R. Bibliographie1-]-ababou, A. C. Bagtzoglou, and E. F. Wood, On the condition number of covariance matrices in kriging, estimation, and simulation of random fields, Mathematical Geology, vol.25, issue.10, pp.99-133, 1994.
DOI : 10.1007/BF02065878

D. Allen, The prediction sum of squares as a criterion for selecting prediction variables, 1971.

P. Barbillon, Méthodes d'interpolation noyaux pour l'approximation de fonctions type bo??tebo??te noire coûteuses, pp.106-121, 2010.

P. Barbillon, G. Celeux, A. Grimaud, Y. Lefebvre, D. Rocquigny et al., Nonlinear methods for inverse statistical problems, Computational Statistics & Data Analysis, vol.55, issue.1, pp.132-142, 2011.
DOI : 10.1016/j.csda.2010.05.030

A. Besnard and M. Dranguet, Intercomparaison de modèles hydrauliques 1D et 2D sur la Garonne, Note EDF LNHE, 2008.

A. Besnard and N. Goutal, Comparison between 1D and 2D models for hydraulic modeling on a flood plain : Case of Garonne river, Proc. Int. Conf. River Flow, 2008.

P. Bernardara, E. De-rocquigny, N. Goutal, and G. Passoni, Flood risk assessment: Model calibration under uncertainty, Journal of Hydraulic Engineering, 2008.

N. Bousquet, Subjective Bayesian statistics: agreement between prior and data, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00071367

N. Bousquet, Diagnostics of prior-data agreement in applied Bayesian analysis, Journal of Applied Statistics, vol.57, issue.9, pp.1011-1029, 2008.
DOI : 10.1016/S0378-3758(96)00155-3

S. P. Brooks and A. Gelman, General Methods for Monitoring Convergence of Iterative Simulations, Journal of Computational and Graphical Statistics, vol.7, pp.434-455, 1998.

W. J. Browne and D. Draper, Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models, Computational Statistics, vol.15, issue.3, pp.391-420, 2000.
DOI : 10.1007/s001800000041

G. Celeux and J. Diebolt, The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem, Computational Statistics Quarterly, vol.2, pp.73-82, 1985.

G. Celeux and J. Diebolt, A probabilistic teacher algorithm for iterative maximum likelihood estimation, Classification and related methods of Data Analysis, pp.617-623, 1987.

G. Celeux, A. Grimaud, Y. Lefebvre, D. Rocquigny, and E. , Identifying intrinsic variability in multivariate systems through linearized inverse methods, Inverse Problems in Science and Engineering, vol.39, issue.3, pp.401-415, 2010.
DOI : 10.1093/biomet/80.2.267

URL : https://hal.archives-ouvertes.fr/hal-00943676

M. Chen and B. Schmeiser, Towards black-box sampling, J. Comput. Graph. Statist, vol.7, pp.1-22, 1998.

B. S. Clarke, Implications of Reference Priors for Prior Information and for Sample Size, Journal of the American Statistical Association, vol.2, issue.433, pp.173-184, 1996.
DOI : 10.1080/01621459.1995.10476560

M. K. Cowles and B. P. Carlin, Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review, Journal of the American Statistical Association, vol.90, issue.434, pp.91-883, 1996.
DOI : 10.1080/01621459.1996.10476956

D. Crecy and A. , Determination of the uncertainties of the constitutive relationships in the Cathare 2 Code, Proceedings of the 1996 4th ASME/JSME International Conference on Nuclear Engineering, 1996.

D. Crécy and A. , Determination of the Uncertainties of the Constitutive Relationships of the CATHARE 2 Code, 2001.

E. De-rocquigny and S. Cambier, Inverse probabilistic modelling of the sources of uncertainty: a non-parametric simulated-likelihood method with application to an industrial turbine vibration assessment, Inverse Problems in Science and Engineering, vol.147, issue.7, 2009.
DOI : 10.1115/1.1760527

E. De-rocquigny, N. Devictor, and S. Tarantola, Uncertainty in industrial practice -A guide to quantitative uncertainty management, 2008.

G. Degoutte, Aide-mémoire d'hydrauliquè a surface libre, Diagnostic, aménagement et gestion desrivì eres, 2006.

E. J. Dempster, N. M. Laird, R. , and D. B. , Maximum likelihood from incomplete data via EM algorithm, Annals of the Royal Statistical Society, Series B, vol.39, pp.1-38, 1977.

V. Dubourg, Méta-modèles adaptatifs pour l'analyse de fiabilité et l'optimisation sous contrainte fiabiliste, pp.19-33, 2011.

K. Fang, R. Li, and A. Sudjianto, Design and Modeling for Computer Experiments, Computer Science and Data Analysis, vol.8, 2006.
DOI : 10.1201/9781420034899

S. Fu, G. Celeux, N. Bousquet, and M. Couplet, Bayesian inference for inverse problems occuring in uncertainty analysis, 2012.

C. D. Fuh, Statistical inquiry for Markov chains by bootstrap method, Statistica Sinica, vol.3, pp.53-66, 1993.

P. H. Garthwaite, J. B. Kadane, O. Hagan, and A. , Statistical Methods for Eliciting Probability Distributions, Journal of the American Statistical Association, vol.100, issue.470, pp.680-700, 2005.
DOI : 10.1198/016214505000000105

A. E. Gelfand and S. K. Sahu, On Markov Chain Monte Carlo Acceleration, Journal of Computational and Graphical Statistics, vol.6, issue.3, pp.261-276, 1994.
DOI : 10.1080/00031305.1992.10475856

A. Gelman and D. Rubin, Inference from Iterative Simulation Using Multiple Sequences, Statistical Science, vol.7, issue.4, pp.457-511, 1992.
DOI : 10.1214/ss/1177011136

S. Geman and D. Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.6, issue.6, pp.721-7414767596, 1984.

R. Ghanem and P. Et-spanos, Stochastic finite elements -A spectral approach, 1991.
DOI : 10.1007/978-1-4612-3094-6

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo In Practice, pp.45-65, 1996.

P. Girard and E. Parent, The deductive phase of statistical analysis via predictive simulations: test, validation and control of a linear model with autocorrelated errors representing a food process, Journal of Statistical Planning and Inference, vol.124, issue.1, pp.99-120, 2004.
DOI : 10.1016/S0378-3758(03)00191-5

N. Goutal, Calage automatique du coefficient de Strickler en régime permanent sur un seul bief, 2005.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning, 2001.

C. Hermite, Sur un nouveau développment en série de fonctions, C. R. Acad. Sci. Paris, vol.58, pp.93-100, 1864.
DOI : 10.1017/cbo9780511702761.022

A. E. Hoerl and R. W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, vol.24, issue.1, pp.55-67, 1970.
DOI : 10.2307/1909769

M. S. Horrit, Development of physically based meshes for two-dimensional models of meandering channel flows, International Journal of Numerical Methods in Engineering, vol.41, pp.2109-2137, 2000.

D. Huang, T. T. Allen, W. I. Notz, and N. Zeng, Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models, Journal of Global Optimization, vol.25, issue.1, pp.441-466, 2006.
DOI : 10.1007/s10898-005-2454-3

J. Idier, Approche bayésienne pour lesprobì emes inverses, pp.25-40, 2001.

M. E. Johnson, L. M. Moore, and D. Et-ylvisaker, Minimax and maximin distance designs, Minimax and maximin distance designs, pp.131-148, 1990.
DOI : 10.1016/0378-3758(90)90122-B

D. R. Jones, M. Schonlau, and W. J. Welch, Effcient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

J. B. Kadane and J. A. Wolfson, Experiences in elicitation, The Statistician, pp.3-19, 1998.

M. Kárn´kárn´y, P. Nedoma, N. Khailova, and L. Pavelková, Prior information in structure estimation, IEE Proceedings - Control Theory and Applications, vol.150, issue.6, pp.643-653, 2003.
DOI : 10.1049/ip-cta:20030861

R. E. Kass and L. Wasserman, The Selection of Prior Distributions by Formal Rules, Journal of the American Statistical Association, vol.36, issue.435, pp.1343-1370, 1996.
DOI : 10.1080/01621459.1996.10477003

M. C. Kennedy, O. Hagan, and A. , Predicting the output from a complex computer code when fast approximations are available, Biometrika, vol.87, issue.1, pp.1-13, 2000.
DOI : 10.1093/biomet/87.1.1

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing, pp.671-680, 1983.

J. R. Koehler and A. B. Owen, 9 Computer experiments, Handbook of Statistics, pp.261-308, 1996.
DOI : 10.1016/S0169-7161(96)13011-X

E. Kuhn, Estimation par maximum de vraisemblance dans desprobì emes inverses non linéaires, pp.13-28, 2003.

E. Kuhn and M. Lavielle, Coupling a stochastic approximation version of EM with an MCMC procedure, ESAIM: Probability and Statistics, vol.8, pp.633-648, 2004.
DOI : 10.1051/ps:2004007

L. Gratiet, L. Garnier, and J. , Bayesian analysis of hierarchical codes with different levels of accuracy, Mascot Meeting, 2012.

O. Leroy, Estimation d'incertitudes pour la propagation acoustique en milieu extérieur, 2010.

R. Li and A. Sudjianto, Analysis of Computer Experiments Using Penalized Likelihood in Gaussian Kriging Models, Technometrics, vol.47, issue.2, pp.111-120, 2005.
DOI : 10.1198/004017004000000671

C. Liu and D. B. Rubin, The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence, Biometrika, vol.81, issue.4, pp.633-648, 1994.
DOI : 10.1093/biomet/81.4.633

D. Liu, Uncertainty Quantification with Shallow Water Equations, 2009.

J. Liu, W. Wong, and A. Kong, Covariance structure and convergence rate of the Gibbs sampler with various scans, J. Royal Statist. Soc., Series B, vol.57, pp.157-169, 1995.

A. Marrel, Mise en oeuvre et utilisation du métamodèle processus gaussien pour l'analyse de sensibilité de modèles numériques, pp.28-35, 2008.

G. Matheron, The theory of regionalised variables and its applications, 1971.

M. D. Mckay, R. J. Beckman, and W. J. Conover, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, vol.21, pp.239-245, 1979.

N. Memarsadeghi, V. C. Raykar, R. Duraiswami, and D. M. Mount, Efficient Kriging via Fast Matrix-Vector Products, 2008 IEEE Aerospace Conference, 2008.
DOI : 10.1109/AERO.2008.4526433

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.
DOI : 10.1063/1.1699114

T. Mitchell, M. Morris, and D. Ylvisaker, Existence of smoothed stationary processes on an interval, Stochastic Processes and Their Applications, pp.109-119, 1990.
DOI : 10.1016/0304-4149(90)90126-D

S. Morita, P. F. Thall, and P. Mueller, Determining the Effective Sample Size of a Parametric Prior, Biometrics, vol.59, issue.2, 2007.
DOI : 10.1111/j.1541-0420.2007.00888.x

P. Muller, A generic approach to posterior integration and Gibbs sampling, 1991.

M. Munoz-zuniga, J. Garnier, E. Remy, and E. De-rocquigny, Analysis of adaptive directional stratification for the controlled estimation of rare event probabilities, Statistics and Computing, vol.91, issue.435, pp.809-821, 2011.
DOI : 10.1007/s11222-011-9277-5

URL : https://hal.archives-ouvertes.fr/hal-00708150

E. Parent, F. Lebdi, and P. Hurand, Stochastic Modeling of a Water Resource System: Analytical Techniques Versus Synthetic Approaches, Water Resources Engineering Risk Assessment, pp.415-434, 1991.
DOI : 10.1007/978-3-642-76971-9_22

A. Pasanisi, S. Fu, and N. Bousquet, Estimating discrete Markov models from various incomplete data schemes, Computational Statistics & Data Analysis, vol.56, issue.9, pp.2609-2625, 2012.
DOI : 10.1016/j.csda.2012.02.027

URL : https://hal.archives-ouvertes.fr/hal-00942772

A. Pasanisi, M. Keller, and E. Parent, Réflexions sur l'analyse d'incertitudes dans un contexte industriel : information disponible et enjeux décisionnels, Journal de la SFdS, vol.152, pp.60-77, 2011.

H. D. Patterson and R. Thompson, Recovery of inter-block information when block sizes are unequal, Biometrika, vol.58, issue.3, pp.545-554, 1971.
DOI : 10.1093/biomet/58.3.545

C. D. Paulino and C. A. Pereira, On identifiability of parametric statistical models, Journal of the Italian Statistical Society, vol.14, issue.9, pp.125-151, 1994.
DOI : 10.1007/BF02589044

F. Perrin, Prise en compte des données expérimentales dans les modèles probabilistes pour la prévision de la durée de vie des structures, 2008.

M. Petelet, . B. Iooss, O. Asserin, and A. Marrel, Latin hypercube sampling with inequality constraints, Advances in Statistical Analysis, pp.325-339, 2010.

V. Picheny, Improving accuracy and compensating for uncertainty in surrogate modeling, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00770844

V. Picheny, D. Ginsbourger, O. Roustant, R. T. Haftka, and N. Kim, Adaptive Designs of Experiments for Accurate Approximation of a Target Region, Journal of Mechanical Design, vol.132, issue.7, pp.132-071008, 2010.
DOI : 10.1115/1.4001873

URL : https://hal.archives-ouvertes.fr/hal-00319385

K. Puolamaki and S. Kaski, Bayesian solutions to the label switching problem Advances in Intelligent Data Analysis VIII, Proceedings of the 8th International Symposium on Intelligent Data Analysis, pp.381-392, 2009.

N. Rachdi, Apprentissage statistique et computer experiments, pp.126-148, 2011.

V. C. Raykar, Scalable machine learning for massive datasets: Fast summation algorithms, 2007.

F. J. Richard and A. Samson, Metropolis-Hasting techniques for finite-element-based registration, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383422

C. P. Robert, The Bayesian Choice: From Decision-Theoretic Motivations to Computational Implementation, 2001.
DOI : 10.1007/978-1-4757-4314-2

C. P. Robert and G. Casella, Monte Carlo Statistical Methods, pp.267-286, 2004.

G. O. Roberts and J. S. Rosenthal, Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains, The Annals of Applied Probability, pp.2123-2139, 2006.

G. O. Roberts and J. S. Rosenthal, Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms, Journal of Applied Probability, vol.44, issue.02, pp.458-475, 2007.
DOI : 10.1214/ss/1015346320

G. O. Roberts and J. S. Rosenthal, Examples of Adaptive MCMC, Journal of Computational and Graphical Statistics, vol.18, issue.2, pp.349-367, 2009.
DOI : 10.1198/jcgs.2009.06134

G. O. Roberts and A. F. Smith, Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms, Stochastic Processes and their Applications, vol.49, issue.2, pp.207-216, 1994.
DOI : 10.1016/0304-4149(94)90134-1

O. Roustant, D. Ginsbourger, and Y. Deville, DiceKriging: Kriging methods for computer experiments, 2010.

G. Rubino and B. Tuffin, Rare event simulation using Monte Carlo methods, 2009.
DOI : 10.1002/9780470745403

URL : https://hal.archives-ouvertes.fr/hal-00787654

J. Sacks, S. B. Schiller, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments (with discussion), Statistica Sinica, vol.4, pp.409-435, 1989.

J. Sacks, S. B. Schiller, and W. J. Welch, Designs for Computer Experiments, Technometrics, vol.15, issue.18, pp.31-41, 1989.
DOI : 10.1080/00401706.1989.10488474

T. J. Santner, B. Williams, and W. Notz, The Design and Analysis of Computer Experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

J. Sekhon and W. Mebane, Genetic Optimization Using Derivatives, Political Analysis, vol.20, issue.11, pp.42-43, 2011.
DOI : 10.1007/BF01530781

URL : http://pan.oxfordjournals.org/cgi/content/short/7/1/187

R. H. Sellin, J. Keast, and D. Van-beeston, Seasonal Variation in River Channel Hydraulic Roughness, pp.1390-1396, 1997.

M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, 1999.
DOI : 10.1007/978-1-4612-1494-6

M. L. Stein, Z. Chi, and L. J. Welty, Approximating likelihoods for large spatial data sets, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.17, issue.2, pp.275-296, 2004.
DOI : 10.1016/0167-9473(91)90055-7

C. J. Stone, M. H. Hansen, C. Kooperberg, and Y. K. Truong, Polynomial splines and their tensor products in extended linear modeling, Annals of Statistics, vol.25, pp.1371-1470, 1997.

M. Stone, Cross-validatory choice and assessment of statistical predictions, J. Royal Stat. Soc., Series B, vol.36, pp.111-147, 1974.

M. Tanner and W. Wong, The Calculation of Posterior Distributions by Data Augmentation, Journal of the American Statistical Association, vol.56, issue.398, pp.528-550, 1987.
DOI : 10.1016/0304-4076(84)90007-1

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B, vol.58, pp.267-288, 1994.

L. Tierney, Introduction to general state-space Markov chain theory, Markov Chain Monte Carlo in Practice, pp.59-74, 1995.

A. Vanderpoorten and R. Palm, Compared regression methods for inferring ammonium nitrogen concentrations in rivers from aquatic bryophyte assemblages, Hydrobiologia, vol.452, issue.1/3, pp.181-190, 2001.
DOI : 10.1023/A:1011910506517

E. Vazquez, Modélisation comportementale de systèmes non-linéaires multivariables par méthodesméthodesà noyaux et applications, 2005.

P. Viollet, J. Chabard, P. Esposito, and D. Laurence, Mécanique des Fluides Appliquée, 1998.

S. G. Walesh, Urban Water Surface Management, 1989.
DOI : 10.1002/9780470172810

Q. Wang, S. R. Kulkarni, and S. Verdú, A Nearest-Neighbor Approach to Estimating Divergence between Continuous Random Vectors, 2006 IEEE International Symposium on Information Theory, pp.242-246, 2006.
DOI : 10.1109/ISIT.2006.261842

D. Watzenig, Bayes'sche Inferenz f??r inverse Probleme ??? statistische Inversion, e & i Elektrotechnik und Informationstechnik, vol.18, issue.1, 2007.
DOI : 10.1007/s00502-007-0449-0

G. C. Wei and M. A. Tanner, A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms, Journal of the American Statistical Association, vol.51, issue.411, pp.699-704, 1990.
DOI : 10.1214/aos/1176346060

G. C. Wei and M. A. Tanner, Posterior Computations for Censored Regression Data, Journal of the American Statistical Association, vol.43, issue.411, pp.829-839, 1990.
DOI : 10.1016/0304-4076(84)90007-1

N. Wiener, The Homogeneous Chaos, American Journal of Mathematics, vol.60, issue.4, pp.897-936, 1938.
DOI : 10.2307/2371268

C. F. Wu, On the Convergence Properties of the EM Algorithm, The Annals of Statistics, vol.11, issue.1, pp.95-103, 1983.
DOI : 10.1214/aos/1176346060

R. Yang and J. O. Berger, A Catalog of Non-informative Priors, ISDS Discussion Paper, pp.97-139, 1998.

A. Zellner, On assessing Prior Distributions and Bayesian Regression analysis with g-prior distribution regression using Bayesian variable selection, Bayesian inference and decision techniques: Essays in Honor of Bruno De Finetti, pp.233-243, 1986.