R. Abgrall, R. Loubère, and J. Ovadia, A Lagrangian Discontinuous Galerkin-type method on unstructured meshes to solve hydrodynamics problems, Int. J. Numer. Meth. Fluids, vol.44, pp.645-663, 2004.

F. L. Adessio, J. K. Baumgardner, N. L. Dukowicz, B. A. Johnson, R. M. Kashiwa et al., CAVEAT: a computer code for fluid dynamics problems with large distortion and internal slip, p.905, 1992.

A. J. Barlow, A compatible finite element multi-material ALE hydrodynamics algorithm, International Journal for Numerical Methods in Fluids, vol.141, issue.8, pp.953-964, 2008.
DOI : 10.1002/fld.1593

A. J. Barlow and P. L. Roe, A cell centred Lagrangian Godunov scheme for shock hydrodynamics, Computers & Fluids, vol.46, issue.1, pp.133-136, 2011.
DOI : 10.1016/j.compfluid.2010.07.017

T. J. Barth and D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, 27th Aerospace Sciences Meeting, 1989.
DOI : 10.2514/6.1989-366

M. Ben-artzi and J. Falcovitz, Generalized Riemann problems in Computational Fluids Dynamics, 2003.
DOI : 10.1017/CBO9780511546785

D. J. Benson, Computational methods in Lagrangian and Eulerian hydrocodes, Computer Methods in Applied Mechanics and Engineering, vol.99, issue.2-3, pp.235-394, 1992.
DOI : 10.1016/0045-7825(92)90042-I

R. Biswas, K. Devine, and J. E. Flaherty, Parallel, adaptive finite element methods for conservation laws, Applied Numerical Mathematics, vol.14, issue.1-3, pp.255-284, 1994.
DOI : 10.1016/0168-9274(94)90029-9

J. Botsis and M. Deville, Mécanique des milieux continus, Presses Polytechniques et Universitaires Romandes, 2006.

B. Boutin, E. Deriaz, P. Hoch, and P. Navaro, Extension of ALE methodology to unstructured conical meshes, ESAIM: Proceedings, pp.1-10, 2011.
DOI : 10.1051/proc/2011011

URL : https://hal.archives-ouvertes.fr/hal-00777271

A. F. Bower, Applied Mechanics of Solids, 2010.

J. Breil, L. Hallo, P. Maire, and M. Olazabal-loumé, Hydrodynamic instabilities in axisymmetric geometry self-similar models and numerical simulations, Laser and Particle Beams, vol.1, issue.02, pp.155-160, 2005.
DOI : 10.1017/S026303460321301X__S026303460321301X

A. Burbeau-augoula, A Node-Centered Artificial Viscosity Method for Two-Dimensional Lagrangian Hydrodynamics Calculations on a Staggered Grid, Communications in Computational Physics, vol.8, pp.877-900, 2009.
DOI : 10.4208/cicp.030709.161209a

D. E. Burton, Multidimensional Discretization of Conservation Laws for Unstructured Polyhedral Grids, 1994.

J. C. Campbell and M. J. Shashkov, A Tensor Artificial Viscosity Using a Mimetic Finite Difference Algorithm, Journal of Computational Physics, vol.172, issue.2, pp.739-765, 2001.
DOI : 10.1006/jcph.2001.6856

J. C. Campbell and M. J. Shashkov, A compatible Lagrangian hydrodynamics algorithm for unstructured grids, Selçuk J. Appl. Math, vol.4, pp.53-70, 2003.

E. J. Caramana, M. J. Shashkov, and P. P. Whalen, Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations, Journal of Computational Physics, vol.144, issue.1, pp.70-97, 1998.
DOI : 10.1006/jcph.1998.5989

E. J. Caramana, D. E. Burton, M. J. Shashkov, and P. P. Whalen, The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy, Journal of Computational Physics, vol.146, issue.1, pp.227-262, 1998.
DOI : 10.1006/jcph.1998.6029

E. J. Caramana and M. J. Shashkov, Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures, Journal of Computational Physics, vol.142, issue.2, pp.521-561, 1998.
DOI : 10.1006/jcph.1998.5952

G. Carré, S. Delpino, B. Després, and E. Labourasse, A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, Journal of Computational Physics, vol.228, issue.14, pp.5160-5183, 2009.
DOI : 10.1016/j.jcp.2009.04.015

J. Cheng and C. Shu, A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, Journal of Computational Physics, vol.227, issue.2, pp.1567-1596, 2007.
DOI : 10.1016/j.jcp.2007.09.017

J. Cheng and C. Shu, A third-order conservative lagrangian type scheme on curvilinear meshes for the compressible euler equations, Commun. Comput. Phys, vol.4, pp.1008-1024, 2008.

J. Cheng and C. Shu, A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry, Journal of Computational Physics, vol.229, issue.19, pp.7191-7206, 2010.
DOI : 10.1016/j.jcp.2010.06.007

B. Cockburn, S. Hou, and C. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comp, vol.54, pp.545-581, 1990.

B. Cockburn, S. Lin, and C. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems, Journal of Computational Physics, vol.84, issue.1, pp.90-113, 1989.
DOI : 10.1016/0021-9991(89)90183-6

B. Cockburn and C. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework, Math. Comp, vol.52, pp.411-435, 1989.

B. Cockburn and C. Shu, The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws, 1st National Fluid Dynamics Conference, pp.337-361, 1991.
DOI : 10.2514/6.1988-3797

B. Cockburn and C. Shu, The Runge???Kutta Discontinuous Galerkin Method for Conservation Laws V, Journal of Computational Physics, vol.141, issue.2, pp.199-224, 1998.
DOI : 10.1006/jcph.1998.5892

P. Collela and P. Woodward, The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics, vol.54, issue.1, pp.174-201, 1984.
DOI : 10.1016/0021-9991(84)90143-8

B. Després, Lois de Conservation Euleriennes, Lagrangiennes et méthodes numériques, Mathématiques et Applications, 2010.
DOI : 10.1007/978-3-642-11657-5

B. Després, Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.41-44, pp.2669-2679, 2010.
DOI : 10.1016/j.cma.2010.05.010

B. Després and C. Mazeran, Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems, Archive for Rational Mechanics and Analysis, vol.180, issue.3, pp.327-372, 2005.
DOI : 10.1007/s00205-005-0375-4

V. A. Dobrev, T. E. Ellis, T. V. Kolev, and R. N. Rieben, Curvilinear finite elements for Lagrangian hydrodynamics, International Journal for Numerical Methods in Fluids, vol.72, issue.1, pp.11-121295, 2011.
DOI : 10.1002/fld.2366

V. A. Dobrev, T. E. Ellis, T. V. Kolev, and R. N. Rieben, High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics. submitted to SIAM, Journal of Scientific Computing, 2011.

J. K. Dukowicz and B. Meltz, Vorticity errors in multidimensional lagrangian codes, Journal of Computational Physics, vol.99, issue.1, pp.115-134, 1992.
DOI : 10.1016/0021-9991(92)90280-C

A. Ern and J. Guermond, Theory and Practice of Finite Elements, 2004.
DOI : 10.1007/978-1-4757-4355-5

S. Galera, P. Maire, and J. Breil, A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, Journal of Computational Physics, vol.229, issue.16, pp.5755-5787, 2010.
DOI : 10.1016/j.jcp.2010.04.019

URL : https://hal.archives-ouvertes.fr/inria-00453534

P. George, H. Borouchaki, and P. Laug, Construction de maillage de degré 2 -Partie 1 :triangle P2, 2011.

P. Germain, Mécanique, volume I. Ellipses, 1986.

W. B. Goad, WAT: A Numerical Method for Two-Dimensional Unsteady Fluid Flow, 1960.

E. Godlewski and P. Raviart, Hyperbolic Systems of Conservation Laws, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00113734

P. Gresho, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 2: Implementation, International Journal for Numerical Methods in Fluids, vol.7, issue.5, 1990.
DOI : 10.1002/fld.1650110510

J. L. Guermond and R. Pasquetti, Entropy Viscosity Method for High-Order Approximations of Conservation Laws, Lecture Notes in computational Science and Engineering, 2009.
DOI : 10.1007/978-3-642-15337-2_39

J. Guermond, R. Pasquetti, and B. Popov, Entropy viscosity method for nonlinear conservation laws, Journal of Computational Physics, vol.230, issue.11, pp.4248-4267, 2011.
DOI : 10.1016/j.jcp.2010.11.043

M. E. Gurtin, E. Fried, and L. Anand, The mechanics and thermodynamics of continua, 2009.
DOI : 10.1017/CBO9780511762956

S. Hou and X. Liu, Solutions of Multi-dimensional Hyperbolic Systems of Conservation Laws by Square Entropy Condition Satisfying Discontinuous Galerkin Method, Journal of Scientific Computing, vol.19, issue.2, pp.127-151, 2007.
DOI : 10.1007/s10915-006-9105-9

W. H. Hui, P. Y. Li, and Z. W. Li, A Unified Coordinate System for Solving the Two-Dimensional Euler Equations, Journal of Computational Physics, vol.153, issue.2, pp.596-637, 1999.
DOI : 10.1006/jcph.1999.6295

Z. Jia and S. Zhang, A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions, Journal of Computational Physics, vol.230, issue.7, pp.2496-2522, 2011.
DOI : 10.1016/j.jcp.2010.12.023

G. Jiang and C. Shu, On a cell entropy inequality for discontinuous Galerkin methods, Mathematics of Computation, vol.62, issue.206, pp.531-538, 1994.
DOI : 10.1090/S0025-5718-1994-1223232-7

J. R. Kamm and F. X. Timmes, On efficient generation of numerically robust Sedov solutions, 2007.

R. E. Kidder, Laser-driven compression of hollow shells: power requirements and stability limitations, Nuclear Fusion, vol.16, issue.1, pp.3-14, 1976.
DOI : 10.1088/0029-5515/16/1/001

G. Kluth, Analyse mathématique et numérique de systèmes hyperélastiques et introduction de la plasticité, 2008.

G. Kluth and B. Després, Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme, Journal of Computational Physics, vol.229, issue.24, pp.9092-9118, 2010.
DOI : 10.1016/j.jcp.2010.08.024

. V. Tz, R. N. Kolev, and . Rieben, A tensor artificial viscosity using a finite element approach, J. Comp. Phys, vol.228, pp.8336-8366, 2010.

V. P. Kolgan, Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics, Journal of Computational Physics, vol.230, issue.7, pp.2384-2390, 2011.
DOI : 10.1016/j.jcp.2010.12.033

A. Kurganov, G. Petrova, and B. Popov, Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws, SIAM Journal on Scientific Computing, vol.29, issue.6, pp.2381-2401, 2007.
DOI : 10.1137/040614189

D. Kuzmin, A vertex-based hierarchical slope limiter for <mml:math altimg="si27.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>p</mml:mi></mml:math>-adaptive discontinuous Galerkin methods, Journal of Computational and Applied Mathematics, vol.233, issue.12, pp.3077-3085, 2009.
DOI : 10.1016/j.cam.2009.05.028

P. Lascaux, Application de la méthode desélémentsdeséléments finis en hydrodynamique bidimensionnelle utilisant les variables de Lagrange, 1972.

P. Lascaux, Application of the Finite Element Method to 2D Lagrangian hydrodynamics In Finite element methods in flow problems, Proceedings of the International Symposium, pp.139-152, 1974.

P. Lax and B. Wendroff, Systems of conservation laws, Communications on Pure and Applied Mathematics, vol.47, issue.2, pp.217-237, 1960.
DOI : 10.1002/cpa.3160130205

R. J. Leveque, Numerical Methods for Conservations Laws, Lectures in Mathematics ETH Zürich. Birkhaüser, 1992.

R. J. Leveque, High-Resolution Conservative Algorithms for Advection in Incompressible Flow, SIAM Journal on Numerical Analysis, vol.33, issue.2, pp.627-665, 1996.
DOI : 10.1137/0733033

R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, vol.31, 2002.
DOI : 10.1017/CBO9780511791253

K. Lipnikov and M. Shashkov, A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes, Journal of Computational Physics, vol.229, issue.20, pp.7911-7941, 2010.
DOI : 10.1016/j.jcp.2010.06.045

W. L. Liu, J. Cheng, and C. Shu, High order conservative Lagrangian schemes with Lax???Wendroff type time discretization for the compressible Euler equations, Journal of Computational Physics, vol.228, issue.23, pp.8872-8891, 2009.
DOI : 10.1016/j.jcp.2009.09.001

R. Loubère, Une Méthode Particulaire Lagrangienne de type Galerkin Discontinu Applicationàcationà la Mécanique des Fluides et l'Interaction Laser/Plasma, 2002.

H. Luo, J. D. Baum, and R. Löhner, A Fast p-Multigrid Discontinuous Galerkin Method for Compressible Flows at All Speeds, 44th AIAA Aerospace Sciences Meeting and Exhibit, pp.635-652, 2008.
DOI : 10.2514/6.2006-110

S. M. Murman, M. Berger, and M. J. Aftosmis, Analysis of slope limiters on irregular grids, 2005.

P. Maire, A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry, Journal of Computational Physics, vol.228, issue.18, pp.6882-6915, 2009.
DOI : 10.1016/j.jcp.2009.06.018

URL : https://hal.archives-ouvertes.fr/inria-00372105

P. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, Journal of Computational Physics, vol.228, issue.7, pp.2391-2425, 2009.
DOI : 10.1016/j.jcp.2008.12.007

URL : https://hal.archives-ouvertes.fr/inria-00322369

P. Maire, A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, International Journal for Numerical Methods in Fluids, vol.61, issue.3, pp.11-121281, 2010.
DOI : 10.1002/fld.2328

P. Maire, A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Computers & Fluids, vol.46, issue.1, pp.479-485, 2011.
DOI : 10.1016/j.compfluid.2010.07.013

P. Maire, Contribution to the numerical modeling of Inertial Confinement Fusion HabilitationàHabilitationà Diriger des Recherches, 2011.

P. Maire, R. Abgrall, J. Breil, and J. Ovadia, A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems, SIAM Journal on Scientific Computing, vol.29, issue.4, pp.1781-1824, 2007.
DOI : 10.1137/050633019

URL : https://hal.archives-ouvertes.fr/inria-00334022

P. Maire and J. Breil, A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems, International Journal for Numerical Methods in Fluids, vol.178, issue.8, pp.1417-1423, 2008.
DOI : 10.1002/fld.1564

P. Maire, J. Breil, and S. Galera, A cell-centred arbitrary Lagrangian???Eulerian (ALE) method, International Journal for Numerical Methods in Fluids, vol.176, issue.8, pp.1161-1166, 2008.
DOI : 10.1002/fld.1557

P. Maire, R. Loubère, and P. , Abstract, Communications in Computational Physics, vol.146, issue.04, pp.940-978, 2011.
DOI : 10.1016/j.jcp.2005.11.022

P. Maire and B. Nkonga, Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics, Journal of Computational Physics, vol.228, issue.3, pp.799-821, 2009.
DOI : 10.1016/j.jcp.2008.10.012

URL : https://hal.archives-ouvertes.fr/inria-00290717

C. Mazeran, Sur la structure mathématique et l'approximation numérique de l'hydrodynamique Lagrangienne bidimensionelle, 2007.

R. Menikoff, Notes on Elastic-Plastic Flow, 2003.

W. F. Noh, Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, Journal of Computational Physics, vol.72, issue.1, pp.78-120, 1987.
DOI : 10.1016/0021-9991(87)90074-X

W. F. Noh, Methods in Computational Physics chapter CEL: A Time-dependent Two-Space-Dimensional Coupled Eulerian-Lagrangian Code, pp.117-179, 1964.

S. and D. Pino, A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates, Comptes Rendus Mathematique, vol.348, issue.17-18, pp.1027-1032, 2010.
DOI : 10.1016/j.crma.2010.08.006

J. Qiu, B. C. Khoo, and C. Shu, A numerical study for the performance of the Runge???Kutta discontinuous Galerkin method based on different numerical fluxes, Journal of Computational Physics, vol.212, issue.2, pp.540-565, 2006.
DOI : 10.1016/j.jcp.2005.07.011

B. Rebourcet, Comments on the filtering of numerical instabilities in Lagrangian hydrocodes Conference on Numerical methods for multi-material fluid flows; Czech Technical University in Prague on September 10 -14, 2007.

W. H. Reed and T. R. Hill, Triangular Mesh Methods for the Neutron Transport Equation, 1973.

J. Salençon, Mécanique des milieux continus, volume I, Concepts généraux, 2005.

G. Scovazzi, Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.4-6, pp.966-978, 2007.
DOI : 10.1016/j.cma.2006.08.009

G. Scovazzi, M. A. Christon, T. J. Hughes, and J. N. Shadid, Stabilized shock hydrodynamics: I. A Lagrangian method, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.4-6, pp.923-966, 2007.
DOI : 10.1016/j.cma.2006.08.008

G. Scovazzi and T. J. Hugues, Lecture Notes on Continuum Mechanics on Arbitrary Moving Domains, 2007.

G. Scovazzi, E. Love, and M. J. Shashkov, Multi-scale Lagrangian shock hydrodynamics on Q1/P0 finite elements: Theoretical framework and two-dimensional computations, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.9-12, pp.1056-1079, 2008.
DOI : 10.1016/j.cma.2007.10.002

J. Serrin, Mathematical Principles of Classical Fluid Mechanics, Handbuch der Physik, pp.125-263, 1959.
DOI : 10.1007/978-3-642-45914-6_2

C. Shu, TVB uniformly high-order schemes for conservation laws, Mathematics of Computation, vol.49, issue.179, pp.105-121, 1987.
DOI : 10.1090/S0025-5718-1987-0890256-5

C. Shu, Discontinuous Galerkin Methods, 2009.
DOI : 10.1002/9780470686652.eae065

C. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, vol.77, issue.2, pp.439-471, 1988.
DOI : 10.1016/0021-9991(88)90177-5

G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of Computational Physics, vol.27, issue.1, pp.1-31, 1978.
DOI : 10.1016/0021-9991(78)90023-2

B. Van-leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, Journal of Computational Physics, vol.32, issue.1, pp.101-136, 1979.
DOI : 10.1016/0021-9991(79)90145-1

B. Van-leer, A historical oversight: Vladimir P. Kolgan and his high-resolution scheme, Journal of Computational Physics, vol.230, issue.7, pp.2378-2383, 2011.
DOI : 10.1016/j.jcp.2010.12.032

F. Vilar, Cell-centered discontinuous galerkin discretization for two-dimensional lagrangian hydrodynamics. Computers and Fluids, pp.64-73, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01093675

F. Vilar, P. Maire, and R. Abgrall, Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics, Computers & Fluids, vol.46, issue.1, pp.498-604, 2010.
DOI : 10.1016/j.compfluid.2010.07.018

URL : https://hal.archives-ouvertes.fr/inria-00538165

J. Von-neumann and R. D. Richtmyer, A Method for the Numerical Calculation of Hydrodynamic Shocks, Journal of Applied Physics, vol.21, issue.3, pp.232-238, 1950.
DOI : 10.1063/1.1699639

P. Whalen, Algebraic Limitations on Two-Dimensional Hydrodynamics Simulations, Journal of Computational Physics, vol.124, issue.1, pp.46-54, 1996.
DOI : 10.1006/jcph.1996.0043

Y. Xu and C. Shu, Local Discontinuous Galerkin Methods for High-Order Time- Dependent Partial Differential Equations, Commun. Comput. Phys, vol.7, pp.1-46, 2010.

M. Yang and Z. J. Wang, A parameter-free generalized moment limiter for high-order methods on unstrucured grids, Adv. Appl. Math. Mech, vol.4, pp.451-480, 2009.

X. Zhang and C. Shu, On maximum-principle-satisfying high order schemes for scalar conservation laws, Journal of Computational Physics, vol.229, issue.9, pp.3091-3120, 2010.
DOI : 10.1016/j.jcp.2009.12.030