C. S. Peskin, Flow patterns around heart valves, Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics
DOI : 10.1007/BFb0112697

H. H. Berlin, R. Luo, X. Mittal, S. A. Zheng, R. J. Bielamowicz et al., An immersedboundary method for flow?structure interaction in biological systems with application to phonation 3-D Parachute simulation by the immersed boundary method, Journal of Computational Physics, vol.227, issue.22, pp.214-221, 1972.

&. Computers, ]. L. Fluids5, W. B. Kayser, J. Sturek, C. J. Sahu et al., Experimental Magnus characteristics of ballistic projectiles with and without anti-Magnus vanes at Mach numbers 1.5 through 2.5 Arnold Engineering Developement Centre, AEDC-TR-73-162 Experimental measurements in the turbulent boundary layer of a yawed, dpinning ogive-cylinder body of revolution at Mach 3.0. Part 2. Data tabulation, " U.S Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD ARBRL-MR-02813 Numerical computations of transonic critical aerodynamic behavior Supersonic wind tunnel measurements of static and Magnus aerodynamic coefficients for projectile shapes with tangent and secant ogive noses Optimization of boattails for small arms bullets Supersonic, turbulent flow computation and drag optimization for axisymmetric afterbodies, Simulations numériques hybrides RANS/LES de l'aérodynamique des projectiles et application au contrôle des écoulements Thèse de doctorat, Université Lille 1 -Sciences et technologies, pp.1080-1090, 1973.

M. A. Suliman, O. K. Mahmoud, M. A. Sanabawy, O. E. Abdel-hamid, K. R. Heavey13 et al., CFD computation of Magnus moment and roll damping moment of a spinning projectile presented at the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Province, Rhode Island A flight mechanics/aerodynamics coupling methodology for projectiles Time-accurate numerical prediction of free-flight aerodynamics of a finned projectile Simulations of 6-DOF motion with a Cartesian method An immersed boundary method for compressible flows using local grid refinement High Reynolds number calculations using the dynamic subgrid-scale stress model On the formulation of the dynamic mixed subgrid-scale model General circulation experiments with the primitive equaitons A dynamic subgrid-scale eddy viscosity model A Lagrangian dynamic subgrid-scale model of turbulence, 13 th International Conference on AerospaceE Sciences & Aviation Technology 41st AIAA aerospace sciences meeting & exhibit AIAA Paper 0029. [14] J. Sahu 41st AIAA Aerospace Sciences Meeting Piomelli, P. Moin, and W. H. Cabot Physics of Fluids A: Fluid Dynamics, pp.946-954, 1963.

A. Yoshizawa, P. L. Roe, G. Lodato, P. Domingo, and L. Vervisch, Approximate Riemann solvers, parameter vectors, and difference schemes Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows Boundary conditions for direct simulations of compressible viscous flows Adaptive mesh refinement for hyperbolic partial differential equations, Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, pp.2152-357, 1981.

M. J. Aftosmis, M. J. Berger, J. E. Melton-]-d, C. D. Balsara, . Norton-]-g et al., Highly parallel structured adaptive mesh refinement using parallel language-based approaches Local grid refinement for an immersed boundary rans solver AIAA Paper An accuracy assessment of cartesian-mesh approaches for the Euler equations A cartesian grid method with transient anisotropic adaptation An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies A 2ntree based automated viscous cartesian grid methodology for feature capturing, AIAA Journal Parallel Computing Journal of Computational Physics Journal of Computational Physics J. J. Quirk Computers & Fluids, vol.363234, issue.23 1, pp.952-960, 1994.

Z. J. Wang, R. F. Chen-pham, F. Plourde, S. K. Doan38-]-e, R. Fadlun et al., Anisotropic solution-adaptive viscous cartesian grid method for turbulent flow simulation Conservative smoothing on an adaptive quadrilateral grid Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations Turbulent heat and mass transfer in sinusoidal wavy channels Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations A sharp interface cartesian grid method for simulating flows with complex moving boundaries A ghost-cell immersed boundary method for flow in complex geometry An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries Comparison of calculated and experimental data on supersonic flow past a circular cylinder An immersed-boundary method for compressible viscous flows Computers &amp Cavity flows in a scramjet engine by the space-time conservation and solution element method, 43] P. D. Palma, M. D. de Tullio, G. Pascazio, and M. Napolitano, pp.1969-1978, 1999.

J. Jeong and F. Hussain, On the identification of a vortex Shock-wave shapes around spherical-and cylindrical-nosed bodies Vortices following two dimensional separation, Proceedings of the, pp.69-822, 1967.

G. Colloquium, W. Germany, O. Rodriguez50, ]. Onn, A. Su et al., Numerical computations of transonic critical aerodynamic behavior Computational drag and magnus force reduction for a transonic spinning projectile using passive porosity Surface pressure measurements on slender bodies at angle of attack in supersonic flow Turbulent boundary layer measurements on the boattail section of a yawed, spinning projectile shape at mach 3.0 On the partial difference equations of mathematical physics Strategies for turbulence modelling and simulations, subsonic and transonic flow Computational aerodynamics development and outlook, pp.1713-1718, 1967.

U. Piomelli, E. Balaras-]-p, J. Moin, and . Kim, Wall-layer models for large-eddy simulations Numerical investigation of turbulent channel flow, Progress in Aerospace Sciences, pp.349-374, 1982.

U. Schumann, U. Piomelli, J. Ferziger, P. Moin, J. Kim et al., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers New approximate boundary conditions for large eddy simulations of wall-bounded flows Experimental study of wall boundary conditions for large-eddy simulation Subgrid scale models in finite difference simulations of complex wall bounded flows, AGARD, Application of Direct and Large Eddy Simulation to Transition and Turbulence 6 p (SEE N95-21061, pp.376-404, 1970.

]. P. Spalart, W. Jou, M. Strelets, S. Allmaras, N. V. Nikitin et al., Comments of feasibility of LES for wings, and on a hybrid RANS/LES approach An approach to wall modeling in large-eddy simulations Near-wall behavior of RANS turbulence models and implications for wall functions, International Conference on DNS/LES, pp.1629-265, 1997.

A. G. Hutton and R. M. Smith, A study of two-equation turbulence models for axi-symmetric recirculating flow Numerical methods in laminar and turbulent flow, Proceedings of the Third International Conference, pp.233-247, 1983.

J. Sahu, C. J. Nietubicz, and J. L. Steger, Navier-Stokes computations of projectile base flow with and without mass injection, AIAA Journal, vol.23, issue.9, pp.1348-1355, 1985.
DOI : 10.2514/3.9091

J. Sahu, C. J. Nietubicz, J. L. Steger, L. B. Schiff, and W. B. Sturek, Numerical computation of base flow for a projectile at transonic speeds AIAA paper Numerical simulation of steady supersonic flow over an ogive cylinder boattail body, Annalen der Physik, vol.164, issue.1, pp.82-1358, 1981.

E. B. Krahn73-]-w, L. B. Sturek, and . Schiff, The laminar boundary layer on a rotating cylinder in crossflow. Defense Technical Information Center Computations of the Magnus effect for slender bodies in supersonic flow, 1955.

R. Cayzac, E. Carette, R. Thépot, and O. Donneaud, Analysis of static and dynamic stability of spinning projectiles CFD prediction of Magnus effect in subsonic to supersonic flight, 2004.

R. Cayzac, E. Carette, P. Denis, P. Guillen, F. Simon et al., Magnus effect: Physical origins and numerical prediction Numerical simulation of magnus force control for projectiles configurations, Journal of Applied Mechanics Computers & Fluids, vol.7878, issue.38 4, pp.51005-965, 2009.

M. Péchier, Prévivions numériques de l'effet Magnus pour des configurations de munitions

F. Dietrichm, C. Geib, P. Gransart, . Merle81-]-r, P. Otte et al., Thèse de doctorat Corba des concepts à la pratique. Paris: Dunod Understanding CORBA : common object request broker architecture. Upper Saddle River, N Quaternions d'Hamilton pour le calcul des mouvements d'un projetile Navier-Stokes computations of finned kinetic energy projectile base flow, Sturek, " Computation of the roll characteristics of the M829 kinetic energy projectile and comparison with range data, 1982.

P. Weinacht and W. B. Sturek, Computation of the roll characteristics of finned projectiles

M. J. Guidos, P. J. Weinacht-]-b, W. B. Guidos, and . Sturek, Parabolized Navier-Stokes computation of surface heat transfer characteristics for supersonic and hypersonic KE projectiles Computation of hypersonic nosetip feat transfer rates for an M829-like projectile, 1988.

]. R. Cayzac and E. Carette, Etudes d'empennages en matériaux composites à matrice métallique, MR-52, 1993.

R. Cayzac, C. Grignon, and E. Carette, Navier???Stokes computation of heat transfer and aero-heating modeling for supersonic projectiles, Aerospace Science and Technology, vol.10, issue.5, pp.374-384, 2006.
DOI : 10.1016/j.ast.2005.12.001

H. Demailly, F. Delvare, S. Heddadj, C. Grignon, and P. Bailly, Intermediate and Exterior Ballistics Identification inverse des coefficients aérodynamiques d'un engin hypersonique à partir de données issues de vol Méthodes explicites de Runge-Kutta pour l'intégration d'équations différenctielles ordinaries, Computational Fluid Dynamics and Experimental Validations of the Direct Coupling Between Interior 20ème Congrès Français de Mécanique, 1979.

J. D. Anderson, . Fundamentals, R. Boston, C. Greendyke, J. Scott et al., CFD simulation of laser ablation carbon nanotube production Laser ablation process for single-walled carbon nanotube production Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process, 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Missouri Modélisation de l'interaction entre un écoulement turbulent et une paroi ablatable, pp.317-325, 2001.

H. G. Landau, Heat conduction in a melting solid, Quarterly of Applied Mathematics, vol.8, issue.1, pp.81-94, 1950.
DOI : 10.1090/qam/33441

M. A. Biot and H. C. , Variational Analysis of Ablation for Variable Properties, Journal of Heat Transfer, vol.86, issue.3, p.437, 1964.
DOI : 10.1115/1.3688715

URL : https://hal.archives-ouvertes.fr/hal-01368660

J. E. Sunderland and R. J. Grosh, Transient Temperature in a Melting Solid, Journal of Heat Transfer, vol.83, issue.4, p.409, 1961.
DOI : 10.1115/1.3683655

M. Storti, Numerical modeling of ablation phenomena as two-phase Stefan problems, International Journal of Heat and Mass Transfer, vol.38, issue.15, pp.2843-2854, 1995.
DOI : 10.1016/0017-9310(95)00002-Q

B. F. Blackwell and R. E. Hogan, One-dimensional ablation using Landau transformation and finite control volume procedure, Journal of Thermophysics and Heat Transfer, vol.8, issue.2, pp.282-287, 1994.
DOI : 10.2514/3.535

H. Molavi, A. Hakkaki-fard, M. Molavi, R. K. Rahmani, A. Ayasoufi et al., Estimation of boundary conditions in the presence of unknown moving boundary caused by ablation, International Journal of Heat and Mass Transfer, vol.54, issue.5-6, pp.5-6, 2011.
DOI : 10.1016/j.ijheatmasstransfer.2010.11.035

M. Sussman, A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles, Journal of Computational Physics, vol.187, issue.1, pp.110-136, 2003.
DOI : 10.1016/S0021-9991(03)00087-1

G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-rawahi et al., A Front-Tracking Method for the Computations of Multiphase Flow, Journal of Computational Physics, vol.169, issue.2, pp.708-759, 2001.
DOI : 10.1006/jcph.2001.6726

V. M. Borisov, M. M. Golomazov, A. A. Ivankov, and V. S. Finchenko, Calculation of Radiation Heat Transfer in Problems of Flow past Bodies with Account for Heat-Shield Coating Mass Loss, Fluid Dynamics, vol.39, issue.4, pp.633-641, 2004.
DOI : 10.1023/B:FLUI.0000045679.30291.9e

F. A. Gomes, J. B. Silva, and A. J. Diniz, RADIATION HEAT TRANSFER WITH ABLATION IN A FINITE PLATE, Revista de Engenharia T??rmica, vol.4, issue.2, 2006.
DOI : 10.5380/ret.v4i2.5410

E. J. Van-eekelen and J. Lachaud, Radiation heat-transfer model for the ablation zone of lowdensity carbon-resin composites Ablative heat transfer in a shrinking packed-bed of ZnO undergoing solar thermal dissociation, 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, pp.1659-1666, 2009.

]. M. De-tullio, S. S. Latorre, P. D. Palma, M. Napolitano, G. Pascazio et al., An immersedboundary method for solving conjungate heat transfer problems in turbomachinery Approximate analytical solution for one-dimensional ablation problem with time-variable heat flux, European Conference on Computational Fluid Dynamics ECCOMAS CFD 36th AIAA Thermophysics Conference, 2003.