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Summary

This thesis is concerned with Monte Carlo methods for sampling high-dimensional bi-
nary vectors from complex distributions of interest. If the state space is too large
for exhaustive enumeration, these methods provide a mean of estimating the expected
value with respect to some function of interest. Standard approaches are mostly based
on random walk type Markov chain Monte Carlo, where the equilibrium distribution

of the chain is the target distribution and its ergodic mean converges to the expected
value. While these methods are well-studied and asymptotically valid, convergence of
the Markov chain might be very slow if the target distribution is highly multi-modal.
We propose a novel sampling algorithm based on sequential Monte Carlo methodology
which copes well with multi-modal problems by virtue of an annealing schedule. The
usefulness of this approach is demonstrated in the context of Bayesian variable selection
and combinatorial optimization of pseudo-Boolean objective functions.

Chapter 1 The introductory section provides an overview of existing Monte Carlo
techniques for sampling from binary distributions and particularly reviews the standard
Markov chain Monte Carlo methodology which is frequently used in practice. We in-
troduce the notion of multi-modality and discuss why random walk type Markov chains
might fail to converge in a reasonable amount of time due to strong dependencies in
the distribution of interest. This motivates the work on novel Monte Carlo algorithms
which are more robust against multi-modality but still scale to high dimensions.

Chapter 2 We describe a sequential Monte Carlo approach as an alternative sampling
scheme which propagates a system of particles from an easy initial distribution, via
intermediate instrumental distributions towards the distribution of interest. While the
resample-move methodology comes from the standard toolbox of particle Itering (Del
Moral et al., 2006), the central innovation is the use of a Metropolis-Hastings kernel with
independent proposals in the move step of the algorithm. We achieve high acceptance
rates and thus very fast mixing owing to advanced parametric families which e ciently
approximate the intermediate distributions.



Chapter 3 The performance of the proposed sequential Monte Carlo sampler depends
on the ability to sample proposals from auxiliary distributions which are, in a certain
sense, close to the current distribution of interest. This chapter contains the core work
of this thesis and elaborates on strategies to construct parametric families for sampling
binary vectors with dependencies. We work out practical solutions which can be incor-
porated in particle algorithms on binary spaces but also discuss approaches to modeling
random binary vectors which are beyond the immediate Monte Carlo application. The
practical scope of the proposed parametric families is examined in a humerical study on
random cross-moment matrices.

Chapter 4 The major statistical application for sampling binary vectors is Bayesian
variable selection for linear regression models where quantities like the posterior inclu-
sion probabilities of the predictors need to be computed. This chapter provides a brief
introduction to variable selection in the context of normal linear models, where the pos-
terior distribution is available in closed-form for a judicious choice of prior distributions
on the model parameters. We construct several challenging test instances from real
data, chosen to be considerably multi-modal, and compare the performance of the se-
guential Monte Carlo sampler to standard Markov chain Monte Carlo methods (George
and McCulloch, 1997).

Chapter 5 This chapter deals with ideas to extend the sequential Monte Carlo method-
ology to Bayesian variable selection in the context of generalized linear models with
binary response like logistic or probit regression models. In this case, the posterior
distribution is not available in closed-form, and the model parameters need to be inte-
grated out using either approximations or pseudo-marginal ideas in order to apply the
sequential Monte Carlo framework. Analogously to Chapter 4, we construct several test
instances from real data and compare the performance of the sequential Monte Carlo
sampler to the automatic generic sampler (Greer003) which is a trans-dimensional
Markov chain Monte Carlo sampling scheme.

Chapter 6 Stochastic optimization of pseudo-Boolean objective functions is a eld
of major interest in operations research since many important NP-hard combinatorial
problems can be formulated in terms of binary programming. If the objective function is
multi-modal, local search algorithms often fail to detect the global optimum and particle
driven methods may provide more robust results. We discuss how the sequential Monte
Carlo sampler can be used in an optimization context and show how the cross-entropy
method by Rubinstein (1997) can be embedded in the sequential Monte Carlo framework.



In numerical experiments, we show that the parametric families proposed in Chaptar
tremendously improve the performance of the cross-entropy method and compare the
particle driven optimization schemes to local search algorithms.

Chapter 7 We present some nal remarks concerning particle algorithms on binary
state spaces and points out some interesting lines for further research.






Resune

Cette these est consaceea letude des nethodes de Monte Carlo pour lechantillonnage
de vecteurs binaires de grande dimensiona partir de lois cibles complexes. Si |'espace-
etat est trop grand pour uneenuneration exhaustive, ces nethodes permettent d'estimer
I'esperance d'une loi donree par rapporta une fonction d'inerét. Les approches stan-
dards sont principalement bases sur les nethodes Monte Carloa chame de Markov de
type marche akatoire, a la loi stationnaire de la chame est la distribution d'inerét et

la moyenne de la trajectoire converge vers lI'esgerance par le theoeme ergodique. Bien
gue ces nethodes soient bienetudees et asymptotiguement valides, la convergence de la
chame de Markov peut étre tes lente si la loi cible est fortement multimodale. Nous pro-
posons un nouvel algorithme dechantillonnage base sur les nethodes de Monte Carlo
quentielles qui sont plus robustes au probeme de multimodalie grace a une etape
de recuit simuk. L'utilie de cette approche est cemontee dans le cadre de slection
bayesienne de variables et I'optimisation combinatoire des fonctions pseudo-bookennes.

Chapitre 1 Cette section introductive donne un apercu des techniques existantes de
Monte Carlo pour lechantillonnage de vecteurs binaires. On y examine notamment les
nmethodes de Monte Carloa chame de Markov qui sont fequemment utilisees dans la
pratique. La notion de multimodalie y est introduite, suivie d'une discussion sur les
cha™mes de Markov de type marche akatoire qui souvent ne convergent pas en un temps
computationnel raisonnable, en raison des fortes cependances parmi les composantes de
la loi d'inerét, ce qui motive le developpement de nouveaux algorithmes de type Monte
Carlo qui soient plus robustes facea la multimodalie mais aussi utilisables en grande
dimension.

Chapitre 2 Nous proposons une technique dechantillonnage alternative base sur les
nmethodes de Monte-Carlo £quentielles qui propage un syseme de particulesa partir
d'une loi initiale simple, par des lois internediaires auxiliaires vers la loi cible. Alors
que la nethodologie resample-moveprovient de la bo'te a outils standard du Itrage
particulaire (Del Moral et al., 2006), I'innovation centrale est |'utilisation d'un noyau de



Metropolis-Hastings avec des propositions incependantes dans letape de ceplacement.
L'usage des familles paranetriques avanees qui approchent e cacement les lois in-
termediaires et permettent d'atteindre des taux d'acceptationele\es recessaires pour la
construction de chames de Markov rapidement nelangeantes.

Chapitre 3 La performance de lechantillonneur de Monte Carlo ssquentiel cepend de

la capacie dechantillonner selon des lois auxiliaires qui sont, en un certain sens, proche

a la loi de l'inerét. Ce chapitre contient le travail principal de cette trese et pesente

des strakgies visanta construire des familles paranetriques pour lechantillonnage de
vecteurs binaires avec cependances. Nous proposons des solutions pratiques qui peuvent
etre incorpoees dans les algorithmes particulaires sur les espaces binaires, mais aussi des
approches de mocklisation de vecteurs binaires akatoires qui sont au-deh de I'application
imnmediate de nmethodes Monte-Carlo. L'inerét pratigue des familles paranetriques
propoxes est examire dans uneetude nunerique sur des matrices akatoires de moments
Croies.

Chapitre 4 L'application statistique majeure pour dechantillonnage de vecteurs bi-
naires est la slection bayesienne de variables parmi des moctles de egression lireaire
al des quanties telles que les probabilies d'inclusion a posteriori des pedicteurs doivent
etre calcukes. Ce chapitre propose une beve introductiona la ®lection de variables dans

le cadre de mockles lireaires normaux, ai la distribution a posteriori est disponible sous
forme analytique pour un choix judicieux de la loi a priori sur les paranetres du mocele.
Nous construisons plusieurs instances de test exigeants sur donrees eelles, choisis pour
etre consicerablement multimodal, et lechantillonneur de Monte Carlo quentiel est
compae avec des nethodes standards de Monte Carloa chame de Markov (George and
McCulloch, 1997).

Chapitre 5 Ce chapitre propose des icees pouretendre les nethodes de Monte Carlo
equentiellesa la lection bayesienne de variables dans le contexte des mockles lireaires
cereralies a eponse binaire comme les moctles de egression logistique ou probit.
Dans ce cas, la distribution a posteriori n‘est pas disponible sous forme fermee, et
les paranetres du moctle doivent étre marginalieesa l'aide soit d'approximations, soit
d'approches pseudo-marginales a n d'appliquer l'algorithme de Monte Carlo quentiel.
Par analogie au chapitred, plusieurs instances de test sur donrees eelles sont construites
et lechantillonneur de Monte Carlo squentiel est compaea lechantillonneur automa-
tique gererique (Green, 2003) qui est une nethode de Monte Carloa chame de Markov
transdimensionnel.
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Chapitre 6 L'optimisation stochastique de fonctions pseudo-bookennes est un domaine
d'inerét majeur en recherche operationnelle car des nombreuses probemes combinatoires
NP-complet peuvent etre formuks en termes de programmation binaire. Si la fonction
objective est multimodale, les algorithmes de recherche locale ne parviennent souvent pas
a cetecter I'optimum global et les nethodes particulaires peuvent donner des esultats
plus robustes. Nous cetaillons comment lechantillonneur de Monte Carlo squentiel
peut etre utili’e dans un contexte d'optimisation et comment la methode de I'entropie
croie deRubinstein (1997) peut &tre inege dans le cadre de l'algorithme Monte Carlo
equentiel. Les experiences nuneriques montrent que les familles paranetriques pro-
poses dans le chapitré3 aneliorent consicerablement la performance de la nethode
de I'entropie croiee. Finalement, les nmethodes particulaires sont compaees aux algo-
rithmes de recherche locale.

Chapitre 7 La conclusion de cette these pesente quelques remarques nales concer-
nant les algorithmes particulaires sur les espaces detats binaires et des perspectives de
recherche pour inegrer les familles paranetriques dans d'autres applications.
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1. Introduction to sampling random
binary vectors

Resune

Cette section introductive donne un apercu des technigues existantes de Monte Carlo
pour lechantillonnage de vecteurs binaires. On y examine notamment les nethodes de
Monte Carloa chame de Markov qui sont fequemment utilies dans la pratique. La no-
tion de multimodalie y est introduite, suivie d'une discussion sur les chames de Markov
de type marche akatoire qui souvent ne convergent pas en un temps computationnel
raisonnable, en raison des fortes cependances parmi les composantes de la loi d'inerét,
ce qui motive le ceveloppement de nouveaux algorithmes de type Monte Carlo qui soient
plus robustes facea la multimodalie mais aussi utilisables en grande dimension.

1.1. Introduction

In this chapter, we review standard Monte Carlo methods for sampling high-dimensional
binary vectors and motivate the work on an alternative sampling scheme based se-
guential Monte Carlo (smc) methodology. Most of this discussion was published in
Schafer and Chopin(2012). Standard approaches are typically based on random walk
type Markov chain Monte Carlo (mcmc), where the equilibrium distribution of the chain

is the distribution of interest and its ergodic mean converges to the expected value of
interest. While mcmc methods are asymptotically valid, convergence of Markov chains
may be very slow if the distribution of interest is highly multi-modal.

In Chapter 2, we propose a novel algorithm based amc methodology which copes
well with multi-modal problems by virtue of an annealing schedule. This work ap-
proaches a well-studied problem from a di erent angle and provides new perspectives.
Firstly, there is numerical evidence that particle methods, which track a population of
particles, initially well spread over the sampling space, are often more robust than local

19



20 Chapter 1. Introduction to sampling random binary vectors

methods based onrmcmc, since the latter are prone to get trapped in the neighborhood
of local modes. We largely illustrate this e ect in our simulation studies in Chapterd,
5and 6. Secondlysmc type algorithms are easily parallelizable, and parallel computing
for Monte Carlo algorithms has gained a tremendous interest in the very recent years
(Lee et al., 2010; Suchard et al.,2010), due to the increasing availability of multi-core
processing units in standard computers.

Thirdly, we argue that the smc sampler is fully adaptive and requires practically no
tuning to perform well. A Monte Carlo algorithm is said to be adaptive if it adjusts,
sequentially and automatically, its sampling distribution to the problem at hand. Impor-
tant classes of adaptive Monte Carlo are sequential Monte Carlo (eBel Moral et al.,
2006), adaptive importance sampling (e.gCappe et al., 2008) and adaptive Markov
chain Monte Carlo (e.g.Andrieu and Thoms, 2008), among others. The choice of the
parametric family which de nes the range of possible sampling distributions is critical
for good performance. We address this question in Chaptar

1.1.1. Notation

Throughout this thesis, vectors are denoted in italic and matrices in straight bold-faced
type. Sets, random variables and matrices are denoted by capital letters.

We write B := f0; 1gfor the binary space. Forb a, we denote by [a;b] :=fx 2 Z |
a x bgthe discrete and by §;b) :=fx 2 Rja x < bg the continuous interval.
We denote byd 2 N the generic dimension anah 2 N the generic sample size and de ne
the index setsD :=[1;d] and N :=[1;n] for ease of notation.

Let P(M) denote the power set andB(M ) the Borel -eld generated by the set
M. Let (; A;P) be a probability space. A random variableX: ! X is de ned
on a measurable spacex{ X) which in our case is either BY; P (BY) or (RY; B(RY)) or
countable products of these. We writeX if =P X?! and say thatX has the
distribution . For a -integrable function f : X! R, we denote by

R
(f):=E FX):= (X (dx

the expected value of with respectto ; if f is the identity mapping, we write m for
the mean. Since this work is mostly concerned with sampling from measures de ned on
the nite state spaceBY, some technical di culties arising in general measure theory can
be neglected. We do not distinguish between the probability measure P(BY) ! [0;1]
and its mass function : B9! [0;1], ( )= (f g) but refer to both mappings by the
same symbol ; we also write " instead of " for the n-fold product measure.
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Generally, we let denote the binary distribution of interest, (q) » a parametric
family of distributions and a Markov transition kernel. In a Bayesian context, we let
L denote the likelihood,p the prior distribution and  the posterior distribution, where
the arguments of the mass functions usually indicate the context, that is, for example,
p( ) = N (0;1) means that the parameter is a priori standard normal distributed.

1.1.2. Importance sampling

A non-zero mapping < BY! [0;1) de nes a probability measure / ~on (BY;P(BY)),
where/ denotes equality up to a scaling factor. The goal is to sample fromin order
to approximate quantities like the expected value of : B4! R

P d f( )~( )
f)=E FXN=" pf() ()= —P—

280 ~( )
although the normalizing constant may be unknown. Even for moderatd 2 N, the
state space is too large for exhaustive enumeration. In this case, one may resort to
Monte Carlo methods to provide an estimate (f ) of the intractable quantity (f ). If

(1.1)

we have an unbiased estimator
P
A(E) =Rt R F (X )

and Ny (f) T (f) a.s. by virtue of the strong law of large numbers. Generally,
however, we cannot draw independent samples from Let g denote aninstrumental
or auxiliary distribution. For an independent sample X 1;:::;X,) ", we have an
asymptotically unbiasedimportance sampling (is) estimator

P
AN (f ) = _EEl f (X k)W(x k)
° . E:l W(X k)

of the expected value wherav( ) := ~( )=¢( ) whereg-/ q. The ratios of the (not
necessarily normalized) mass functions of the instrumental and the target distribution
are referred to asimportance weights. The instrumental distribution has to verify
supp( )  supp(9 to ensure that M.(f) T (f) a.s. by virtue of the strong law
of large numbers, se®obert and Casella(2004, sec. 3.3). The asymptotic variance of
the estimator can roughly be approximated by

VIMRE) V IFX )Nt 1+ Vow(X 1)]=¢ ;
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wherec > 0 is some unknown normalizing constant (Liu, 1996a; Kong et al., 1994). The
last term on the right hand side can be estimated by

P n
Al .= pla W(X k)2 nt 1+ Vyw(X,)]=¢ (1.2)

[ E:l W(X k)]2
where 2 [1;n] is the so-callede ective sample size €ss). Since "is an estimate
for an approximation to an asymptotic quantity, it might be substantially misleading.
However, theess is widely used in practice because it is easy to compute and does not
depend onf . The name stems from the common interpretation that the precision of an
is estimator ML (f ) is about the same as the precision of aid estimator ’\ﬁ’gc(f ).

The instrumental distribution which minimizes the variance of the importance sam-
pling estimatorisq /j f ()] ~ Typically, we cannot generate independent samples from
any distribution close toq and have to rely on sub-optimal instrumental distributions
which often yield extremely ine cient importance sampling estimators.

1.2. Markov chain Monte Carlo

We introduce some notation and review a few well-known results from Markov chain
theory (see e.gMeyn et al., 2009). A time-homogeneous Markov chain on the binary
space is a sequence of random variables (J.n, (p ") which enjoys the Markov
property and is completely de ned by itsinitial distribution p and its transition kernel

, that is

We denote by ¢ ") the mass function of a chain up to timen 2 N and by [p "]
the marginal distribution of the chain at time n 2 N which is obtained by repeated
application of the transition operator

P :
Pl:= gep()(] )

In the sequel, we only consideaperiodic Markov chains which areirreducible and
therefore positive recurrent on a nite state space. Then the transition operator has a
unique xed point

[ 1= (1.3)

referred to as theinvariant or equilibrium distribution. The Markov chain is stationary
if and only if p= . On nite spaces, thetotal variation (tv ) norm of the measure
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is given byk ky = 2 ,5¢] ( )j- The total variation distance between the marginal
and the equilibrium distribution of the Markov chain is bounded by

kip "l kv 2c(p) (1.4)

where , is the second-largest eigenvalue of the kernel anfp) > 0 a constant depending
on the initial distribution. Note that , < 1 since the Markov chain is aperiodic. For
a Markov chain to admit as its unique equilibrium distribution distribution, it is
su cient that for all x; 2 BY

6 Cix= () xj): (1.5)

Equation (1.5) is also referred to asletailed balancecondition and a Markov chain with
detailed balance is said to beeversiblewith respect to

A positive recurrent, irreducible and aperiodic Markov chain i®rgodic (Robert and
Casella,2004) which means that the measure-preserving dynamical system de ned by the
probability space and the shift operator on the stationary Markov chain yields the same
guantities when averaged over the states visited by the chain as when averaged over all
states of the state space weighted according to their probabilities. Let (Jxon, (")
be an ergodic Markov chain and : BY! R a function. From the ergodic theorem, it
follows that

(n+1)1 F)onf(x 9T () as:

which generalizes the strong law of large numbers to random variables with Markovian
dependencies.

1.2.1. Markov chain Monte Carlo estimators

The idea of mcmc is to construct a transition kernel which admits the distribution
of interest as unique equilibrium distribution. If we can sample a Markov chain
XXy (™), we have an unbiased estimator

AN — 1 P n
mcmc(]c ) - ( n+ 1) k=0 f (X k)

by virtue of the ergodic theorem for Markov chains. Typically, we cannot provide an
initial draw from the distribution of interest  since in this case we would prefer to
construct an estimator 4, based on independent samples. For a di erent initial distri-
bution p 6= , the Markov chain (Xo;:::;X ) (p ") is not stationary but (1.4) ensures
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that the equilibrium distribution is approximately obtained after b2 N steps. The rstb
samples are then discarded as so-called burn-in period and themc estimator becomes
F)
Meme(f) = 0t R F (X )
The mcmc estimator is justi ed by asymptotic arguments. However, in practice it is
often hard to guarantee that the stationary distribution is indeed approximately reached
after b steps and that the sampled trajectory is indeed approximately ergodic after
steps. How large we have to choodeand n to ensure a desired precision of the Monte

Carlo estimate depends on the mixing properties of the Markov kernel, that is the
dependence on the past of the trajectory.

1.2.2. Normalized estimators

Some authors (Clyde et al.2011) argue that the equilibrium sampling approach using
mcmc might be sub-optimal on a large discrete state space, since the number of repeated
visits to a state is mostly zero or small and therefore a poor estimator of the frequency.

the set of all vectors which where sampled. Theicmc estimator (1.2.1) can be written

n( )

n+1

P
Mheme(f) = oy FO)

where the frequenciesi( )=(n + 1) are estimates of the probabilities ( )/ ~( ) for
all 2 V. We might therefore replace the estimated frequencies by their true values,
which looks somewhat like ans estimator

@)= tOP (1.6)
2V

with importance function ~. Although biased, this estimator might even be more e cient
than the original one due to a Rao-Blackwellization e ect. This raises the question
whether equilibrium sampling usingmcmc methodology is the adequate approach for
sampling on binary space at allGarca-Donato and Martnez-Beneito (2011) provide an
interesting discussion and numerical experiments to investigate the merits of normalized
estimators.
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1.3. The Metropolis-Hastings kernel

Most transition kernels used irmcmc are some variant of the Metropolis-Hastings kernel,
h p i
ol 1X)= q( ;29 ]+ x() 1 opa qy;Xay X

whereq( j X) is an auxiliary or proposal kernel and

(akxj )
Ca( ix)

the Metropolis-Hastings ratio or acceptance probability. Obviously, it su ces to know
the mass functions of and qup to a constant, since the unknown normalizing constants
cancel out in the Metropolis-Hastings ratio (1.7).

o sx)=11" (1.7)

The name \acceptance probability\ stems from the sampling procedure: The tran-
sition to the proposal stateY q( j X) is accepted with probability 4(Y ;x); the
chain remains at the current state otherwise. The Metropolis-Hastings kernel veri es
the detailed balance condition (1.5) and a proposal kernel with suppl supp([ xd"])
foralln>ngy2 N and x 2 BY ensures that the Markov chain is irreducible.

On discrete spaces accepting a proposal state does not necessarily imply that the
state of the chain changes since the current state might have been proposed again. We
distinguish between the acceptance probability (1.7) and the average mutation proba-
bility

P .
q(X) = 2Bdnfxg ( J X); (18)

since high acceptance probabilities alone do not indicate good mixing. This is particu-
larly true for random walk kernels on sampling problems with many local modes, as we
demonstrate in the numerical experiments in Chapterg and 6.

1.3.1. Random walk kernels

We review some of the Markov transition kernels typically used fomcmc on binary
spaces; this discussion has partially been published$thafer and Chopin(2012. Many
popular Metropolis-Hastings kernels on binary spaces perform a random walk, that is
they propose moves to neighboring states, where a natural neighborhood de nition is
the k-neighborhood

Hex):= f 2B% jx | Ko (1.9)
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There is a variety of ways to propose new states froid(x) and to choose the size of
the neighborhoodk. A standard auxiliary kernel is
. X . X -
o jx)= a( ix;l) (k! (k)
I D k2D

where! is the distribution of the numberk of components to be changed in the proposal,

( j k) is the uniform distribution on the set of all index setsl with cardinality k, and
g( j x;1) is a Bernoulli distribution with mean m for all components indexed by and
a copy ofxpy for all other components. Explicitly the mass function is

. XY Y | X ki k)
o %)= G me o meort O Gy
I D 2D nl i21 k2D '

(2.10)
and sampling fromqg( j x) is straightforward, see Procedurel. In the following, we
discuss some special cases.

Procedure 1: Generic random walk kernel

Input: x 2 Bd
u Uk 1 (1K) = Ui b jij=kg
y X

fori2ldoy, mX)Y[1 mx)]Yi
f Ym0

>u then
€, I mK
| return vy
else
return X
end
Random scan Gibbs sampler
Suppose that! = ;. Moves fromx are restricted to H;(X) which is referred to as

single site updating. The classicandom scan Gibbssampler draws an index 2 D and
samples theith component from the full conditional distribution

(il )= () .
Gl ) oy (=0 ) (1.11)

which corresponds to setting

mi(x)= i(1jxi), i2D:

uniformly drawn permutation U p, wherePp ;= ff : D! D jf is bijectiveg which
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may decrease the risk that the chain moves forth and back around the same local modes.
Let x® be a copy ofx with x" =1 x; fori U p. By construction, the acceptance
probability is

) (@jxi ) X

x; x0) = o =1
(x) @jx;)ysx
while the average mutation probability is only
d_ 0+ (e0)
Metropolized Gibbs sampler
Suppose that! = ;. In comparison to the Gibbs sampler, we obtain a more e cient

chain in terms of mutation rates (Liu, 1996b) using the simple form
mi(xX)=1 x;; 12D:

The scheme with deterministic ips is sometimes referred to asetropolized Gibbssince
one replaces the full conditional distribution by a Metropolis-Hasting type proposal.
Since we always propose to change the current state, the acceptance probability becomes

(<)

(x; x0) = 0 AT (1.12)
but the average mutation probability is
X 0)
=3 O
d. (x)

i2D

and therefore higher than for the random Gibbs sampler. From the average mutation
probabilities, we may conclude that a Markov chain with deterministic ips moves,
on average, faster than the classical random scan Gibbs chain. This is particularly
important if the mass function is expensive to compute.

Uniform block updating

Suppose that! 6= ;. Moves fromx are not restricted to H;(x) which is often referred
to as block updating, since one proposes to alter a block of entries in the Metropolis-
Hastings step.
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One maximizes the average mutation rate, conditional on the event that a move is
accepted, by settingm;(x) =1 x; foralli 2 | (jk)and k !'. The auxiliary
kernel simpli es y

o« in=" xS
k=1
which is a generalization of the metropolized Gibbs kernel to block updating. The
auxiliary kernel is symmetric in the sense that( jx) = q(x j ), and the Metropolis-

Hastings ratio (1.7) simpliesto[ ( )= (X)] * 1 where g( j x) denotes the proposal.

1 (K): (1.13)

Swendsen-Wang updating

Since the uniformly chosen update blocks do not take the distribution of interest into
account, these blind moves are rarely accepted for large blocks. For binary distribu-
tions from the exponential multi-linear family (see Sectior8.5.1for details), the special
structure of the mass function can be exploited to detect promising blocks.

Swendsen and Wand@1987) propose a sampling procedure that introduces a vector
of auxiliary variablesu such that (u j ) is a distribution of mutually independent uni-
forms and ( j u) a distribution with components which are either xed by constraints
or conditionally independent. Higdon (1998) suggests to parameterize and control the
size of the conditionally independent blocks to further improve the mixing properties.

Nott and Green (2004) attempt to adapt the rationale behind the algorithm to sam-
pling from a broader class of binary distributions. However, the Swendsen-Wang algo-
rithm is based on the exponential multi-linear structure of the distribution of interest
and the e ciency gain does not easily carry over to general binary sampling.

1.3.2. Metropolis-Hastings independence sampler

Suppose that! = gandm;(x) = m; foralli 2 D. The auxiliary kernel (1.10) becomes
the product distribution

Q . |
®()= “Lm'@ mt o (1.14)
and does not depend on the current stat&x. The Metropolis-Hastings kernel with
independent proposals is referred to as thiletropolis-Hastings independence sampler.

The kernelq( j x) simpli es to a distribution g which needs to verify supp() supp(9
to ensure that the Markov chain is irreducible. The acceptance probability is

oy = Ak L ..
o y) = 9a(y) 1 (1.15)
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Thus, the average acceptance rate and the average mutation rate

X ()ax) A

) = ®a( )

1q()

2B9nfxg

practically coincide on large sampling spaces. Obviously, in order to make this ap-
proach work, we need to chooseg su ciently close to . For the Metropolis-Hastings
independence sampler, the average acceptance rate of the kernel

X X

q T a6 ) (a( ) (1.16)

x2B d 2Bd
can be bounded from below by the total variation distance 1 2kq ki . The second-
largest eigenvalue of the transition kernel is

2=1 min 5(q( )= ( ));

and the constant in (1.4) isc(p) = [2 (Xo)] > for P = x,, See Diaconis and Hanlon
(1992) and Liu (1996a) for details on the eigenanalysis.

In most practical situations, the product proposal distribution (1.14) does not yield
reasonable acceptance rates. Proposition 3.2.8 in Chapt@rstates that even if the
distribution of interest and the auxiliary distribution g both have the same mean
m 2 (0;1)%, the auto-correlation of the independent Metropolis-Hastings sampler heavily
depends on the second cross-moments. In other words, if the distribution of interest fea-
tures strong correlations between its components, the independent Metropolis-Hastings
sampler using a vector of independent Bernoulli variables as proposal is bound to su er
from extremely low acceptance rates.

Therefore, to make a Metropolis-Hastings independence sampler workBfhwe have
to provide a parametric family (q) » whichisricher than (1.14) and we need to calibrate
the parameter such that the distance betweerg and is minimized. We come back
to this Markov kernel as essential part of thesmc algorithm discussed in Chapter2.

1.4. Adaptive Markov chain Monte Carlo

The Metropolis-Hastings sampler allows to incorporate any proposal kernglwhich
satises supp( ) supp([ xd"]) for n>n o 2 N. But obviously not all choices yield good
mcmc estimators. In most practical cases, one identi es a suitable family of auxiliary
kernels (q) , but still faces the problem that the parameter needs to be calibrated
against the distribution of interest . The obvious idea is to improve the choice of
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during the course of the algorithm which is then referred to asdaptive. The transition
kernels ( ) » alladmit as invariant distribution but if we adapt the parameter .,

in function of the sampled trajectory (Xi)wan, Ny ., the chain becomes non-
stationary and looses its Markov property. This raises the question whether the ergodic
theorem still applies which justi es the mcmc estimator.

There has been a major interest iradaptive Markov chain Monte Carlo @mcmc)
in the recent years and convergence results have been established which hold on nite
spaces under very mild conditions (Roberts and Rosenth&007). For further details on
amcmc we refer to Andrieu and Thoms (2008) and citations therein. In the following,
we review someamcmc algorithms for sampling on binary spaces and propose a few
extensions without going into details.

1.4.1. Adaptive metropolized Gibbs

An adaptive extension of the Gibbs sampler has been proposedigtt and Kohn (2005).
The authors also provide a direct proof of convergence for theimcmc algorithms which
needs less preparation than the rather technical proofs for general state spaces (Roberts
and Rosenthal,2007). The full conditional distribution is the optimal choice in terms

of acceptance rates, but oftentimes the chain does not move because the current state
has been sampled again; see the remark on the Gibbs sampler in Secfidghl. If the
mass function of the distribution of interest is expensive to evaluate the Gibbs sampler
Is bound to waste a lot of computational time.

Nott and Kohn (2005) suggest to replace the expensive full conditional distribution
(j=1] ; = x; ) byalinear predictor. For the proposal kernel (1.10) let = ;
and
W X;

m;(X) := i W

_ M@

where s the estimated meanW ! the estimated covariance matrix and 2 (0;1=2)
a design parameter which ensures thag (x) is a probability. Analogously to our vector
notation, W ; denotes the matrixW without the ith row and column. The estimates are
obtained from the past trajectory of the chain and updated periodically. The average
mutation probability is of the same order as that of the Gibbs kernel, but adaption
largely avoids computationally expensive evaluations of: The non-adaptive Gibbs
sampler already requires evaluation of to compute the sampling probability (1.11). In
contrast, the adaptive metropolized Gibbs sampler only evaluateg ) if x 6= for the
linear predictor proposal qal j x).
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1.4.2. Adaptive random walk

Lamnisos et al. (2011) propose to calibrate the distribution of the number of bits to be
ipped on average, where they také = B( ;n) to be a binomial distribution with succes
probability . Their work is motivated by the adaptive random walk algorithm developed
by Atchace and Rosenthal (2005) for continuous state spaces where the variance of the
multivariate normal random walk proposal is adjusted to meet the (asymptotically)
optimal acceptance probability. However, in the context of binary spaces the major
problem practitioners are facing is multi-modality, see Sectioh.5. The method proposed
by Atchace and Rosenthalis designed for high-dimensional unimodal sampling problems,
and the rationale behind the design of the algorithm does therefore not necessarily carry
over to multi-modal discrete problems.

Deville and Tile (2004) propose a method developed in the context of survey sam-
pling as a variance reduction technique for the Horvitz{Thompson estimator referred
to as the cube method, which allows to sample from the product familg, de ned in
(1.14) conditional on a set of linear constraints. Their algorithm yields an alternative
random walk scheme which has, to our knowledge, not been proposed in the context
of amcmc on binary spaces. Instead of a random walk on the neighborhood (1.9), one
would perform a random walk on

Ka)= f 2B% jxi aj | jX +ag;

that is the neighborhood of models with a number predictors di ering by less thaa.
Given the current statex, we rst draw the number of predictors k uniformly from the
set [0_(xj a);d”™ (jxj a)]. The proposal is drawn from g4 conditional on the
event that ] j = k, where the meamm needs to be adapted during the run of thencmc.

The conditional sampling problem is not trivial, since the mean of each component
m; may be di erent. The name cube methodstems from the idea to construct a vector
v 2 RY in the kernel of the linear constraints and determine the two facets of the hyper-
cube [0:1]¢ it intersects. A random draw, with probabilities proportional to the distance
between the starting pointm and the facets, determines one facet to be xed, and the
iteration is repeated on the remaining hyper-cube [@]°* until all facets are xed. The
construction of the vectors may be deterministic which also allows to evaluate the mass
function which is necessary in the Metropolis-Hastings step. We refer feville and
Tile (2004) for details on this technique.
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1.4.3. Adaptive independence sampler

The Metropolis-Hastings independence sampler is rapidly mixing if we can t the aux-
iliary distribution (q ) » to be su ciently close to the target distribution . Unfortu-
nately, we face a hen-and-egg problem since the non-adaptive Markov chain is likely to
mix very poorly but without any signi cant state space exploration we cannot reason-
ably adapt ( ) » . A viable solution is to mix the Metropolis-Hastings independence
kernel and a non-adaptive random walk kernel ,,

%=(1  %)w + %

for some parametefs2 [0;1]. The sampler proposes an independently drawn state with
probability %, which may be increased adaptively during the run of thecmc after the
parameter of the proposal distribution has been adapted su ciently.

1.5. Multi-modality

We brie y motivate why the mcmc methods discussed in Sectich 2 might fail to provide
reliable estimates of the expected value (1.1) if the distribution of interest is strongly
multi-modal. There does not seem to be a precise mathematical de nition of multi-
modality since this notion is somewhat di use.

We say thatx 2 BY is a local mode of degrek if (x) ( )forall 2 Hg(x). We
call a strongly multi-modal distribution if there is a signi cant collection M of local
modes of moderate degrees and mass function valugs) 29 forall x 2 M. These
distributions are di cult to sample from using random walk mcmc methodology since
we have to ensure that the trajectory of the Markov chain covers all regions of interest
in order to appeal to the ergodic theorem.

1.5.1. Markov chains and multi-modality

Transition kernels of the symmetric type are known to be slowly mixing on multi-modal
problems. If we put most weight on small values dt, the Markov chain is bound to
remain in the region of a single local mode for a long time. If we put more weight on
larger values ok, the proposals will hardly ever be accepted unless we propose by chance
a state in the domain of another local mode. Obviously, there is a problem dependent
trade-o when choosing the distribution! .
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Adaptive mcmc algorithms provide an astonishing speed-up over their non-adaptive
versions for high-dimensional sampling problems on continuous spaces and unimodal
distributions of interest. Still, it is a notoriously di cult problem to adapt an mcmc
sampler to a multi-modal sampling problem. Premature adaption might even worsen
the estimator by providing the impression of good mixing on just a subset of the state
space. There are more advancedcmc algorithms which use parallel tempering ideas
combined with more elaborate local moves (Bottolo and RichardsoQ10, among others)
or self-avoiding dynamics (Hamze et al2011) to overcome the multi-modality problem.
However, these algorithms seem di cult to tune automatically.

1.5.2. Bayesian adaptive sampling

As an alternative to mcmc sampling, Clyde et al. (2011) develop the Bayesian adap-
tive sampling procedure which draws binary vectors without replacement and uses the
normalized estimator (1.6). The idea is to update the conditional probabilities to en-
sure that each binary vector is only sampled once. The algorithm starts sampling with
some initial meanm o which is then updated using current estimateh ,, of the mean of
interest. The updating of the conditional probabilities is rather expansive and has to
be compromised in practice, meaning that the updating step cannot be performed after
every single sampling step. From a computational perspective this seems reasonable.

However, the critical problem is that the method does not sample from the distribu-
tion of interest but from a sequence of distributionsg}} with a meanrh, that needs to
be estimated during the course of the algorithm. The authors' claim that this sequence
is \close" to the target distribution is disputable. Even if the mean was correct, an
is estimator of based on proposals drawn fromg, might be quite ine cient in the
presence of strong multi-modality.

The rationale to produce a unique collectiorV of the most likely models leads to
stochastic search methods which identify a collection of local modes which may be av-
eraged according to their posterior mass. This has been proposed for inference in state
spaces which are clearly too large to achieve approximate ergodicity with standant¢mc
methods, see e.g.Hans et al. (2007). We discuss optimization algorithms on binary
spaces in Chaptes6.






2. The sequential Monte Carlo sampler

Resune

Nous proposons une technique dechantillonnage alternative base sur les nethodes de
Monte-Carlo squentielles qui propage un syseme de particulesa partir d'une loi initiale
simple, par des lois intermediaires auxiliaires vers la loi cible. Alors que la methodologie
resample-move provient de la botea outils standard du Itrage particulaire (Del Moral
et al., 2006), l'innovation centrale est l'utilisation d'un noyau de Metropolis-Hastings
avec des propositions incependantes dans letape de deplacement. L'usage des familles
paranetriques avanees qui approchent e cacement les lois internediaires et permettent
d'atteindre des taux d'acceptationelees recessaires pour la construction de chames de
Markov rapidement nelangeantes.

2.1. Introduction

In this chapter, we introduce a fully adaptive resample-move algorithm for sampling from
binary distribution using sequential Monte Carlo émc) methodology. The material has
been published inSchafer and Chopin(2012) and partially extended inSchafer (2012b).
We discuss how to obtain estimates of expected values of the form (1.1) providing a self-
contained description of thesmc framework. In particular, we propose some novel ideas
tailored to sampling on binary spaces. For a more general overviewsshc methods we
refer to Del Moral et al. (2006).

The basic resample-move algorithm alternates importance sampling steps, resampling
steps and Markov chain transitions, to recursively approximate a sequence of distribu-
tions ( )N, USiNg a set of weighted “particles'w,; X) which provide an empirical
representation of the current distribution. This sequence of distributions is chosen to
nally provide a particle system which approximates the distribution of interest =
and thus yield an estimator

AE)= T W f (X ) 2.1)

smc

35
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wheren is the number of particles. Under mild conditionsChopin (2004 shows that
the estimator is consistent and asymptotically normal, in particular £..(f ) T (f)
a.s. The details of thesmc sampler summarized in Algorithm2 are discussed in separate
steps in the upcoming sections.

Algorithm 2:  Resample-move
lnput: f:BY1 R
forall k2 N sample xx p.

while do
nd step length  (%X) (Procedure 4)
w  importance weights(; o X) (Procedure 3)
% %t

if % 1 then return P k=1 Wief (X k)
t parametric family (w; X) (see Chapter 3)
R resample(w ;X) (Procedure 5)
X move ( ;f@) (Procedure 6)

end

2.2. Sequential Importance Sampling

The rst ingredient of the smc sampler is a sequence of distributions ),y that serves
as a bridge between some easy initial distribution and the distribution of interest. The
intermediary distributions  are purely instrumental. The idea is to depart from a
distribution p with broad support and to progress smoothly towards .

We construct a smooth sequence of distributions by judicious choice of an associated
real sequence%),., increasing from zero to one. The most convenient and somewhat
natural strategy is a sequence of elements from the geometric bridge (Gelman and Meng,
1998;Neal, 2001 Del Moral et al., 2006)

wl Pt * w2 [0:1]: (2.2)

One could also take a sequences of from a family of mixtured’ / (1 %)p % but this

is computationally less convenient. We discuss some alternative choices for sequences
in the context of particular applications in Chapters4, 5 and 6. The question how to
actually choose an appropriate sequencey)en from ( oozp;1 is addressed in the next
section.
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2.2.1. Importance weights

Following standard sequential Monte Carlo notation, we refer to

with jwj = 1 as a particle system withn particles. We say the particle system (wX)
targets a probability distribution q if the empirical distribution converges

P |
"W T as.

Suppose we have produced a sampkg.;:::;X,¢ of sizen from . We can roughly
approximate 3 by the empirical distribution

P
1 () E:l Weet (Xkat) w0 ()5 (2.3)
where the corresponding importance functiomy,; is

Ut (X)

t+1 (X) .
E:l U1 (X k:t) ’

t(X)

As we choose ; further from ; , the weights become more uneven and the accuracy
of the importance approximation deteriorates. If we repeat the weighting steps until we
reach , we obtain a classical importance sampling estimate with instrumental distribu-
tion p which is in most cases a very poor estimator. The idea of thenc algorithm is

to monitor the e ective sample size éss) estimate %, de ned in (1.2) and intersperse
resample and move steps before loosing track of the particle approximation.

We (X) ;= P (2.4)

Ut (X) 1=

Procedure 3: Importance weights

Input: 5 ;X =(Xg;1155Xp)!
Uk (xx) forall k2N

Wk  W=( L, u) forall k2N
return w = (Wi, Wp)

2.2.2. Optimal step length

Given any sequence ()N bridging the gap betweerpto , we could repeatedly reweight
the system and monitor whether thesss falls below some critical threshold like one does
in particle ltering applications like target tracking. However, in the static context the
sequence ()un = ( %)en comes from a family (o)e2p:.1; @and one may exactly control
the weight degeneracy by judicious choice of the step lengths= %, %.
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The ess after weighting /(W ) is merely a function of . For an unweighted particle
systemX; at time t, we pick a step length such that

lwy )= (2.5)

that is we lower theess with respect to the current particle approximation by some xed
ratio 2 (0;1) (Jasra et al.,2011;Del Moral et al., 2012). This ensures a smooth'
transition between two auxiliary distributions, in the sense that consecutive distributions
are close enough to approximate each other reasonably well using importance weights.

We obtain the associated sequence{% by setting %, = %+  where ;is a
unique solution of (2.5) which is easily obtained using bi-sectional search singéw?. )
Is continuous and monotonously decreasing in, see Procedurel. This is particularly
fast to compute for the geometric bridge sinca(x) =[ (X)=p(x)] .

For xed ,the associated sequencéf)n is a self-tuning parameter but the number
of steps until termination of the smc algorithm is not known in advance and largely
depends on the speed parameter and the complexity of the sampling problem at
hand. In our simulations, we choose = 0:92 yielding good results on all example
problems of moderate dimensioml  100. As the dimension of the sampling problem
increases, we have to progress more slowly and thus chooseloser to one.

Procedure 4: Find step length
Input:  %:X = (x1;::::Xp)!

| O;u 105 ; 0:05

repeat
if (; X)< then u X ( +D=2
else | ; ( +u)=2

until ju lj<" or 1> 1 %;
return (1 %)

2.2.3. Resampling step

E((x«)) = nw;

where n(x) denotes the number of particles identical withx. Thus, in the resampled
system, particles with small weights have vanished while particles with large weights
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have been multiplied. For the implementation of the resampling step, there exist sev-
eral recipes. We could apply a multinomial resampling (Gordon et al,993) which is
straightforward. There are, however, more e cient ways like residual (Liu and Chen,
1998), strati ed (Kitagawa, 1996) and systematic resampling (Carpenter et al1999)
which are variance reduction techniques that improve themc estimator. We refer to
Douc et al. (2005) for a detailed comparison. In our simulations, we always used the
systematic resampling scheme, see Proceddre

Procedure 5: Systematic resampling step
Input: w = (wqg;:::;Wp); X =(x1;:::;xn)|
V. o nw; i 1,c v
sample u U o1

for k=1 to ndo
while c<u do i i+1;c cC+ v

Rk  Xi;u  u+l
end
return R = (Rq:::;%n)!

2.3. Adaptive move step

2.3.1. Fast-mixing kernels

The resampling step provides an unweighted particle system of containing multiple

copies of many particles. The central idea of themc algorithm is to diversify the resam-
pled system by draws from a Markov kernel which admits the current target distribution
as invariant measure (Gilks and Berzuini2001). The particlek‘(k(;’t)+1 is approximately

distributed according to 3, and a draw

1 . A (0
k‘(k;t)+1 w1 (] )Q(k;t)+1 )

fromakernelwith[ 1 1]= w1 IS again approximately distributed according to 1 .
The last sample of the generated Markov chainx‘(f(?t)+1 ;:::;k‘(ks;f,,l) is, for su ciently
many move stepss 2 N, almost exactly distributed according to the invariant measure

w1 and independent of its starting point.

In order to make the algorithm practical,the transition kernel needs to be rapidly
mixing and diversify the particle system within just a few steps. The novel idea is to use
a Metropolis-Hastings independence sampler as described in Sectidh2. The proposal
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distribution is a parametric family (q) » which is, for a well-chosen parametefy; s,
su ciently close to ; to allow for reasonable acceptance probabilities. The parameter
"+ is estimated based on the current particle approximationW.; ; X¢) of 1, as
proposed in Chopin (2002). The choice of the parametric family is crucial and further
discussed in Chapter3. The locally operating Markov kernels reviewed in Sectioh.2
are less suitable for thesmc algorithm since they mix rather slowly. However, batches of
local moves can be alternated with independent proposals to ensure that the algorithm
explores the neighborhood of local modes su ciently well.

2.3.2. Adaptive stopping rule

While we could always apply a xed numbers 2 N of move steps, we rather use an
adaptive stopping criterion based on the number of distinct particles. We de ne the
particle diversity as

nX) = ntijfx k2 Ngj: (2.6)

Ideally, the sample diversity ,(X) should correspond to the expected diversity

P
n()=17nt 2gd 1peB a: e w1g ()

: P - .
where ¢, is the smallest value that solves ,5sbG ( )¢ n. This is the particle
diversity we would expect if we had an independent sample from Therefore, if
Is fast-mixing, we want to move the system until

2R a( )

Since the quantity on the right hand side is unknown, we stop moving the system as
soon as the particle diversity reaches a steady state we cannot push it beyond.

More precisely, we stop if the absolute diversity is above a certain threshold 0:95
or the last improvement of the diversity is below a certain threshold > 0. We always
stop after a nite number of steps but the thresholds and need to be calibrated
to the e ciency of the transition kernel. For slow-mixing kernels, we recommend to
perform batches of consecutive move steps instead of single move steps.

If the average acceptance rate of the kernel as de ned in (1.16) is smaller than ,
it is likely that the algorithm stops after the rst iteration although further moves would
have been necessary. We could adaptively adjust the threshold to be proportional to
an estimate of the average acceptance rate; for our numerical experiments, however, we
kept it xed to 102 .
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Procedure 6: Adaptive move step
Input: X = (xPlx®y A pwith [ 1=
s 1

repeat
‘ for all k2 N sample x¥  (j x&P)

untl (X®) X&D )< or (X©)>
return X © = (x5 x !

2.4. Remark on discrete state spaces

Since the sample spacB? is discrete, a given particle is not necessarily unique. This
raises the question whether it is sensible to store multiple copies of the same weighted
particle in the system. Let

P
n( )= on x()

denote the number of copies of the particle in the system (w; X). Indeed, for par-
simonious reasons, we could just keep a single representative ofnd aggregate the
associated weights tav¢- ) = n( ) w( ).

2.4.1. Impact on the e ective sample size

Shifting weights between identical particles does not a ect the nature of the particle
approximation but it obviously changes the e ective sample size,(w) which is unde-
sirable since we introduced thesss as a criterion to measure the goodness of a particle
approximation. From an aggregated particle system, we cannot distinguish the weight
disparity induced by reweighting according to the importance function (2.4) and the
weight disparity induced by multiple sampling of the same states which occurs if the
mass of the target distribution is concentrated. More precisely, we cannot tell whether
the ess is actually due to the gap between, and ; or due to the presence of parti-
cle copies as the mass of concentrates which occurs by construction of the auxiliary
distribution in Section 6.1.1.

2.4.2. Impact on the resample-move step

Aggregating the weights means that the number of particles is not xed at runtime.
In this case, the straightforward way to implement the move step presented in Section
2.3.1 is breaking up the particles into multiple copies corresponding to their weights and
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moving them separately. But instead of permanently splitting and pooling the weights
it seems more e cient to just keep the multiple copies.

We could, however, design a di erent kind of resample-move algorithm which rst
augments the number of particles in the move step and then resamples exacthyeighted
particles from this extended system using a variant of the resampling procedure proposed
by Fearnhead and Cli ord (2003). A simple way to augment the number of particles is
sampling and reweighting via

&) (1) _

XD g (P xy; wP =we;w@=w@ )
where = 4, (X f(l);x(ko)) denotes the acceptance probability (1.7) of the Metropolis-

Hastings kernel. We tested this variant but could not see any advantage over the stan-
dard sampler presented in the preceding sections. For the augment-resample type algo-
rithm the implementation is more involved and the computational burden signi cantly
higher. In particular, the Rao-Blackwellization e ect one might achieve when replacing
the accept-reject steps of the transition kernel by a single resampling step does not seem
to justify the extra computational e ort.

Indeed, aggregating the weights does not only prevent us from using thes criterion,
but also requires extra computational time ofO(n logn) in each iteration of the move
step since pooling the weights is as complex as sorting. In the context of estimating
an expected value, however, computational time is more critical than memory, and we
therefore recommend to refrain from aggregating the weights.
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Resune

La performance de lechantillonneur de Monte Carlo quentiel cepend de la capacie
dechantillonner selon des lois auxiliaires qui sont, en un certain sens, prochea la loi de
I'inerét. Ce chapitre contient le travail principal de cette trese et pesente des strakgies
visanta construire des familles paranetriques pour lechantillonnage de vecteurs binaires
avec cependances. Nous proposons des solutions pratiques qui peuvent &tre incorpoees
dans les algorithmes particulaires sur les espaces binaires, mais aussi des approches de
mocklisation de vecteurs binaires akatoires qui sont au-deh de I'application imnediate
de nethodes Monte-Carlo. L'inerét pratique des familles paranetriques propoees est
examire dans uneetude nunerique sur des matrices akatoires de moments croises.

3.1. Motivation

The preceding chapters motivated why parametric families are an important building
block of adaptive Monte Carlo algorithms. In this chapter, we elaborate on strategies
for constructing parametric families which are suitable sampling distributions within
and beyond the context of the sequential Monte Carlo sampler. Two major approaches
to constructing parametric families are presented, based on generalized linear models
or on multivariate copulas. We also review additive and multiplicative interactions
which are not suitable for general purpose Monte Carlo algorithms but give insight
in structural problems we face when designing parametric families. Finally, numerical
experiments were performed to compare competing approaches for sampling binary data
with speci ed mean and correlations in moderately high dimensions.

In the sequel, we summarize and discuss the conditions a parametric fanmglyvith
supp(g = B should meet for successful integration into adaptive Monte Carlo algo-
rithms, pointing out three approaches of practical value. This material is mostly taken
from Schafer (2012a).

43
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(a) For reasons of parsimony, we prefer a family of distributions with at most(d+1)=2
parameters like the multivariate normal on continuous spaces.

(b) Given asample &1;:::;xy) from the distribution of interest , one needs to compute
an estimate " under the model (x;:::;Xn) ¢ within a reasonable amount of
computational time.

(c) The family q, must allow to e ciently generate independent samples.

(d) In the context of an sequential Monte Carlo émc) or Markov chain Monte Carlo
(mcmc) algorithm, the mass functionq , () needs to be evaluated point-wise. Note,
however, that the cross-entropy ¢e) method reviewed in Chapteré works without
this requirement.

(e) The family q, needs to be su ciently exible to reproduce important charac-
teristics of , for example the mean and correlation structure, to ensure that the
calibrated family g~ is su ciently close to

The ultimate goal is to construct parametric families withd(d + 1)=2 parameters
which, like the multivariate normal, accommodate the full range of means and correla-
tions on high-dimensional binary spaces. In the following, we provide an overview of
three parametric families which seem useful in the context of adaptive Monte Carlo and
comment on the requirement list composed above.

3.1.1. Product family

The simplest non-trivial distributions on BY are certainly those having independent
components. For a vectorm 2 (0;1)¢ of marginal probabilities, consider the product
family

u — Qd i 1 .

gh ()= "o m (@ omy)

The product family meets most of the requirements. (a) The product family is
parsimonious with dim( ) = d. (b) The maximum likelihood estimatorrh is the sample
mean. (c) We can sampley qu, by construction. (d) We can evaluate the mass
function g, (y) by construction. (e) However, the product family does not reproduce
any dependencies we might observe in the da¥

The last point is the crucial weakness which makes the product family impracti-
cal for particle algorithms on strongly multi-modal problems. For toy examples which
demonstrate this e ect we refer to the applications in Sectiond.4.2and 6.4.1.
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3.1.2. Logistic conditionals family

For a lower triangular matrix A 2 R49 | consider the logistic conditionals family
. Q N P, i h R P . I 1
()= " &+ jha g 1 &+ ey
where': R! (0;1); "(x) = [1+exp( Xx)] ! isthe logistic function. The rst component
1 is an independent Bernoulli variable; thath component ; conditional on ., is a
logistic regression on the predictors;:::; i1 .

The logistic conditionals family meets all of the requirements. (a) The logistic con-
ditionals family is su ciently parsimonious with dim( ) = d(d + 1)=2. (b) We can t
the parameter A via likelihood maximization. The tting is computationally intensive
but feasible. (c) We can samplgy g, by construction. (d) We can exactly evaluate
gy (Y) by construction. (e) The family g, reproduces the dependency structure of the
data X although we cannot explicitly compute the marginal probabilities. The family is
su ciently exible to reproduce any feasible combination of marginals and correlation
structure.

3.1.3. Gaussian copula family

For a vectora 2 RY and a correlation matrix 2 R%Y , we introduce the mapping

and consider the Gaussian copula family

R
q ()=@2) tdet( ) 2 1(,exp vl tv odv:

The Gaussian copula family meets most of the requirements. (a) The Gaussian
copula family is su ciently parsimonious with dim( ) = d(d+ 1)=2. (b) We can t the
parametersa and via method of moments. However, the parameter is not always
positive de nite. (c) We can sampley . usingy = a(v) with v. ' . (d) We
cannot easily evaluateq. (y) since this requires computing high-dimensional integral
expressions which is a computationally challenging problem in itself (see e(@enz and
Bretz (2009)). The Gaussian copula family is therefore less useful fonc samplers but
can be incorporated into thece method analyzed in Chapter6. (e) The family gf.
reproduces the exact mean and, possibly scaled, correlation structure.
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3.2. Preliminaries on random binary vectors

In the sequel, we elaborate some theoretical background on random binary vectors and
provide a summary of known and novel results on modeling binary data with dependen-
cies. Most of the material has been published as technical report (Schaf2f12a) which

is under review for publication at the time this thesis is written.

3.2.1. Cross-moments and correlations

Before we discuss how to model dependencies in binary data, we introduce the notion
of cross-moments and derive some elementary properties.

De nition 3.2.1. For a setl D, we refer to

P
m, = E Qi2| Xi = e ( )Qi2| i

as the (absolute) cross-moment indexed hy.
Note that m; = P (X, = 1) which means that cross-moments and marginal proba-
bilities indexed byl D are identical. Higher order cross-moments coincide with rst

order cross-moments. The range of possible cross-moments is limited by the following
constraints.

Proposition 3.2.1. The cross-moments of binary data ful Il the sharp inequalities

P
max , m; jl j+1;0 m, minfmg:K 1g: (3.1)

Proof. The lower bound follows from
- P . P P Q P
i 1= gl 1) () 289 21 i 2 i ()= o miomy;

the upper bound is the monotonicity of the measure. m

For the special casgl j = 2, Proposition 3.1 is a well-known result and has been
invoked in several articles dealing with correlated binary data. For the general case, we
remark that a mapping

fo[o;10 1 [0;1]; fi(mi;iiimg )=

which assigns a cross-momemn, for | D as function of the marginalsm; fori 2 I,
is quite similar to a jl j-dimensional copula and the inequalities (3.1) are exactly the
Fechet-Hoe ding bounds (Nelsen,2006, ch. 2).
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De nition 3.2.2.  We say ad d symmetric matrix M := (m; ) with entries in (0; 1) is
a cross-moment matrix of binary dataif M diag(M)diag(M) ! is positive de nite and
condition (3.1) holds for alll D with jl j = 2.

In the sequel we see how the cross-moment matrix relates to the notion of correlation.
De nition 3.2.3. Forasetl D, we dene
Q }
u ()= "5 i m)m@ m)*>;

and refer toc, := E (u, (X)) as the (generalized) correlation coe cient indexed by .

A d d positive de nite matrix C with entries in [ 1; 1] and diag(C) = 1 is not the
correlation matrix of a binary distribution for every mean vectorm 2 (0;1)". In fact, C
is a correlation matrix if and only if M = C ss! + mm ! is valid in the sense of De nition
3.2.2, where the dot means point-wise multiplication and? := m;(1 m;). Chaganty
and Joe (2006) elaborate alternative conditions for compatibility between correlations
and means, but these do not seem easier to express or to check.

In the context of binary data, the notion of \strong correlations” refers to correlation
coe cients which are at the boundary of the feasible range with respect to the mean
vector. Note that the absolute value of the correlation coe cient does, in itself, not tell
whether the correlation is easy or di cult to model. The following statement relates the
notions of uncorrelated and independent variables.

Proposition 3.2.2. Let X be ad-dimensional binary random vector. Fod = 2, entries
are uncorrelated if and only if they are independent. Fat 3, entries might be mutually
uncorrelated but not independent.

Proof. Let px,x, := P(X1= X1;X2 = X2). By denition p;; = my, = mym,. Further,
we obtainp;go = m; mp = my(1  my) and, analogously,pp; = (1  mg)m,. Finally,
we havepp =1+ mp; my my,=(1 my)@ my). Ford 3, let for instance

Pooo = Po1r = Pior = Prro = 1=4 andpioo = Poio = Poor = P111 = 0. The entries are
mutually uncorrelated, but not independent sincg;;; =0 6= £8 = mym,ms. O

For some applications, it su ces to model structured dependencies, such as exchange-
able (g = c), moving average ¢; = cl;; j=1) or autoregressive (¢ = ¢/ ) correlations
fori 65 2 D. There is a long series of articles concerned with e cient approaches to
sampling binary vectors for structured correlations (Farrell and Sutradhai2006;Qagish,
2003;0man and Zucker,2001;Lunn and Davies,1998;Park et al., 1996). However, we
focus on the problem of sampling binary data with arbitrary cross-moment matrixv
which is a building block of general adaptive Monte Carlo algorithms.
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3.2.2. Representations and bounds

Proposition 3.2.3. Letf:BY! R besome functionand: R V! (BY) a bijective
mapping. There are coe cients @ 2 R such that

P Q

f()= D & i

setl. We thus havef( )= [ 3o 1(@( ) L (f[1(1)])] and writing the Dirac delta
function as a product 14y( )= ", i ipn(l i) we conclude the assertion. O

In particular, every binary distribution admits a multi-linear representation. The
usefulness of this result is limited, however, since the coe cients of the expansion do
not easily relate to the notion of cross-moments. However, the following representation
by Bahadur (1961) allows to write a binary distribution in terms of its generalized
correlation coe cients.

Proposition 3.2.4. Let be a binary distribution with meanm 2 (0;1)?. Then,
P
()=04d,() o Gu ()

Proof. We give the proof byBahadur (1961) using the notation introduced above. The
setfu,:1 Dg forms an orthonormal basis orF := ff : B9! Rg with respect to the
inner product

P
(f;9) = Eq, ((X)a(X )= 254 F( )a( )ai ()

P
Therefore, every functionf 2 F has a unique representatiofi( )=, 5 (f;u,)u, ( ).
Compute the inner products

(=qh;u)= i zgal ()= O)u ()an () =E (X)) =g

P
to obtain the desired form ( )=, ( )= ,p cu (). ]

This decomposition, rst discovered by Lazarsfeld, is a special case of a more general
interaction theory (Streitberg, 1990) and allows for a reasonable inteEpretation of the
parameters. Indeed, we have a product family times a correctionterm 1+, vi( )¢
where the coe cients are higher order correlations.

Using Proposition3.2.4, we may bound thdP distance between two binary distribu-
tion with the same mean in terms of nearness of their correlation coe cients.
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Proposition 3.2.5. Let and! be binary distributions with mearm 2 (0;1)¢. For an
exponentp 1,

P . L
el () 1OIP o 2Emn2aN je g P (1+r)d dr 1

wherer = 21MnP20 mayx  jc, ¢ jPI.

Proof. Sinceu, = uj foralll D, applying Proposition 3.2.4yields
. P P P 1y P
agwvsa | () !()J=P23d0.“n() o W()e )
o 06 GIPEg (u, (X))
Using that xP1 +(1 x)P'  22Mni290  for all x 2 (0; 1), we obtain the bound
: : Q
Eq (u, (X )i")

) P o . P S .
Finally, we have |, 2¢mn29il Jjc ¢ jP o g2 M =@+ )¢ dr 1,since
by de nition ¢, = ¢ forall | D with jlj 2. O

o M M) mPt +(@ my)pt] 2@ minf2gil

Corollary 3.2.6. Let andqbe binary distributiolgs with mearm 2 (0;1)¢. The total
variation distance between and qis bounded by% N (A

Proposition 3.2.7. Let and g be binary distributions with cross-moment matrixM.
Then we have 54 () o )i (@+r)? 2dd 1)y? dr 1.

Proof. Analogously to Proposition3.2.5. O

The last results merit a comment with regard to adaptive Monte Carlo algorithms.
The summand%d(d 1)r2 we have in Proposition3.2.7but not in Proposition 3.2.5might
be interpreted as the gain in \closeness" of the proposal to the target distribution when
we compare a simple product modej, with m = m = m%and a more sophisticated
proposal distribution qu with M = M = M9 In the following result, we formalize
how the cross-moments of the proposal distribution a ect the auto-covariance of the
Metropolis-Hastings independence sampler. This underpins the practical observation
that a proposal distribution which just matches the mean of the target distribution is
often not exible enough to yield an e cient Markov kernel.

Proposition 3.2.8. Let and g be binary distriButions with meanm 2 (0;1)* and

denote by ( j X) == q( ) q( ;x)+ x()[1 y284 A(Y) o(y;X)] the Metropolis-
Hastings kernel with invariant measure and proposal distributiong where g(; X) is
de ned in (1.7). The auto-covariance betwee(X 1; X ») is

E (X.X)) mm'=%(M M9+ R

. .. P . .
with R = (r;;) wherejrj j wsal () al )i
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Proof. We plug the de nition of the kernel into the expected value and obtain

X .
E (XoX})= X (%) (%)

%Bd X P
= X 0( ) of 5%) (X)+ Xixj[L yogadly) q(y;¥)] ()
;x2B d X x2B d
=m; + Cixp o xixp)a( ) x) q( ;%)
;x2B d
_ 1 gy, 1 X . .
=mim; + S(my - my)+ o Cixp o xixp)ja( ) ) ax) ()i;
;x2B d

where we used @ ) () o ;x)=09( ) )+ ax) ()jal) x) ax) () The
triangle inequality

X X
jaC ) &) ax) ()i= jaC) G ) G+ () 6 ax) ()i
;>>ZZBd ;x2B d X
faC ) ()i O+ ) axi ()=2 ) al
;x2B d 2Bd
yields the bound onrj; := %P s iXp xixp)ja( ) ) ax) ()i O

For a proposal distribution gy with M = M = MY, the auto-covariance rst term
vanishes and the remainderg ; j are, on average, smaller as implied by Propositidh?2.7.

3.3. Families based on generalized linear models

3.3.1. De nition

We want to construct a parametric family q for sampling independent random vectors
with speci ed dependencies. Sampling in high dimensions, however, requires the compu-
tation of conditional distributions g( i j 11 ), and it is therefore convenient to de ne
the parametric family directly in terms of its conditionals.

De nition 3.3.1. Let :R! [0;1] be a monotonic function andA = (g;) ad d
real-valued lower triangular matrix. We refer to
Q h = i h P iy
W)= "L @i+ jha ) 1 @i+ L&)
as the -conditionals family. By construction, it is easy to samplex g, and evaluate
g, (X) point-wise, see Procedurer.
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Algorithm 7.  Sampling via chain rule factorization
Xx=0;:::;0;p 1

1 _ Pi1
C ga(xi=1jXwi1)= @i+ ;1 aXj)

u U Upy
if ugc then x; 1
<pc if x; =1
“p (@ ¢ if xi=0
end
return x; p

Proposition 3.3.1. Let :R ! [0;1] be a bijection andm 2 (0;1)" a mean vector.
For A =diag[ ! (m)] we haveq, = ¢, .

Qaqish (2003) discusses theconditionals family with a truncated linear link func-
tion (x) = minfmaxfx; 0g;1g. The linear structure allows to compute the parameters
by simple matrix inversion; on the downside, the linear function is truncated and fails to
accommodate complicated correlation structures; see Secti8r6 for a numerical com-
parison. Qaqish (2003) elaborates on conditions that guarantee the linear conditionals
family to be valid for special correlation structures.

Farrell and Sutradhar (2006) propose a-conditionals family with a logistic link
function (x) =1 =[1+exp(x)]. However, they only analyze the special case of autore-
gressive correlation structure. The idea to model conditional probabilities by logistic
regression terms has also been suggestedAmold (1996). In Section3.5.1, we further
motivate the use of the logistic link function. In the following theorem, we formalize the
fact that this approach indeed allows to model any feasible combination of mean and
correlation structure.

Theorem 3.3.2. Let :R! [0;1] be an increasing, di erentiable bijection andM a
d d cross-moment matrix. There is a uniquel d real-valued lower triangular matrix
A such that ,zaqa( ) =M.

Popular link functions that verify the condition include the logistic function with
(x) = 1=[1 +exp( X)], the probit function with  (x) = (2 )2 | exp(y 2=2)dy,
the arctan function (x) =1 =2+ arctan(x)= and the complementary log-log function
x)=1 exp[ exp(x)], seeMcCullagh and Nelder(1989, sec. 4.3). We derive two
auxiliary results to structure the proof of Theorem3.3.2.
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Lemma 3.3.3. For a cross-moment matrixM with mean vectorm = diag(M), we have
|

Mm'

> 0:
ml 1

Proof. Notethatm!'M*m (MM *m)2=(M*m)!/M mm )M ! m > 0because
the covariance matrixM  mm ! is positive de nite. Dividing by m'M*m > 0 we
obtain1 m!M* m > 0 which yields

, .

! I I#
M m M 0 I Mm
det = det
m! 1 o 1 ml! 1 |
| Mim
= det( M)det

00 1 miM!im)
=det(tM)2 m!'MIm)>o0:
Therefore, all principal minors are positive. O

Lemma 3.3.4. Let :R! [0;1] be a monotonic, dierentiable bijection, and denote
by B" = fx 2 R" j xIx < rZ2g the open ball with radiusr > 0. Let be a binary
distribution with cross-moment matrixM. We write m = diag(M) andm =(m!;1)
for the mean vector. There is', > 0 such that the function |

d+1

d+1 n " X P d
f:BI 1 L Cam, ), (@)= ()@an+ g & «) 1
B 2Bd

is a di erentiable bijection.

S
Proof. We set"; = max 5 ygig MiNggan fi(@); M max,g e fi(a) : Forin-
dicesi;j 2 D [fd + 1g, the partial derivatives off are

@f _ X P (G =d+1)
== () Yags + ey 1) |
@p 2Bd i (i=d+1)
1 (i=j=d+1)
, , P4 , : o :
We have , :=min g g1 MIN g0 Yag + i, & i) > 0 since s strictly increasing.
Then the Jacobian is positive for alla 2 B¢,
2 13 [
X P | M m
detf Ya) = det 4 () Q@+ Lrai) L O tdet >0
2Bd

where we applied Lemma.3.3in the last inequality. O
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Proof of Theorem 3.3.2. We proceed by induction overd. For d = 1, A(1) is a scalar
and we de ne the -conditionals family d,,, via Corollary 3.3.1. Suppose that we have
already constructed a-conditionals family d,, with d dlower triangular matrix A(d)
and cross-moment matrixM(d). We can add a new dimension to the -conditionals
modquA(d) without changing M(d), since
X | X | h P d iXd+1
Oaaery (OXX 1 = Oy (X1:a)XX ' (& gergen + j=1 Qd+1;] X;)
x2B d+1 x2B dl’:]l

P d I 1X g
1 (a d+1;d+1 + j=1 ad+1;j Xj)

X P I

= Oaa) () (@gsrgn + jd:l ags1; ) 1 +
2Bd )
h P4 ! 0
1 (2 dwaa * j=1 Ad+1 i) o0 0
!
X P4 0
= Oay () (@ gvraer + j=1 Gd+1;] i) 1 +
2Bd I
M) O
4] 0

For reasons of symmetry, it su ces to show that there isa 2 R%* such that
!
X P4
f(a)= ey ( )(@ara + 2 & 1) 1 =M +1) 441
2Bd

where the r.h.s. denotes the (¢ 1)th column of the augmented cross-moment matrix.
There is" > 0 so that M(d + 1) .41 2 ,d:ll (";m, ") with m = (diag[M(d)]!;1)
which implies that a solution is contained in a su ciently large open ballBdt. We

apply Lemma3.3.4to complete the inductive step and the proof. O

3.3.2. Maximum-likelihood

For a log-concave link function, one can easily tthe -conditionals family to weighted
data (w; X) by component-wise likelihood maximization. We provide a review of likeli-
hood maximization for generalized linear models with binary response in Secti®2.1in

the context of Bayesian variable selection. Here, we only work out the explicit procedure
for the special case of the logistic conditionals family since we advocate its use in the
context of the smc sampler developed in ChapteP.
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For an indexi 2 D, let y® := X ; denote the vector of observations\ := diag(w )
a diagonal matrix with weights andZ® := (X .4, ;1) the design matrix. The log-
likelihood function for the weighted logistic regression is

x  h . _ o
logl(@) = wi ¥ loglz @]+ (L  y¢)logll (zi a)]

k=1
X L . |
= Wy yl((') zl((') a log[l+ exp(zl((';) a)l ;
k=1
where we used that log[1 “(x!'a)]= log[1+exp(x'a)]= x la+log[(x 'a)]. Since

@og[1 +exp(x' a)]=@ = “(x ! a)x, the gradient of the log-likelihood is

x h . N . . .
s@= ww'zd Cegazg =@0)'wy el
k=1
where ()¢ = (z E) a). Since @ (ta)=@ = (x 'a)[l “(x'a)]x, the observed
Fisher information matrix is

x ho N B , o
F@= wo@gall “@lal zg @) =(20) wdiag@?)z?;

k=1
Whereag?k = (z S) all (z |(<I) a)]. We put a normal prior N (0;" * 1) on the regression
parametersa to ensure that the likelihood function is convex, compare Sectioh.2.1.
The NewtoR Raphson iteration simplies toa®™? = a® + x® wherex® is the vector
that solves (Z®)'wdiag q¥), z® + "1 x® =(z)wy® pY% 1 "a®:we might
choosea©® = (0; ! (x;)) as starting point, whereX; denotes the weighted sample mean.
In the context of the smc sampler discussed in Chapte2, better initial values might be
obtained from the parameter of the previous auxiliary distribution.

If the Newton iteration at the ith component fails to converge, we can either augment
the penalty term " which leads to stronger shrinkage of the mean towards2 or we can
drop some covariates; for j 2 [1;i 1] from the iteration to improve the numerical
condition of the procedure. In practice, we also drop the predictors from the regression
model which are only weakly correlated with the explained variable, see Sectidr6.1.

In particularly di cult cases, we might prefer to set a = (0;" ! (X;)), where X; denotes
the weighted sample mean. This guarantees that at least the mean is correct which is
important since misspeci cation of the mean of; obviously a ects the distribution of the
components ; forj 2 [i+1;d] which are sampled conditional on;. Yet another way to
tweak the numerical properties is re-parameterization through swapping the component
i and another componenj 2 [i+1;d]. Later, we have to apply the inverse permutation

in the sampling algorithm to deliver the binary vector in the original order.
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Algorithm 8: ML tting for a logistic conditionals family
Input: X =(x1;:::;%xn)l; W =diag(wy;:::;wy,); A 2 RYd
for i 2 D do
z X i1 51,y Xi; a® A
repeat
Pk (Zka®) forall k2[1;n]
& pc(1 pk)h for all k2 [1;n] B |
a(ttl) a® + (z0)l'wdiag[gz® + "I ZMw iy p] "a®
until ka®b  alOk; <
A1 a

end
return A

3.3.3. Method of moments

If we have data available instead of cross-moments, we rather t aconditionals family

via component-wise likelihood maximization than by method of moments since the for-
mer is faster and can even be parallelized, see Secti®f.2. Still, in some applications
we want to sample binary data with speci ed means and correlations, an example being
the evaluation of statistical procedures for marginal regression models (Qaqi&903).
Further, the practical range of cross-moments which can be sampled is a reasonable
criterion to compare the exibility of competing parametric families, and we use this for
the numerical comparison in Sectior3.6.

The proof of Theorem3.3.2suggests an iterative procedure to adjust the parameter
A to a given cross-moment matrixM. We add new cross-momentsn 2 (0;1)%* to
thed d a lower triangular matrix A by solving the non-linear equatiorf (a) = m via
Newton-Raphson iterationsa®*d = a®)  [fqa®))] ! [f (a®)) m] where

P
f(a)= e Ga () 5 Da)( ;1)
P
fqa)= gedh( ) I sl )i ;1)

For dimensionsd > 10, the exact computation of the expectations becomes expensive,
and we replace and f © by their Monte Carlo estimates

p
(@) = o fon O () [(X fo D)X ;1) 32
@)= k() Il Dalx 1) (xi1)

If the smallest eigenvalue oM  diag(M)diag( M) ! approaches zero or a cross-
moment m; approaches the bounds (3.1), the parametes; may become very large
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in absolute value. The limited numerical accuracy available on a computer inhibits
sampling from such extreme cases. We might encounter non-convergence in the course
of the tting procedure. In order to handle these problems, we set

mi (k)= «my +(1 Wmim;j; 0= 1< < n=1

forallj =1;:::;i 1 and compute a sequence of solutiorsg ) to the sequence of
cross-momentan( ). We stop if the parameters fail to converge which ensures that
the mean of the -conditionals family is always diag(M).

For the special case of the linear link function(x) = x, we obtain
!

hp i Mom
f@= o) D(hDa= N7

which always has a solution by virtue of Lemma.3.3; to construct a mass function,
however, we have to fall back to the truncated versionx) = minfmaxfx; 0g;1g, and
the range of feasible cross-moments is hard to assess (Qadz€iQ)3).

3.4. Families based on multivariate copulas

3.4.1. De nition

Instead of constructing a parametric family with explicit conditionalsq ( ;| 11 ), we
could sample from an auxiliary parametric family on R? which allows to compute the
conditionals' (Xj j X1 )-

De nition 3.4.1.  For a vectora 2 RY and a parametric family' on R® we de ne the
copula family

R
03; ( ):= & ( )' (X)dX; a(X) = 1(1;a 1](Xl);:::;1(1;a d](Xd) :

We do not need to explicitly compute the copula, but, obviously, the range of de-
pendencies achievable witleg. depends on the exibility of the family of copulas given

through the underlying auxiliary parametric family. For all1 D, the marginals are
c_P Q P R
my = 2Bd Cﬁ; () 21 i~ 2B9; =1 () (v)dv
R . . _R . _
= f (g (v)dv = o i (v)dyv;
3

oo d
89 =1 i=1

T (1) i2l
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which is the marginal cumulative distribution function of the auxiliary distribution.

Forad d correlation matrix , Emrich and Piedmonte(1991) propose the multi-
variate normal distribution

=R ) T exp IxI tx

as auxiliary parametric family. Alternatively, we could use a multivariate student's t
distribution

= (R0 (=2 )T P ] Txp

The point-wise evaluation ofgg. () requires the computation of multivariate prob-
abilities, that is high-dimensional integrals with the respect to the density of the mul-
tivariate normal or student's t distribution. This is a computationally challenging task
in itself, for details seeGenz and Bretz(2009), and the copula families are therefore
not easily incorporated into the adaptive Monte Carlo algorithms which rely on Markov
transitions since these require computation of the mass function up to a constant.

3.4.2. Further copula approaches

Genest and Neslehovg2007) discuss in detail the potentials and pitfalls of applying
copula theory, which is well developed for bivariate, continuous random variables, to
multivariate discrete distribution. Yet, there have been earlier attempts to sample binary
vectors via copulas:Lee(1993) describes how to construct an Archimedean copula, more
precisely the Frank family (Nelsen2006, p.119), for sampling multivariate binary data.

We need to solve a non-linear equation for each component when sampling a random
vector from the Frank copula, andLee (1993) acknowledges that this is only applicable
for d 3. For low-dimensional problems, however, there are faster methods which
enumerate the solution spacB? and construct explicit probabilities (Gange,1995) which
allows to draw from an alias table (Walker,1977).

3.4.3. Method of moments

Let (x) denote the univariate and (X 1;X»; ) the bivariate cumulative distribution
functions of the underlying auxiliary distribution where 2 [1; 1] is the correlation
coe cient. We may evaluate the bivariate cumulative distribution functions using fast
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series approximations; se®rezner and Wesolowsky(1990) for bivariate normal and
Genz and Bretz(2002) for bivariate student's t distributions.

Given the cross-momentdVl with m = diag(M), we set a, = ! (m;) fori 2 D
to adjust the mean. In order to compute the parameter which yields the desired
cross-moments, we solve

my = ( a&;a; i)
for j via bisectional search for alli;j 2 D with i <j . The function (a i;g; ) is
strictly monotonic in  since for both the normal and the Student's t bivariate cumulutive
distribution function, we easily verify @a i;a; )=@ > 0. Modarres(2011) suggests
the bivariate Plackett (1965) distribution as a proxy which might provide a good starting
value ,(J’ 2 (1; 1). In the sequential Monte Carlo context, better initial values might
be provided by the parameter of the previous auxiliary distributions.

In the case of the normal copula family we might use the standard result on the
derivative @ "(a;;a; )=@ = ' "(a;q; ) (Johnson et al., 2002, p.255) and solve
m; = "(a;q; ) for j via Newton-Raphson iterations; see Procedur®. How-
ever, the bivariate integral approximations are critical when comes very close to either
boundary of [ 1; 1]. The Newton iteration might repeatedly fail when restarted at the
corresponding boundary i(jo) 2 f1;, 1g, and we might need to fall back to bisectional
search which is always feasible.

While we always obtain a solution in the bivariate case, it is well-known that the
resulting matrix  is not necessarily positive de nite due to the range of the elliptical
copulas which allow to attain the bounds (3.1) fod 2, but not for higher dimensions.
In that case, we can replace by

=( +jiN=@+j) >0 (3.3)

where is smaller than any eigenvalue of. Alternatively, we can project into the
set of correlation matrices; seéligham (2002) and follow-up papers for algorithms that
compute the nearest correlation matrix in Frobenius norm.

3.5. Families based on other techniques

3.5.1. Multiplicative interactions

Consider the family of distributions which, under the constraints that has given cross-
moments, maximizes the entropy

P
H():= ,sa ()log[ ()l
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Algorithm 9:  Fitting the normal copula family
Input:P X =(xgnxn)ls w=(wg w2 RAd
X R=1 wkxka
for i2D do & L (i)
for i;j 2D; i<j do

repeat
e Oy
(t+1) o @iar ) X
i i o e
@i q; i(,-))
until j P <
- (t+1)
ji i
end
if not > 0 then ( +0i D=+ i)
return a;

The following proposition is just a special case of a more general concept (SaP94).

Proposition 3.5.1. Let | 2P be a family of index sets such thdm,:1 2 Ig is
a valid set of cross-moments. The maximum entropy distribution having the speci ed
cross-momentsm, for | 21 has the form

P Q
q(z) = exp( + 121 a i2] i):
. . P P Q
with normalizing constant := log[ ,ge@XpP( 5 & 5 i)l
. P P Q
Proof. De ne the Lagrange multipliersL(; a)= |, & 4 ,5¢ ( 2 i Mm]and

dierentiate @H( )+ L(; @)]=@( )= logl ()] 1+ 5 & " i. Solving the
rst order condition and normalizing completes the proof. O

Maximum entropy solutions are a natural way to design parametric families. The
binary versions link to information theory (Soo , 1994), log-linear theory for contingency
tables (Bishop et al., 1975, ch. 5) and graphical models (Cox and Wermut1,996, ch.
2). They also play a central role in physics and life science being the well-studied Ising
model on a weighted complete graph.

De nition 3.5.1. Let A be ad d real-valued lower triangular matrix. We refer to
G()=exp( + 'A ),
P
as the exponential quadratic family with :=  log[ .z« €Xp(x! AX)].

Proposition 3.5.2. If A =diag(a), then a; = ** (m;) and g = ¢, = O .
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The exponential quadratic family appears to be the binary analogue of the multi-
variate normal distribution which is the maximum entropy distribution on RY having a
speci ed covariance matrix (Kapur, 1989, sec. 5.1.1). Finding its mode is an NP-hard
optimization problem and intensively studied in the eld of operation research (Boros
et al., 2007, for a recent review).

Proposition 3.5.3. The marginal distrri]bution of the exponential quadratic fan?ily is
®(i)=exp + LA | +log 1+exp(a + P}il aj j+ de=i+1 ai )
Proof. Straightforward, since
RK(i)=g(i=0; i)+qg$1i:1; i)

P . P |
=exp( + VA ) l+exp(a + J!ilaij it

i1 i j)
]

Proposition 3.5.4. The conditional distribution of the exponential quadratic family is
_ Y. P, P
R(i=1] i)= (ai+ }ilaijj+ ¢

jzier &)
where (X) := 1=[1 + exp( X)] is the logistic link function.

Proof. Straightforward, since

=1 & | j=ier &i )
i1 F g '
=1 & j Tt s & i)

[]

exp( + liAihi+a+'i+ :

R(i=1] )=

exp( + LA )“1+exp(aii +

De nition 3.5.2. Let X g be a binary random vector. De ne the conditional log
odd ratios
I,T - |Og P(x| :1JXJ =1:;X iij )P(X, :OJXJ =0:X it )
PXi=0jX; =014, X )PXi=1jX;=0;X 45 )
Proposition 3.5.5. The exponential quadratic family has constant conditional log odd
ratios | {* = & .

Proof. The log odd ratios can be written as
=" PXi=1j X =1;X 5 )] "HPXi =1 X =0;X 5 )],

and the result follows immediately from Proposition3.5.4. m

We can therefore read the parameters; as Lagrange multipliers or, ifi 6=j, as
conditional log odd-ratios. The constant conditional log odd ratios are the binary ana-
logue of the constant conditional correlations of the multivariate normal distribution
(Wermuth, 1976).
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Logistic conditionals approximation

Despite the numerous similarities to the multivariate normal distribution, we cannot
easily sample from the exponential quadratic family nor explicitly relate the parameter
A to the cross-moment matrixM. The reason is that the lower dimensional marginal
distributions are di cult to compute ( Cox, 1972, (iii)) since the multi-linear structure is
lost. We denote byq, the logistic conditionals family, that is the -conditionals family
with logistic link function “(x) := 1 =[1 + exp(x)]. The following result shows that the
logistic conditionals family is precisely constructed such that the non-linear term in the
marginals vanishes.

Proposition 3.5.6. Let A be ad d lower triangular matrix. The logistic conditionals

family can be written as
h

. | P d P il !
G()=exp A 1 log 1+exp(ai + 2, & )
Proof. Straightforward calculations yield
N P d ~ P il ' ~ P i1l 1
logay ()= &ylog [ai+ joyay PI'[ @i+ o I

P . P . Pi1
= ilogl(ai + opa )I+(@ )logll (@i + o & )]

N P il N P il

= =i o [@i+ Zpa dltlogll (ai + 5 @ )]
Pi1 Py

i=1 i(aii + j=1 aij j) |Og[l + exp(aii + i=1 ai'j J)]

i P4 P

i=1 i= aij i i=1 |Og[1|;exp(aii + i=1 aij ])]

= 1A 2, log[l+exp@ + 1 & ;)

where we used log[1 "(x)] = log[1 + exp(x)] in the third line. O

Since we cannot repeat the marginalization for lower dimensions, we cannot assess
the lower dimensional conditional probabilities which are necessary for sampling. We
can, however, derive a series of approximate marginal probabilities that produce a lo-
gistic conditionals family which is, for low correlations, close to the original exponential
quadratic family. This idea goes back taCox and Wermuth (1994).

Proposition 3.5.7. Let ¢ + X + cx?  log[cosh(x)] be a second order approxima-
tion. We may approximate the marginal distributiorgg ( ¢ ) by an exponential quadratic
family exp( + 'd A 4 ) with parameters

= +log(2)+ ¢+ 2age; A = Ag +(cp+ 3)diag(a )+ cza al;

wherea :=(ag;:::;aq4q1 )| denotes thedth column of A without agq.
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Proof. We write the marginal distribution of the exponential quadratic family as
h i
R( a)=exp + LAy 4 +3@w+al g)+log 2coshjaw+al o)

using the identity
log[1 + exp(X)] = log exp(3x) exp( ix)+exp(3x) = ix+log 2cosh{x)
and approximate the non-quadratic term by the second order polynomial
log[coshfags + 3al ¢)] o+ cal ¢ + @ ¢)%
We rewrite the inner productsa!l ¢ +(a ¢)?= 'd [diag(a )+ a al] 4 and rear-

range the quadratic terms. m

We can iterate the procedure to construct a logistic conditionals family which is close
to the original exponential quadratic family. However, the function log[cosh(x)] behaves
like a quadratic function around zero and like the absolute value function for largsj.
Thus, a quadratic polynomial can only approximate log[cosh(x)] well for small values of
x which means that exponential quadratic families with strong dependencies are hard
to approximate.

Cox and Wermuth (1994 propose a Taylor approximation which ts well around
%add and works for weak correlations. The parameters are

c = log[cosh&aqa)]); 3 tanh(}aqq); £ secf(iau)

and use the least squares estimate
c=[(1;x xA)N @ % x3)]t (1% x3)y:

This provides a better overall approximation, but the t might be poor around%add.

3.5.2. Additive interactions

Taking the identity mapping in Proposition 3.2.3, we obtain a multi-linear represen-
tation B o

()= o @& i i
but it seems hard to give a useful interpretation of the coe cientsa,. We can con-
struct a more parsimonious family by removing higher order interaction terms. For
additive interactions, however, we face the problem that truncated representations do
not necessarily de ne probability distributions since they might be negative.
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De nition 3.5.3.  For a symmetric matrix A we de ne the additive linear family

Raol )= (@+ 'A); (3.4)

P
where =[2%g+ 5o A ] andag=( min ,z« A )_0.

This de nition is of little practical value, however, sincea, is the solution of NP-hard
optimization problem, see Sectior.3.1. In virtue of the linear structure, we can derive
polynomial expressions for the cross-moments and marginal distributions.

Proposition 3.5.8. For a set of indices] D, we can write the corresponding cross-

moment as b hop P ;
1 2 2 jop @t 20 nrig &

m = —+ —
o] Ji(dag+ LAL +tr( A)

Proof. We rst derive two auxiliary results to structure the proof.
Lemma 3.5.9. Forasetl D of indices it holds that

P Q I
2Bd k2l ffij g K =205 12+l (1 g ()

Proof. For an index setM D, we have the sum formuIaP ogd QkZM K = 29M
If we have an empty setM = ; the sum equals 2 and each time we add a new index
i2DnM to M half of the addends vanish. The number of elements M =1 [fi;j g
is the number of elements il plus one ifi 2 | and again plus one ifi 6= andj 2 I.
Written using indicator function, we havejl [fi;j gj = jlj+ 1pn () + lonagg () =

jj+2 1,(1) Ligg () which implies 3.5.9. O
Lemma 3.5.10.
h [
P P , . P P P
oo oo 200w Oy = UAL+r (A + 5 20 @5+ (g orig &

Proof. Straightforward calculations yield

200 O =(1+ 1,3(i)A+ Ligg ()
=@+ LA+ LG)*+ 1ig() g G))
=1+ L)+ L@G)+ L®1,q)
+ 1ig )+ Li(D16g () Livig G) Li()Llivig ()
=1+ 1)+ L)+ LG+ Ly G51)  Liig ()
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where we usedL ()19 () = 1)1 1()1rg ()= LiMLi()Llrg() = L1 ()1vig () in
the second line. Thus, we have
P P
20 _ j2D
= @b j 1+|§-fig (j)"'Pll(i)"' 1|(g))+ Lo (5)) Livig () &

VAL +tr(A)+ h2 20 Bl ¥ Bl Bk

| p hp P
VAL +tr(A)+ 1o 2 p &g 2 kg &l

2L+ g () a;

The last line is the assertion of Lemm&.5.9 O

Using the two Lemmas above, we nd a convenient expression for the cross-moment

P Q
m, = ZBd( k2l k) (aO + 1A ) .
hp P Q P !
= ogd 8o 2¢( k2 K)o jao i &
_ dil | PP P Q I
= h2 @t p jop & 2p( 21 [fi 9 k) (Lemma3.5.9)

21l iy + P - P 2 20 [ i g

- P P . oo

20012 4ag+ o {20 20+ e 0) g (Lemma 3.5.10)
o h p hp P [

20112 45+ 1AL +tr( A+, 2 j2p Qi t 2 nfig i

Sincem. =1 by de nition, we the normalizing constant is
=2%2 (4ap+ 1AL +tr(A) * ;

which allows us to write down the normalized cross-moments
p hp P '
1 2 2 o @t o nfg &

m =5 * (4ag + AL +
2 2'l(4ag + 1AL +tr( A))

The proof is complete. m
Corollary 3.5.11. The normalizing constant is

=2%2 (dao+ 1AL +tr(A) 1
and the expected value is

-1 ik
a i)= =+ k=L 1 .
Baa, (1)= 3 43+ 1AL +tr( A)
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The meanm; is close to 1=2 unless the row; dominates the matrix. Therefore, if the
parameter matrix A is non-negative de nite, the marginal probabilitiesm; can hardly
take values at the extremes of the unit interval. While being somewhat limited in the
range of feasible parameters, the advantage of the additive linear family is that the
marginal distributions are available in analytical form.

Proposition 3.5.12. For the marginal distribution, it holds that

: P
K
q(Al;a())( 1K) = ol ke Onao( 1% X) = 2dk 2 Sk( 1k);
where

Py Py P4

S( 1) =4a@t iy j=1 j&i t ok G
Pqg Py P4 _

oo ek At o i

From Proposition 3.5.12 it is straightforward to derive a recursive formula for the
marginal proababilities which allows to sample from the additive linear family. For
details see Proceduré0

Proof. We margin out the last componentd. Let| =[1;d 1],
qﬁ{f;f](l) t= qfigo(u;l)+q§féo(|;0) !
=2ao+( 1 1)AC D)+ ( 150)A( 1;0)
=2a+tr(A[( ;1) ';%Jr( 1;0)( 1;0))
I !

2 [ |
=2a+tr A
Ao I| 1

Iterating the argument, we obtain forl =[1;d tJjand|¢:= D nl
! #!
4,1 21

haw (1) F =22t A 5T
Straightforward calculations yielgI
4,1 2,1
21, | 12l + 1,
tr(A[2 ;102 ;1) +diag0;; 1)

[t(12 1)VA@ ;1) +tr( AdiagO; ; 10)] ,
P P P P P P P !
4 o ga i t4A o jae i@t e jac@i t o &

_hp P P P P P |
= 4 o i g j& @)t e jauc@g T o &

tr

The proof is complete. O
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Recall the remark on marginal distributions and moments we made in Secti@2.1. For
; = 1 we obtain

P P P

Si (1k):4ao+P4 iE)( j21 & -Ft j21c &)
+ e 2 aj + 4 ;i b p

=4at p_ jop & +P op &i T3 o &
+2 o e @ i Qi .

| p hp P '
=dap+ VAL +tr(A)+ o 2 jpp @+ jonmig&i

and (1) = 29" 25 (1)) is indeed the expression for the cross-moments in the proof
of Proposition 3.5.8.

Algorithm 10:  Sampling from the additive linear family
x =(0;:::;0); m2 (0;1); A 2 Rdd

u U U
if u<mthen x4 1,~ melsex; O0,~ 1 m
p _—~

for i =2 to ddo P
t 2902 @jxpin j+ [ ay)

=2+ tc (=~-_0"1
u U U[O;l]
if u<c then

X 1

if cz0then p Oelsep pc
else

if cz1then p Oelsep p(l ¢
end

end
return Xx; p

Method of moments

Given the cross-momentdM with m = diag(M), we can determineay and a matrix A
such that the family g, ts the desired cross-moments by solving a linear system of
dimensiond(d + 1)=2 + 1. We rst use the bijection

D D! [Lidd+1)=2]; (;j)=i( 1)=2+]
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to map symmetric matrices into R@*1 9=2_ Precisely, for the matricesA and M, we
de ne the vectors

& j) = & M )= my; i) 2D
and the weight matrix

S Gy (i = 210 o0 0O ik 2 D

Note that jaj = 1! A1 +tr ( A). We then equate the distribution moments to the desired
moments and normalize such that
1 -
292 g+ ZS& =m; 292 (4ay+ jaj)=1:
The solution of the linear system
! " #, !
a 5 di2 iS 1 m

ay 41! 1 1

is nally transformed back into a symmetric matrix A . The function ¢ 2 might not
de ne a probability distribution, but for the average holds

P |
2Bd R ;ao( ): M:
The weight matrix S does not depend on the data, and we could therefore t the pa-

rameter to di erent cross-moment matrices on the same spad@¢ extremely fast once
the weight matrix is build up in the memory.

3.6. Practical scope

In this section, we compare the-conditionals family with logistic, linear and arctan link
functions to the copula families with normal and student's t auxiliary distributions. We
draw random cross-moment matrices of varying dimension and di culty, t the para-
metric families and record how well the desired correlation structure can be reproduced
on average.

3.6.1. Sparse families

The major drawback of any kind of multiplicative model is the fact that we have
no closed-form likelihood-maximizers, and therefore the parameter estimation requires
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costly iterative tting procedures. We can considerably speed up the parameter estima-
tion if we work with a sparse version of the original parametric family which we might
estimate a lot faster than the saturated family. For a proposal distribution, it is partic-
ularly important to take the strong dependencies into account but it is usually su cient
to work with very sparse families.

Instead of tting the saturated model gq( ;j 11 ), we preferably work with a more
parsimonious regression model likg( i j ¢,) for some index setC; [1;i 1], where
the number of predictorsjC;j is typically smaller thani 1. We solve this nested variable
selection problem using some simple, fast to compute criterion.

Given the weightedpdataw 2 [0;1]"; X 2 B"Y, we denote the weighted sample
cross-moments byX = = [, WX ka and the weighted sample correlation by

Xij  Xii Xjj :
Xi(1 X)X (1 Xj)

For " =0:02, we de ne the index set
l=fi2D) x5 2(;1 "o

which identi es the components which have, according to the data, a marginal proba-
bility close to either boundary of the unit interval. For the components 2 |, we do not
model any dependencies but draw them independently of the other components. De-
pendencies do not really matter if the marginal probability is excessively small or large,
but the componentsi 2 | are prone to cause complete separation in the data or might
even be constant. For a-conditionals family, we seta; = ! (X;) and a;;; = 0; for a
copula family, we set all correlation coe cients in the target correlation matrix to zero.

For the remaining componentdD nl, we construct sparse families in the sense that
for 2 (0;1), we de ne the index sets

Ci:=fi 2[1i 1]j < jrjjg; i2Dnl;

which identify the components with index smaller thani and signi cant mutual asso-
ciation. For a -conditionals family, we model the conditional proablgbilities only with
respect to the components irC; which means thatq( i j 11 )= (¢, & ;) fora
copula family, we set the correlation coe cients j in the target correlation matrix to
zero for allj 2 C;.

In the context of the smc sampler, running algorithm on the examples in Section 4.5
with =0 and = 0:075 reveals that a saturated logistic conditionals family achieves
about the same acceptance rates as a sparse one, while the latter needs dramatically less
computational time in the calibration step.
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3.6.2. Random cross-moment matrices

We brie y discuss how to generate a valid random cross-moment matrix of binary data.
We easily sample the meam = diag(M) U (o.1)¢, but for the o -diagonal elements we
have to ensure that the covariance matridV  mm | is positive de nite and that the
constraints (3.1) are all met. We alternate the following two steps.

Permutationsm; = m () fori;j 2 D with uniform U gp) where we denote
by S(D):=f :D! D; is bijectiveg the set of all permutations onD.

Replacementsmiy = mg U 55 foralli = (1);:::; (d 1) with uniform
U sponfdg) Where the boundsa;; b are subject to the constraints detil) > O
and minfm;i + mgg  1;0g myg  maxfm;; myqg.

The replacement step needs some consideration. We denlgte Nbythe inverse of
the(d 1) (d 1) upper sub-rrbe\trix ofM and dene i = Mg 55 ygg Mg Nj SUCH
that det(M) = [1=det(N)](m g4q 20 nfag 1)° If We replacemg = mig by x; we have
to ensure that detM(x ;)] = det(M) + mg(Mmgni; +2 ;) Xi(Xinj +2 ;) > 0 which
means (X + =m) 2 (c ;) with ¢ = [ *=nf +det(M) + mg(mgn; +2 ;)]*2.
Therefore, the lower and upper boundsg; := maxfm ; + mgg  1;0; {=n; ¢g and
b = minfm;;mg; i=ni + Gg, respect all constraints onx;. We rapidly update the
value of the determinant det[M(x;)] and proceed with the next entry.

We perform 10 d permutation steps and run 500 sweeps of replacements between
permutations. The result is approximately a uniform draw from the set of feasible cross-
moments matrices. However, sampling according to these cross-moments might not
be possible in higher dimensions because the cross-moment matrix is likely to contain
extreme cases which are beyond the scope of the parametric family or not workable for
numerical reasons. We introduce a parameté&62 [0;1] which governs the di culty of
the sampling problem by shrinking the upper and lower bounda and b of the uniform
distributions to a”:= [(1+ %)ar(1 %)b]=2 ant”*:=[(1 %)ar(1+ %)b]=2, respectively.

Sampling binary data with speci ed cross-moment matrix

If 2¢ 1 full probabilities are known, we easily sample from the corresponding multi-
nomial distribution (Walker, 1977). For a valid set of cross-moments,, | 21 , Gange
(1995) proposes to compute the full probabilities using a variant of the Iterative Propor-
tional Fitting algorithm (Haberman, 1972). While there are no restrictions on the range
of dependencies, we have to enumerate the entire state space which limits this versatile
approach to low dimensions.
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In the sequel, we do not consider methods for structured correlations nor approaches
which require enumeration of the state space. First, we show how to compute the
parameter A of a -conditionals model for a given cross-moment matrixM. Secondly,
we review an alternative approach to sampling binary data with given cross-moment
matrix M based on the copula of an underlying auxiliary parametric family.

3.6.3. Computational results
Figure of merit

Let M be a cross-moments matrix and leM denote the cross-moment matrix with
meanm = diag(M) and uncorrelated entriesm; = m;my foralli 6=j 2 D. For a
parametric family g , we de ne the gure of merit

(M:=KM MkkM MIK)=kM M k; (3.5)

where M 9 denotes the sampling cross-moment matrix of the parametric family with
parameter adjusted to the desired cross-moment matrik. The norm k k might be any
non-trivial matrix norm; in our numerical experiments we use the spectral norkAk 3 :=

max (A | A), where ax delivers the largest eigenvalue, but we found the Frobenius norm
kAk2 :=tr( AA ) to provide qualitatively the very same picture.

We can roughly interpret 4(M) as the proportion of the correlation structure that
the parametric family is able to reproduce. The scorg,(M) is negative if the parametric
family q performs worse thangy, .

Setup

For tting the logistic conditionals family when d > 10, we replace the exact terms
by Monte Carlo estimates (3.2) where we use = 10* random samBIes. We estimate
the cross-moment matrix of the parametric familyg by M9 nt = xka where
we usen = 10% samples fromg. This concerns only the logistic and linear conditionals
families; for the copula families, we can explicitly compute the sampling cross-moments
as mi‘j‘ = 2( i js i), where is the adjusted correlation matrix of the underlying
multivariate normal distribution made feasible via (3.3).

We loop over 15 levels of diculty %2 [0;1] in 3 dimensionsd = 10; 25;50, and
generate at each time 200 cross-moments matrices. We denote by 200 the
ordered gures of merit of the random cross-moment matrices. We report the median and
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the quantiles (b1 jnc; d@s+ yne), depicted as underlying gray areas for 20 equidistant
values of! 2 [0:0;0:5]. Figures 1-3 show the results grouped by parametric families;
the y-axis with the scale on the left represents the gure of merit 2 [0;1], the x-axis
represents the level of di culty %2 [0;1], and the [Q0;0:5]-gray-scale on the right refers
to the level of the quantiles.

3.6.4. Discussion

While Theorem 3.3.2 states that a -conditionals family can encompass any feasible
mean and correlation structure, we cannot entirely turn this into practice. If the desired
correlations are di cult to model, the limited numerical accuracy on a computer does
not allow to exactly reproduce the correlation structure using a-conditionals family.
However, the scope of the copula methods presented in Sectiais already limited by
their mathematical structure.

The copula families are guaranteed to have the correct mean but they are less exible
than the conditionals families; besides, they do not allow for fast point-wise evaluation
of their mass functions. The student's t family seems to outperform the normal family
on moderately di cult instances, while the latter seems to work relatively better on
di cult instances.

The truncated linear conditionals family is fast to compute but its quality deteriorates
rapidly with growing complexity. The logistic and arctan conditionals families seem
to perform equally well, the latter having slightly less outliers and betters scores on
moderately di cult instances. They are computationally demanding but by far the
most versatile option.

These ndings con rm comparisons carried out against the backdrop of particu-
lar applications (Farrell and Rogers-Stewart2008; Schafer and Chopin,2012; Schafer,
2012b), see Sectiond.4.2and 6.4.1for toy examples. In the following chapters on appli-
cations, we primarily use the logistic conditionals family as sampling distribution. The
advantage of the logistic over the arctan link function is that the logistic link function
yields concave likelihood-functions and component-wise likelihood-maximization can be
performed using standard methods like Newton-Raphson.
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Figure 3.1.: Logistic conditionals family
d=10 d=25 d=50

Figure 3.2.: Arctan conditionals family

d=10 d=25 d=50
Figure 3.3.: Truncated linear conditionals family

d=10 d=25 d=50
Figure 3.4.. Student's t copula family

d=10 d=25 d=50

Figure 3.5.. Normal copula family
d=10 d=25 d=50
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4. Bayesian variable selection for
normal linear models

Resune

L'application statistique majeure pour déchantillonnage de vecteurs binaires est la
lection bayesienne de variables parmi des mockles de egression lireaire ai des quan-
ties telles que les probabilies d'inclusion a posteriori des pedicteurs doivent étre cal-
cuees. Ce chapitre propose une beve introductiona la slection de variables dans le
cadre de mockles lireaires normaux, ai la distribution a posteriori est disponible sous
forme analytique pour un choix judicieux de la loi a priori sur les paranetres du mockle.
Nous construisons plusieurs instances de test exigeants sur donrees eelles, choisis pour
étre consicerablement multimodal, et lechantillonneur de Monte Carlo quentiel est
compae avec des nethodes standards de Monte Carloa chame de Markov (George and
McCulloch, 1997).

4.1. Introduction

We apply the sequential Monte Carlo émc) sampler developed in Chapte? to Bayesian
variable selection in the context of normal linear models. The numerical examples are
taken from Schafer and Chopin(2012).

Let Y denote the random quantity of interest orresponseand Z a d-dimensional
vector of covariates or predictors. For real valued response variables, the generic choice
is the linear normal model

hyiz)=[ "2 exp (v 2)°=(2 ?) - (a.1)

In the sequel, we writeh(y j z) instead ofhyjz (y j z) if the arguments of the conditional
density or mass function unambiguously indicate which distribution we are referring to.

75
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We denote byn the number of observation, byy 2 R" the vector of observed explained
variables and byZ 2 R"¢ the design matrix of observed explanatory variables. We
always assume the observations to be independent, and the design matrix to be of full
rank with columns centered such thatl! Z = 0.

4.1.1. Selection criteria

In variable selection, the idea is to identify a subset of all available predictors which
balances the explanatory power and the complexity of the model. In the regression
context, it is convenient to identify each model with a binary vector 2 BY where the
predictor Z; is in the model if and only if ; = 1. Usually, a criterion of goodness-of- t

~(jy;Z): B! [0;1)

is de ned which allows to rank the models based on the observed data. These functions
rarely have any particular structure and tend to be quite multi-modal depending on the
correlation between the predictors. The normalized criterion / ~ is a probability dis-
tribution, and Monte Carlo methods like Markov chain Monte Carlo (mcmc) discussed

in Section1.2 can provide an estimate of

P
Fiy;2)= " af() (Jy;2); (4.2)

wheref might be any quantity of interest. The most important examples are probably
f()= for the average regression coe cients anfl( ) = for the average inclusion

of the predictors. In a Bayesian context, ( j y;Z) has an interpretation as the posterior

probability distribution and concepts like Bayesian model averaging (Hoeting et al.,
1999) or the median model (Barbieri and Bergei2004) depend on methods which can
reliably estimate (4.2).

The convergence rates omcmc based approaches slow down dramatically as the
dimensiond grows and the multimodality of the target distribution increases. This mo-
tivates the use of thesmc sampler described in Chapte2 which we show to largely
outperform standard mcmc algorithms on di cult instances of Bayesian variable se-
lection in linear normal models (4.1) with about 100 predictors, see Sectign5. We
exploit the fact that the smc sampler allows for straightforward parallelization and pro-
vide examples with 1500 predictors to underpin its potential for solving high-dimensional
problems in parallel computing environments.
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4.1.2. Bayesian variable selection

Later, we mainly concentrate on Bayesian variable selection approaches where the de-
rived criterion is the a posteriori distributions on the model space. We denote the
likelihood given the model by
. Q .
Ly:;Zj; 5 )= e hyozed 550 )
where and are the regression coe cients and denotes further nuisance parameters.
For a suitable prior distribution p on these nuisance parameters, the marginal likelihood

Ly:Zj )= Lly:Zj; 5 G 5 3 )dG )
can be computed and via Bayes' Theorem

( jy;2) /L (y:Z2j )p( )

one obtains an unnormalized version of the posterior distribution on the model space.

4.1.3. Penalized likelihood criteria

In a more Frequentist framework, one might rank the models according to some penalized
likelihood criterion. We brie y review two popular approaches for model selection.

The Bayesian information criterion pic) was rst proposed by Schwarz(1978) and
can be derived as the logarithm of a second degree Laplace approximation to the marginal
likelihood (4.1.2),

bic( ):=logL(y:Zj ;2 ") llogn' log ( jy;2);

where » ™™ are the maximum-likelihood estimates of the nuisance parameters and
the number of observations. The symbol means approximation up to an additive
constant. Asymptotically, the bic coincides with the Bayesian approach for certain
choices of the prior distributions.

The so-calledAkaike information criterion (aic) developed byAkaike (1974) is based
on information theoretic reasoning and penalizes the complexity independently of the
number of observations,

aic( )i=logL(y;Zj :» "N j:

The aic can be shown to asymptotically minimize the information loss in terms of
Kullback{Leibler divergence. There are also correction for nite sample sizes.
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4.1.4. Convex optimization

For linear normal models, an alternative to likelihood-based selection criteria are regu-
larized versions of least squares estimates,

=argmin ,ralky  Z K3+ p( )]

wherep > 0 is a penalty term. For certain continuous but non-smooth penalty functions
the coe cients are shrunk to zero which is a model selection procedure.

The least absolute shrinkage and selection operat@ribshirani, 1996, LASSO) with
penalty function p( ) = j j is probably the most prominent example of regularized
least squares for model selection. The minimization problem can be solved using con-
vex optimization techniques which allow to solve problems which are too large to be
e ciently treated using likelihood-based criteria. There are various variants and exten-
sions like theleast angle regressioffEfron et al., 2004, LARS), theelastic net (Zou and
Hastie, 2005) and thesmoothly clipped absolute deviatiofFan and Li, 2001, SCAD)
algorithms which have been subject to intensive research in the recent years. Se&ux
et al. (2011) for a comparison of regularization techniques and Bayesian approaches.

4.2. Marginal likelihood

In this section, we review strategies to assigning prior distributions to the parameters of
the linear normal model which allow to obtain a closed-form expression for the marginal
likelihood where all parameters except for the model indicator are integrated out. The
linear normal model has the full likelihood

LyiZis %) Ten SHl(1+Z  yI(1+Z oy

where the intercept does not depend on the model since we assume the design matrix
to be centered. For an improper priop( )/ 1, the marginal likelihood becomes

. 1 =
Ly:zj 5 %) Y ep Sly+Z (Y +Z y)l
that is = y is just the least squares estimate wherg := n! yl1 andy := y1. For
each model, we de ne the orthogonal projection
IR IfZ i 2RIlg R ?:=2z@2'z)'z:

The residual, explained and total sum of squares are related through Pythagoras' The-

oremky+ ’y vyk3+k “yk3=ky yk3. The coe cient of determination is de ned

by R2 := k ?yki=ky yka.
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4.2.1. Hierarchical priors

For a judicious choice of prior distributions, there are analytic expressions for the
marginal likelihood (4.1.2) which allows to evaluate the posterior distribution of each
model up to a constant. Then the prior takes the form

pC 5 %P )=pC § % e %)

where the prior on  is multivariate normalp( j 2; )= N (0; 2 ) with dispersion
parameter > 0 and positive matrix , and the prior on the residual variance ? is
inverse-gammap( j ) = | (a=2;ab=2) witha;b 0.

The typical choice for the covariance is either the identity matrix = | where
we assume the correlation coe cients to be a priori independent, or the observed Fisher
information matrix =(z'Z )! . The marginal likelihood is

Ly:zj )l Z'z+ t T labrky gk oy y) e

where =2z@Z!z+ ' 1)zl denotes the projection under the prior.

4.2.2. Zellner's prior

It is straightforward to see that the choice = (Z'Z )! has a computational ad-
vantage and an interesting interpretation. The projection under the prior is the scaled
?

orthogonal projection = s 7 and the determinant iss! 2 wheres = =(1+ )
denotes the shrinkage factor. Further, fom = b= 0 we observe that

ky yki sy y=ky yki+sk ’yki/ 1 sR?;
allowing to express the marginal likelihood in terms of the coe cient of determination
Ly:Zj: )/ @+ )8 D2s @ ROV g

The choice for the dispersion parameter may be= n in reason of the unit information
prior (Kass and Wasserman1996), = d? based on the risk in ation criterion (Foster
and George,1994) or =argmax L(y;Zj ; ) foralocal empirical prior (Hansen and
Yu, 2001). We refer toLiang et al. (2008) for a more thorough discussion.

Some authors advocate to put a suitable prior on the dispersion parameter which
provides thicker tails in the prior distribution and ensures that the posterior probabilities
are consistent (Zellner and Siow1980; Liang et al., 2008). The generic choice might
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be the inverse gamma priot (a=2; ab=2) where the hyper parametes=1 and b= n
provide exactly a multivariate Cauchy prior on the regression parameters . For the
inverse gamma prior, the marginal IikeZIihood

Ly;Zj )= Ly;Zj; )p()d

can be computed via numerical integration or by means of a Laplace approximation.
The latter is particularly fast to compute since there is an analytic expression for the
maximum of the integrandL(y ;Z j ; )p( ). Liang et al. (2008) propose an alternative
hyper prior ( )=(a 2)(1+ )32 =2 with a> 2 which allows to express the marginal
likelihood in terms of certain Gaussian hyper geometric functions.

4.2.3. Independent prior

The independent prior is computationally less convenient. We might de ne the product

b = Z!y and the Cholesky decompositio© . C!. = z!Z + 1 which allows
to write the posterior mass function as
QJ JI (n 1+a)

(jy:iz)/ 1F2EL ) abrky yk3 (ChLb)Chb

If one wants a full Bayesian approach having a prior on the dispersion parameter, Zell-
ner's prior is to be preferred for its computational e ciency, since for the independent
prior we cannot easily integrate out the dispersion parameter.

4.3. Priors on the model space

Typically, the prior distribution on the model space is
p( jm)y=m iz mv
for some common prior marginal inclusion probabilityn 2 (0;1). Some authors, e.g.

Nott and Kohn (2005), propose a conjugate Beta hyper prian  B(a;b) fora;b > 0
whichyieldsp( )= B(a+j j 1;btdj j)=B(a;b)whereB denotes the Beta function.

4.3.1. Prior on the model size

We propose to choose a uniform prior conditional on the size of the model and a binomial
hyper prior k B (m;d ) on the size of the model which yields

X kid k) kl(d k)'

@ g

p( )=

k=0
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where d d” n is the size of the largest admissible model. & > n one typically
restricts the analysis to models of sizd. Generally, if the number of predictors is large
it usually su ces to only consider rather small models. The parametem = d=d is
chosen to yield a desired average model side< d .

4.3.2. Main e ect restrictions

In some statistical applications, we add interactions between two predictors by crossing
columns of the design matrix. The variable selection procedure remains the same, but
typically the interaction should only be included in the model if the corresponding main
e ects are also present. For simplicity, we just consider two-way interactions and denote
the interaction variables by . For a variable selection problem of dimensiod(d 1)=2,

we de ne the prior

Y
p( )= m (L m)t o m )t
i;j 2D

Wherem—,j = mimjmij :(1 mij + mimjmij)and mij = P( i =1J izl; j =1) In
particular, if m; = my =1=2foralli;j 2 D, the prior is the uniform distribution on the
constrained supportf 2 Bd@b=2 j i i3 i;j 2 Dg. Inthe numerical experiments

in Section4.5, we show that adding these constraints makes the sampling problem even
more challenging.

4.4. Sequential Monte Carlo

In this section, we provide some remarks on the sequence of intermediate distributions
and the choice of the parametric families in the transition kernel against the backdrop
of Bayesian variable selection.

4.4.1. Intermediate distributions

The smc sampler as described in Chapte? uses a geometric bridge (2.2) to construct
the sequence of intermediate distributions. However, there are other natural possibilities
to obtain an auxiliary sequence of distribution in the context of variable selection.
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Data partition  Chopin (2002) proposes a statismc sampler based on a sequence of
posterior distributions where data is added a%p increases. The auxiliary sequence is

t( )= ( Jy:Ziit Zogne);

wheren is the total number of observations. The initial distribution o( )= ( jY)
is the prior p( ) on the model space. Note that for this scheme we cannot completely
control the step size which makes it more di cult to calibrate the algorithm.

Data orthogonalization Ghosh and Clyde (2011) propose an orthogonal data aug-
mentation scheme in the context of Gibbs sampling which could be incorporated into
an smc sampler. We can augment the data such that the design matriz, = (Z';z})!
has orthogonal columns, wher&, denotes the extra rows of the design matrix. We let
Yo = (y!;yl)! where the pseudo-observationg, are drawn from the full model. This
setup leads to a sequence of posterior distributions based on a weighted sample

()= (Iy:Z; @0 %ya (1 %Za);

and for a uniform prior p( ) =2 ¢ on the model space, we have an initial distribution

ol )= ( j Yo Zo) with independent components. We could calibrate an optimal
step size for this sequence but obviously the bi-sectional search would be more involved
since each computation of the e ective sample size in (2.5) requires evaluation of the
target function . ( ) for all particles.

Geometric bridge In our numerical studies, we stay with the geometric bridge (2.2)
for its computational simplicity which allows to perfectly control the step size of the
algorithm. Using the geometric bridge, we can start from any initial distributionp with
supp( ) supp(p) which allows to sample fronp and evaluate its mass function up to a
constant. Intuitively, the smc sampler converges faster if we choose an initial distribution
which is, in a certain sense, closer to the distribution of interest. However, numerical
experiments taught us that premature adjustment ofp, for example usingmcmc pilot
runs, leads to faster but less robust algorithms. For Bayesian variable selection, we
recommend to use the prior on the model space, see Sectb8, as initial distribution
which seems the natural choice in this context.

4.4.2. Parametric families

We brie y motivate why we need a parametric family which can model dependen-
cies in order to make the Metropolis-Hastings independence sampler work in practice.
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Figure 4.1.: True posterior mass function. Suppose we have a simple linear relation

Y =Vi+ Vo, Forn=100 and =10,
we draw a sample of normal distributed
random variables

vi N (5 1a); va N (5 1a);

and construct a vector of random observa-
tionsy = vy + v,. Further, we draw four
columns of predictors,

2152, N vy ( %=8)1, 523,24 N vy ( 2=4)1,

The posterior distribution ( )= ( jy; Z), using the prior distributions as described
in Section 4.2.1, typically exhibits strong dependencies between its components due to
the correlation in the data.

Figure 4.2.: Approximations to the true posterior in Figure 4.1 by parametric families.

(a) product family ¢y (b) logistic conditionals family ga

We now generate pseudo-random datd from and t both a product family q, and
a logistic conditionals familyq, . Looking at the corresponding mass function in Figure
4.2, we notice how badly the product family mimics the true posterior. This observation
carries over to larger sampling spaces.

An interesting way to further analyze the importance of reproducing the dependencies
of isin terms of acceptance rates and particle diversities. The particle diversity de ned
in (2.6) naturally diminishes as our particle system approaches a strongly concentrated
target distribution . However, we want thesmc algorithm to keep the particle diversity
up as long as possible to ensure that the particle system is well spread out over the entire
state space of interest.

In Figure 4.3, we show a comparison (based on the Boston Housing data set ex-
plained in Section4.5.1) between twosmc algorithms, using a product family and a
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Figure 4.3.: We compare the use of a product family to a logistic conditionals family as
proposal distribution of the Metropolis-Hastings kernel (1.15). We monitor
a typical run (%on the x-axis) of our sequential Monte Carlo algorithm and
plot the acceptance rates and particle diversities (on the y-axis).

(a) acceptance rates (b) particle diversities

logistic conditionals family as proposal distributions of the Metropolis-Hastings kernel
(1.15). Clearly, in Figure 4.4(a), the acceptance rates achieved by the product kernel
rapidly decrease and dwell around 5% for the second half of the run. In contrast, the
logistic conditionals kernel always provides acceptance rates greater than 20%. As a
consequence, in Figurel.4(b), the particle diversity sustained by the product kernel
decreases at an early stage, while the logistic regression kernel holds it up until the very

last steps.
At rst sight, it might seem odd that the acceptance rates of the logistic conditionals

kernel increase during the nal steps of the algorithm. If we jump ahead, however,
and take a look at the results of the Boston Housing problem, see Figudes(a), we
notice that quite a few marginal probabilities of the posterior turn out to be zero,
which makes it easier to reproduce the distributions towards the end of the resample-
move algorithm. However, if we already decide at an early stage that a predictor has
marginal probability zero, we fail to ever consider models containing this predictor for
the rest of the algorithm. Therefore, the advantage of the logistic conditionals kernel
over the simple product kernel is that we do not completely drop any components from
the variable selection problem until the nal steps.

4.5. Numerical experiments

For our numerical examples, we assume the regression parameters to be a priori inde-
pendent, thatis = I; ;. We follow the recommendations oGeorge and McCulloch
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(1997) and use the hyper-parameters
a=4:0; b=b?  =10:0=b (4.3)

for the inverse gamma prior on the residual variance, whebg is the least square estimate
of 2 based on the saturated model. The rationale behind this choice is to ensure a at
prior on the regression parameters and to provide 2 with su cient mass on the
interval (*2;72), where "5 denotes the variance of .

In this section we compare oursmc algorithm to standard mcmc methods based
on local moves as introduced in Sectioh.2. These are standard algorithms and widely
used. There are other recent approaches like Bayesian adaptive sampling (Clyde et al.,
2011) or evolutionary stochastic search (Bottolo and Richardso2010) which also aim
at overcoming the di culties of multi-modal binary distributions. However, a thorough
and just comparison of oursmc approach to all other advanced methods is beyond the
scope of this thesis.

45.1. Construction of test instances

For testing, we created variable selection problems with high dependencies between the
covariates which yield particularly challenging, multi-modal posterior mass functions.
The problems are built from freely available datasets by adding logarithms, polynomials
and interaction terms. Themcmc methods presented in Sectiof.2 tend to fail on these
problems due to the very strong multi-modality of the posterior distribution while the
smc approach we advocate in Chapte? yields very reliable results. In the following, we
brie y describe the variable selection problems composed for our numerical experiments.

Boston Housing The rst example is based on the Boston Housing data set, originally
treated by Harrison and Rubinfeld(1978), which is freely available at theStatLib data
archive. The data set provides covariates ranging from the nitrogen oxide concentration
to the per capita crime rate to explain the median prices of owner-occupied homes.
The data has already been treated by several authors, mainly because it provides a
rich mixture of continuous and discrete variables, resulting in an interesting variable
selection problem. Specically, we aim at explaining the logarithm of the corrected
median values of owner-occupied housing. We enhance the 13 columns of the original
data set by adding rst order interactions between all covariates. Further, we add
a constant column and a squared version of each covariate (except @dras since it

is binary). This gives us a model choice problem with 104 possible predictors and



86 Chapter 4. Bayesian variable selection for normal linear models

506 observations. By construction, there are strong dependencies between the possible
predictors which leads to a rather complex, multi-modal posterior distribution.

short name explanation

crim per capita crime

zn proportions of residential land zoned
for lots over 2323 M

indus proportions of non-retail business acres

chas tract borders Charles River (binary)

Nnox nitric oxides concentration (parts per 10)

rm average numbers of rooms per dwelling

age proportions of owner-occupied units
built prior to 1940

dis weighted distances to ve Boston
employment centres

rad accessibility to radial highways

tax full-value property-tax rate per USD 103

ptratio pupil-teacher ratios

b (Bk  0:63Y where Bk is the proportion
of the black population

Istat percentage of lower status population

Concrete Compressive Strength  The second example is constructed from a less known
data set, originally treated by Yeh (1998), which is freely available at theJCI Machine
Learning Repository. The data provides information about components of concrete to
explain its compressive strength. The compressive strength appears to be a highly non-
linear function of age and ingredients. In order to explain the compressive strength, we
take the 8 covariates of the original data set and add the logarithms of some covariates
(indicated by the pre x Ig). Further, we add interactions between all 13 covariates of
the augmented data set and a constant column. This gives us a model choice problem
with 79 possible predictors and 1030 observations.

short name explanation
¢, lg ¢ cement
blast blast furnace slag

fash y ash
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w, lg _w water

plast superplasticizer
ca, lg _ca coarse aggregate
fa, Ig fa ne aggregate
age, lg _age age in days

Protein activity data  The third example has originally been analyzed bflyde and
Parmigiani (1998). Later, Clyde et al. (2011) used it as a challenging example problem

in variable selection and included the raw data in th&®-packageBAS available at CRAN
which implements the Bayesian Adaptive Sampling algorithm. In order to explain the
protein activity (prot.actl), we rst convert the factors  buf, ra anddet into a factor
model. We enhance the 14 columns of this data set by adding rst order interactions
between all covariates and a constant column. Note that some of the crossed columns
turn out to be constant zeros such that we obtain a model choice problem with 88
possible predictors and 96 observations. For reasons of consistency, we choose the priors
explained in the above Sectiod.2.1linstead of Zellner's prior used byClyde et al. (2011).

short name explanation

det detergent

buf pH bu er

NaCl salt

con protein concentration
ra reducing agent
MgCI2 magnesium chloride
temp temperature

4.5.2. Comparison and conclusion

We do not think it is reasonable to compare two completely di erent algorithms in
terms of pure computational time. We cannot guarantee that our implementations are
optimal nor that the time measurements can exactly be reproduced in other computing
environments. We suppose that the number of evaluations of the target function is
more of a fair stopping criterion, since it shows how well the algorithms exploit the
information obtained from . Precisely, we parameterize thesmc algorithm to not
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exceed a xed number of evaluations and stop the Markov chains when evaluations
have been performed.

We compare thesmc sampler to both the adaptive Markov chain Monte Carlo
(amcmc) of Nott and Kohn (2005) and the standard metropolized Gibbs (Liu,1996b,
mcmc), see Sectiorll.2. For themcmc, we draw the number of bits to be ipped from a
truncated geometric distribution with meank =2, see Sectioril.3.1. However, we could
not observe a signi cant e ect of changes in the block updating schemes on the quality of
the Monte Carlo estimate. For theamcmc, we use =0:01 and = 0:01, following the
recommendations ofNott and Kohn (2005). We update the estimates and W every
2 1 iterations of chain. Before we start adapting, we generate 2:51( iterations
with a metropolized Gibbs kernel (after a discarded burn-in of:3 10 iterations).

We run each algorithm 200 times and each time we obtain a Monte Carlo estimate
of the marginal probabilities of inclusion of all predictors. We visualize the variation of
the estimator by box-plots that show how much the Monte Carlo estimates have varied
throughout the 200 runs (Figures4.4to 4.9). Here, the white boxes contain 80% of the
Monte Carlo results, while the black boxes show the extent of the 20% outliers. For
better readability, we add a colored bar up to the smallest estimate we obtained in the
test runs; otherwise components with a small variation are hard to see.

The vertical line in the white box indicates the median of the Monte Carlo estimates.
The median of thesmc runs correspond very precisely to the results we obtained by run-
ning amcmc algorithm for a few days. Unquestionably, thesmc algorithm is extremely
robust; for 200 test runs and for both data sets, the algorithm did not produce a single
mayjor outlier in any of the components. This not true for either of thencmc algorithms.
The size of white boxes indicate that adaptivencmc works quite better than the stan-
dard mcmc procedure. However, even the adaptivexcmc method is rather vulnerable
to generating outliers. The large black boxes indicate that, for some starting points of
the chain, the estimates of some marginal probabilities might be completely wrong.

The outliers, that is the black boxes, in theamcmc and the mcmc plots are strikingly
similar. The adaptive and the standard Markov chains apparently both fall into the same
trap, which in turn con rms the intuition that adaption makes a method faster but not
more robust against outliers. An adaptive local method is still a local method and does
not yield reliable estimates for di cult binary sampling problems. Figure 4.9 suggests
that in constrained spaces adaption is di cult and might even have contra-productive
e ects.

In Tables 4.4t0 4.9, we gather some key performance indicators, each averaged over
the 200 runs of the respective algorithms. Note that the time needed to perform 2:5(°
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evaluations of is a little less than the running time of the standardmcmc. Thus, even

in terms of computational time, the adaptivemcmc can hardly compete with oursmc
method, even if evaluations of were at no cost. Note that the time measurements
refer to the running time of a pure Python implementation which has been improved
signi cantly since these results were published; see the Appendix on the software for
more details.

4.5.3. Assets and drawbacks

The smc and the mcmc algorithms both have extensions and numerical speed-ups which
make it hard to settle on a fair comparison. Advocates ahcmc methods might criticize
that the number of target evaluations is a criterion biased towards themc approach,

for there are updating schemes which allow for faster computation of the Cholesky
decomposition given the decomposition of a neighboring model, seengarra et al.
(1979, chaps. 8,10). Thus, Markov chains which propose to change one component in
each step can evaluate with less e ort and perform more evaluations of in the same
computational time.

On the other hand, however, thesmc algorithm can be parallelized in the sense that
we can, on suitable hardware, run many evaluations of in parallel during the move
step, see Proceduré. No analogue speed-up can be performed in the contextrotmc.
Further, smc methods are more suitable thanmcmc to approximate the evidence, that
is the normalization constant of the posterior distribution. We can exploit this property
to compare, for instance, generalized regression models with di erent link functions.

Although the numerical results are encouraging, we do not get something for nothing
using thesmc sampler. Firstly, the implementation of our algorithm including the logis-
tic conditionals family introduced in Section3.3is quite involved compared to standard
mcmc algorithms. Secondly, simplencmc methods are faster than our algorithm while
producing results of the same accuracy if the components of the target distribution are
nearly independent. Finally, thesmc sampler cannot be used to average out further
nuisance parameters but requires a setup where the posterior distribution of the models
are available in closed form. In the following Chapteb, we discuss extensions to the
smc sampler to deal with the latter problem.
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Figure 4.4.. Boston Housing data set. For details see Sectigh5.1.

(@ smc 1:4 10° (b) amecmc 2:5 1P (c) memc 2:5 1P
evaluations of evaluations of evaluations of

Table. Boston Housing data set. Averaged key indicators complementary to Figuret.4.

smcC amcmec mcmc

computational time 0:36:59h 4:50:52h 0:38:06h

evaluations of 1:36 10° 2550 1¢¢ 250 1C°
average acceptance rate 36:4% 29:1% B1%
length t of the chainx; 7:52 100 250 1¢°

movesX; 6=X;1 7:28 106 2:07 10
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Figure 4.5.: Boston Housing data set with main e ect restrictions. For details see Sec-

tion 4.5.1.
(@ smc 1:2 10° (b) amcmc 2:5 1P (c) memc 2:5 1P
evaluations of evaluations of evaluations of

Table. Boston Housing data set with main e ect restrictions. Averaged key indicators
complementary to Figure 4.5.

smc amcmc mcmc

computational time 0:18:05h 4:33:20h 0:14:13h

evaluations of 1:15 1¢¢ 2:50 10° 2:50 1C¢°
average acceptance rate 20:79% 45:4% 20%
length t of the chainx 8:01 100 2550 10°

movesx; 6=X;1 1:13 10° 296 10
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Figure 4.6.. Concrete Compressive Strength data set. For details see Sectib.1.

(@ smc 1:2 10° (b) amcmc 2:5 1P (c) memc 2:5 1P
evaluations of evaluations of evaluations of

Table. Concrete Compressive Strength data set. Averaged key indicators complementary to
Figure 4.6.

smc amcmc mcmc
computational time 0:29:01min 2:02:06 min 0:43:17 min
evaluations of 1:19 10° 2:50 10° 2:50 10°
average acceptance rate 30:7% 70:4% 20%
length t of the chainx; 2:43 10 2:50 1¢°
movesx; 6=X;; 1:76 10° 1:79 10°
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Figure 4.7.: Concrete Compressive Strength data set with main e ect restrictions. For
details see Section 4.5.1.

(@ smc 2:4 10° (b) amcmc 2:5 1P (c) memc 2:5 1P
evaluations of evaluations of evaluations of

Table. Concrete Compressive Strength data set with main e ect restrictions. Averaged key
indicators complementary to Figure 4.7.

smc amcmc mcmc
computational time 0:43:01min 2:29:16 min 0:41:48 min
evaluations of 2:42 10° 2:50 10° 2:50 10°
average acceptance rate 30:98% 611% 5:31%
length t of the chainx; 2:72 10 2:50 10°
movesx; 6=X;1 1:53 10° 1:32 10
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Figure 4.8.: Protein data set. For details see Section.5.1.

(@ smc 6:1 10° (b) amcmc 2:5 1P (c) memc 2:5 1P
evaluations of evaluations of evaluations of

Table. Protein data set. Averaged key indicators complementary to Figure4.8.

smc amcmc mcmc
computational time 0:14:55min 3:58:32min 0:29:38 min
evaluations of 6:17 10° 2:50 10° 2:50 10°
average acceptance rate 30:7% 60:7% 0%
length t of the chainx; 9:19 10 2:50 10°
movesX; 6=X1 1:51 1C¢° 3:03 10
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Figure 4.9.. Protein data set with main e ect restrictions. For details see Sectiod.5.1.

(@ smc 61 10° (b) amcmc 2:5 1¢° (c) memc 2:5 1P
evaluations of evaluations of evaluations of

Table. Protein data set with main e ect restrictions. Averaged key indicators
complementary to Figure 4.9.

smc amcmc mcmc
computational time 0:14:45min 3:32:06 min 0:30:21 min
evaluations of 6:19 10° 2:50 10° 2:50 10°
average acceptance rate 26:65% 223% 1:20%
length t of the chainx; 1:07 10 2:50 1P
movesx; 6=X;1 5:56 1C° 3:03 10







5. Bayesian variable selection for
binary response models

Resune

Ce chapitre propose des icees pouretendre les nethodes de Monte Carlo squentielles
a la lection bayesienne de variables dans le contexte des moctles lireaires gereralies
a eponse binaire comme les moctles de egression logistique ou probit. Dans ce cas,
la distribution a posteriori n'est pas disponible sous forme fernee, et les paranetres
du mocele doivent étre marginaliees a l'aide soit d'approximations, soit d'approches
pseudo-marginales a n d'appliquer l'algorithme de Monte Carlo squentiel. Par analo-
gie au chapitre4, plusieurs instances de test sur donrees eelles sont construites et
lechantillonneur de Monte Carlo quentiel est compae a lechantillonneur automa-
tigue gererique (Green, 2003) qui est une nethode de Monte Carloa chame de Markov
transdimensionnel.

5.1. Introduction

We discuss thesequential Monte Carlo (smc)sampler developed in Chapte can be
extended to Bayesian variable selection in the context of generalized linear models with
binary response. Compared to variable selection in normal linear models treated in the
preceding chapter, we face the problem that the marginal likelihood is not available in
closed-form.

Let Y denote the random quantity of interest orresponseand Z a d-dimensional
vector of covariatesor predictors. A generalized linear model assumes that conditional
on Z = z has a density or mass function from the exponential family which can be
written in terms of a linear predictor and a link function such that

E(YjZ=2)= ( o+ '2)

97
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see McCullagh and Nelde(1989) for details. For binary response variables, the typical
model is
hy;z)= ( o+ '2)/[1 ( o+ '2)]VY (5.1)

where is sigmoid, log-concave and IQ(vice di erentiable; important special cases are the
probit regression for(x) = (2 )2 ’1‘ exp(y ?=2)dy and the logistic regression for
(x) =1 =[1+exp(x)].

We denote byn the number of observation, byy 2 R" the vector of observed ex-
plained variables and byZ 2 R"¢ the design matrix of observed explanatory variables.
We identify each regression model with a binary vector 2 BY where the predictorZ; is
in the model if and only if ; = 1. For convenience of notation, we write™ =( o; )l
for the vector of all regression parameters of the model indicated by

5.1.1. Selection criteria

The remarks on penalized likelihood criteria made in Sectiof.1.3 also apply in the
context of generalized linear models. However, unlike for linear normal models there
is no closed-form expression for the maximum likelihood estimators and maximization
has to be done numerically as described in Sectidn2.1. The convex optimization
technigues mentioned in Sectiod.1.4may also be extended to generalized linear models
with convex penalties which includes (5.1). For details, we refer t&iedman et al. (2010)
and citations therein.

5.1.2. Bayesian variable selection

In the following, we only consider Bayesian approaches to variable selection where the
selection criterion is the posterior distribution on the model space. The discussion on
the choice of prior distributions on the model space in Sectiofi.3 equally applies to
generalized linear models. The additional di culty with respect to variable selection in
the context of normal linear models is the lack of conjugate priors which would allow to
obtain the marginal likelihood in closed-form. We denote the likelihood by

L2~ )= Sl hGiezed 3 )

and for suitable prior distributions on the regression parameters and the model space,
we obtain an unnormalized posterior distribution via Bayes' Theorem

(T s L (y;zjp =5 e~ )p():
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We discuss the choice of the prior on regression parameters in Sectoh 2but limit the
analysis to priors which yield posterior distributions that are log-concave in given

The computational challenge is to provide an estimate of
Z

P
(Fiy;2)= () (7 Jy;2)d™; (5.2)

R+
wheref might be any quantity of interest. There are solution based on transdimensional
Markov chain Monte Carlo (mcmc) sampling schemes which allow to sample from the
joint distribution of the model and the regression parameters. We brie y review this
approach in Sectiorb.3. In order to make thesmc sampler work for this kind of problem,

we may compute or approximate the marginal likelihood
Z
Lly:Z] )= . Lly:Zj =5 Jp(T j )d~
R +
every time we evaluate the posterior distribution ( j y;Z) on the model space and
proceed as in the preceding chapter on normal linear models.

5.2. Marginal likelihood

In the context of linear normal regression models, we can calculate a closed-form ex-
pression of the marginal likelihood up to a constant for a judicious choice of the prior
distributions, see Sectiom.2.1. This is not possible for generalized linear models with

binary response. In order to compute the marginal likelihood
Z

Ly:Zj )= Lly:Zj~; )p(7)d~

we might either resort to some approximation scheme or use a Monte Carlo estimate.

5.2.1. Maximum likelihood

We briey review how to compute the mode of the likelihood function which is an
important ingredient of both the approximation and the Monte Carlo scheme. For
simplicity, we assume that is log-concave with an odd second derivative® which

ensure that the likelihood function is concave. In other words, let: R! [0;1] be a
twice di erentiable increasing bijection which satis es

[ ]2 [ 912, :
100 %x) 0 x 2 R: (5.3)
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A su cient condition for (5.3) is that °is an even log-concave density function which
implies that is also log-concave and the second derivativ€%s odd. Popular examples
are thelogistic and probit link functions.

We let y denote the vector of observationsZ the design matrix and let be the
binary vector encoding the model. For ease of notation, we de ne

k= ot Zy

for the linear predictor of the kth observation and let =~ =( o; !)! denote the vector
of the regression parameters including the intercept. The log-likelihood function of the
generalized linear model is

X0
logL(y;Zj =, )= (Yklog[ ( )]+ (@ w)log[l ( WD);

k=1

the gradient is

_ @ogl(y;Zj~; )_* @)
= a k:l (Lzk ) W )

1)

s (7): (1 yk)l—(k) ;

and the Hessian is
@loglogl(y;zj ~; ) _ X 1. RO LA WP
@_ @__| - - (11Zk; ) (1’Zk; ) yk ( k) [( k)];

) [ AW
1 (W [ (P

+(1 w)

The rst order condition s (= ) = 0 is typically solved via Newton Raphson iterations

~t+) = ~) 4 1l (%t))s (%t))

for some suitable starting point ~® 2 RP where

@logL(y;Zj ~; )
@ @

denotes the observed Fisher information matrix. Note that condition (5.3) ensures that
F (7 ) is positive semi-de nite and the likelihood function therefore log-concave. This
guarantees the uniqueness but not the existence of the maximizer since the data might
su er from complete or quasi-complete separation (Albert and Andersori,984) which
would cause the likelihood function to be monotonic. However, we can assure that the
likelihood function is strictly log-concave by assigning a suitable prior distribution to
the regression parameter- .

F(7):= 0; T 2R ™
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5.2.2. Prior on the regression parameters

Firth (1993) recommends the Je reys prior for its bias reduction which can conveniently
be implemented via a data adjustment scheme (Kosmidis and Firth, 2009). For the sake
of simplicity, we work with a simple multivariate normal prior p = N (0; ) for a
dispersion parameter > 0 such that, up to a constant, the log-posterior distribution is
the log-likelihood function plus a quadratic penalty term which gives

o L 14 4 -
(75 JiY;2)/L (y;Zj Y)exp 2—' b

The score and Fisher matrix under the prior are
P()=s() P LT F(O)=F O+ Y

We should choose the dispersion parametersmall enough to ensure numerical stability
of the maximization procedure but large enough to avoid an unnecessary shrinkage e ect.
The normal prior ensures that likelihood function remains concave and maximization is
fairly straightforward; using heavy-tailed priors like student's t distribution we would
loose this property.

5.2.3. Laplace approximation

Let L(y;Zj ; ) denote the likelihood with respect to the regression coe cients and let

‘= argmax- ,p; 1 LY ;Zj T )p(T)

be the penalized maximume-likelihood estimator under the multivariate normal priop. A
second order Taylor expansion of lob{y ;Z j ; )p] around ~ vyields the approximation

o - o 1 _ Ny~ o~
loglL(y:Zj =3 Jp(™)I logLly:Zj =i ) ) FPCT)( )
which allows to approximate the marginal likelihood by
Ci(y;Zj )= LysZj = )2 )0 M2 detfFP(~ )] ;

where the Fisher matrix under the priorFP(~ ) is de ned in the preceding section.

5.2.4. Pseudo-marginal sampler

The smc sampler is only designed to sample from distribution with supporB¢, but
we might compute an unbiased Monte Carlo estimate of the marginal distribution each
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time we evaluate the posterior distribution. Since the regression parameters are a priori
assumed to be normal distributed, we can design amportance sampling (s) estimator
using the student's t approximation

[(, +jj+1)=2]

= - =21 IEREE
[=2]( )= FP(7)  1+ix THF(T)x 7))

where 2 N denotes the degrees of freedom, the maximum likelihood estimator
and F (7 ) the observed Fisher information under the priop; see sectiorb.2.3. For a

estimator o _
Ory:Zj )= % 'Lt(y Z J~V{<; 1)|O(\~/k) : (5.4)
ke Vil TR (T
which c:onvergestf\{;1 y:Zj ) n”!llL(y ;Z | )a.s. by virtue of the law of large numbers,
see Section 1.1.2.

Andrieu and Roberts(2009) generalize thgimh algorithm by Beaumont(2003) and
show that the mcmc estimator remains valid even if the density of the target function
in the acceptance probability of the Metropolis-Hastings kernel (1.7) is replaced by an
unbiased estimator.Chopin et al. (2011) propose arsmc sampling scheme based on the

same rationale,
X
Mane() = wd F(X )
k=1
where Zm ) " (f) a.s. which justi es the pseudo-marginal approach in the
context of the sampler proposed in Chapteg.

The practical question arises, how many samples one should use for ihestimators
and how many particles for thesmc sampler. It seems dicult to provide general
guidance. The number of samples necessary for tiseestimator E\{‘s" (y;Zj )to provide
a certain precision depends on the model, and we propose to choose such that the
e ective sample size (ess) [T of the is estimator reaches at least some target value,
at the nal stage of the smc sampler.

If (%)n denotes the annealing schedule de ned in Sectich2.2, we choose the
sample size of thds estimator at time t such that the ess is at least% .. In other
words, the target ess of the is estimator increases during the run of the algorithm.
The rationale behind this choice is that less precision is necessary in the early stage
of the annealingsmc. Numerical experiments show that using the full precision, for
the whole run of the smc sampler considerably slows down the algorithm but hardly
improves the estimator.
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5.2.5. Corrected Laplace sampler

Computing anis estimator ~( jy;Z) for each evaluation of the posterior distribution
is computationally quite costly. A faster alternative is to run thesmc sampler with
respect to the Laplace approximation derived in Sectiof.2.3to obtain a sample

XunXa) NCiys2) L Biy;zj p():

Using the same ideas as developed in the preceding section on the pseudo-marginal
approach, we may compute ams estimator (5.4) for the marginal likelihood Iﬁ\{‘g (Y;Zj
xk) for all k 2 N and nally construct an is for the posterior distribution

Coy;zj ).

Niy:;Zj )

Naturally, this approach does not depend on themc sampler, but the sample from
N (jy;Z) may also come from a thinned Markov chain or other sampling schemes.

P, ‘ o
kg X)W (X k) .

AT (£ ) = ,
*) ker WIT(X §)

5.3. Transdimensional Markov chain Monte Carlo

5.3.1. Reversible jumps

If there is a closed-form expression for the integrated likelihood, the posterior distribution
is solely de ned on a binary space and standanthcmc tools introduced in Chapterl are
straightforward to apply. In the case of variable selection for generalized linear models,
however, themcmc procedure has to be de ned on the joined space of the model and
the regression coe cients.

The typical way to deal with joined distributions ( ; ) dened on R¥** BYis
Gibbs sampling where one alternates sampling from the full conditional distributions,
thatis ( j )and ( j ). Inthe case of variable selection, however, the modelis
completely de ned by the vector of regression parameters= =~ , and the expression

( J 7)) is therefore not meaningful. The appropriate state space for the variable
selection problem ig[ ,g¢(R! ** f @) and mcmc methods dealing with these non-
standard spaces are referred to deansdimensional Markov chain Monte Carlo.

Green (1995) rst proposes a solution calledreversible jump mcmc which intro-
duces a di eomorphism between models of di erent dimensions which have to verify a
dimension-matching condition to ensure detailed balance. This allows to derive the usual
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Metropolis-Hastings acceptance ratio which only involves the Jacobian of the between-
models di eomorphism which comes from the standard change-of-variables formula. For
further details, we refer to Green (2003) who provides a constructive representation of
this idea in terms of auxiliary random variables.

The major practical problem of reversible jumpncmc is the lack of guidance on how
to construct the jump proposals and insu cient tuning is known to result in acceptance
probabilities which are prohibitively low. Brooks et al. (2003) elaborate a series of
techniques to construct jump functions and saturation schemesiolmes and Held2006)
propose an extension of the probit data augmentation approach b§lbert and Chib
(1993) to logistic regression. The advantage of the data augmentation scheme is that
and can be updated jointly conditional on the auxiliary variables which avoids the
problem of transdimensional moves. For a recent comparison of methods kaeennisos
et al. (2009).

5.3.2. The automatic generic sampler

We brie y review a reversible jumpmcmc scheme proposed byreen (2003) asauto-
matic generic sampler Reversible jump type algorithms are known to need some tuning
to provide e cient kernels for a particular problem, and Green (2003) introduces the
automatic generic sampler as a generic approach which works particularly well if the
regression parameters are close to normality. In Secti@¥, we compare the automatic
generic sampler to thesmc sampler combined with the pseudo-marginal technique.

The automatic generic sampler is summarized in Algorithm1. The auxiliary kernel
g on the model space performs a swap move between two uniformly chosen components
with probability 1 =3; it changes a uniformly chosen component with probability=3.
As before, we denote by~ the maximum-likelihood under the prior and letC be
the Cholesky decompositiorC (C ) =[FP(~)]! of the inverse Fisher matrix at the
mode. T denotes student's t distribution with 2 N degrees of freedom antlt its
mass function.

5.4. Numerical experiments

For our numerical examples, we assume the regression parameters to be a priori inde-
pendent, that is = | ; with dispersion parameter = n wheren is the number
of observations. We use the prior distribution on the model space described in Section
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Algorithm 11: Automatic generic sampler
Input: f:B91 R
Xo Xo pu U T (05l “xo
for k=0 to ndo

x% q(jxk),u u

if jxij>jx9then v Uy u®  Ugog

if xej<jxYthen v VvV T (0;1); u® (ul;v)!

N

xo T Cx,oU

~0 ~XO+ CXoPUO 8
't 1 . . . .
(8 iC_d E[ V)] I: JXkJijxg
XK %) ICx,J B =X
© V) if jxij < jx9

if >U U [0:1] then

| Xksr x%u  Pu?®
else

| Xk+1 Xk
end

end
1 Pn
return (n +1) k=0 T (Xk)

4.3.1 where the a priori expected model siz€2 D was xed to some reasonable value
and the maximum model size was choseh = 2d.

5.4.1. Construction of test instances

For testing, we created variable selection problems with binary response from datasets
which are freely available at theUCI Machine Learning Repository. In the following, we
brie y describe the variable selection problems composed for our numerical experiments.

Australian Credit Approval The rst example comes from a credit card application,
originally treated by Quinlan (1987), where the goal is to determine the credit worthiness
from a set of predictors. The attribute names and values have been altered to protect
the con dentiality of the data. Missing values had been replaced by the modes of the
corresponding attributes. The original data set has 690 observations and 14 predictors
where we introduced additional dummy variables for the categorical factoké4;V5; V6
and V 12 which yields a total of 34 covariates.
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Wisconsin Prognostic Breast Cancer The second example is concerned with the prob-
lem of predicting whether a breast cancer is recurrent or not recurrent before 24 months.
In a series of publications\Wolberg et al. (1995) analyzed the data which includes only
those cases exhibiting invasive breast cancer and no evidence of distant metastases at
the time of diagnosis. The original data set has 198 observations (151 nonrecurrent and
47 recurrent) and 30 features which were computed from a digitized image of a ne
needle aspirate of a breast mass. They describe characteristics of the cell nuclei present
in the image. The mean, standard error, and \worst\ or largest (mean of the three
largest values) of these features have been computed for each image, resulting in a total
of 30 features. However, some predictors are collinear or exhibit positive correlations
beyond 0:99 which have been removed leaving a total of 29 predictors. Still, there are
considerable correlations between the covariates which provides a challenging sampling
problem.

short name explanation
time recurrence time if recurrent,

disease-free time if nonrecurrent
radius mean of distances from center

to points on the perimeter
texture standard deviation of gray-scale values
smoothness local variation in radius lengths
area area
smoothness local variation in radius lengths
compactness perimeter / area - 1:0
concavity severity of concave portions of the contour
concave _points number of concave portions of the contour
symmetry symmetry
fractal _dim \coastline approximation” - 1
tumor _size diameter of the excized tumor in centimeters
lymph _node number of positive axillary lymph

nodes observed at time of surgery

Musk data The third example is based on a data set aiming at classifying whether
a molecule is amuscle-speci ¢ kinase rfiusk) or not. Dietterich et al. (1997) use the
original data to compare several axis-parallel rectangle algorithms. The dataset describes
a set of 92 molecules of which 47 were judged by human experts torhask and the
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remaining 45 molecules were judged to be nonusk. The 166 features which describe
the molecules depend upon the exact shape, or conformation, of the molecule. The total
number of observations is 476. As in the Wisconsin Prognostic Breast Cancer example,
some predictors are collinear or exhibit positive correlations beyond 0:99 which have
been removed leaving a total of 95 predictors. The strong correlations between the
covariates yield a challenging sampling problem.

short name explanation

df _* distance features

oxy _dis The distance of the oxygen atom in the molecule
to a designated point in 3-space.

oXy _X X-displacement from the designatet point.

oxy _y Y-displacement from the designated point.

oxXy -z Z-displacement from the designated point.

5.4.2. Comparison and conclusion

In this section, we provide a rough comparison between the pseudo-margisaic from
Section 5.2.4, the corrected Laplacemc from Section 5.2.5 and the automatic generic
sampler from Sectiorb.3. In Section4.5.2 we argued that for comparing completely dif-
ferent algorithms, pure computational time might not be the best criterion and preferred
to calibrate the algorithms in terms of evaluations of the target function . In the con-
text of generalized linear models, we can hardly do the same since the automatic generic
sampler works on the joint distribution and the adaptedsmc samplers on the marginal
distribution of the posterior. Therefore, we calibrate the pseudo-marginamc and the
automatic generic sampler to have approximately the same running time. The corrected
Laplace smc approach proposed in Sectio®.2.5 runs with the same con guration as
the pseudo-marginalmc but is signi cantly faster.

We run each algorithm 50 times and each time we obtain a Monte Carlo estimate
of the marginal probabilities of inclusion of all predictors. We visualize the variation of
the estimator by box-plots that show how much the Monte Carlo estimates have varied
throughout the 50 runs (Figures5.1to 5.3). Here, the white boxes contain 80% of the
Monte Carlo results, while the black boxes show the extent of the 20% outliers. For
better readability, we add a colored bar up to the smallest estimate we obtained in the
test runs; otherwise components with a small variation are hard to see. The vertical line
in the white box indicates the median of the Monte Carlo estimates.
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Clearly, on grounds of our comparison we cannot state that asmc approach is
better or worse than a transdimensionamcmc algorithm, since both methods may
require a certain amount of problem-dependent tuning and good programming skills
to be e cient. However, we may conclude that the pseudo-marginaamc sampler is a
viable alternative to transdimensionalmcmc and produces results of similar accuracy
for the same amount of computational time. The pseudo-marginal approach in a pure
mcmc context would certainly not work as well, since many more evaluations of the
target function were required.

Remember that thesmc sampler can compute the estimates of the marginal pos-
terior in parallel and thus easily prot from parallel computing environments. Since
computation of the marginals is the computationally most intensive step, even simple
parallelization approaches lead to an enormous speed-up. We implemented a parallel
version of the sampler, but only used a single core for the numerical comparison. We
refer to the Appendix for details on the software.

We also observe that the corrected Laplace approximation of the full posterior as
proposed in Section5.2.5 provides, from a practical point of view, a fast and rather
reliable alternative to transdimensionalmcmc. This sampling scheme puts us back into
the smc framework discussed in ChapteR, where the target distribution is available in
closed-form, but the sampler has to deal with multi-modality issues.

Figure 5.1.: Australian credit approval set. For details see Sectio®.4.1. The aver-
age run time is about 16 minutes for the pseudo-marginamc and the
automatic generic sampler.

(a) pseudo-marginalsmc (b) automatic generic sampler  (c) corrected Laplacesmc



5.4 Numerical experiments 109

Figure 5.2.: Wisconsin Prognostic Breast Cancer data set. For details see Secttond.1.
The average run time is about 22 minutes for the pseudo-marginsinc and
the automatic generic sampler.

(a) pseudo-marginalsmc (b) automatic generic sampler  (c) corrected Laplacesmc
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Figure 5.3.: musk detection data set. For details see Sectioh.4.1. The average run
time is about 19 hours for the pseudo-marginadmc and the automatic
generic sampler.

(a) pseudo-marginalsmc (b) automatic generic sampler  (c) corrected Laplacesmc



6. Pseudo-Boolean optimization

Resune

L'optimisation stochastique de fonctions pseudo-bookennes est un domaine d'inerét
majeur en recherche operationnelle car des nombreuses probemes combinatoires NP-
complet peuvent étre formuks en termes de programmation binaire. Si la fonction ob-
jective est multimodale, les algorithmes de recherche locale ne parviennent souvent pas
a cetecter lI'optimum global et les nmethodes particulaires peuvent donner des esultats
plus robustes. Nous cetaillons comment lechantillonneur de Monte Carlo fquentiel
peut étre utili’e dans un contexte d'optimisation et comment la nethode de I'entropie
croise par Rubinstein (1997) peut étre inege dans le cadre de l'algorithme Monte
Carlo quentiel. Les experiences nuneriques montrent que les familles paranetriques
proposes dans le chapitr® aneliorent consicerablement la performance de la nethode
de l'entropie croiee. Finalement, les nmethodes particulaires sont compaees aux algo-
rithmes de recherche locale.

6.1. Introduction

We apply the sequential Monte Carlo émc) sampler developed in Chapte to optimiza-
tion problems. The material has been accepted for publication i&chafer (2012b). In
the context of combinatorial optimization, a mappingf : B! R is usually referred to
as apseudo-Boolean function. This terminology stems from the de nition of a Boolean
function f : BY! B for logical calculation while the termbinary function usually refers

to functions with two input variables. In this chapter, we discuss a uni ed approach to
stochastic optimization of pseudo-Boolean functions based on particle methods, includ-
ing the cross-entropy method and simulated annealing as special cases.

We point out the need for auxiliary sampling distributions, that is parametric fami-
lies on binary spaces, which are able to reproduce complex dependency structures, and
illustrate their usefulness in our numerical experiments. We provide numerical evidence

111



112 Chapter 6. Pseudo-Boolean optimization

that particle-driven optimization algorithms based on parametric families yield supe-
rior results on strongly multi-modal optimization problems while local search heuristics
outperform them on easier problems.

In the following, we discuss approaches to obtain heuristics for the pseudo-Boolean
optimization program
maximize f (x)
(6.1)
subjectto x 2 B¢
using smc techniques, and we refer td as theobjective function. Pseudo{Boolean opti-
mization is equivalent to many combinatorial problems arising, for example, in reliability
theory, design of integrated circuits, statistical mechanics, molecular conformation, op-
erations research and management science, computer aided design, tra ¢ management
or machine scheduling. A large number of important combinatorial problems on graphs
can be be formulated as optimization of quadratic pseudo-Boolean functions, includ-
ing how to determine maximum vertex packings, maximum cliques, maximum cuts and
minimum coverings. For an excellent overview of applications of binary programming
and equivalent problems we refer to the survey paper oros and Hammer(2002) and
references therein.

The idea to use particle Iters for global optimization is not new (Del Moral et al.,
2006, Section 2.3.1.c), but novetmc methodology introduced in Chapter2 allows to
construct more e cient samplers for the special case of pseudo-Boolean optimization.
We particularly discuss how this methodology connects with the cross-entropy method
(Rubinstein, 1997), which is a well-established particle driven optimization algorithm
based on parametric families. Thesmc algorithm as developed in Chapter is rather
complex compared to local search algorithms such as simulated annealing (Kirkpatrick
et al., 1983) ork-opt local search (Merz and Freisleber2002) which can be implemented
in a few lines. The aim of this chapter is to motivate the use of particle methods in the
context of pseudo-Boolean optimization and exemplify their usefulness on instances of
the unconstrained quadratic binary optimization problem.

We investigate the performance of the proposed parametric families in particle-driven
optimization algorithms and compare variants of thesmc algorithm, the cross-entropy
method, simulated annealing and simple multiple-restart local search to analyze their
respective e ciency in the presence or absence of strong local maxima. We provide
conclusive numerical evidence that these complicated algorithms can indeed outperform
simple heuristics if the objective function has poorly connected strong local maxima.
This is not at all clear, since, in terms of computational time, multiple randomized
restarts of fast local search heuristics might very well be more e cient than compara-
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tively complex particle approaches.

6.1.1. Statistical modeling

For particle optimization, the common approach is de ning a family of probability mea-
sures (9990 associated to the optimization problem §.1) in the sense that

= Uga; |Im o= Uy.:
0 B o % M ¢

where Us denotes the uniform distribution on the setS and M; = argmax,,g« f (X)
the set of maximizers. The idea behind this approach is to rst sample from a simple
distribution, potentially learn about the characteristics of the associated family and
smoothly move towards distributions with more mass concentrated in the maxima. We
review two well-known techniques to explicitly construct such a family o,

De nition 6.1.1. We callf o % 0g a tempered family, if it has probability mass
functions of the form

A )= wexp[%{ )] (6.2)

P
where ¢ = gsexp[%{ )]

As %increases, the modes ofy,become more accentuated until, in the limit, all mass
is concentrated on the set of maximizers. The name re ects the physical interpretation
of ofX) as the probability of a con guration x 2 BY for an inverse temperature%and
energy function f . This is the sequence used in simulated annealing (Kirkpatrick et al.,
1983).

De nition 6.1.2. We callf o % 0g a level set family, if it has probability mass
functions of the form

o )= jlod b 150 ); (6.3)
whereLy, :=f 2B9: %[f(x ) f( )] 1gforx 2 Ms.

Indeed, L, is the super-level set of with respect to the levelc= f(x ) 1=%, for
% >0, and o ) is the uniform distribution on L;,. As %increases, the support of ¢
becomes restricted to the points that have an objective value su ciently close to the
maximum of the f . In the limit, the support is reduced to the set of global maximizers.

Figure 6.1 shows a toy instance of an objective function on a discrete state space
and two sequences associated to the optimization problem (6.1). The particle-driven
optimization algorithms are computationally more involved than local search heuristics
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Figure 6.1.: Associated sequences, for a toy examplef : B*! [20; 20]. The colors
indicate the advance of the sequences from yellow to red. For simplicity,
we choosép =t for t 2 [0;16].

(a) objective function f (x) (b) tempered sequence (6.2) (c) level set sequence (6.3)

since we need to construct a sequence of distributions instead of a sequence of states.
We shall see that this e ort pays o in strongly multi-modal scenarios, where even
sophisticated local search heuristics can get trapped in a subset of the state space.

6.1.2. Rare event simulation

While the tempered sequence is based on a physical intuition, the level set sequence
has an immediate interpretation as a sequence of rare events since%ascreases, the
super-level set becomes a ‘rare event' with respect to the uniform measure. Rare event
simulation and global optimization are therefore closely related concepts and methods
for rare event estimation can often be adapted to serve as optimization algorithms.

Particle algorithms for rare event simulation include the cross-entropy method (Ru-
binstein, 1997) and thesmc sampler (Johansen et al.2006). The former uses the level
set sequence, the latter useslagistic potential family

o )= o ([f( ) T

where o = P ga (%[f( ) f(x)Dand :R! (0;1); “(x) = [1+exp( x)] *
denotes the logistic function. Johansen et al.(2006) did not speci cally design their
algorithm for optimization but their approach to static rare event simulation is closely
related to the particle optimization framework.
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6.2. Optimization algorithms

In this section, we brie y review some well-known heuristics for binary optimization. In
particular, we discuss how thesmc algorithm introduced in Chapter 2 connects to the
cross-entropy method and simulated annealing. In Tablé.1, we provide the necessary
formulas for the tempered and the level set sequence introduced in Sectt.1.

Table 6.1.: Formulas of the importance functionu;. , the e ective sample size , and
the acceptance probability  for the tempered and the rare event sequences.

exp(%f) 1.

Us (Xit) el t) 1|_o*/q+ (Xict)

P ef &kt) 2

k=1 . . . .
n(Wt; ) P n ezf (Xt ) fo k;t J k2 |[11n]lg\ L;’;p+ J
k=1 ’
_ el (O xiw) 1, O)
g (] Xkt) | 17 n e
1 : goga( )log o (X ) goga( )log o (Xt )

6.2.1. Sequential Monte Carlo

The smc algorithm proceeds as described in Chaptét but does not terminate when
%reaches exactly one. The iterations terminate if the particle diversity drops sharply
below some threshold > 0 which indicates that the mass has concentrated in a single
mode. For convenience, the optimization scheme is summarized again in Algoritira.

If the Markov kernel is of the Metropolis-Hastings type with proposals from a para-
metric family g, one might already stop if the family degenerates in the sense that only
a few components of , say less thand =12, are random while the others are constant
ones or zeros. In this situation, additional moves using this parametric family are a
pointless e ort. We either return the maximizer within the particle system or we solve
the subproblem of dimensiord by brute force enumeration. We might also perform
some nal local moves in order to further explore the regions of the state space the
particles concentrated on.

For the level set sequence, the e ective sample size is the fraction of the particles
which have an objective function value greater than maxg«f ( ) (%+ )?!, see Table
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Algorithm 12:  Sequential Monte Carlo optimization
Input: f:B91 R
forall k2 N sample xx U g

repeat
nd step length (%X) (Procedure 4)
w  importance weights(; o X) (Procedure 3)
% %t
t parametric family (w;X) (see Chapter 3)
)4 resample(w ; X) (Procedure 5)
X move( ;R (Procedure 6)

until (X) < or q degenerated

6.1 and equation (6.3). The remaining particles are discarded since their weights equal
zero. Thus, the weighting and resampling steps collapse to ordering the particteg
according to their objective valuest (xi) and keeping then(1 ) particles with the
highest objective values. Consequently, there is no need to explicitly computeas a
solution of (1.2).

6.2.2. Cross-entropy method

The cross-entropy method has been applied successfully to a variety of combinatorial
optimization problems, some of which are equivalent to pseudo-Boolean optimization
(Rubinstein and Kroese,2004), and is closely related to the proposesmc framework.
Rubinstein (1997), who popularized the use of level set sequences in the context of the
cross-entropy method, refers to(1 ) particles with the highest objective function
values as theelite sample. Like in thesmc sampler, these particles are used to t the
next parameter of the auxiliary family.

However, the central di erence between the cross-entropy method summarized in
Algorithm 13 and the smc algorithm outlined in Algorithm 12is the use of an invariant
transition kernel in the latter. We obtain the cross-entropy method as a special case of
the smc sampler if we replace the kernel by its proposal distribution q .

The smc annealing algorithm starts from a family of intermediate distributions
f o % 0g and explicitly schedules the evolution (o)wen Which in turn de nes the
proposal distributions (@, )~ . The cross-entropy method, in contrast, de nes the sub-
sequent proposal distribution

qt+1 qtngkHl
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without any reference sequence ()on to balance the speed of the particle evolution.

In order to decelerate the advancement of the cross-entropy method, one might intro-
duce a lag parameter 2 [0;1) and use a convex combination of the previous parameter
1 and the parameter”; t to the current particle system, setting

=1 )i+
However, there are no guidelines on how to adjust the lag parameter during the run
of the algorithm. Therefore, thesmc algorithm is easier to calibrate since the refer-
ence sequence {)pn controls the stride and automatically prevents the system from
overshooting.

On the upside, the cross-entropy method allows for a broader class of auxiliary dis-
tributions fq j 2 g since we do not need to evaluatg point-wise which is only
necessary for the computation of the Metropolis-Hastings ratio (1.7).

Algorithm 13:  Cross-entropy method
Input: f:BY1 R
forall k2 N sample xx U gd

repeat
order such that X (q X (n)
% f(X bne)
t parametric family (X (bng) ::i1i X (ny) (see Section3.1)

forall k2 N sample xx (@
until  ,(X) < or q degenerated
return - argmax ey .x gt ()

6.2.3. Simulated annealing

A well-studied approach to pseudo-Boolean optimization is simulated annealing (Kirk-
patrick et al., 1983). While the name stems from the analogy to the annealing process
in metallurgy, there is a pure statistical meaning to this setup. We can picture simu-
lated annealing as approximating the mode of a tempered sequence (6.2) using a single
particle. Since a single observation does not allow for tting a parametric family, we
have to rely on symmetric transition kernels (1.13) in the move step.

There is a vast literature advising on how to calibrate the sequence % , which in
this context is usually referred to as thecooling schedule, where a typical guideline is the
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expected acceptance rate of the Hastings kernel. One might adaptively choosg %o
such that the empirical acceptance rate
P t

— ol
tsit =S r=ts r

follows approximately a desired cooling schedule like [0; ]! [0;1],c(t) =1+ =)°
where denotes the total running time and the time elapsed whiles 2 N is some
reasonable lag parameter. There are variants of simulated annealing which use more
complex cooling schedules, tabu lists and multiple restarts, but we stick to this simple
version for the sake of simplicity. Algorithm 14 describes the version we use in our
numerical experiments in Sectior6.4.4.

Figure 6.2.: The empirical acceptance probability is calibrated to follove(x) = (1+ x) °
wherex 2 [0; ] is the progress of the simulated annealing algorithm.

Algorithm 14:  Simulated annealing optimization
Input: f:B4!1 R; 2N
X U ga; X x;t 0 0 (time elapsed)

while t< do
sample UnNior U U o

if u< expPaf () f(x)] then x
if f(x) >f (x )then x X

adjust % such that —s¢ (L+ =)°
t t+1

end
return X

6.2.4. Randomized local search

We describe a greedy local search algorithm which works on any state space that allows
for de ning a neighborhood structure. A greedy local search algorithm computes the
objective value of all states in the current neighborhood and moves to the best state
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found until a local optimum is reached. The local search algorithm is callddopt if it
searches the&k-neighborhood de ned in (1.9) (see e.gMerz and Freisleben(2002) for a
discussion).

The algorithm can be randomized by repeatedly restarting the procedure from ran-
domly drawn starting points. There are more sophisticated versions of local search
algorithms exploit the properties of the objective function but even a simple local search
procedure can produce good resulislidaee et al. (2010). Algorithm 15 describes the
1-opt local search procedure we use in our numerical experiments in Sectioh.4.

Algorithm 15: Randomized local search
Input: f:BY! R; T 2R
X Upgy T 0 (time elapsed)

while T <T do

X U pa

while x is not a local optimum do
\ X argmax oy, f ()

end

if f(x) >f (x )then x X

end
return X

6.3. Application

6.3.1. Unconstrained Quadratic Binary Optimization

Proposition 3.2.3states that any pseudo-Boolean functiofi : B! R can be written as
a multi-linear function

P Q
f( ): I D q i21 i (64)
wherea 2 R are real-valued coe cients. We say the functionf is of orderk if the
coe cients a, are zero for alll D with jlj > k. While optimizing a rst order

function is trivial, optimizing a non-convex second order function is already an NP-hard
problem Garey and Johnson(1979).

In the sequel, we focus on optimization of second order pseudo-Boolean functions to
exemplify the stochastic optimization schemes discussed in the preceding sectiong. If
is a second order function, we rewrite program (6.1) as

maximize x!Fx

6.5
subjectto x 2 BY, (65)
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whereF 2 RYY is a symmetric matrix. The program (6.5) is called arunconstrained
quadratic binary optimization (ugbo ) problem; we refer toBoros et al.(2007) for a list of
applications and equivalent problems. In the literature the problem is also denominated
unconstrained quadratic Boolean or bivalent or zero-one programming (Beaslé@98).

6.3.2. Particle optimization and meta-heuristics

Meta-heuristics are a class of algorithms that optimize a problem by improving a set of
candidate solutions without systematically enumerating the state space; typically they
deliver solutions in polynomial time while an exact solution has exponential worst case
running time. The outcome is neither guaranteed to be optimal nor deterministic since
most meta-heuristics are randomized algorithms. We briey discuss the connection
to particle optimization against the backdrop of the unconstrained quadratic binary
optimization problem where we roughly separate them into two classes: local search
algorithms and particle-driven meta-heuristics.

Local search algorithms iteratively improve the current candidate solution through
local search heuristics and judicious exploration of the current neighborhood; examples
are local searctBoros et al.(2007); Merz and Freisleben(2002), tabu searchGlover et al.
(1998); Palubeckis(2004), simulated annealingKatayama and Narihisa(2001). Particle
driven meta-heuristics propagate a set of candidate solutions and improve it through
recombination and local moves of the particles; examples are genetic algorithivierz
and Freisleben(1999), memetic algorithmsMerz and Katayama (2004), scatter search
Amini et al. (1999). For comparisons of these methods we refer litasan et al.(2000)
or Beasley(1998).

The smc algorithm and the cross-entropy method are clearly in the latter class of
particle-driven meta-heuristics. The idea behindgmc is closely related to the intuition
behind population (or swarm) optimization and genetic (or evolutionary) algorithms.
However, the mathematical framework used irsmc allows for a general formulation
of the statistical properties of the particle evolution while genetic algorithms are often
problem-speci ¢ and empirically motivated.
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6.3.3. Particle optimization and exact solvers

If we can explicitly derive the multi-linear representation (6.4) of the objective function,
there are techniques to turn program (6.1) into a linear program. For thegbo it reads

xda K xd
maximize f(x)=2 fi xj + fii Xii
i=1 j=1 i=1
subject to x 2 Bd@D=2 9 (6.6)
XlJ Xii 2
Xij  Xj S foralli;j 2 D.

Xij Xii + Xjj 1

Note that there are more parsimonious linearization strategies than this straightfor-
ward approach (Hansen and Meyei2009;Gueye and Michelon2009). The transformed
problem allows to access the tool box of linear integer programming which consist of
branch-and-bound algorithms that are combined with rounding heuristics, various relax-
ations techniques and cutting plane methods (Pardalos and Rodgefd€990;Palubeckis,
1995).

Naturally, the question arises whether particle-driven meta-heuristics can be incor-
porated into exact solvers to improve branch-and-bound algorithms. Indeed, stochastic
meta-heuristics deliver lower bounds for maximization problems, but particle-driven al-
gorithms are computationally somewhat expensive for this purpose unless the objective
function is strongly multi-modal and other heuristics fail to provide good results; see
the discussion in Sectior6.3.4.

However, thesmc approach in combination with the level set sequence (6.3) might
also be useful to determine a global branching strategy, since the algorithm provides an
estimator for

=LY e L ()
which is the average of the super-level sét’ := fx 2 BY: f(x) cg. These estimates
given for a sequence of levetsmight provide branching strategies than are superior to
local heuristics or branching rules based on fractional solutions. A further discussion of
this topic is beyond the scope of this thesis but certainly merits consideration.

6.3.4. Construction of test problems

The meta-heuristics we want to compare do not exploit the quadratic structure of the
objective function and might therefore be applied to any binary optimization program.
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If the objective function can be written in multi-linear form like (6.5) there are e cient
local search algorithms (Boros et al.2007;Merz and Freisleben,2002) which exploit
special properties of the target function and easily beat particle methods in terms of
computational time.

Therefore, the use of particle methods is particularly interesting if the objective
function is expensive to compute or even a black box. The posterior distribution in
Bayesian variable selection for linear normal models treated in Chaptéris an example
of such an objective function. We stick to theugbo for our numerical comparison
since problem instances of varying di culty are easy to generate and interpret while the
results carry over to general binary optimization.

In the vast literature on ugbo , authors typically compare the performance of meta-
heuristics on a suite of randomly generated problems with certain propertieBardalos
(1991) proposes standardized performance tests on symmetric matriée® Z29¢ with
entriesf;; drawn from the uniform

1

(k) = 2_(:1[“] (k); c2N:

The test suites generated byBeasley(1990, OR-library) and Glover et al. (1998) follow
this approach have been widely used as benchmark problems in thegoo literature (see
Boros et al. (2007) for an overview). In the sequel we discuss the impact of diagonal
dominance, shifts, the density and extreme values &f on the expected di culty of the
correspondingugbo problem.

Diagonal

Generally, stronger diagonals inF corresponds to easieugbo problems (Billionnet
and Sutter, 1994). Consequently, the original problem generator presented Byardalos
(1991) is designed to draw the o -diagonal elements from a uniform on a di erent support
[qg;q9] with g2 N.

The impact of the diagonal carries over to the statistical properties of the tempered
distributions (6.2) de ned in the introductory Section 6.1.1. For theugbo, the tem-
pered distributions are in the exponential quadratic family (3.5.1) and a strong diagonal
implies low dependencies between the components of the random binary vector. Section
3.5.1 elaborates how to approximate the exponential quadratic family by the logistic
conditionals family. One might accelerate thesmc algorithm using p = q, instead of
p = Ugs as initial distribution. However, we did not exploit this option to keep the
present work more concise.
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For positive de nite F, the optimization problem is convex and can be solved in
polynomial time Kozlov et al. (1979); in exact optimization, this fact is exploited to
construct upper bounds for maximization problems (Poljak and Wolkowicz1995). In
statistical modeling, the auxiliary distribution

()= o0 (1IF1 +tr( F)’

is a feasible mass function foF > 0. Section3.4 provides analytical expressions for all
cross-moments and marginal distributions without enumeration of the state space.

Shifts

The global optimum of the ugbo problem is more dicult to detect as we shift the
entries of the matrix F but the relative gap between the optimum and any heuristic
value diminishes. If we samplé; = f; from a uniform on the shifted support

G; (K) = Upere + 1(K); €2 N; 2[cic];
we obtain a random objective function
f )= x'Fx2xI(FO+ 11)x = fo()+ jxj2;

where 2 means equality in distribution. Hence, with growingj j the optimum depends
less onF and the relative gap between the optimum and a solution provided by any
meta-heuristic vanishesBoros et al.(2007) de ne a related criterion for 2 [ c;c],

1, *2¢
2 2(2+c2+c)

2 [0;1];
and report a signi cant impact of on the solution quality of their local search algorithms

which is not surprising.

Density

The di culty of the optimization problem is related to the number of interactions, that
is the number of non-zero elements &. We call the proportion of non-zeros thelensity
of F. Drawing f; from the mixture

G (K)= ! Upeg )+ 1) o(k)i ©2N;! 2(0;1]

we adjust the di culty of the problem to a given expected density! .



124 Chapter 6. Pseudo-Boolean optimization

Note that not all algorithms are equally sensitive to the density ofF. Using the
basic linearization (6.6), each non-zero o -diagonal element requires the introduction of
an auxiliary variable and three constraints. Thus, the expected total number of variables
and the expected total number of constraints, which largely determine the complexity
of the optimization problem, are proportional to the density! .

On the other hand, many randomized approaches, including thenc sampler de-
veloped in Chapter2, are less sensitive to the density of the problem in the sense that
replacing zero elements by small values has a minor impact on the performance of these
algorithms. Rather than the zero/non-zero duality, we suggest that the presence of
extreme values determines the di culty of providing heuristic solutions.

Extreme values

The uniform sampling approach advocated byPardalos (1991) is widely used in the
literature for comparing meta-heuristics. Certainly, particle-driven methods are com-
putationally too expensive to outperform local search heuristics on test problems with
uniformly drawn entries; Beasley(1998) con rms this intuition with respect to genetic
algorithms versus tabu search and simulated annealing. However, the uniform distribu-
tion does not produceextreme valuesand it is vital to keep in mind that these have an
enormous impact on the performance of local search algorithms.

Extreme values inF lead to the existence of distinct local maxima 2 BY of f in the
sense that there is no better candidate solution thar in the neighborhoodH(x ) even
for relatively large k. Further, extreme local minima might completely prevent a local
search heuristic from traversing the state space in certain directions. Consequently, local
search algorithms, as reviewed in Sectiof.3.2, depend more heavily on their starting
value, and their performance deteriorates with respect to particle-driven algorithms.

We propose to draw the matrix entriesf; from a discretized Cauchy distribution
GK)/ (L+(k=c)®)': c2N (6.7)

that has heavy tails which cause extreme values to be frequently sampled. Fig&&
shows the distribution of a Cauchy and a uniform to illustrate the di erence. The
resulting ugbo problems have quite distinct local maxima; in that case we also say that
the function f (x) is strongly multi-modal.
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Figure 6.3.: Histograms of a CauchyG and a uniform U,q distribution.

6.4. Numerical experiments

In this section, we provide numerical comparisons of algorithms and parametric families
based on instances of thegbo problem.

6.4.1. Toy example

We brie y discuss a toy example to illustrate the usefulness of the parametric families.
For the quadratic function

0 1
1 2 1 0
2 1 3 2
f(x)= x!'Fx; F:=% ;; 6.8
) 1 3 1 2 (6.8)
0O 2 2 2

the associated probability mass function ( )/ exp( 'F ) has a correlation matrix

0 1
1 0:127 0:106 0:101

% 0:127 1 0941 0:866§
0:106 0:941 1 0:84
0:101 0:866 0:84 1

which indicates that this distribution has considerable dependencies and its mass func-
tion is therefore strongly multi-modal. We generate pseudo-random data from adjust
the parametric families to the data and plot the mass functions of the tted parametric
families.

Figure 6.4 shows how the three parametric families cope with reproducing the true
mass function. Clearly, the product family is not close enough to the true mass function
to yield a suitable instrumental distribution while the logistic conditional family almost
copies the characteristics of and the Gaussian copula family allows for an intermediate
goodness of t.
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Figure 6.4.: Toy example showing how well the parametric families replicate the mass
function of the distribution ( )/ exp( |F ) as de ned in (6.8).

(a) True mass function ( ) (b) Product family ¢n ()

(c) Logistic conditionals family ga ( ) (d) Gaussian copula family ga: ()

6.4.2. Random test instances

We generated two random test suites of dimensiah= 250, each having 10 instances. For
the rst suite, we sampled the matrix entries uniformly on [100; 100] that is from the

distribution Uigo := Upigo:100; 5 for the second, we sampled from a Cauchy distribution
Cioo as de ned in (6.7). For performance evaluation, we run a speci ed algorithm 100

Since the absolute values are not meaningful, we report the relative ratios

f(xx) worst solution found
% . —

" best known solution worst solution found2 [0:1)
where the best known solution is the highest objective value ever found for that instance
and the worst solution is the lowest objective value among the 100 outcomes. We
summarize the results in a histogram. The rstn bins are singletondy, := % g for the

highest values% > > %, 2 % : k 2 [1;100]g; the followingn bins are equidistant

descending order from left to right on thex-axis. The interval bins are marked with a
sign \<" and the lower bound. The y-axis represents the counts.

For comparison, we draw the outcome of several algorithms into the same histogram,
where the worst solution found is the lowest overall objective value among the outcomes.
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For each algorithm, the counts are depicted in a di erent color and, for better readability,
with diagonal stripes in a di erent angle. To put it plainly, an algorithm performs well

if its boxes are on the left of the graph since this implies that the outcomes where often
close to the best known solution.

6.4.3. Comparison of binary parametric families

We study how the choice of the binary parametric family a ects the quality of the
delivered solutions. The focus is on the cross-entropy method, since we cannot easily
use the Gaussian copula family in the context o§mc. For the experiments, we use
n=1:2 10 particles, set the speed parameter to = 0:8 (or the elite fraction to 0:2)
and the lag parameter to = 0:5.

The numerical comparisons, given in Figure§.6(b) and 6.6(a), clearly suggest that
using more advanced binary parametric families allows the cross-entropy method to
detect local maxima that are superior to those detected using the product family. Hence,
the numerical experiments con rm the intuition of our toy example in Figure6.4.

On the strongly multi-modal instance6.6(a) the numerical evidence for this conjec-
ture is stunningly clear-cut; on the weakly multi-modal problent.6(b) its validity is still
unquestionable. This result seems natural since reproducing the dependencies induced
by the objective function is more relevant in the former case than in the latter.

6.4.4. Comparison of optimization algorithms

We compare ansmc sampler with parametric family, ansmc sampler with single- ip
symmetric kernel (1.13), the cross-entropy method, simulated annealing and 1-opt local
search as described in Sectioh 2.

For the cross entropy method, we use the same parameters as in the preceding section.

For the smc algorithm, we usen = 0:8 10* particles and set the speed parameter to

= 0:9; we target a tempered auxiliary sequence (6.2). For both algorithms we use
the logistic conditionals family as sampling distribution. With these con gurations, the
algorithms converge in roughly 25 minutes. We calibrate themc sampler with local
moves to have the same average run time by processing batches of 10 local moves before
checking the particle diversity criterion. The simulated annealing and 1-opt local search
algorithms run for exactly 25 minutes.

The results shown in Figures6.7(b) and 6.7(a) assert the intuition that particle
methods perform signi cantly better on strongly multi-modal problems. However, on
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Figure 6.5.: The cross-entropy method using di erent binary parametric families.

(a) problem f (x) = x! Fx with fij  C 100 fori;j 2 [1,250]

(b) problem f (x) = x! Fx with fij U 100 fori;j 2 [1;250]

the easy test problems, the particle methods tend to persistently converge to the same
sub-optimal local modes. This e ect is probably due to their poor local exploration
properties.

Since particle methods perform signi cantly less evaluations of the objective function,
they are less likely to discover the highest peak in a region of rather at local modes.
The use of parametric families aggravates this e ect, and it seems advisable to alternate
global and local moves to make a patrticle algorithm more robust against this kind of
behavior. Further numerical results are shown in Figuré.7 and Figure 6.8.
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Figure 6.6.: Comparison of stochastic optimization algorithms on twaigbo problems.

(@) problem f (x) = x! Fx with f; C 10 for i;j 2 [1;250]

(b) problem f (x) = x! Fx with fij U 100 fori;j 2 [1,250]

6.5. Discussion and conclusion

The numerical experiments carried out on di erent parametric families revealed that the
use of the advanced families proposed in this paper signi cantly improves the perfor-
mance of the particle algorithms, especially on the strongly multi-modal problems. The
experiments demonstrate that local search algorithms, like simulated annealing and ran-
domized 1-opt local search, indeed outperform particle methods on weakly multi-modal
problems but deliver inferior results on strongly multi-modal problems.

Using tabu lists, adaptive restarts and rounding heuristics, we can certainly design
local search algorithms that perform better than simulated annealing and 1-opt local
search. Still, the structural problem of strong multi-modality persists for path-based
algorithms. On the other hand, cleverly designed local search heuristics will clearly beat
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Figure 6.7.. Comparison of stochastic optimization algorithms. 10 problems with ob-
jective function f (x) = x!Fx andfy C 19 fori;j 2 [1,250]

(a) r250c problem 01 (b) r250c problem 02
(c) r250c problem 03 (d) r250c problem 04
(e) r250c problem 05 (f) r250c problem 06
(g) r250c problem 07 (h) r250c problem 08

(i) r250c problem 09 () r250c problem 10
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Figure 6.8.: Comparison of stochastic optimization algorithms. 10 problems with ob-
jective function f (x) = x!Fx and fij U 100 fori;j 2 [1,250]

(a) r250u problem 01 (b) r250u problem 02
(c) r250u problem 03 (d) r250u problem 04
(e) r250u problem 05 (f) r250u problem 06
(g) r250u problem 07 (h) r250u problem 08

(i) r250u problem 09 () r250u problem 10
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smc methods on easy to moderately di cult problems.

The results encourage the use of particle methods if the objective function is known
to be potentially multi-modal and hard to analyze analytically. We have to keep in
mind that multiple restarts of rather simple local search heuristics can be very e cient
if they make use of the structure of the objective function. For 25 minutes of randomized
restarts, the heuristic proposed byBoros et al. (2007), which exploits the fact that the
partial derivatives of a multi-linear function are constant, practically always returns the
best known solution on all test problems treated to create Figures7 and 6.8.



7. Conclusion and outlook

Resune

La conclusion de cette tlrese pesente quelgues remarques nales concernant les algo-
rithmes particulaires sur les espaces detats binaires et des perspectives de recherche pour
inegrer les familles paranetriques dans d'autres applications.

7.1. The independence sampler

The core work of this thesis is the thorough review of parametric families as a building
block of adaptive Monte Carlo algorithms on binary sampling spaces. Theequential
Monte Carlo (smc) sampler with independent proposals based on these families has been
shown to be rather robust when sampling from challenging multi-modal distributions of
interest in the context of di erent applications. Admittedly, the implementation of the
smc sampler is rather involved compared to mosMarkov chain Monte Carlo (mcmc)
methods, and this kind of methodology might be unnecessary on fairly easy sampling
problems. Still, the smc sampling scheme is very reliable, easy to tune and perfectly
parallelizable.

The most important insight to be gained from this work is that a Metropolis-Hastings
independence sampler with proposals drawn from an adaptive logistic conditionals family
has excellent mixing properties and scales astonishingly well even to high dimensions.
The \curse of dimensionality” which typically impedes the use of independent proposals
does not seem to apply to binary spaces where we may construct parametric families to
approximate even high-dimensional distributions of interest reasonably well.

The central problem is how to learn about the target distribution to be able to
t the parametric family. In this thesis we have proposed an annealing schedule in
combination with an smc sampler. However, there are other techniques coming from the
tool box of adaptive Markov chain Monte Carlo @mcmc) on binary spaces which may
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also incorporate the Metropolis-Hastings independence sampler proposed in this thesis.
This is particularly interesting since independent proposals allow for parallelization of
the mcmc sampling scheme, see Sectiah3.

7.2. Scaling to higher dimensions

For testing, we also treated variable selection problems from association studies in plant
genetics by courtesy of Willem Kruijer (Biometris Plant Sciences Group at Wageningen
University) with 2000 predictors on a 64epu cluster using a parallelized version of
the smc sampler. The results were as reliable as for the test problem in Sectidrb
with about 100 predictors. These test runs are part of a comparison study for variable
selection problems in the context of plant breeding which is on-going research. The
results are still premature and therefore not included in this thesis.

The lesson to be learned from high-dimensional problems with more than 1000 pre-
dictors is that we do not need to work with an exponential number of particles just
because the state space grows exponentially. In high dimensions, the reliability of the
smc sampling scheme can hardly be improved by using more particles but mostly de-
pends on the number of resample-move steps we perform to stabilize the particle system.
The central goal is to ensure that the particle system does not loose track of the inter-
mediate distributions. This is obviously more di cult to achieve as the dimension of the
sampling space increases and we need to choose the speed parametmtroduced in
equation (2.5) higher in order to follow the evolution of the intermediate distributions
more closely. Generally, in high dimensions, themc estimator (2.1) is usually more
e cient for the same amount of computational time if we use fewer particles but allow
for more intermediate steps. This observation holds true for both Bayesian variable
selection and pseudo-Boolean optimization.

7.3. Parallel computing

From a practical point of view, the possibility to parallelize thesmc sampler is even
more interesting than its robustness against multi-modality when it comes to treat high-
dimensional problems. Most researchers who process variable selection problems in
applied elds have multi-core desktop computers, access to some kind of cluster or to
a cloud computing service but there are few options to fully take advantage of these
environments. The prototype implementation of thesmc sampler used for the numerical
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studies in this thesis has shown the potential of our approach. Further improvements
and better implementations of thesmc algorithm may shift the interest of practitioners
towards particle methods for Bayesian variable selection.

The smc sampler has the structural advantage that it may pro t from as many cores
as there are available in the computing environment. This is not true for random walk
mcmc approaches. For example, parallel tempering algorithms obviously bene t from
parallel computing, but there is a limit to the number of parallel chains which are useful
to improve the mixing of the reference chain. If we have &us we may run 8 parallel
chains; if we have 256pus available, we might still run 8 parallel chains if a ner
temperature ladder does not improve the algorithm. However, in a pugmcmc setup,
the Metropolis-Hastings independence sampler based on the logistic conditionals family
allows to fully bene t from parallel computing environments, since sampling proposals
and evaluating the posterior mass function may be parallelized and sampling from the
chain boils down to the Metropolis-Hastings acceptance step.






Software

The numerical work in thesis was completely done in Python 21&sing the SciPy package
for scienti ¢ programming by Jones et al.(2001). Performance critical code was moved
into C extensions written in Cython 0.14.1, a language which allows to tune Python
code into plain C performance by adding static type declarations (Behnel et akp11).
All graphs were generated using th& scripting language for statistical computing. The
simulations were run on a 6&pu cluster with 1:86 GHz processors.

The software and the variable selection problems processed in this thesis are made
available along with some documentation at

http://code.google.com/p/smcdss.

The sequential Monte Carlo émc) and Markov chain Monte Carlo (mcmc) samplers
for Bayesian variable selection are con gured using alNI-le and may be run in a
shell. There is support for automatic parallel computing on multipleepus based on the
Parallel Python package by Vitalii Vanovschi.

For more convenient and self-explanatory use, we provide a simple graphical user
interface written using the portableTkinter module. Thegui allows to edit and organize
the con guration les, monitor the performance of the samplers, create graphs ipdf
format (calling R) and launch multiple external threads of the samplers.
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Glossary

Notation
x 2 Xd
Xy 2 XMI
Xij 2 X
X; 2 Xd1
kxk 1

i

K Ky
flg

X_Y
XNy

Description
vector of dimensiond.
sub-vector indexed byM  D.

sub-vectorX ppfig -

maXzp JXj. .

B dX|2I-D J. Ji

1 JXi]

(L

5 asal (N

f = cgfor some constantc > 0.
Maximum. X _y = maxfx;y g.

Minimum. x "y =minfx;y g.

Matrix A.

Transpose of matrixA.

Inverse of matrix A.

Determinant of A.

Diagonal matrix with main diagonal a.
Absolute value ofx.

Indicator function of set M.

Number of elements in the countable se¥l .

Power setfS  Mg.
Borel -eld fS M jSis a Borel setg.
Support ff (x) 6=0 x 2 Xg.

Binary spacefO; 1g.

Set of natural numbers.

Set of integer numbers.

Set of real numbers.

fx 2Zja x bgfora;b2 Z with b a.
fx 2 Rja x<bgfora;b2 Rwith b a.
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Notation  Description
D Index set [1;d.
N Index set [1;r.



Acronyms

Notation Description

aic
amcmc
bic

ce

ess

iid

map
mcmc
musk
smc
tv
ugbo

Akaike information criterion.
Adaptive Markov chain Monte Carlo.
Bayesian information criterion.
Cross-entropy.

E ective sample size.

Independent and indentically distributed.
Importance sampling.
Maximum-a-posteriori.

Markov chain Monte Carlo.
Muscle-speci ¢ kinase.

Sequential Monte Carlo.

Total variation.

Unconstrained quadratic binary optimization.
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