theory, Wiley Series in Probability and Mathematical Statistics, p.46, 1978.

O. E. Barndorff-nielsen, Likelihood and Observed Geometries, The Annals of Statistics, vol.14, issue.3, pp.856-873, 1986.
DOI : 10.1214/aos/1176350038

URL : http://projecteuclid.org/download/pdf_1/euclid.aos/1176350038

O. E. Barndorff-nielsen, Differential geometry and statistics: Some mathematical aspects, Indian Journal of Mathematics, vol.29, issue.3, pp.335-350, 1987.

O. E. Barndorff-nielsen and P. E. Jupp, Yokes and symplectic structures, Journal of Statistical Planning and Inference, vol.63, issue.2, pp.133-146, 1997.
DOI : 10.1016/S0378-3758(97)00006-2

M. Basseville, Detecting changes in signals and systems???A survey, Automatica, vol.24, issue.3, pp.309-326, 1988.
DOI : 10.1016/0005-1098(88)90073-8

M. Basseville, Distance measures for signal processing and pattern recognition, Signal Processing, vol.18, issue.4, pp.349-369, 1989.
DOI : 10.1016/0165-1684(89)90079-0

URL : https://hal.archives-ouvertes.fr/inria-00075657

M. Basseville, Divergence measures for statistical data processing???An annotated bibliography, Signal Processing, vol.93, issue.4, pp.621-633, 2013.
DOI : 10.1016/j.sigpro.2012.09.003

URL : https://hal.archives-ouvertes.fr/hal-01151803

M. Basseville and A. Benveniste, Desgin and comparative study of some sequential jump detection algorithms for digital signals, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.31, issue.3, pp.521-535, 1983.
DOI : 10.1109/TASSP.1983.1164131

M. Basseville and A. Benveniste, Sequential detection of abrupt changes in spectral characteristics of digital signals, IEEE Transactions on Information Theory, vol.29, issue.5, pp.709-724, 1983.
DOI : 10.1109/TIT.1983.1056737

M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application, pp.22-81, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00008518

M. Basseville, I. V. Nikiforov, and A. G. Tartakovsky, Sequential Analysis: Hypothesis Testing and Change-Point Detection. Monographs on Statistics and Applied Probability, 2013.

A. Basu, I. R. Harris, N. L. Hjort, and M. C. Jones, Robust and efficient estimation by minimising a density power divergence, Biometrika, vol.85, issue.3, pp.549-559, 1998.
DOI : 10.1093/biomet/85.3.549

A. Basu, H. Shioya, and C. Park, Statistical Inference, of Monographs on Statistics and Applied Probability, pp.41-47, 2011.
DOI : 10.1201/9781315374062-9

M. Bay, A. F. Ehmann, and J. S. Downie, Evaluation of multiple-F0 estimation and tracking systems, 10th International Society for Music Information Retrieval Conference (ISMIR), pp.315-320, 2009.

J. P. Bello and M. B. Sandler, Phase-based note onset detection for music signals, IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.441-444, 2003.

J. P. Bello, C. Duxbury, M. Davies, and M. B. Sandler, On the Use of Phase and Energy for Musical Onset Detection in the Complex Domain, IEEE Signal Processing Letters, vol.11, issue.6, pp.553-556, 2004.
DOI : 10.1109/LSP.2004.827951

J. P. Bello, L. Daudet, S. A. Abdallah, C. Duxbury, M. Davies et al., A tutorial on onset detection in music signals, IEEE Transactions on Speech and Audio Processing, vol.13, issue.5, pp.1035-1047, 2005.
DOI : 10.1109/TSA.2005.851998

E. Benetos and S. Dixon, Multiple-instrument polyphonic music transcription using a convolutive probabilistic model, 8th Sound and Music Computing Conference (SMC), pp.19-24, 2011.

E. Benetos and S. Dixon, A temporally-constrained convolutive probabilistic model for pitch detection, 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp.133-136, 2011.
DOI : 10.1109/ASPAA.2011.6082270

M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, Algorithms and applications for approximate nonnegative matrix factorization, Computational Statistics & Data Analysis, vol.52, issue.1, pp.155-173, 2007.
DOI : 10.1016/j.csda.2006.11.006

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.1963

N. Bertin, C. Févotte, and R. Badeau, A tempering approach for Itakura-Saito nonnegative matrix factorization. With application to music transcription, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.1545-1548, 2009.
DOI : 10.1109/icassp.2009.4959891

URL : https://hal.archives-ouvertes.fr/hal-00945283

N. Bertin, R. Badeau, and E. Vincent, Enforcing Harmonicity and Smoothness in Bayesian Non-Negative Matrix Factorization Applied to Polyphonic Music Transcription, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.3, pp.538-549, 2010.
DOI : 10.1109/TASL.2010.2041381

URL : https://hal.archives-ouvertes.fr/inria-00557088

A. Bhattacharyya, On a measure of divergence between two statistical populations defined by their probability distributions, Bulletin of the Calcutta Mathematical Society, vol.35, issue.1, pp.99-109110, 1943.

S. Böck, F. Krebs, and M. Schedl, Evaluating the online capabilities of onset detection methods, 13th International Society for Music Information Retrieval Conference (ISMIR), pp.49-54, 2012.

J. Boissonnat, F. Nielsen, and R. Nock, Bregman Voronoi Diagrams, Discrete & Computational Geometry, vol.12, issue.2, pp.281-307, 2010.
DOI : 10.1007/s00454-010-9256-1

URL : https://hal.archives-ouvertes.fr/hal-00488441

J. Bonastre, P. Delacourt, C. Fredouille, T. Merlin, and C. J. Wellekens, A speaker tracking system based on speaker turn detection for NIST evaluation, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), pp.1177-1180, 2000.
DOI : 10.1109/ICASSP.2000.859175

L. M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Computational Mathematics and Mathematical Physics, vol.7, issue.3, pp.200-217, 1967.
DOI : 10.1016/0041-5553(67)90040-7

B. E. Brodsky and B. S. Darkhovsky, Nonparametric Methods in Change-Point Problems, volume 243 of Mathematics and Its Applications, 1993.

L. D. Broemeling and H. Tsurumi, Econometrics and Structural Change, volume 74 of Statistics: Textbooks and Monographs, 1987.

M. Broniatowski and A. Keziou, Parametric estimation and tests through divergences and the duality technique, Journal of Multivariate Analysis, vol.100, issue.1, pp.16-36, 2009.
DOI : 10.1016/j.jmva.2008.03.011

L. D. Brown, Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory, Lecture Notes?Monograph Series, vol.9, p.46, 1986.

J. Burbea and C. R. Rao, On the convexity of some divergence measures based on entropy functions, IEEE Transactions on Information Theory, vol.28, issue.3, pp.489-495, 1982.
DOI : 10.1109/TIT.1982.1056497

J. Burbea and C. R. Rao, On the convexity of higher order Jensen differences based on entropy functions (Corresp.), IEEE Transactions on Information Theory, vol.28, issue.6, pp.961-963, 1982.
DOI : 10.1109/TIT.1982.1056573

S. Canu and A. Smola, Kernel methods and the exponential family, Neurocomputing, vol.69, issue.7-9, pp.714-720, 2006.
DOI : 10.1016/j.neucom.2005.12.009

K. M. Carter, R. Raich, W. G. Finn, and A. O. Hero, FINE: Fisher Information Nonparametric Embedding, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.11, pp.2093-2098, 2009.
DOI : 10.1109/TPAMI.2009.67

URL : http://arxiv.org/abs/0802.2050

K. M. Carter, R. Raich, W. G. Finn, and A. O. Hero, Information-Geometric Dimensionality Reduction, IEEE Signal Processing Magazine, vol.28, issue.2, pp.89-99, 2011.
DOI : 10.1109/MSP.2010.939536

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.294.6242

L. Cayton, Fast nearest neighbor retrieval for bregman divergences, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.112-119, 2008.
DOI : 10.1145/1390156.1390171

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.149.4294

L. Cayton, Efficient Bregman range search, Advances in Neural Information Processing Systems (NIPS), pp.243-251, 2009.

A. Cena and G. Pistone, Exponential statistical manifold, Annals of the Institute of Statistical Mathematics, vol.50, issue.1, pp.27-56, 2007.
DOI : 10.1007/s10463-006-0096-y

M. Cettolo and M. Vescovi, Efficient audio segmentation algorithms based on the BIC, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)., pp.537-540, 2003.
DOI : 10.1109/ICASSP.2003.1201737

J. Chen and A. K. Gupta, Parametric Statistical Change Point Analysis: With Applications to Genetics, Medicine, and Finance, Birkhäuser
DOI : 10.1007/978-0-8176-4801-5

J. Chen, A. K. Gupta, and P. Jianmin, Information criterion and change point problem for regular models. Sankhy¯ a: The Indian Journal of, Statistics, vol.68, issue.2, pp.252-282, 2006.

S. S. Chen and P. S. Gopalakrishnan, Speaker, environment and channel change detection and clustering via the Bayesian information criterion, DARPA Broadcast News Transcription and Understanding Workshop, pp.127-132, 1998.

C. Cheng, D. J. Hu, and L. K. Saul, Nonnegative matrix factorization for real time musical analysis and sight-reading evaluation, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.2017-2020, 2008.

N. N. Chentsov, A systematic theory of exponential families of probability distributions . Theory of Probability and Its Applications, pp.425-435, 1966.

N. N. Chentsov, Statistical Decision Rules and Optimal Inference, volume 53 of Translations of Mathematical Monographs, 1982.

H. Chernoff, A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations, The Annals of Mathematical Statistics, vol.23, issue.4, pp.493-507, 1952.
DOI : 10.1214/aoms/1177729330

A. Cichocki and S. Amari, Families of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities, Entropy, vol.12, issue.6, pp.1532-1568, 2010.
DOI : 10.3390/e12061532

A. Cichocki, R. Zdunek, and S. Amari, Csisz??r???s Divergences for Non-negative Matrix Factorization: Family of New Algorithms
DOI : 10.1007/11679363_5

A. Cichocki, H. Lee, Y. Kim, and S. Choi, Non-negative matrix factorization with ??-divergence, Pattern Recognition Letters, vol.29, issue.9, pp.1433-1440, 2008.
DOI : 10.1016/j.patrec.2008.02.016

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.7022

A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, 2009.
DOI : 10.1002/9780470747278

A. Cichocki, S. Cruces, and S. Amari, Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization, Entropy, vol.13, issue.12, pp.134-170, 2011.
DOI : 10.3390/e13010134

M. Collins, S. Dasgupta, and R. E. Schapire, A generalization of principal components analysis to the exponential family, Advances in Neural Information Processing Systems (NIPS), pp.617-624, 2002.

A. Cont, Realtime multiple pitch observation using sparse non-negative constraints, 7th International Conference on Music Information Retrieval (ISMIR), pp.206-211, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00723223

A. Cont and A. Dessein, Applications de la géométrie de l'information au traitement des flux audio temps réel, 5e Biennale Française des Mathématiques Appliquées, Congrès de la Société de Mathématiques Appliquées et Industrielles (SMAI), 2011.

A. Cont, S. Dubnov, and D. Wessel, Realtime multiple-pitch and multipleinstrument recognition for music signals using sparse non-negative constraints, 10th International Conference on Digital Audio Effects (DAFx), pp.85-92, 2007.
DOI : 10.1109/icassp.2006.1661258

URL : https://hal.archives-ouvertes.fr/hal-00839069

A. Cont, S. Dubnov, and G. Assayag, On the Information Geometry of Audio Streams With Applications to Similarity Computing, IEEE Transactions on Audio, Speech, and Language Processing, vol.19, issue.4, pp.837-846, 2011.
DOI : 10.1109/TASL.2010.2066266

URL : https://hal.archives-ouvertes.fr/hal-00579590

F. Critchley, P. Marriott, and M. Salmon, Preferred point geometry and statistical manifolds. The Annals of Statistics, pp.1197-1224, 1993.
DOI : 10.1214/aos/1176349258

I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, Magyar Tudományos Akadémia Matematikai Kutató Intézeténk Közleményei, pp.85-108, 1963.

I. Csiszár, Information measures: A critical survey Statistical Decision Functions, Random Processes and of the 1974 European Meeting of Statisticians held at Prague, from August 18 to 23, Transactions of the Seventh Prague Conference on Information Theory, pp.73-86, 1974.

I. Csiszár, Axiomatic Characterizations of Information Measures, Entropy, vol.10, issue.3, pp.261-273, 2008.
DOI : 10.3390/e10030261

I. Csiszár and F. Matú?, Closures of exponential families. The Annals of Probability, pp.582-600, 2005.

M. Csörg? and L. Horváth, Limit Theorems in Change-Point Analysis, 1997.

G. Darmois, Sur les lois de probabilités à estimation exhaustive, Comptes Rendus des Séances Hebdomadaires de l'Académie des Sciences, pp.1265-1266, 1935.

M. Davy and S. Godsill, Detection of abrupt spectral changes using support vector machines. An application to audio signal segmentation, IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.1313-1316, 2002.

A. De-cheveigné, Multiple F 0 estimation, Computational Auditory Scene Analysis: Principles, Algorithms and Applications, pp.45-79, 2006.

P. Delacourt and C. J. Wellekens, DISTBIC: A speaker-based segmentation for audio data indexing, Speech Communication, vol.32, issue.1-2, pp.111-126, 2000.
DOI : 10.1016/S0167-6393(00)00027-3

J. Deshayes and D. Picard, Off-line statistical analysis of change-point models using non parametric and likelihood methods, Detection of Abrupt Changes in Signals and Dynamical Systems, pp.103-168, 1986.
DOI : 10.1007/BFb0006392

F. Desobry, M. Davy, and C. Doncarli, An online kernel change detection algorithm, IEEE Transactions on Signal Processing, vol.53, issue.8, pp.2961-2974, 2005.
DOI : 10.1109/TSP.2005.851098

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.1469

A. Dessein, Introduction to the tools of information geometry for the manipulation of audio streams, Séminaire Mathématiques, Musique et relations avec d'autres disciplines (MaMuX), Institut de Recherche et Coordination Acoustique/Musique, 2009.

A. Dessein, La géométrie de l'information pour l'analyse et le traitement des flux audio, 5es Journées Jeunes Chercheurs en Audition, Acoustique musicale et Signal audio (JJCAAS), 2009.

A. Dessein, Some applications of non-negative matrix factorization and of information geometry in audio signal processing, Research Seminar, 2010.

A. Dessein, Information geometry for real-time processing of audio signals, Research Seminar, Japanese-French Laboratory for Informatics, 2010.

A. Dessein, Music information geometry, Journée interdisciplinaire Mathématiques et Musique (JMM), Institut de Recherche Mathématique Avancée, 2011.

A. Dessein, Computational information geometry for audio signal processing, In Symposium on Optimal Transport and Information Geometry, 2012.

A. Dessein and A. Cont, Segmentation statistique de flux audio en temps-réel dans le cadre de la géométrie de l'information, 23e Colloque du Groupe de Recherche et d'Études du Traitement du Signal (GRETSI), 2011.

A. Dessein and A. Cont, Applications of information geometry to audio signal processing, 14th International Conference on Digital Audio Effects (DAFx), 2011.
URL : https://hal.archives-ouvertes.fr/hal-01106639

A. Dessein and A. Cont, Applications of information geometry to audio signal processing, Indo-French Workshop on Matrix Information Geometry (MIG), pp.16-17, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01106639

A. Dessein and A. Cont, An Information-Geometric Approach to Real-Time Audio Segmentation, IEEE Signal Processing Letters, vol.20, issue.4, pp.331-334, 2013.
DOI : 10.1109/LSP.2013.2247039

URL : https://hal.archives-ouvertes.fr/hal-00793999

A. Dessein and A. Cont, Online Change Detection in Exponential Families with Unknown Parameters, Geometric Science of Information: First International Conference Proceedings, pp.633-640, 2013.
DOI : 10.1007/978-3-642-40020-9_70

URL : https://hal.archives-ouvertes.fr/hal-00840662

A. Dessein, A. Cont, and G. Lemaitre, Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence, 11th International Society for Music Information Retrieval Conference (ISMIR), pp.489-494, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00708682

A. Dessein, A. Cont, and G. Lemaitre, Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence, 6th Music Information Retrieval Evaluation eXchange (MIREX), 2010.
URL : https://hal.archives-ouvertes.fr/hal-00708682

A. Dessein, A. Cont, and G. Lemaitre, Real-Time Detection of Overlapping Sound Events with Non-Negative Matrix Factorization, Matrix Information Geometry, pp.341-371, 2013.
DOI : 10.1007/978-3-642-30232-9_14

URL : https://hal.archives-ouvertes.fr/hal-00708805

I. S. Dhillon and S. Sra, Generalized nonnegative matrix approximations with Bregman divergences, Advances in Neural Information Processing Systems (NIPS), pp.283-290, 2006.

I. S. Dhillon and J. A. Tropp, Matrix Nearness Problems with Bregman Divergences, SIAM Journal on Matrix Analysis and Applications, vol.29, issue.4, pp.1120-1146, 2008.
DOI : 10.1137/060649021

URL : http://authors.library.caltech.edu/9428/1/DHIsiamjmaa07.pdf

O. Dikmen, C. Févotte, J. Shawe-taylor, R. S. Zemel, P. Bartlett et al., Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation, Advances in Neural Information Processing Systems (NIPS), pp.2267-2275, 2011.

S. Dixon, Onset detection revisited, 9th International Conference on Digital Audio Effects (DAFx), pp.133-137, 2006.

C. Duxbury, M. B. Sandler, and M. Davies, A hybrid approach to musical note onset detection, 5th International Conference on Digital Audio Effects (DAFx), pp.33-38, 2002.

C. Duxbury, J. P. Bello, M. Davies, and M. B. Sandler, A COMBINED PHASE AND AMPLITUDE BASED APPROACH TO ONSET DETECTION FOR AUDIO SEGMENTATION, Digital Media Processing for Multimedia Interactive Services, pp.275-280, 2003.
DOI : 10.1142/9789812704337_0050

B. Efron, Defining the curvature of a statistical problem (with applications to second order efficiency) The Annals of Statistics, pp.1189-1242, 1975.

S. Eguchi, Second Order Efficiency of Minimum Contrast Estimators in a Curved Exponential Family, The Annals of Statistics, vol.11, issue.3, pp.793-803, 1983.
DOI : 10.1214/aos/1176346246

S. Eguchi, A differential geometric approach to statistical inference on the basis of contrast functionals, Hiroshima Mathematical Journal, vol.15, issue.2, pp.341-391, 1985.

S. Eguchi, Geometry of minimum contrast, Hiroshima Mathematical Journal, vol.22, issue.3, pp.631-647, 1992.

S. Eguchi, Information Divergence Geometry and the Application to Statistical Machine Learning, Information Theory and Statistical Learning, chapter 13, pp.309-332, 2009.
DOI : 10.1007/978-0-387-84816-7_13

S. Eguchi and Y. Kano, Robustifying maximum likelihood estimation The Institute of Statistical Mathematics, pp.41-47, 2001.

V. Emiya, R. Badeau, and B. David, Multipitch Estimation of Piano Sounds Using a New Probabilistic Spectral Smoothness Principle, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.6, pp.1643-1654, 2010.
DOI : 10.1109/TASL.2009.2038819

URL : https://hal.archives-ouvertes.fr/inria-00510392

P. Fearnhead and Z. Liu, On-line inference for multiple changepoint problems, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.20, issue.4, pp.589-605, 2007.
DOI : 10.2307/2986119

P. Fearnhead and Z. Liu, Efficient Bayesian analysis of multiple changepoint models with??dependence across segments, Statistics and Computing, vol.12, issue.2, pp.217-229, 2011.
DOI : 10.1007/s11222-009-9163-6

B. Fergani, M. Davy, and A. Houacine, Unsupervised speaker indexing using oneclass support vector machines, 14th European Signal Processing Conference (EUSIPCO), 2006.

C. Févotte, Itakura-Saito Nonnegative Factorizations of the Power Spectrogram for Music Signal Decomposition, Machine Audition: Principles, Algorithms and Systems, pp.266-296, 2011.
DOI : 10.4018/978-1-61520-919-4.ch011

C. Févotte and A. T. , Nonnegative matrix factorizations as probabilistic inference in composite models, 17th European Signal Processing Conference (EUSIPCO), pp.1913-1917, 2009.

C. Févotte and J. Idier, Algorithms for Nonnegative Matrix Factorization with the ??-Divergence, Neural Computation, vol.11, issue.9, pp.2421-2456, 2011.
DOI : 10.1109/TASL.2009.2034186

C. Févotte, N. Bertin, and J. Durrieu, Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis, Neural Computation, vol.14, issue.3, pp.793-830, 2009.
DOI : 10.1016/j.sigpro.2007.01.024

R. A. Fisher, Two New Properties of Mathematical Likelihood, Proceedings of the Royal Society of London: Series A, Containing Papers of a Mathematical and Physical Character, pp.285-307, 1934.
DOI : 10.1098/rspa.1934.0050

D. Fitzgerald, M. Cranitch, and E. Coyle, On the use of the beta divergence for musical source separation, IET Irish Signals and Systems Conference (ISSC 2009), 2009.
DOI : 10.1049/cp.2009.1711

J. Foote, Visualizing music and audio using self-similarity, Proceedings of the seventh ACM international conference on Multimedia (Part 1) , MULTIMEDIA '99, pp.77-80, 1999.
DOI : 10.1145/319463.319472

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.223.194

J. Foote, Automatic audio segmentation using a measure of audio novelty, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532), pp.452-455, 2000.
DOI : 10.1109/ICME.2000.869637

B. Fuentes, R. Badeau, and G. Richard, Adaptive harmonic time-frequency decomposition of audio using shift-invariant PLCA, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.401-404, 2011.
DOI : 10.1109/ICASSP.2011.5946425

Y. Fujimoto and N. Murata, A modified EM algorithm for mixture models based on Bregman divergence, Annals of the Institute of Statistical Mathematics, vol.16, issue.4, pp.3-25, 2007.
DOI : 10.1007/s10463-006-0097-x

V. Garcia and F. Nielsen, Simplification and hierarchical representations of mixtures of exponential families, Signal Processing, vol.90, issue.12, pp.3197-3212, 2010.
DOI : 10.1016/j.sigpro.2010.05.024

E. Gaussier and C. Goutte, Relation between PLSA and NMF and implications, Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '05, pp.601-602, 2005.
DOI : 10.1145/1076034.1076148

P. Gibilisco and G. Pistone, Connections on Non-Parametric Statistical Manifolds by Orlicz Space Geometry, Infinite Dimensional Analysis, Quantum Probability and Related Topics, vol.01, issue.02, pp.325-347, 1998.
DOI : 10.1142/S021902579800017X

M. A. Girshick and H. Rubin, A Bayes approach to a quality control model. The Annals of Mathematical Statistics, pp.114-125, 1952.

G. Grindlay and D. P. Ellis, Multi-voice polyphonic music transcription using eigeninstruments, 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp.53-56, 2009.
DOI : 10.1109/ASPAA.2009.5346514

G. Grindlay and D. P. Ellis, Transcribing Multi-Instrument Polyphonic Music With Hierarchical Eigeninstruments, IEEE Journal of Selected Topics in Signal Processing, vol.5, issue.6, pp.1159-1169, 2011.
DOI : 10.1109/JSTSP.2011.2162395

F. Gustafsson, Adaptive Filtering and Change Detection, 2000.
DOI : 10.1002/0470841613

Z. Harchaoui and C. Lévy-leduc, Catching change-points with lasso, Advances in Neural Information Processing Systems (NIPS), pp.617-624, 2008.

Z. Harchaoui and C. Lévy-leduc, Multiple Change-Point Estimation With a Total Variation Penalty, Journal of the American Statistical Association, vol.105, issue.492, pp.1480-1493, 2010.
DOI : 10.1198/jasa.2010.tm09181

URL : https://hal.archives-ouvertes.fr/hal-00923474

Z. Harchaoui, F. Bach, and E. Moulines, Kernel change-point analysis, Advances in Neural Information Processing Systems (NIPS), pp.609-616, 2009.

Z. Harchaoui, F. Vallet, A. Lung-yut-fong, and O. Cappé, A regularized kernelbased approach to unsupervised audio segmentation, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.1665-1668, 2009.

P. Harremoës and N. Tishby, The Information Bottleneck Revisited or How to Choose a Good Distortion Measure, 2007 IEEE International Symposium on Information Theory, pp.566-570, 2007.
DOI : 10.1109/ISIT.2007.4557285

J. Havrda and F. Charvát, Quantification method of classification processes. Concept of structural a-entropy, Kybernetika, vol.3, issue.1, pp.30-35, 1967.

R. Hennequin, R. Badeau, and B. David, Time-dependent parametric and harmonic templates in non-negative matrix factorization, 13th International Conference On Digital Audio Effects (DAFx), pp.246-253, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00945292

R. Hennequin, R. Badeau, and B. David, NMF With Time&#x2013;Frequency Activations to Model Nonstationary Audio Events, IEEE Transactions on Audio, Speech, and Language Processing, vol.19, issue.4, pp.744-753, 2011.
DOI : 10.1109/TASL.2010.2062506

R. Hennequin, R. Badeau, and B. David, Scale-invariant probabilistic latent component analysis, 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp.129-132, 2011.
DOI : 10.1109/ASPAA.2011.6082265

URL : https://hal.archives-ouvertes.fr/hal-00960765

A. O. Hero, B. Ma, O. Michel, and J. Gorman, Alpha-divergence for classification, indexing and retrieval (revised 2), 2002.

M. D. Hoffman, D. M. Blei, and P. R. Cook, Bayesian nonparametric matrix factorization for recorded music, 27th International Conference on Machine Learning (ICML), pp.439-446, 2010.

T. Hofmann, Probabilistic latent semantic indexing, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '99, pp.50-57, 1999.
DOI : 10.1145/312624.312649

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.4458

D. R. Hunter and K. Lange, A tutorial on MM algorithms. The American Statistician, pp.30-37, 2004.

S. Ikeda, T. Tanaka, and S. Amari, Information Geometry of Turbo and Low-Density Parity-Check Codes, IEEE Transactions on Information Theory, vol.50, issue.6, pp.1097-1114, 2004.
DOI : 10.1109/TIT.2004.828072

H. Kadri, M. Davy, A. Rabaoui, Z. Lachiri, and N. Ellouze, Robust audio speaker segmentation using one class SVMs, 16th European Signal Processing Conference (EUSIPCO), 2008.
DOI : 10.5772/8540

URL : https://hal.archives-ouvertes.fr/hal-00510423

R. E. Kass and P. W. Vos, Geometrical Foundations of Asymptotic Inference, of Wiley Series in Probability and Statistics, 1997.
DOI : 10.1002/9781118165980

T. Kemp, M. Schmidt, M. Westphal, and A. Waibel, Strategies for automatic segmentation of audio data, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), pp.1423-1426, 2000.
DOI : 10.1109/ICASSP.2000.861862

A. Klapuri, Sound onset detection by applying psychoacoustic knowledge, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), pp.3089-3092, 1999.
DOI : 10.1109/ICASSP.1999.757494

R. Kompass, A Generalized Divergence Measure for Nonnegative Matrix Factorization, Neural Computation, vol.39, issue.3, pp.780-791, 2007.
DOI : 10.1162/089976602320264033

B. O. Koopman, On distributions admitting a sufficient statistic, Transactions of the American Mathematical Society, vol.39, issue.3, pp.399-409, 1936.
DOI : 10.1090/S0002-9947-1936-1501854-3

M. Kotti, V. Moschou, and C. Kotropoulos, Speaker segmentation and clustering, Signal Processing, vol.88, issue.5, pp.1091-1124, 2008.
DOI : 10.1016/j.sigpro.2007.11.017

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/11711/2/SP_Elsevier_2008_Margarita_Kotti.pdf

B. Kulis, M. A. Sustik, and I. S. Dhillon, Low-rank kernel learning with Bregman matrix divergences, Journal of Machine Learning Research, vol.10, pp.341-376, 2009.

S. Kullback and R. A. Leibler, On information and sufficiency. The Annals of Mathematical Statistics, pp.79-86, 1951.

J. Lafferty and G. Lebanon, Diffusion kernels on statistical manifolds, Journal of Machine Learning Research, vol.6, pp.129-163, 2005.

T. L. Lai, Sequential changepoint detection in quality control and dynamical systems, Journal of the Royal Statistical Society: Series B (Methodological), vol.57, issue.4, pp.613-658, 1995.

T. L. Lai and H. Xing, Sequential Change-Point Detection When the Pre- and Post-Change Parameters are Unknown, Sequential Analysis, vol.18, issue.2, pp.162-175, 2010.
DOI : 10.1016/0378-3758(81)90021-5

T. L. Lai, T. Liu, and H. Xing, A Bayesian Approach to Sequential Surveillance in Exponential Families, Communications in Statistics - Theory and Methods, vol.5, issue.16-17, pp.16-172958, 2009.
DOI : 10.1080/03610920902947253

J. , L. Roux, A. De-cheveigné, and L. C. Parra, Adaptive template matching with shift-invariant semi-NMF, Advances in Neural Information Processing Systems, pp.921-928, 2009.

C. Lee, Estimating the Number of Change Points in Exponential Families Distributions, Scandinavian Journal of Statistics, vol.24, issue.2, pp.201-210, 1997.
DOI : 10.1111/1467-9469.t01-1-00058

C. Lee, Y. Yang, and H. H. Chen, Multipitch estimation of piano music by exemplar-based sparse representation, IEEE Transactions on Multimedia, vol.14, issue.3, pp.608-618, 2012.

D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, vol.401, issue.6755, pp.788-791, 1999.

D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, Advances in Neural Information Processing Systems (NIPS), pp.556-562, 2001.

A. Lefèvre, F. Bach, and C. Févotte, Itakura-Saito nonnegative matrix factorization with group sparsity, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.21-24, 2011.
DOI : 10.1109/ICASSP.2011.5946318

A. Lefèvre, F. Bach, and C. Févotte, Online algorithms for nonnegative matrix factorization with the Itakura-Saito divergence, 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp.313-316, 2011.
DOI : 10.1109/ASPAA.2011.6082314

E. L. Lehmann and G. Casella, Theory of Point Estimation, G. Casella, S. Fienberg, and I. Olkin, Springer Texts in Statistics, 1998.

E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, G. Casella, S. Fienberg , and I. Olkin, Springer Texts in Statistics, 2005.

P. Leveau, L. Daudet, and G. Richard, Methodology and tools for the evaluation of automatic onset detection algorithms in music, 5th International Conference on Music Information Retrieval (ISMIR), pp.72-75, 2004.

F. Liese and I. Vajda, On Divergences and Informations in Statistics and Information Theory, IEEE Transactions on Information Theory, vol.52, issue.10, pp.4394-4412, 2006.
DOI : 10.1109/TIT.2006.881731

C. Lin, On the convergence of multiplicative update algorithms for nonnegative matrix factorization, IEEE Transactions on Neural Networks, vol.18, issue.6, pp.1589-1596, 2007.

P. Lin, J. Wang, J. Wang, and H. Sung, Unsupervised speaker change detection using SVM training misclassification rate, IEEE Transactions on Computers, vol.56, issue.9, pp.1234-1244, 2007.
DOI : 10.1109/tc.2007.70746

M. Liu, B. C. Vemuri, S. Amari, and F. Nielsen, Total Bregman divergence and its applications to shape retrieval, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.3463-3468, 2010.
DOI : 10.1109/CVPR.2010.5539979

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782752

M. Liu, B. C. Vemuri, S. Amari, and F. Nielsen, Shape retrieval using hierarchical total Bregman soft clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.12, pp.2407-2419, 2012.

M. Liuni, A. Röbel, M. Romito, and X. Rodet, Rényi information measures for spectral change detection, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.3824-3827, 2011.
DOI : 10.1109/icassp.2011.5947185

G. Lorden, Procedures for Reacting to a Change in Distribution, The Annals of Mathematical Statistics, vol.42, issue.6, pp.1897-1908, 1971.
DOI : 10.1214/aoms/1177693055

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparse coding, Journal of Machine Learning Research, vol.11, pp.19-60, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00408716

M. Marolt, Non-negative matrix factorization with selective sparsity constraints for transcription of bell chiming recordings, 6th Sound and Music Computing Conference (SMC), pp.137-142, 2009.

T. Matumoto, Any statistical manifold has a contrast function?On the C 3 -functions taking the minimum at the diagonal of the product manifold, Hiroshima Mathematical Journal, vol.23, issue.2, pp.327-332, 1993.

Y. Mei, Sequential change-point detection when unknown parameters are present in the pre-change distribution. The Annals of Statistics, pp.92-122, 2006.

M. Mihoko and S. Eguchi, Robust Blind Source Separation by Beta Divergence, Neural Computation, vol.2, issue.8, pp.1859-1886, 2002.
DOI : 10.1109/78.599941

S. Mohamed, K. Heller, and Z. Ghahramani, Bayesian exponential family PCA, Advances in Neural Information Processing Systems (NIPS), pp.1089-1096, 2009.

S. Mohamed, K. Heller, and Z. Ghahramani, Evaluating Bayesian and L 1 approaches for sparse unsupervised learning, 29th International Conference on Machine Learning (ICML), pp.751-758, 2012.

T. Morimoto, -Theorem, Journal of the Physical Society of Japan, vol.18, issue.3, pp.328-331, 1963.
DOI : 10.1143/JPSJ.18.328

URL : https://hal.archives-ouvertes.fr/hal-00658784

G. V. Moustakides, Optimal Stopping Times for Detecting Changes in Distributions, The Annals of Statistics, vol.14, issue.4, pp.1379-1387, 1986.
DOI : 10.1214/aos/1176350164

URL : https://hal.archives-ouvertes.fr/inria-00076193

N. Murata, T. Takenouchi, T. Kanamori, and S. Eguchi, Information Geometry of U-Boost and Bregman Divergence, Neural Computation, vol.5, issue.7, pp.1437-1481, 2004.
DOI : 10.1162/089976604322860695

M. K. Murray and J. W. Rice, Differential Geometry and Statistics, of Monographs on Statistics and Applied Probability, 1993.

G. J. Mysore and P. Smaragdis, Relative pitch estimation of multiple instruments, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.313-316, 2009.
DOI : 10.1109/ICASSP.2009.4959583

G. J. Mysore, P. Smaragdis, B. V. Raj, V. Vigneron, E. Zarzoso et al., Non-negative Hidden Markov Modeling of Audio with Application to Source Separation, Latent Variable Analysis and Signal Separation: 9th International Conference Proceedings, pp.140-148, 2010.
DOI : 10.1007/978-3-642-15995-4_18

H. Nagaoka and S. Amari, Differential geometry of smooth families of probability distributions, 1982.

M. Nakano, H. Kameoka, J. Le-roux, Y. Kitano, N. Ono et al., Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with ?-divergence, IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp.283-288, 2010.

M. Nakano, J. Le-roux, H. Kameoka, Y. Kitano, N. Ono et al., Nonnegative Matrix Factorization with Markov-Chained Bases for Modeling Time-Varying Patterns in Music Spectrograms, Latent Variable Analysis and Signal Separation: 9th International Conference Proceedings, pp.149-156, 2010.
DOI : 10.1007/978-3-642-15995-4_19

B. Niedermayer, Non-negative matrix division for the automatic transcription of polyphonic music, 9th International Conference on Music Information Retrieval (ISMIR), pp.544-549, 2008.

F. Nielsen and S. Boltz, The Burbea-Rao and Bhattacharyya Centroids, IEEE Transactions on Information Theory, vol.57, issue.8, pp.5455-5466, 2011.
DOI : 10.1109/TIT.2011.2159046

URL : http://arxiv.org/abs/1004.5049

F. Nielsen and R. Nock, A fast deterministic smallest enclosing disk approximation algorithm, Information Processing Letters, vol.93, issue.6, pp.263-268, 2005.
DOI : 10.1016/j.ipl.2004.12.006

F. Nielsen and R. Nock, On the smallest enclosing information disk, Information Processing Letters, vol.105, issue.3, pp.93-97, 2008.
DOI : 10.1016/j.ipl.2007.08.007

F. Nielsen and R. Nock, APPROXIMATING SMALLEST ENCLOSING BALLS WITH APPLICATIONS TO MACHINE LEARNING, International Journal of Computational Geometry & Applications, vol.19, issue.05, pp.389-414, 2009.
DOI : 10.1142/S0218195909003039

F. Nielsen and R. Nock, Sided and Symmetrized Bregman Centroids, IEEE Transactions on Information Theory, vol.55, issue.6, pp.2882-2904, 2009.
DOI : 10.1109/TIT.2009.2018176

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.172.2671

F. Nielsen and R. Nock, Skew Jensen-Bregman Voronoi Diagrams, Transactions on Computational Science XIV: Special Issue on Voronoi Diagrams and Delaunay Triangulation, pp.102-128
DOI : 10.1109/TCOM.1967.1089532

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.221.7524

F. Nielsen, J. Boissonnat, and R. Nock, On Bregman Voronoi diagrams, 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.746-755, 2007.

F. Nielsen, P. Piro, and M. Barlaud, Tailored Bregman ball trees for effective nearest neighbors, 25th European Workshop on Computational Geometry (EuroCG), pp.29-32, 2009.
DOI : 10.1109/icme.2009.5202635

URL : https://hal.archives-ouvertes.fr/hal-00382782

F. Nielsen, P. Piro, and M. Barlaud, Bregman vantage point trees for efficient nearest Neighbor Queries, 2009 IEEE International Conference on Multimedia and Expo, pp.878-881, 2009.
DOI : 10.1109/ICME.2009.5202635

URL : https://hal.archives-ouvertes.fr/hal-00481723

R. Nock, F. Nielsen, R. Camacho, P. B. Brazdil, A. M. Jorge et al., Fitting the Smallest Enclosing Bregman Ball, Machine Learning: ECML 2005, 16th European Conference on Machine Learning Proceedings, pp.649-656, 2005.
DOI : 10.1007/11564096_65

R. Nock and F. Nielsen, On weighting clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.8, pp.1223-1235, 2006.
DOI : 10.1109/TPAMI.2006.168

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.170.5067

R. Nock and F. Nielsen, Bregman Divergences and Surrogates for Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.11, pp.312048-2059, 2009.
DOI : 10.1109/TPAMI.2008.225

R. Nock, P. Luosto, and J. Kivinen, Mixed Bregman Clustering with Approximation Guarantees, Machine Learning and Knowledge Discovery in Databases: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD Proceedings, Part II, pp.154-169, 2008.
DOI : 10.1007/978-3-540-87481-2_11

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.221.2796

P. D. Grady and B. A. Pearlmutter, Discovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint, Neurocomputing, vol.72, issue.13, pp.88-101, 2008.

M. K. Omar, U. Chaudhari, and G. Ramaswamy, Blind Change Detection for Audio Segmentation, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., pp.501-504, 2005.
DOI : 10.1109/ICASSP.2005.1415160

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.6780

P. Paatero, Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, pp.23-35, 1997.

P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, vol.18, issue.2, pp.111-126, 1994.
DOI : 10.1002/env.3170050203

E. S. Page, CONTINUOUS INSPECTION SCHEMES, Biometrika, vol.41, issue.1-2, pp.100-115, 1954.
DOI : 10.1093/biomet/41.1-2.100

L. Pardo, Statistical Inference Based on Divergence Measures Statistics: A Series of Textbooks and Monographs, pp.41-47, 2006.

J. Paulus, M. Müller, and A. Klapuri, Audio-based music structure analysis, 11th International Society for Music Information Retrieval Conference (ISMIR), pp.625-636, 2010.

A. M. Peter and A. Rangarajan, Shape Analysis Using the Fisher-Rao Riemannian Metric: Unifying Shape Representation and Deformation, 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006., pp.1164-1167, 2006.
DOI : 10.1109/ISBI.2006.1625130

A. M. Peter and A. Rangarajan, Information Geometry for Landmark Shape Analysis: Unifying Shape Representation and Deformation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.2, pp.337-350, 2009.
DOI : 10.1109/TPAMI.2008.69

G. Pistone and C. Sempi, An Infinite-Dimensional Geometric Structure on the Space of all the Probability Measures Equivalent to a Given One, The Annals of Statistics, vol.23, issue.5, pp.1543-1561, 1995.
DOI : 10.1214/aos/1176324311

E. J. Pitman, Sufficient statistics and intrinsic accuracy, Mathematical Proceedings of the Cambridge Philosophical Society, vol.22, issue.04, pp.567-579, 1936.
DOI : 10.1098/rspa.1934.0050

M. Pollak, Optimal detection of a change in distribution. The Annals of Statistics, pp.206-227, 1985.

M. Pollak, Average run lengths of an optimal method of detecting a change in distribution. The Annals of Statistics, pp.749-779, 1987.

M. Pollak and D. Siegmund, Approximations to the expected sample size of certain sequential tests. The Annals of Statistics, pp.1267-1282, 1975.

A. S. Polunchenko and A. G. Tartakovsky, State-of-the-Art in Sequential Change-Point Detection, Methodology and Computing in Applied Probability, vol.49, issue.3, pp.649-684, 2012.
DOI : 10.1007/s11009-011-9256-5

V. H. Poor and O. Hadjiliadis, Quickest Detection, 2009.
DOI : 10.1017/CBO9780511754678

I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon, Overlapping community detection using Bayesian non-negative matrix factorization, Physical Review E, vol.83, issue.6, 2011.
DOI : 10.1103/PhysRevE.83.066114

S. A. Raczy?ski, N. Ono, and S. Sagayama, Multipitch analysis with harmonic nonnegative matrix approximation, 8th International Conference on Music Information Retrieval (ISMIR), pp.381-386, 2007.

R. J. Radke, S. Andra, O. Kofahi, and B. Roysam, Image change detection algorithms: a systematic survey, IEEE Transactions on Image Processing, vol.14, issue.3, pp.294-307, 2005.
DOI : 10.1109/TIP.2004.838698

C. R. Rao, Information and the Accuracy Attainable in the Estimation of Statistical Parameters, Bulletin of the Calcutta Mathematical Society, vol.37, issue.3, pp.81-91, 1945.
DOI : 10.1007/978-1-4612-0919-5_16

A. Rényi, On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp.547-561, 1961.

Y. Ritov, Decision theoretic optimality of the Cusum procedure. The Annals of Statistics, pp.1464-1469, 1990.

S. W. Roberts, Control Chart Tests Based on Geometric Moving Averages, Technometrics, vol.37, issue.3, pp.239-250, 1959.
DOI : 10.1080/00401706.1959.10489860

S. W. Roberts, A Comparison of Some Control Chart Procedures, Technometrics, vol.5, issue.2, pp.411-430, 1966.
DOI : 10.2307/1266443

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, vol.28, 1970.
DOI : 10.1515/9781400873173

J. S. Rustagi, Variational Methods in Statistics, Mathematics in Science and Engineering, vol.121, 1976.

S. O. Sadjadi and J. H. Hansen, A scanning window scheme based on SVM training error rate for unsupervised audio segmentation, 18th European Signal Processing Conference (EUSIPCO), pp.1262-1266, 2010.

M. N. Schmidt and H. Laurberg, Nonnegative Matrix Factorization with Gaussian Process Priors, Computational Intelligence and Neuroscience, vol.137, issue.1, p.10, 2008.
DOI : 10.1155/2008/361705

URL : http://doi.org/10.1155/2008/361705

M. N. Schmidt, O. Winther, L. K. Hansen, T. Adali, C. Jutten et al., Bayesian Non-negative Matrix Factorization, Independent Component Analysis and Signal Separation: 8th International Conference Proceedings, pp.540-547, 2009.
DOI : 10.1109/TMI.2004.834626

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.363.6235

O. Schwander and F. Nielsen, Reranking with contextual dissimilarity measures from representational Bregman k-means, VISAPP 2010: Proceedings of the Fifth International Conference on Computer Vision Theory and Applications, pp.118-123, 2010.

O. Schwander and F. Nielsen, Non-flat clustering with alpha-divergences, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2100-2103, 2011.
DOI : 10.1109/ICASSP.2011.5946740

F. Sha and L. K. Saul, Real-time pitch determination of one or more voices by nonnegative matrix factorization, Advances in Neural Information Processing Systems (NIPS), pp.1233-1240, 2005.

F. Sha, Y. Lin, L. K. Saul, and D. D. Lee, Multiplicative Updates for Nonnegative Quadratic Programming, Neural Computation, vol.39, issue.8, pp.2004-2031, 2007.
DOI : 10.1080/10556780512331318182

M. Shashanka, B. Raj, and P. Smaragdis, Probabilistic Latent Variable Models as Nonnegative Factorizations, Computational Intelligence and Neuroscience, vol.59, issue.7, p.46, 2008.
DOI : 10.1038/381607a0

URL : http://doi.org/10.1155/2008/947438

W. A. Shewhart, The Application of Statistics as an Aid in Maintaining Quality of a Manufactured Product, Journal of the American Statistical Association, vol.20, issue.152, pp.546-548, 1925.
DOI : 10.1080/01621459.1925.10502930

W. A. Shewhart, Economic Control of Quality of Manufactured Product, 1931.

A. N. Shiryaev, On optimum methods in quickest detection problems. Theory of Probability and Its Applications, pp.22-46, 1963.

A. N. Shiryaev, Optimal Stopping Rules, Applications of Mathematics, vol.8, 1978.
DOI : 10.1007/978-3-642-04898-2_433

M. A. Siegler, U. Jain, B. Raj, and R. M. Stern, Automatic segmentation, classification , and clustering of broadcast news audio, DARPA Speech Recognition Workshop, pp.97-99, 1997.

D. Siegmund and E. S. Venkatraman, Using the generalized likelihood ratio statistic for sequential detection of a change-point. The Annals of Statistics, pp.255-271, 1995.

A. P. Singh and G. J. Gordon, A Unified View of Matrix Factorization Models, Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD Proceedings, Part II, pp.358-373, 2008.
DOI : 10.1007/978-3-540-87481-2_24

P. Smaragdis, Non-negative Matrix Factor Deconvolution; Extraction of Multiple Sound Sources from Monophonic Inputs, Independent Component Analysis and Blind Signal Separation: Fifth International Conference Proceedings, pp.494-499, 2004.
DOI : 10.1007/978-3-540-30110-3_63

P. Smaragdis and J. C. Brown, Non-negative matrix factorization for polyphonic music transcription, 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (IEEE Cat. No.03TH8684), pp.177-180, 2003.
DOI : 10.1109/ASPAA.2003.1285860

P. Smaragdis and B. Raj, Shift-invariant probabilistic latent component analysis, p.46, 2007.

P. Smaragdis, B. Raj, and M. Shashanka, Sparse and shift-invariant feature extraction from non-negative data, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.2069-2072, 2008.
DOI : 10.1109/ICASSP.2008.4518048

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.219.3967

H. Snoussi, The geometry of prior selection, Neurocomputing, vol.67, pp.214-244, 2005.
DOI : 10.1016/j.neucom.2004.11.038

C. Sonesson and D. Bock, A review and discussion of prospective statistical surveillance in public health, Journal of the Royal Statistical Society: Series A (Statistics in Society), vol.29, issue.1, pp.5-21, 2003.
DOI : 10.1002/(SICI)1097-0258(19991215)18:23<3283::AID-SIM316>3.0.CO;2-Z

B. K. Sriperumbudur and G. R. Lanckriet, A Proof of Convergence of the Concave-Convex Procedure Using Zangwill's Theory, Neural Computation, vol.22, issue.1, pp.1391-1407, 2012.
DOI : 10.1162/08997660360581958

Z. Szabó, B. Póczos, and A. L?rincz, Online group-structured dictionary learning, CVPR 2011, pp.2865-2872, 2011.
DOI : 10.1109/CVPR.2011.5995712

V. Y. Tan and C. Févotte, Automatic relevance determination in nonnegative matrix factorization, Workshop on Signal Processing with Adaptative Sparse Structured Representations (SPARS), 2009.
URL : https://hal.archives-ouvertes.fr/inria-00369376

T. Tanaka, Information Geometry of Mean-Field Approximation, Neural Computation, vol.1, issue.8, pp.1951-1968, 2000.
DOI : 10.1088/0305-4470/23/11/037

A. G. Tartakovsky, B. L. Rozovskii, R. B. Bl?azekbl?azek, and H. Kim, A novel approach to detection of intrusions in computer networks via adaptive sequential and batch-sequential change-point detection methods, IEEE Transactions on Signal Processing, vol.54, issue.9, pp.3372-3382, 2006.
DOI : 10.1109/TSP.2006.879308

S. E. Tranter and D. A. Reynolds, An overview of automatic speaker diarization systems, IEEE Transactions on Audio, Speech and Language Processing, vol.14, issue.5, pp.1557-1565, 2006.
DOI : 10.1109/TASL.2006.878256

A. Tritschler and R. A. Gopinath, Improved speaker segmentation and segments clustering using the Bayesian information criterion, 6th European Conference on Speech Communication and Technology (EUROSPEECH), pp.679-682, 1999.

C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, Journal of Statistical Physics, vol.8, issue.1-2, pp.479-487, 1988.
DOI : 10.1007/BF01016429

R. Turner, Y. Saatci, and C. E. Rasmussen, Adaptive sequential Bayesian change point detection, NIPS Workshop on Temporal Segmentation, pp.41-96, 2009.

G. Tzanetakis and P. R. Cook, Multifeature audio segmentation for browsing and annotation, Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452), pp.103-106, 1999.
DOI : 10.1109/ASPAA.1999.810860

N. Vaswani, Additive Change Detection in Nonlinear Systems With Unknown Change Parameters, IEEE Transactions on Signal Processing, vol.55, issue.3, pp.859-872, 2007.
DOI : 10.1109/TSP.2006.887111

B. C. Vemuri, M. Liu, S. Amari, and F. Nielsen, Total Bregman Divergence and Its Applications to DTI Analysis, IEEE Transactions on Medical Imaging, vol.30, issue.2, pp.475-483, 2011.
DOI : 10.1109/TMI.2010.2086464

J. Vert and K. Bleakley, Fast detection of multiple change-points shared by many signals using group LARS, Advances in Neural Information Processing Systems (NIPS), pp.2343-2351, 2010.

E. Vincent, N. Bertin, and R. Badeau, Adaptive Harmonic Spectral Decomposition for Multiple Pitch Estimation, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.3, pp.528-537, 2010.
DOI : 10.1109/TASL.2009.2034186

URL : https://hal.archives-ouvertes.fr/inria-00544094

T. Virtanen and A. T. , Mixtures of Gamma Priors for Non-negative Matrix Factorization Based Speech Separation, Independent Component Analysis and Signal Separation: 8th International Conference Proceedings, volume 5441 of Lecture Notes in Computer Science, pp.646-653, 2009.
DOI : 10.1007/978-3-642-00599-2_81

T. Virtanen and A. Klapuri, Analysis of polyphonic audio using source-filter model and non-negative matrix factorization, NIPS Workshop on Advances in Models for Acoustic Processing, 2006.

T. Virtanen, A. T. Cemgil, and S. Godsill, Bayesian extensions to non-negative matrix factorisation for audio signal modelling, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.1825-1828, 2008.
DOI : 10.1109/ICASSP.2008.4517987

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.401.4325

P. W. Vos, Geometry of f-divergence, Annals of the Institute of Statistical Mathematics, vol.41, issue.3, pp.515-537, 1991.
DOI : 10.1007/BF00053370

M. J. Wainwright and M. I. Jordan, Graphical Models, Exponential Families, and Variational Inference?2) of Foundation and Trends in Machine Learning, 2008.

G. B. Wetherill and D. W. Brown, Statistical Process Control: Theory and Practice, 1991.

A. S. Willsky, A survey of design methods for failure detection in dynamic systems, Automatica, vol.12, issue.6, pp.601-611, 1976.
DOI : 10.1016/0005-1098(76)90041-8

L. Wu, S. C. Hoi, R. Jin, J. Zhu, and N. Yu, Learning Bregman Distance Functions for Semi-Supervised Clustering, IEEE Transactions on Knowledge and Data Engineering, vol.24, issue.3, pp.478-491, 2012.
DOI : 10.1109/TKDE.2010.215

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.421.1444

S. Yang and M. Ye, Multistability of <mml:math altimg="si48.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>??</mml:mi></mml:math>-divergence based NMF algorithms, Computers & Mathematics with Applications, vol.64, issue.2, pp.73-88, 2012.
DOI : 10.1016/j.camwa.2012.01.010

C. Yeh, A. Röbel, and X. Rodet, Multiple fundamental frequency estimation and polyphony inference of polyphonic music signals, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.6, pp.1116-1126, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01106539

A. L. Yuille and A. Rangarajan, The Concave-Convex Procedure, Neural Computation, vol.39, issue.4, pp.915-936, 2003.
DOI : 10.1162/08997660260028674

J. Zhang, Divergence Function, Duality, and Convex Analysis, Neural Computation, vol.37, issue.1, pp.159-195, 2004.
DOI : 10.1007/BF02309013

M. Zhong and M. Girolami, Reversible jump MCMC for non-negative matrix factorization, 12th International Conference on Artificial Intelligence and Statistics (AISTATS) Conference Proceedings, pp.663-670, 2009.