Skip to Main content Skip to Navigation

Questions d'Euclidianité

Pierre Lezowski 1, 2
2 LFANT - Lithe and fast algorithmic number theory
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : We study norm-Euclideanity of number fields and some of its generalizations. In particular, we provide an algorithm to compute the Euclidean minimum of a number field of any signature. This allows us to study the norm-Euclideanity of many number fields. Then, we extend this algorithm to deal with norm-Euclidean classes and we obtain new examples of number fields with a non-principal norm-Euclidean class. Besides, we describe the complete list of pure cubic number fields admitting a norm-Euclidean class. Finally, we study the Euclidean property in quaternion fields. First, we establish its basic properties, then we study some examples. We provide the complete list of Euclidean quaternion fields, which are totally definite over a number field with degree at most two.
Document type :
Complete list of metadata

Cited literature [39 references]  Display  Hide  Download
Contributor : Pierre Lezowski Connect in order to contact the contributor
Submitted on : Friday, December 14, 2012 - 1:23:33 PM
Last modification on : Thursday, January 20, 2022 - 5:31:37 PM
Long-term archiving on: : Sunday, December 18, 2016 - 1:40:13 AM


  • HAL Id : tel-00765252, version 1



Pierre Lezowski. Questions d'Euclidianité. Théorie des nombres [math.NT]. Université Sciences et Technologies - Bordeaux I, 2012. Français. ⟨NNT : 2012BOR14642⟩. ⟨tel-00765252⟩



Les métriques sont temporairement indisponibles