. Spatz, Activation of Integrin Function by Nanopatterned Adhesive Interfaces, pp.149-153, 1999.

M. J. Biggs, R. G. Richards, M. J. Dalby, K. Matsumoto, C. Sato et al., Nanotopographical modification: a regulator of cellular function through focal adhesions, Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes
DOI : 10.1016/j.nano.2010.01.009

M. A. Correa-duarte, N. Wagner, J. Rojas-chapana, C. Morsczeck, and M. Thie, Giersig, « Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for Cell Seeding and Growth, Nano Lett, vol.4, issue.3, pp.216-220, 2007.

T. Gabay, E. Jakobs, and E. Ben-jacob, Hanein, « Engineered self-organization of neural networks using carbon nanotube clusters », Physica A: Statistical Mechanics and its Applications, pp.2233-2236, 2004.

E. Jan and N. A. Kotov, Successful Differentiation of Mouse Neural Stem Cells on Layer-by-Layer Assembled Single-Walled Carbon Nanotube Composite, Nano Letters, vol.7, issue.5, pp.2-4, 2005.
DOI : 10.1021/nl0620132

D. Grandolfo, F. Scaini, L. Gelain, M. Casalis, M. Prato et al., « Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts », Nature Nanotechnology, vol.4, issue.6, pp.1107-1110, 2005.

«. Ballerini and . Interfacing, Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits, J. Neurosci, vol.27, issue.1, pp.264-268, 2008.

. Kotov, Stimulation of Neural Cells by Lateral Currents in Conductive Layer-by-Layer Films of Single-Walled Carbon Nanotubes, Advanced Materials, vol.18, issue.26, pp.6931-6936, 2007.

G. Gabriel, R. Gómez, M. Bongard, N. Benito, E. Fernández et al., Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications, Biosensors and Bioelectronics, vol.24, issue.7, pp.22-2975, 2006.
DOI : 10.1016/j.bios.2008.09.036

F. Sauter-starace, O. Bibari, F. Berger, P. Caillat, and A. L. Benabid, ECoG recordings of a non-human primate using carbon nanotubes electrodes on a flexible polyimide implant, 2009 4th International IEEE/EMBS Conference on Neural Engineering, pp.112-115, 2009.
DOI : 10.1109/NER.2009.5109247

S. R. Wasserman, G. M. Whitesides, I. M. Tidswell, B. M. Ocko, P. S. Pershan et al., Axe, « The structure of self-assembled monolayers of alkylsiloxanes on silicon: a comparison of results from ellipsometry and low-angle x-ray reflectivity, J. Am. Chem. Soc, vol.111, issue.1, pp.92-98, 1980.

N. Patrito, C. Mccague, P. R. Norton, and N. O. Petersen, Spatially Controlled Cell Adhesion via Micropatterned Surface Modification of Poly(dimethylsiloxane), Langmuir, vol.23, issue.2, pp.5852-5861, 1989.
DOI : 10.1021/la062007l

P. M. Van-midwoud, A. Janse, M. T. Merema, G. M. Groothuis, and E. M. Verpoorte, Comparison of Biocompatibility and Adsorption Properties of Different Plastics for Advanced Microfluidic Cell and Tissue Culture Models, Analytical Chemistry, vol.84, issue.9, pp.180-184, 2011.
DOI : 10.1021/ac300771z

E. Leclerc, Y. Sakai, and T. Fujii, Cell culture in 3-Dimensional microfluidic structure of PDMS (polydimethylsoloxane), Biomedical Microdevices, vol.5, issue.2, pp.109-114, 2003.
DOI : 10.1023/A:1024583026925

B. Kim, E. T. Peterson, and E. I. Papautsky, « Long-term stability of plasma oxidized PDMS surfaces Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment?An SEM investigation, Engineering in Medicine and Biology Society 26th Annual International Conference of the IEEE, pp.5013-5016, 2004.

C. Thibault, C. Séverac, A. Mingotaud, C. Vieu, E. M. Mauzac et al., dimethylsiloxane) contamination in microcontact printing and its influence on patterning oligonucleotides Seichepine, I. Loubinoux, et C. Vieu, « Multi-scale engineering for neuronal cell growth and differentiation, Microelectronic Engineering, pp.368-373, 2007.

J. F. Bourquin, F. Charmeux, A. L. Berger, A. Benabid, and . Sherdil, Chabardes, « Epileptic seizure recordings of a non-human primate using carbon nanotube microelectrodes on implantable silicon shanks, Neural Engineering (NER), 2011 5th International IEEE/EMBS Conference on, pp.589-592, 2004.

«. Ballerini, Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits, J. Neurosci, vol.27

A. Fabbro, G. Cellot, M. Prato, and E. L. Ballerini, Interfacing neurons with carbon nanotubes:, Brain Res, vol.194, issue.1, pp.241-252, 2011.
DOI : 10.1016/B978-0-444-53815-4.00003-0

W. Lee, V. Parpura, and . Chapter, Carbon nanotubes as substrates/scaffolds for neural cell growth, Biomolecular applications of carbon nanotubes », Nanobiotechnology, IEE Proceedings, pp.110-125, 2009.
DOI : 10.1016/S0079-6123(08)80006-4

A. Paré, R. W. Linker, and E. N. Womack, Ten Books of Surgery With the Magazine of the Instruments Necessary for It, Ambroise Paré and the Birth of the Gentle Art of Surgery Practical Handbook of Neurosurgery, M. Sindou, Éd Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease, pp.1350-1368, 2008.

«. Ponsaerts and . Current, Challenges for the Advancement of, Neural Stem Cell Biology and Transplantation Research », Stem Cell Reviews and Reports, vol.8, issue.1, pp.67-81, 2009.

H. Okano, Stem cell biology of the central nervous system, Journal of Neuroscience Research, vol.96, issue.6, pp.262-278, 2012.
DOI : 10.1002/jnr.10343

O. Einstein and T. Ben-hur, The Changing Face of Neural Stem Cell Therapy in Neurologic Diseases, Archives of Neurology, vol.65, issue.4, pp.438-450, 2010.
DOI : 10.1001/archneur.65.4.452

L. Casteilla, Adipose-derived stromal cells: Their identity and uses in clinical trials, an update, World Journal of Stem Cells, vol.3, issue.4, pp.452-456, 2008.
DOI : 10.4252/wjsc.v3.i4.25

S. Jang, H. Cho, Y. Cho, J. Park, and H. Jeong, Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin, BMC Cell Biology, vol.11, issue.1, pp.25-25, 2010.
DOI : 10.1186/1471-2121-11-25

«. Bonetti, Neuronal differentiation potential of human adipose-derived mesenchymal stem cells, Stem Cells Dev, vol.17

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, issue.4, pp.909-916, 2008.
DOI : 10.1016/j.cell.2006.07.024

T. C. Burns, C. M. Verfaillie, and W. C. Low, Stem cells for ischemic brain injury: A critical review, The Journal of Comparative Neurology, vol.80, issue.1
DOI : 10.1002/cne.22038

J. O. Suhonen, D. A. Peterson, J. Ray, and F. H. Gage, Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo, Nature, vol.383, issue.6601, pp.125-144, 2009.
DOI : 10.1038/383624a0

T. M. Bliss, R. H. Andres, and G. K. Steinberg, Optimizing the success of cell transplantation therapy for stroke, Neurobiology of Disease, vol.37, issue.2, pp.624-627, 1996.
DOI : 10.1016/j.nbd.2009.10.003

O. 'brien, A. J. Castro, M. E. Schwab, and G. L. Kartje, « Delayed treatment with monoclonal antibody IN-1 1 week after stroke results in recovery of function and corticorubral plasticity in adult rats, J. Cereb. Blood Flow Metab, vol.25, issue.2, pp.275-283, 2010.

P. Freund, E. Schmidlin, T. Wannier, J. Bloch, A. Mir et al., Anti-Nogo-A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates--reexamination and extension of behavioral data, Eur. J. Neurosci, vol.29, issue.10, pp.1366-1375, 2005.

P. Marino, J. Norreel, M. Schachner, and G. Rougon, Amoureux, « A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury, Exp. Neurol, vol.219, issue.5, pp.983-996, 2009.

D. Lu, A. Mahmood, C. Qu, X. Hong, D. Kaplan et al., COLLAGEN SCAFFOLDS POPULATED WITH HUMAN MARROW STROMAL CELLS REDUCE LESION VOLUME AND IMPROVE FUNCTIONAL OUTCOME AFTER TRAUMATIC BRAIN INJURY, Neurosurgery, vol.61, issue.3, pp.163-174, 2009.
DOI : 10.1227/01.NEU.0000290908.38438.B2

O. Biosciences and «. 3d, Transfection: a new outlook for your cells, pp.596-602, 2007.

E. Garbayo, G. J. , P. C. Et, and C. N. , Advances in the Combined Use of Adult Cell Therapy and Scaffolds for Brain Tissue Engineering », in Tissue Engineering for Tissue and Organ, Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain, 2011.

C. Qu, Y. Xiong, A. Mahmood, D. L. Kaplan, A. Goussev et al., Chopp, « Treatment of traumatic brain injury in mice with bone marrow stromal cell-impregnated collagen scaffolds, J. Neurosurg, vol.111, issue.3 4, pp.208-217, 2009.

X. Zhao and R. Liu, Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels, Environment International, vol.40
DOI : 10.1016/j.envint.2011.12.003

S. U. Moon, J. Kim, K. K. Bokara, J. Y. Kim, D. Khang et al., « Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke », Tsuda, H. Onoe, et S. Takeuchi, « A neurospheroid network-stamping method for neural transplantation to the brain. », Biomaterials, pp.2751-2765, 2012.

Y. Yang, S. Basu, D. L. Tomasko, L. J. Lee, and S. Yang, Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding, Biomaterials, vol.26, issue.15, pp.34-8939, 2010.
DOI : 10.1016/j.biomaterials.2004.07.046

S. Oh, S. Kang, and E. J. Lee, « Degradation behavior of hydrophilized PLGA scaffolds prepared by meltmolding particulate-leaching method: Comparison with control hydrophobic one, Journal of Materials Science: Materials in Medicine, vol.17, pp.15-2585, 2005.

L. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite et al., In vitro and in vivo degradation of porous poly(dl-lactic-co-glycolic acid) foams, Biomaterials, vol.21, issue.18, pp.131-137, 2006.
DOI : 10.1016/S0142-9612(00)00047-8

T. Xu, C. A. Gregory, P. Molnar, X. Cui, S. Jalota et al., Viability and electrophysiology of neural cell structures generated by the inkjet printing method, Biomaterials, vol.27, pp.18-1837, 2000.
DOI : 10.1016/j.biomaterials.2006.01.048

«. Khademhosseini and . Reusable, reversibly sealable parylene membranes for cell and protein patterning, J Biomed Mater Res A, vol.85, issue.1, pp.93-99, 2005.

D. Wright, B. Rajalingam, S. Selvarasah, M. R. Dokmeci, and E. A. Khademhosseini, Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils, Lab on a Chip, vol.16, issue.10, pp.530-538, 2008.
DOI : 10.1002/jbm.a.31281

H. Kaji, G. Camci-unal, R. Langer, and E. A. Khademhosseini, Engineering systems for the generation of patterned co-cultures for controlling cell???cell interactions, BBA) -General Subjects, pp.1272-1279, 2007.
DOI : 10.1016/j.bbagen.2010.07.002

«. Technology, D. Technologie, and . Laserschreiben, Direct Laser Writing, DiLL, Dip-in Laserlithografie, Dip-in Laser Lithography, pp.14-2012, 2011.

L. A. Phebus, K. W. Johnson, J. N. Crawley, C. R. Gerfen, M. A. Rogawski et al., Dural Inflammation Model of Migraine Pain, Response of brain tissue to chronically implanted neural electrodes », 2001.
DOI : 10.1002/0471142301.ns0901s06

P. Riou, H. Bertoncini, J. Y. Bizot, A. Mevellec, E. O. Buléon et al., Carboxymethylcellulose/Single Walled Carbon Nanotube Complexes, Carboxymethylcellulose/single walled carbon nanotube complexes Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, pp.6176-6180, 2009.
DOI : 10.1166/jnn.2009.1573

URL : https://hal.archives-ouvertes.fr/hal-00432060

W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou et al., Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, vol.274, issue.5293, pp.6705-878, 1998.
DOI : 10.1126/science.274.5293.1701

S. Shekhar, P. Stokes, and S. I. Khondaker, Ultrahigh Density Alignment of Carbon Nanotube Arrays by Dielectrophoresis, ACS Nano, vol.5, issue.3, pp.1500-1503, 2007.
DOI : 10.1021/nn102305z

V. K. Sangwan, V. W. Ballarotto, D. R. Hines, M. S. Fuhrer, and E. D. Williams, « Controlled growth, patterning and placement of carbon nanotube thin films, Solid-State Electronics, vol.54, issue.3, pp.1739-1746, 2011.

M. Thery, V. Racine, M. Piel, A. Pepin, A. Dimitrov et al., Bornens, « From the Cover: Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity, Proceedings of the National Academy of Sciences, pp.5255-5255, 2009.

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen et al., Bornens, « The extracellular matrix guides the orientation of the cell division axis, Nature Cell Biology, vol.7, issue.10, pp.19771-19776, 2005.