R. K. Ambasta, Direct Interaction of the Novel Nox Proteins with p22phox Is Required for the Formation of a Functionally Active NADPH Oxidase, Journal of Biological Chemistry, vol.279, issue.44, pp.279-45935, 2004.
DOI : 10.1074/jbc.M406486200

N. Arakawa, are regulated by alternative promoters and expressed under phenotypic modulation of vascular smooth muscle cells, Biochemical Journal, vol.398, issue.2, pp.303-313, 2006.
DOI : 10.1042/BJ20060300

B. Bánfi, R. Clark, K. Steger, and K. Krause, Two Novel Proteins Activate Superoxide Generation by the NADPH Oxidase NOX1, Journal of Biological Chemistry, vol.278, issue.6, pp.3510-3513, 2003.
DOI : 10.1074/jbc.C200613200

D. I. Brown and K. K. Griendling, Nox proteins in signal transduction. Free radical biology & medicine, pp.1239-53, 2009.

W. Chen, W. H. Shang, Y. Adachi, K. Hirose, D. M. Ferrari et al., A possible biochemical link between NADPH oxidase (Nox) 1 redox-signalling and ERp72, Biochemical Journal, vol.416, issue.1, pp.55-63, 2008.
DOI : 10.1042/BJ20071259

W. Chamulitrat, Association of gp91phox homolog Nox1 with anchorage-independent growth and MAP kinase-activation of transformed human keratinocytes, Oncogene, vol.22, issue.38, pp.6045-53, 2003.
DOI : 10.1038/sj.onc.1206654

C. Chéret, Neurotoxic Activation of Microglia Is Promoted by a Nox1-Dependent NADPH Oxidase, Journal of Neuroscience, vol.28, issue.46, pp.12039-51, 2008.
DOI : 10.1523/JNEUROSCI.3568-08.2008

Q. Chen, E. J. Vazquez, S. Moghaddas, C. L. Hoppel, and E. J. Lesnefsky, Production of Reactive Oxygen Species by Mitochondria: CENTRAL ROLE OF COMPLEX III, Journal of Biological Chemistry, vol.278, issue.38, pp.278-36027, 2003.
DOI : 10.1074/jbc.M304854200

W. Chen, W. H. Shang, Y. Adachi, K. Hirose, D. M. Ferrari et al., A possible biochemical link between NADPH oxidase (Nox) 1 redox-signalling and ERp72, Biochemical Journal, vol.416, issue.1, pp.55-63, 2008.
DOI : 10.1042/BJ20071259

T. E. Decoursey, During the respiratory burst, do phagocytes need proton channels or potassium channels, or both? Science's STKE: signal transduction knowledge environment, p.21, 2004.

M. C. Dinauer, Point mutation in the cytoplasmic domain of the neutrophil p22-phox cytochrome b subunit is associated with a nonfunctional NADPH oxidase and chronic granulomatous disease., Proceedings of the National Academy of Sciences, vol.88, issue.24, pp.11231-11236, 1991.
DOI : 10.1073/pnas.88.24.11231

J. Duranteau, N. S. Chandel, A. Kulisz, and Z. Shao, Intracellular Signaling by Reactive Oxygen Species during Hypoxia in Cardiomyocytes, Journal of Biological Chemistry, vol.273, issue.19, pp.273-11619, 1998.
DOI : 10.1074/jbc.273.19.11619

J. Ellis, S. J. Mayer, and O. T. Jones, The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils, Biochemical Journal, vol.251, issue.3, pp.887-91, 1988.
DOI : 10.1042/bj2510887

S. Elsen, Cryptic O2--generating NADPH oxidase in dendritic cells, Journal of Cell Science, vol.117, issue.11, pp.2215-2241, 2004.
DOI : 10.1242/jcs.01085

G. Gavazzi, Decreased blood pressure in NOX1-deficient mice, FEBS Letters, vol.112, issue.2, pp.497-504, 2006.
DOI : 10.1016/j.febslet.2005.12.049

URL : https://hal.archives-ouvertes.fr/hal-00400060

M. Geiszt, K. Lekstrom, . Leto, and L. Thomas, Analysis of mRNA Transcripts from the NAD(P)H Oxidase 1 (Nox1) Gene: EVIDENCE AGAINST PRODUCTION OF THE NADPH OXIDASE HOMOLOG-1 SHORT (NOH-1S) TRANSCRIPT VARIANT, Journal of Biological Chemistry, vol.279, issue.49, pp.279-51661, 2004.
DOI : 10.1074/jbc.M409325200

M. Geiszt, NAD(P)H Oxidase 1, a Product of Differentiated Colon Epithelial Cells, Can Partially Replace Glycoprotein 91phox in the Regulated Production of Superoxide by Phagocytes, The Journal of Immunology, vol.171, issue.1, p.299, 2003.
DOI : 10.4049/jimmunol.171.1.299

D. Gianni, N. Taulet, H. Zhang, C. Dermardirossian, J. Kister et al., A Novel and Specific NADPH Oxidase-1 (Nox1) Small-Molecule Inhibitor Blocks the Formation of Functional Invadopodia in Human Colon Cancer Cells, ACS Chemical Biology, vol.5, issue.10, pp.981-93, 2010.
DOI : 10.1021/cb100219n

R. W. Harper, C. Xu, K. Soucek, and H. Setiadi, A reappraisal of the genomic organization of human Nox1 and its splice variants, Archives of Biochemistry and Biophysics, vol.435, issue.2, pp.323-353, 2005.
DOI : 10.1016/j.abb.2004.12.021

J. A. Imlay, Cellular Defenses against Superoxide and Hydrogen Peroxide, Annual Review of Biochemistry, vol.77, issue.1, pp.755-776, 2008.
DOI : 10.1146/annurev.biochem.77.061606.161055

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057177

M. Johnson, NCBI BLAST: a better web interface, Nucleic Acids Research, vol.36, issue.Web Server, pp.5-9, 2008.
DOI : 10.1093/nar/gkn201

K. Keyer, S. Gort, and J. Imlay, Superoxide and the production of oxidative DNA damage., Journal of Bacteriology, vol.177, issue.23, pp.6782-90, 1995.
DOI : 10.1128/jb.177.23.6782-6790.1995

J. Kim, Glycogen synthase kinase???3?? and ??-catenin pathway is involved in toll-like receptor???4-mediated NADPH oxidase???1 expression in macrophages, FEBS Journal, vol.390, issue.13, pp.2830-2837, 2010.
DOI : 10.1111/j.1742-4658.2010.07700.x

S. Lee, Calcium-independent phospholipase A2beta-Akt signaling is involved in lipopolysaccharide-induced NADPH oxidase 1 expression and foam cell formation, Journal of immunology, issue.11, pp.183-7497, 1950.

M. B. Lutz, N. Kukutsch, A. L. Ogilvie, S. Roßner, F. Koch et al., An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow, Journal of Immunological Methods, vol.223, issue.1, pp.77-92, 1999.
DOI : 10.1016/S0022-1759(98)00204-X

F. J. Miller, Cytokine Activation of Nuclear Factor ??B in Vascular Smooth Muscle Cells Requires Signaling Endosomes Containing Nox1 and ClC-3, Circulation Research, vol.101, issue.7, pp.663-71, 2007.
DOI : 10.1161/CIRCRESAHA.107.151076

R. Paffenholz, Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase, Genes & Development, vol.18, issue.5, pp.486-91, 2004.
DOI : 10.1101/gad.1172504

Y. Paik, The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice, Hepatology, issue.5, pp.53-1730, 2011.

D. W. Park, Resveratrol inhibits foam cell formation via NADPH oxidase 1-mediated reactive oxygen species and monocyte chemotactic protein-1, Experimental and Molecular Medicine, vol.55, issue.3, pp.171-180, 2009.
DOI : 10.3858/emm.2009.41.3.020

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679243

A. Savina, NOX2 Controls Phagosomal pH to Regulate Antigen Processing during Crosspresentation by Dendritic Cells, Cell, vol.126, issue.1, pp.205-223, 2006.
DOI : 10.1016/j.cell.2006.05.035

K. Sheng, G. Pietersz, C. K. Tang, and P. Ramsland, Reactive Oxygen Species Level Defines Two Functionally Distinctive Stages of Inflammatory Dendritic Cell Development from Mouse Bone Marrow, The Journal of Immunology, vol.184, issue.6, pp.184-2863, 1950.
DOI : 10.4049/jimmunol.0903458

Y. Son, A novel bulk-culture method for generating mature dendritic cells from mouse bone marrow cells, Journal of Immunological Methods, vol.262, issue.1-2, pp.145-157, 2002.
DOI : 10.1016/S0022-1759(02)00013-3

A. L. Ackerman, C. Kyritsis, R. Tampé, and P. Cresswell, Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens, Proceedings of the National Academy of Sciences, vol.100, issue.22, pp.12889-94, 2003.
DOI : 10.1073/pnas.1735556100

T. Adachi, M. Yamnamoto, and H. Hara, Heparin-Affinity of Human Extracellular-Superoxide Dismutase in the Brain., Biological & Pharmaceutical Bulletin, vol.24, issue.2, pp.191-194, 2001.
DOI : 10.1248/bpb.24.191

V. Afonso, R. Champy, D. Mitrovic, P. Collin, and A. Lomri, Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint, bone, spine: revue du rhumatisme, pp.324-333, 2007.

R. K. Ambasta, P. Kumar, K. K. Griendling, H. H. Schmidt, R. Busse et al., Direct Interaction of the Novel Nox Proteins with p22phox Is Required for the Formation of a Functionally Active NADPH Oxidase, Journal of Biological Chemistry, vol.279, issue.44, pp.279-45935, 2004.
DOI : 10.1074/jbc.M406486200

N. Arakawa, M. Katsuyama, K. Matsuno, N. Urao, Y. Tabuchi et al., are regulated by alternative promoters and expressed under phenotypic modulation of vascular smooth muscle cells, Biochemical Journal, vol.398, issue.2, pp.303-1010, 1042.
DOI : 10.1042/BJ20060300

C. Ardavín, Origin, precursors and differentiation of mouse dendritic cells, Nature Reviews Immunology, vol.3, issue.7, pp.582-9010, 2003.
DOI : 10.1038/nri1127

R. S. Arnold, J. Shi, E. Murad, M. Whalen, C. Q. Sun et al., Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1, Proceedings of the National Academy of Sciences, vol.98, issue.10, pp.98-5550, 2001.
DOI : 10.1073/pnas.101505898

R. S. Arnold, J. He, A. Remo, D. Ritsick, Q. Yin-goen et al., Nox1 expression determines cellular reactive oxygen and modulates c-fos-induced growth factor, interleukin-8, and Cav-1. The American journal of pathology, pp.2021-32061144, 2007.

J. Banchereau and R. M. Steinman, Dendritic cells and the control of immunity, Nature, vol.392, issue.6673, pp.245-5210, 1038.
DOI : 10.1038/32588

J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque et al., Immunobiology of dendritic cells. Annual review of immunology, pp.767-811, 2000.

U. Bandyopadhyay, D. Das, and R. K. Banerjee, Reactive oxygen species: Oxidative damage and pathogenesis, Curr Sci, vol.77, issue.5, pp.658-666, 1999.

K. Bedard and K. Krause, The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology, Physiological Reviews, vol.87, issue.1, pp.245-313, 2005.
DOI : 10.1152/physrev.00044.2005

P. Blanco, K. Palucka, V. Pascual, and J. Banchereau, Dendritic cells and cytokines in human inflammatory and autoimmune diseases, Cytokine & Growth Factor Reviews, vol.19, issue.1, 2008.
DOI : 10.1016/j.cytogfr.2007.10.004

URL : https://hal.archives-ouvertes.fr/hal-00275657

R. P. Bowler, M. Nicks, K. Tran, G. Tanner, L. Chang et al., Extracellular Superoxide Dismutase Attenuates Lipopolysaccharide-Induced Neutrophilic Inflammation, American Journal of Respiratory Cell and Molecular Biology, vol.31, issue.4, pp.432-92004, 2004.
DOI : 10.1165/rcmb.2004-0057OC

J. Bravo, D. Karathanassis, C. M. Pacold, M. E. Pacold, C. D. Ellson et al., The Crystal Structure of the PX Domain from p40phox Bound to Phosphatidylinositol 3-Phosphate, Molecular Cell, vol.8, issue.4, pp.829-868, 2001.
DOI : 10.1016/S1097-2765(01)00372-0

J. Bridot, A. Faure, S. Laurent, C. Rivière, C. Billotey et al., Hybrid Gadolinium Oxide Nanoparticles:?? Multimodal Contrast Agents for in Vivo Imaging, Journal of the American Chemical Society, vol.129, issue.16, pp.5076-8410, 1021.
DOI : 10.1021/ja068356j

URL : https://hal.archives-ouvertes.fr/hal-00434120

R. Brigelius-flohé, Tissue-specific functions of individual glutathione peroxidases, Free Radical Biology and Medicine, vol.27, issue.9-10, pp.9-10, 1999.
DOI : 10.1016/S0891-5849(99)00173-2

B. Bánfi, G. Molnár, . Maturana, K. Steger, B. Hegedûs et al., A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes, The Journal of biological chemistry, issue.40, pp.276-37594, 2001.

. Bánfi, . Botond, R. Clark, K. Steger, and K. Krause, Two Novel Proteins Activate Superoxide Generation by the NADPH Oxidase NOX1, Journal of Biological Chemistry, vol.278, issue.6, pp.3510-3513, 2003.
DOI : 10.1074/jbc.C200613200

. Bánfi, . Botond, B. Malgrange, J. Knisz, K. Steger et al., NOX3, a Superoxide-generating NADPH Oxidase of the Inner Ear, Journal of Biological Chemistry, vol.279, issue.44, pp.279-46065, 2004.
DOI : 10.1074/jbc.M403046200

C. Cao, Y. Leng, W. Huang, X. Liu, and D. Kufe, Glutathione Peroxidase 1 Is Regulated by the c-Abl and Arg Tyrosine Kinases, Journal of Biological Chemistry, vol.278, issue.41, pp.39609-39623, 2003.
DOI : 10.1074/jbc.M305770200

S. J. Chanock, J. El-benna, R. M. Smith, and B. M. Babior, The respiratory burst oxidase, J. Biol. Chem, vol.269, issue.40, pp.24519-24522, 1994.

H. Chen, S. Fre, V. I. Slepnev, M. R. Capua, K. Takei et al., Epsin is an EH-domain-binding protein implicated in clathrinmediated endocytosis, Nature, issue.6695, pp.394-793, 1038.

Q. Chen, E. J. Vazquez, S. Moghaddas, C. L. Hoppel, and E. J. Lesnefsky, Production of Reactive Oxygen Species by Mitochondria: CENTRAL ROLE OF COMPLEX III, Journal of Biological Chemistry, vol.278, issue.38, pp.278-36027, 2003.
DOI : 10.1074/jbc.M304854200

G. Cheng, Z. Cao, X. Xu, E. G. Van-meir, and J. D. Lambeth, Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5, Gene, vol.269, issue.1-2, pp.131-171, 2001.
DOI : 10.1016/S0378-1119(01)00449-8

G. Cheng, B. Diebold, Y. Hughes, and J. D. Lambeth, Nox1-dependent Reactive Oxygen Generation Is Regulated by Rac1, Journal of Biological Chemistry, vol.281, issue.26, pp.17718-17744, 2006.
DOI : 10.1074/jbc.M512751200

F. Chiera, E. Meccia, P. Degan, G. Aquilina, D. Pietraforte et al., Overexpression of human NOX1 complex induces genome instability in mammalian cells. Free radical biology & medicine, pp.332-374, 2008.

O. Chijioke and C. Münz, Interactions of Human Myeloid Cells with Natural Killer Cell Subsets In Vitro and In Vivo, Journal of Biomedicine and Biotechnology, vol.178, issue.8, pp.251679-251689, 2011.
DOI : 10.1084/jem.20081720

H. J. Cho, P. Shashkin, C. Gleissner, D. Dunson, N. Jain et al., Induction of dendritic cell-like phenotype in macrophages during foam cell formation, Physiological Genomics, vol.29, issue.2, pp.149-60, 2006.
DOI : 10.1152/physiolgenomics.00051.2006

Y. S. Cho, S. Challa, L. Clancy, F. K. Chan, and -. , Lipopolysaccharideinduced expression of TRAIL promotes dendritic cell differentiation, Immunology, vol.130, issue.4, 2010.

R. A. Clark, The human neutrophil respiratory burst oxidase. The Journal of infectious diseases, pp.1140-1147, 1990.

G. J. Clark, N. Angel, M. Kato, J. A. López, K. Macdonald et al., The role of dendritic cells in the innate immune system, Microbes and Infection, vol.2, issue.3, pp.257-27210, 2000.
DOI : 10.1016/S1286-4579(00)00302-6

P. Cresswell, A. L. Ackerman, A. Giodini, D. R. Peaper, and P. Wearsch, Mechanisms of MHC class I-restricted antigen processing and cross-presentation, Immunological Reviews, vol.157, issue.1, pp.145-57, 2005.
DOI : 10.1126/science.1085650

P. Cupers, E. Ter-haar, W. Boll, and T. Kirchhausen, Parallel Dimers and Anti-parallel Tetramers Formed by Epidermal Growth Factor Receptor Pathway Substrate Clone 15 (EPS15), Journal of Biological Chemistry, vol.272, issue.52, pp.33430-49407139, 1997.
DOI : 10.1074/jbc.272.52.33430

C. Dahlgren and . Karlsson, Respiratory burst in human neutrophils, Journal of Immunological Methods, vol.232, issue.1-2, pp.3-14, 1999.
DOI : 10.1016/S0022-1759(99)00146-5

D. Deken, X. Wang, D. Many, M. C. Costagliola, S. Libert et al., Cloning of Two Human Thyroid cDNAs Encoding New Members of the NADPH Oxidase Family, Journal of Biological Chemistry, vol.275, issue.30, pp.275-23227, 2000.
DOI : 10.1074/jbc.M000916200

D. Paolo, G. De-camilli, and P. , Phosphoinositides in cell regulation and membrane dynamics, Nature, vol.26, issue.7112, pp.651-658, 2006.
DOI : 10.1038/nature05185

S. Dichmann, H. Rheinen, E. Panther, Y. Herouy, W. Czech et al., Downregulation of platelet-activating factor responsiveness during maturation of human dendritic cells, 3<394::AID-JCP9>3.0.CO, pp.394-40010, 2000.

M. C. Dinauer, E. Pierce, R. W. Erickson, T. J. Muhlebach, H. Messner et al., Point mutation in the cytoplasmic domain of the neutrophil p22-phox cytochrome b subunit is associated with a nonfunctional NADPH oxidase and chronic granulomatous disease., Proceedings of the National Academy of Sciences, vol.88, issue.24, pp.11231-11236, 1991.
DOI : 10.1073/pnas.88.24.11231

M. T. Drake, M. Downs, and L. M. Traub, Epsin Binds to Clathrin by Associating Directly with the Clathrin-terminal Domain. EVIDENCE FOR COOPERATIVE BINDING THROUGH TWO DISCRETE SITES, Journal of Biological Chemistry, vol.275, issue.9, pp.6479-89, 2000.
DOI : 10.1074/jbc.275.9.6479

W. Dröge, Free Radicals in the Physiological Control of Cell Function, Physiological Reviews, vol.82, issue.1, 2001.
DOI : 10.1152/physrev.00018.2001

S. M. Dudek and J. G. Garcia, Rho Family of Guanine Exchange Factors (GEFs) in Cellular Activation, Circulation Research, vol.93, issue.9, pp.794-799, 2003.
DOI : 10.1161/01.RES.0000100844.06166.FF

C. Dupuy, R. Ohayon, . Valent, M. S. Hudson, D. Dème et al., Purification of a Novel Flavoprotein Involved in the Thyroid NADPH Oxidase: CLONING OF THE PORCINE AND HUMAN cDNAs, Journal of Biological Chemistry, vol.274, issue.52, pp.37265-37274, 1999.
DOI : 10.1074/jbc.274.52.37265

J. Ellis, S. J. Mayer, and O. T. Jones, The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils, Biochemical Journal, vol.251, issue.3, pp.887-91, 1988.
DOI : 10.1042/bj2510887

S. Elsen, J. Doussière, C. L. Villiers, M. Faure, R. Berthier et al., Cryptic O2--generating NADPH oxidase in dendritic cells, Journal of Cell Science, vol.117, issue.11, pp.2215-2241, 2004.
DOI : 10.1242/jcs.01085

D. T. Fearon and R. M. Locksley, The Instructive Role of Innate Immunity in the Acquired Immune Response, Science, vol.272, issue.5258, pp.272-50, 1996.
DOI : 10.1126/science.272.5258.50

G. Ferrari, M. Knight, C. Watts, and J. Pieters, Distinct Intracellular Compartments Involved in Invariant Chain Degradation and Antigenic Peptide Loading of Major Histocompatibility Complex (MHC) Class II Molecules, The Journal of Cell Biology, vol.103, issue.6, pp.1433-1479, 1997.
DOI : 10.1146/annurev.cb.11.110195.001411

I. Ferrero, W. Held, A. Wilson, F. Tacchini-cottier, F. Radtke et al., Mouse CD11c+ B220+ Gr1+ plasmacytoid dendritic cells develop independently of the T-cell lineage, Blood, vol.100, issue.8, pp.2852-710, 2002.
DOI : 10.1182/blood-2002-01-0214

T. Finkel, Signal transduction by reactive oxygen species, The Journal of Cell Biology, vol.194, issue.1, 2011.

H. J. Forman and M. Torres, Reactive Oxygen Species and Cell Signaling, American Journal of Respiratory and Critical Care Medicine, vol.166, issue.supplement_1, pp.4-8, 2002.
DOI : 10.1164/rccm.2206007

I. Fridovich, Superoxide Anion Radical (Obardot 2), Superoxide Dismutases, and Related Matters, Journal of Biological Chemistry, vol.272, issue.30, 1997.
DOI : 10.1074/jbc.272.30.18515

D. J. Fulton, Nox5 and the Regulation of Cellular Function, Antioxidants & Redox Signaling, vol.11, issue.10, 2009.
DOI : 10.1089/ars.2009.2587

M. J. Gabanyi, P. D. Adams, K. Arnold, L. Bordoli, L. G. Carter et al., The Structural Biology Knowledgebase: a portal to protein structures, sequences, functions, and methods, Journal of Structural and Functional Genomics, vol.23, issue.24, pp.45-5410, 2011.
DOI : 10.1007/s10969-011-9106-2

G. F. Gaetani, M. Ferraris, M. Rolfo, R. Mangerini, S. Arena et al., Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes, Blood, vol.87, issue.4, pp.1595-98608252, 1996.

K. Ganguly, M. Depner, C. Fattman, K. Bein, T. D. Oury et al., Superoxide dismutase 3, extracellular (SOD3) variants and lung function, Physiological Genomics, vol.37, issue.3, pp.260-267, 2008.
DOI : 10.1152/physiolgenomics.90363.2008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685504

G. Gavazzi, B. Banfi, C. Deffert, L. Fiette, M. Schappi et al., Decreased blood pressure in NOX1-deficient mice, FEBS Letters, vol.112, issue.2, pp.497-504, 2006.
DOI : 10.1016/j.febslet.2005.12.049

URL : https://hal.archives-ouvertes.fr/hal-00400060

F. Geissmann, M. G. Manz, S. Jung, M. H. Sieweke, M. Merad et al., Development of Monocytes, Macrophages, and Dendritic Cells, Science, vol.327, issue.5966, pp.327-656, 2010.
DOI : 10.1126/science.1178331

URL : https://hal.archives-ouvertes.fr/hal-00502972

M. Geiszt, J. B. Kopp, P. Várnai, and T. L. Leto, Identification of Renox, an NAD(P)H oxidase in kidney, Proceedings of the National Academy of Sciences, vol.97, issue.14, pp.8010-8014, 2000.
DOI : 10.1073/pnas.130135897

. Geiszt, . Miklós, K. Lekstrom, S. Brenner, S. M. Hewitt et al., NAD(P)H Oxidase 1, a Product of Differentiated Colon Epithelial Cells, Can Partially Replace Glycoprotein 91phox in the Regulated Production of Superoxide by Phagocytes, The Journal of Immunology, vol.171, issue.1, p.299, 2003.
DOI : 10.4049/jimmunol.171.1.299

. Geiszt, . Miklós, K. Lekstrom, J. Witta, and T. L. Leto, Proteins Homologous to p47phox and p67phox Support Superoxide Production by NAD(P)H Oxidase 1 in Colon Epithelial Cells, Journal of Biological Chemistry, vol.278, issue.22, pp.20006-20018, 2003.
DOI : 10.1074/jbc.M301289200

. Geiszt, . Miklós, J. Witta, J. Baffi, K. Lekstrom et al., Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense, The FASEB Journal, vol.17, issue.11, pp.1502-402, 2003.
DOI : 10.1096/fj.02-1104fje

D. Gianni, N. Taulet, H. Zhang, C. Dermardirossian, J. Kister et al., A Novel and Specific NADPH Oxidase-1 (Nox1) Small-Molecule Inhibitor Blocks the Formation of Functional Invadopodia in Human Colon Cancer Cells, ACS Chemical Biology, vol.5, issue.10, pp.981-9310, 1021.
DOI : 10.1021/cb100219n

S. J. Gibson, J. M. Lindh, T. R. Riter, R. M. Gleason, L. M. Rogers et al., Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod, Cellular Immunology, vol.218, issue.1-2, pp.74-86, 2002.
DOI : 10.1016/S0008-8749(02)00517-8

J. Gluckman, B. Canque, and M. Rosenzwajg, Les cellules dendritiques: un syst??me cellulaire complexe, Transfusion Clinique et Biologique, vol.5, issue.1, pp.47-55, 1998.
DOI : 10.1016/S1246-7820(98)80110-9

T. Gomard, H. Michaud, D. Tempé, K. Thiolon, M. Pelegrin et al., An NF-kappaB-dependent role for JunB in the induction of proinflammatory cytokines in LPS-activated bone marrow-derived dendritic cells, PloS one, vol.5, issue.3, 2010.

F. Granucci, E. Ferrero, M. Foti, D. Aggujaro, K. Vettoretto et al., Early events in dendritic cell maturation induced by LPS. Microbes and infection, Institut Pasteur, vol.1, issue.13, pp.1079-84, 1999.

S. R. Grobmyer, D. L. Morse, B. Fletcher, L. G. Gutwein, P. Sharma et al., The promise of nanotechnology for solving clinical problems in breast cancer, Journal of Surgical Oncology, vol.25, issue.126, pp.317-342, 2011.
DOI : 10.1002/jso.21698

P. Guermonprez, L. Saveanu, M. Kleijmeer, J. Davoust, P. Van-endert et al., ER-phagosome fusion defines an MHC class I crosspresentation compartment in dendritic cells, Nature, issue.6956, pp.425-397, 1038.

M. R. Gwinn and V. Vallyathan, Nanoparticles: Health Effects-Pros and Cons, Environmental Health Perspectives, issue.12, pp.1818-1825, 2006.
DOI : 10.1289/ehp.8871

URL : http://doi.org/10.1289/ehp.8871

U. Haessler, M. Pisano, M. Wu, and M. A. Swartz, Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19, Proceedings of the National Academy of Sciences, vol.108, issue.14, pp.5614-5623, 2011.
DOI : 10.1073/pnas.1014920108

C. H. Han, J. L. Freeman, T. Lee, S. Motalebi, and J. D. Lambeth, Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox). The Journal of biological chemistry, pp.16663-16671, 1998.

B. C. Harman, J. P. Miller, N. Nikbakht, R. Gerstein, and D. Allman, Mouse plasmacytoid dendritic cells derive exclusively from estrogen-resistant myeloid progenitors, Blood, vol.108, issue.3, pp.878-8510, 2006.
DOI : 10.1182/blood-2005-11-4545

H. Hattori, K. K. Subramanian, J. Sakai, and H. R. Luo, Reactive oxygen species as signaling molecules in neutrophil chemotaxis, Communicative & Integrative Biology, vol.3, issue.3, 2010.
DOI : 10.1111/j.1460-9568.1997.tb01496.x

R. He, L. Tan, D. D. Browning, J. M. Wang, R. D. Ye et al., The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met is a potent chemotactic agonist for mouse formyl peptide receptor Dendritic cell subsets in primary and secondary T cell responses at body surfaces, The Journal of Immunology Am Assoc Immnol. Retrieved Nature immunology, vol.165, issue.459812, pp.10-1237, 2000.

W. R. Heath, G. T. Belz, G. M. Behrens, C. M. Smith, S. P. Forehan et al., Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens, Immunological Reviews, vol.167, issue.1, pp.9-26, 2004.
DOI : 10.1172/JCI200317293

P. G. Heyworth, U. G. Knaus, J. Settleman, J. T. Curnutte, and G. M. Bokoch, Regulation of NADPH oxidase activity by Rac GTPase activating protein(s) Molecular biology of the cell, pp.1217-1240, 1993.

S. Hirakawa, R. Saito, H. Ohara, R. Okuyama, and S. Aiba, Dual Oxidase 1 Induced by Th2 Cytokines Promotes STAT6 Phosphorylation via Oxidative Inactivation of Protein Tyrosine Phosphatase 1B in Human Epidermal Keratinocytes, The Journal of Immunology, vol.186, issue.8, pp.186-4762, 1950.
DOI : 10.4049/jimmunol.1000791

H. Hochrein, M. O-'keeffe, and H. Wagner, Human and mouse plasmacytoid dendritic cells, Human Immunology, vol.63, issue.12, pp.1103-1113, 2002.
DOI : 10.1016/S0198-8859(02)00748-6

S. Hofer, M. Rescigno, F. Granucci, S. Citterio, M. Francolini et al., Differential activation of NF-kappa B subunits in dendritic cells in response to Gram-negative bacteria and to lipopolysaccharide. Microbes and infection, Institut Pasteur, vol.3, issue.4, pp.259-65, 2001.

D. C. Hohn and R. I. Lehrer, NADPH oxidase deficiency in X-linked chronic granulomatous disease., Journal of Clinical Investigation, vol.55, issue.4, pp.707-71310, 1975.
DOI : 10.1172/JCI107980

P. G. Holt, M. A. Schon-hegrad, and P. G. Mcmenamin, Dendritic Cells in the Respiratory Tract, International Reviews of Immunology, vol.68, issue.2, pp.139-149, 1990.
DOI : 10.3109/08830189009056625

M. Houde, S. Bertholet, E. Gagnon, S. Brunet, G. Goyette et al., Phagosomes are competent organelles for antigen cross-presentation, Nature, vol.425, issue.6956, pp.425-402, 1038.
DOI : 10.1038/nature01912

J. Hubbell, S. N. Thomas, and . Swartz, Materials engineering for immunomodulation, Nature, vol.47, issue.7272, pp.462-449, 1038.
DOI : 10.1038/nature08604

S. Hussain, S. Boland, A. Baeza-squiban, R. Hamel, L. C. Thomassen et al., Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount, Toxicology, vol.260, issue.1-3, pp.1-3, 2009.
DOI : 10.1016/j.tox.2009.04.001

Y. Ikuta, Presentation of a major histocompatibility complex class 1-binding peptide by monocyte-derived dendritic cells incorporating hydrophobized polysaccharide-truncated HER2 protein complex: implications for a polyvalent immuno-cell therapy, Blood, vol.99, issue.10, pp.3717-3724, 2002.
DOI : 10.1182/blood.V99.10.3717

J. A. Imlay, Cellular Defenses against Superoxide and Hydrogen Peroxide, Annual Review of Biochemistry, vol.77, issue.1, pp.755-776, 2008.
DOI : 10.1146/annurev.biochem.77.061606.161055

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057177

T. Ito, Y. Matsui, T. Ago, K. Ota, and H. Sumimoto, Novel modular domain PB1 recognizes PC motif to mediate functional protein-protein interactions, The EMBO Journal, vol.20, issue.15, pp.3938-3984, 2001.
DOI : 10.1093/emboj/20.15.3938

T. Itoh, S. Koshiba, T. Kigawa, . Kikuchi, S. Yokoyama et al., Role of the ENTH Domain in Phosphatidylinositol-4,5-Bisphosphate Binding and Endocytosis, Science, vol.291, issue.5506, pp.291-1047, 2001.
DOI : 10.1126/science.291.5506.1047

A. Iwasaki and R. Medzhitov, Regulation of Adaptive Immunity by the Innate Immune System, Science, vol.327, issue.5963, pp.327-291, 2010.
DOI : 10.1126/science.1183021

V. Jeney, S. Itoh, M. Wendt, Q. Gradek, M. Ushio-fukai et al., Role of Antioxidant-1 in Extracellular Superoxide Dismutase Function and Expression, Circulation Research, vol.96, issue.7, pp.723-732, 2005.
DOI : 10.1161/01.RES.0000162001.57896.66

I. Jutras and M. Desjardins, Phagocytosis: at the crossroads of innate and adaptive immunity. Annual review of cell and developmental biology, pp.511-538, 2005.

T. Kamata, Roles of Nox1 and other Nox isoforms in cancer development, Cancer Science, vol.68, issue.8, 2009.
DOI : 10.1111/j.1349-7006.2009.01207.x

F. Kanai, H. Liu, S. J. Field, H. Akbary, T. Matsuo et al., The PX domains of p47phox and p40phox bind to lipid products of PI(3)K, Nature Cell Biology, vol.3, issue.7, pp.675-81035083070, 1038.
DOI : 10.1038/35083070

A. Karlsson, E. Nygren, J. Karlsson, I. Nordström, C. Dahlgren et al., Ability of monocyte-derived dendritic cells to secrete oxygen radicals in response to formyl peptide receptor family agonists compared to that of myeloid and plasmacytoid dendritic cells. Clinical and vaccine immunology: CVI, pp.328-301000349, 1128.

T. Kawahara, D. Ritsick, G. Cheng, and J. D. Lambeth, Point Mutations in the Proline-rich Region of p22phox Are Dominant Inhibitors of Nox1- and Nox2-dependent Reactive Oxygen Generation, Journal of Biological Chemistry, vol.280, issue.36, pp.31859-69, 2005.
DOI : 10.1074/jbc.M501882200

K. Kemp, E. Gray, E. Mallam, N. Scolding, and A. Wilkins, Inflammatory Cytokine Induced Regulation of Superoxide Dismutase 3 Expression by Human Mesenchymal Stem Cells, Stem Cell Reviews and Reports, vol.57, issue.5, pp.548-5910, 2010.
DOI : 10.1007/s12015-010-9178-6

C. Kerkhoff, W. Nacken, M. Benedyk, M. C. Dagher, C. Sopalla et al., The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2, The FASEB Journal, vol.19, issue.3, pp.467-904, 2005.
DOI : 10.1096/fj.04-2377fje

URL : https://hal.archives-ouvertes.fr/hal-00820736

H. Koga, Tetratricopeptide Repeat (TPR) Motifs of p67phox Participate in Interaction with the Small GTPase Rac and Activation of the Phagocyte NADPH Oxidase, Journal of Biological Chemistry, vol.274, issue.35, 1999.

J. Koopmann, G. J. Hämmerling, and F. Momburg, Generation, intracellular transport and loading of peptides associated with MHC class I molecules, Current Opinion in Immunology, vol.9, issue.1, pp.80-8810, 1997.
DOI : 10.1016/S0952-7915(97)80163-X

V. Kronin, L. Wu, S. Gong, M. C. Nussenzweig, and K. Shortman, DEC-205 as a marker of dendritic cells with regulatory effects on CD8 T cell responses, International Immunology, vol.12, issue.5, pp.731-736, 2000.
DOI : 10.1093/intimm/12.5.731

F. Kuribayashi, H. Nunoi, K. Wakamatsu, S. Tsunawaki, K. Sato et al., The adaptor protein p40phox as a positive regulator of the superoxide-producing phagocyte oxidase, The EMBO Journal, vol.21, issue.23, pp.6312-6332, 2002.
DOI : 10.1093/emboj/cdf642

C. H. Kwong, H. L. Malech, D. Rotrosen, and T. L. Leto, Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins, Biochemistry, vol.32, issue.21, pp.5711-78504089, 1993.
DOI : 10.1021/bi00072a029

E. M. Lafer, Clathrin Binding and Assembly Activities of Expressed Domains of the Synapse-specific Clathrin Assembly Protein AP-3, Journal of Biological Chemistry, vol.270, issue.18, 1995.
DOI : 10.1074/jbc.270.18.10933

J. Lambeth and . David, NOX enzymes and the biology of reactive oxygen, Nature Reviews Immunology, vol.275, issue.3, pp.181-190, 2004.
DOI : 10.1038/nri1312

J. P. Laurila, L. E. Laatikainen, M. D. Castellone, and M. O. Laukkanen, SOD3 Reduces Inflammatory Cell Migration by Regulating Adhesion Molecule and Cytokine Expression, PLoS ONE, vol.104, issue.6, 2009.
DOI : 10.1371/journal.pone.0005786.t001

L. Roy, C. Wrana, and J. L. , Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling, Nature Reviews Molecular Cell Biology, vol.11, issue.2, pp.112-2610, 1038.
DOI : 10.1038/nrm1571

C. F. Lee, M. Qiao, K. Schröder, Q. Zhao, and R. Asmis, Nox4 is a Novel Inducible Source of Reactive Oxygen Species in Monocytes and Macrophages and Mediates Oxidized Low Density Lipoprotein-Induced Macrophage Death, Circulation Research, vol.106, issue.9, pp.1489-97, 2010.
DOI : 10.1161/CIRCRESAHA.109.215392

V. Legendre-guillemin, S. Wasiak, N. K. Hussain, A. Angers, and P. S. Mcpherson, ENTH/ANTH proteins and clathrin-mediated membrane budding, Journal of Cell Science, vol.117, issue.1, 2004.
DOI : 10.1242/jcs.00928

URL : http://jcs.biologists.org/cgi/content/short/117/1/9

O. Letari, S. Nicosia, C. Chiavaroli, P. Vacher, and W. Schlegel, Activation by bacterial lipopolysaccharide causes changes in the cytosolic free calcium concentration in single peritoneal macrophages, Journal of immunology, vol.147, issue.3, pp.980-983, 1950.

H. Liang, H. Van-remmen, V. Frohlich, J. Lechleiter, A. Richardson et al., Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochemical and biophysical research communications, 2007.
DOI : 10.1016/j.bbrc.2007.03.045

K. J. Liu and C. L. Chu, Current Progress in Dendritic Cell Research, Journal of Cancer Molecules, vol.2, issue.6 26, pp.217-220, 2006.

H. E. Lob, A. Vinh, L. Li, Y. Blinder, S. Offermanns et al., Role of Vascular Extracellular Superoxide Dismutase in Hypertension, Hypertension, vol.58, issue.2, pp.232-239, 2011.
DOI : 10.1161/HYPERTENSIONAHA.111.172718

S. Magder, Reactive oxygen species: toxic molecules or spark of life? Critical care, 2006.

A. R. Mantegazza, A. Savina, M. Vermeulen, L. Pérez, J. Geffner et al., NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells, Blood, vol.112, issue.12, pp.4712-2210, 2008.
DOI : 10.1182/blood-2008-01-134791

URL : https://hal.archives-ouvertes.fr/hal-00356277

V. Mariani, J. Ponti, G. Giudetti, F. Broggi, P. Marmorato et al., Online monitoring of cell metabolism to assess the toxicity of nanoparticles: The case of cobalt ferrite, Nanotoxicology, vol.6, issue.3, pp.1-16, 2011.
DOI : 10.1074/jbc.M300463200

S. L. Marklund, Human copper-containing superoxide dismutase of high molecular weight., Proceedings of the National Academy of Sciences, vol.79, issue.24, 1982.
DOI : 10.1073/pnas.79.24.7634

S. L. Marklund, Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species, Biochemical Journal, vol.222, issue.3, pp.649-55, 1984.
DOI : 10.1042/bj2220649

S. L. Marklund, Properties of extracellular superoxide dismutase from human lung. The Biochemical journal, pp.269-72, 1984.

C. Martinon-ego, R. Berthier, F. Cretin, V. Collin, A. Laharie et al., Murine Dendritic Cells Derived from Myeloid Progenitors of the Thymus Are Unable to Produce Bioactive IL-12p70, The Journal of Immunology, vol.166, issue.8, pp.166-5008, 2001.
DOI : 10.4049/jimmunol.166.8.5008

K. D. Martyn, L. M. Frederick, K. Von-loehneysen, M. C. Dinauer, and U. G. Knaus, Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases, Cellular Signalling, vol.18, issue.1, pp.69-82, 2006.
DOI : 10.1016/j.cellsig.2005.03.023

K. Matsuno, T. Ezaki, S. Kudo, and Y. Uehara, A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph, Journal of Experimental Medicine, vol.183, issue.4, pp.1865-78, 1996.
DOI : 10.1084/jem.183.4.1865

J. D. Matute, A. Arias, M. C. Dinauer, and P. J. Patiño, p40phox: The last NADPH oxidase subunit, Blood Cells, Molecules, and Diseases, vol.35, issue.2, pp.291-302, 2005.
DOI : 10.1016/j.bcmd.2005.06.010

D. J. Mccrann, A. Eliades, M. Makitalo, K. Matsuno, and K. Ravid, Differential expression of NADPH oxidases in megakaryocytes and their role in polyploidy, Blood, vol.114, issue.6, pp.1243-910, 2008.
DOI : 10.1182/blood-2008-12-195883

R. Medzhitov and P. Preston-hurlburt, A human homologue of the Drosophila Toll protein signals activation of adaptive immunity, Nature, vol.388, issue.6640, pp.394-710, 1997.

R. Medzhitov and C. A. Janeway, Innate immunity: impact on the adaptive immune response, Current Opinion in Immunology, vol.9, issue.1, pp.4-910, 1997.
DOI : 10.1016/S0952-7915(97)80152-5

R. B. Mikkelsen and P. Wardman, Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms, Oncogene, vol.22, issue.37, pp.5734-54, 2003.
DOI : 10.1038/sj.onc.1206663

K. Miyano and H. Sumimoto, Role of the small GTPase Rac in p22phox-dependent NADPH oxidases, Biochimie, vol.89, issue.9, 2007.
DOI : 10.1016/j.biochi.2007.05.003

S. Morand, T. Ueyama, S. Tsujibe, N. Saito, A. Korzeniowska et al., Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation, The FASEB Journal, vol.23, issue.4, pp.1205-1808, 2009.
DOI : 10.1096/fj.08-120006

S. M. Morris and . Cooper, Disabled-2 Colocalizes with the LDLR in Clathrin-Coated Pits and Interacts with AP-2, Traffic, vol.256, issue.2, 2001.
DOI : 10.1038/374186a0

S. A. Mousavi, L. Malerød, T. Berg, and R. Kjeken, Clathrin-dependent endocytosis, Biochemical Journal, vol.377, issue.1, pp.1-1610, 2004.
DOI : 10.1042/bj20031000

P. M. Murphy, Double Duty for CCL21 in Dendritic Cell Trafficking, Immunity, vol.32, issue.5, pp.590-592, 2010.
DOI : 10.1016/j.immuni.2010.05.004

C. Nagler-anderson, Man the barrier! strategic defences in the intestinal mucosa, Nature Reviews Immunology, vol.162, issue.1, pp.59-671035095573, 1038.
DOI : 10.1038/35095573

E. Naik and V. M. Dixit, Mitochondrial reactive oxygen species drive proinflammatory cytokine production. The Journal of experimental medicine, 2011.
DOI : 10.1084/jem.20110367

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058577

R. Nakamura, H. Sumimoto, K. Mizuki, K. Hata, T. Ago et al., The PC motif : a novel and evolutionarily conserved sequence involved in interaction between p40 phox and p67phox, SH3 domain-containing cytosolic factors of the phagocyte NADPH oxidase, European Journal of Biochemistry, vol.251, issue.3, pp.583-592, 1998.
DOI : 10.1046/j.1432-1327.1998.2510583.x

Y. Nisimoto, S. Motalebi, C. H. Han, and J. D. Lambeth, The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558) The Journal of biological chemistry, pp.22999-3005, 1999.

K. Ogura, I. Nobuhisa, S. Yuzawa, R. Takeya, S. Torikai et al., NMR Solution Structure of the Tandem Src Homology 3 Domains of p47phox Complexed with a p22phox-derived Proline-rich Peptide, Journal of Biological Chemistry, vol.281, issue.6, pp.3660-3668, 2006.
DOI : 10.1074/jbc.M505193200

A. V. Oleinikov, J. Zhao, and S. P. Makker, Cytosolic adaptor protein Dab2 is an intracellular ligand of endocytic receptor gp600/megalin, Biochemical Journal, vol.347, issue.613, 2000.

J. D. Oram and B. Reiter, The inhibition of streptococci by lactoperoxidase, thiocyanate and hydrogen peroxide. The effect of the inhibitory system on 131, 1966.

D. J. Owen, Y. Vallis, M. E. Noble, J. B. Hunter, T. R. Dafforn et al., A Structural Explanation for the Binding of Multiple Ligands by the ??-Adaptin Appendage Domain, Cell, vol.97, issue.6, pp.805-81510, 1999.
DOI : 10.1016/S0092-8674(00)80791-6

R. Paffenholz, R. Bergstrom, F. Pasutto, P. Wabnitz, R. J. Munroe et al., Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase, Genes & Development, vol.18, issue.5, pp.486-91, 2004.
DOI : 10.1101/gad.1172504

H. S. Park, S. H. Lee, D. Park, J. S. Lee, S. H. Ryu et al., Sequential Activation of Phosphatidylinositol 3-Kinase, ??Pix, Rac1, and Nox1 in Growth Factor-Induced Production of H2O2, Molecular and Cellular Biology, vol.24, issue.10, pp.43844384-4394, 2004.
DOI : 10.1128/MCB.24.10.4384-4394.2004

P. Pavli, C. E. Woodhams, W. F. Doe, and D. Hume, Isolation and characterization of antigen-presenting dendritic cells from the mouse intestinal lamina propria, Immunology, vol.70, issue.1, pp.40-47, 1990.

S. V. Petersen, T. D. Oury, L. Ostergaard, Z. Valnickova, J. Wegrzyn et al., Extracellular Superoxide Dismutase (EC-SOD) Binds to Type I Collagen and Protects Against Oxidative Fragmentation, Journal of Biological Chemistry, vol.279, issue.14, pp.279-13705, 2004.
DOI : 10.1074/jbc.M310217200

E. J. Pettit and F. S. Fay, Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis, Physiological reviews, vol.78, issue.4, pp.949-679790567, 1998.

C. P. Ponting, Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains? Protein science: a publication of the, pp.2353-2360, 1996.

L. Ramachandra, D. Simmons, and C. V. Harding, MHC molecules and microbial antigen processing in phagosomes, Current Opinion in Immunology, vol.21, issue.1, 2009.
DOI : 10.1016/j.coi.2009.01.001

C. Reis-e-sousa, Dendritic Cells as Sensors of Infection, Immunity, vol.14, issue.5, pp.495-503, 2001.
DOI : 10.1016/S1074-7613(01)00136-4

C. Reis-e-sousa, Activation of dendritic cells: translating innate into adaptive immunity, Current Opinion in Immunology, vol.16, issue.1, 2004.
DOI : 10.1016/j.coi.2003.11.007

B. Reizis, A. Bunin, H. S. Ghosh, K. L. Lewis, and V. Sisirak, Plasmacytoid Dendritic Cells: Recent Progress and Open Questions, Annual Review of Immunology, vol.29, issue.1, 2010.
DOI : 10.1146/annurev-immunol-031210-101345

C. Riganti, E. Gazzano, M. Polimeni, C. Costamagna, A. Bosia et al., Diphenyleneiodonium Inhibits the Cell Redox Metabolism and Induces Oxidative Stress, Journal of Biological Chemistry, vol.279, issue.46, pp.47726-47757, 2004.
DOI : 10.1074/jbc.M406314200

A. W. Segal and O. T. Jones, Novel cytochrome b system in phagocytic vacuoles of human granulocytes, Nature, vol.538, issue.5687, pp.515-51710, 1038.
DOI : 10.1016/0002-9343(56)90103-6

F. Sallusto, M. Cella, C. Danieli, and A. Lanzavecchia, Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products, Journal of Experimental Medicine, vol.182, issue.2, pp.389-400, 1995.
DOI : 10.1084/jem.182.2.389

J. Sandström, L. Carlsson, S. L. Marklund, and T. Edlund, The heparinbinding domain of extracellular superoxide dismutase C and formation of variants with reduced heparin affinity, The Journal of biological chemistry, vol.267, issue.25, pp.18205-18214, 1992.

S. J. Santegoets, M. Van-den-eertwegh, A. J. Van-de-loosdrecht, A. Scheper, R. J. De-gruijl et al., Human dendritic cell line models for DC differentiation and clinical DC vaccination studies, Journal of Leukocyte Biology, vol.84, issue.6, pp.1364-73, 2008.
DOI : 10.1189/jlb.0208092

A. Savina and S. Amigorena, Phagocytosis and antigen presentation in dendritic cells, Immunological Reviews, vol.169, issue.1, pp.143-56, 2007.
DOI : 10.1038/18038

A. Savina, C. Jancic, S. Hugues, P. Guermonprez, P. Vargas et al., NOX2 Controls Phagosomal pH to Regulate Antigen Processing during Crosspresentation by Dendritic Cells, Cell, vol.126, issue.1, pp.205-223, 2006.
DOI : 10.1016/j.cell.2006.05.035

M. Schnare, G. M. Barton, C. Holt, K. Takeda, S. Akira et al., Toll-like receptors control activation of adaptive immune responses, Nature Immunology, vol.20, issue.10, pp.947-5010, 1038.
DOI : 10.1038/ni712

A. W. Segal, Absence of both cytochrome b???245 subunits from neutrophils in X-linked chronic granulomatous disease, Nature, vol.326, issue.6108, pp.88-9110, 1038.
DOI : 10.1038/326088a0

E. Segura and J. Villadangos, Antigen presentation by dendritic cells in vivo, Current Opinion in Immunology, vol.21, issue.1, 2009.
DOI : 10.1016/j.coi.2009.03.011

D. Sen, T. J. Deerinck, M. H. Ellisman, I. Parker, and M. D. Cahalan, Quantum Dots for Tracking Dendritic Cells and Priming an Immune Response In Vitro and In Vivo, PLoS ONE, vol.203, issue.9, 2008.
DOI : 10.1371/journal.pone.0003290.s018

M. Sentman, M. Granström, H. Jakobson, A. Reaume, S. Basu et al., Phenotypes of Mice Lacking Extracellular Superoxide Dismutase and Copper- and Zinc-containing Superoxide Dismutase, Journal of Biological Chemistry, vol.281, issue.11, pp.281-6904, 2006.
DOI : 10.1074/jbc.M510764200

L. Serrander, L. Cartier, K. Bedard, B. Banfi, B. Lardy et al., NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation, Biochemical Journal, vol.406, issue.1, pp.105-1410, 1042.
DOI : 10.1042/BJ20061903

URL : https://hal.archives-ouvertes.fr/hal-00400481

K. Sheng, G. Pietersz, C. K. Tang, P. Ramsland, and V. Apostolopoulos, Reactive Oxygen Species Level Defines Two Functionally Distinctive Stages of Inflammatory Dendritic Cell Development from Mouse Bone Marrow, The Journal of Immunology, vol.184, issue.6, pp.2863-72, 1950.
DOI : 10.4049/jimmunol.0903458

K. Shortman and Y. Liu, MOUSE AND HUMAN DENDRITIC CELL SUBTYPES, Nature Reviews Immunology, vol.106, issue.3, pp.151-6110, 1038.
DOI : 10.1038/79747

Y. Song, J. Ruf, P. Lothaire, D. Dequanter, G. Andry et al., Association of Duoxes with Thyroid Peroxidase and Its Regulation in Thyrocytes, The Journal of Clinical Endocrinology & Metabolism, vol.95, issue.1, pp.375-8210, 1210.
DOI : 10.1210/jc.2009-1727

G. L. Squadrito and W. A. Pryor, Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide, Free Radical Biology and Medicine, vol.25, issue.4-5, pp.392-403, 1998.
DOI : 10.1016/S0891-5849(98)00095-1

P. Storz, Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a key to aging and radical-caused diseases. Science's STKE: signal transduction knowledge environment, 2006.

Y. A. Suh, R. S. Arnold, B. Lassegue, J. Shi, X. Xu et al., Cell transformation by the superoxide-generating oxidase Mox1, Nature, vol.401, issue.6748, pp.79-82, 1999.

H. Sumimoto, Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species, FEBS Journal, vol.19, issue.13, pp.3249-77, 2008.
DOI : 10.1111/j.1742-4658.2008.06488.x

. Sumimoto, . Hideki, K. Miyano, and R. Takeya, Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochemical and biophysical research communications, 2005.

J. A. Swanson and C. Watts, Macropinocytosis, Trends in Cell Biology, vol.5, issue.11, pp.424-42810, 1995.
DOI : 10.1016/S0962-8924(00)89101-1

I. Szanto, L. Rubbia-brandt, P. Kiss, K. Steger, B. Banfi et al., Expression ofNOX1, a superoxide-generating NADPH oxidase, in colon cancer and inflammatory bowel disease, The Journal of Pathology, vol.337, issue.2, pp.164-76, 2005.
DOI : 10.1002/path.1824

. Takeda, . Kiyoshi, T. Kaisho, and S. Akira, Toll-like receptors. Annual review of immunology, 2003.

R. Takeya, N. Ueno, K. Kami, M. Taura, M. Kohjima et al., Novel Human Homologues of p47phox and p67phox Participate in Activation of Superoxide-producing NADPH Oxidases, Journal of Biological Chemistry, vol.278, issue.27, pp.278-25234, 2003.
DOI : 10.1074/jbc.M212856200

F. Tebar, S. K. Bohlander, and A. Sorkin, Clathrin Assembly Lymphoid Myeloid Leukemia (CALM) Protein: Localization in Endocytic-coated Pits, Interactions with Clathrin, and the Impact of Overexpression on Clathrin-mediated Traffic, Molecular Biology of the Cell, vol.10, issue.8, pp.2687-702, 1999.
DOI : 10.1091/mbc.10.8.2687

M. L. Teoh, M. P. Fitzgerald, L. W. Oberley, and F. E. Domann, Overexpression of Extracellular Superoxide Dismutase Attenuates Heparanase Expression and Inhibits Breast Carcinoma Cell Growth and Invasion, Cancer Research, vol.69, issue.15, pp.6355-63100008, 1158.
DOI : 10.1158/0008-5472.CAN-09-1195

L. Tibell, K. Hjalmarsson, T. Edlund, G. Skogman, . Engström et al., Expression of human extracellular superoxide dismutase in Chinese hamster ovary cells and characterization of the product., Proceedings of the National Academy of Sciences, vol.84, issue.19, pp.6634-6642, 1987.
DOI : 10.1073/pnas.84.19.6634

M. L. Troxell, E. J. Schwartz, M. Van-de-rijn, D. T. Ross, R. Warnke et al., Follicular Dendritic Cell Immunohistochemical Markers in Angioimmunoblastic T-Cell Lymphoma, Applied Immunohistochemistry & Molecular Morphology, vol.13, issue.4, pp.297-303, 2005.
DOI : 10.1097/01.pai.0000173053.45296.51

N. Uehara, Polymer-functionalized gold nanoparticles as versatile sensing materials Analytical sciences: the international journal of the, Japan Society for Analytical Chemistry, vol.26, issue.12, pp.1219-1247, 2010.

N. Ueno, R. Takeya, K. Miyano, H. Kikuchi, and H. Sumimoto, The NADPH Oxidase Nox3 Constitutively Produces Superoxide in a p22phox-dependent Manner: ITS REGULATION BY OXIDASE ORGANIZERS AND ACTIVATORS, Journal of Biological Chemistry, vol.280, issue.24, pp.23328-23367, 2005.
DOI : 10.1074/jbc.M414548200

T. Ueyama, M. Geiszt, and T. L. Leto, Involvement of Rac1 in Activation of Multicomponent Nox1- and Nox3-Based NADPH Oxidases, Molecular and Cellular Biology, vol.26, issue.6, 2006.
DOI : 10.1128/MCB.26.6.2160-2174.2006

P. V. Vignais, The superoxide-generating NADPH oxidase: structural aspects and activation mechanism, Cellular and Molecular Life Sciences (CMLS), vol.59, issue.9, 2002.
DOI : 10.1007/s00018-002-8520-9

M. Vulcano, S. Dusi, D. Lissandrini, R. Badolato, P. Mazzi et al., Toll Receptor-Mediated Regulation of NADPH Oxidase in Human Dendritic Cells, The Journal of Immunology, vol.173, issue.9, pp.5749-56, 1950.
DOI : 10.4049/jimmunol.173.9.5749

J. Wang, Antigen Presentation to Lymphocytes, Encyclopedia of Life Sciences, 2001.
DOI : 10.1038/npg.els.0001227

X. Wang and Z. Sun, Thyroid hormone induces artery smooth muscle cell proliferation: discovery of a new TR??1-Nox1 pathway, Journal of Cellular and Molecular Medicine, vol.37, issue.1-2, pp.368-380, 2010.
DOI : 10.1111/j.1582-4934.2008.00489.x

Y. Wang, X. Hu, F. He, F. Feng, L. Wang et al., Lipopolysaccharide-induced Maturation of Bone Marrow-derived Dendritic Cells Is Regulated by Notch Signaling through the Up-regulation of CXCR4, Journal of Biological Chemistry, vol.284, issue.23, pp.15993-6003, 2009.
DOI : 10.1074/jbc.M901144200

N. Watanabe, J. Suzuki, and Y. Kobayashi, Role of Calcium in Tumor Necrosis Factor-?? Production by Activated Macrophages, Journal of Biochemistry, vol.120, issue.6, pp.1190-1195, 1996.
DOI : 10.1093/oxfordjournals.jbchem.a021540

C. Watts, Phagosome Neutrality in Host Defense, Cell, vol.126, issue.1, 2006.
DOI : 10.1016/j.cell.2006.06.031

C. Watts, The endosome???lysosome pathway and information generation in the immune system, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1824, issue.1, 2011.
DOI : 10.1016/j.bbapap.2011.07.006

D. Werling, J. C. Hope, C. J. Howard, and T. W. Jungi, Differential production of cytokines, reactive oxygen and nitrogen by bovine macrophages and dendritic cells stimulated with Toll-like receptor agonists, Immunology, vol.76, issue.1, pp.41-52, 2004.
DOI : 10.1073/pnas.250476497

F. B. Wientjes, J. J. Hsuan, N. F. Totty, and A. W. Segal, homology 3 domains, Biochemical Journal, vol.296, issue.3, pp.557-61, 1993.
DOI : 10.1042/bj2960557

L. Wu and A. Dakic, Development of dendritic cell system, Cellular & molecular immunology, vol.1, issue.2, pp.112-120, 2004.

L. J. Yant, Q. Ran, L. Rao, H. Van-remmen, T. Shibatani et al., The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults, Free Radical Biology and Medicine, vol.34, issue.4, pp.496-50210, 2003.
DOI : 10.1016/S0891-5849(02)01360-6

J. Yee and N. V. Christou, Neutrophil priming by lipopolysaccharide involves heterogeneity in calcium-mediated signal transduction. Studies using fluo-3 and flow cytometry, Journal of immunology, vol.150, issue.5, pp.1988-977679700, 1950.

S. Yuzawa, N. N. Suzuki, Y. Fujioka, K. Ogura, H. Sumimoto et al., A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Genes to cells: devoted to molecular & cellular mechanisms, pp.443-56, 2004.

I. Zanoni and F. Granucci, Differences in lipopolysaccharide-induced signaling between conventional dendritic cells and macrophages, Immunobiology, vol.215, issue.9-10, pp.9-10, 2010.
DOI : 10.1016/j.imbio.2010.05.026

H. Zhu, H. Qiu, H. W. Yoon, S. Huang, and H. F. Bunn, Identification of a cytochrome b-type NAD(P)H oxidoreductase ubiquitously expressed in human cells, Proceedings of the National Academy of Sciences, vol.96, issue.26, pp.14742-14749, 1999.
DOI : 10.1073/pnas.96.26.14742

I. De-mendez, N. Homayounpour, T. L. Leto, J. M. Haan, S. M. Lehar et al., Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=232066&tool=pmcentr ez&rendertype=abstract den CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo Homing and cellular traffic in lymph nodes, Molecular and cellular biology The Journal of experimental medicine Nature reviews. Immunology, vol.17, issue.1921211, pp.2177-85, 1038.