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Résumeé

Cette these propose des méthodes computationnelles nouvelles en géométrie de I'in-
formation, avec des applications temps réel au traitement du signal audio. Dans
ce contexte, nous traitons en parallele les problemes applicatifs de la segmentation
audio en temps réel, et de la transcription de musique polyphonique en temps réel.
Nous abordons ces applications par le développement respectif de cadres théoriques
pour la détection séquentielle de ruptures dans les familles exponentielles, et pour
la factorisation en matrices non négatives avec des divergences convexes-concaves.
D’une part, la détection séquentielle de ruptures est étudiée par 'intermédiaire de
la géométrie de I'information dualement plate liée aux familles exponentielles. Nous
développons notamment un cadre statistique générique et unificateur, reposant sur
des tests d’hypothéses multiples a 1'aide de rapports de vraisemblance généralisés
exacts. Nous appliquons ce cadre a la conception d'un systeme modulaire pour la
segmentation audio temps réel avec des types de signaux et de criteres d’homogé-
néité arbitraires. Le systeme proposé contrdle le flux d’information audio au fur et
a mesure qu’il se déroule dans le temps pour détecter des changements. D’autre
part, nous étudions la factorisation en matrices non négatives avec des divergences
convexes-concaves sur l’espace des mesures discretes positives. En particulier, nous
formulons un cadre d’optimisation générique et unificateur pour la factorisation en
matrices non négatives, utilisant des bornes variationnelles par le biais de fonctions
auxiliaires. Nous mettons ce cadre a profit en concevant un systéme temps réel
de transcription de musique polyphonique avec un controle explicite du compromis
fréquentiel pendant I'analyse. Le systeme développé décompose le signal musical ar-
rivant au cours du temps sur un dictionnaire de modeles spectraux de notes. Ces
contributions apportent des pistes de réflexion et des perspectives de recherche in-
téressantes dans le domaine du traitement du signal audio, et plus généralement de
I’apprentissage automatique et du traitement du signal, dans le champ relativement
jeune mais néanmoins fécond de la géométrie de I'information computationnelle.

Mots-clés : méthodes computationnelles, géométrie de I'information, applications
temps réel, traitement du signal audio, détection de ruptures, familles exponentielles,
factorisation en matrices non négatives, divergences convexes-concaves, segmenta-
tion audio, transcription de musique polyphonique.
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Abstract

This thesis proposes novel computational methods of information geometry with
real-time applications in audio signal processing. In this context, we address in
parallel the applicative problems of real-time audio segmentation, and of real-time
polyphonic music transcription. This is achieved by developing theoretical frame-
works respectively for sequential change detection with exponential families, and
for non-negative matrix factorization with convex-concave divergences. On the one
hand, sequential change detection is studied in the light of the dually flat informa-
tion geometry of exponential families. We notably develop a generic and unifying
statistical framework relying on multiple hypothesis testing with decision rules based
on exact generalized likelihood ratios. This is applied to devise a modular system
for real-time audio segmentation with arbitrary types of signals and of homogeneity
criteria. The proposed system controls the information rate of the audio stream
as it unfolds in time to detect changes. On the other hand, non-negative matrix
factorization is investigated by the way of convex-concave divergences on the space
of discrete positive measures. In particular, we formulate a generic and unifying
optimization framework for non-negative matrix factorization based on variational
bounding with auxiliary functions. This is employed to design a real-time system
for polyphonic music transcription with an explicit control on the frequency com-
promise during the analysis. The developed system decomposes the music signal as
it arrives in time onto a dictionary of note spectral templates. These contributions
provide interesting insights and directions for future research in the realm of audio
signal processing, and more generally of machine learning and signal processing,
in the relatively young but nonetheless prolific field of computational information
geometry.

Keywords: computational methods, information geometry, real-time applications,
audio signal processing, change detection, exponential families, non-negative matrix
factorization, convex-concave divergences, audio segmentation, polyphonic music
transcription.
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There is geometry in the humming
of the strings, there is music in the
spacing of the spheres.

Pythagoras

Introduction

This thesis aims at providing novel computational methods within the statistical
framework of information geometry. We notably develop schemes for sequential
change detection with exponential families and for non-negative matrix factoriza-
tion with convex-concave divergences. Our primary motivations come from the
context of audio signal processing where we apply these schemes to devise systems
for real-time audio segmentation and for real-time polyphonic music transcription.
The proposed methods, however, also fit naturally in the more general contexts of
machine learning and signal processing. In the sequel, we frame the context of this
thesis by introducing some background on information geometry from both theoret-
ical and computational perspectives. We also position the outcomes of the thesis
in this context. We notably outline the directions and main contributions of the
present work, and describe the related publications and communications that arose
out of this work.

Context of the thesis

To begin with, we introduce some background on information geometry. We first
discuss the historical context of information geometry to frame this relatively recent
mathematical theory. We then discuss more recent developments of the field of
information geometry towards computational perspectives.

From information geometry theory

In general terms, information geometry is a field of mathematics that studies the
theory of statistics, by using concepts of differential geometry such as smooth man-
ifolds, and of information theory such as statistical divergences. Historically, infor-
mation geometry emerged from the idea that many parametric statistical models
of probability distributions possess a natural and intrinsic geometrical structure of
differential manifold. Studying statistical inference in such structures ensures that
the results of inference are invariant under the arbitrary choice of a parametrization
for the family. Moreover, several statistical constructs can be interpreted in relation
to geometrical concepts, which often provides interesting insights.

The founding work in information geometry is attributed to Rao [1945] who em-
phasized the importance to consider statistical inference from an intrinsic viewpoint,
and notably proposed a structure of Riemannian manifold for certain parametric
families with a metric defined by the Fisher information matrix. Efron [1975] first
clarified the relations between the statistical notion of efficiency in asymptotic theory
of estimation, and the geometrical concept of curvature for one-parameter statistical
models. This was further pursued by Eguchi [1983] who introduced the notion of
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Introduction

divergence, or contrast function, on statistical manifolds and discussed its relations
with the efficiency of certain estimators for curved exponential families.

In the meantime, Chentsov [1982] provided a formal mathematical framework for
information geometry using the language of category theory, in which he introduced
the family of affine a-connections, discussed the duality of these affine connections
with respect to the Fisher information metric, and proved the uniqueness of this
metric and of these connections for statistical manifolds on finite sample spaces,
when requiring invariance under Markov morphisms.! Independently, Amari [1982]
studied the a-connections and a-divergences in link with asymptotic theory of esti-
mation, and Nagaoka and Amari [1982] elucidated the duality of the a-connections
and of the a-divergences by proposing a general theory of dually flat spaces.

Since then, several research directions have been investigated to extend these ge-
ometrical structures. For example, Eguchi [1985, 1992] developed the information
geometry of divergences, by showing that any divergence on a statistical manifold
induces a canonical torsion-free dualistic structure in terms of a Riemannian metric
and of a pair of dual symmetric affine connections. Conversely, it was also shown by
Matumoto [1993] that any torsion-free dualistic structure on a statistical manifold
can be induced by a statistical divergence. Certain divergences have received a lot
of attention in this context, notably Csiszar divergences whose geometry was thor-
oughly studied by Vos [1991]. Bregman divergences also revealed deep interests, in
connection with exponential families of distributions and with dually flat structures,
as put in perspective by Amari and Cichocki [2010]. Other divergences were also
introduced by Zhang [2004] who elucidated a more general framework of duality.

Complementary directions were investigated by Barndorff-Nielsen [1986, 1987],
Barndorff-Nielsen and Jupp [1997], who considered other Riemannian metrics than
the expected Fisher information metric, by introducing the observed Fisher infor-
mation metric, and by developing a general theory of yokes on statistical manifolds.
Alternatives were also studied, such as the preferred point geometry of Critchley
et al. [1993]. On a different perspective, Pistone and Sempi [1995], Gibilisco and
Pistone [1998], Cena and Pistone [2007], extended the parametric finite-dimensional
information geometry modeled on Euclidean spaces, by considering non-parametric
infinite-dimensional statistical families modeled on Orlicz spaces.

Today many theoretical and applicative research works enlightened the relevance
of studying statistics and its applications in various domains by the way of infor-
mation geometry. This stimulated the creation of a large community with various
interests in fields such as mathematics, physics, machine learning, signal processing,
engineering science, which led to the maturity of information geometry and to its
modern formulation in the seminal book of Amari and Nagaoka [2000]. For a good
starting point, the early books of Amari [1985] and Amari et al. [1987] provide a
solid theoretical basis and historical insights into the development of the field. For

complementary treatments, we also refer to the books of Murray and Rice [1993],
Kass and Vos [1997] and Arwini and Dodson [2008].

'With this respect, the study of information geometry differs from Klein’s Erlangen program and
related approaches to geometry, by replacing group transformations, or actions, with statistical
transformations, or reductions, though the notion of symmetry, or invariance, remains central.
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Context of the thesis

To computational information geometry

The research field of computational information geometry gathers a broad commu-
nity around the development and application of computational methods that rely on
theoretical constructs from information geometry. This community notably inter-
sects the communities of machine learning and of signal processing. In particular,
many techniques from machine learning and signal processing rely on the use of
statistical models or distance functions to analyze and process the data. It is there-
fore a natural approach to elaborate computational methods based on information
geometry, from the perspective of statistical manifolds or information metrics and
divergences, and from the interplay between these notions.

Several authors have undertaken this approach with various purposes, such as
studying theoretical aspects of Boltzmann machines [Amari et al. 1992], neural
networks [Amari 1995], natural gradient learning [Amari 1998], robust estimation
through minimization of divergences [Basu et al. 1998, Eguchi and Kano 2001],
mean-field approximation [Tanaka 2000], hierarchies of probability distributions
[Amari 2001], turbo codes [Ikeda et al. 2004], diffusion kernels [Lafferty and Lebanon
2005], prior selection [Snoussi 2005]. The information-geometric approach has also
proved beneficial in a variety of applications such as data clustering and mining
with a-divergences [Hero et al. 2002, Schwander and Nielsen 2011], data embedding
and dimensionality reduction with the Fisher information [Carter et al. 2009, 2011},
shape analysis with information metrics [Peter and Rangarajan 2006, 2009], blind
source separation with independent component analysis in the space of estimating
functions [Amari and Cardoso 1997, Amari 1999], or with robust estimation based
on minimization of divergences [Mihoko and Eguchi 2002, Eguchi 2009].

In this context, certain divergences have been employed extensively. This is in
particular the case of Bregman divergences and of their extensions, because of their
links with convex optimization through convex duality, and with statistical exponen-
tial families through dually flat spaces. These divergences have notably been used to
develop novel computational methods, often generalizing standard algorithms and
schemes to a vast family of distance measures or related statistical models. Famous
examples include the generalization of principal component analysis to exponential
families based on the minimization of Bregman divergences [Collins et al. 2002],
the extension of hard and soft clustering with consideration of k-means and ex-
pectation-maximization within a unifying framework for exponential families and
Bregman divergences [Banerjee et al. 2005], and the extension of least squares and
normality assumptions in regression to generalized linear models with exponential
families [Wainwright and Jordan 2008].

These divergences have also been employed in a variety of techniques such as boost-
ing methods [Murata et al. 2004] and their relations to weighted clustering [Nock
and Nielsen 2006, clustering with approximation guarantees [Nock et al. 2008], sur-
rogates for learning [Nock and Nielsen 2009], matrix factorizations [Dhillon and Sra
2006, Dhillon and Tropp 2008], low-rank kernel learning [Kulis et al. 2009], mixture
learning [Fujimoto and Murata 2007], simplification and hierarchical representations
of mixtures of exponential families [Garcia and Nielsen 2010], contextual re-ranking
[Schwander and Nielsen 2010], shape retrieval [Liu et al. 2010, 2012], distance learn-
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Introduction

ing for semi-supervised clustering [Wu et al. 2012].

They have also proved relevant for the generalization of several standard computa-
tional geometry algorithms that were originally designed for the Euclidean distance,
including nearest neighbor search [Cayton 2008, Nielsen et al. 2009a,b], range search
[Cayton 2009], centroid computation [Nielsen and Nock 2009b, Nielsen and Boltz
2011, Vemuri et al. 2011], smallest enclosing balls [Nock and Nielsen 2005, Nielsen
and Nock 2005, 2008, 2009a], Voronoi diagrams [Nielsen et al. 2007, Boissonnat et al.
2010, Nielsen and Nock 2011].

More generally, Bregman divergences, and other information divergences including
Csiszar divergences, have revealed of key importance in statistical approaches to
machine learning and signal processing. This had already been put in perspective in
the early paper of Basseville [1989]. The literature on these issues has considerably
expanded in the recent years and an up-to-date and thorough review is presented
by Basseville [2013].

Outcomes of the thesis

Hereafter, we outline the directions of this thesis and summarize our main contri-
butions in the realm of computational information geometry and signal processing.
We also describe the publications and communications that arose out of this work.

Outline and main contributions

In the present work, we propose two independent algorithmic schemes that fall within
the framework of computational information geometry. Although these methods
naturally fit within the general domains of machine learning and signal processing,
our initial motivations actually arise from two problems in audio signal processing,
that of audio segmentation and that of polyphonic music transcription. Furthermore,
we are deeply concerned with online machine listening, and we seek to design real-
time systems to solve the two mentioned problems.

In this context, we address the problem of real-time audio segmentation by intro-
ducing novel computational methods for sequential change detection with exponen-
tial families. Concerning real-time polyphonic music transcription, we develop novel
schemes for non-negative matrix factorization with convex-concave divergences. As
discussed above, the two proposed algorithmic schemes are nonetheless of indepen-
dent interest and directly applicable in other areas of statistical machine learning
and signal processing. Therefore, the main body of this manuscript is organized
into two parts, reporting respectively the theoretical contributions of the compu-
tational methods developed on the one hand, and the applicative contributions of
these methods to audio signal processing on the other hand. The outline of the
thesis is shown in Figure 1 and can be discussed as follows.

In Chapter 1, we introduce the theoretical preliminaries on information geometry
that are necessary to the developments of Chapter 2 and of Chapter 3. The chapter
is further divided into two parallel sections corresponding to the mathematical con-
structs required respectively for the two subsequent and independent chapters. We
first present important results on exponential families of probability distributions
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I. Computational Methods of Information Geometry

1. Preliminaries on
Information Geometry

Y Y
2. Sequential Change Detection 3. Non-Negative Matrix Factorization
with Exponential Families with Convex-Concave Divergences

m— - ——= Y - ————f—————fl—-——m === = Y- ———— 1
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: 4. Real-Time Audio 5. Real-Time Polyphonic :
| Segmentation Music Transcription |
: |

Figure 1.: Outline of the thesis. The thesis is organized into two main parts, that
report in parallel the two developed computational methods of informa-
tion geometry on the one hand, and their respective use for real-time
applications in audio signal processing on the other hand.

in relation to convex duality and dually flat information geometry. These results
are employed in Chapter 2 to develop computational methods for sequential change
detection with exponential families. We then focus on introducing relevant no-
tions about separable information divergences on the space of discrete positive mea-
sures, including Csiszar divergences, Bregman divergences and their generalizations
through Jeffreys-Bregman and Jensen-Bregman divergences, as well as a-divergences
or f-divergences and their generalization through skew («, 3, \)-divergences. This is
employed in Chapter 3 to elaborate computational methods for non-negative matrix
factorization with convex-concave divergences.

In Chapter 2, we elaborate on the novel computational methods for sequential
change detection with exponential families. To the best of our knowledge, it is the
first time that the celebrated problem of change detection is investigated in the
light of information geometry. We follow a standard approach where change detec-
tion is considered as a statistical decision problem with multiple hypotheses and is
solved using generalized likelihood ratio test statistics. A major drawback of pre-
vious work in this context is to consider only known parameters before change, or
to approximate the exact statistics when these parameters are actually unknown.
This is addressed by introducing exact generalized likelihood ratios with arbitrary
estimators, and by expanding them for exponential families. By showing tight links
between the computation of these statistics and of maximum likelihood estimates,
we derive a generic scheme for change detection with exponential families under
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common scenarios with known or unknown parameters and arbitrary estimators.
We also interpret this scheme within the dually flat information geometry of expo-
nential families, hence providing both statistical and geometrical intuitions to the
problem, and bridging the gap between statistical and distance-based approaches to
change detection. The scheme is finally revisited through convex duality, leading
to an attractive scheme with closed-form sequential updates for the exact general-
ized likelihood ratio statistics, when both the parameters before and after change
are unknown and are estimated by maximum likelihood. This scheme is applied in
Chapter 4 to devise a general and unifying system for real-time audio segmentation.

In Chapter 3, we elaborate on the novel computational methods developed for
non-negative matrix factorization with convex-concave divergences. We notably for-
mulate a generic and unifying framework for non-negative matrix factorization with
convex-concave divergences. This framework encompasses many common informa-
tion divergences, such as Csiszar divergences, certain Bregman divergences, and in
particular all a-divergences and (-divergences. A general optimization scheme is
developed based on variational bounding with surrogate auxiliary functions for al-
most arbitrary convex-concave divergences. Monotonically decreasing updates are
then obtained by minimizing the auxiliary function. The proposed framework also
permits to consider symmetrized and skew divergences for the cost function. In
particular, the generic updates are specialized to provide updates for Csiszar di-
vergences, certain skew Jeffreys-Bregman divergences, and skew Jensen-Bregman
divergences. This leads to several known multiplicative updates as well as novel
multiplicative updates for a-divergences, g-divergences, and their symmetrized or
skew versions. These results are also generalized by considering the family of skew
(o, B, A)-divergences. This is applied in Chapter 5 to design a real-time system for
polyphonic music transcription.

In Chapter 4, we investigate the problem of audio segmentation. We notably de-
vise a generic and unifying framework for real-time audio segmentation, based on
the methods for sequential change detection with exponential families developed in
Chapter 2. A major drawback of previous works in the context of audio segmen-
tation, is that they consider specific signals and homogeneity criteria, or assume
normality of the data distribution. Other issues arise from the potential computa-
tional complexity and non-causality of the schemes. The proposed system explicitly
addresses these issues by controlling the information rate of the audio stream to
detect changes in real time. The framework also bridges the gap between statistical
and distance-based approaches to segmentation through the dually flat geometry
of exponential families. We notably clarify the relations between various standard
approaches to audio segmentation, and show how they can be unified and general-
ized in the proposed framework. Various applications are showcased to illustrate the
generality of the framework, and a quantitative evaluation is performed for musical
onset detection to demonstrate how the proposed approach can leverage modeling
in complex problems.

In Chapter 5, we investigate the problem of polyphonic music transcription. We
notably elaborate a real-time system for polyphonic music transcription by employ-
ing the computational methods for non-negative matrix factorization with convex-
concave divergences developed in Chapter 3. We consider a supervised setup based
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on non-negative decomposition, where the music signal arrives in real time to the
system and is projected onto a dictionary of note spectral templates that are learned
offline prior to the decomposition. An important drawback of existing approaches
in this context is the lack of controls on the decomposition. This is addressed by
using the parametric family of («a, §)-divergences, and by explicitly interpreting their
relevancy as a way to control the frequency compromise in the decomposition. The
proposed system is evaluated through a methodological series of experiments, and
is shown to outperform two state-of-the-art offline systems while maintaining low
computational costs that are suitable to real-time constraints.

We conclude the manuscript with a general discussion and draw perspectives for
future work. It is our hope that the presented contributions will bring interesting
insights and directions for future research in the realm of audio signal processing,
and more generally of machine learning and signal processing, in the relatively young
but nonetheless prolific field of computational information geometry.

Related publications and communications

The present thesis has led to several publications and communications. This includes
one book chapter, one journal article, three conference articles, two conference ab-
stracts, one conference tutorial, and seven invited talks. These publications and
communications are detailed below.

The work on sequential change detection with exponential families and its appli-
cations to real-time audio segmentation was first presented as an article with oral
presentation at a national peer-reviewed conference:

A. Dessein and A. Cont. Segmentation statistique de flux audio en temps-
réel dans le cadre de la géométrie de I'information. In 23e Colloque du

Groupe de Recherche et d’Etudes du Traitement du Signal (GRETSI),
Bordeaux, France, September 2011a. [Dessein and Cont 2011a].

In this early version, we considered change detection in exponential families as a
purely geometrical problem where the observations fall into Bregman balls onto the
underlying statistical manifold, and are segmented according to the ball radii. This
was applied to audio change detection based on spectral distributions for segmen-
tation of polyphonic music into note slices. The ideas developed in this paper then
matured as formulated in the thesis, that is, as an information-geometric problem
where the statistical tests based on generalized likelihood ratio statistics are shown
to be intrinsically linked with maximum likelihood estimation and with the canon-
ical Kullback-Leibler divergences between the estimated distributions, or Bregman
divergences on their parameters, in the different change hypotheses. This leveraged
other audio applications where the previous approach failed, such as silence and
activity segmentation based on energy features, as well as segmentation into speech
and music, or into different speakers, based on timbral characteristics. Parts of this
work have been accepted as an article in an international peer-reviewed journal:

A. Dessein and A. Cont. An information-geometric approach to real-
time audio segmentation. IEEE Signal Processing Letters, 20(4):331-334,
April 2013a. [Dessein and Cont 2013a].
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A complementary paper has also been accepted as an article with oral presentation
in an international peer-reviewed conference with edited book proceedings:

A. Dessein and A. Cont. Online change detection in exponential fam-
ilies with unknown parameters before and after change. In F. Nielsen
and F. Barbaresco, editors, Geometric Science of Information: First In-
ternational Conference, GSI 2013, Paris, France, August 28-30, 2013,
Proceedings, volume 8085 of Lecture Notes in Computer Science, pages
633-640. Springer, Berlin/Heidelberg, Germany, 2013b. [Dessein and
Cont 2013b].

While the former article mostly focuses on audio processing applications with just
the necessary theory to develop a real-time scheme for audio segmentation, the latter
is rather targeted to the community of information geometry, and introduces more
theoretical aspects as well as other applications to two well-known time series of the
literature in geophysics and finance.

Concerning non-negative matrix factorization with convex-concave divergences
and its applications to real-time polyphonic music transcription, our contributions
were first presented as an article with poster presentation at an international peer-
reviewed conference:

A. Dessein, A. Cont, and G. Lemaitre. Real-time polyphonic music tran-
scription with non-negative matrix factorization and beta-divergence. In
11th International Society for Music Information Retrieval Conference
(ISMIR), pages 489-494, Utrecht, Netherlands, August 2010a. [Dessein
et al. 2010a).

In this preliminary work, we employed the (-divergences with no discussion about
convergence guarantees. We also presented this work as an extended abstract with
code submission at an evaluation campaign in the reference international competi-
tion for tasks in music information retrieval:

A. Dessein, A. Cont, and G. Lemaitre. Real-time polyphonic music tran-
scription with non-negative matrix factorization and beta-divergence. In
6th Music Information Retrieval Evaluation eXchange (MIREX), Ut-
recht, Netherlands, August 2010b. [Dessein et al. 2010b].

During this contest, our system achieved results comparable to the state-of-the-art
by finishing second out of six systems for the task of note transcription in polyphonic
music, while actually being the only real-time system in competition. The system
later evolved to include convergence guarantees for critical safety, in particular to
ensure the monotonic decrease of the cost function along the iterations. This ex-
tension has been accepted as a peer-reviewed book chapter in a collective work by
world-leading researchers on matrix information geometry:

A. Dessein, A. Cont, and G. Lemaitre. Real-time detection of overlapping
sound events with non-negative matrix factorization. In F. Nielsen and
R. Bhatia, editors, Matrixz Information Geometry, chapter 14, pages 341—
371. Springer, Berlin/Heidelberg, Germany, 2013. [Dessein et al. 2013].
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In this work, we also explored alternatives to the [-divergences by using a con-
vex Euclidean cost function with sparsity penalty via non-negative sparse coding
and ¢;-norm regularization. In addition, we considered other tasks of sound detec-
tion with overlapping sources, namely drum transcription and environmental sound
recognition. These parallel developments are however not described in the thesis for
the sake of conciseness.

During the three years of the thesis, we also investigated several other applica-
tions in audio signal processing and music information retrieval using computational
methods of information geometry. In particular, we employed existing algorithms
for parameter estimation in mixture models based on exponential families, as well
as clustering and proximity search with Bregman divergences, for sample applica-
tions in audio quantization, indexing, structuring and querying. These applications
were however not developed as thoroughly as that of audio segmentation and poly-
phonic music transcription, and are at present more at a proof-of-concept level. We
therefore chose not to discuss them in this thesis and to focus instead on the more ac-
complished work, with both theoretical and practical contributions, that is described
above. Nonetheless, our researches on information geometry for audio signal pro-
cessing have been presented in their general framework at several scientific venues.
We notably presented a tutorial at an international peer-reviewed conference:

A. Dessein and A. Cont. Applications of information geometry to audio
signal processing. In 14th International Conference on Digital Audio
Effects (DAFzx), Paris, France, September 2011b. [Dessein and Cont
2011b].

We also had an abstract with poster presentation at a non-peer-reviewed national
conference for doctoral students:

A. Dessein. La géométrie de I'information pour 'analyse et le traitement
des flux audio. In Ses Journées Jeunes Chercheurs en Audition, Acous-
tique musicale et Signal audio (JJCAAS), Marseille, France, November
2009b. [Dessein 2009b).

Last but not least, we presented our researches orally in various invited talks:

A. Dessein. Introduction to the tools of information geometry for the
manipulation of audio streams. In Séminaire Mathématiques, Musique
et relations avec d’autres disciplines (MaMuX), Institut de Recherche et
Coordination Acoustique/Musique, Paris, France, October 2009a. [Des-
sein 2009a].

A. Dessein. Some applications of non-negative matrix factorization and
of information geometry in audio signal processing. In Research Seminar,
RIKEN Brain Science Institute, Tokyo, Japan, October 2010a. [Dessein
2010a).

A. Dessein. Information geometry for real-time processing of audio sig-
nals. In Research Seminar, Japanese-French Laboratory for Informatics,
Tokyo, Japan, November 2010b. [Dessein 2010b].
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A. Cont and A. Dessein. Applications de la géométrie de 'information
au traitement des flux audio temps réel. In Se Biennale Francaise des
Mathématiques Appliquées, Congrés de la Société de Mathématiques Ap-
pliquées et Industrielles (SMAI), Guidel, France, May 2011. [Cont and
Dessein 2011].

A. Dessein. Music information geometry. In Journée interdisciplinaire
Mathématiques et Musique (JMM), Institut de Recherche Mathématique
Avancée, Strasbourg, France, April 2011. [Dessein 2011].

A. Dessein and A. Cont. Applications of information geometry to au-
dio signal processing. In Indo-French Workshop on Matriz Information
Geometry (MIG), pages 16-17, Ecole Polytechnique, Palaiseau, France,
February 2011c. [Dessein and Cont 2011c].
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1. Preliminaries on Information
Geometry

This chapter presents the theoretical preliminaries on information geometry that are
required for the elaboration of the computational methods proposed in the present
work. We first introduce some prerequisites on exponential families of probability
distributions, in relation to convex duality and dually flat information geometry.
These notions are used in Chapter 2 to develop computational methods for sequential
change detection with exponential families. We then focus on defining notions about
separable information divergences on the space of discrete positive measures. This is
employed in Chapter 3 to elaborate computational methods for non-negative matrix
factorization with convex-concave divergences.

1.1. Exponential families of probability distributions

In this section, we introduce preliminaries on exponential families of probability
distributions. We first define basic notions on standard and general exponential
families. We then present first properties of these families, including reduction of
general families to minimal standard families. We also discuss some results from
convex duality for minimal steep standard families, and for maximum likelihood
estimation when the family is also full. We finally interpret these notions within the
framework of dually flat information geometry.

1.1.1. Basic notions

Exponential families are general parametric families of probability distributions that
were introduced by Fisher [1934], Darmois [1935], Koopman [1936], Pitman [1936].
These families encompass a large class of statistical models that are commonly used
in the realm of statistics and its applications, including the Bernoulli, Dirichlet,
Gaussian, Laplace, Pareto, Poisson, Rayleigh, Von Mises-Fisher, Weibull, Wishart,
log-normal, exponential, beta, gamma, geometric, binomial, negative binomial, cat-
egorical, multinomial models, among others.! Moreover, the class of exponential
families is stable under various statistical constructs such as truncated and censored
models, marginals, conditionals through linear projections, joint distributions of in-
dependent variables and in particular i.i.d. samples, among others. In this context,

ITo be precise, some of these models actually need a restriction of their original parameter space
to be considered as exponential families. We also notice that some statistical models are not
exponential families, such as the uniform distributions because they do not share the same
support, or the Cauchy distributions because they do not have finite moments.
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employing exponential families not only permits the unification and generalization
of the problems considered, but also often contributes to a deeper understanding of
the problem structures. The theory of exponential families has become wide and
we only expose here the main notions and results needed in the present work. For
more theoretical background, we redirect to the early article of Chentsov [1966], and
to the dedicated books of Barndorff-Nielsen [1978] and Brown [1986] which contain
proofs of the results stated here. Complementary information is provided in the
more general books of Lehmann and Casella [1998], Lehmann and Romano [2005].
Before defining general exponential families, we first introduce the useful notion of
standard exponential family.

Definition 1.1. A standard exponential family is a parametric statistical model
{Ps}gco on the Borel subsets of R™, which is dominated by a o-finite measure p,
and whose respective probability densities pg with respect to p can be expressed for
any @ € © C R™ as follows:

po(x) = M) Lexp(0'x) for all x € R™ | (1.1)

where A\: © — R?. The parameter 0 is then called canonical parameter or natural
parameter, X is called canonical observation or sufficient observation, and \ is called
partition function or normalizer.

Remark 1.1. We assume implicitly that the parameter space © is non-empty.

Remark 1.2. The normalizer A ensures that all probability densities pg normalize to
one, and thus verifies the following relation:

AO) = /m exp(0'x) p(dx) . (1.2)

We see from the latter remark that the parameter space © is not necessarily
maximal, in the sense that the above integral may be finite for other values of 8. As
a result, the normalizer )\ can be extended to determine probability densities pg for
these values of @ € R™ \ ©. This leads naturally to the following definitions.

Definition 1.2. The natural parameter space N is the set defined as follows:

N = {0 € R™: /m exp(0'x) p(dx) < +oo} : (1.3)

Remark 1.3. The above integral is always positive since p cannot be null. The
normalizer can therefore define probability densities for any § € N.

Remark 1.4. By construction, © is a subset of A/, and A is the maximal parameter
space onto which the family can be extended in the sense discussed above. Neverthe-
less, it may happen that the added parameters 8 € N\ © determine distributions pg
that already are in the original family when the parametrization is not one-to-one.

Definition 1.3. A standard exponential family is full if © = N

Other important classes of standard exponential families can be defined depending
on the properties of the natural parameter space.
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Definition 1.4. A standard exponential family is reqular if N' = int N

Definition 1.5. A standard exponential family is minimal if dim N = dim K = k,
where /C is the convex support of the dominating measure pu.

Remark 1.5. Minimality thus avoids dimensional degeneracy of both A and K, by
requiring that the parameters do not lie in a proper affine subspace of R™, and that
the dominating measure is not concentrated on a proper affine subspace of R™.

We now introduce a function which reveals crucial to the study of minimal expo-
nential families.

Definition 1.6. The log-partition function or log-normalizer 1 is the logarithm of
the normalizer A:

¥(0) =log\(@) forall@ €O . (1.4)

Remark 1.6. The respective probability densities pg with respect to p can therefore
also be expressed as follows:

pe(x) = exp(@Tx —1(0)) . (1.5)

In the sequel, we often consider the normalizer A and log-normalizer i) extended
to N or R™. It is clear that A and v take respectively finite positive and finite values
not only on © but also on N, and they equal +0o on R™ \ N'. We finally move on
to more general exponential families. Considering standard families is not always
convenient from a practical viewpoint. Indeed, many useful statistical models are
not directly standard families, but their theoretical study can often be reduced to
that of standard families after suitable transformations.

Definition 1.7. An exponential family is a parametric statistical model { P¢}¢e= on
a measurable space (X, .A), which is dominated by a o-finite measure p, and whose
respective probability densities pe with respect to p1 can be expressed for any § € =
as follows:

pe(x) = C(&)h(x) exp(R(£) ' T(x)) forallx € X | (1.6)

where C: = = R%, R: £ — R™, h: X — R, is Borel measurable, and T: X — R™
is Borel measurable.

Remark 1.7. We again assume implicitly that = is non-empty.
Remark 1.8. A standard exponential family is obviously an exponential family.

In exponential families, the function C plays the same role as the inverse of the nor-
malizer for standard families. The transformation R is intuitively a reparametriza-
tion of the family, while the transformation h is a modification of the dominating
measure. Finally, the transformation 7' can be seen as a suitable reduction from a
statistical viewpoint.
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1.1.2. First properties

We begin with explaining how to reduce the study of general exponential families to
that of minimal standard families. This is a consequence of the following proposition
and theorem.

Proposition 1.1. The function T is a sufficient statistic.
Remark 1.9. It justifies that x is called sufficient observation for standard families.

Theorem 1.2. Any exponential family can be reduced by sufficiency, reparametriza-
tion, and proper choice of a dominating measure, to a minimal standard exponential
family.

Remark 1.10. It can then be shown that two such reductions have necessarily the
same dimension, and are actually related through linked affine transforms of their
respective natural parameters and of their respective sufficient observations.

The study of exponential families can be reduced to that of minimal standard
families. We thus focus in the sequel on minimal standard exponential families.
These families inherit several useful properties from their structure. We discuss two
of these properties hereafter.

Proposition 1.3. Any minimal standard exponential family is identifiable.

Remark 1.11. This means that the natural parametrization is one-to-one, and thus
makes statistical inference about parameters relevant.

Proposition 1.4. The normalizer A and log-normalizer i) are smooth on the interior
int N of the natural parameter space. Moreover, \ can be differentiated at any order
n € N with respect to variables o € {1,...,k}" under the integral sign:

0“\0) = O exp(0'x) pu(dx) for all @ € int N . (1.7)

RTYL
Remark 1.12. For regular families, smoothness and differentiability under the inte-
gral sign hold everywhere on N' = int N/

Remark 1.13. An interesting consequence is that the moments of a random vari-
able X distributed according to pg can be obtained from the derivatives of ¢. In
particular, we obtain the expectation and variance as follows:

Eo(X) = Vip(0) (1.8)
Vo(X) = V*(0) . (1.9)

1.1.3. Convex duality

We now introduce notions from convex duality. We only expose the relevant appli-
cation of this to minimal standard exponential families, which is just the tip of a
much richer theory in convex analysis. For additional information, we redirect to
the comprehensive book of Rockafellar [1970].

6
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Definition 1.8. The Fenchel conjugate of an arbitrary function ¢ on R™ is the
function ¢* defined as follows:

©*(€*) = sup €€ — (&) forall & € R™ . (1.10)

£eR™

Proposition 1.5. The Fenchel conjugate ©* of a closed proper convex function ¢
s also a closed proper convex function, and we have ™ = .

Definition 1.9. A proper convex function ¢ is essentially smooth if the interior
int dom ¢ of its effective domain is non-empty, if it is differentiable on int dom ¢,
and if lim,,_,, [|[V@(€,)|| = +oo for any sequence of points &,&,,... € intdom ¢
that converges to a boundary point of int dom .

Definition 1.10. A proper convex function ¢ is of Legendre type if it is closed,
essentially smooth, and strictly convex on the interior int dom ¢ of its effective do-
main.

The application of convex duality to exponential families arises from the nice
properties possessed by the log-normalizer.

Proposition 1.6. The natural parameter space N is a convex set.

Proposition 1.7. The log-normalizer 1 is a closed proper strictly convex function
with effective domain domvy = N. Moreover, its Fenchel conjugate ¢ = * is a
closed essentially smooth function with effective domain int I C dom ¢ C K, and we

have ¢ = ¢*.
Remark 1.14. This is the result of a more general duality between essential smooth-
ness and essential convexity for arbitrary convex functions.

Remark 1.15. We remark that in order to have full duality between ¢ and ¢, we
would need v to be essentially smooth, and ¢ to be strictly convex, which is not
necessarily the case.

In this context, it is convenient to require stronger regularity of the exponential
family in order to have a full convex duality. This can be discussed as follows.

Definition 1.11. A minimal standard exponential family is steep if the log-normal-
izer 1 is essentially smooth.
Remark 1.16. In particular, it can be shown that any regular family is actually steep.

Remark 1.17. Since the log-normalizer 1) is necessarily a closed proper strictly convex
function which is differentiable on intdom4t # (), essential smoothness of 1) and

steepness of the family are equivalent to the assumption lim,, . ||V¢(8,)|| = +o0
for any sequence of points 81, 8, ... € int dom 1) that converges to a boundary point
of int dom ).

Theorem 1.8. For any minimal steep standard exponential family, ¢» and ¢ are of
Legendre type. Moreover, Vi defines a homeomorphism of intdom = int N' and
int dom ¢ = int K, with inverse (Vip) ™' = V.
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Remark 1.18. Steepness ensures that the map V1) is onto. If the family is not steep,
then Vi) (int ) is a proper subset of int K, so that actually V1) is a homeomorphism
of int N and int K iff the family is steep.

Remark 1.19. In particular, the theorem holds for any regular minimal standard
exponential family.

This theorem shows that a minimal steep family with parameter space int N can
be reparametrized by the gradient Vi of the log-normalizer, and the range of this
parametrization is int /C.

Definition 1.12. The mean value parameter, or expectation parameter, n € int }C
is the parameter associated to the reparametrization of the natural parameter 8 €
int N by the gradient Vi of the log-normalizer:

n(0) = Vi(0) forall @ € int N, (1.11)
0(n) =Vo(n) forallmeintk . (1.12)

Remark 1.20. The parameter name as a mean value or expectation comes from the
relation n(0) = Vi (0) = Ey(X).

Remark 1.21. It is convenient for regular families that the expectation parameter
reparametrizes the full family.

In certain situations, such as when studying maximum likelihood estimators, this
parametrization is more convenient than the natural one.

1.1.4. Maximum likelihood

We now present some general results about maximum likelihood estimation in full
minimal steep standard exponential families.

Theorem 1.9. For any full minimal steep standard exponential family, there exists
a unique mazximum likelihood estimator 0., of @ on int IC, and it can be expressed
as follows:

aml(x) =Vo(x) forallx €intC . (1.13)

Moreover, if x ¢ int IC, then no maximum likelihood estimate of @ from x exists.

Remark 1.22. The theorem shows that the maximum likelihood estimator on int K
is one-to-one and can be expressed in the expectation parametrization simply as the
sufficient observation:

N(x) =x . (1.14)
Remark 1.23. As a result, it is sufficient for maximum likelihood estimates to exist
with probability one that (K \ int ) = 0. This is always satisfied when p is
dominated by the Lebesgue measure, but never satisfied when p has finite support
or more generally countable support and K # R™.

Remark 1.24. When the family is not steep, maximum likelihood estimates also exist
and are unique iff x € int K, and have the same expression as above on Vi) (int V') C
int K. Nonetheless, the expression cannot be determined as is when x ¢ Vi (int NV).
Moreover, the maximum likelihood estimator is not one-to-one anymore.
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Remark 1.25. In a steep family, boundary points of N which belong to N do not
occur among the values of the maximum likelihood estimator 6., and are thus
superfluous in this sense.

We naturally present the extension of this when considering an i.i.d. sample from
the exponential family.

Corollary 1.10. For any i.i.d. sampling model of size n € N* from a full minimal
steep standard exponential family, there exists a unique mazimum likelihood estima-
tor @ of @ on Ky = {(x1,...,x,) € (R™)": 23" | x; € int K}, and it can be
expressed as follows:

~ 1 <
Omi(X1,...,%,) = Vo (ﬁ le]) for all (x1,...,%,) € K7, . (1.15)
]:
Moreover, if (X1,...,%,) & K, then no maximum likelihood estimate of @ from
(X1,...,Xy,) exists.

Remark 1.26. This is actually a direct consequence of the fact that an i.i.d. sampling
model of size n from an exponential family with log-normalizer 1, natural parameter
0 and sufficient observation x, is also an exponential family with log-normalizer ni,
natural parameter @, and sufficient observation E?Zl X;.

Remark 1.27. The corollary shows that the maximum likelihood estimator on K7,
can be expressed in the expectation parametrization simply as follows:

. 1 o
LX) =~ - 1.16
"7m1(X17 7X) nj;x] ( )

Remark 1.28. It appears that maximum likelihood estimates for steep families exist
with probability increasing up to one as the sample size n tends to +o0.

1.1.5. Dually flat geometry

The above notions are interpretable within the framework of dually flat informa-
tion geometry. For the sake of conciseness, we do not introduce the mathematical
constructs behind this theory, and redirect instead to the book of Amari and Na-
gaoka [2000]. We rather present intuitively the concepts that are relevant to the
present work. In the sequel, we consider a minimal steep standard exponential
family P = {Pp}geine o O0 the interior of its natural parameter space.

To sum up intuitively the basic concepts, information geometry considers a para-
metric statistical model as a space that locally looks like a Euclidean vector space,
but that globally differs from this Euclidean vector space in general. This is the ba-
sic intuition behind viewing the statistical model as a topological manifold. On this
statistical manifold, each point represents a probability distribution of the model.
Moreover, the parameters of the respective distributions are their coordinates in
the underlying coordinate system. The exponential family P being identifiable and
having a non-empty connected open parameter space int N, it can be viewed as a
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topological manifold with a global coordinate system provided by the natural pa-
rameters 6 on int N

We can then equip the statistical manifold with a differential structure by con-
sidering an atlas of coordinate systems that are compatible with the reference one
in the sense that they are smooth reparametrizations of the model. This permits
to define tangent spaces at each point of the manifold, which are intuitively lin-
earizations of the manifold around these respective points. It permits to enhance
the exponential family P as a differential manifold with a differential structure con-
sisting of the smooth reparametrizations of the natural parameter 8 € int \/, and
notably includes the expectation parameter 1 € int K.

The statistical manifold can further be endowed with the Fisher information Rie-
mannian metric, defined by the Fisher information matrix, and consisting of scalar
products on the respective tangent spaces. It makes the model a Riemannian man-
ifold and provides a way to compute the length of vectors in the tangent spaces.
We can also compute the length of a curve joining two distributions by integrat-
ing the length of the speed vector along it. It defines an intrinsic notion of metric
distance between two probability distributions on the statistical manifold by consid-
ering the metric geodesics, which are the curves that minimize the length between
two points. Considering the exponential family P, the Fisher information matrix
is given by G(0) = V?1(0) on int N/, and thus also equals the variance Vp(X).
Since v is strictly convex, its Hessian and the Fisher information matrix G(0) are
positive-definite, hence defining a Riemannian metric g on P and making (P, g) a
Riemannian manifold.

More general notions of geodesics can also be defined by introducing the affine
a-connections which are dual in pairs with respect to the Fisher information metric.
These connections intuitively characterize the way of passing from one tangent space
to another one in its neighborhood. The affine a-geodesics are then defined as curves
with a null acceleration, similarly to the straight lines in Euclidean geometry. This
generalization coincides with that of metric geodesics when considering the self-
dual, or metric, Levi-Civita connection. Thanks to the smoothness properties of
the exponential family P, the dual affine a-connections {(V*) v(=))} and
corresponding dual affine +a-geodesics, can be defined.

acRy

Last but not least, more general distance functions can be introduced by employ-
ing relevant information divergences that are locally compatible with both the metric
and the affine connections considered. It appears that for certain families, there exist
both a pair of dual affine +a-connections that are flat, and a somewhat canonical pair
of associated dual £a-divergences. In such structures, there also exist two dual affine
coordinate systems in which the respective geodesics are provided by simple line
segments between the parameters. In particular, (P, g, VD, V(=) is a dually flat
space, and the natural and expectation parameters {(6,int ), (n,int K)} are actu-
ally dual affine coordinate systems. Additionally, the canonical dual £a-divergences
are provided by the Kullback-Leibler and dual Kullback-Leibler divergences on
the probability distributions, and can alternatively be computed in the respec-
tive coordinate systems with Bregman divergences, generated respectively by the
log-normalizer 1) and its Fenchel conjugate ¢, on the parameters. This dually flat
geometry generalizes the standard self-dual Euclidean geometry, with two dual Breg-

10
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man divergences instead of the self-dual Euclidean distance, two dual geodesics, and
a generalized Pythagorean theorem.

Let us formalize the notions of divergences that we need in the present work.
We first define the Kullback-Leibler divergence, introduced by Kullback and Leibler
[1951], then define the Bregman divergences, introduced by Bregman [1967]. We
notice that these divergences can be defined in a wider setting, but the following
definitions are sufficient here.

Definition 1.13. Let S be a statistical model on a measurable space (X, .A), which
is dominated by a o-finite measure u. The Kullback-Leibler divergence Dgp, on § is
the function defined as follows:

Dk (P||P") = /Xp(x) log 5((3;)) p(dz) forall PP €S, (1.17)

where p, p’ are the respective probability densities of P, P’ with respect to u.

Remark 1.29. The Kullback-Leibler divergence can be defined more generally be-
tween two probability measures as soon as the first one is absolutely continuous
with respect to the second one. For exponential families, the probability measures
share the same support so that they are actually absolutely continuous with respect
to each other.

Definition 1.14. Let ¢ be a convex function that is differentiable on the interior
int = of its effective domain dom ¢ = =. The Bregman divergence generated by ¢ is
the function B, defined as follows:

B,(€€) = () — () — (€ —€) Vo(€) forall &€ eimt=. (113
Remark 1.30. We can extend the divergence straightforward to include any £ € =.

Finally, for exponential families, the Bregman divergences on natural and expec-
tations parameters are linked with the Kullback-Leibler divergence on corresponding
distributions.

Proposition 1.11. For any minimal steep standard exponential family, we have the
following relation:

D (Po||Py) = By(0))0) = By(n(0)|n(@)) for all 0,6' € it A" . (1.19)

Remark 1.31. The presented notions and proposition can in general be extended
to non-steep families. The difference is that the expectation parameter n lies in a
proper subset of int . From a technical viewpoint, steepness is however useful to
maximum likelihood estimation, where the maximum likelihood estimates exist and
are unique as soon as the average of the sufficient observations lies in int IC, which
happens with probability increasing up to one as the sample size grows to infinity,
and are then given in expectation parameters by this average. For non-steep families,
they also exist and are unique, but are given as is only when the average further lies
in the interior of the range of the expectation parameter, which does not necessarily
happen with probability increasing up to one as the sample size grows to infinity.
Finally, certain notions, such as the generalized Pythagorean theorem, also rely on
steepness to be properly constructed.

11
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Figure 1.1.: Dually flat geometry of exponential families. The canonical Kullback-
Leibler divergence between two probability distributions on the statisti-
cal manifold can be computed in the natural and expectation parameters
as Bregman divergences using convex duality.

The notions formalized here and employed in the sequel are summarized in Fig-
ure 1.1. Although we do not use them explicitly in the sequel, we have also repre-
sented the two dual geodesics as gray lines on the statistical manifold and on the
natural and expectation parameter spaces, for the sake of illustration.

1.2. Separable divergences on the space of discrete
positive measures

In this section, we introduce preliminaries about separable divergences on the space
of discrete positive measures. We begin with defining basic notions on divergences
and in particular on separable divergences. We then present some well-known classes
of divergences, in particular Csiszar divergences, but also Bregman divergences
and their skew generalizations through Jeffreys-Bregman and Jensen-Bregman di-
vergences. These general classes encompass famous information divergences, in-
cluding the parametric families of a-divergences and [-divergences. These two
parametric families can also be unified and extended with the recently proposed
(o, B)-divergences. We further introduce a direct but novel generalization of them
as skew («, 8, A)-divergences through a standard skewing procedure.

12
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1.2.1. Basic notions

We begin with introducing the central concept of divergence which generalizes the
usual notion of metric distance.

Definition 1.15. A divergence on a set ) C R™ is a function D: ) x ) — R such
that D(y||ly’) > 0 and D(y|ly) =0 for all y,y' € V.

Remark 1.32. Metric distances are usually defined by the three axioms of (i) coinci-
dence, or identity of indiscernibles, D(y,y’) = 0 =y =y’, (ii) symmetry, D(y,y’) =
D(y',y), (iii) subadditivity, or triangular inequality, D(y,y") < D(y,y’)+D(y’,y").
Together, these three axioms imply the separation property D(y,y’) > 0 with equal-
ity iff y = y’. For divergences, we actually only require the two less restrictive axioms
of (i) non-negativity, D(y|ly’) > 0, (ii) identity, D(y|ly) = 0. Therefore a diver-
gence may not be symmetric, hence the notation D(y||y’) instead of D(y,y’), nor
verify the triangular inequality. Moreover, we do not require here the identity of
indiscernibles nor the separation property, which are actually equivalent for diver-
gences as defined here, since they are not needed for the subsequent derivations to
hold.

Remark 1.33. For technical convenience, we consider here divergences on the Carte-
sian square of ) so that we can compare any pair of points in ). Sometimes, it
is possible to extend a divergence on a subset of R™ x R™ which is not a Carte-
sian square, nor even a Cartesian product, for example, on R x R, U {(0,0)} for
certain scalar Csiszar divergences, or Ry x R% U {(0,0)} for certain scalar Breg-
man divergences. Such divergences are not necessarily well-behaved everywhere,
notably on the boundary. Moreover, this technical requirement permits to consider
symmetrization and skewing of arbitrary divergences without difficulty.

Remark 1.34. In practice, choosing a relevant divergence for a given problem is often
of key importance but is not always an easy task. Several complementary approaches
or general guidelines may help this decision. First of all, one may select a divergence
or class of divergences using an axiomatic approach, by listing the desired proper-
ties that the relevant divergences should verify. Some common properties include
symmetry, triangular inequality, additivity, invariance under sufficiency. In some
cases, it is then possible to determine exactly the form of divergences that verify
the desired properties. For example, an axiomatic approach to choose over common
classes of distortion functions such as the Csiszar, Bregman, and Burbea-Rao diver-
gences, has been elucidated through the information bottleneck method [Harremoés
and Tishby 2007]. Another famous example is the distinction between Rényi and
Tsallis entropies in statistical physics depending on extensivity or non-extensivity.
Secondly, it is also possible to derive relevant divergences in link with statistical
considerations. There exist strong relations between inference in certain statistical
models, and optimization of associated distance functions between the model and
observed data. An example which is relevant to the present work is that of maximum
likelihood estimation in exponential families and its relation to minimization of the
Kullback-Leibler or Bregman divergences. Other known relations include inference
in power laws and Tsallis relative distances, as well as inference in Tweedie models,
or in exponential dispersion and generalized linear models, and S-divergences. Such

13
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relations may guide the honest choice of a divergence if one has some intuitions on
the distribution of the observations. In this context, the topology of the data, that
is, if the data are discrete, continuous, complex, real, positive, negative, compact,
among other properties, can provide insights on a reasonable choice for the underly-
ing model. For instance, it is hopefully quite unlikely that the discrete and positive
height of a population measured in centimeters, is modeled reliably with the ubiqui-
tous bell-like shaped Gaussian model, though it might be a sufficient and convenient
approximation for some applications. A statistical perspective may also allow the
use of techniques from model selection to choose the best statistical model, and hence
associated divergence, among several possible models. Thirdly, and with analogy to
model selection in a statistical approach, the framework of distance or metric learn-
ing provides a data-driven approach to learn a relevant distance function directly by
analyzing the data. The drawback of such methods is in general to accommodate
only certain types of distances so as to formulate the learning as an optimization
problem over a set of restricted and parametrized distances. For example, Maha-
lanobis distances are widely used in this context, where the optimization takes place
over the convex cone of positive-definite matrices. From a statistical perspective,
this restriction would correspond to assuming some normality properties of the data
or of the noise distribution. Last but not least, expertise is in general an important
quality for the practitioner to make a good choice, and rules of thumb or trial and
error may often guide this choice. Several divergences are well-known in certain
communities because they have already proved relevant for specific tasks. In this
context, using parametric families of divergences that encompass common distance
measures may be of great interest, since the user can then tweak the parameters to
tune them and tailor the algorithm to the application at hand, while guaranteeing
results that are at least as good as that of the usual encompassed distance measures.

Many common divergences on R™ can actually be computed coordinate-wise by
summing the corresponding distances on the respective axes. This is the case of the
information divergences considered here, and it can be discussed as follows.

Definition 1.16. A scalar divergence is a divergence d on a set Y C R.

Definition 1.17. A separable divergence is a divergence D on a set ) = Y™ for
some set Y C R, generated by a given scalar divergence d on Y as follows:

D(ylly') =Y d(ylly;) forally,y' e . (1.20)
i=1

A separable divergence D is completely defined by the generating scalar divergence
d. In the sequel, we thus concentrate on formulating such scalar divergences.

Example 1.1. The squared Euclidean distance on R is probably the most common
example of scalar divergence:

de(ylly) = (y—y)* . (1.21)

Remark 1.35. This cannot be however extended to the more general Mahalanobis
distances since the covariance matrix makes the divergence non-separable in general.
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Example 1.2. The Kullback-Leibler divergence on R* provides a well-known ex-
ample of scalar divergence which is asymmetric:

Y
dxw(ylly") = ylog i y (1.22)

Remark 1.36. This divergence can be extended to include all R, in the first argument
since the limit is always finite at zero, and to include the origin (0, 0) on the diagonal
by setting the divergence null there.

Example 1.3. The Itakura-Saito divergence on R* provides another famous exam-
ple of asymmetric separable divergence:

) )
dis(ylly') = v log? —-1. (1.23)

Remark 1.37. This divergence can be extended to include the origin (0,0) on the
diagonal by setting the divergence null there, but cannot be extended to include all
R?* in either of the arguments by considering the limits since they are not finite.

We now define wide classes of such divergences. We restrict to separable diver-
gences on the space of discrete positive measures seen as Y = (R* )™. Comprehensive
reviews of the early and the recent literatures on more general divergence measures,
some of their properties, and applications to statistical machine learning and signal
processing can be found in [Csiszar 1978, 2008, Basseville 1989, 2013, Cichocki and
Amari 2010].

1.2.2. Csiszar divergences

We begin with the family of Csiszar divergences, which encompasses many com-
mon distance measures, such as the Kullback-Leibler and dual Kullback-Leibler
divergences, the total variation distance, the Hellinger distance, or the Pearson’s
and Neyman’s y? distances. These divergences were introduced independently by
Csiszar [1963], Morimoto [1963], Ali and Silvey [1966], as generic distances between
probability measures. Their general properties have also been extensively studied,
and a recent account is provided by Liese and Vajda [2006]. In the context of discrete
positive measures, these divergences can be discussed as follows.

Definition 1.18. Let ¢: R% — R be a differentiable convex function such that

©(1) = ¢'(1) = 0. The Csiszdr p-divergence is the scalar divergence d&c) defined as
follows:

dfpc)(yHy’) =yo(y/y) forally,y eRy . (1.24)

Remark 1.38. The non-negativity is a direct consequence of the convex function ¢
attaining its global minimum at ¢(1) = 0 since ¢'(1) = 0. Moreover, the identity
trivially holds since we have ¢(y/y) = ¢(1) = 0, on the diagonal.

Remark 1.39. The class of Csiszar divergences is stable under swapping the argu-
ments since we have dfpc)(y’Hy) = dfoc*)(yHy’), where ¢*(y) = yp(1/y) is convex,
differentiable, and such that ¢*(1) = ¢*'(1) = 0. Moreover, the class is also sta-
ble under the convex combination of different generator functions ¢. As a result,
Csiszar divergences can be symmetrized or skewed straightforward while staying in
the class.

15



1. Preliminaries on Information Geometry

The class of Csiszar divergences notably contains the well-known parametric fam-
ily of a-divergences. This parametric family encompasses distance measures such as
the Kullback-Leibler and dual Kullback-Leibler divergences, the Hellinger distance,
or the Pearson’s and Neyman’s x? distances. Moreover, it actually corresponds to the
intersection of Csiszar and Bregman divergences [Amari 2009]. The a-divergences
can be traced back to the works of Chernoff [1952] on evaluating classification er-
rors, Rényi [1961] on generalizing the notion of entropy, and Havrda and Charvat
[1967] on quantifying classification processes. It was rediscovered by Tsallis [1988]
for non-extensive entropies in physics, and by Amari [1982] for information geom-
etry and statistical inference in curved exponential families. For discrete positive
measures, these divergences can be introduced as follows.

Example 1.4. An interesting parametric family of Csiszar divergences parametrized
by a number a € R is provided by the a-divergences:

) = emyey+ (1= )y —y/'™) (1.25)

Remark 1.40. For a € {0, 1}, the definition still holds by considering the limits using
a Taylor series or I’'Hopital’s rule, and respectively leads to the dual Kullback-Leibler
divergence d(()a) (ylly) = v log(v'/y) — ¢ + vy, and to the Kullback-Leibler divergence
dga) (ylly') = ylog(y/y') —y+y'. Other particular cases are given by o € {—1,1/2, 2},
leading respectively to the Neyman’s x?, Hellinger, and Pearson’s y? distances.

Remark 1.41. The a-divergence is easily seen to be a Csiszar divergence for the
differentiable convex function ¢, (y) = m(a—k (1—a)y—y'~%), which is such that
©0a(1) = ¢/ (1) = 0. In the limit case o € {0, 1}, we have y(y) = —y + ylogy + 1,
and ¢i(y) = y — logy — 1. The formulation of the a-divergence as a Bregman
divergence is yet somewhat trickier to obtain, and the form of its generator function

is technically less convenient.

1.2.3. Skew Jeffreys-Bregman divergences

We now discuss the general class of Bregman divergences and their skew Jeffreys-
Bregman extension. The class of Bregman divergences was first studied by Bregman
[1967] for solving convex optimization problems. These divergences encompass some
well-known distance measures such as the squared Euclidean and Mahalanobis dis-
tances, or the Kullback-Leibler and Itakura-Saito divergences. For discrete positive
measures, and assuming separability, these divergences can be introduced as follows.

Definition 1.19. Let ¢: R% — R be a differentiable convex function. The Bregman
p-divergence is the scalar divergence dc(pB) defined as follows:

dP ylly) = e(y) — oY) — (y—y)¢'(y) forally,y e R: . (1.26)

Remark 1.42. The non-negativity is a direct consequence of the tangent inequality
applied to the differentiable convex function ¢, that is, p(y) > (') + (v —v")¢' (V).
Moreover, the identity trivially holds since we have ¢(y) — ¢(y) — (v — y)¢'(y) = 0,
on the diagonal.
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Remark 1.43. The class of Bregman divergences is not stable under swapping the
arguments, so it is possible to create new divergences by considering symmetrized
or skew versions of these divergences.

The class of Bregman divergences contains the relevant parametric family of
pB-divergences among others. This family notably encompasses the squared Eu-
clidean distance, as well as the Kullback-Leibler and Itakura-Saito divergences. It
was studied by Basu et al. [1998], Eguchi and Kano [2001], to robustify maximum
likelihood estimation. For discrete positive measures, this parametric family can be
introduced as follows.

Example 1.5. An interesting parametric family of Bregman divergences paramet-
rized by a number 5 € R is provided by the S-divergences:

dS (ylly') = (V% + (58— 1)y" — Byy”Y) . (1.27)

L
BB —1)

Remark 1.44. For § € {0,1}, the definition again holds by considering the limits
using a Taylor series or 'Hopital’s rule, leading respectively to the Itakura-Saito
divergence déb)(yHy’ ) =y/y —log(y/y') — 1, and to the Kullback-Leibler divergence
dgb)(yHy’ ) =ylog(y/y') —y+y'. A relevant particular case is given by a = 2, which
corresponds to the squared Euclidean distance.

Remark 1.45. The p-divergence is easily seen to be a Bregman divergence for the
differentiable convex function pg(y) = m(yﬁ — By +  —1). In the limit case for

B € {0,1}, we have ¢y(y) =y —logy — 1, and ¢1(y) = —y + ylogy + 1.

The natural way to skew a given Bregman divergence is by considering a convex
combination of the divergence and of its swapped version. A symmetric diver-
gence is then defined by taking the midpoint of this combination. This construction
has recently been explored by Nielsen and Nock [2009b] in relation to computing
information-theoretic centroids. Special instances of the construction lead to the
well-known Jeffreys divergence as a symmetric version of the Kullback-Leibler diver-
gence, as well as the cosh distance which arises from symmetrizing the Itakura-Saito
divergence.

Definition 1.20. Let ¢: R* — R be a differentiable convex function, and A € [0, 1]
be a skewing parameter. The skew Jeffreys-Bregman (¢, \)-divergence is the scalar

divergence d;{f) defined as follows:

AP (ylly) = My (ylly) + (1= Ndy(y'ly) for all y,y/ € RY, . (1.28)

In particular, for A = 1/2, the corresponding scalar divergence di;]B) is called the
Jeffreys- Bregman p-divergence.

Remark 1.46. In particular, the symmetric Jeffreys-Bregman ¢-divergence simplifies
JB
as A" = (y =) (@ (v) — & (V) /2
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1.2.4. Skew Jensen-Bregman divergences

A second relevant way of skewing Bregman divergences exists, and is closely re-
lated to the Burbea-Rao divergences and their skew versions. The latter divergences
were introduced and studied by Burbea and Rao [1982a.b] as Jensen differences
in relation to entropy functions. A famous particular case of this is given by the
Jensen-Shannon divergence as another symmetric version of the Kullback-Leibler
divergence. The skewing of Burbea-Rao divergences and their links with Bregman
divergences have recently been explored by Nielsen and Boltz [2011] for comput-
ing information-theoretic centroids, where the constructed divergences have also
revealed connected, for exponential families, with the well-known Bhattacharyya
distance introduced earlier by Bhattacharyya [1943].

Definition 1.21. Let ¢: R% — R be a differentiable convex function, and A € (0,1)
be a skewing parameter. The skew Jensen-Bregman (p, \)-divergence is the scalar

divergence d;{f/) defined as follows:

A2 (ylly') = M (yl|Ay+(1 =Ny + (1 =N do (4 [ Ay+(1=N)y')  for all y,y/ e(R: |
1.29

In particular, for A = 1/2, the corresponding scalar divergence dfoJB/) is called the
Jensen-Bregman p-divergence.

Remark 1.47. The limit cases A € {0, 1} are not included in the definition since they
lead to a trivial null divergence.

Definition 1.22. Let ¢: R} — R be a differentiable convex function, and A\ €
(0,1) be a skewing parameter. The skew Burbea-Rao (p, \)-divergence is the scalar

divergence dgiR ) defined as follows:

AP (ylly') = Ap(y) + (1= Nep) — ey + (1= N)y') for all y,y € RY . (1.30)

In particular, for A\ = 1/2, the corresponding scalar divergence dgoBR) is called the
Burbea-Rao p-divergence

Remark 1.48. The limit cases A € {0, 1} are again excluded from the definition to
avoid trivial null divergences.

Remark 1.49. The skew Jensen-Bregman (¢, A)-divergence and the skew Burbea-

(JB) = d<BR). In particular, the Jensen-Bregman

B) _ dSDBR)'

Rao (¢, A)-divergence coincide, d,

p-divergence and the Burbea—Rao go—dlvergence coincide, d&‘] Setting

yn = Ay + (1 — N)y/, the equivalence can be seen as follows:

A7 (ylly') = M (yllya) + (1= Ndo(y l9) (1.31)

= Me(y) —oa) = (¥ —ua)e' (yn)
+ (1 =N(e) =) — @ —y)e' () (1.32)

=dPPlly) — Oy + (1= Ny —5)¢ (1) (1.33)
= dBR (ylly) - (1.34)
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Figure 1.2.: Parametric family of («, §)-divergences. The class of («, 5)-divergences
encompasses many common information divergences, including all
a-divergences and [-divergences.

Remark 1.50. Since the class of skew Burbea-Rao divergences is clearly stable under
swapping the arguments, which amounts to replacing A with 1 — A, the class of skew
Jensen-Bregman divergences is also, which is not obvious at first sight from their
definition.

1.2.5. Skew («, 3, \)-divergences

Recently, in the context of non-negative matrix factorization, Cichocki et al. [2011]
proposed an elegant parametrization of a class of scalar divergences that encom-
passes both a-divergences and [-divergences among others, as shown in Figure 1.2.
Furthermore, this family is potentially robust against noise and outliers, because it
combines the respective scaling properties of the a-divergences and [-divergences,
hence providing both zooming and weighting factors that can be tuned to improve
estimation. This parametric family of («, 5)-divergences can be introduced as fol-
lows.

19



1. Preliminaries on Information Geometry

Definition 1.23. Let a, 8 € R be scalar parameters. The («, 3)-divergence is the
scalar divergence d((j? defined as follows:
1

4 wlly') = aB(a+ B) (ay™ ™+ 8y —(a+B)yy”) forally,y € R . (1.35)

Remark 1.51. The non-negativity of (a, 3)-divergences can be proved with Young’s
inequality, for three different combinations of the signs of af, a(a + 3), f(a + B).
The function vanishing on the diagonal holds trivially.

Remark 1.52. As soon as either of o or 3 is null, the definition still holds in the
respective limit cases dgfg)(yﬂy’) = L(y*log(y*/y"™) — y* + y'*) for @ # 0, and
dé?ﬁb) (ylly') = B—lg(y’ﬁ log(y"? /y?) — P +yP) for B # 0. When a+ 3 = 0, the definition
is also valid with the limits dgl,ll)a(yﬂy’) = L(log(y™/y™) + y*/y* — 1) for a # 0,
and di'y) (ylly') = $(logy — logy')”.

Remark 1.53. As special cases, the (o, §)-divergences reduce to the a-divergences
dgf? = dgl) for o + 8 =1, and to the S-divergences d((z? = débll for a = 1.

We finally introduce a direct but novel parametric family of information diver-
gences as an extension of (a, 3)-divergences by standard skewing.

Definition 1.24. Let «, 8 € R be scalar parameters, A € [0,1] be a skewing pa-

rameter. The skew (o, 5, \)-divergence is the scalar divergence dgfg/\ defined as
follows:

A\ (ylly) = 2D lly) + (1= Nd (Y ly) forally,y’ €RE . (1.36)

These divergences notably encompass all a-divergences and (-divergences, as well
as their skew Jeffreys-Bregman versions. They will also reveal useful in the sequel to
unify the results for non-negative matrix factorization based on these divergences,
as done by Cichocki et al. [2011] for the non-skew versions.
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2. Sequential Change Detection with
Exponential Families

In this chapter, we elaborate methods for sequential change detection within the
computational framework of information geometry. We consider a standard generic
framework for sequential change detection applied to exponential families. This
framework therefore encompasses many common statistical models as discussed in
Chapter 1. More precisely, we follow a non-Bayesian approach where change detec-
tion is considered as a statistical decision problem with multiple hypotheses, and is
solved using generalized likelihood ratio test statistics. A major drawback of previous
sequential approaches in this context is to consider only known parameters before
change, or to approximate the exact statistics when these parameters are actually
unknown. This is addressed by employing exact generalized likelihood ratios with
arbitrary estimators, and by expanding them for exponential families. By showing
tight links between the computation of these statistics and maximum likelihood es-
timates, we derive a generic scheme for change detection with exponential families,
under common scenarios with known or unknown parameters, and arbitrary estima-
tors. We also interpret this scheme within the dually flat information geometry of
exponential families, hence providing both statistical and geometrical intuitions to
the problem, and bridging the gap between statistical and distance-based approaches
to change detection. The scheme is finally revisited through convex duality, lead-
ing to an attractive procedure with closed-form sequential updates for the exact
generalized likelihood ratio statistics, when both the parameters before and after
change are unknown and are estimated by maximum likelihood. This is notably
applied in Chapter 4 to devise a general and unifying framework for real-time audio
segmentation.

2.1. Context

In this section, we first provide some background information on the problem of
change detection, with focus on sequential approaches. We then discuss the moti-
vations of our approach to this problem. We finally sum up our main contributions
in this context.

2.1.1. Background

Let us consider a time series xi,Xs,... of observations that are sampled accord-
ing to an unknown discrete-time stochastic process. In general terms, the problem
of change detection is to decide whether the distribution of the process presents
some structural modifications of interest along time, as depicted in Figure 2.1. This
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2. Sequential Change Detection with Exponential Families

Figure 2.1.: Schematic view of change detection. The problem of change detection
consists in finding variations of interest within the temporal structure
of a process.

decision is often coupled with the estimation of the times when changes in the dis-
tribution occur. These time instants are called change points and delimit contiguous
temporal regions called segments. In addition to estimating the change points, we
sometimes also need to estimate the underlying distributions within the different
segments.

Historically, change detection arose as a sequential problem in the area of quality
control, with the control charts of Shewhart [1925, 1931]. The formulations of change
detection have primarily focused on statistical frameworks, with consideration of
a single change point and known distributions before and after change, by using
likelihood ratio (LR) statistics. The first main approaches were the Bayesian methods
introduced by Girshick and Rubin [1952], and the non-Bayesian procedures such as
the cumulative sum (CUSUM) and the finite moving average charts of Page [1954],
as well as the geometric moving average charts of Roberts [1959].

Later on, Shiryaev [1963, 1978] and Roberts [1966] proved some optimality proper-
ties of the sequential Bayesian detection rule with a geometric prior over the change
time, hence known as Shiryaev-Roberts (SR) rule. This was also shown optimal in
an asymptotic context by Pollak [1985]. In the meantime, Lorden [1971] discussed
results on the asymptotic optimality of the non-Bayesian CUSUM rule, and intro-
duced the generalized likelihood ratio (GLR) statistics to replace the LR statistics in
CUSUM when the parameter after change is unknown and the distributions belong
to a one-parameter exponential family. Optimality results were later proved in a
non-asymptotic context by Moustakides [1986] and Ritov [1990]. As an alternative
to the GLR statistics, Pollak and Siegmund [1975] introduced a weighted CUSUM
rule using mizture likelihood ratio (MLR) statistics, also known as weighted likelihood
ratio (WLR) statistics. These statistics were further used by Pollak [1987] to extend
the Bayesian SR detection rule.

Many of these sequential approaches focused on detecting an additive change
point in the mean of some independent univariate data under normality assump-
tions. Since then, several hundreds of papers have proposed specific extensions to
relax these assumptions. We refer to the seminal book of Basseville and Nikiforov
[1993], and paper of Lai [1995], for a comprehensive review and unifying frame-
work. The recent books of Poor and Hadjiliadis [2009], and Chen and Gupta [2012],
provide more up-to-date accounts respectively on sequential and retrospective ap-
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2.1. Context

proaches. The recent paper of Polunchenko and Tartakovsky [2012] presents the
state-of-the-art results on optimal procedures for sequential change detection with
known parameters before and after change. Some complementary viewpoints are
treated in the books of Brodsky and Darkhovsky [1993], Csorgd and Horvéth [1997],
and Gustafsson [2000], with respective focus on non-parametric methods for change
detection, asymptotic behaviors of change detection procedures, and change detec-
tion in adaptive filters. The field is still in active research today, and a forthcoming
book on the topic has been written by leading researchers [Basseville et al. 2013].
We can sum up the main distinctions between the different approaches as follows.

The principal distinction, because of both theoretical and philosophical issues, is
between non-Bayesian and Bayesian approaches. This distinction historically lies
in the consideration of the unknown change points either as deterministic or as
random quantities. On the one hand, in non-Bayesian approaches, a change time
is assumed to be an unknown parameter, and the detection is roughly speaking
based on the likelihood of a change compared to no change. On the other hand, in
Bayesian approaches, a change time is assumed to be a latent variable with a given
prior probability distribution, and the detection is rather based on the posterior
probability of a change. In later approaches, this distinction also lies on whether the
unknown parameters, if any, are considered as deterministic or as random quantities.
In non-Bayesian approaches, the detection of a change relies on the point estimation
of the unknown parameters, whereas it relies on their marginalization using suitable
priors in Bayesian approaches.

Other important distinctions can be made depending on the problem assumptions.
Relevant examples include sequential versus retrospective settings, single versus mul-
tiple change points, additive versus non-additive changes, known versus unknown
distributions before or after change, univariate versus multivariate data, continuous
versus discrete data, independent versus non-independent observations, parametric
versus non-parametric distributions, scalar versus vector parameters.

Concerning optimality, the two principal criteria are the average detection delay
and the false alarm rate. The average detection delay is related to the latency of
the system and quantifies the time lag between a change point and the alarm time
at which it is detected, while the false alarm rate is related to the robustness of
the system and quantifies the number of alarms triggered wrongly before a change
really occurs. Another less used criterion is the misdetection rate which is related
to the sensibility of the system and quantifies the number of occurring changes
that are missed. Often, optimality is considered by fixing the false alarm rate and
minimizing the average detection delay, leading to methods for quickest detection. It
is yet intuitive that, depending on the application at hand, a compromise has to be
found between improving the average detection delay and decreasing the detection
errors of false alarms and misdetections.

The applicative fields of change detection are numerous and various in nature.
In addition to quality control in industrial production [Wetherill and Brown 1991],
applications include fault detection in technological processes [Willsky 1976], or
automatic surveillance for intrusion and abnormal behavior in security monitoring
[Tartakovsky et al. 2006], and more generally many problems in signal processing
[Basseville and Benveniste 1983b, Basseville 1988]. In this context change detec-
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2. Sequential Change Detection with Exponential Families

tion has been applied to data from various domains such as geophysics [Basseville
and Benveniste 1983a], econometrics [Broemeling and Tsurumi 1987], audio [André-
Obrecht 1988], medicine [Sonesson and Bock 2003], image [Radke et al. 2005].

Modern approaches to change detection have also intersected several techniques
in machine learning, with online and offline algorithms for solving respectively the
sequential and retrospective change detection problems. Some common employed
techniques in this context are kernel methods, support vector machines, and convex
optimization. Most related algorithms for change detection then consider some no-
tion of distance in order to define either a cost function for measuring and optimizing
the quality of the segmentation [Harchaoui and Lévy-Leduc 2008, 2010, Vert and
Bleakley 2010], or a dissimilarity measure in a high-dimensional feature space for
determining and thresholding the amount of novelty between successive windows of
data [Desobry et al. 2005, Harchaoui et al. 2009a]. The latter methods can actu-
ally be linked with CUSUM schemes by using exponential families and reproducing
kernel Hilbert spaces [Canu and Smola 2006].

2.1.2. Motivations

The ubiquity of change detection techniques in various applicative fields highlights
the interests in providing generic methods that can handle data of heterogeneous
types. In many approaches, however, either the distributions before and after change
are assumed to be completely known in advance, or particular statistical models
are employed for the unknown parameters, most of the time normal distributions,
and the procedures are derived specifically for these models. Alternatives do exist,
with non-parametric approaches, as well as parametric approaches based on generic
families of distributions, notably with assumptions of independent observations in
one-parameter exponential families. We concentrate on the latter approach, in the
light of computational information geometry with general exponential families.

We thus seek to formulate a unifying and generic framework for statistical change
detection in a times series of independent observations drawn from an exponential
family. We try to encompass different scenarios where scalar or vector parameters
before and after change can be known or unknown, with additive or non-additive
changes, using univariate or multivariate, and continuous or discrete data, indiffer-
ently. We also aim at bridging the gap between classic statistical and contemporary
machine learning approaches to change detection, by showing tight links between
the statistical models involved and some associated distance functions.

Another motivation of our approach comes from the design of online methods for
change detection. In the literature, change detection is still often addressed in a
sequential rather than retrospective setting, that is, the time series is considered as
a data stream that unfolds in time and is processed incrementally. This criterion is
vital in contexts where causality is mandatory, such as real-time applications where
one does not have access to the future. Yet a causal design may also be relevant in
other contexts, not only to keep computations tractable when dealing with a large
amount of data, but also to account for the inherent temporal flow of the time series.
In other words, change detection may be viewed as finding a sufficient amount of
novelty, a rupture of information content between a given time point and its relative
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past. We therefore focus here on online methods for change detection.

In general, sequential procedures are designed to detect a single change point
in the incoming data stream. When multiple change points need to be detected,
the following scheme is employed. We start with an empty window X <+ () and
process the available data incrementally. At each time increment n = 1,2,..., we
concatenate the incoming observation x,, with the previous ones as X + X | x,,, and
attempt to detect a change. If a change is detected, then we discard the observa-
tions before the estimated change point 7, and restart the procedure with an initial
window X < (X;41,...,X,). The differences between approaches generally lie in
computational heuristics such as using minimum and maximum window sizes, as
well as window growing and sliding factors before attempting to detect a change.
In these approaches, the sequential detection of multiple change points can there-
fore be reduced to the detection of a single change point in a given data sample
X = (X1,...,X,) of size n > 1.

We notice, however, that this problem reduction is disputable. First, it requires
the precise estimation of the different change points, and does not take into account
the uncertainty about these estimated change points. Second, it supposes that if no
change point has been detected in the current window yet, then adding some extra
sample observations may only introduce one change point. This is a reasonable
assumption in general but it does not take into account the possibility that a change
point has been missed, or that several change points occur in the added observations.
This may occur when the sampling distributions before and after change are very
similar and not enough sample observations are available to discriminate between
them, or when a small drift in the sampling distribution occurs. In such situations,
one would need to consider several change points or model the drift in some way:.

Nevertheless, we focus on the widespread framework of abrupt change detection
where considerations on smooth changes such as drifts are left aside. We also as-
sume that the change points are detected fast enough so that the alarm times are
triggered before other changes occur. It permits to employ the standard sequen-
tial schemes discussed above. A noticeable advantage of these schemes is that of
discarding completely the past information when a change point is detected. It
provides an important computational advantage over methods that would require
storing some past information to deal with multiple change points and uncertainty
in their estimation.

Finally, we concentrate on approaches similar to CUSUM detection rules with LR
statistics, and their extensions with GLR statistics for unknown parameters. A ma-
jor theoretical issue of previous sequential approaches in this context is to consider
only known parameters before change. This is suitable for applications such as qual-
ity control where a normal regime is completely known in advance, but this is limited
in many other real-world applications. The problem when considering unknown pa-
rameters before change, is that it breaks down the recursivity and computational
efficiency of CUSUM schemes. Therefore, some approximations of the exact GLR
test statistics are in general made to accommodate these situations, such as learning
the distribution before change in a training set of samples, or estimating it directly
at once for all hypotheses, either on the whole window, or in a dead region at its
beginning where change detection is turned off. These approximate GLR statis-
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tics, however, result in practical shortcomings as soon as changes occur too rapidly,
because of the estimation errors.

A few particular exact statistics have yet been studied. For example, Siegmund
and Venkatraman [1995] considered the exact GLR statistics for unknown mean be-
fore and after change in univariate normals with a fixed and known variance, which
relies on a specific invariance by translation. Recently, Mei [2006] proposed a frame-
work for unknown parametric distributions with a compact parameter space before
and after change in the case of independent observations, by using a point estimation
before change, and a mixing prior after change, with no prior distribution on the
change point. It seems however more natural to consider either a full non-Bayesian
or a full Bayesian framework, as noted by Lai and Xing [2010] who developed a full
Bayesian framework for sequential change detection with unknown parameters be-
fore and after change, based on the derivation of convenient expressions of the MLR
statistics for exponential families, and proved some asymptotic optimality results of
this procedure under the assumption of a geometric prior over change.

Nevertheless, this Bayesian framework is not suitable to all applications. Indeed,
it first requires some expert knowledge or some training data to learn the distribu-
tion of the parameters in a supervised fashion before performing change detection.
Such prior knowledge or data are unfortunately not always available. Moreover,
the assumption of a geometric prior over change is not well-suited to all signals,
which may exhibit more complicated distribution profiles for time intervals between
change points. To overcome this, we seek to employ sequential change detection
schemes without any a priori on the respective distributions of the change points
and parameters.

We therefore position in this continuity but rather develop non-Bayesian methods
for change detection with independent observations from an exponential family, when
both the parameters before and after change may be unknown. Nevertheless, we do
not discuss further theoretical optimality here and redirect instead the interested
reader to the given references and citations therein. The problem, in our opinion, is
that there is no widely accepted consensus on how to define exactly optimality, not
only depending on Bayesian and non-Bayesian approaches, but also on asymptotic
and non-asymptotic contexts, or even known and unknown parameters. Moreover,
the theoretical optimality results may not always corroborate practical situations
since the data are often not distributed exactly according to the models considered.

2.1.3. Contributions

To sum up our positions in the field of change detection, we follow a standard
non-Bayesian approach for detecting changes in a sequence of mutually independent
observations from a dominated statistical model. In this approach, change detection
is seen as a decision problem with multiple statistical hypotheses, and is solved by
employing GLR test statistics. In sequential schemes, approximations of the exact
GLR test statistics are most of the time employed for tractability issues. Our main
contributions in this context can be summarized as follows.

We apply the change detection framework to exponential families, and notably
study the GLR test statistics within the dually flat information geometry. To the
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best of our knowledge, this is the first time change detection is studied in the light
of information geometry, hence providing some geometrical intuitions to this statis-
tical problem. Because of the known correspondence between exponential families
and their associated Bregman divergences, these intuitions provides a unified view
of change detection for many common statistical models and corresponding distance
functions, and bridges the gap between certain statistical and distance-based ap-
proaches to change detection. We also generalize the estimation in the GLR test
statistics to arbitrary estimators on top of commonly used maximum likelihood es-
timators. As a technical by-product, it allows the unification of different scenarios
with known or unknown parameters before and after change, that are in general
treated separately. In this context, the GLR statistics with arbitrary estimators
are actually shown to be intrinsically linked with maximum likelihood estimation,
where the chosen estimators behave as corrective terms compared to the maximum
likelihood estimators. We also revisit the statistics through convex duality, which
provides further evidence of the corrective role of the chosen estimators compared to
maximum likelihood. Last but not least, it leads to an alternative expression for the
exact GLR test statistics, which simplifies its computation when both parameters
are unknown and are estimated by maximum likelihood. The derived expression
is obtained in closed form in terms of the conjugate of the log-normalizer for the
exponential family. Moreover, it can be updated sequentially, hence providing a
computationally efficient scheme for exact inference about change detection in ex-
ponential families when both the parameters before and after change are unknown.
The remainder of this chapter is organized as follows.

In Section 2.2, we review the standard non-Bayesian framework for change detec-
tion in a sequence of mutually independent observations from a dominated statistical
model. In Subsection 2.2.1, we formalize the change detection problem as a multi-
ple hypothesis problem. In Subsection 2.2.2, we define the statistical decision rule
based on the common likelihood ratio test statistic, or on its generalized version for
unknown parameters by introducing arbitrary estimators in the statistic. In Sec-
tion 2.3, we apply the formulated framework to derive methods for change detection
in exponential families. In Subsection 2.3.1, we notably develop the GLR test statis-
tics with arbitrary estimators and actually show that it is intrinsically linked with
the maximum likelihood estimators, which behave as corrective terms compared to
the chosen estimators. In Subsections 2.3.2 and 2.3.3, we then obtain specific forms
of the generic scheme under common scenarios by considering different combina-
tions of estimators for the respective parameters. In particular, we expand the form
of the known LR statistics when both the parameters before and after change are
known, and of the standard GLR statistics when the parameter before change only is
known. We also compare the standard approximate GLR and the exact GLR statis-
tics when both parameters are unknown. In Subsection 2.3.4, we revisit the proposed
generic updates through convex duality for exponential families, by reparametrizing
the problem from the natural to the expectation parameter space. It provides fur-
ther evidence for the corrective role of the chosen estimators compared to maximum
likelihood in the GLR statistics. In Subsection 2.3.5, we finally derive a simplified
expression for the exact GLR statistics when both parameters are unknown and are
estimated by maximum likelihood.
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2. Sequential Change Detection with Exponential Families

2.2. Statistical framework

In this section, we formalize a standard statistical framework for sequential change
detection. The detection of a change point in a given data sample is seen as a de-
cision problem with multiple hypotheses. To solve this problem, we then introduce
the common test statistics of likelihood ratio for known parameters and the corre-
sponding non-Bayesian decision rule, as well as their proposed extension through
the generalized likelihood ratio test statistics with arbitrary estimators.

2.2.1. Multiple hypothesis problem

To unify the problem formulation and discussion, we restrict to the widespread case
where the observations are independently sampled according to distributions from
a given dominated parametric statistical model.

Problem 2.1. Let P = {F¢},.z be a dominated parametric statistical model on
a measurable space (X, A), and let Xi,..., X, be n > 1 mutually independent
random variables that are distributed according to probability distributions from P.
The problem of change detection is to decide, on the basis of sample observations
X = (x1,...,%X,) € X", whether the random variables Xj, ..., X}, are identically
distributed or not.

Remark 2.1. This problem and subsequent derivations can be formulated straight-
forward with adequate notational changes for non-parametric models. We state it in
the parametric case for convenience, and for its direct application to the parametric
models of exponential families later.

Remark 2.2. The formulation can also be extended to non-independent observations
with more technical efforts. This is done by introducing the filtered probability space
with the natural filtration associated to the stochastic process, that is, based on the
increasing sequence of g-algebras generated by the accumulated random variables.
We then consider conditional distributions on the accumulated past observations
and the observations in a segment are not necessarily identically distributed, but
the parameter of interest & does not change.

Remark 2.3. The assumption that the model is dominated can also be dropped
from the problem statement. It is however essential to the subsequent derivations
of statistics based on probability densities.

As discussed previously, we suppose that there is at most one change point. Hence,
the problem of change detection can be seen as a statistical decision between the
null hypothesis of no change against the alternative hypothesis of one change.

Definition 2.1. Let Z,, =), =% be subsets of Z, for any 1 <4 < n — 1. The hypoth-
esis of no change and the hypothesis of a change are respectively the null and the
alternative statistical hypotheses Hy and H; defined as follows:

HO:Xla---7XnNP§07 506507 (21)
Hy: Xy, Xi ~ Py, & €55, Xiyr,.., Xy~ P, £ €21, i€[l,n—1] .
(2.2)
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Figure 2.2.: Multiple hypotheses for a change point. The problem of change detec-
tion can be seen as comparing the plausibility of the respective hypothe-
ses that changes occur at the different time instants, with the hypothesis
that no change occurs at all.

Remark 2.4. We notice in this definition that the alternative hypothesis H; may
encompass the null hypothesis Hy, depending on the subsets =, =i, Z¢. Indeed, we
do not require explicitly that Péé =+ Pei. Nevertheless, this is not an issue because
the decision is not based exactly on whether the alternative is more plausible than
the null hypothesis, but rather on to what extent it is more plausible, similarly to a
model selection problem with nested models.

When a change occurs, we also need to estimate the change point. We therefore
partition the hypothesis of a change into multiple hypotheses of a change at the
respective time points. The different hypotheses of no change, and of a change at
the respective time points, are illustrated in Figure 2.2.

Definition 2.2. The hypothesis of a change at time i, for some 1 < i < n — 1, is
the alternative statistical hypothesis H{ defined as follows:

Hi: Xy,...,X; ~ Py, & €5f, Xiy1,..., Xn~ Py, € €5} . (2.3)

Remark 2.5. For notational reasons, we employ the convention that the change
points refer to the last points of the respective segments rather than the first points
of the subsequent segments.

Remark 2.6. In certain scenarios, the parameters before and after change may be
completely known in advance, being equal respectively to &, and &,. In this sit-
uation, all hypotheses are simple since we have &,,&, € {&,}, and & € {€..}.
Nevertheless, the parameters before and after change are most of the time unknown,
thus making some hypotheses to be composite. In the general case, all subsets
Z,, 25, 2%, may be chosen to be different. Often, the subsets before change, respec-
tively after change, are equal either to = itself, or to a singleton if the corresponding
parameter is completely known. These subsets act as a priori information about the
problem, and allow the unification of different scenarios with known and unknown

parameters which are in general treated separately in the literature.
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2.2.2. Test statistics and decision rules

To assess the plausibility of the alternative hypotheses compared to the null hypoth-
esis, some test statistics are needed. The aim of these statistics is to quantify to
what extent a hypothesis is more plausible than another. The assumption that the
models considered are dominated is crucial for this since it permits to employ the
corresponding probability densities to construct the test. In this context, most test
statistics rely in informal terms on the ratio p(x|Hy)/p(x|H}) between the plausibil-
ity of the data under the respective hypotheses. The different formulations depend
on whether the parameters are known or unknown, and how the unknown param-
eters are dealt with. When the parameters before and after change are known in
advance, we can directly use the respective likelihoods of the data under the different
hypotheses.

Definition 2.3. Suppose that the sets =, 2, =} are singletons, for any 1 <7 < n—1.
The likelihood ratio at time i is the test statistic A’ defined as follows:

15— e, (%)
[T pei (%) TT =iy 1 et (%)

Remark 2.7. The LR statistic A’ vanishes whenever the likelihoods under H, and
Hi are equal, meaning informally that they are equally plausible. Moreover, A’ is
positive when the likelihood under Hj is less than under H?, meaning that Hj is
less plausible than Hi. Conversely, A’ is negative when the likelihood under Hy is
greater than under Hi, so that Hy is more plausible than H?.

AY(X) = —2log for all x € A™ . (2.4)

Remark 2.8. As limit cases, when the likelihood under Hy, respectively Hi, is null,
A% equals 400, respectively —oo. In the indeterminate case where both likelihoods
under Hy and H? are null, it is convenient to use the convention that A’ equals 0
since Hy and H} are both equally non-plausible.

Remark 2.9. In the usual case where the parameters £bef, &5, before and after change
are completely known in advance, we have =) = =} = {&¢}, and Z} = {&,4 }, for
all 1 <7 < n—1, and the LR simplifies to the common cumulative sum statistic
employed in the CUSUM procedure:

- Az Z log —2—= Peun (X5) . (2.5)
j=i+1 pébef

These statistics can in general be computed efficiently with a sequential update
scheme, making the CUSUM algorithm an attractive online procedure.!

When a parameter is unknown, the likelihood under the corresponding composite
hypothesis cannot be defined anymore and other test statistics are thus required.
The usual non-Bayesian approach is to replace the unknown parameters in the hy-
potheses with their maximum likelihood estimates, and to write the generalization
of the LR corresponding to these fixed parameters. We generalize this approach by
considering arbitrary estimates. It permits to unify the different combinations of

! Actually, only the maximum of these statistics is needed, which can be computed recursively.
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known and unknown parameters before and after change, as well as approximations
of the test statistics as discussed later, and to employ any other estimator than the
maximum likelihood estimator when needed.

Definition 2.4. Let EO, Eé, £ : X" — EZ, be estimators of the parameters €y, €, €L,
for any 1 < i <n — 1. The generalized likelihood ratio at time i is the test statistic
A defined as follows:

 Tare ™)
H;:1 Pgi(x) (x;) H?:i—‘,—l Pgi (%) (x;)

Remark 2.10. To simplify notations, we consider estimators for x € X", and con-
flate the estimators of the individual sample models for x; € X, with the esti-
mators of the i.i.d. sampling models for (xi,...,x,) € X" (x1,...,%;) € X,
(Xit1,---,X,) € X" We also allow arbitrary estimators in Z since it simplifies
the followmg discussion without loss of generahty ThlS is up to the user to choose
estimators in the respective correct subsets =, =f, =] when needed.

//i’(fc) = —2log

forall x € A" . (2.6)

Remark 2.11. Rather than using estimators for the unknown parameters, the com-
mon Bayesian alternative to the GLR is to integrate out the unknown parameters
using prior measures on the parameter space as in the MLR. Nonetheless, it re-
quires some prior knowledge on the distribution of the parameters, which is not
always available. Moreover, the computations may become intractable unless spe-
cific conjugate prior measures are employed, which may not always represent reliably
the true distribution of the parameters.

Remark 2.12. In the general case, the GLR is a sum of two cumulative sums:

'L Pax X;)
log 0777 log
; Pey(x Z

of Jj=i+1 pfo( ( ) . (27)

Nlr—t

As a special case, the GLR coincides with the LR when the parameters before and
after change are known and thus taken as the estimates. When the parameter before
change only is known, the GLR still simplifies to cumulative sums:

% Zl Pei ).

(2.8)
j=it1 pﬁbef(xj)

This expression is yet computationally more demanding than the LR. Indeed, the
estimates after change need to be computed and may differ for all hypotheses, and for
all successive windows. Therefore, there is no general known scheme for computing
these statistics efficiently in a sequential fashion.?

Remark 2.13. When the parameter before change is unknown, the GLR cannot be
written with only one cumulative sum anymore, even if the parameter after change is
known. Its expression thus becomes even more expensive to compute. This is why it
is in general approximated, by assuming the parameter before change known, while
actually estimating it at once for all hypotheses, either on the whole data sample,
or in a dead region at the beginning of the window where no change is assumed to
occur.

2Moreover, the maximum of the statistics is in general not recursive anymore.
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2. Sequential Change Detection with Exponential Families

Remark 2.14. When the maximum likelihood estimates of the parameters in the
hypotheses exist and are taken as the estimates, the GLR as defined here for arbitrary
estimates specializes to the usual definition of an exact GLR statistic:

SUP¢i c=i H;':1 Dei (x;) SUP¢i czi H;L:z‘-u Pei (x;)
Supso [SEN) H?:l pso (X.]>

1
2

A(x) = log (2.9)

In particular, when the parameter before change is completely known in advance,
or is assumed to be known while actually being roughly determined, it leads to the
standard GLR statistics employed in practice:

—A'(X) = sup Z log M : (2.10)

2 giezl j=i+1 Dg,, ¢ (X])
This test statistic is however an approximation of the exact GLR statistics as soon
as the parameter before change is unknown.

Based on the chosen test statistics, we eventually need a decision rule to trigger
a change point or not. Since the GLR as defined here encompasses the LR and
classic or approximate GLR, we thus focus on decision rules based on it. The GLR
statistics quantify how much the respective alternative hypotheses of a change at
the different time points are plausible compared to the null hypothesis of no change.
The classic non-Bayesian decision rule then amounts to thresholding the maximum
of the GLR along time to detect a change.

Definition 2.5. Let A > 0 be a threshold. The non-Bayesian decision rule for a
change is the statistical decision rule defined as follows:

~  H
max A'(X) 2 A forallx e A™ . (2.11)

1<i<n—1 I

Remark 2.15. The change point is then estimated by maximum likelihood estimation,
as the first time point where the maximum of the test statistics A’(X) is reached.

Remark 2.16. As an alternative to the non-Bayesian point estimation with the max-
imum of the GLR, the usual Bayesian decision rule relies on integrating the MLR
with a prior discrete measure on the different time points, or in simpler terms, on
considering a weighted sum of the MLR. This requires some prior knowledge on the
distribution of the time intervals between change points, which is not always avail-
able. Moreover, the computations may again become intractable except for certain
specific priors. In particular, the literature has focused on a geometric prior over
change, which is not always suited to model reliably arbitrary signals

To conclude this section, we insist again on the fact that when the parameter
before change is unknown, almost all previous works employ approximations of the
exact GLR in order to keep tractable updates in a sequential scheme. To this end,
the parameter before change is assumed to be known, and is actually estimated at
once and set equal in all hypotheses. For example, the estimation can be performed
either on the whole window, or in a dead region at the beginning of the window
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2.3. Methods for exponential families

where change detection is turned off. In the GLR, the estimators before change are
then set equal to this fixed estimated value for all hypotheses. Such approximations
may work when the time intervals between successive changes are important so that
the approximation is valid, but their results break down because of estimation errors
as soon as the changes occur more often. We argue after that we can still employ
computationally efficient decision schemes based on the GLR statistics, for the large
class of exponential families, and without using such approximations.

2.3. Methods for exponential families

In this section, we elaborate on the proposed methods for change detection when
the parametric statistical model is an exponential family. We first develop a generic
scheme for exact GLR statistics with arbitrary estimators, and interpret it in rela-
tion to maximum likelihood estimation within the dually flat geometry of exponen-
tial families. We then particularize this generic scheme to common scenarios with
known and unknown parameters before and after change. We finally revisit the
generic scheme through convex duality and provide a specific scheme with closed-
form sequential updates for the exact generalized likelihood ratio statistics, when
both the parameters before and after change are unknown, and are estimated by
maximum likelihood.

2.3.1. Generic scheme

We recall that the non-Bayesian decision rule amounts to thresholding the maxi-
mum of the GLR along time. It appears that for exponential families, the GLR
with arbitrary estimators is closely related to the maximum likelihood estimators.
In the sequel, we restrict without loss of generality to minimal standard exponen-
tial families. For technical regularity that guarantees the existence and tractability
of maximum likelihood estimates to a certain extent, we further assume that the
minimal standard exponential family is also full and steep.

Theorem 2.1. Suppose that P = {Pa}ecy 5 a full minimal steep standard ez-
ponential family, and let 6} ,,0% ., be the mazimum likelihood estimators of the
parameters 0}, 0", for any 1 <i <n—1. The generalized likelihood ratio A’ at time

i verifies the following relation:

P@o@)) — D <P96ml<f«>HPAa<i>> }
P(%(;z)) — Dxi, <P5§m1(>’<) % (% )} for allx € KEN KL,
(2.12)

1~
3 809 =i { D (P00

+(n—i) {DKL (P@i o

where the sets Ki, K¢, are defined as Ky = {x € (R™)": %Z;zl x; € int K}, and
Ki={xe @®Rm)": -L5S"  x;€intK}.

n—i =i+
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2. Sequential Change Detection with Exponential Families

Proof. Let x € K™ be some sample observations. Replacing the densities with their
exponential representations, the GLR at time i can be developed as follows:

lAii _ i ) exp{aé(i)TXj—iﬂ(aé(i))}
2A( ) ;1 gexp {ao(i)TXj—iﬁ(ao(?_())}
o e {Bi®' % - v@ix))
P "y~ wlBox)}

j=itl  €xp {50@2)
Simplifying the logarithms and exponentials, and regrouping terms, we obtain:

(2.13)

R0 = {80 - 8y(x) x, — w(By(x)) + v (By(x)) )

j=1

+ 3 {@®) - 83) %) - vBi() + vB,x) } . (214)

j=i+1

Assuming now that the sample observations belong to Kj N K¢, the maximum like-
lihood estimates of the parameters 06, 6’%, exist and are unique by steepness of the
family. Moreover, they belong to int A/, and are given in expectation parameters
by the average of the respective sufficient observations. The GLR can therefore be
written as follows:

() = i {0(80(R)) — v(B(R) + (BU(R) — 0y(X)) Ve6(8},.(%)) }

+ (0= 1) {£(B0(%)) — v(B} (%) + (BL(X) - (X)) Vo(Bi,u()} . (215)

N —

We can also add and subtract the maximum likelihood estimates 6% (), 8¢ (),

and their log-normalizers @/J(@é (X)), (6 (X)), to make Bregman divergences By,
appear as follows:

() = i { Bu(Bo(R)105 (%)) — B(B5(%)]8).,(5)) |
+ (1= i) { Bul@0(2)[8},4(X) — Bu(@}(2)[0},4(X)} - (216)

This proves the theorem by rewriting the Bregman divergences on the natural pa-
rameters as Kullback-Leibler divergences on the swapped corresponding distribu-
tions. O

N —

Remark 2.17. Actually, we can restrict to minimal standard families without loss
of generality because the GLR statistics are invariant, up to set of null measure,
under the transformations involved in the reduction of an arbitrary exponential
family to a minimal standard one, that is, sufficiency, reparametrization, and choice
of a dominating measure. This makes the related statistical decision intrinsic to
the underlying statistical manifold, which is confirmed by the expression of the
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2.3. Methods for exponential families

Figure 2.3.: Geometrical interpretation of change detection. The problem of change
detection with exponential families and exact generalized likelihood ra-
tio test statistics based on arbitrary estimators, can be seen as comput-
ing certain information divergences between the estimated distributions
and the maximum likelihood distributions in the different hypotheses.

test statistics in terms of Kullback-Leibler divergences on the probability densities,
since the Kullback-Leibler divergence is invariant under the same transformations.
Moreover, the equivalence between different minimal standard reductions up to an
affine transformation of the natural parameters, can be seen in the expression of
the test statistics in terms of Bregman divergences, since Bregman divergences are
invariant under affine transformations of their generating function.

Remark 2.18. As illustrated in Figure 2.3, the generic GLR scheme can be inter-
preted as (i) computing the divergences between the maximum likelihood estimates
before change, respectively after change, and the chosen estimate with no change,
(ii) correcting the chosen estimates before change, respectively after change, com-
pared to the maximum likelihood estimates before change, respectively after change,
(iii) weighting by the number of sample observations before change, respectively after
change.

Using different combinations of estimators for the respective parameters in the hy-
potheses, we can derive specific forms of the GLR in many scenarios with known and
unknown parameters, with arbitrary estimates or maximum likelihood estimates,
and even with approximate statistics. Before discussing these different scenarios,
we state a direct corollary which encompasses most of them, except from the exact
GLR when both parameters are unknown, in the case where all estimators before
change are set equal.

Corollary 2.2. Suppose that the estimators 90, @g are equal, for any 1 < i <mn—1.
The generalized likelihood ratio A* at time i verifies the following relation:

1~ ,
S M(®) = (n—i) {DKL (Péim(i) P%(sc)) ~ Dre <P@iml<i>

Péi(*))} for allx € K.
(2.17)

Proof. This follows from the theorem in the case where 50 = @6 More precisely, it is
not required in this case that X € K in the proof of the theorem. Indeed, the terms
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2. Sequential Change Detection with Exponential Families

with the sufficient observations before change vanish so that we need not introduce
the maximum likelihood estimate before change. O

Remark 2.19. This specific GLR scheme can therefore be interpreted as (i) comput-
ing the divergence between the maximum likelihood estimate after change, and the
chosen estimator with no change, or equivalently before change since they are equal,
(ii) correcting the chosen estimator after change compared to the maximum likeli-
hood estimate after change, (iii) weighting by the number of sample observations
after change.

Remark 2.20. We have supposed implicitly that the chosen estimator @0 = 56 is
well-defined everywhere on (R™)", or at least on K. If it is not the case, then its
exact domain of definition needs to be considered as an intersection with K¢. For
example, if we use the maximum likelihood estimator in a dead region of ng < n
samples at the beginning of the window, then the correct domain is Kj° N K¢, for
any ng <t < n — 1. The reasoning is similar for the maximum likelihood estimator
on the whole window.

Remark 2.21. A similar relation can be derived when the estimators after change
and with no change are equal. Nevertheless, this case is in general not relevant in
practical situations so we do not discuss it further.

2.3.2. Case of a known parameter before change

We consider here the common scenario where the parameter before change is as-
sumed to be known. We begin with the simpler case where the parameter after
change is also known. This actually corresponds to the simple LR statistics, ex-
pressed here for exponential families in terms of information divergences.

Example 2.1. For the problem of change detection with exponential families where
both the parameters Oy, 0. before and after change are known, the respective
estimators in the hypotheses are taken constant as 8, = 0} = Oner, and 0} = 0,4,
for all 1 <7 <n — 1. The test statistics can therefore be expressed as follows:

1~ )
§A (X> = (77, - Z) {DKL (Péliml(;() Pgbef> — Dx1, (Péiml(i)HPBaft>} . (2.18)

Now considering that the parameter after change is unknown, we obtain a similar
expression as for the LR statistics. If we also assume that the unknown parameter is
estimated by maximum likelihood in the respective hypotheses, the expression can
be simplified further. This actually corresponds to the standard GLR statistics for
a known parameter before change, expressed here for exponential families in terms
of a simple information divergence.

Example 2.2. For the problem of change detection with exponential families where
the parameter 6y before change is known, and the parameter after change is un-
known, the respective estimators before change in the hypotheses are taken constant
as 0, = 0} = O, for all 1 <i < n—1. The test statistics can therefore be expressed
as follows:

L~y :
5AZ(X) == (TL - Z) {DKL <P§11ml(i) P

) - (219)

Pgbef) - DKL (Pai ml(i)
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2.3. Methods for exponential families

Supposing further that the maximum likelihood estimators are chosen for the esti-
mators after change as 6} = 0%, for all 1 <14 < n — 1, the test statistics can be
simplified as follows:

Ai(%) = (n — i) D, (P@

- Pgbef) . (2.20)

1
2
2.3.3. Case of unknown parameters before and after change

We now turn to the common scenario where both the parameters before and after
change are unknown. In the literature, this situation is most of the time addressed
by setting the estimators before change equal in the respective hypotheses, as dis-
cussed previously. It corresponds to the general case of the above corollary. Further
considering the maximum likelihood estimators, the statistics actually specialize to
the approximate GLR statistics commonly employed.

Example 2.3. For the problem of change detection with exponential families where
both the parameters before and after change are unknown, the respective estimators
before change in the hypotheses can be set equal as 6, = 6}, for all 1 < i <
n —1. Supposing further that the maximum likelihood estimators are chosen for the
estimators after change as 8% = @/, for all 1 <4 < n — 1, the test statistics can be
simplified as follows:

Al(%) = (n — i) Dgu. (Pa ]

7iml(x)

1
5 P,;O(i)) . (2.21)
The single estimator before or with no change @0 can then be chosen as the maximum
likelihood estimator over the whole window or over a dead region at the beginning
of the window, as discussed previously.

We propose here an alternative to approximate GLR statistics, by considering
exact GLR statistics where the estimators before change are estimated separately in
the respective hypotheses. In the general case, it corresponds to the generic updates
of the above theorem. Further considering the maximum likelihood estimators, the
statistics specialize to the exact GLR statistics defined in the literature, but replaced
in practice with the approximate GLR statistics for computational reasons.

Example 2.4. For the problem of change detection with exponential families where
both the parameters before and after change are unknown, the respective estimators
in the hypotheses can be chosen to be the maximum likelihood estimators 8, = 8,
6: =6 0 =8 foralll<i<n—1. The teststatistics can then be expressed
as follows:

1~ .

5 N®) =i D (P@ ) (2.22)

éml (X)

PgOHﬂ(i)) + (n B Z> DKL (Pai m1(%) Péoml(i))

This directly follows from the theorem, after remarking that the maximum likelihood

estimate with no change is well-defined. Indeed, if the observations belong to {NK%,
then they also belong to Ky = {X € (R™)": & Y51 X; € int K} by convexity of int .
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Remark 2.22. The exact GLR scheme with maximum likelihood estimators can
therefore be interpreted as (i) computing the divergence between the maximum
likelihood estimate before change, respectively after change, and the maximum like-
lihood estimate with no change, (ii) weighting by the number of sample observations
before change, respectively after change.

2.3.4. Generic scheme revisited through convex duality

The above expressions of the GLR variations in terms of information divergences
give both statistical and geometrical intuitions to change detection in exponential
families. Moreover, because of the correspondence between exponential families and
their associated Bregman divergences, this shows tight links between statistical and
distance-based approaches to change detection. Further taking advantage of the du-
ally flat information geometry of exponential families, we now rely on convex duality
to reparametrize the problem from the natural to the expectation parameter space.
This provides additional evidence for the corrective role of the chosen estimators
compared to maximum likelihood in the generic GLR scheme.

Proposition 2.3. Suppose that P = {Po}gep 5 a full minimal steep standard

exponential family, and let 00 ml> 90 ml> 6i . be the mazimum likelihood estimators of

1mly

the parameters 0,0}, 0", for any 1 <i <n — 1. The generalized likelihood ratio Ai
at time 1 verifies the following relation:

%N(i) =i ¢(0y(X)) +(n—1) 9(71 (X)) —n d(7 (X)) + A () for all x € KN K

(2.23)
where the corrective term Al | at time i compared to mazimum likelihood estimation
is expressed as follows:

ALY (R) = i (7 (%) — (X)) Vo(i(x ))+(n—i) (A (%) — 7L(X)) | V(@ (X))
— 1 (Mg (X) — (X)) V¢(’70( ) forallx € KoMK . (2.24)

Proof. Rewriting the generic GLR at time ¢ with Bregman divergences B, on the
expectation parameters, we obtain the following expression:

—A’ = i { B (7 (3)11710(%)) = Bus (1, (%) 170(%)) |
+ (n = i) {Bo (01 (X)[170(%)) — By(0 () [11(X)) } - (2.25)

Developing the Bregman divergences with their standard expressions and regrouping
terms, the GLR can then be expressed as follows:

5 MR) = 6@) + (0 1) 97 (E) — nolp(®) + Aly(®) , (2.26)

where A? (x) writes as follows:

ALR) = i (@m(X) — T15(R)) Vo@H(R)) + (1 — i) (A (X) — 71(X)) VO(# (X))
— (i Ty (R) + (0= D) A (X) = n7(X)) Vo(Ay(X)) . (2.27)
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2.3. Methods for exponential families

The last term can be re-expressed to provide the final expression of the corrective
term A’ (x). Indeed, it suffices to observe that the maximum likelihood estimate
with no change is the barycenter of the maximum likelihood estimates before and
after a change at time ¢, that is:

g (X) = 170 (%) + (70— 0) 71 (%) - (2.28)

This is easily seen from the equation of the maximum likelihood estimates as averages
of the corresponding sufficient observations. Here we have used implicitly that since
the sample observations belong to K N Ki, they also belong to Ky by convexity of
int IC, so that the maximum likelihood estimate with no change exist and is unique
by steepness of the family. This proves the proposition. O

2.3.5. Case of unknown parameters and maximum likelihood

We finally use the above results to revisit the common scenario where both the pa-
rameters before and after change are unknown, in particular for exact GLR statistics
based on maximum likelihood estimators. In this case, the corrective term vanishes
and simplifies the expression of the statistics.

Example 2.5. For the problem of change detection with exponential families where
both the parameters before and after change are unknown, and where the estimators
in the respective hypotheses are chosen to be the maximum likelihood estimators
0, =0y, 0, =6, 0, =0, forall 1 <i<mn—1, the test statistics can be
expressed as follows:

N(%) = i 6@ (X)) + (0= 1) O(@} 1a(X)) = 16T a(X) - (2.29)

DN | —

This alternative expression for the exact GLR statistics greatly simplifies its compu-
tation. It is obtained in closed form in terms of the conjugate ¢ of the log-normalizer
1 for the exponential family. Moreover, because maximum likelihood estimates
between successive windows are related by simple time shifts or barycentric up-
dates in expectation parameters, this provides a computationally efficient scheme
for calculating the statistics in a sequential fashion. For example, if no change has
been detected in the previous window, the statistics can then be simply updated as
i) < Ty (R, b (R) 4 Ay (R, 7} a(F) < (i = 1) (%) 40/ (n 1),
N 1HX) < X, Tom(X) < (0 — DAY, (X) + %) /n, for all 1 <4 < n — 1. Similar
updates can be obtained when a change point has been detected. Moreover, certain
values at which the conjugate ¢ is evaluated actually reappear because of time shifts,
and can therefore be stored to facilitate tractability. Nonetheless, the computational
complexity in a given window is still linear in the number of observations since the
GLR statistics need to be computed for every potential change point.?

3In a sequential change detection scheme where the window is growing until a change is detected,
it may therefore be necessary to employ heuristics to bound the number of tested change points,
for example, by using a maximum window size or by pruning the lowest statistics.
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2.4. Discussion

In this chapter, we proposed generic methods for sequential change detection with
exponential families. The developed framework therefore unifies change detection for
many common statistical models. We followed a standard non-Bayesian approach
where change detection is formulated as a statistical decision problem with multiple
hypotheses and solved by employing generalized likelihood ratio test statistics. We
also introduced arbitrary estimators in the definition of the generalized likelihood
ratios. Applying this to exponential families, we developed a generic scheme for
change detection under common scenarios with known or unknown parameters and
arbitrary estimators, in close relation to maximum likelihood estimation. We also
interpreted this scheme within the dually flat geometry of exponential families, hence
providing both statistical and geometrical intuitions, and bridging the gap between
statistical and distance-based approaches to change detection. We finally revisited
this scheme through convex duality, and derived an attractive scheme with closed-
form sequential updates for the exact generalized likelihood ratio statistics, when
both the parameters before and after change are unknown and are estimated by
maximum likelihood. Several directions of improvement were however left out for
future work.

To begin with, some direct extensions of the framework are possible. An example
is the generalization of the obtained results to non-full families. We can actually
show that the results derived here still hold for certain curved exponential families,
with slight modifications when revisiting the schemes through convex duality, so as to
account for the maximum likelihoods before and after change not being simply linked
anymore with the maximum likelihood for no change through a barycentric relation.
Interestingly, this extension relies on the generalized Pythagorean theorem, and
on projections according to information divergences onto autoparallel submanifolds
in the dually flat geometry of exponential families. We yet did not develop this
extension here for the sake of conciseness.

Another example is to consider non-steep family as well. This requires however a
few additional assumptions. For these families, the maximum likelihood estimates
exist and are unique under the same conditions as for steep families, that is, if the
average of the sufficient observations lies in the interior of the convex support of the
dominating measure. Nevertheless, the maximum likelihood estimate in expectation
parameters does not necessarily equals the average of the sufficient observations.
This is because the open expectation parameter space is a proper subset of the convex
support of the dominating measure. Therefore, the presented results still hold under
the condition that this average is indeed in the expectation parameter space. On
the contrary to steep families, it does not unfortunately occur with probability one
as the sample size tends to infinity, so that the schemes may actually never apply
in practical situations.

A third example is the analysis of specific schemes when using other estimators
than the maximum likelihood. For instance, we can derive a similar sequential
update scheme as for maximum likelihood estimates, when using convex duality for
maximum a posteriori estimates based on standard exponential family conjugate
priors. The scheme is slightly more demanding since the corrective term does not
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simplify anymore. The maximum a posteriori estimates are however also related
by simple time shifts and barycentric updates which facilitate tractability. Other
estimators could also be investigated such as using quasi likelihoods to account for
potential model misspecification. This idea is worth exploring.

A last example is the consideration of aggregates, or closures, of exponential fam-
ilies [Barndorff-Nielsen 1978, Brown 1986, Csiszar and Matus 2005]. This would
permit to include the domain boundaries as well as the limit distributions in the
schemes, while guaranteeing the existence of maximum likelihood estimates and of
their simple expression in all situations. Further considerations are however needed
on this line to rigorously extend the obtained results.

In complement to the statistical assumptions of mutual independence considered
in the proposed framework, we also want to address the statistical dependence be-
tween the random variables. As discussed in the text, the statistical framework ex-
posed based on multiple hypothesis testing can be extended to arbitrary conditional
models. Nevertheless, the issue in this context rather becomes the tractability of
the test statistics as soon as the parameters are unknown. Specific change detection
schemes have yet been proposed for particular models, notably for autoregressive
models as in [André-Obrecht 1988]. More generally, we would like to address change
detection in linear or even non-linear systems. Online schemes based on particle
filtering have been proposed for instance in [Fearnhead and Liu 2007] to detect
changes in non-linear systems, but such schemes suffer from computational loads
when properly considering unknown parameters and exact inference. An alternative
based on CUSUM-like test statistics has recently been proposed in [Vaswani 2007].
A different approach would be to model the observations through marginals and
copulas, and detect changes either linked with the marginal distribution or with the
dependency structure of the data.

On another perspective, we could also formulate sequential change detection in
a Bayesian framework to complement the non-Bayesian framework developed here.
This implies proposing relevant distributions to model both the run length between
change points and the unknown parameters, seen as random variables. In this
context, several frameworks have already been proposed, for example in [Adams and
MacKay 2007, Turner et al. 2009, Lai et al. 2009, Lai and Xing 2010, Fearnhead and
Liu 2011], certain dealing notably with exponential families. The inference schemes,
however, are in general more demanding than for non-Bayesian approaches, even
when using convenient conjugate priors on parameters. Moreover, conjugate priors
do not necessarily model adequately the true distributions so that alternatives may
be required. Using mixtures of conjugate priors, or equivalently hyperpriors in a
hierarchical model, may provide interesting solutions to address this.

Finally, we would like to address the use of alternative statistics than likelihoods.
This could be achieved by reversing the problem and starting from divergences. Here
we considered test statistics and derived expressions in terms of information diver-
gences within the dually flat geometry of exponential families. Another approach
is to directly design statistics through divergences in order to obtain more robust
estimators and tests while maintaining sufficient efficiency [Eguchi 1983, Basu et al.
1998, Eguchi and Kano 2001, Mihoko and Eguchi 2002, Pardo 2006, Broniatowski
and Keziou 2009, Eguchi 2009, Basu et al. 2011]. This was left out for future work.
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3. Non-Negative Matrix
Factorization with
Convex-Concave Divergences

In this chapter, we elaborate methods for non-negative matrix factorization within
the computational framework of information geometry. We notably formulate a
generic and unifying framework for non-negative matrix factorization with convex-
concave divergences. This framework encompasses many common information di-
vergences presented in Chapter 1, such as Csiszar divergences, certain Bregman
divergences, and in particular all a-divergences and (-divergences. A general opti-
mization scheme is developed based on variational bounding with surrogate aux-
iliary functions for almost arbitrary convex-concave divergences. Monotonically
decreasing updates are then obtained by minimizing the auxiliary function. The
proposed framework also permits to consider symmetrized and skew divergences
for the cost function. In particular, the generic updates are specialized to provide
updates for Csiszar divergences, certain skew Jeffreys-Bregman divergences, skew
Jensen-Bregman divergences. It leads to several known multiplicative updates, as
well as novel multiplicative updates, for a-divergences, [-divergences, and their
symmetrized or skew versions. These results are also generalized by considering
the family of skew («, 3, A)-divergences. This is applied in Chapter 5 to design a
real-time system for polyphonic music transcription.

3.1. Context

In this section, we first provide some background information on the problem of
non-negative matrix factorization. We then discuss the motivations of our approach
to this problem. We finally sum up our main contributions in this context.

3.1.1. Background

Let us consider a dataset {yi,...,y,} of size n consisting of non-negative multi-
variate observations of dimension m, and stack these observations into an m x n
non-negative matrix Y whose rows and columns represent respectively the different
variables and observations. As sketched in Figure 3.1, the problem of non-negative
matriz factorization (NMF) is to find an approximate factorization of Y into an mxr
non-negative matrix A and an r X n non-negative matrix X, such that Y ~ AX,
where the integer r < min(m,n) is the rank of factorization. In this linear model,
cach observation y; can then be expressed as y; ~ Ax;. The matrix A thus forms
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Figure 3.1.: Schematic view of non-negative matrix factorization. —The prob-
lem of non-negative matrix factorization consists in reconstructing
non-negative observations, as the addition of a small number of
non-negative atoms with non-negative weights.

a basis or dictionary, and the columns of X are a decomposition or encoding of the
respective columns of Y into this basis. Moreover, the rank of factorization is gen-
erally chosen such that mr 4+ rn < mn, so that the factorization can be thought of
as a compression or reduction of the observed data.

The NMF problem is therefore an unsupervised technique for multivariate data
analysis and dimensionality reduction, such as principal component analysis (PCA)
and independent component analysis (ICA). The distinction with the two latter
techniques, however, is that no other constraints than non-negativity of the obser-
vations and factors are required in NMF. These constraints are dropped in PCA and
ICA in favor of constraints for basis vectors that are respectively statistically uncor-
related or independent. As a result, cancellation is not allowed in the decomposition
of NMF, whereas it is allowed in the decomposition of PCA and ICA through the
subtraction of basis vectors. The main philosophy of NMF is thus to explain the ob-
servations in a constructive manner by addition of a small number of non-negative
parts shared by several observations. Such assumptions are particularly interest-
ing when negative values cannot be interpreted, for example, the pixel intensity for
images, the word occurrence for texts, or the frequency power spectrum for sounds.

Because of the low-rank factorization, the NMF model is most of the time only
approximate. As a result, the NMF problem is often formulated as an optimization
problem, where the aim is to find a factorization which optimizes a given functional,
called cost function or objective function, that quantifies the quality of the factor-
ization. In general, the rank of factorization is kept fixed in the optimization, either
chosen by the user or sometimes estimated directly from the data. The optimization
is then performed over all possible pairs of non-negative factors A and X. Moreover,
most if not all works on NMF focus on separable cost functions, that is, that are the
sum of a given scalar cost function considered element-wise.
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Historically, the formulation of NMF is attributed to Paatero and Tapper [1994],
Paatero [1997], who solved the problem for a weighted Euclidean cost function by
using an alternating non-negative least squares algorithm, and applied it to the anal-
ysis of environmental data in chemometrics. It became however more popular after
the work of Lee and Seung [1999, 2001], who investigated some simple and useful
algorithms based on multiplicative updates for the Euclidean and Kullback-Leibler
cost functions, with applications to the analysis of facial images and of text docu-
ments. Since then, there has been a growing interest for NMF in the communities
of machine learning and signal processing, and a flourishing literature has developed
about other algorithms and extensions to the standard NMF problem. We refer the
reader to the survey article of Berry et al. [2007] for a general introduction, and to
the book of Cichocki et al. [2009] for a comprehensive treatment as well as a discus-
sion of the main applicative domains of NMF algorithms, including bioinformatics,
spectroscopy, email surveillance, and analysis of text, image or audio data.

The differences between the variations of NMF can be summarized in three prin-
cipal directions. First, the standard model can be modified, for example, by using
non-negative tensors instead of non-negative matrices. Second, the standard con-
straints can be changed, for example, by imposing the sparsity of the factors in ad-
dition to their non-negativity. Third, the standard cost functions can be enhanced,
for example, by using more general divergences, or by adding penalization terms
to regularize the solutions. Several other algorithms than alternating least squares
and multiplicative updates have also been developed to solve NMF and its exten-
sions, notably based on gradient descent methods, adapted to the non-negativity
constraints by using exponentiation, line search, backtracking, or projections.

More recently, NMF has also been considered from statistical perspectives. In
this context, several authors have studied the links between optimization problems
for NMF and statistical inference under generative distributional assumptions of
the dataset [Schmidt and Laurberg 2008, Schmidt et al. 2009, Virtanen et al. 2008,
Virtanen and Cemgil 2009, Févotte et al. 2009, Févotte and Cemgil 2009, Févotte
2011, Cemgil 2009, Zhong and Girolami 2009, Bertin et al. 2010, Hoffman et al.
2010, Dikmen and Févotte 2011, Lefevre et al. 2011a]. In summary, equivalence is
known between the NMF problem with either the Euclidean, Kullback-Leibler, or
Itakura-Saito cost function, and the maximum likelihood estimation under either a
normal, a Poisson, or a gamma observation model, respectively. There also exist
equivalent composite models with superimposed components, which exploit either
the closure under summation of the normal and Poisson observation models for the
Euclidean and Kullback-Leibler cost functions, or a specific property of the circular
complex normal distribution for the Itakura-Saito cost function.

Based on such statistical formulations, it is then possible to use many tools from
statistical inference to solve the related NMF problems, such as the expectation-
maximization algorithm and its generalizations. Moreover, it is possible to add
statistical prior information to the problem, which can be seen as adding penalty
terms to the cost function for regularization. For example, a prior exponential
distribution on the activations is known to favor a sparse solution through an ¢;-norm
penalty. A full Bayesian framework can be developed in this manner. One then
rather resorts to posterior estimation methods for solving the NMF problem, by
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using Monte-Carlo methods such as Markov chain Monte Carlo schemes and in
particular Gibbs sampling, or by using variational Bayes methods.

In parallel, more general matrix factorization models have also been considered
by using the correspondence between exponential families and Bregman divergences
[Collins et al. 2002, Singh and Gordon 2008, Mohamed et al. 2009, 2012]. The
general setting is that of latent variable models, where the sample observations
Yi,-..,Yn are supposed to be the sufficient observations of an exponential family
with respective expectation parameters Ax;,..., Ax,.! Under mild assumptions,
the negative log-likelihood —log p(Y|A, X) actually equals the sum of Bregman di-
vergences »_;; By(y;[|Ax;) up to constant terms, where ¢ is the conjugate of the
log-normalizer v for the exponential family. As a result, maximum likelihood es-
timation in this model amounts to a right-sided approximate matrix factorization
problem with a Bregman divergence. It therefore elucidates the relations between
the cost function and the distributional assumptions, and unifies many matrix fac-
torizations models such as PCA, ICA, as well as NMF and the related techniques of
probabilistic latent semantic analysis (PLSA) [Hofmann 1999, Gaussier and Goutte
2005], and probabilistic latent component analysis (PLCA) [Smaragdis and Raj 2007,
Shashanka et al. 2008]. Again, a full Bayesian framework with adapted methods for
statistical inference is also possible in this setting.

3.1.2. Motivations

Because of the wide applicative range of NMF techniques, there is a strong moti-
vation in providing generic methods that handle data of heterogeneous types under
different distributional assumptions. In many NMF algorithms, however, a partic-
ular cost function or statistical model is assumed. Therefore, a generic statistical
framework based on the correspondence between exponential families and Bregman
divergences, as discussed above, seems an interesting approach to the NMF problem.
Indeed it provides tight links between statistical inference in the models involved and
optimization of the related cost functions for a great variety of problems.

Nevertheless, because of the generality of this framework, the inference schemes
employed may undergo theoretical and computational issues, related to convergence,
efficiency and tractability. Moreover, it is not always evident to deal soundly with the
non-negative constraints in generic inference schemes when the priors or model do
not guarantee inherently this constraint. As a result, specific optimization schemes
are still often derived to address particular NMF problems [Tan and Févotte 2009,
Psorakis et al. 2011].

Other issues are that we do not always know the exact distribution of the data
to analyze, and that the NMF problem may suffer from model misspecification,
hence undermining the robustness of inference. A similar problem arises from the
potential presence of outliers, which requires robust inference methods to be dealt
with. In statistical inference, an alternative to tackle robustness issues is to minimize
other divergences than that for the maximum likelihood estimator, for example, the
left-sided related divergence corresponding to the maximum likelihood predictor
[Barndorff-Nielsen 1978, Brown 1986], or by employing more general families of

Tt can also be generalized to other parametrizations through the use of link functions.
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divergences designed to improve robustness while maintaining sufficient efficiency
[Eguchi 1983, Basu et al. 1998, Eguchi and Kano 2001, Mihoko and Eguchi 2002,
Pardo 2006, Broniatowski and Keziou 2009, Eguchi 2009, Basu et al. 2011].

In the context of NMF, such alternatives have been considered by several authors.
Cichocki et al. [2006] studied the right-sided NMF problem with certain Csiszar
divergences and proposed heuristic multiplicative updates. Cichocki et al. [2008] fo-
cused on the right-sided NMF problem with a-divergences, and derived multiplica-
tive updates that decrease monotonically the cost function, by using an auxiliary
function based on the convexity of the cost function and Jensen’s inequality. In the
meantime, Dhillon and Sra [2006] studied the right- and left-sided NMF problems
with Bregman divergences, and provided heuristic updates for the right-sided prob-
lem, as well as monotonically decreasing updates for the left-sided problem based
again on an auxiliary function using convexity of the cost function and Jensen’s in-
equality. Kompass [2007] considered the right-sided NMF problem with a subfamily
of B-divergences for which the cost function is convex, and proposed multiplicative
updates that decrease monotonically the cost function with the very same approach.

More recently, Nakano et al. [2010a] extended this to the right-sided NMF problem
with any g-divergence, still using an auxiliary function relying on Jensen’s inequality
for the convex part of the cost function, and on the tangent inequality for the
concave part. Févotte and Idier [2011] independently obtained the same results,
and introduced other monotonically decreasing updates based on the equalization of
the auxiliary function, rather than on its minimization as in the previous approaches.
Cichocki et al. [2011] generalized some results to the right-sided NMF problem with
(o, B)-divergences and provided monotonically decreasing multiplicative updates,
again by minimizing an auxiliary function built with the same approach.

We position in the continuity of these works and seek to formulate a unifying
framework for NMF optimization based on general families of divergences, with
guaranteed monotonic decrease and thus convergence of the cost function.? More-
over, we aim at studying indifferently left- and right-sided NMF problems, as well
as considering ways of symmetrization and skewing of the cost functions, which has
been left aside from the literature up to now.

In the sequel, we consider algorithms based on alternating updates. Because the
NMF problem is in general not jointly convex in both factors and uneasy to solve,
most algorithms iteratively update the factors A and X separately. After initializing
A and X, a generic NMF scheme can be stated as follows. We first fix X and update
A so as to improve the quality of the factorization, then fix A and update X so as
to improve the quality of the factorization. These two steps are repeated in turn
until a termination criterion is met. We can of course consider the updates in the
reverse order, and the two initializations are not always required depending on the
algorithm and the order of the updates. In this context, it thus seems crucial from
theoretical and practical viewpoints to us, even if heuristic updates are still often
used, that the respective updates guarantee at least the monotonic decrease of the
cost function so that the factorization is improved at each iteration.

2The convergence of the cost function does not prove however its convergence to a global or local
minimum, nor the convergence of the sequence of updates itself, which are theoretically more
difficult to obtain and are not discussed here.
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We also consider NMF with separable divergences. This basic assumption allows
viewing the factors A and X similarly. It seems intuitive at first sight, since if Y ~
AX, then Y' =~ XTAT, so that the roles of the factors are interchangeable. In this
context, the NMF problem can be conveniently reduced to finding an update of the
respective columns x; of X, where A is kept fixed. We thus concentrate without loss
of generality on solving the supervised non-negative matrix factorization problem,
also called non-negative decomposition problem, y ~ Ax, where the non-negative
vector y and matrix A are known, and the non-negative vector x is chosen so as
to optimize the quality of factorization with respect to a separable cost function.
Nevertheless, we notice that the separability assumption, even if intuitive and used in
almost all works, is disputable. Indeed, in the statistical framework exposed above,
it is closely related to assumptions on the independence or exchangeability of the
observations which are not always met in practice. Yet we leave these considerations
apart from the present work, and focus on separable divergences.

3.1.3. Contributions

We follow a common optimization framework for non-negative matrix factorization
with separable divergences where the factors are updated in turn iteratively, so that
we can reduce the original problem to a non-negative decomposition problem. As
mentioned above, the main issue of most approaches in this context is to rely on spe-
cific cost functions, some of which may lead to convergence issues and in particular
to a non-monotonic decrease of the cost function. Nonetheless, several independent
approaches have tackled this issue by employing families of cost functions, notably
certain Csiszar and Bregman divergences, as well as the parametric a-divergences,
p-divergences and («, 5)-divergences. Our main contributions in this continuity can
be summarized as follows.

We formulate a generic and unifying framework for non-negative matrix factoriza-
tion with convex-concave divergences. These general divergences encompass many
common information divergences, and therefore permits to handle the majority of
cost functions proposed in the literature so far, as well as novel ones, with a single
generic methodology. It notably includes all Csiszar divergences in both the left and
right arguments, all Bregman divergences in the left argument, and certain Bregman
divergences in the right argument. In particular, all a-divergences and (-divergences
are actually convex-concave in both arguments. We propose a general optimiza-
tion scheme for non-negative decomposition with convex-concave divergences under
mild regularity assumptions. It relies on the optimization technique of variational
bounding, or majorization, where majorizing auxiliary functions are constructed for
convex-concave cost functions by using Jensen’s inequality for the convex part and
on the tangent inequality for the concave part, hence extending several approaches
based on auxiliary functions discussed above. Generic updates are obtained by min-
imizing the auxiliary functions around the previous solution at each iteration, which
guarantees to make the cost function decrease monotonically until its convergence.
The generic updates are discussed in contrast to the well-known concave-convex pro-
cedure, where we show how the use of Jensen’s inequality encodes the non-negativity,
and how its coupling with separability permits to reduce the multidimensional NMF
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optimization problem into a simpler problem with a system of one-dimensional inde-
pendent equations that can be solved more efficiently. We also provide insights into
the simplification of this system into closed-form updates, and notably clarify a rea-
sonable assumption in relation to Pexider’s functional equations to obtain attractive
multiplicative updates. This assumption shows that information divergences based
on power functions and their limit cases are the reasonable candidates for obtain-
ing multiplicative updates. This includes the parametric families of a-divergences
and [-divergences, as well as the («, 5)-divergences. The proposed framework also
permits to consider non-negative matrix factorization with symmetrized and skew
divergences. To the best of our knowledge, it is the first time that this is considered
in the context of non-negative matrix factorization. The remainder of this chapter
is organized as follows.

In Section 3.2, we formalize the optimization framework for non-negative ma-
trix factorization with separable divergences. In Subsection 3.2.1, we formulate the
non-negative decomposition problem as a cost function minimization problem. In
Subsection 3.2.2, we introduce the framework of variational bounding, where ma-
jorizing auxiliary functions act as surrogates for the iterative minimization of the
cost function. In Section 3.3, we apply the formulated framework to derive methods
for non-negative matrix factorization with convex-concave divergences. In Subsec-
tion 3.3.1, we notably develop generic updates that guarantee the monotonic de-
crease of the cost function under mild assumptions. In Subsections 3.3.2, 3.3.3, 3.3.4,
and 3.3.5, we then obtain specific forms of the generic updates for common infor-
mation divergences. In particular, the proposed generic updates are specialized
to provide updates for Csiszar divergences, certain skew Jeffreys-Bregman diver-
gences, skew Jensen-Bregman divergences. It leads notably to several known multi-
plicative updates, as well as novel ones, for a-divergences, S-divergences, and their
skew versions. We also generalize these results by considering the family of skew
(cv, B, A)-divergences, for which multiplicative updates are derived in certain param-
eter regions.

3.2. Optimization framework

In this section, we formalize a standard optimization framework for NMF. The
non-negative decomposition problem is considered as the minimization of a cost
function built with a given separable divergence. Since this problem cannot be solved
straightforward in general, we then introduce variational bounding as a generic op-
timization method for optimizing the cost function iteratively.

3.2.1. Cost function minimization problem

We formulate the reduced problem of non-negative decomposition, where we keep
the dictionary matrix fixed, and seek encoding coefficients of the observations into
this dictionary.

Problem 3.1. Let y € R’ be an observation vector of size m > 1, and let A € R
be a dictionary matrix made of » > 1 basis vectors. The problem of non-negative
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decomposition is to find an encoding vector x € R/ of y into A such that the
approximation y ~ Ax is of sufficient quality with respect to a given criterion.

Remark 3.1. A more general decomposition problem with arbitrary or no constraints
can be formulated straightforward. The non-negativity constraints, or even positiv-
ity constraints, will however reveal crucial in the derivation of a generic algorithm
for decomposition with convex-concave divergences, because of the need for positive
weights in Jensen’s inequality and of the multiplicative group structure of R for
stability under multiplication and inversion.

As discussed above, we measure the quality of the approximate factorization via
a cost function built with a separable divergence D on a set ) = Y™, generated
by a given scalar divergence d on Y. In the sequel, we suppose without loss of
generality that Y is contained in R, otherwise it suffices to consider a restricted
subset Y N R,. For the non-negative decomposition problem to make sense, we
further suppose that Y is non-empty and that the observation vector y belongs to
Y. We now define the set of encoding vectors x that are feasible for the problem of
non-negative decomposition.

Definition 3.1. The feasible set is the set X defined as follows:
X={xeR:Axec Y} . (3.1)

Remark 3.2. The feasible set gathers all encoding vectors for which Ax lies in ) so
that we can measure the quality of the approximate factorization via the separable
divergence. For other encoding vectors, the problem does not make sense anymore
since we cannot measure this quality according to the chosen criterion.

Definition 3.2. The cost function is the function C' defined as follows:
C(x) = D(y||Ax) forallxe X . (3.2)

Remark 3.3. In this definition, we employ the convention that the observations y; are
in the first argument of the scalar divergence. This should not confuse the reader:
there is no loss of generality with this convention, and we can consider left- and
right-sided problems, or obviously symmetric problems if the scalar divergence is
symmetric. For a right-sided problem, it suffices to replace the scalar divergence
d(y||y’) with the scalar divergence d*(y||y") = d(v'||y) with swapped arguments.

Remark 3.4. We remark that even if the divergence is separable, the cost function
cannot be seen as a separable function on the entries of the encoding vector x in
general. It is however separable on the entries of the observation vector y since it
can be developed as follows:

C(x) = Z d (yz

Remark 3.5. Using the cost function C(x), the NMF problem can be seen as an
optimization problem, more precisely a constrained minimization problem:

aikzxk) : (3.3)
k=1

minimize C'(x) subject tox € X . (3.4)
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Figure 3.2.: Geometrical interpretation of non-negative decomposition. The opti-
mization problem of non-negative decomposition can be seen as a pro-
jection of the observation vector onto the intersection of the conical hull
of the basis vectors with the domain of the divergence.

In general, this problem cannot be solved straightforward and iterative methods
for optimization are thus employed. Nevertheless, we notice that in an alternating
update scheme for solving the NMF problem with respect to both factors, we do not
need necessarily to solve exactly the above non-negative decomposition subproblem,
but rather to find an encoding vector x € X that makes the cost function decrease
compared to the current encoding vector X € X.

Remark 3.6. The non-negative decomposition problem also has a nice geometrical
interpretation. Indeed, under some regularity assumptions, the problem can be seen
as a right-sided projection ¥y = argminy,cy, D(y|[y’) of the point y € ) onto the
subset )’ C ) with respect to the divergence D, where ) is the intersection of the
conical hull of the set of basis vectors {ai,...,a,} with the domain ) of the diver-
gence, as illustrated in Figure 3.2. The optimal encoding vector X then represents
the non-negative coordinates of the projection ¥ with respect to the basis vectors,
provided that the dictionary matrix A is of full rank. Solving for this projection is in
general not easy, even when ) is convex, in part because it is considered with respect
to a divergence and not the Euclidean distance, but also because of the additional
domain constraints on the problem. We notice however that for the left-sided de-
composition problem with Bregman divergences, this projection can be solved under
mild assumptions by using alternate Bregman projections on hyperplanes [Dhillon
and Tropp 2008]. This procedure is yet slow to converge. Moreover, it cannot be
extended in general to right-sided Bregman divergences or other divergences.

3.2.2. Variational bounding and auxiliary functions

As discussed above, the cost function in the non-negative decomposition problem is
not straightforward to optimize in general. To address this, we rely on the framework
of wariational bounding, also called majorization, which is an iterative technique
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Figure 3.3.: Auxiliary function for the cost function. The auxiliary function defines
a majorizing function above the current solution, which can be used as
a surrogate for optimizing the cost function.

for minimization problems where we replace the cost function at each step with a
surrogate majorizing function that we optimize instead [Rustagi 1976, Hunter and
Lange 2004]. This technique is in general employed for solving optimization problems
with possibly non-convex cost functions, and often reveals efficient provided that the
majorizing auxiliary functions at each step are easier to optimize than the original
cost function. The difficulty lies in choosing appropriate majorizing functions, that
can be optimized efficiently, and that provide tight bounds in order to fit well the
original cost function and make it decrease fast enough. Such majorizing functions
can be defined in general terms as follows.

Definition 3.3. An auziliary function is a function G: X x X — R such that
G(x]x) = C(x) and G(x|x) > C(x) for all x,Xx € X.

Remark 3.7. We actually need not always define an auxiliary function everywhere on
X x X. If the updates have to stay in a given subset of X’ C X', we can just define
the auxiliary function on X’ x X’ and optimize it on X’, provided that the algorithm
is correctly initialized with a point in X”. This is sometimes the case for non-negative
decomposition with multiplicative updates, where we want the updates to stay in
R’ instead of R, in order to avoid divisions by zero and trivial fixed points that are
not optimal. Of course, it is nonetheless possible that the algorithm converges to
a boundary point while staying in the interior so we do not exclude these potential
solutions of the problem.

The interest of using an auxiliary function lies in the fact that if we can optimize
it, then we can also make the original cost function decrease, that is, we can find
a new point x € X that improves the cost function compared to the current point
x € X. This is illustrated in Figure 3.3 and formalized in the following lemma.

Lemma 3.1. Let x,x € X. If G(x|x) < G(x]x), then C(x) < C(x).
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Proof. Let x,x € X. By definition, we have C'(x) < G(x|x) and C'(x) = G(x|x).
Now if G(x]x) < G(x|x), then we have C(x) < G(x|x) < G(x|x) = C(x), which
proves the lemma. O]

Remark 3.8. We also have strict decrease of the cost function as soon as we choose
a vector x that makes the auxiliary function strictly decrease as G(x|X) < G(X|X).

Remark 3.9. This justifies the use of an auxiliary function to minimize or at least
make the original cost function decrease. Indeed, if the current solution is given by
X € X, then choosing a point x € X such that G(x|x) < G(x|x) provides a better
solution. This may be iterated until a termination criterion is met. In general, when
it is possible, the point x is chosen as a minimizer of the auxiliary function at X, so
that we need to solve the following optimization problem:

minimize G(x,X) subject tox € X . (3.5)

The minimization can be done on an arbitrary subset X/ C X as soon as X € X’. It
is also possible to equalize the auxiliary function instead, or to choose any point in
between the minimization and the equalization.

We show in the sequel that we can build auxiliary functions for a wide range of
common information divergences presented in Chapter 1. We can therefore optimize
the respective cost functions by variational bounding. We will focus on majorization-
manimization schemes where the auxiliary function is iteratively minimized to update
the solution as discussed above.

3.3. Methods for convex-concave divergences

In this section, we elaborate on the proposed methods for solving the problem
of non-negative decomposition with convex-concave divergences. We first develop
generic updates by constructing and minimizing a general auxiliary function. We
then particularize these generic updates to common families of information di-
vergences, including Csiszar divergences, skew Jeffreys-Bregman divergences, skew
Jensen-Bregman divergences, and skew («, 3, \)-divergences. It leads to known and
novel closed-form multiplicative updates for all a-divergences, [-divergences, almost
all (o, B)-divergences, and certain of their symmetric or skew versions.

3.3.1. Generic updates

Up from now, we restrict to the case where Y = R since it concerns the scalar
divergences considered later. This ensures that Y is stable under multiplication and
inversion, which reveals useful in the subsequent derivations. Moreover, it guarantees
that the feasible set X contains at least all positive vectors as soon as it is non-empty.

Lemma 3.2. If Y =R%, then X is non-empty iff (R%)" C X.

Proof. On the one hand, if (R%)" C X, then X is clearly non-empty. On the other
hand, if A is non-empty, then we remark that the dictionary A cannot have a null
row. Indeed, if it were the case, then the corresponding row of Ax would be null for
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any encoding vector x € R, so that X would be empty, leading to a contradiction.
As a result, there is no null row in A, and for any encoding vector x € (R%)", we

also have Ax € (R%)™, so that x € X and (R%)" C X. O

Remark 3.10. We also have equivalence with the dictionary matrix A having no null
row. If it were the case, then the non-negative decomposition would be degenerate
and we could remove this row of A and the corresponding entry of the observation
vector y, to end up with a non-degenerate problem with this respect.

We therefore suppose that the feasible set X is non-empty, meaning that the
non-negative decomposition problem is feasible. In other terms there exists at least
one encoding vector x such that Ax € ), and thus it is relevant to search for an
encoding vector that leads to a sufficient or at least improved quality of factorization
compared to others. It also implies that the feasible set X’ contains the entire positive
orthant. Assuming now that the scalar divergence d is convex-concave, meaning
that it can be expressed as the sum of a convex part and of a concave part with
respect to either one of the two arguments, a convenient auxiliary function can be
built by using Jensen’s inequality for the convex part and the tangent inequality
for the concave part. During optimization based on variational bounding with such
auxiliary functions, we stay in the positive orthant for technical validity. This is
discussed hereafter, focusing on convex-concave divergences in the second argument
without loss of generality.

Proposition 3.3. Suppose that the scalar divergence d is a_convez-concave function
in the second argument, and that the decomposition d = d + d, where d and d are
respectively convex and concave in the second argument, can be chosen such that d
is differentiable in the second argument. Then, we can define an auziliary function
G for the cost function C' as follows:

T
;T V _ Tk
E ;1T +§ Z .- Yi E aimf—
1=1 %il l =1 k

Zaﬂxl> } forallx,x € (R%)" . (3.6)
=1

Proof. Let x,%x € (R%)" C X. We separate the cost function C'(x) = > " Ci(x)
as the element-wise scalar divergences C;(x) = d(vi|| > ,_; @irx) on the entries
of the observation vector. We further decompose the element-wise cost functions
Ci(x) = C;(x) + Ci(x), into convex and concave parts C;(x) = d(yil| D _p_; ainTr)
and C;(x) = d( oNe,

functions G, CAJZ», and then sum up everything to provide a global auxiliary function
G for the cost function C'. Beginning with the convex parts, we define the auxiliary
functions as follows:

il S r— @ikr). Our aim is to bound separately C;, C;, with auxiliary

<

X|X Z ik Tk V "
Zz 1azlxl l

Zazlxl ik> . (37)
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The function G; is well-defined since Yoo aaT; #0, T, #0,and >, ayT g—i € R%,
for all 1 < k <. We also have G;(X|X) = C(X) which can be seen from:

~ - QAikTh Y d —

=1

Z aﬂxl> (39)

= Cy(x) . (3.10)

Moreover, we have G;(x|X) > C;(x) as a result of Jensen’s inequality for the function
d, which is convex in the second argument, and using the weights a7, € R7
normalized by their positive sum:

axTh N~ _ Tk
i AT — 3.11
(y ZZl 1 il 2:: : l$k> ( )
(?/i Z%k%) (3.12)
k=1

Ci(x) . (3.13)

¢

Gi(x[x) >

I
¢

This proves that él is indeed an auxiliary function for CZ We now turn to the
concave parts, and define the auxiliary functions as follows:

~ L r . ad
Gi(x]x) = d<yi Z ailﬂfl) + Z ai (2 — Tr) ay' <yi
I=1 k=1

The function G is well- deﬁned since the function d is differentiable in the second
argument. We also have G;(x|x) = C;(x) which can be seen from:

Z aim) (315)

= Ci(x) . (3.16)

Zaﬂxl> . (3.14)

Moreover, we have G, (x]x) > éi(X), which arises from the tangent inequality applied
to the differentiable concave functions C; as follows:

Gi(x|x) = Ci(X) + (x — %) VCi(x) (3.17)
> Ci(x) . (3.18)

This proves that G, is indeed an auxiliary function for C.. Putting everything
together, we conclude that G(x|X) = > " | G;(x|X)+G;(x|X) is an auxiliary function
for the cost function C'(x) = Y"1, Ci(x) 4+ Ci(x), which proves the proposition. [
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3. Non-Negative Matrix Factorization with Convex-Concave Divergences

Remark 3.11. The framework of convex-concave functions applies to many common
information divergences, except for some Bregman divergences in the second argu-
ment and their skew Jeffreys-Bregman versions. The assumption that the concave
part is differentiable is not too restrictive since most cost functions for non-negative
decomposition are smooth. Moreover, it is well-known that an arbitrary concave
function is actually differentiable at all but at most countably many points. Fi-
nally, it is also possible to extend the results by considering subgradients where the
function is not differentiable.

Remark 3.12. The decomposition d = d+d is clearly arbitrary up to adding and
subtracting the same differentiable convex function respectively to d and d. For
the divergences considered here, it appears that there is a somewhat canonical de-
composition, but using other decompositions may lead to different results since the
auxiliary function depends on this decomposition.

To optimize the cost function based on majorization-minimization, we need to
minimize the above auxiliary functions at each step. It guarantees the monotonic
decrease of the cost function as discussed below.

Theorem 3.4. Suppose that the scalar divergence d is a_convez-concave function
in the second argument, and that the decomposition d = d + d, where d and d are
respectively conver and concave in the second argument, can be chosen such that d
and d are differentiable in the second argument. Then, for all X € (R%)", we have
C(x) < C(X) for any point x € (R%)" that verifies the following system of equations:

Z aikaa—?j, (?/z Z ;12 i—]]:) = - Z Qi gj (yz

=1

T

Zail:fl) forallk € [1,r] .

. (3.19)

Proof. Let x € (R*)". The auxiliary function G at X can be separated on the entries
of the encoding vector x € (R%)" as G(x|X) = d(yil| >y aaTr) + > pey 9(Tk|X),
where gy (x||x) is defined as follows:

aik:fk V 8d
gi(x|X) = Z S (y ;azzxz 7 ) + ain(Th — Tk) 5 o (y

The auxiliary function G at X being convex and differentiable, it attains its minimum
at a point x € (R%)" iff we have d,,G(x|x) = 0, for any 1 < k < r. Since the
respective derivatives can be developed as 0,, G(x|X) = 0y, gr(zx|X), the minimum
is attained at the points x that are solutions of the following system of equations:

" ad . ad
Zazk (yz Zazm >+a““ay <y Zaﬂxl>—0 (3.21)

Moreover, these global minima are such that G(x|x) < G(x|x), and thus verify
C(x) < C(X) since G is an auxiliary function for C. O

=1

Z a'zlxl>
(3.20

Remark 3.13. The assumptions imply that d needs to be differentiable, but for the
same reasons as discussed above, this is not too restrictive in our context.
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3.3. Methods for convex-concave divergences

Remark 3.14. We notice that if a column of the dictionary A is null, then the
corresponding equation is always verified, simply meaning that adding this null
column to any extent in the decomposition does not change anything. As a result,
the problem is degenerate and we can remove this column from the dictionary and
the corresponding entry of the encoding vector, to end up with a non-degenerate
problem with this respect.

Remark 3.15. It is interesting to remark that because of the differentiation, these
equations do not depend on arbitrary affine terms in the decomposition into convex
and concave parts. As a result, constant terms can clearly be omitted in the decom-
position, and linear terms can be put either in the convex part or in the concave part
without changing the updates. The updates may however depend on other arbitrary
convex terms that are not affine. For the considered information divergences, there
is actually a somewhat canonical decomposition that leads to simple solutions as
discussed later.

Remark 3.16. Here we considered optimization by majorization-minimization, and
thus set the gradient of the auxiliary function to zero to obtain the system of equa-
tions for the updates. This scheme works as soon as the convex auxiliary function
attains its minimum inside the positive orthant. When it is not the case, then an
infimum is actually attained at a limit point. Since the auxiliary function can be
separated on the respective dimensions, the search for such a limit point can also be
separated across the dimensions. Considering a given element-wise convex auxiliary
function, we notice that it cannot be affine with a negative slope, otherwise the
majorized cost function would become negative at some point. As a result, either
its minimum is attained in RY, or its infimum is attained at zero. Therefore, set-
ting the updated coordinate anywhere on the open segment in between the current
coordinate solution and zero would make the cost function decrease. The zero value
should however be avoided for technicality reasons, even if the sequence of updates
may converge to this point. We yet do not need such updates here since it does not
concern the information divergences considered.

Remark 3.17. At this point, it is worth mentioning some relations between the pro-
posed method and the concave-convex procedure (CCCP) [Yuille and Rangarajan
2003]. The CCCP lies in the same framework of variational bounding, but only
considers the tangent inequality to majorize the concave part of the convex-concave
cost function C'. Tt then minimizes the convex auxiliary function by setting its gra-
dient to zero. It leads to the update x of X as VC(x) = —VC'(X) when such a point
exists. For several convex-concave problems, the convex part is actually strictly con-
vex and its gradient one-to-one with a closed-form inverse, so that the updates can
be computed efficiently. Applying this to the non-negative decomposition frame-
work, however, is not straightforward in general, because of the linear model and
the non-negative constraints. Indeed, the system of equations of the CCCP would
write as follows:

T od
; aika_y, (Z/z

Because of the weighted sum of derivatives, which arises from the linear model, the
solutions of this system of equations is not available analytically in general, even if

; az‘m) == Z aikg_yd, <yz

=1

Z aim> . (3.22)

=1
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3. Non-Negative Matrix Factorization with Convex-Concave Divergences

the inverse mapping of c%w? is in closed form. As a result, we would need to solve for a
system of r equations which all depend on the full vector x of dimension r. Moreover,
there is a priori no consideration of the non-negative constraints when using this
procedure. This makes the CCCP unsuited, even for the standard Euclidean cost
function. In the proposed approach, we further use the Jensen’s inequality for the
convex part of the cost function. On the one hand, it results in general in a looser
bound than for the CCCP. On the other hand, it greatly simplifies the minimization
of the auxiliary function. Indeed, it allows separating the auxiliary function and
its optimization on the entries of x, thus leading to r independent equations in
dimension one, which can be solved much more efficiently in general. Moreover,
the non-negativity assumptions are taken into account in the weights of Jensen’s
inequality. Even if it does not guarantee a priori the non-negativity of the updates
in general, we see later that it is nonetheless the case for many divergences through
the derivation of closed-form multiplicative updates expressed with these weights.

Remark 3.18. A reasonable condition for the system of equations to admit an ana-
lytical solution, is that the derivative f(y') = 0,d(y||y’) of the convex part allows
separating the ratio /Ty from the sum >, , a;Z;, either by taking a multiplica-
tive form f(y193) = g(y1)h(ys), or an additive form f(y195) = g(v1) + h(ys), up to
additive constants. Under mild assumptions, it is well-known that these two Pex-
ider’s functional equations admit respective solutions in the form of power functions
f() = ky®, and of logarithmic functions f(y') = klogy’, where k,p € R. In-
tegrating these functions leads again to power functions, logarithmic functions, or
even functions of the form k1 logy’, up to affine terms. It therefore seems intuitive
that scalar divergences defined using one of these three forms would provide analyt-
ical solutions for the updates of the non-negative decomposition. Combinations of
such functions may also lead to closed-form updates depending on how the different
terms simplify. This highlights the interests in using scalar divergences such as the
a-divergences, f-divergences, and (a, 3)-divergences, not only from a statistical and
information-theoretic standpoint, but also from a computational perspective.

This theorem provides a generic method to update the encoding vector while
ensuring monotonic decrease of a convex-concave cost function. For this, we need
to solve r independent equations of dimension one. Provided that a solution does
exist, solving the system can be done iteratively by using simple line search methods,
or more elaborate and efficient schemes such as Newton’s methods. In the sequel,
we show that for common information divergences, these equations simplify further,
and sometimes specifically lead to convenient closed-form multiplicative updates.
As discussed above, we will assume without loss of generality that the dictionary
matrix A has no null row nor column to derive these updates.

3.3.2. Case of Csiszar divergences

When considering the class of Csiszar divergences, the proposed generic method can
be simplified in terms of the generator function ¢. Since this class is stable under
swapping the arguments and standard skewing, we specify without loss of generality
the form taken by the updates for a right-sided non-negative decomposition problem.
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3.3. Methods for convex-concave divergences

Corollary 3.5. Consider the right-sided non-negative decomposition problem with
the Csiszdr p-divergence dff). For all x € (R%)", we have C(x) < C(x) for any
point x € (R*)" that verifies the following system of equations:

m 1 T
Z ik’ (f Zaizfz;—];) =0 forallkell,r] . (3.23)

i=1 Yi =1

Proof. The Csiszar p-divergence d(wc) is clearly differentiable and convex in the sec-
ond argument. We can thus decompose it in respective differentiable convex and
concave parts dy (ylly') = yo(y'/y), and c?&,c) (ylly') = 0. Applying the generic
method for convex-concave divergences, the corollary follows by remarking that
dydy” (ylly') = &'y [y), and that d,dy” (ylly') = 0. O

Example 3.1. For the right-sided non-negative decomposition problem with the
a-divergences d&a), where a # 0,1, the system of equations leads to the following
closed-form multiplicative updates as the unique solution:

m ) ) r —hay e
Ty = Ty X (le alkgzn{ Za{kl iciz) ) : (3.24)
=1 """

For @ = 1, corresponding to the Kullback-Leibler divergence, solving the equations
shows that the above multiplicative updates actually still hold. These updates co-
incide with that proposed by Cichocki et al. [2008], where the case « = 0 is yet
omitted. For a = 0, corresponding to the dual Kullback-Leibler divergence, the
updates take a different form as follows:

Z;L air log (1:/ ZLl ailfl)) . (3.25)

T = T X €xXp
D iy ik

These updates were obtained for example by Dhillon and Sra [2006] as a left-sided
problem with the Kullback-Leibler divergence seen as a Bregman divergence. Con-
sidering left-sided problems with a-divergences is straightforward since it actually
suffices by symmetry to replace a with 1 — «, and apply the corresponding above
updates.

Example 3.2. For the right-sided non-negative decomposition problem with the
skew Jeffreys (a, A)-divergences dgf))\, where « # 0, 1, the system of equations can be
developed as follows:

m 1 r ) —a . —a
Al —a) Z @ik (f Z ail$l> <f—k)
i—1 Yiio k

m

+ (1= MNa i ik (l i ailf;) <;—Z> =(a+ X—2a)) Z ap - (3.26)

i=1 Yi 3 i=1

Unfortunately, it does not admit a closed-form solution in the general case, and itera-
tive methods are required as discussed above. It is neither the case when a € {0,1},
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3. Non-Negative Matrix Factorization with Convex-Concave Divergences

corresponding to the skew Jeffreys divergence as a skew version of the Kullback-
Leibler divergence, where the unknown variables appear both as logarithmic and
inverse terms. For certain values of «, the equations can be written as polyno-
mial equations, which can be solved more efficiently with specific methods such as
root-finding algorithms, or with analytical solutions for lower degrees, when positive
solutions do exist. For example, for o € {—1,2}, corresponding respectively to skew
versions of the Neyman’s and Pearson’s chi-square distances, we end up with a poly-
nomial equation of degree three, while for « € {—1/2,3/2}, we have a polynomial
equation of degree four. Obviously, for & = 1/2, corresponding to the symmetric
Hellinger distance, the skewness has no effect and we have the same solutions for any
value of A € [0, 1], given as a special case of the above non-skew multiplicative up-
dates. For A € {0, 1}, corresponding to a left- or right-sided non-skew problem, the
updates also correspond to the above non-skew multiplicative updates. For the left-
sided non-negative decomposition problem with the skew Jeffreys (a, A)-divergences
d(a(fz\, it actually suffices by symmetry to replace either o with 1 —«, or A with 1 — A,
to end up with a right-sided problem.

Example 3.3. A novel analytical scheme can be derived for a specific one-parameter
family of skew Jeffreys (a, \)-divergences. Indeed, if we consider the right-sided
problem with the skew Jeffreys (a, A)-divergences d((la,;, where o € R\ [0, 1], and
A= «a/2a—1) € (0,1)\ {1/2}, the system of equations leads to the following
closed-form multiplicative updates as the unique solution:

m r _\a 1/(2a—1)
Tp = Tj X Zﬁf:l @it i/ Zrlzl aiixll)fa : (3.27)
> i @ik (Yi/ D=y @)

Notice that we are able to obtain closed-form updates, thanks to the constraint
A = a/(2a — 1) which allows the constant to vanish in the equations. We also have
an inherent symmetry within the one-parameter family, where replacing a with 1—q,
is equivalent to replacing A with 1—\. As a result, we need only consider the values of
a > 1 because the other values are redundant. In the limit case o € {0, 1}, we have
A =0, A = 1, which corresponds to the equivalent non-skew problems of left-sided
non-negative decomposition with the dual Kullback-Leibler divergence, and of right-
sided non-negative decomposition with the Kullback-Leibler divergence, respectively.
As a result, the updates are still valid and actually coincide with the non-skew
multiplicative updates derived above. We can also consider straightforwardly the
left-sided problems with a one-parameter family of skew (a, A)-divergences, where
the constraint now writes A = (o« — 1)/(2a — 1), and we have equivalence with the
right-sided problems by replacing o with 1 — «, and A with 1 — \.

The class of Csiszar divergences is also stable under the second type of skew-
ing introduced for Jensen-Bregman divergences. We were not however able to de-
rive interesting results to simplify the proposed generic method for skew Jensen
(cr, A)-divergences, except for negative integer values of a where we obtain poly-
nomial equations, and in particular for &« = —1, corresponding to the Neyman’s
chi-square distance, where the polynomial equation is of degree four. For the sake
of conciseness, we thus do not develop this type of skewing further.
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3.3. Methods for convex-concave divergences

3.3.3. Case of skew Jeffreys-Bregman divergences

On the contrary to Csiszar divergences, the class of Bregman divergences is not sta-
ble under swapping the arguments, so that the left-sided problems are not equivalent
to right-sided problems in general. Moreover, even if the Bregman divergences are
always convex in the first argument, they are not in general convex-concave in the
second argument. As a result, we cannot specialize the proposed generic method
to the non-negative decomposition problems with arbitrary Jeffreys-Bregman diver-
gences, except for the specific non-skew left-sided problems with Bregman diver-
gences. We therefore state only generic results for the latter problems, where the
proposed generic method simplifies in terms of the generator function .

Corollary 3.6. Consider the left-sided non-negative decomposition problem with the
Bregman @-divergence dfoB). For all x € (R%)", we have C(x) < C(x) for any point
x € (R%)" that verifies the following system of equations:

m , T B xk m .
Qi agr; — | = aipp (y;)  forallk e |1,r] . 3.28

Proof. The Bregman p-divergence dfaB) is clearly differentiable and convex in the
first argument. We can thus decompose the swapped divergence in respective dif-
ferentiable convex and concave parts de (ylly) = o) — oy) — (/ —¥)¢' (),
and @B)(yHy’ ) = 0. Applying the generic method for convex-concave divergences,
the corollary follows by remarking that %J&B) (wlly) = ') — ¢'(y), and that
dyd” (ylly') = 0. m

Remark 3.19. These updates coincide with that found by Dhillon and Sra [2006],
where the pro