N
N

N

HAL

open science

Decoupled (SSA-based) register allocators: from theory
to practice, coping with just-in-time compilation and
embedded processors constraints
Quentin Colombet

» To cite this version:

Quentin Colombet. Decoupled (SSA-based) register allocators: from theory to practice, coping
with just-in-time compilation and embedded processors constraints. Other [cs.OH]. Ecole normale

supérieure de lyon - ENS LYON, 2012. English. NNT: 2012ENSL0O777 . tel-00764405v2

HAL Id: tel-00764405
https://theses.hal.science/tel-00764405v2
Submitted on 21 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00764405v2
https://hal.archives-ouvertes.fr

Numeéro National de Thése: 2012ENSLO777

THESE
en vue d’obtenir le grade de
Docteur de I’Ecole Normale Supérieure de Lyon — Université de Lyon
spécialité : Informatique
Laboratoire de U'Informatique du Parallélisme

Ecole doctorale Informatique et Mathématiques de Lyon

présentée et soutenue publiguement le 07/12/12

par Monsieur Quentin COLOMBET

Decoupled (SSA-based) Register Allocators :
from Theory to Practice, Coping with Just-In-Time Compilation

and Embedded Processors Constraints.

Directeur de thése : Monsieur Alain DARTE
Co-directeur de thése : Monsieur Fabrice RASTELLO

Apres avis de : Monsieur Vivek SARKAR, Membre/Rapporteur
Monsieur Erven ROHOU, Membre/Rapporteur

Devant la Commission d’examen formée de :
Monsieur Erik ALTMAN, Membre
Monsieur Albert COHEN, Membre
Monsieur Alain DARTE, Membre
Monsieur Vivek SARKAR, Membre/Rapporteur
Monsieur Fabrice RASTELLO, Membre
Monsieur Erven ROHOU, Membre/Rapporteur

Abstract

In compilation, register allocation is the optimization that chooses which vari-
ables of the source program, in unlimited number, are mapped to the actual
registers, in limited number. Parts of the live-ranges of the variables that can-
not be mapped to registers are placed in memory. This eviction is called spilling.

Until recently, compilers mainly addressed register allocation via graph col-
oring using an idea developed by Chaitin et al. [33] in 1981. This approach
addresses the spilling and the mapping of the variables to registers in one phase.
In 2001, Appel and George [3] proposed to split the register allocation in two
separate phases. This idea yields better and independent solutions for both
problems, but requires a very aggressive form of live-range splitting, split ev-
erywhere, which renames all variables between all instructions of the program.
However, in 2005, several groups [27, 84, 56, 16] observed that the static single
assignment (SSA) form provides sufficient split points to decouple the register
allocation as Appel and George suggested, unless register aliasing or precoloring
constraints are involved.

Prior to this thesis, no alternative to this aggressive live-range splitting was
available for decoupled register allocation with register aliasing. Other forms of
architectural constraints, e.g., encoding and application binary interface (ABI)
constraints, can be handled via a form of live-range splitting, more intensive
than SSA but less aggressive than split everywhere [55].

This thesis covers all the aspects of decoupled register allocation under SSA
with architectural constraints. In a first part, we focused on the spilling problem.
Using an exact formulation of the spilling problem, we investigated the impact of
SSA during this phase and compared several spilling approaches, exact or not, in
our model. This comparison pointed out that SSA complicates the problem and
that the state-of-the-art objective function, the static spill cost, used to optimize
spill code placement may not be relevant for runtime performances. Following
these observations, we evaluated several, existing or not, simplifications of the
spilling problem that should help design a good spilling heuristic in terms of
runtime performance, though not necessarily static spill cost.

The second part of the manuscript is dedicated to the assignment phase.
We showed how to handle regular architectural constraints without intensive
live-range splitting. Our approach is compatible with graph-coloring-based ap-
proaches, but also with scan-based approaches (traversal of the control-flow
graph), as we demonstrated with our fast register allocator, tree-scan . Regard-
ing register aliasing, we showed how to limit the effect of split everywhere and
still having the decoupling property.

Finally, in a third part, we demonstrated how to improve the final assembly
code via local recoloring techniques. These techniques help to deconstruct col-
ored SSA, i.e., register-allocated SSA, and eliminates many copies instructions
inserted for live-range splitting purposes.

We wanted all this work to be applicable to just-in-time (JIT) compilation
for embedded targets, thus speed and memory footprint were a concern.

Keywords: Decoupled register allocation, register aliasing, precoloring, JIT,
SSA; spilling.

Résumé

En compilation, 1’allocation de registres est l'optimisation qui choisit quelles
variables du programme source, en nombre illimité, sont stockées dans les reg-
istres physiques, en nombre limité. Les variables qui ne peuvent tenir en registre
sont placées en mémoire. Cette éviction est appelée spilling.

Jusqu’a récemment, les compilateurs traitaient l’allocation de registres glob-
alement via la coloration de graphes en utilisant une idée développée par Chaitin
et al. [33] en 1981. En 2001, Appel et George [3] ont proposé de découper
I’allocation de registres en deux phases distinctes. Cette idée permet de définir
de meilleures solutions pour les deux problémes, mais nécessite une forme trés
agressive de renommage des variables, le split everywhere, qui renomme toutes
les variables entre toutes les instructions du programme. Cependant, en 2005,
plusieurs groupes [27, 84, 56, 16] ont observé qu’en 'absence de contraintes
d’aliasing de registres et de précoloriage, le passage en static single assignment
(SSA) définit des points de renommage suffisants pour découpler ’allocation de
registres tel que suggéré par Appel et George.

Avant cette thése, pour les approches découplées, seule la technique agressive
du split everywhere était disponible en présence d’aliasing de registres. Les
autres formes de contraintes d’allocation, contraintes d’encodage d’instructions
et celles dites d’application binary interface (ABI) peuvent étre traitées par du
renommage plus intensif qu’avec SSA mais moins qu’avec le split everywhere [55].

Cette thése couvre tous les aspects de l’allocation de registres découplée
sous SSA avec des contraintes architecturales. Dans une premiére partie, nous
nous sommes concentrés sur le probléme du spill. En utilisant une formulation
exacte, nous avons mis en évidence le fait que SSA complique le probléme et
que la fonction objective de 1’état de l'art, le cout statique de spill, utilisée
pour optimiser le placement du code de spill n’est pas pertinente en ce qui con-
cerne les performances d’exécution. Suivant ces observations, nous avons évalué
plusieurs simplifications du probléme, proposées antérieurement ou non, qui de-
vraient permettre de concevoir un bonne heuristique en termes de performances
d’exécution mais pas nécessairement de cotlt statique de spill.

La deuxiéme partie du manuscrit est dédiée & la phase d’assignation aux
registres. Nous avons montré comment éviter un renommage intensif pour gérer
les contraintes architecturales habituelles. Notre méthode est compatible avec
les approches basées sur la coloration de graphe, mais aussi sur les scans (par-
cours du graphe de flot de controle), comme nous ’avons démontré avec notre
allocateur de registre rapide, le tree-scan . En présence d’aliasing de registres,
nous avons montré comment limiter les effets de split everywhere tout en ayant
les bonnes propriétés des approches découplées.

Finalement, dans une troisiéme partie, nous avons montré comment améliorer
le code assembleur final avec des techniques de recoloriage. Celles-ci aident a la
déconstruction de SSA et & I’élimination des copies insérées par le renommage.

Enfin, nous voulions que nos travaux soient applicables & la compilation dite
just-in-time (JIT) pour processeurs embarqués, ainsi la vitesse et I’empreinte
mémoire ont été une préoccupation de tous les instants.

Mots clés : Allocation de registres découplée, JIT, SSA, aliasing de registres,
contraintes de registres (precoloring), vidage en mémoire (spilling).

Contents

Acronym

I

1

IT

Introduction

Introduction

1.1 Register Allocation
1.2 Motivations e e e
1.3 Outline and Contributions

Prerequisites and Hypotheses

2.1 Program Representation
2.1.1 Code Operations
2.1.2 Control Flow Graph (CFG)

2.2 Static Single Assignment (SSA) L
221 ¢-Functionso Lo
2.2.2 Strictness and Dominance Property
2.2.3 Conventional SSA
2.24 Deconstructing SSA
225 Livenessand SSA.

2.3 Register Allocation
2.3.1 Hypotheses
2.3.2 Global Register Allocation
2.3.3 Decoupled Register Allocation

Spill

3 Studying Optimal Spilling in the Light of SSA

3.1 Formulating “Optimal” Spilling
3.1.1 Existing “Exact” Formulations
3.1.2 Limitations of Existing Approaches

3.2 A More “Optimal” Formulation
3.2.1 Basic Formulation
3.2.2 Emulating Other Formulations
3.2.3 Handling SSA and ¢-Functions
3.2.4 Extended Formulation

3.3 Experiments. e

12
12
12
14
15
15
16
16
16
17
18
18
21
25

33.1 Solving Time 51

3.3.2 StaticSpill Cost 52
3.3.3 Dynamic Counts 56
3.3.4 Execution Time Measurements 57
34 Conclusion 62
4 Towards a Better Spilling Heuristic 63
4.1 Existing Spilling Criteria. 63
4.1.1 Static Spill Cost 63
41.2 Furthest First 65
4.2 Simplifying Assumptionso oL 67
4.2.1 The Instruction store, 67
4.2.2 The Instruction load 70
4.3 Existing Heuristics o oL 72
4.3.1 Graph Coloring 72
4.3.2 Scan-Based Approaches 74
4.3.3 Decoupled Approaches 75
4.4 Improving Runtime 0oL 76
4.4.1 Latency e 76
4.4.2 Helping the Scheduler 78
45 Conclusion 79
IIT Coloring with Affinities and Antipathies 81
5 Coloring with Encoding Constraints 83
5.1 Graph Coloring with Repairing 85
5.1.1 Model and restrictions o 0L 85
5.1.2 Strategies o 86
5.1.3 Repairing Codeo 90
5.2 Tree-Scan 91
5.2.1 The Basic Algorithm, .. 91
5.2.2 Repairing 94
5.3 Biased Coloring 99
54 Related Work oo o 102
5.5 Experiments. oL 105
5.5.1 Graph Coloring and Repairing 105
5.5.2 Tree-Scan oo 107
56 Conclusion e 114
6 Decoupled Graph-Coloring Register Allocation with Hierarchi-
cal Aliasing 115
6.1 Background oo o 116
6.2 Spilling Test in Face of Aliasing 120
6.2.1 Checking Colorability via Smith’s Simplification Test . . . 120
6.2.2 Correct Spilling Test Handling Aliasing and Precoloring . 121
6.2.3 Improving Smith’s Test with Live-Range Merging 122
6.3 Semi-Elementary Form 124
6.3.1 Criterion to Avoid Live-Range Splitting 124
6.3.2 Local Merging of Live-Ranges 126

6.4 Experiments. oo 128

6.5 Conclusion 133
IV Post Phases 134
7 Parallel Copy Motion 136

7.1 Parallel Copy Motion 137

7.1.1 Parallel Copies 137
7.1.2 Moving a Parallel Copy Out of an Edge 139
7.1.3 Parallel Copy Motion Inside Basic Blocks 140
7.2 Permutation Motion and Region Recoloring 141
7.2.1 Reversible Parallel Copies & Permutations. 141
7.2.2 Region Recoloring, 142
7.3 Applicationso 143
7.3.1 Removing Parallel Copies from Critical Edges 143
7.3.2 Shrinking Parallel Copies in a Basic Block 147
74 Experiments. e 150
7.4.1 The Impact of Copy Motion Out of Edges 151
7.4.2 The Impact of Copy Motion in Basic Blocks 153
7.4.3 All Together 155

7.5 Conclusion o 156
8 Elimination of Parallel Copies Using Copy Motion on Data De-

pendence Graphs 158

8.1 Data Dependence Graphs 159

8.1.1 Parallel Copies 160
8.1.2 Parallel Copy Motion 161
8.2 Copy Elimination on Data Dependence Graphs 161
8.2.1 Downward Motion of Definitions 163
8.2.2 Upward Motion of Uses 173
8.2.3 Code Motion Past Cyclic Parallel Copies 182
8.2.4 Algorithm Complexity 182
8.2.5 Additional Remarks 183
83 Experiments. 184
8.3.1 Copy Elimination after Full Coalescing 185
8.3.2 Copy Elimination after Decoupled Register Allocation . . 187
8.3.3 Coalescing versus DDG-Based Copy Elimination 189
8.3.4 Runtime Behavior 190

8.4 Related Work Lo 191

8.5 Conclusion 192
V Conclusion 194
9 Conclusion 195

9.1 Contributionso L 195

9.1.1 Spilling 195
9.1.2 Coloring L 196
9.1.3 Post Phases L. 197

9.2 Perspectives Lo e

9.2.1 Spilling
9.22 Coloring
9.2.3 Post Phases

List of Publications
Bibliography

A Appendix
A1 Coloring with Encoding Constraints

Acronym

ABI application binary interface

BF brute force coalescer

CFG control flow graph

CISC complex instruction set computing

CSSA conventional static single assignment
DDG data dependence graph

DFS depth-first search

IG interference graph

ILP integer linear programming

IR intermediate representation

IRC iterated register coalescer

ISA instruction set architecture

JIT just-in-time

KERNELS benchmarks from STMicroelectronics
LAO linear assembly optimizer

OPENG64 open source version of the SGI Pro64 compiler [49]
RISC reduced instruction set computing

RPO reverse post-order

SSA static single assignment

SSI static single information

VLIW very-long instruction word

Part 1

Introduction

Chapter 1

Introduction

In computer science, compilation is the process that translates a source program
into a destination program, that is equivalent in terms of behavior. Both pro-
grams may share their programming languages. Such process is called “source-
to-source compilation”. But it is not the common usage of compilers, the pro-
grams that perform the compilation. Indeed, compilers are generally used to
translate machine-independent, usually human-written, programs into machine-
depend programs. In their last phases, compilers have to deal with the actual
constraints of the target machine, which, by definition, were not present in the
original programs. This thesis focuses on this low-level aspect of compilation
called “back-end compilation” and in particular on register allocation, which
deals, among these architectural constraints, with the limited amount of fast
storage space, i.e., the registers.

1.1 Register Allocation

Register allocation consists in mapping the unbounded set of variables used in
a low-level program representation to the limited number of registers available
in the target architecture. When not all variables can be mapped to registers,
some are stored in memory to reduce register demand. This eviction to memory
is called spilling. Memory transfers are costly in execution time, power dissipa-
tion, and code size, thus a good register allocator should reduce spilling in order
to preserve the gains of previous optimizations. Indeed, other optimizations
have their own profitability model that may not match register allocation con-
cerns. Moreover, according to Hennessy and Patterson [59], register allocation
adds the largest single performance improvement to compiled programs. For
instance, Figure 1.1 gives the assembly code produced for x86 for a function
computing factorial. In this example, the assembly code generated with register
allocation enabled is twice as fast as the assembly without. Indeed, without
register allocation, the program accesses variables n and res via the stack, i.e.,
they are allocated in memory, whereas with register allocation, it directly uses
registers. Thus, register allocation has been extensively studied in the past.

As a reminder, it is always beneficial to improve the performance of the
program in the embedded world even when the reactivity of the system is not
a concern. Indeed, if a program requires less computations, the frequency of

unsigned int

facto(unsigned int n) {
unsigned int res = 1;

L3: for(; n > 0; -n) {

res *= n;
}
return res;
}
gee -00, basically nothin% \\gcc -01 ~ -O0 + register allocation

facto: facto:

pushl %ebp pushl %ebp

movl %esp, %ebp movl %esp, %ebp

subl $16, %esp movl 8(%ebp), Yedx

movl $1, -4(%ebp) movl $1, %eax

jmp L2 testl %edx, Yoedx
13: je 12

movl -4(%ebp), Yeax .L3:

imull ~ 8(%ebp), Yoeax O e imull %edx, %eax

movl %eax, -4(%ebp) subl $1, %edx

subl $1, 8(%ebp) jne L3
.L2: .L2:

cmpl $0, 8(%ebp) popl %ebp

jne L3 ret

movl -4(%ebp), Yoeax Assembly in O1

leave

ret

Assembly in O0

Figure 1.1: When enabling register allocation on gcc 4.4.3 for the x86 target, the
generated assembly code is 2x faster for this example. In the x86 assembly code,
the definition is the second operand of the instruction. For instructions with two
arguments, like imull, the second operand is both read and written. The L3 label
denotes the body of the original loop. Without register allocation, assembly
in 00, n is accessed via memory location 8(%ebp) and res is accessed via
memory location -4(%ebp). With register allocation, assembly in O1, accesses
to the stack are eliminated as n is in register %edx and res is in register %eax.

the processor can be decreased without slowing down the application. On the
other hand, if the frequency is not changed, the processor ends the computations
earlier and can enter in idle mode sooner. In both cases, for the same amount
of work, this spares the battery of the system.

Until recently, compilers performed register allocation using variants of graph
coloring, as developed by Chaitin et al. [33]. This method gives fairly-good re-
sults in practice. However, nowadays, compilers are used in many different con-
texts. In particular, they have to cope with memory and/or time constraints, as
implied by just-in-time (JIT) compilation, that are not compatible with graph-
coloring-based approaches. Indeed, these approaches are known to be memory
consuming and quite slow.

In the past few years, some researchers proposed to decompose register al-
location in two phases [3, 56]. The first phase decides where to place spilling
instructions (load and store) so that a second phase that assigns registers to
variables will not generate additional spill code. For that to be possible, register-
to-register copies (move instructions) may need to be inserted. The underlying
assumption that makes such a decoupling efficient is that move instructions are
more likely to be cheaper than memory transfers. Decoupled register allocation

is often associated with static single assignment (SSA) form [37] as, in strict
SSA, the way live-ranges are split, explicitly, makes the second phase always
feasible. This is when all variables can be mapped to any register. The case of
precoloring and register aliasing is more complex as we will see.

Many recent register allocation algorithms follow such a decoupled approach,
see for example [3, 57, 58, 84, 85, 93, 95, 104]. This model has important advan-
tages. First, the separation between these two phases yields simpler and more
modular implementations: different spilling heuristics can easily be combined
with different register assignments. As an example, about 20% of the lines of
code of the machine-independent code generator of LLVM [68] are exclusively
related to register allocation. Thus, from an engineering point of view, it is inter-
esting to design register allocators that are modular. Second, the local register
pressure, a property that is easy to infer in decoupled designs, simplifies other
compiler optimizations, such as redundancy elimination, and code analysis.

1.2 Motivations

Decoupled register allocation is an elegant approach to a complex problem.
Its inherent qualities make it appealing for modern compilers. The feasibility
of this approach has been well studied in the past few years, in particular by
Hack [55], Pereira [83], and Bouchez [15]. In this thesis, we wanted to go beyond
the feasibility aspects by proposing efficient solutions that may be applied to
JIT compilation. Moreover, we wanted to address some pending questions. In
particular, we focused on the following points.

A first aspect concerns the spilling phase. As already stated, SSA form is
usually used in these allocators to ensure that, once the register pressure is low
enough, graph coloring can be used for register assignment without additional
spilling. However, how to perform the spilling phase itself, i.e., how to place
load and store instructions, was not completely understood. In particular, the
question we had was: does SSA help for spilling? We wanted to evaluate the
impact, positive or negative, of SSA on the spilling model and the quality of the
generated solution to derive good spilling heuristics.

A second aspect concerns the register assignment phase. As compilers are
more and more embedded in the user environment, we wanted to supply fast
and lightweight algorithms for register allocation. One of the questions we had
was: s it possible to use the elegant formalism of decoupled approach to derive
fast algorithms? This was clear in a simplified model, but less clear in the
context of actual machines. Indeed, as Hack [55] showed, specific constraints
of the instruction set architecture (ISA) can make the decoupling between the
two phases more complicated. In some extreme cases, even extensive live-range
splitting is not enough to handle complex ISA constraints. Moreover, it may
even not be possible or desirable to apply this kind of splitting, depending on
the compiler/architecture. In other words, a more precise question was: is it
possible to cope with these constraints and still use the elegant formalism of
decoupled approach to derive fast algorithms?

Another assumption concerns move instructions and spill instructions. As
already stated, decoupled register allocation assumes that move instructions can
be inserted to spare spill instructions. The direct question that we wanted to
address was: s it really true that move instructions are less expensive than spill

instructions? Because of this assumption, it is likely that the number of move
instructions generated increases compared to a non-decoupled approach. This
led us to ask: is it possible to reduce this number of move a posteriori?

1.3 Outline and Contributions

This thesis is organized in six contributions dispatched in three different parts.
These parts follow the regular compilation flow of a decoupled register alloca-
tor: Part II deals with the spilling phase, Part III with the coloring phase, and
Part IV with post phases. Before, Chapter 2 of Part I completes this intro-
duction by defining all introduced notions, such as graph coloring, live-range,
register pressure, and so on. To clarify the assumptions that we make, it also
presents in details the assumptions made by existing decoupled register alloca-
tors and it discusses the problems induced by architectural constraints. The
rest of the manuscript is organized as follows.

The first chapter of Part II, Chapter 3, evaluates the impact of SSA on
the modeling of the spilling problem. Using a newly-defined integer linear
programming (ILP) formulation, we show that SSA form complicates the prob-
lem and that a naive handling of its specificities may end up in very bad cases.
We then introduce two different handling of this form and demonstrate that
they are sufficient to catch up the gap with non-SSA spillers. Moreover, we
show that, thanks to these models, spillers based on SSA can achieve even bet-
ter performances for an equivalent complexity of the implied analysis.

Chapter 4 comes back on the spilling problem but from an heuristic point
of view. We review existing spilling criteria and heuristics and point out their
advantages and weaknesses. Moreover, we evaluate empirically different sim-
plifying assumptions that may help to derive simpler and faster heuristics, in
particular in the JIT context. Finally, we propose a new cost model to help im-
proving the runtime of the generated code. This chapter is the less elaborated
one as it was done at the end of the thesis.

We then enter Part III, which deals with coloring. In a first chapter, Chap-
ter 5, we give a formal model to deal with ISA and application binary interface
(ABI) constraints in both graph-coloring-based and scan-based approaches with-
out extensive live-range splitting. We introduce the concept of antipathies in
graph-coloring-based approaches, a way to guide variables to be assigned to
different registers, and describe different strategies to deal with them. These
strategies require different implementation efforts, from very light to light, in
existing approaches depending on the expected quality of the generated code.
We define a new scan approach that takes advantages of the properties of SSA
form, the tree-scan . We describe several methods to bias the coloring during any
scan approach, including tree-scan, to limit the insertion of move instructions.
We evaluate all our strategies in the state-of-the-art graph-coloring allocator,
the iterated register coalescer (IRC) [51], and compare them to our tree-scan
approach with different configurations of the bias methods. The evaluation fo-
cuses on the runtime, the compile time, the memory footprint, and the code
quality with respect to move instructions. This evaluation includes also the lat-
est scan-based approach, the preference-guided allocator [22]. Tree-scan proves
to be a very aggressive register allocator, whose compile time and lightweight
memory footprint make it appealing for JIT compilation.

10

In Chapter 6, we then focus on register aliasing constraints. We show how
the spilling test can be modified to take into account the particularities of such
constraints. We then propose a new form of live-range splitting that we called
the semi-elementary form. This form allows to decouple the spilling phase from
the assignment phase, i.e., without any additional spill code, without requiring
the extensive live-range splitting used so far. We demonstrate the benefits of
this splitting in the context of graph-coloring-based approaches, in particular in
terms of compile time and memory footprint, thus improving its applicability
to JIT compilation.

We then continue with Part IV, concerning post phases, i.e., optimization
phases after register allocation. In Chapter 7, we extend the theoretical frame-
work of Bouchez [15] proposed to avoid the extensive edge splitting induced, in
particular, by decoupled approaches when going out SSA form. Our method,
based on the formalism of parallel copy motion, turns out to be able to improve
the quality of the generated code although it was not its initial goal. It de-
fines a nice way to move move instructions, thanks to region recoloring. Then,
Chapter 8 allows even more general region recoloring as it provides a framework
to perform parallel copy motion directly on data dependence graphs (DDGs).
Both methods can be stopped at any time and still producing correct code,
making them appealing for JIT compilation as they can improve the code until
a certain time budget is consumed.

Chapter 9 concludes this manuscript.

Note: For the experiments, STMicroelectronics provided the compiler, the
associated tools, e.g., profiler, linker, and the target processor, an embedded
very-long instruction word (VLIW) media processor, the ST231.

11

Chapter 2

Prerequisites and Hypotheses

This chapter presents and details the important notions that we use in this
manuscript. We first start with the program representation, defining step by
step the elements that form a program and how they work together. We then
introduce the static single assignment form, quickly discussing its concepts and
properties as they will be essential to understand the decoupled register allo-
cation. The next section presents the liveness, an important notion in register
allocation. Then, we present the different approaches to register allocation, both
global and decoupled, and in particular their hypotheses.

2.1 Program Representation

This section gathers the definitions of the notions related to a program, which is
the input to the analysis and algorithms that we develop in this manuscript. In
general, depending on the compiler, the input may be a source file, a complete
application, a trace, etc. Whatever the input form is, the compiler front end
translates it into an intermediate representation (IR). The choice of the IR
depends on the goals of the compiler; a given IR facilitates some operations
but may complicate others. In our case, we deal with a low-level description
of a function or procedure represented by a control flow graph (CFG), which
abstracts basic blocks and instructions, as defined hereafter.

2.1.1 Code Operations

Basic Block A basic block is a sequence (in general maximal) of instructions
with only one entry point and one exit point. Each block is assigned a frequency
that represents how many times it is executed exactly or as an approximation.
This information can be obtained by profiling or heuristics [5].

Instruction An instruction, also called operation, takes a list of arguments to
perform a computation, according to its label (e.g., move, add, jump, function
call), and stores the results in a list of definitions. The number and the type of
the arguments/definitions depend on the computation. We will use the terms
temporaries or variables to denote arguments and definitions that may be as-
signed to a register, i.e., that are allocatable. For instance, the label argument

12

of a goto instruction is not allocatable. From this point, unless it is specified,
the definitions and arguments terms refer to the definitions and arguments that
are allocatable. In this thesis, the arithmetic semantics of instructions is not
relevant. However, will be of particular interest the following instructions:

move: copy a variable to another one.

store: copy a variable to a memory location.
load: copy a memory location to a variable.
jump: create a control flow to another basic block.
call: jump to another function and return.

Allocation Constraints In this thesis, we focus on reduced instruction set
computing (RISC) architectures. In such a configuration, all the instructions,
but special ones, use at most two arguments and define at most one result. This
representation is called 3-address code. Moreover, all definitions and arguments
must be in register when they are defined or used. On the other hand, complex
instruction set computing (CISC) architectures offer the capability to use or
define a variable directly from/to a memory slot but they have constraints on
the usage of the instruction set that depend on the target processor. On x86,
for instance, the number of operands that can reside in memory for a given
instruction is limited to one. Moreover, on such architectures, every instruction
has only two operands: one read-only and one read-write. Such a representation
is called 2-address code.

For some instructions, a special processing is needed to cope with constraints
coming from the hardware. There are mainly two kinds of such instructions. The
first kind is instructions that use their operands implicitly. The location of these
operands is defined by the application binary interface (ABI). For instance, the
ABI of the ST200 family specifies that the first argument of call instructions is
in register 16, the second in register 17, and so on. The second kind is pseudo
(or virtual) instructions, i.e., instructions that do not exist on the architecture.
These instructions are translated by the compiler into a sequence of actual
architecture instructions. For example, STxP70 has no division instructions. In
general, these translations are performed before register allocation. However,
some of them will be introduced during or just before register allocation and
will need to be translated after. This is the case of the parallel copy (see below)
and of the ¢-function (see Section 2.2.1).

Parallel Copy Parallel copies are virtual instructions that perform multiple
move instructions at the same time. The moves represent the propagation of
values performed by the parallel copy. The parallel semantics is fundamental,
since performing moves in a sequential way with no care may cause a value to
be erased before being copied to its proper destination, variable or register.
More formally, a parallel copy, denoted (ds,...,d,) + (a1,...,a,), assum-
ing that all d; are different, performs in parallel the n copies d; < a;, which
performs a move of variable a; into variable d;. A parallel copy can be rep-
resented as a directed graph, whose vertices are the variables involved in the
parallel copy and there is an edge from a; to d; for each i. A particularity of
this graph is that the in-degree of all vertices is at most 1 (such a graph is called
windmill [92]). A parallel copy contains a duplication if it exists i # j such that
a; = aj, i.e., if its graph representation has a node with an out-degree at least 2.

13

A parallel copy contains a cycle if so does its graph representation. A parallel
copy is regular if its graph representation is a chain. A parallel copy is cyclic
if its graph representation is a single cycle. A parallel copy is reversible if its
graph representation is a disjoint union of chains and simple cycles, i.e., if it is
the union of regular parallel copies and cyclic parallel copies (Spartan parallel
copy [86]), in other words, if it has no duplication. It can be completed into a
permutation.

Such instructions have to be eliminated prior to the end of the compilation
process, since they do not exist on actual architectures. The elimination pro-
cess consists in mapping the parallel copies into a sequence of move or swap
instructions [13, 86]. If swap instructions are not available, this process needs
an additional variable in case the parallel copy is a union of (disjoint) cycles.

Parallel copies are a key structure for decoupled register allocation as we will
show in Section 2.3.

2.1.2 Control Flow Graph (CFG)

The control flow graph is the object that abstracts the structure of the program,
i.e., the basic blocks and the way the control flows between them.

General Structure A control flow graph G = (V, E) is a directed graph
where nodes or vertices (V') represent basic blocks and where edges (E) represent
the possible control flow between basic blocks. The source of an edge is called
the source block, its destination the destination block. The edges that flow in
(resp. out) a basic block are its incoming (resp. outcoming) edges. For a given
basic block, the source blocks of its incoming edges are its predecessors, and the
destination blocks of its outcoming edges are its successors.

A node represents an entry block if it has no predecessor and an exit block if
it has no successor. These represent the possible starting points (resp. ending
points) of the execution of the program (typically a function). From now on,
we assume that there is only one entry block and only one exit block. If not, we
create a virtual entry (resp. exit) block, predecessor of all entry blocks (resp.
successor of all exit blocks).

Edges have a probability, which can also be profiled or heuristically esti-
mated. This information can be combined with the frequency of the source
block, to obtain the frequency of the edge. An edge is critical if its source
block has several successors and its destination block has several predecessors.
Algorithms for removing critical edges are standard [4], when it is possible.

Figure 6.1(a) (Page 117) shows the CFG representation of a program.

Loops and Back-Edges A cycle in the CFG corresponds to a “loop” (a cyclic
behavior) in the program. Such loops are worth to mention because they usually
represent the hot spots of the applications, i.e., the most executed parts. The
way loops are structured, in particular how they are nested, has to do with the
theory of natural loops, reducible graphs, and loop nesting forests [90]. We do
not intend to develop this theory here, just to recall intuitive notions.

A back-edge is defined, from a depth-first search (DFS) traversal of the CFG,
as an edge (u,v) such that u is first visited in the traversal issued from v. By
construction, the graph obtained by removing all back-edges from the CFG is

14

acyclic. If for all back-edges (u,v), v dominates u, i.e., all paths from the entry
node to u traverse v, then the CFG is said reducible. In this case, a “natural”
notion of loops can be defined as follows. Each node v that is the destination of
a back-edge is the loop header, i.e., the entry, of a loop. If (u1,v), ..., (tun,v)
are the back-edges leading to v, then the body of the loop is composed by all
nodes that belong to a path from v to one of the w;. The definition of loops in
an irreducible CFG is not unique and relates to loop nesting forests [90].

Reachability and Program Point If there is a path from u to v, we say
that u reaches v or v is reachable from u. By definition, this terminology
applies to nodes of the CFG, i.e., basic blocks. We extend it in a natural way to
instructions following the sequential order of instructions within a basic block.

During register allocation, compilers may insert instructions, mainly move
and spill (Load/store) instructions. The insertion happens between existing
instructions, possibly on edges of the CFG. A program point denotes such a
place, as illustrated in Figure 3.10.

Reverse Post-Order Traversal As for arbitrary directed graphs, there exist
several ways to walk through a CFG. The reverse post-order (RPO) traversal
has nice properties that will be used in the next chapters. This traversal orders
the basic blocks as follows. First, a classical DFS is applied with postorder
labeling, i.e., all children are numbered before their father. Then, the basic
blocks are sorted in decreasing order of their numbering.

2.2 Static Single Assignment (SSA)

The static single assignment (SSA) form, or more simply SSA, satisfies the
property that each variable is textually defined only once. This is a static
property, not a dynamic property as a variable can be defined several times
during the execution (for example in a loop). The SSA form was introduced in
1988 as an efficient support for some optimizations [1, 94]|. Its foundations as
well as the algorithms to build it were provided in 1991 [37]. How to translate
out of SSA is detailed in [13].

2.2.1 ¢-Functions

The single definition property is not achievable just by renaming the variables.
Indeed, with renaming only, all the definitions that reach a given use (there
is a path from the definition of the variable to the instruction that uses it)
must share the same name, thus breaking the single definition property. For
instance, this occurs for a loop counter defined both inside (increment) and
outside (initialization) of the loop. To tackle this problem, SSA introduces
special instructions called ¢-functions.

¢-functions are placed at the first program point of a basic block. A ¢-
function produces one definition and uses as many arguments as the basic block
has incoming edges. The semantics is that the definition is copied from the
argument whose index equals the index of the incoming edge. When several
¢-functions are placed at the start of a basic block, they are assumed to be per-
formed in parallel. More formally, let B be a basic block with m incoming edges

15

a a]

if(...) if(...)
a <+ a+1 ag < ap +1
az < ¢(ay,az)
— a < as
(a) Original program (b) Program under SSA

Figure 2.1: The SSA representation. Operands on the left (resp. right) hand
side of the < symbol are definitions (resp. uses).

and a set of ¢-functions, {d; < &(ai1,..-,a1m),---,dn < S(@n1,-.-,Qnm)}-
These ¢-functions are equivalent to placing a parallel copy on each incoming edge
of B, where the i'" edge carries the parallel copy (di,...,dn) < (a1s, ..., 0n;)-

Figure 2.1 presents a program with and without SSA. The definitions of a
in the original program are renamed with a; and as. A ¢-function is created to
choose the right definition for the last use of a.

2.2.2 Strictness and Dominance Property

A program is strict if, for each use of a variable, all the control-flow paths
from the entry of the program to this use traverse a definition. In other words,
whatever the path used to reach an instruction, all its arguments have been
defined. A non-strict program can be translated into strict SSA form by adding
in the entry block, before constructing the SSA form, a dummy definition for
all arguments that do not stick to the strict rule. Hence, from this point, we
will only consider programs in strict SSA form.

An interesting property of strict SSA programs is that the definition of a
variable dominates its uses, i.e., as already stated, every path from the entry
to each use traverses the definition. We say that a node d strictly dominates a
node u if d dominates v and d # u. A node v is the immediate dominator of u
if v strictly dominates v and there is no node w such that v strictly dominates w
and w strictly dominates w.

2.2.3 Conventional SSA

A program is in conventional static single assignment (CSSA) form if replacing,
for all ¢-functions, all operands (definition and arguments) with the same name
does not change the semantics of the program. This property can be very useful
to simplify some process, e.g., deconstructing SSA. However, all programs may
not be in CSSA. In particular, this property is easily broken by copy propagation
or code motion optimizations. When this property is needed, there are several
algorithms to translate from SSA to CSSA [100, 11]. We point out however that
this translation may impact the register allocation as it may insert moves and
may create new variables.

2.2.4 Deconstructing SSA

Deconstructing the SSA form may not be as simple as it seems to be at first
glance [24, 100]. This problem has been solved efficiently, both in terms of qual-

16

ity of the generated code and run time of the compiler [13]. Nevertheless, these
approaches have been designed to work on codes that are not yet register al-
located. On register-allocated codes, the single definition property is obviously
broken as a register may be reused several times. Moreover, these approaches
may create intermediate values, which will have to be allocated again, poten-
tially causing new spill code.

For register-allocated codes, simple processes are usually applied, which rely
on strong assumptions. For example, Hack [55] relies on the fact that move
and spill instructions can be placed on the CFG edges (i.e., a basic block can
be inserted), which makes the translation straightforward. On the other hand,
Pereira and Palsberg approach [86] requires the program to be in CSSA form
prior to coloring, that it does not have critical edges, and that the target archi-
tecture is able to perform swap instructions. Then, the deconstructing process,
after coloring, places the parallel copies implied by ¢-functions on the prede-
cessor blocks. Their assumptions make this process easier. In particular, the
CSSA form ensures that the parallel copies generated by the ¢-functions have
no duplication. See also Section 2.3.3.2 for a more detailed discussion related
to the liveness of variables and to critical edges.

2.2.5 Liveness and SSA

A variable v is said to be alive (or live) at a program point p, if p belongs to a
path from a definition of v to one of its uses. For a given variable, these pro-
gram points form its live-range, as illustrated by the vertical bars in Figure 5.6
(Page 103). To make things simpler, we assume that all definitions are used.
Considering a node, e.g., a basic block or an instruction, all the variables alive at
the entry (resp. exit) point of the node are the live-in (resp. live-out) variables.
Variables that are both live-in and live-out of a node and not defined within
this node are called live-through. We often refer to these variables as the live-in,
live-out, or live-through sets. Liveness information is usually determined using
a backward data-flow analysis [36]. There are more efficient algorithms that use
the property of SSA form to build live-in and live-out sets [12] as well as to
develop fast queries to determine if a variable is live at a given point [14].

The liveness of operands of ¢-functions have to be defined with care depend-
ing on where the implicit parallel copies will finally be placed. If we strictly stick
to the semantics of ¢-functions, which places copies on the incoming edges, each
argument of a ¢-function in block B is live-out of the related predecessor block
of B but not live-in of B (unless further used) and each definition is live-in of B.
If critical edges cannot be split (i.e., if a basic block cannot be inserted on the
edge) or if jump instructions have allocatable operands and the copies need to
be placed before such a jump, the liveness of the operands of ¢-functions needs
to be defined carefully. In our case, unless otherwise specified, we assume the
standard liveness of ¢-functions as stated above, i.e., with copies on the edges.

The notion of liveness defines the positions where a variable must be avail-
able in the storage resources (register or memory). Determining if two variables
can share the same storage resource requires to know the exact behavior of the
program (values of variables and execution paths), which is not possible. To ap-
proximate these constraints, the simplest way is to use liveness information. We
say that two variables interfere (cannot share the same storage resource) if they
are simultaneously live at some program point. Chaitin et al. [33] introduced a

17

particular case to relax this definition of interference: a and b interfere if and
only if either a is live just after a definition of b and this definition is not a move
from a to b, or the converse (inverting a and b). However, if b and ¢ are simul-
taneously live and are both a copy of a, there is still an interference between b
and c¢. In strict SSA, it is often assumed that all moves are removed by simple
variable name propagation while the implicit moves induced by ¢-functions are
not analyzed. In this case, the two definitions are equivalent. Thus, in this
thesis, unless otherwise specified, we assume that two variables interfere if and
only if they are both simultaneously alive. This leads to the notion of regis-
ter pressure at a program point p, which is the number of variables live at p.
We will see in Section 2.3.3.2 that care has to be taken to make sure that the
maximal register pressure corresponds to the register need, i.e., the number of
register needed to allocate the variables.

2.3 Register Allocation

This section sets the hypotheses we make on register allocation. It also provides
a quick view of related work, which is further discussed in each chapter according
to the related point of view.

As already stated, register allocation is the problem of mapping the un-
bounded number of variables of a low-level representation of the program to the
limited number of registers. When the registers are not sufficient, the memory,
or more generally a spilling destination, has to be used. Thus, there are two
main problems to address during register allocation:

Spilling Which variables should be evicted into memory and where the related
load and store instructions should be placed.
Assignment Which register should be assigned to each variable.

There are two ways of dealing with register allocation. Global approaches
perform register allocation with a single algorithm, i.e., they solve both the
assignment and spilling problems in one integrated phase. On the other hand,
decoupled approaches split this process into mainly two independent phases:
spilling then assignment. This design is particularly interesting as it yields
more modular and more specific optimizations to each phase implementation.
The degree of independence of each phase depends on some assumptions, in
particular regarding the insertion of moves and the architectural constraints,
as discussed in Section 2.3.3. Despite the fact that these approaches are not
optimal in the general case, they perform well in practice and in particular
compared to global approaches as demonstrated by Koes and Goldstein [66].

2.3.1 Hypotheses

In this section, we discuss several aspects that may change the problem of
register allocation. We fix the model we consider and our hypotheses for each
aspect, for the whole manuscript.

Instruction Selection Register allocation considers mainly two storage loca-
tions: memory and registers. This is not uncommon that architectures feature
several register files, i.e., independent sets of registers used for different purpose,

18

e.g., floating point registers, general purpose registers, etc. Some instructions,
e.g., additions, may be available over several types of register files and it may
be equivalent to use one or another. Hence, depending on the actual registers
usage, it may be interesting to adapt the instruction to avoid spilling or make
a better use of all register files. We will not consider this option in this work,
i.e., we assume a fized instruction selection.

Spilling Destination In the spilling problem, the storage resource where the
variables are evicted, i.e., the spilling destination, is assumed to be unique.
In fact, a register allocator targeting an architecture featuring several register
files could choose, thanks to move instructions between them, to spill some
variables into another register files instead of spilling to the memory. Thus, it
may be possible to use different spilling destinations to spill a variable as Lu
et al. showed [72]. We choose not to do so, i.e., we assume that the spilling
destination is unique.

Amount of Storage Location for Spilled Variables In general, the mem-
ory is used as the spilling destination. As it comes usually in far more amount
than registers, it is assumed to be unlimited. In fact, a register file may not be
directly moveable into the memory. This is the case for the branch registers on
ST231architecture for instance, where the spill code is performed into general
purpose registers. In such a case, the spilling destination comes in very limited
amount. To cope with this problem, we assume that we can derive an order
in which the allocations to the different register files can be processed without
creating a new problem instance for an already-solved register file. For instance,
for ST231 architecture, we solve register allocation for the branch registers, then
for the general purpose registers. Thus, spill locations created during the reg-
ister allocation of branch registers are variables that are allocated during the
processing of general purpose registers.

Thus, we make the following two assumptions: we assume that we can allo-
cate each type of register file independently following a predefined order and that
the storage location where spilling is performed is unlimited. In other words, in
this thesis, we discuss problems with only one type of register file in mind. The
proposed method can then be applied successively to each register file, adapting
the spill cost to the unique spilling location.

Aliasing There exist architectures where the addressing of a register file is not
unique, i.e., the same chunk of a register file can be accessed through different
registers. These registers are said to alias. In such a configuration, we say
that register allocation has to deal with register aliasing. In an aliasing pattern,
i.e., the way registers alias within a register file, a level is defined by the sets of
registers that have a specific bitwidth. Each level is numbered from the smallest
to the largest bitwidth. In such a numbering, the first level is called the atomic
level and its registers are the atomic registers.

The first assumption we make is that registers at the same level do not alias,
i.e., we focus on aliasing patterns involving different bitwidths. We also restrict
to a special form of aliasing. Figure 2.2 illustrates different patterns. When all
registers at level [are composed by a contiguous number of registers of level
I —1 and I covers completely I — 1 (the level [— 1 is a partition of the level 1),

19

DO [D2 SO
D1 TO T1
RO | R1[R2 [R3 RO[RI[R2[R3|R4 | R5
(a) Arbitrary aliasing pattern (b) Hierarchical aliasing pattern

Figure 2.2: Example of aliasing patterns. In this example, the arbitrary pat-
tern (a) has an unaligned register, D1, at level 1. Moreover, this register aliases
with DO and D2. Hierarchical aliasing pattern (b) has no aliasing register within
a level. Moreover, a level [is composed by all the elements of level (I —1).

32 bits | EAX | EBX | ECX EDX

1 it
8 bits Br[BL

DX

2
=1 i Ne!
8] [©
=
=]
HI

EDI ESP

32 bits | EBP | ESI

T =]

Figure 2.3: General purpose registers of x86 architecture. Due to encoding
constraints, each level can address only 8 registers.

the aliasing pattern is said hierarchical. This pattern is used in several common
architectures, like x86 and ARM. To strictly stick to the definition of an hier-
archical aliasing pattern, the aliasing register files may need to be completed
with non-allocatable registers. For instance, this is the case of the x86 archi-
tecture, see Figure 2.3, taken from Pereira and Palsberg [86]. This architecture
uses 3 bits, i.e., it has 8 “names”, to encode each access to a register for each
operand. As it features eight 32 bits registers, it should have sixteen 16 bits
registers. However, due to the encoding constraints, only 8 of these 16 registers
are addressable. Thus, holes in the aliasing pattern appear. Nevertheless, we
consider that this pattern is still hierarchical, since it can be filled with non-
allocatable registers to match the definition. As a side remark, non-allocatable
registers are not taken into account in register allocation, thus it is not nec-
essary to explicitly add them. To summarize, in this thesis, we consider only
hierarchical aliasing.

Instructions Scheduling It is well known that register allocation is impacted
by the schedule of the instructions. A different schedule may require fewer
registers. However, for most of our work, we do not take this opportunity into
account. In other words, we assume a fixed schedule of the instructions, unless
otherwise specified.

20

2.3.2 Global Register Allocation
2.3.2.1 Graph-Based Approach

In 1981, Chaitin et al. [33] introduced graph coloring as a global approach for
register allocation. It was the first method that dealt with a complete function.
Previous approaches were limited to one instruction (more precisely a tree of
arithmetic operations) [97] or one basic block [46, 61]. Chaitin et al. approach
relies on a clean and simple formalism, thus, making it appealing to use. The
significance of this method can be seen in the number of publications related to
register allocation via graph coloring, see [25, 8, 26, 35, 23] to quote but a few.

The General Problem Graph-coloring approaches build an undirected graph
(V,E, A,w), the interference graph (IG), where V is a finite set, E C V x V,
ACV xV,and w is a function from A to N. The set of nodes V represents
the variables, the set of undirected edges F represents the interferences between
variables, and the set of undirected weighted edges A represents the affinities
between variables. If (u,v) € E, u and v interfere, which means that they can-
not share the same register. The neighbors of a node u are the nodes connected
to this node by an interference, i.e., {v | (u,v) € E}. The number of neighbors
of w is its degree. An affinity a = (u,v) means that v and v are connected
by a move instruction in the program. Its weight w(a) represents the gain of
removing the related move, thus assigning the same register to both v and v.
Figure 4.9 (Page 74) presents a program and its related interference graph.
Graph coloring consists in finding a function that maps each node to a color,
so that two nodes connected by an edge (of E, i.e., an interference) do not share
the same color. The related optimization problem consists in finding a mapping
function that uses as few colors as possible, i.e., that computes the chromatic
number of the graph. For register allocation, the number of possible colors is
fixed by the number of registers, say k, so it is more related to the corresponding
decision problem: is a graph G colorable with at most & colors, i.e., is it k-
colorable? In other words, is the chromatic number of G at most k7 This
k-colorability problem is well-known to be NP-complete for arbitrary graphs
and & > 3 [50, Problem GT4]. Moreover, Chaitin et al. [33] showed that,
given an arbitrary graph G, it is always possible to build a program whose
interference graph is G. In other words, for an arbitrary program, deciding
whether k registers are sufficient to register allocate, through this graph-coloring
formalism, a program without any spill is NP-complete. This motivated the use
of a heuristic, based on a simplification scheme, to perform register allocation.
This simplification scheme is an old concept introduced by Kempe in 1879 [63].
It relies on the worst possible coloring of the neighbors of a node, worst in
the sense that the neighbors are considered to use as many colors as possible.
Using this idea, a node u can be safely removed from the graph if it has at
most (k — 1) neighbors. In the worst case, each neighbor uses a different color,
so at most(k — 1) colors are consumed by the neighbors of w. Thus, once its
neighbors have been colored, it always remains at least one color to color wu,
whatever the coloring of its neighbors. Using this simplification process iter-
atively orders the nodes from less to most constrained ones. Then, a valid
mapping function can be obtained by iteratively reintroducing the most con-
strained node and choosing a color compatible with its current neighborhood.

21

If the simplification process gives an order for all nodes, the coloring phase finds
a valid solution by construction. In such a case, the graph is said to be greedy
k-colorable. Of course, not all k-colorable graphs are greedy k-colorable.

What happens if a graph is not greedy k-colorable, i.e., if the simplification
process is blocked because all remaining nodes have a degree at least k7 That
is where spilling comes into play. In 1982, Chaitin [32] proposed an heuristic
to spill using the IG, which consists in deleting a node from the graph, based
on a cost function. This principle has the effect of completely ignoring the
live-range of the variable associated to this node, as if it was always stored
in memory. For this reason, it is called spill everywhere. After such spills, the
simplification can possibly proceed again, then the coloring of non-spilled nodes.
However, on a RISC architecture for example, the arguments and definitions
of instructions must reside in registers. A variable can thus never be spilled
everywhere. To cope with this approximation, spill code is inserted for spilled
variables at the end of the simplification process. To be as close as possible to the
spill-everywhere approximation, the live-range parts that remain in registers are
made as short as possible. Thus, store instructions, the instructions that copy
the value from register to memory, are placed immediately after each definition
of the variable whereas load instructions, the instructions that copy the value
from memory to register, are placed immediately before each use of the variable.
This creates new variables. Then, the IG is rebuilt and the simplification process
redone. This is as long as no more spill code has to be inserted (in general
twice, sometimes 3 times). To our knowledge, all graph-coloring-based register
allocators use such a spill-everywhere heuristics, even if the placement of load
and store instructions can also be re-optimized afterwards.

The Coalescing Problem Regarding the elimination of moves, graph-based
allocators offer a natural way to model it. The move-related variables are con-
nected by affinities, coalescing them means imposing that they are assigned the
same color, which can be done by merging the two corresponding nodes. One
possible optimization problem is then to merge as many affinity-related nodes
as possible so that the sum of the weights of the coalesced affinity edges is max-
imal. This problem, known as aggressive coalescing, is NP-complete [15, Ch.5].
If too aggressive, this kind of coalescing may increase the chromatic number
of the IG. Indeed, by fusing the live-ranges, merged variables may interfere
with more variables. The first algorithm proposed by Chaitin et al. used this
coalescing scheme prior to coloring.

On recent architectures, memory accesses and thus spill code are more likely
to be more expensive that register-to-register moves. Moreover, as it was ob-
served, aggressive coalescing may increase the number of spilled variables, but
the opposite is also true: inserting variable-to-variable copies, i.e., splitting live-
ranges, may help reducing the chromatic number of a graph [41]. To take advan-
tage of these observations, another kind of coalescing, conservative coalescing,
was introduced by Briggs et al. [26]. The optimization problem of conservative
coalescing is similar to the aggressive coalescing, except that coalescing an edge
should never increase the chromatic number of the graph. Deciding whether
a coalesced graph is k-colorable with at most a given number of affinities not
coalesced is NP-complete [15, Ch.5]. A simplification of that problem, called
the incremental conservative coalescing, considers the affinities one by one and

22

. . conservative potential actual
— simplify . .
coalesce spill spill

any spills done

Figure 2.4: Tterated register coalescer from Figure 5 in George and Appel [51].

merge both nodes if and only if it preserves the k-coloring property. This variant
is also NP-complete in the general case. Briggs et al. [26] proposed an heuristic
for that problem. It is based on some properties of the nodes to be coalesced,
which ensure that the coalesced node will be simplifiable at some point of the
simplification process. This test is known as Briggs’ rule. On the other hand,
Briggs showed in his thesis [23] that performing, as a pre-phase, aggressive
live-range splitting, i.e., inserting a variable-to-variable copy on each program
point, gives mitigate performances. Indeed, as coalescing is heuristic-based, it
may perform quite bad on large graphs. Therefore, in his allocator, live-range
splitting was not used or only in a very limited fashion.

Following the incremental conservative coalescing idea, George and Ap-
pel [51] modified Chaitin’s approach [32], using the improvements of Briggs
et al. [26], to create the iterated register coalescer (IRC) allocator. This alloca-
tor is depicted in Figure 2.4. Its name comes from the fact that it iterates on the
different phases, the simplifying (removing a node with at most k¥ — 1 neighbors),
coalescing (merging the two extremities of an affinity), and spilling (removing
a node with at least k neighbors) phases, as long as each can be performed (in
this order). Nowadays, this allocator is considered to be the state-of-the-art
register allocator for graph-based approaches. A new conservative test, known
as George’s rule, was also designed.

In 2004, Smith et al. [99] generalized the notion of degree (i.e., number of
neighbors in terms of interferences) of a node to deal with register aliasing.
Their generalization can be applied to any graph-based allocator using the sim-
plification scheme. We will come back to this technique in Chapter 6. For com-
pleteness, we can also mention that, in 2002, Scholz and Eckstein [96] modeled
the graph coloring problem using partitioned Boolean quadratic programming
(PBQP). This model features a complete graph coloring approach, i.e., integrat-
ing spilling, coloring, and coalescing, for CISC architectures. One year later,
Hirnschrott et al. [60] evaluated a classical graph-coloring approach versus an
optimal approach also based on PBQP.

Criticisms Graph coloring is not exactly register allocation as Bouchez et
al. [20] clearly pointed out. A first weakness is that the underlying CFG is
completely obfuscated. In particular, the spill-everywhere strategy does not
exploit any smart placement of load and store instructions, and cannot exploit
the structure of the CFG, except indirectly through global node or edge weights.

A second weakness is that TRC-like allocators can generate useless spill code,

23

unless the allocator could check that the variables selected to be spilled will
indeed help coloring. This is because the choice of spilled variables depends on
a coloring criterion, which is related to an NP-complete problem for arbitrary
graphs. This is also because the heuristic is greedy. To reduce this weakness, the
concept of potential spill was introduced: if a variable, selected to be spilled,
can nevertheless be colored in the coloring phase, it is not spilled. But still,
the spilling problem, intermixed with the coloring problem, remains not well-
understood and hard to capture in a graph-based register allocator.

The third limitation is that, by nature of the graph-based model, each vari-
able is assigned a unique register whereas moving a variable from a register to
another can help the coloring. Some attempts were made to circumvent this
limitation [31, 78, 64], introducing various live-range splitting capabilities.

Regarding the runtime of the compiler itself, graph coloring approaches are
known to induce a large memory footprint. Moreover, the iterative process
implied by the spill code insertion leads to a waste of compile time. Indeed,
between two iterations, the liveness information, the simplification order, and
the graph structure have barely changed. Nevertheless, everything is redone.

2.3.2.2 Other Approaches

Graph coloring is not the only way to tackle register allocation. In 1990, Chow
and Hennessy [34] proposed their priority-based allocator. In their model, live-
ranges of the variables are in memory and they try to bring them back into
registers, based on the priorities of the related live-ranges. The priorities are
computed from program estimation, basically the frequency of the basic blocks,
and machine parameters. When a live-range cannot entirely fit into register, it
is split and new live-ranges are sorted in the priority list accordingly. When it
fits, they choose the color that maximizes the number of neighbors having this
color in their forbidden set.

Several “optimal” formulations were also proposed. In 1996, Goodwin and
Wilken [52] proposed to solve the global register allocation problem using an
integer linear programming (ILP) formulation. Their approach assigns the reg-
isters to variables and features load/store optimization, i.e., the optimization
of the placement of load and store instructions, and coalesces existing copy
instructions. However, it does not split the existing live-ranges. Two years
later, Kong and Wilken [67] extended this formulation to deal with CISC archi-
tectures and their irregularities, in particular the 2-address code constraint. In
2002, Fu and Wilken [48] speeded up the resolution of Goodwin and Wilken’s
formulation. They took advantage of the structure of the program to remove
redundant ILP constraints in the equations. More recently, in 2006, Koes and
Goldstein [65] performed register allocation using a multi-commodity network
flow model. Their expressive model, which relies on the program structure,
optimizes the flows of variables from their definitions to their uses, minimizing
the spill cost. Their approach can also be used in a decoupled fashion. We will
study and develop such optimal models in Chapter 3.

All approaches presented in the previous paragraph rely on ILP and look
for optimality in their respective model. However, in late 90s, scan-based
approaches (i.e., allocators that work directly on the program, traversing in-
structions) appeared to cope with new compiler constraints implied by just-in-
time (JIT) compilation. Poletto et al. [88], Traub et al. [103], and Poletto and

24

Sarkar [89] introduced linear scan. This allocator considers the linearization of
the program as a unique large basic block and assigns variables to register or
memory locations from top to bottom. It is very fast but may produce poor
allocated code as the live-ranges of the variables are largely over-approximated,
leading to spurious spill code. In 2005, Mossenbock and Wimmer [105] im-
proved the spill code placement of linear scan, which was until that work based
on spill everywhere, and features on-demand live-range splitting. Finally, in
2008, Pereira and Palsberg [85] proposed a new type of linear scan which, unlike
previous approaches, deals with register aliasing thanks to aggressive live-range
splitting (at all program points) and a “puzzle-based” solving.

2.3.3 Decoupled Register Allocation

To address the criticisms of graph coloring, in particular, regarding the spilling
heuristic, Appel and George [3] introduced in 2001 decoupled register allocation.
Their spilling phase uses an ILP formulation, which uses the peculiarities of
CISC architecture and performs load/store optimization. It ensures that, at
each program point, no more than k variables are alive. Then, to ensure that no
more spilling will be necessary during the coloring phase, they insert, for each
program point, a parallel copy of all live variables at that point. This form of
aggressive live-range splitting is called split everywhere. The resulting graph is a
collection of small interference graphs, each defined by the interferences in indi-
vidual instructions, all connected by affinities capturing the parallel copies. For
one instruction, the live-in set produces a clique, i.e., a complete graph where all
nodes are connected to all nodes, so does the live-out set. Since, after spilling,
both sets have at most k variables, each variable of the live-in set that is not live-
out (or the converse) has degree at most (k — 1) and is thus simplifiable. Then,
all other variables (those that are both live-in and live-out) can be simplified
too. Therefore, the final graph is greedy k-colorable, unless register constraints
are involved. We will come back to that aspect in Section 2.3.3.2. To avoid
mitigated results for the coloring phase as reported by Briggs [23], when aggres-
sive live-range splitting is used, Appel and George use an optimistic coalescing
approach [80] instead of the classical incremental conservative coalescing. The
optimistic coalescer fuses as many nodes as possible, but unlike aggressive coa-
lescing, it can decoalesce nodes when it does not manage to simplify the graph.
Appel and George reported that this approach gives good results as, in their
case, the initial graph was known to be greedy-k-colorable. To our knowledge,
this is the first decoupled register allocator.

2.3.3.1 Towards SSA-Based Decoupled Approach

The decoupled approach of Appel and George [3] has two main drawbacks. First,
it relies on an ILP formulation for the spilling phase. This may be an issue for
compiler users regarding run time or licensing!, for instance. Also, Liberatore
et al. [71] and Farach-Colton and Liberatore [43] showed that, even on a basic
block, optimal spilling with load/store optimizations is a hard problem. No
good alternative was available for the whole program at that time. Second, the
split-everywhere strategy was considered too aggressive (too many insertions
of parallel copies) and it is a difficult problem to find good and sufficient split

LAs ILP solver may not be free of use.

25

points. Therefore, despite its inherent advantages (having two decoupled phases
makes the problem “simpler” to address), this decoupled approach did not gain
much interest until recently.

Around 2005 (at least for the publications), several groups observed that
the interference graph (IG) of programs in SSA form is chordal [27, 84, 56, 16].
For such graphs, coloring with the minimal number of colors can be done in
polynomial time using the simplification scheme. Also, the chromatic number
equals the size of the largest clique of interferences in the graph. For programs in
SSA, the largest clique is also defined as the largest liveness set (i.e., set of alive
variables), over all program points, unless precoloring or aliasing is involved
(see Section 2.3.3.2). Hence, SSA provides sufficient split points to enable a
decoupled register allocation. The spilling phase ensures that, at each program
point, the number of live variables is at most k. This property forms the spilling
test, i.e., checking that at most k variables are simultaneously live. Then, the
coloring phase uses the classical graph coloring algorithm.

In 2009, Braun and Hack [21] proposed a fast spilling heuristic for a decou-
pled approach, which offers a better spill code than with the spill-everywhere
strategy. In 2009 too, Ebner et al. [39] presented an optimal spilling approach
using a constrained minimum cut model (see again Chapter 3 for the discussion
of optimal approaches). Then, in 2010, Braun et al. [22] detailed a fast coloring
heuristic, also for a decoupled approach, that does not rely on graph coloring.

2.3.3.2 When Register Pressure and Register Need Do Not Match

In the previous section, we recalled the “spilling test” used in SSA-based de-
coupled allocators: if the register pressure (the number of simultaneously live
variables) is not more than the number of available registers, the live-range split-
ting induced by SSA guarantees that all live-ranges can be colored, each with
a single color, and with no spill. Actually, this is only partially true. Indeed,
for programs having encoding or ABI constraints, i.e., for almost all programs,
considering the register pressure is not enough to guarantee the colorability of
the interference graph unless the compiler pre-formats the program in some way.
In this section, we list the problems that can occur and how to transform the
program to tackle them. Hack [55] uses the term register pressure faithful to
express the case where the register pressure and the register need match, i.e.,
the register pressure is a good measure of how many registers are needed. More
generally, what is important in a decoupled approach is to design a spilling test
that is compatible with the coloring phase, i.e., that enables this decoupling.

Duplication Problem A first case where the register pressure may not be
enough to capture the register demand of the program is when a variable must
use several registers at the same time, due to architectural constraints. In such a
case, we insert an explicit copy of the variable to perform a duplication, i.e., two
variables names are now present in the program, which increases the register
pressure and makes it match the register need. Figure 2.5a illustrates this
problem. In this example, the encoding constraints of the instruction forces the
argument, used twice, to be in two different registers. The same problem occurs
when the argument is live-through and must reside in a subset of the register
file that cannot traverse the instruction due to constraints on definitions.

26

{a} {a} {a}

(R1, R3) « (a, a) (a’, @) < (a, a)
{Rh R37 a} {aa 3‘77 a‘”}
— aftBuRe} gMRs} x + Ri, R3 — @MBLR} g1 {Rs}
{a} {a} {a}
(a) Original code (b) Hack’s handling (c) Our method

Figure 2.5: Impact of duplications on the spilling test. The notation al{f1.f2}
indicates that the variable a should be in the subset of registers composed
by {R1, Ro} for this use, i.e., it is pinned to {R1, Ro} for this use. Liveness
sets are represented in braces for each program point, such as {a}. Implicit
duplications (a) result in a non-faithful (too low) register pressure, indicated
by X. The symbol v represents points where the register pressure is faithful, or
more precisely, where it is a valid over-approximation of the register need. To
increase the apparent register pressure, Hack [55] explicits the duplication by
fixing the colors for all constrained arguments and by adding a parallel copy
before the considered instruction (b). Our method (c) is similar but does not
fix the color of the newly created arguments; the coloring phase will decide.

How many duplications of names need to be done to ensure that the reg-
ister pressure gives the right number of registers needed? Hack addressed this
question in details [55, Sec. 4.6]. If the code contains an arbitrarily-constrained
instruction, it is NP-complete to decide whether there is a register allocation for
this instruction where each variable is assigned to a unique register, i.e., with-
out duplication [55, Ch.4]. In particular, determining the minimum number of
copies to insert to make the register pressure faithful is NP-complete. Hack
investigated a less general model where each operand is either unconstrained
or constrained to a single register, and no two arguments (resp. results) are
constrained to the same register (this last condition is obviously needed other-
wise the coloring of the instruction is not possible unless both arguments, resp.
results, always share the same value). With these hypotheses, Hack showed that
the problem becomes tractable. Indeed, for such an instruction, a duplication is
needed exactly for each live-through argument that is constrained to the same
register as a result. However, when there is more than one constrained instruc-
tion, some live-range splitting may need to be done so that the allocations of
the different instructions match. Hack showed that even with this restricted
model, deciding if some split is required is NP-complete.

Based on this study, Hack proposed a heuristic approach to handle instruc-
tions with general constraints. For such instructions, the constraints are simpli-
fied by fixing the color of all constrained arguments via bipartite matching, then
the same is done for the results, as explained in Figure 2.5b. Finally, a split
(parallel copy) of all the live variables is inserted prior to each constrained in-
struction. We use a similar method, as presented in Figure 2.5¢, except that we
do not fix the color of the constrained operands when several choices are possi-
ble. This gives more freedom to the coloring phase. This preliminary step, with
some duplications and extra splits, fixes the duplication problem. In Chapter 5,
we also present a method that does not need to explicit the duplications.

27

{u, t} {u, t} {u, t}

Z —
{u, t, z}
dMR2} MR} x AR} TR} g AR} yHE} g
{d, t} {d, t} {d, t}
(a) Original code (b) Hack’s trick (¢) Our method

Figure 2.6: Checking live-in and live-out sets of an instruction may not be
enough for an accurate spilling test. In (a), the register pressure of 2 fails to
capture the over pressured point implied by ABI constraints (symbol X). Hack
explicits this constraint with a dummy argument z, increasing artificially (on
purpose) the pressure before the instruction. In our case, we check the register
pressure on the instruction and add 1 due to the impossibility to recycle the
color of the argument for the definition. The symbol v represents points where
the updated register pressure is faithful.

The Encoding/ABI Problem The previous code preparation fixed the du-
plication problem. However, encoding and ABI constraints may still produce
cases where the register demand is not accurately represented by the cardinal
of the live-in and live-out sets. This is illustrated in Figure 2.6. Let us assume
that, due to ABI constraints, an instruction must take an argument in R; and
must define a result in Ry. Let us assume also that the architecture has only two
registers and that three variables are involved: one argument, last used on that
instruction, one definition, and one live-through variable. The set of variables
live before the instruction is composed by the argument and the live-through
variable. The definition and the live-through compose the set of variables live
after the instruction. In both cases, the number of live variables equals 2, how-
ever it is clear that the live-through variable must be spilled. Following Hack’s
terminology [55, Ch.4], this example is not register-pressure faithful. To fix that
problem, Hack proposed to add a dummy argument to that instruction and to
define it just before the instruction. Using this trick, the dummy argument
now appears in the set of live variables before the instruction and the register
pressure used for the spilling test is relevant again.

We proceed slightly differently. Instead of “polluting” the program with such
dummy variables, we prefer to check the register pressure on the instruction
itself using the following method. We observe that this problem occurs only
when a variable is last used in an instruction. Indeed, if it is not last used,
it appears, with the definitions?, in the live-out set of the instruction, thus
it is correctly counted as consuming a register different than the definitions.
Our method consists in traversing the set of last-used variables, restricted to
variables constrained on that instructions, and trying to find a definition that
can ‘recycle” a potentially-used color. Of course a definition can be used to
recycle only one argument. The register pressure on an instruction is then given
by the sum of the number of definitions, the number of last-used arguments,
and the live-through, minus the number of variables that can be recycled.

In this method, an argument may be recycled by several definitions. Thus,

2We assume that dead definitions reach at least the live-out set of the related instruction.

28

in theory, if we pick the wrong recycling, we may over-estimate the register
pressure on an instruction. In practice however, ABI constraints define a one-
to-one mapping for all operands of the constrained instruction, thus the choice
is fixed a priori. Also, encoding constraints are limited to “regular” instructions,
i.e., instructions where at most two arguments and at most one definition are
constrained at the same time. Therefore, an exhaustive search could be used
with an acceptable cost, even if a heuristic pairing is also sufficient in practice.

Edges and Critical Edges An additional problem is due to control-flow
edges in conjunction with SSA. In Section 2.2.4, we recalled that the usual
way of deconstructing SSA after coloring assumes that no edge is critical. The
standard semantics of ¢-functions, as recalled in Section 2.2.5, assumes that
the related parallel copies are performed on the incoming edges, in particular
that variables defined by ¢-functions are not live-out of the predecessor blocks.
However, when these parallel copies cannot be placed on the edges but must
be placed earlier (at the end of a predecessor block or even before a jump in-
struction), the liveness information computed in SSA may not describe correctly
what will be obtained after copy insertion, in particular the register pressure.

This approximation is not a problem unless the number of live variables is
larger than the one considered during the spilling phase. Let us examine this
more carefully. Let e be a regular (i.e., not critical) edge and assume that the
destination block of e contains ¢-functions. The number of variables in the live-
out set of the source block of e is at most the number of variables in the live-in
set of the destination block of e, by definition of the liveness (except for variables
involved in the ¢-functions, the live-in set is the union of the live-out sets of the
predecessor blocks) and the semantics of ¢-functions (there are at least as many
definitions as arguments for each parallel copy). Since e is a regular edge, the
parallel copy on e can be sequentialized in the source block of e as this block has
no other successor. After this transformation, the definitions are in the live-out
set of the source block of e and in the live-in set of its destination block.

The previous “proof” makes an invalid assumption. It assumes that the
parallel copy will be expanded last in the source block. This may not be possible
if a branch instruction is required and, in this case, the register pressure may be
larger before the branch instruction as some of its arguments may not be live-
out of the block. Therefore, even without critical edges, deconstructing SSA
may require more registers than the liveness information obtained prior to the
transformation indicated. Obviously, if critical edges are allowed, the problem
is even more likely to occur. In other words, for this process to be correct, the
assumption must be that all edges are splittable, i.e., one can interleave a basic
block between the destination block and the source block of all edges. We will
see in Chapter 7 how to avoid this aggressive edge splitting without changing
the assumption during the spilling phase. Another possibility is to compute
liveness information more carefully, taking into account the actual places where
parallel copies will indeed be placed.

Register Aliasing When register aliasing, as defined in Section 2.3.1, comes
into play, the split points defined by the SSA form may not be sufficient to color
the live-ranges, with a simplification scheme, without additional live-range split-
ting. Indeed, in such a configuration, the coloring problem (i.e., each live-range

29

is mapped to a unique color) is NP-complete [9, 69]. The problem is not that the
spiller gets wrong but more that the coloring phase cannot be guaranteed to find
the optimal coloring. Using another form of coloring may solve this issue, e.g.,
Pereira and Palsberg’s puzzle solver for some specific aliasing constraints [85].
In Chapter 6, we will give such a spilling test compatible with a coloring phase
that uses graph coloring in presence of aliasing.

In conclusion, as already stated, what is important is that the spilling test
and the coloring phase are compatible, i.e., that the spilling phase, driven by
the spilling test, spills and splits live-ranges enough so that the coloring phase
is guaranteed to succeed in assigning a unique register to each live-range. As
we just presented in this section, except for the case of hierarchical aliasing
that requires some more developments exposed in Chapter 6, standard register
constraints can be taken into account by preparing the program with adequate
live-range splits and duplications so that the register pressure is faithful, i.e.,
a right measure of the register need. Therefore, unless otherwise specified, we
will not come back to this point in the manuscript. The reader must however
remember that these details have to be taken into account somehow.

30

Part 11

Spill

31

This part deals with the first phase of a decoupled register allocation, i.e.,
the spilling phase. At this stage of the compilation process, the idea is to lower
the register pressure such that, at every program point, the assignment phase
will be able to find a proper coloring for all the variables, without inserting more
spill code. The spilling phase does not require that necessary split points for
coloring are inserted prior to its processing. Thus, it is possible to spill on a
program that is not in static single assignment (SSA), and to color the same
program using SSA. Nevertheless, if split points exist, the spiller has to deal
with them, in particular, it has to deal with ¢-functions if the program uses the
SSA form.

Our initial motivation was to analyze whether SSA is helpful or not to achieve
good spilling. In the first chapter of this part, we investigate the impact of SSA
on spilling with a flexible integer linear programming (ILP) formulation. We
compare this formulation against existing optimal approaches, with respect to
static spill cost, as well as heuristic-based approaches, and we evaluate the im-
pact of SSA on the runtime of the generated code and the complexity, in terms
of implementation, of the algorithms. Then, in a second chapter, using the ex-
perimental results of the first chapter, we discuss existing spilling criteria and
existing heuristics. In particular, we validate experimentally several simplifying
assumptions and point out the weaknesses of the approaches. We finally propose
a new cost model to optimize for runtime and emphasize some of the charac-
teristics of runtime performance that should be accounted so as to generate the
fastest possible code.

In the rest of the manuscript, we use the lightning symbol (£) to depict
program points where the register pressure exceeds the number of available
registers.

32

Chapter 3

Studying Optimal Spilling in
the Light of SSA

The static single assignment (SSA) form may appear attractive for the design of
spilling algorithms, because the underlying dominance tree often simplifies algo-
rithms [21]. Also, a spill-everywhere strategy, i.e., considering than a variable is
never in a register, can be realized by finding a maximal k-colorable subgraph in
the interference graph, which is chordal in SSA. Although NP-complete [107, 18]
(if k is not fixed), this problem may, in practice, appear simpler than for a gen-
eral graph. However, considering the different SSA live-ranges, obtained from
a given non-SSA variable, as unrelated means that stores may be needed for
each spilled live-range, while only one might be enough for the original variable,
as depicted by Figure 3.1. This may increase the spill cost considerably, unless
the moves hidden in the SSA ¢-functions are exploited.

if(..) if(...)
a < a] <
@, < store a @,, ¢ store ap
7
az < load Qg
else else
a < as <—
@, <« store a Q,, < store as
7
ay < load Q@
as < ¢(a3,a4)
Q,, <« store as
7
a < load @, as < load @,
<— a — ag
(a) Spill in a regular program (b) Spill under SSA

Figure 3.1: In SSA, considering as unrelated the different live-ranges composing
a variable may produce bad spill code.

33

To analyze these choices, and not just through heuristics, we needed an ex-
act formulation of the spilling problem, as complete as possible, that exploits
the structure of decoupled register allocation. As we show in Section 3.1, pre-
vious formulations either express the whole register allocation problem and are
thus very expensive, or cannot express all solutions, due to some simplifying
assumptions, in particular the fact that a variable cannot be stored simulta-
neously in a register and in memory. We thus developed a new integer linear
programming (ILP) formulation to approach optimality even closer and to better
understand the mechanisms involved during spilling. Section 3.2 first presents a
simplified version of this formulation, which already subsumes most previous ap-
proaches, and then shows extensions that incorporate more advanced features.
Section 3.3 gives a thorough analysis of the results obtained for the SPECINT
2000 and EEMBC 1.1 benchmarks and discusses the important features for
optimal spilling on load-store architectures.

To summarize, this chapter features:

e A new simple, flexible, and expressive ILP formulation for spilling on
load-store architectures, which allows us to accurately model variable
liveness, rematerialization, SSA and move instructions, memory coalescing,
placement restrictions of load/store operations, spill everywhere, etc.

e A detailed analysis of spilling choices that show, among others, a) the
extreme importance of rematerialization, b) the difficulty of memory co-
alescing when move instructions (e.g., through ¢-functions) are exploited,
c) the strong interaction with post-pass scheduling.

3.1 Formulating “Optimal”’ Spilling

“Optimal” ! spilling formulations are based on the notion of program points and
local register pressure induced by a given solution to the spilling problem. They
thus capture the number of live variables and their assignment to either memory
or registers at a given point. Since spilling is a global problem, program points
are connected according to the control flow graph (CFG) so that decisions at
one point impose constraints at its neighbors in the CFG. This global model
is usually expressed as an integer linear programming (ILP) instance, which is
solved by a generic ILP solver, such as CPLEX or GLPK.

3.1.1 Existing “Exact” Formulations

The formulation of Goodwin and Wilken [52] models the complete register al-
location problem, including the actual assignment of registers, using live-range
graphs (LRG). A LRG models the live-range of a given variable with respect
to a specific hardware register and thus needs to be instantiated once for every
register. The initial LRGs are extended to capture spilling decisions along the
variable’s live range, i.e., store and load operations, register-to-register copies,
and rematerialization. A major drawback of the formulation is the large size
of the ILP instances. The problem stems from the duplication of the LRGs
and also from redundancies arising from the LRG extensions. The approach

IWe use quotation marks for the word “Optimal” because, as we will see, none of the exact
formulations proposed so far, ours included, is able to represent all possible solutions.

34

thus appears rather expensive in practice. However, an optimized variant later
addressed some of these issues [48].

Appel and George [3] were the first to exploit the decoupling between spilling
and register assignment by replacing the latter by a simpler constraint on register
pressure. Developed for complex instruction set computing (CISC) machines,
they demonstrated that this strategy considerably reduces the size of the ILP
instances. However, they made a fundamental (and surprising) assumption: a
variable cannot be stored simultaneously in memory and in a register. The prob-
lem can then be simplified by expressing, for each program point, the possible
movements of a variable between the memory and the set of registers. However,
this limitation leads to sub-optimal solutions, in particular to redundant store
instructions. Indeed, each time a variable goes to memory, a store needs to be
placed even if the variable has already been stored there in the past.

The approach of Koes and Goldstein [65] is based on multi-commodity net-
work flow. All live-ranges are expressed using a single network-flow problem,
where variables are represented by source and sink nodes, while other nodes
represent allocation classes, such as constants, registers, and memory, at pro-
gram points and instructions. The network capacities express constraints on the
number of variables that can be assigned to each storage class simultaneously.
Initially designed to solve the complete register allocation problem, including
assignment, the approach can also be used to express the spilling problem alone,
by merging nodes and summing their associated capacities so as to constrain
the register pressure [66]. By adding some extra variables, called anti-variables,
Koes and Goldstein avoid counting redundant stores. However, as for Appel et
al., a variable may only be assigned to a single allocation class at any given
program point. Due to this limitation, not all solutions can be expressed and
the optimal can be missed too.

Ebner, Scholz, and Krall [39] address the spilling problem for SSA programs
using a series of network-flow problems, one for each variable. Nodes correspond
to instructions and edges to program points where loads can be placed. Every
cut of such a network gives a solution to the spilling problem for that particular
variable. To capture the register pressure, i.e., to consider all variables together,
a constrained min-cut problem is defined by assembling nodes of the individual
flow problems representing the same instruction into partitions with capacities.
The placement of stores is not optimized: they are always inserted after the
unique definition of a variable. Furthermore, the splitting of live-ranges due to
SSA is kept unchanged, i.e., the implicit moves corresponding to ¢-functions are
not exploited.

3.1.2 Limitations of Existing Approaches

The approaches presented above were designed to solve register allocation and
spilling under various constraints and assumptions stemming from complexity
or modeling considerations. They thus often show slight limitations, sometimes
unexpected, concerning “optimality”, expressiveness, and even correctness, as we
will illustrate. In the following, the symbol # indicates a program point where
the register pressure is too high and some variable needs to be spilled.

35

a <« ...

a+— ... be—a+1/¥¢
b+ a+1f @, < store a
< a a « load Q,
— a
(a) before spilling (b) ineffective spilling

Figure 3.2: Spilling the variable a does not help.

3.1.2.1 Liveness

The extent of live-ranges is a surprisingly frequent source of problems, at least
for load-store architectures. If a variable cannot be simultaneously in register
and memory, as for the approaches of Appel et al. and of Koes et al., a variable
stays live in a register after a use until the value can be spilled, unless the
variable dies at that use in the original program. In Figure 3.2, the variable a
remains live after its use and thus always interferes with b, regardless of the
spilling decision. Here, a should be stored just after its definition and, at the
same time, kept live in a register. In the worst case, these artificial interferences
between uses and definitions, due to the strong hypothesis that a variable can
never be simultaneously in memory and in register, may render the spilling
problem unfeasible, e.g., when the number of variables defined and used is larger
than the number of available registers.

A similar problem can arise with the initial formulation of Goodwin et al. [52],
linked to the block start and block end transformations. Later results resolve
this issue with additional ILP variables explicitly modeling deallocation [48].

3.1.2.2 Living in Memory and Register Simultaneously

As we already mentioned, a major limitation of the approach of Appel et al. is
the assumption that a variable may either be kept in memory or in a register,
but never in both at the same time. Besides the unnecessary extension of live-
ranges shown previously, this may lead to spurious store operations as shown
by Figure 3.3b. The necessary load operation inside the loop “destroys” the
previously-spilled value in memory and forces a useless store operation inside
the loop. The “optimal” solution in their model is given by Figure 3.3c. The
actual optimal solution cannot be expressed. It would consist of the code from
Figure 3.3b without the store inside the loop.

A similar example can be built for the formulation of Koes and Goldstein,
despite the fact that redundant stores cost zero in their model. Figure 3.4
shows three spilling scenarios on a simple loop. Redundant stores that are
not emitted are shown in gray. Figure 3.4c is close to the optimal solution.
However, a useless load operation is required before the loop due to the use of
the variable a on the else-branch within the loop.

3.1.2.3 Rematerialization

It is well-known that rematerialization has a great potential to reduce spill costs
by recomputing values instead of storing and re-loading them from memory.

36

a < ... a <« ...

@, <« store a while(...){
a <+ ... while(...){ @, <+ store a
while(...){ 12 s
s a <« load @, a + load @,
<— a <— a — a
} @, < store a }
}
(a) before spilling (b) Appel 1 (¢) Appel 2

Figure 3.3: Spurious store operations following a load.

a < ... a < ...

a <+ ... @, < store a @, « store a
while(...){ while(...){ a + load Q,
if (...) if (...) while(...){
@, < store a 4 if (...)

4 a «+ load Q, store a

a + load Q, — a 4
< a else a < load Q,
else a «+ load Q, — a
— a — a else
} store a — a
} }
(a) Koes 1 (b) Koes 2 (c) Koes 3

Figure 3.4: Even when redundant stores cost zero, sub-optimal spilling solu-
tions may be generated.

However, in the context of “optimal” spilling, rematerialization and its impact
on code quality and solving times is hardly studied.

The approach of Appel et al. does not address rematerialization. As for
Koes et al., they model rematerialization of simple constants using a dedicated
allocation class. Again, the fact that a variable cannot be accessed through
multiple allocation classes at the same time prevents it to be used as a rema-
terialized operand and to stay available in memory. This may be needed for
further usage after a CFG join point if the variable is not rematerializable on
the other path. As for the model of Goodwin et al., it is restricted to variables
holding a constant value throughout their entire live-range. Moreover, remate-
rializable variables cannot be spilled to memory. This limits the optimization
since variables in non-SSA programs are often rematerializable only on parts of
their live-ranges.

3.1.2.4 Memory Coalescing under SSA Form

SSA simplifies the register assignment phase but its benefits for spilling are less
clear. An important aspect, not covered by any of the existing “optimal” for-
mulations, is the modeling of ¢-functions, in particular the effect of spilling the

37

if(...) if(...) if(...)

Qcross ¢ store cross

v1 < load @, ¢ v1 < load @, ¢
@, + store v, £ @, + store v, £
vy < load @, £ vy < load @, £
@, « store vy £ @p + store vy £
crossy; < load Qg5
else else else
@, <« store ¢ @, <« store ¢
@, + store d @ < store d
Q, < ¢(Qy,c) crossy < @(crossy, cross)
@e — (b(@bvd)
(a) Ebner output (b) Expansion (c) Repairing

Figure 3.5: Hidden costs due to mixed type of operands in ¢-functions in Ebner
et al. Removal of ¢-functions may require to insert load/store instructions.
These instructions may need an additional register in case of memory to memory
copy (b). This additional register may exceed the register pressure and may
imply additional spill code for a variable crossing that region (c).

result and/or arguments of a ¢-function. Ebner et al. treat them as completely-
independent variables and thus do not exploit the implicit copy relations, in their
cost model. Instead, they place loads and stores a posteriori, once spilling deci-
sions of SSA variables are done. This implies a hidden cost and potentially very
bad spilling decisions as illustrated in Figure 3.5. Spilling heuristics [21] usually
avoid the problem by requiring the program to be in conventional static single
assignment (CSSA), where the operands and the definition of a ¢-function do
not interfere. In this case, the related variables can be stored at the same mem-
ory location, without the need of additional memory operations. Otherwise, the
copy relations and the possible coalescing (i.e., sharing) of memory locations
among ¢-operands have to be modeled to derive an accurate cost model [55], as
we discuss in the next sections.

3.2 A More “Optimal” Formulation

This section presents a new ILP formulation of the spilling problem, more ac-
curate than previous solutions (but specialized to load-store architectures) and
flexible enough to evaluate different opportunities when designing spilling strate-
gies. It can also emulate the spilling formulations given in Section 3.1 with a few
additional constraints. We first present a simplified version for non-SSA pro-
grams, then describe extensions to handle moves, in particular those implicit in
the SSA representation.

Given a program represented by a CFG, with weights indicating the exe-
cution frequency of each instruction or basic block, our formulation seeks the
cost-optimal placement of stores and loads, with no other modification of
the program (e.g., no re-scheduling). These spill operations can be placed on
program. points before and after every instruction. Additional program points
might be available at CFG joins and splits, depending whether the CFG edges

38

can be split or not. An optimal solution might require to perform multiple spill
operations at a given program point. Without loss of optimality, we choose to
perform all stores first, then all loads, since this order reduces the local regis-
ter pressure. The relative order of the individual stores (respectively loads) is
not relevant and is thus not modeled.

3.2.1 Basic Formulation

For every variable live at a given program point, we record whether its value is
available in a register, in memory, or in both. This depends on the instructions
reading/writing the variable and on the spill operations. Additional constraints
ensure that the number of variables held in registers does not exceed the number
of available registers. A fundamental feature of our model is that a variable can
die in register and/or in memory at any moment. For a variable v live at a
program point p, we introduce the following 0-1 variables:

p1,p0 = 1 iff v is available in a register at the beginning of p.
p2.pv = 1 iff v is available in a register at the end of p.
t1,pv = 1 iff v is available in memory at the beginning of p.
Ho.pv = 1 iff v is available in memory at the end of p.

Sp» = 1 iff v is stored to memory at (the beginning of) p.
lp» =1 iff v is re-loaded from memory at (the end of) p.

The variables s, . and [, , can be deduced from the other 0-1 variables. Nev-
ertheless, we keep them for readability and to simplify the specification of the
ILP cost function.

3.2.1.1 Constraints

Definitions and Uses On a load-store architecture, a variable v must be in
a register immediately after its definitions and immediately before its uses. In
other words, for a program point p that immediately precedes an instruction
that uses v, the variable v must be in a register at the end of p, i.e.:

(Use) p2po =1

Similarly, for a program point p that immediately follows an instruction defin-
ing v, the variable v must be in a register at the beginning of p, but is not
available in memory:

(DefR) Pl,pv = 1 (DefM) H1po = 0

Loads and Stores To do a load (resp. store) of v at a program point p, the
variable v has to be available in memory (resp. register) at the beginning of p:

(Load) Ip.o < p1,pw (Store) spu < p1,po

To make things simpler (this does not change optimality), we add the following
constraints, which mean that a load (resp. store) does assign a register (resp.

39

memory location), at the end of p:

(Load®) lyv < p2,pv (Store™) sy < p2,pw

Propagation A variable v is available in a register at the end of a program
point p if it was available in a register at the beginning of p or it has just been
read from memory using a load:

(Regp) p1rpo + lpw = p2,p0

Similarly, a variable is available in memory if it was already in memory or if it
has just been written using a store:

(Memy,) p1,p,0 + Spw = H2,p0

It remains to ensure the consistency between two successive program points p
and ¢ for a variable v that is not defined by the possible instruction between p
and ¢: v is in register (memory) at the beginning of ¢ if it is in register (memory)
at the end of all program points p that immediately precede q.

(Regp,q) P2.p,0 = P1gw (Memy, g) f12.p,0 = 1,90

Note that by using inequalities (>) instead of equalities (=), it is possible to

release register and memory locations at any time (i.e., v dies), both within and
between program points.

Register Pressure There should be at most k variables in a register at the
beginning and at the end of each program point p, where k is the number of
available registers:

(Presy) Zplyp,v <k (Pres.) Zpg,p,v <k

v

Example For the two successive program points p and ¢ surrounding the
instruction b < a + 1, the following constraints are generated: p;qp = 1,
Higb = 0, p2pa = 1, prga < p2pa, and piga < fopa. These last two
constraints are similar for variables whose live-ranges traverse the instruction.
Register pressure constraints are also added. Figure 3.6 illustrates the relation
among the associated ILP variables.

3.2.1.2 Objective Function

Our goal is to minimize the expected cost of spill code at runtime (code size
could also be modeled). We denote by F), the expected execution frequency
of program point p and by Csiorep, and Cioadp,, the costs of a store and a
load for variable v at p. The parameterization of the costs with p and v gives
additional freedom for our advanced formulations presented later. We then aim

at minimizing:
E E Fp (Cstorep,vsp,v + Cloadp,vlp,v)
p W

40

? ?

Pl,pa =! Hipa =1
(Regp) + + (Memy)

? L/ \A ?

*p lp’a = (Load) (Store) Spa =!

(Regp) < < (Memy)

p2,pa =1 (Use) H2,pa =7
b+ a+1 (Regp,q) = > (Memyp q)

Prpp =1 (Defr) p1gp =0 (Defy) Pl,q,a =7 H1,ga ="

*q

Figure 3.6: Generated ILP variables and the related constraints on an instruc-
tion and its surrounding points. Question marks denote values to be set by the
ILP solver. The name of the rule is given next to the corresponding constraints.

3.2.1.3 Fully Rematerializable Variables

A variable v is fully rematerializable if all its definitions evaluate to the same
value that is recomputable on every program point for free. This is the particular
case of rematerialization captured in the model of Goodwin et al. In our basic
ILP formulation, we can easily express it as follows. For a program point p,
after a definition of a fully-rematerializable variable v, instead of applying Defj,
and Defg, we simply force p1,,, = 1 (then loading means recomputing) but
leave p; p, ., unspecified (a solution with py 5, , = 0 means that the definition is
removed at this point). We then redefine Cioaqy ., the cost of loading (here, of
recomputing), by Ciemat,- Finally, to take definition removals into account, we
subtract Fp, Crematy(1 — p1,p,,0) from the objective function. A more general
model of rematerialization is given in Section 3.2.4.

3.2.2 Emulating Other Formulations

With a few additional constraints, we can emulate other ILP approaches, in
particular those of Appel and George, and of Koes and Goldstein, as well as
heuristic strategies such as the spill-everywhere approach.

To emulate spill-everywhere simplifications, for each variable v, we restrict
the program points where a store (resp. load) can be inserted to the points
immediately after the definitions (resp. before the uses) of v. This translates
into setting the ILP variables representing the insertion of load or store to 0
on all the points that do not match the previous constraints. Moreover, in a
spill-everywhere strategy, when a variable is spilled, all its definitions are stored
and all its uses are loaded. To achieve this behavior, all the permitted stores
and loads of a variable have to be linked. To not change the way ILP variables
and constraints are generated in our implementation, we added constraints that
state that all these ILP variables are equal. Another way could be to use a
single ILP variable for all these actions.

To emulate Appel and George, we just need to forbid a variable to be in
register and memory at the same time. This can be done by adding the con-
straint (2, + p2,p,0 = 1 for every program point p and variable v live at p.
As for p1,p4 + p1,po = 1, it is implied by the propagation constraints Regy, 4

41

and Mem, ,. An alternative formulation is to force a store (resp. load) to
release the corresponding register (resp. memory location):

(Appell) lp,v + ,LLQ,p,v S 1 (Appels) Sp,'u + pQ,p,v S 1

It is interesting to note that, if we do not add the Appel; constraints but only
keep the Appels constraints, i.e., a load does not force the variable to die in
memory, we retrieve the model of Koes and Goldstein, in which the cost of
a store is zero when the variable has already been stored. Actually, to get a
faithful emulation, we should slightly weaken the model to express the limitation
exposed in Section 3.1.2.1. This can be done by adding p; ., = 1 for every
program point p after a use of variable v that is not the last use.

Note that these two emulations, of Appel et al. and of Koes et al., are both
derived by over-constraining our basic formulation. Thus, our formulation is
more general and expresses more solutions. Compared to the formulation of
Appel et al., our ILP unknowns express where variables are stored (register
and/or memory) while Appel et al. express the movements of these variables
between register and memory (mutually exclusive).

3.2.3 Handling SSA and ¢-Functions

We now explain how to extend the previous basic formulation to deal with SSA
programs. Several approaches are possible depending on whether live-ranges of
SSA variables are considered to be unrelated, we call this the basic SSA approach
(see Section 3.2.3.1), or whether copy relations implicit in ¢-functions are ex-
ploited. In this latter case, the fact that arguments of a ¢-function can interfere
complicates the formulation: we then propose two solutions, an optimistic ap-
proach that may require repair code, and thus optimizes an under-estimation of
the spill costs, and a pessimistic approach that conservatively exploits memory-
to-memory copies. The way we handle ¢-functions can also be used to exploit
regular move operations, thanks to the notion of local equivalence class that
will be explained later on. However, this extension has limited impact for the
benchmarks we considered, which have few moves. We also present support for
more sophisticated rematerialization.

3.2.3.1 Basic SSA

The easiest way of handling SSA programs is to consider live-ranges of SSA
variables as unrelated and to interpret ¢-functions as copies between variables.
The basic formulation of Section 3.2.1 can then be applied on the code that
would be obtained by direct out-of-SSA translation [100]. In this process, the
different ¢-functions are represented by parallel move operations that are implic-
itly placed at the program point representing a ¢-function and its predecessors
as illustrated by Figure 3.7. These parallel copies are then sequentialized, which
may require an additional variable.

This approach, although correct, has several weaknesses. For load-store ar-
chitectures, it requires every argument of a ¢-function to pass through a register
at the corresponding copy. This may increase spilling. Also, each ¢-function
potentially induces a store if the corresponding variable is spilled. Finally, the
fact that a particular sequentialization is chosen a priori may preclude opportu-

42

if (...) if (...)

(ageg) (bD)

else else

(agre5) + (c,d)

a < ¢(b,c) (a,€) (ag,eq)
e « ¢(b,d)
(a) Before (b) After

Figure 3.7: Replacement of ¢-functions.

nities. Thus, when considering SSA variables, it is preferable to combine spilling
with a form of copy coalescing, in particular the coalescing of memory locations.

3.2.3.2 Optimistic Coalescing

A more natural handling of ¢-functions is to consider a ¢-function as a propa-
gation between program points, i.e., to transfer values of a ¢-function through
registers and memory: the result of a ¢-function is available in register (resp.
memory) if all other arguments are in register (resp. memory). More formally,
for every program point p;, 1 <1i < n, preceding a program point ¢ that repre-
sents a ¢-function ag < ¢(ay,...,a,), we add the following two constraints:

(PhiR) P1,q,a0 < P2,pi,a; (PhiM) H1,q,a0 < H2,p;,a;

In this approach, implicit memory-to-memory copies, expressed by the con-
straints Phiys, are allowed at no cost. This model is used in the heuristic of
Braun and Hack [21], assuming that the program is in CSSA, which guarantees
that no actual memory copies are required (how Ebner et al. [39] capture ¢-
functions is not explained). Indeed, in CSSA, variables connected by ¢-functions
do not interfere and can be spilled to the same memory location.

The same approach can be used optimistically for programs that are not in
CSSA, by observing that memory live-ranges are shorter than the original live-
ranges and thus, after spilling, are less likely to interfere than the original live-
ranges. After ILP solving, ¢-functions whose results are not in a register at their
definition point are converted to ¢-functions with memory operands. The live-
ranges of all memory locations are then computed and coalesced using aggressive
coalescing [33]. Finally, repair code is inserted that performs a transfer from the
memory location of a ¢-function argument to the appropriate destination, when
the argument has not been coalesced with the result of the ¢-function. These
additional costs are not reflected in the ILP objective function, which may lead
to sub-optimal solutions. Also, in the worst case, the repair code may locally
increase register pressure, which might lead to additional local spilling.

3.2.3.3 Pessimistic Coalescing

The pessimistic approach proceeds in the opposite manner. Parallel move oper-
ations are implicitly placed at the program point representing a ¢-function and
its predecessors, as illustrated in Figure 3.7a. Next, liveness is computed, an

43

a <+ ... Q. < store a @, < store a

b «— ... @, + store b @, < store b
7 ¢ ¢

“~ b b1 < load @, by < load @
if (...) — b — b

P if (...) if (...)
c « ¢(a, b) / @, < store b
'3 @, < mem_dup @, '3

c + ¢(a, b) c + ¢(a, b)
(a) Original (b) Optimistic,/pessimistic (¢) Optimal

Figure 3.8: Optimal memory duplication placement.

interference graph of all live-ranges is built, and aggressive coalescing is used
to define sets of coalescable variables. These sets are then used during the con-
struction of the ILP problem to express memory-to-memory duplications and
take their costs into account in the ILP objective function. This is expressed
using two new constraints Mem,,, (copy at no cost) and Memg,, (duplication)
detailed hereafter.

This approach is pessimistic, because, whenever a variable interferes stati-
cally with another variable in the original program, it is assumed that the spill
locations of these variables will also interfere in the final program. After ILP
solving, however, we might encounter that these memory locations actually do
not interfere, because the variables are not kept in memory throughout their
complete live-ranges. Using a post-processing, we may thus eliminate useless
memory duplications, again by coalescing memory locations, and lower the spill
cost. In contrast to the optimistic variant, this post-processing is optional and
not required for correctness.

3.2.3.4 Optimal Coalescing

None of the approaches presented in the previous sections captures the optimal
solution, as shown by the example of Figure 3.8. Optimally solving the memory
coalescing problem along with the spilling problem is intractable at the moment
due to the subtle semantics of ¢-functions and the complexity of capturing
the actual live-ranges in memory, which are not known before spilling is done.
The problem of expressing optimal solutions for non-CSSA programs is thus
left open. However, we can draw a hierarchy between the different approaches
compared to an optimal solution, as follows.

The basic SSA approach over-constrains the program by forcing the operands
of ¢-functions to be in register. Clearly, this might be sub-optimal in certain
cases. The pessimistic approach might also yield sub-optimal solutions, due to
its conservative choice of coalescable memory locations and the resulting over-
estimation in the ILP objective function. The optimal solution can still be
achieved in some cases during post processing, i.e., when spurious memory du-
plications are eliminated by coalescing. Due to its added expressiveness, the
pessimistic approach is guaranteed to give better solutions than the basic SSA
approach. The optimistic approach, in contrast, may find solutions whose ob-
jective function are even better than optimal. This may happen when memory

44

a < b a < b

@, <+ store a 3 a<+ b

s a< b 7

a + load @, — a ~— b
<— a . A

= «— b —~ Db
<~ b

(a) useless spill (b) code motion (c) renaming

Figure 3.9: Exploiting moves as special operations.

locations are falsely assumed to be coalescable. Repair code is consequently
inserted to correct this underestimation, resulting in the final, potentially sub-
optimal, spill code. Since these underestimations of the cost are implicit in that
model, it can end up with a lot of such insertions. The solution may then even
be worse than that of the basic SSA model, even if this is unlikely.

3.2.4 Extended Formulation

We now present an extension of the basic ILP formulation described in Sec-
tion 3.2.1, which can be customized to express the different approaches proposed
earlier, by predefining some variables or by omitting certain constraints. These
details can be skipped at first reading.

3.2.4.1 Handling Regular Copy Operations

As described in Section 3.2.3, an important feature is to be able to exploit moves,
which are implicit in the SSA ¢-functions. In particular, we want to take into
account the fact that memory coalescing may not be possible. Actually, the
same situation occurs for regular moves, which may appear in both SSA and
non-SSA programs.

Moves Figure 3.9 illustrates a situation where spill code can be avoided by
exploiting move operations, with either code motion or renaming. To express
such an optimization, we introduce the notion of local equivalence classes as
the set of variables, denoted EC), ,, that carry the same value as v at program
point p (these sets can be statically pre-computed). This allows us to express
several additional features. For example, whenever a variable v is used, we may
choose to read another variable u from its equivalence class, if u is in register,
or to load from the memory location of u. We may also allow to insert an
explicit register-to-register copy between u and v. To describe the constraints
more easily, we treat the original move as a virtual operation, using an artificial
program point. Figure 3.10 illustrates the handling of equivalence classes.

Crossing Variables On load/store architectures, memory-to-memory copies
require a register. Hence, we have to account for an additional register at a
program point with memory copies, unless the memory locations of all copies
can be coalesced. We also want to express explicitly the newly-introduced re-
materialization and move operations, even if some have cost 0 in our objective

45

op1 {Ul}
/
LI 21 V2 < V1 {Ul s 1)2}

D2 {1)17 02}

op3 {017 U2}
V2 —

*py {v1 Hwa}

Figure 3.10: Moves & local equiv. classes (in brackets). Program points are on
the left, instructions in the middle and local equivalence classes on the right.
An equivalence class is valid only on the related program point. On p;, only one
variable is alive (v1), thus this point has only one equivalence class: {v;}. The
point p} defines vo as a copy of vy, hence v and vy share the same value at p)
and p] equivalence class is {v1,v2}. Between p3 and py, vo is redefined. On py,
v1 and vy do not share the same value anymore, thus ps has two equivalence
classes: {vq}{va}. Live-ranges may also be extended (here vs at ps3).

function. A fixed order of these operations may lead to a suboptimal solution.
Nevertheless, to keep our ILP formulation practical, we chose the following
static ordering: (1) store operations, (2) memory-to-memory copies, (3) load
operations, (4) rematerialization operations, and finally (5) register-to-register
moves. The assignment of a variable to a register may be released either at the
beginning of the program point by a store or in the middle by a register-to-
register move. We account for the variables crossing this region in a register to
ensure that the register pressure never exceeds the number of registers.

ILP Variables The extended formulation introduces 6 new 0-1 variables, for
each variable v live at a program point p:

mem_ cpyp, = 1 memory copy into memory slot of v.
mem_dupy,, = 1 duplication into memory slot of v.
has_mem_dup, = 1 at least one memory duplication at p.
move, , = 1 register-to-register move to v at p.

rematy, , = 1 rematerialize v at p.

cross,, = 1 v still in register after the stores at p.

Both memory copies and memory duplications represent memory-to-memory
transfers. The difference between them is that memory copies are only applica-
ble to memory locations that can be coalesced, in which case they are for free.
Memory duplications on the other hand cause a load followed by a store and,
in addition, require a register.

3.2.4.2 Constraints

In the extended formulation, most constraints change to express the opportuni-
ties offered by local equivalence classes. As these changes are straightforward,
we summarize them quickly and focus the discussion on the additional spill op-
erations. When moves are not exploited, equivalent constraints can be derived
using singleton equivalence classes.

46

Crossing Due to the additional spill operations and the fact that memory
duplications might require temporary live-ranges that are not visible at the
beginning or the end of the program point, we track variables crossing through
the program point in a register. The resulting propagation constraint for a
variable v at program point p becomes:

(Cross) p1.puw > Crossyy

Using Equivalence Classes Instead of requiring a given variable to be in
register at a use site, it is sufficient that some variable v € FC, , is available
in a register. Note that, of course, v € EC},,. Thus, at a program point p
preceding a use of variable v, we apply the following constraint:

(Use) > papu>1

u€EC)

Similar constraints allow a load (resp. store) to read from the memory location
(resp. register) of another variable:

(Load) I, < Z P1,pu T+ Spu
u€EC) ,

(Store) sp,» < Z Pl.pu

u€ECy

Moves We do not represent an explicit move between variables as an instruc-
tion but as a program point with additional constraints. Instead of forcing the
operands of the move into a register using the regular Use or Defr constraints,
we indicate that the result is neither in memory nor in register. For a program
point p representing an explicit move defining a variable v, we write:

(Defrove) p1,p0 =0, p1,p0 =0

This has the effect of killing any previous value of v (but v is added in the
right equivalence class). However, since the original instruction is removed, we
have to provide a way to instantiate the move, if needed. A move v < u can
be performed anywhere along the original live-range of v, or beyond if desired,
as long as u belongs to the equivalence class of v. Given the equivalence class
EC, ., amove can be instantiated at p under the following conditions:

(Move) movep , < E crossp .y + lpu
ucEC), ,

Note that, in contrast to other constraints, we use cross, , instead of pq , ., to
express that moves appear after the store and memory duplication operations
on a program point.

Memory Copies Memory-to-memory copies have different implications de-
pending on whether the related memory slots are coalescable or not. A truly-
optimal spilling approach would require to solve the memory coalescing problem
along with the spill code placement. This is hardly an option since coalescing,

47

even aggressive, is NP-complete [17]. The constraints presented hereafter can
be used with different coalescing strategies, including integrated approaches.

Let v be a variable live on a program point p and let CC, , C EC, , be the
set of variables whose memory slots can be coalesced with the memory slot of v.
A memory copy can be performed at no cost under to following condition:

(Mem,p,) mem_cpypn < Z H1pu + Spu
ueCCl o

A memory duplication can be done regardless of whether v can be coalesced
with the source of the duplication as long as both are in the same equivalence
class, thus:

(Memgy) mem_dupp, <Y papa + Spa
u€EC), ,

To limit register pressure, we need to know whether at least one memory du-
plication is to be performed on a point p. We can express whether a memory
duplication is performed at p using a 0-1 variable has_mem _dup,:

Vv, has_mem_dup, > mem_dup,,

Register Pressure The following constraint ensures that the register pres-
sure is not exceeded within a program point p, even when memory duplications
are performed:

(Pres.) Z crossy, », + has_mem_dup, < K

Rematerialization The rematerialization is explicitly defined in the extended
formulation. The purpose is to have a clean model of what is in memory and
what is not. This information is important when memory-to-memory copies
read from a rematerializable variable (see Figure 3.11). At a program point p
where the rematerialization of v does not require any argument, we allow an
additional “spill” operation as follows:

(Remat) remat, , <1
For a rematerialization reading from a set of arguments A:

(Remat a) |A|rematy,, < Z Crossp u
u€A

More complex compositions of rematerialized expressions are straightforward to
express for SSA programs. Since we limit our evaluation to simple rematerial-
ization, we do not discuss these capabilities any further at this point.

Propagation A variable v can be in register at the end of p, if it is the result
of a move, a load, a rematerialization, or if the variable crosses p in register:

mMovey, ,, + lp,v + rematy , + €ross, o = p2.p0

48

if (...) if (...) if (...)
a +— 3 a +— 3 a +— 3
@, < store a
else else else
b+ ... b+ ... b+ ...
@, < store b @Qp < store b
7 ¢
C < ¢(avb) @c <~ ¢(@aa@b) @c — d)(@a:@b)
¢ ¢ ’
(a) Origin (c) Extended model

(b) Variable a is not in memory. Loading ¢ may
give an undefined value.

Figure 3.11: Memory copies implies a correctness problem with rematerializa-
tion as presented for the basic formulation.

Likewise, v can only be in memory at the end of p, if its memory location was
defined by a store, memory duplication or copy on p, or was available before:

Sp,o +mem_dupp ., +mem_cpyp.o + Hipe 2 f2,p0

Finally, the constraints to propagate between two program points are un-
changed. Local equivalence classes are not used here, so as to capture the cost
of register-to-register and memory-to-memory copies. Note also that the con-
straints of the extended formulation can easily emulate our basic formulation
by pre-setting the 0-1 ILP variables representing the new spill operations and
by restricting equivalence classes. The same is true for the proposed approaches
to coalesce memory locations of copy-related variables, either coming from ¢-
functions or from regular copies. These approaches are summarized in Table 3.1.

No exploitation of moves and ¢-functions
Basic SSA No explicit memory copies nor duplications
Coalescing and repairing after ILP
Explicit moves at ¢-functions
Pessimistic Aggressive memory coalescing before ILP
Coalescable memory copies for free
Memory duplications with cost
No repairing needed
Free memory copies at ¢-functions
Optimistic ~ All variables are assumed to be coalescable
Explicit memory copies are free
Coalescing and repairing after ILP

Table 3.1: This table lists the different strategies we proposed to deal with
moves and memory coalescing under SSA and details their handling.

49

3.3 Experiments

We made our experiments on the ST231 embedded processor for media appli-
cations. This is a 4-way parallel VLIW architecture, supporting one memory
operation per instruction bundle. It features a direct-mapped cache of 32KB
for instructions (64b lines) and a 4-way set associative cache of 32KB for data
(32b lines). Both caches are connected to a shared bus memory controller with
an average latency of 120 cycles to access off-cache data. For in-cache data, the
latency between the load and a use is 3 cycles. The pipeline is stalled automati-
cally if this latency is violated, i.e., at least 3 instruction bundles have to follow a
load to hide the cache latency. The data cache follows a write-through strategy.
A store buffer for memory writes allows to group up to 4 store requests into a
single bus transaction. In case of a store/load conflict in the store buffer, the
store must be processed down to the memory before being reloaded.

We implemented our ILP spiller in the static C compiler of STMicroelec-
tronics, which is based on Open642. Register allocation, and thus spilling, is
performed in a separate back-end optimizer that comes with the production
compiler. The register allocation uses a decoupled approach, where spilling is
by default performed using a heuristic and assignment using graph coloring.
In the following experiments, we compare several spilling approaches, both ex-
act and heuristic:

Appel-G Appel and George’s ILP Formulation [3],
Coloring Heuristic using iterated register coalescing [51],
Basic Our basic formulation, see Section 3.2.1,

SpEv Basic formulation emulating spill everywhere,

Koes-G Emulation of Koes and Goldstein’s ILP Formulation [65].
BasicSSA Naive handling of SSA, see Section 3.2.3.1,
SpEvSSA Emulation of spill everywhere under SSA,
Optimistic Extended formulation, see Section 3.2.3.2,
Pessimistic Extended formulation, see Section 3.2.3.3,

Hack Hack’s SSA-based spilling heuristic [55].

Braun-H Braun and Hack’s SSA-based spilling heuristic [21].

The first 5 configurations were evaluated using regular non-SSA programs,
while the others were applied to SSA programs. In both cases, critical edges were
split prior to spilling. We also show results for configurations with equivalence
classes enabled (marked by a suffix _ec) and with rematerialization enabled
(suffix _remat) — both disabled by default, unless it is a basic feature of the
model like Koes-G and Braun-H. For the ILP solver, we used IBM CPLEX
for academics, version 12.2. All configurations were tested on the benchmark
suites EEMBC 1.1 and SPECINT 2000, excluding the C++ program eon. The
compiler was invoked using the -03 optimization level with the number of al-
locatable registers limited to 8 (4 callee-saved and 4 caller-saved registers) so
that spilling effects are more apparent (see comments below). The cost model
is based on basic block frequencies, which were either derived from profiling
feedback or from estimates according to Ball and Larus’ heuristic [5].

The experiments investigate the solving time of our formulation, its impact
on static spill costs over all benchmark programs, and the effects on the runtime

2http://www.open6d.net/

50

behavior of the EEMBC benchmarks. Runtime measurements for SPEC are not
shown, because the benchmarks are too large for our architecture’s instruction
cache. The programs spent up to 65% of the time waiting for the instruction
cache, making all runtime measurements irrelevant for spilling. We set a time
limit of 1000 seconds for all ILP configurations. To avoid the impact of random
results when the optimal solution is not reached, all presented numbers refer to
optimally-solved instances only. To reduce the solving time, a heuristic supplies
an initial solution for all ILP configurations. Hack’s heuristic is used for SSA
programs, graph coloring otherwise. Therefore, when the solver reaches the time
limit, the provided solution is at least as good as the related heuristic.

Note on the number of registers The ST231 is classically shipped with 64
registers. However, this number is too big to reveal any interesting difference on
the runtime of EEMBC benchmarks. In other words, the amount of spill code
is too limited relatively to the rest of the program. For SPEC, this amount of
registers could have been relevant, but the runtime is not, as explained above.
In the end, we chose 8 allocatable registers to recall ARM and x86 architectures.

3.3.1 Solving Time

Our primary goal was to express the spilling problem in a simple and flexible
way. Speed was not a major concern. However, to reduce the solving times, we
restricted the program points where loads and stores can be performed, without
losing optimality. For example, for all formulations where a variable v can be
simultaneously in register and in memory, it is sufficient to consider solutions
where loads (resp. stores) for v are just before (resp. after) each use (resp.
definition) of v and at the end (resp. beginning) of basic blocks [52].

After 20s, whatever the formulation, 90% of the functions of EEMBC are
solved optimally. For SPEC, whose functions are larger, this takes 65s. SpEv is
the fastest configuration to solve. After 5s, 95% (resp. 90%) of the functions are
solved optimally for EEMBC (resp. SPEC). As a comparison, Appel-G solves
79% (resp. 85%) of the functions optimally in 5s. After 1000s, all 656 functions
of EEMBC were solved optimally, except for the Optimistic and Pessimistic
configurations which reached the time limit for 2 of them. For SPEC, 99% of
the 5060 functions are solved optimally when reaching the time limit whatever
the configuration. Note that we excluded from these numbers the functions that
do not require any spill code when solved by the heuristic used to initialize ILP.
In this case, we do not invoke the ILP solver. In other words, the presented
numbers do not include 221 functions of the EEMBC and 719 functions of the
SPEC benchmarks that are solved optimally in a trivial manner (with no spill).

Figure 3.12 gives an overview of the solving times for all EEMBC and SPEC
benchmarks. The curves show the percentage of functions solved optimally in a
given amount of time. These timings may change depending on the workload of
the machine and heuristic choices of the ILP solver. We observe that the solving
times of most configurations behave similarly, except for the SpEv configuration
which is consistently solved the fastest for both benchmark suites. As expected,
the solving times increase for larger instances having more points, i.e., because
of larger functions or additional variables introduced by SSA form.

51

.fﬁ 100
- L |
Eosof]
bD .
E I —e— Basic 8
é 60 |- —>— SpEv N
= i —— Pessimistic |
§ —=— Optimistic
§ 40 |- —— Koes-G [}
s i —+— Appel-G ||
2 2| 4
=
E L |
&3 Lol |
0.1 1 10 100 1000
Time in seconds
é 100 —— ——— —
- L |
£ osf]
bD .
g I —e— Basic .
§ 60 —>— SpEv
z —— Pessimistic |
Fug —=— Optimistic
é 40 —— Koes-G ||
2 —— Appel-G |
=20 i
=
E |
\O\O O< Lol Lol Lo
0.1 1 10 100 1000

Time in seconds
Figure 3.12: Percentage of functions that can be solved optimally in the given
amount of time for EEMBC (top) and SPEC (bottom). The markers on the
curves help to identify the related configuration, they do not represent the actual
measurements, which would have been too dense.

3.3.2 Static Spill Cost

In this section, we compare the different approaches with respect to the static
spill costs, following the cost model provided by Open64, where a store costs
1.25, a load 3.25, and a rematerialization 1 (all numbers multiplied by the ex-
pected execution frequency). These costs are computed from the actual spill
code after clean-ups and insertions of repair code, e.g., due to memory coa-
lescing or duplication. They may thus differ slightly from the ILP objective
value. Figure 3.13 shows the geometric mean of the costs over all benchmarks,
normalized to the Appel-G configuration and obtained by summing the costs
of all functions that are optimally solved by both the Appel-G configuration
and the spilling strategy at hand. For the heuristic approaches, we consider all
functions that are optimally solved by Appel-G. In addition, the variation is
depicted using the minimum and maximum.

52

11.07 11.67 11.55 1.67 16.25 2.61

1.6 1.6
1.4 1.4
1.2 1.2
1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
o & : ~ O oF RS

— .

O <& X X A >0 > O
% 2 N S S N . @S a
QQQ} (9? 066 %Q @% \Q;é\ . \Qo) \Q}é\ . \6\6 & \\(Q\(o & O\é\ ‘2‘ \é{\ \,§§‘
Rl R O/ QP % Q)G)(" \\Q/OQ, 7 é\}-/ D

W& o CE X

P P P
@ 2 < @)

18 2.05 2.25 18
1.6 1.6
1.4 1.4
1.2 1.2

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0 > Q R > o & l S 0

QYO ?% Q/@'O 6QQ’ \\é‘??fz? é\ 6 ve@ \9\ & @@ o<\<\?g~’0&e@®o‘\'

X7 T G W A o v & W ®

QQ’ 2) 52 Q) (‘o Q @ @) '6\’ rb,(’

Q N7 o & & X
v & o 9@\ $

Q Q@ @)
[Load C_1Remat HM Store —— Min-Max

Figure 3.13: Geometric mean of static spill costs for EEMBC (top) and for
SPEC (bottom), using frequency estimates. (Lower is better)

Despite its restrictions, Appel-G performs much better than optimal spill
everywhere (SpEv), which is the worst, except for the graph coloring heuristic
(Coloring), which is also spill everywhere. This is particularly clear on Fig-
ure 3.14, which represents the static spill costs per function, where the curve
of spill everywhere is almost always above Appel-G (y=1). All other configura-
tions based on our ILP formulation outperform Appel-G by about 20% or more.
This is mostly due to the elimination of spurious stores (recall Figure 3.3). The
impact of SSA is interesting to examine. For spill everywhere, the fact that SSA
offers live-range splitting does not fully counterbalance the requirements implied
by uses of the naive modeling of ¢-functions. In this setting, SSA increases the
static spill costs by 13% for EEMBC (8% for SPEC). BasicSSA performs bet-
ter than Appel-G, but increases spill costs in comparison to Basic (non-SSA),
with quite a few bad cases, due to the naive handling of ¢-functions. This can
also be observed with Appel-G under SSA, which is 4% (resp. 5% for SPEC)
worse than Appel-G. Note that SSA (without rematerialization) also leads to

53

| i o
it
O AR | 1 if
A

LI |

|
‘ —— SpEv Hack —— Pessimistic — BasicSSA —— Basic ‘

Figure 3.14: Static spill costs per function for EEMBC and SPEC, with fre-
quency estimates. Results are normalized to Appel-G (y=1). For readability,
functions where the static spill costs are the same for all ILP configurations
(Appel-G, SpEv, Pessimistic, BasicSSA, Basic) were filtered. This filter applied
to almost 37% of the functions. Results are sorted in increasing order of static
spill costs according to Basic, then Pessimistic, then SpEv. (Lower is better)

some improvements in a few cases. This is surprising, since the naive handling of
SSA constrains the solutions and also because all solutions reachable under SSA
should also be reachable without SSA (when rematerialization is disabled). This
is due to side effects. First, the spill code of a function may differ between the
SSA and the non-SSA versions, leading to different register assignments. Then,
since Open64 propagates information on register usage from sub-functions to
call sites, this may lead to changes in register pressure around call sites and
subsequent differences in spilling. Second, SSA construction performs a sim-
ple copy propagation that preserves CSSA constraints. This optimization can
change the register pressure, hence the global spill code. These observations are
particularly obvious in Figure 3.14, where some configurations achieve a cost of
zero, whereas the reference, Appel-G, requires some spilling.

In contrast to the naive handling of SSA (in BasicSSA), exploiting ¢-functions
as proposed in Section 3.2.3 delivers good results without degradations (for both
Optimistic and Pessimistic). Note that our current settings mostly result in
CSSA programs. More aggressive transformations violating CSSA may thus
have an adverse impact to the optimistic strategy.

Rematerialization gives remarkable improvements of more than 20% in com-
parison to the same configuration without rematerialization, and generally more
than 40% compared to Appel-G. Good rematerialization is thus essential to re-
duce spill costs and ought to be considered accordingly. Moreover, configura-
tions with rematerialization particularly profit from SSA. This is particularly
true for simple rematerialization strategies. Indeed, in SSA, each rematerializ-
able live-range matches a single variable, which results in more opportunities.

54

a < cst

while(...){ while(...){
a < cst
<— a <— a
} }
(a) Origin (b) After spill

Figure 3.15: Ad-hoc rematerialization support in Hack heuristic. Rematerial-
ization is assumed to be free. Rematerializable values are not kept in register to
allow other variables to use this location. Also, rematerialization occurs before
every related use even if spilling was not need.

In principle, our extended formulation could handle more general cases than the
simple rematerialization of constants. However, its full potential is not exploited
here to preserve comparability with the other approaches.

Interestingly, Koes-G performs quite well. It is close to our formulation in
the same configuration, i.e., simple rematerialization and not under SSA, Ba-
sic_ec_remat. Indeed, both geometric mean are within 4% for EEMBC (5%
for SPEC). In particular, this formulation is able to remove most of the spurious
stores compared to Appel-G. However, it makes less use of rematerialization
than Basic_ec_remat. In that configuration, 32% of the static spill costs stem
from rematerialization for EEMBC (34% for SPEC) whereas for the Koes-G
formulation, it amounts only to 19% for EEMBC (24% for SPEC). This exper-
imentally confirms the exposed limitation of Section 3.1.2.3.

In terms of static spill costs, the heuristics give better results for EEMBC
than for SPEC. For rematerialization, we extended Hack’s heuristic so that re-
materializable values are always recomputed and never kept in registers, i.e., re-
materialization is always assumed to be free. This heuristic, named Hack remat,
gives good results, especially for SPEC. However, we observe some bad cases
for EEMBC (16.25x w/o profiling feedback) because these rematerializations
are counted 1 in the Open64 cost model, while the heuristic behaves as if it
costs zero. Figure 3.15 gives an example of such a bad case. Braun and Hack
provided another heuristic to handle rematerialization. Their spilling algorithm
is based on a farthest-first strategy using next-use distances. When two vari-
ables have the same next-use distance, rematerializable variables are spilled first.
This Braun-H heuristic is the best among all the heuristics, also for the worst
cases. This is not surprising. Like Hack’s original approach, it does not rely on
a spill everywhere strategy and, moreover, it provides an explicit control over
rematerialization costs — avoiding some of the bad cases.

Figure 3.14 helps to draw a hierarchy between the different approaches de-
picted (without rematerialization). Spill everywhere is globally the worst, but
Hack’s heuristic shares the trends of that configuration. BasicSSA competes
with Basic but suffers many bad cases (black spikes above Basic). Finally, Pes-
simistic is the best. Indeed, it avoids the bad cases of BasicSSA with its special
handling of SSA ¢-functions, plus it takes advantages of the simple copy propa-
gation, discussed previously, that occurs when building SSA. This experimental
ranking is slightly different than expected, since Basic should at least match
the SSA-based configurations. For that, we could have implemented a simple
copy propagation working on non-SSA code before spilling. We did not for two

55

frequency estimates profiling feedback

1d/st # instr. # 1d/st # instr.
Config. G.m Min Max| G.m Min Max| G.m Min Max| G.m Min Max
Appel-G 1 1 1] 1 1 1] 1 1 1] 1 1 1
—_ssa 1.01 0.89 1.34 1 092 1.16] 1.02 0.95 1.12| 1.01 0.94 1.11
Koes-G 0.84 0.34 11 0.95 0.84 1.04| 0.85 0.37 11094 0.85 1.01
SpEv 1.04 0.82 1.84 1 0.84 1.42 1 0.83 1.22] 0.98 0.83 1.04
SpEvSSA 1.03 0.82 1.8 1 085 1.4 1 0.74 1.16| 0.98 0.83 1.09
Basic 0.94 0.78 1.02| 0.97 0.87 1.01| 0.94 0.74 11 0.97 0.84 1.02

—_ec_remat|0.81 0.34 11 0.93 0.75 1/0.82 0.37 11093 0.78 1.03
BasicSSA 095 0.78 1.12|1 098 0.86 1.1{095 0.74 1.1] 098 0.84 1.17
— remat 0.83 0.45 1.12| 0.94 0.81 1.14| 0.83 0.37 1.07| 0.94 0.81 1.11
Pessimistic [0.93 0.78 1.02| 0.98 0.87 1.1|0.94 0.73 1.02| 0.96 0.83 1.02
—_remat 0.8 0.34 11093 0.8 1.02] 0.82 0.37 1/ 093 0.78 1.04
Optimistic |{0.94 0.78 1.05| 0.97 0.86 1.04| 0.94 0.73 1.05| 0.96 0.84 1.05
—_remat 0.81 0.34 1/ 0.93 0.77 1.02] 0.82 0.37 11092 0.8 1
Coloring 1.14 09 1.98] 1.06 092 1.49| 1.09 0.76 1.44| 1.02 0.86 1.14
Hack 0.99 0.78 1.16] 0.98 0.82 1.1| 1.01 0.86 1.28| 0.97 0.86 1.06
—_remat 0.83 0.34 1.1/0.92 0.75 1.03| 0.85 0.37 1.1{0.92 0.77 1.06
Braun-H 0.89 0.57 1.17| 0.96 0.82 1.13| 091 0.56 1.11{ 0.97 0.8 1.13

Table 3.2: Number of dynamically-executed instructions with frequency esti-
mates and profiling feedback (Geometric mean/Min/Max). Note that Koes-G
and Braun-H feature simple rematerialization. (Lower is better)

reasons. First, this would not have changed the problem, mentioned before,
due to different colors in the callee functions. Second, SSA does simplify some
optimizations and we wanted to be able to stay in that configuration.

Static spill costs with profiling feedback show the same trends as frequency
estimates. Thus, we did not include them here.

To conclude, restricting to solutions where a value is either in memory or
in register (but not in both) gives good results but only if spurious stores are
eliminated like in Koes-G configuration. In particular, this approach gives better
results than spill everywhere strategies, which is not surprising. This tends to
prove that a spilling heuristic can use this simplification and still achieve fairly
good results (however, problems such as those mentioned in Section 3.1.2.1 have
to be avoided). As for the strategies that we defined for dealing with SSA, they
perform very well too, especially if ¢-functions are exploited. Furthermore, SSA
enables more rematerialization, which turns out to be very important.

3.3.3 Dynamic Counts

Table 3.2 compares the impact of the spilling strategy on the number of instruc-
tions that are dynamically executed, as reported by the ST231 profiling tools
when running the final assembly code. This corresponds to a sequential ma-
chine model, where every instruction completes in 1 cycle. The table provides
the geometric means, the best cases, and the worst cases, over all benchmarks
normalized to Appel-G.

The improvements seen for the static spill costs are still reflected by the
dynamic execution counts and basically show the same trends with respect to
the different configurations. However, the extent of the improvements is of

56

course reduced. This is due to the fact that the reported numbers include other
code not related to spill code. In particular, Table 3.2 reports all loads/stores
and not just those inserted during spilling. Overall, our approaches are very
effective at eliminating dynamically-executed instructions. The best one (Pes-
simistic_ remat) reduces the number of loads/stores by 20% (and up to 66%!).
Even the total number of instructions is reduced by 7% (and up to 20%!). How-
ever, Hack with our rematerialization support achieves the best result for the
total number of instructions. This may look surprising since the static spill costs
were always worse than the Pessimistic approach. This is because the remate-
rialization support we implemented for that heuristic was selected with respect
to the target architecture (ST231) and type of codes. Most rematerializable
values come from constants and symbols representing base addresses of arrays.
On the ST231 family, most of these constants can be encoded directly with the
operation itself or can be supplied as addressing mode. Consequently, most of
the instructions emitted during the spilling phase as rematerialization do not
manifest themselves in the final assembly code. Nevertheless, we did not want
to model instruction re-writing but only the placement of instructions. This
shows why static spill costs may be quite far from reality.

As a side-effect, reducing the number of memory accesses reduces the traffic
to and from memory. Indeed, we also measured a reduction of instruction and
data cache misses, although the objective functions of the ILP formulations
assume a perfect cache (i.e., no cache misses).

3.3.4 Execution Time Measurements

We now focus on measurable runtime effects of the different strategies, specifi-
cally for the ST231 architecture, which, unlike the sequential model that corre-
sponds to counting instructions (Section 3.3.3), involves instruction and memory
latencies, as well as instruction bundling.

The leftmost bars of Figure 3.16 report the geometric means (normalized to
Appel-G) of the runtimes obtained by executing the programs compiled using
the various spilling strategies using frequency estimates. The huge gains of static
spill costs generally do not carry over to equivalent gains in execution time. For
example, the 20% improvements in static spill costs of the configurations without
rematerialization result in a moderate runtime mean gain of about 2%. Overall,
we measured mean runtime improvements from 2% to 8%. Considering the best
cases for individual benchmarks, we see impressive improvements that go up to
about 30%. Note also that the Hack remat heuristic is even performing slightly
better than our “optimal” configurations.

Analyzing the individual benchmarks, we found that the difference between
the dynamic execution counts and the actual execution times are mostly due
to architectural features that are not accounted for in the spilling model but
may occur on most targets. As mentioned in Section 3.3.3, this difference is not
due to cache misses. However, memory latencies under a hit turned out to be
highly relevant. So far, for both the static spill costs and the dynamic execution
counts, we considered that load and store instructions induce a non-zero cost,
irrespective of their placement within basic blocks. In practice, the runtime
overhead of these instructions depends on the ability of the post-pass scheduler
to hide their latencies. If the scheduler succeeds, even bad spilling decisions in
terms of the number of loads might actually perform well. This explains why

57

2.62 2.68 2.9
2.41 2.53 2.9
13 1.56 1.4 1.52 13
1.2 1.2
1.1 i 1.1
1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 = 0.6
P O X XS P LSO

QQQ} O? & KO F @‘Q C)\@ @6\ \@\6 & Q(R\\% @é\ 0\0*\ X ,\e.@ @9(\

Yo oS &7 QP K Q)ee PN Y & 9
K O/ , QT ® &R N
v 2 BY N & S
il < & o

M Origin [Latency opt. [Profiling feedback | Min-Max

Figure 3.16: Runtime results for EEMBC, with post processing and profiling
feedback. Note again that the Koes-G and Braun-H configurations feature sim-
ple rematerialization. (Lower is better)

the different configurations are relatively close to each other regarding execution
time. The opposite effect is also possible. In particular, we observed that, due to
the way loads and stores are placed (see Section 3.3.1), the post-pass scheduler
of Open64, which runs after register assignment, fails to hide many latencies and
to pack spill code nicely into bundles. This is particularly visible for the spill-
everywhere strategies, since loads are systematically placed right before uses.
We thing that analyzing such runtime measurements is important, although
they are almost never provided in the literature. In addition to revealing the
weaknesses of the heuristics or formulations, they also reveal the weaknesses of
the cost models that drive them (e.g., the fact that some loads can be cheaper
than predicted) as well as the difficulties due to the architecture (e.g., instruction
scheduling with bundles is more difficult to model than sequential execution).

Latency Post-Processing For purely-sequential targets, the cache-hit la-
tency could be roughly modeled using the parametric costs we presented in our
formulation (see Section 3.2.1.2). Consider Figure 3.17. Loading v on point ¢
would cause the maximum latency, e.g., 3. Now, consider the point before the
instruction inst, which is the instruction just before the use of v. Loading v
at p will increase the load-to-use distance (load-use distance) by 1, reducing the
related latency by 1, since inst will be executed before the use of v. This load-
use distance can be computed for each program point to reflect the cache-hit
latency. However, two inaccuracies lie in this model. First, the cost does not
reflect the effect of other spill instructions inserted between a load and a use.
Second, it assumes a fixed scheduling, i.e., it does not consider that instructions
and, in particular, spill instructions can be reordered during post-pass schedul-
ing. Regarding the first point, the model gives an over-approximation, which
can be improved during the final insertion of spill code. Therefore, we believe

58

*D
inst
°q
— v

Figure 3.17: Effect of load-use distance on overall program performance. Al-
though program points p and ¢ are in the same basic block, loading v at p is
more efficient than loading at g, where the load-to-use latency is fully paid.

it is a good model for this kind of targets if someone is ready to pay the extra
cost of widening the solution search space (remember that, to speed up the ILP
computations, not all points are considered for spill insertion, see Section 3.3.1).

Anyway, our target is not a purely sequential one and modeling the latency
in the ILP may be expensive and is not straightforward. To have an accurate
latency model, we would need to be able to formulate the bundling of instruc-
tions a priori. But this bundling may change according to the inserted spill
instructions. As for the latency model for a purely-sequential target, we could
estimate the number of bundles between a load and a use, so that we would
not consider the spill code but still have an overestimation of the latency.

Finally, we chose a simpler method that is applicable for all targets. Instead
of accounting for the cache-hit latency in the ILP itself (we will discuss this pos-
sibility in Chapter 4), we designed a heuristic, after spilling but before register
assignment, which moves loads up within basic blocks, while respecting register
pressure. The pseudo-code of this heuristic is given in Algorithm 1.

Algorithm 1 Post latency optimization

Require: Operands of all operations are on the same register file.
Require: No precolored variables.

1: procedure opTiMIZELATENCY(Program p, integer limit)

2: for each block in p do

3: hideLoadLatency(block, limit)

1: procedure HIDELoOADLATENCY(BasicBlock block, integer limit)

2: for each instruction in block from top to bottom do

3: if isSpillCode(instruction) and isLoad(instruction) then

4: currentLive « getLiveVariablesAfter(block, instruction)

5: remaininglatency < getRemainingLatency(instruction)

6: while remainingLatency > 0 and isDefined(instruction.prev) do

7: previnst < instruction.prev

8: // Cannot move instructions before an early instruction like ¢ or label.
9: if isEarlyInstruction({previnst) then
10: break
11: if checkDependency(prevInst, instruction) then
12: // Update liveness as if instruction is moved up
13: currentLive < currentLive \ prevInst.defs
14: currentLive < currentLive U prevInst.args
15: if currentLive.size() < limit then
16: block.movelnstructionUp(instruction)
17: remainingLatency < remainingLatency - eatenLatency(prevInst)
18: else
19: break

In Procedure hideLoadLatency, the given basic block is traversed from the
beginning to the end. The principle is that all instructions that appear before
the current instruction have already been treated and will not move anymore,

59

while loads will move upwards (from bottom to top) among them. Thus, the
approximation of the latency is computed on already-fixed instructions. On
Line 3, the isSpillCode check avoids the need of memory alias analysis. However,
with such analysis, one could also move regular load instructions. At Line 5, the
function getRemainingLatency returns the latency that remains if the memory
operation is placed at this program point, i.e., taking into account the latency
of operations and a rough approximation of bundles (0.25 bundle for a load for
example). Coming back to the example of Figure 3.17, assuming that the load-
use latency of the target is 3 and a load of v has been placed on program point p,
the remaining latency is 2. Line 9 prevents to move a load before an instruction
that must be first in a basic block, e.g., a ¢-function or a block label. Line 11,
the checkDependency function performs a data dependency check to ensure that
the instruction can be moved above (i.e., before) the previous instruction, i.e.,
it checks that prevIinst does not define registers and memory locations read by
the load and vice versa. The load is then moved up if the register pressure
allows it, i.e., remains below the acceptable limit. Line 17, the eatenLatency
function can be adapted to reflect the actual architectural parameters. In our
case, it returns 1/4 per instruction, i.e., it assumes that the bundles are dense.

For our target, the load-use latency is not the single source of regression. The
bundle density is also relevant. To improve this point too, we perform a similar
optimization on stores, pushing them down (and not up as loads). The interest
of such stores placement is to give more freedom to the final scheduler for
placing stores into bundles. Without that, because of post-coloring constraints
(write after read), the stores may be stuck at some place.

These heuristics were applied to all spilling strategies as depicted by the mid-
dle bars in Figure 3.16, resulting in additional runtime improvements of about
4% on almost all configurations, while preserving the same static spill costs!
The spill-everywhere strategies, which place load operations right before uses,
profit the most, showing mean speed-ups of more than 10%. Manual inspection
of the resulting code in all configurations indicates that our heuristic is able
to resolve almost all spill-code latency-related violations, without changing the
spilling decisions. Some bad cases still remain that will discussed later.

The rightmost bars of Figure 3.16 give the results obtained using accurate
profiling feedback combined with the latency heuristic. In other words, we check
the performance of the model in a configuration where the static spill costs re-
flect much closer the actual runtime behavior. In this setting, the runtime of our
formulations, i.e. Basic, BasicSSA, Pessimistic, and Optimistic, with and with-
out rematerialization, is 8% to 13% better than Appel-G in the original setup
(Appel-G leftmost bar compared to the rightmost bars for our formulations) and
4% to 9% better than Appel-G with profiling and latency optimization (right-
most bar for all). Our optimal formulations show clear improvements in this
setting. But not all worst cases are eliminated, as shown in Figure 3.18, which
gives the runtime measurements per benchmarks. When profiling feedback is
enabled (bottom chart), the number of bad cases for the formulations that are
supposed to be better than Appel-G regarding static spill costs (Basic and Pes-
simistic on these charts) is reduced compared to without (top chart) and the
peaks are smaller. These bad cases come from the interaction between spill code
and bundling, for one part, and, for the other part, from code placed on critical
edges. As already stated, the density of the instruction bundling has a large
impact on the runtime. There are even cases where a too-aggressive spilling

60

Execution time

x
0‘ 7 | | | | |
8_16-bit automotive consumer networking office telecom

1.5 T T T T T

Execution time

0.8 ‘ | | | | |

8_16-bit automotive consumer networking office telecom

‘ —%— SpEv -+ Hack —— Pessimistic - m - BasicSSA e Basic - - - Appel-G

Figure 3.18: Runtime results per bench for EEMBC using frequency estimate
(top) and profiling feedback (bottom). In both cases, latency optimization is
performed after spilling and before coloring. (Lower is better)

61

leads to codes where register pressure is at the upper limit on large sequence
of instructions, preventing the post-pass scheduler to move anything and hide
latencies. As for the second cause of regression, due to critical edge splitting,
it is applicable to all targets. When no code is placed on the basic block that
is inserted to split such an edge, the block is automatically removed, and so
is the related branch instruction. When spill code is inserted in such a block,
the overhead of the branch instruction is unavoidable. It may happen that the
benefit of placing spill code at that point is negligible compared to the overhead
of the branch instruction. Static spill costs do not model this effect, even if it
could be done in our ILP. However, even with this potential improvement, we
still believe that static spill costs are not a good-enough metric to evaluate the
quality of the generated spill code. We will come back to this in Chapter 4.
Note that, at least for the EEMBC benchmarks, Hack’s heuristic performs
very well, despite a few bad outliers. The same applies for Braun-H heuristic.

3.4 Conclusion

Decoupled register allocation gained much interest due to SSA form and its
properties. While SSA provides clear advantages during register assignment, its
benefits for spilling were yet unclear. We proposed a new accurate formulation
of the spilling problem using integer linear programming, applicable to SSA
and non-SSA programs. It is more expressive than previous approaches and,
additionally, it offers a great flexibility to model alternative spilling strategies.
For example, we can accurately emulate previous “optimal” spilling techniques,
as well as strategies used in existing heuristics.

We demonstrated that, if spilling is to be done under SSA, it is preferable to
exploit the implicit moves in ¢-functions. Treating SSA live-ranges as unrelated
achieves acceptable results on average, however, it has an undesirable worst-case
behavior. Formulating the problem ezactly for static spill costs is intractable
at the moment, both because of memory coalescing in non-CSSA programs and
of the parallel semantics of ¢-functions, which can exhibit cycles. We presented
two strategies for handling ¢-functions, an optimistic and a pessimistic one,
that provide equivalent or superior results compared to spilling on non-SSA
programs, in particular because basic rematerialization is more powerful in SSA.

Our study shows that good improvements can be obtained in terms of static
spill cost and dynamic counts. Also, the benefit of rematerialization is consid-
erable. However, runtime improvements for our target VLIW architecture are
smaller due to the cost model used for spilling, which does not consider the
actual memory latencies and instruction bundling. This issue is often ignored
in previous work on spilling and should be studied more closely. A possibility
to explore is to define a more accurate cost model for spilling with latency and
edge splitting consideration. An alternative is, as we proposed, to move loads,
heuristically, after spilling but before register assignment.

62

Chapter 4

Towards a Better Spilling
Heuristic

In this chapter, we review several aspects of spilling heuristics to help derive bet-
ter ones, with respect to actual runtime performance. In the first section (Sec-
tion 4.1), we discuss spilling criteria, what they model and what their intended
use was. In the second section (Section 4.2), we investigate several simplifying
assumptions and evaluate their impact on the runtime. We then discuss existing
spilling heuristics and their weaknesses in Section 4.3. Finally, in Section 4.4,
we give hints to improve the runtime performance of the generated code.

4.1 Existing Spilling Criteria

4.1.1 Static Spill Cost
4.1.1.1 Description

The static spill cost metric estimates the cost for placing load and store in-
structions at specific places. It assigns a constant cost to load and store
instructions, typically, the number of cycles needed to execute the related in-
struction, i.e., the cycles required for computation plus the latency. This cost is
weighted by the frequency of the related basic block. Thus, the cost of a spilling
instruction is the same everywhere in a basic block. Goodwin and Wilken [52]
used this observation to limit the program points to consider for spilling and
thus to restrict the search space of their integer linear programming (ILP) for-
mulation. Using this metric, the objective function of a spiller is to minimize
the sum of the weighted cost of all spilling instructions.

4.1.1.2 Scope

Let us go back to the characteristics of the cost per instruction. This cost is
constant whatever the actual latency will be. Therefore, the model is accurate
if and only if the latency is actually paid. This is the case on targets that stall
on each memory instruction. However, nowadays, this is usually not the case.
For modern architecture, the behavior of memory instructions depends on
the state of the cache. For an off-cache access, the processor stalls until the
memory is written in the cache. This is compatible with the static spill cost

63

model. However, these off-cache accesses are difficult to predict, since highly
dynamic. Moreover, the cost accounted in the static spill cost is based on the
cache latency, i.e., only a few cycles, whereas off-cache accesses are an order
of magnitude longer, typically hundreds of cycles. Nevertheless, spill code is
usually small compared to the cache size and is local to a function. That is why
this model assumes a perfect cache for spill code accesses, i.e., cache hit latency.

For an in-cache access, the processor continues its execution until it reaches a
use of the destination register of the requested memory address. At that point,
it has to wait for the remaining latency, if any. However, if it has executed
enough instructions, the latency is completely hidden. Therefore, for this kind
of architecture, the model is inaccurate unless the spill instruction are placed
such that the latency is fully paid. This is the case, for instance, for a load
instruction placed just before the related use.

To sum up the hypothesis of this model are:

e Perfect cache
e Fully-paid latency

4.1.1.3 Applications

Spill Everywhere Heuristics based on spill everywhere place 1loads just be-
fore uses and stores just after definitions. Thus, the static spill cost metric in
that model makes perfect sense. Indeed, this placement matches the worst case
scenario regarding latency.

In graph coloring based allocators [32, 51, 31, 81], this metric is coupled with
a notion of profitability. For each variable, its static spill cost is divided by its
degree in the graph. This modified cost takes into account how many variables
will “benefit” from the spilling of this variable. Thus, for these allocators, this
modified cost balances the blindness toward the program structure.

Chow and Hennessy [34], in their priority-based allocator, also used a spill-
everywhere model. Like graph-coloring based allocators, they balanced the
static spill cost with the length of the live-range.

The objective function with spill everywhere gives a pessimistic cost of the fi-
nal assembly code. Hence, post-passes optimizations can be used to hide latency
or to remove spurious load and store instructions.

Exact Approaches Goodwin and Wilken [52], Appel and George [3], and
more recently Ebner et al. [39] used this metric for their ILP approach. In all
cases, the considered machine or placement did not match the hypothesis of the
metric. They were able to demonstrate runtime speedup as they were comparing
to heuristic-based approaches and, in particular, graph coloring, which is known
to produce bad spill code. But, as we demonstrated in Chapter 3, this metric
should not be the only goal to achieve good runtime performance. Appel and
George faced the same problem but did not push their analysis as far as we did:
“Some of the benchmarks have a significant improvement in static spills
[...] but no speedup; perhaps this is because we weight the spill costs by
static estimation, and perhaps dynamic profiling would significantly im-
prove the performance of the optimal spiller.”
We feel that such conclusion is not enough. Our conclusion is that profiling
feedback is not the answer. The problem is that this static cost model is just
not good enough to capture latency and post-pass scheduling interactions.

64

4.1.2 Furthest First
4.1.2.1 Description

The furthest-first method drives the choices of spillers by next-use distance.
The underlying idea is that the furthest is a next-use, the longer the related
variable will decrease the register pressure, if it is spilled. Thus, the cost of
spilling code is not the primary objective. The important and difficult part of
furthest-first-based heuristics is to choose the right next-use distance metric.

4.1.2.2 Scope

Originally developed for paging with write backs [7], the furthest-first method
was then adapted to local register allocation by Farach-Colton and Libera-
tore [43]. Local register allocation deals with basic blocks, thus straight-line
code. In that context, the next-use distance makes perfect sense. Moreover, if
the latency of loads is not considered, all spilling instructions have the same
cost and this cost does not depend on where they are placed since on straight-
line code all program points have the same frequency. Thus, minimizing the
number of spilled instructions also minimizes the amount of spill cost. Note
that load/store placement for straight-line code is already NP-complete [43].
However, Guo et al. [54] showed that even if it does not minimize the number
of loads and stores, this heuristic perform quite good in that context. In ad-
dition, an interesting side effect of the furthest-first method is that it tends to
spill a variable for which the number of bundles or cycles before the next use is
going to be large and, as a consequence, the post-pass scheduler is more likely
to have more freedom to schedule the corresponding load and hide its latency.

4.1.2.3 Applications

Straight Line Code and Linearized Code As already stated, the di-
rect usage of this method for register allocation appears in Farach-Colton and
Liberatore’s work [43]. Later, this criterion has been used in linear-scan ap-
proaches [89, 105, 85]. In this context, the register allocation is performed on
the whole program but the program is viewed as one big basic block, according
to a possible linearization. The live-ranges are expressed on this large basic
block, thus over-approximating the actual liveness. Despite the fact that the
spilling cost is not homogeneous on this big basic block (some of the actual
blocks are more frequent than others), linear scans use this criterion with re-
spect to its original idea. They spill the live-range that will help to reduce the
register pressure for the longest “interval”, regardless of the actual spilling cost.
Spilled variables are spilled everywhere to simplify the process.

Post-processing phases may be used afterwards to improve the solution [105].
Unlike graph-coloring-based approaches, a spilled variable is guaranteed to help
reducing the register pressure. Indeed, it helps at least on the current processed
point. However, linear-scan approaches are known to produce fairly bad spilling
code. But their goal is mainly to allocate the code as fast as possible with a
small memory footprint.

General, Not Linearized, Programs Hack et al. [58] proposed to extend
the next-use distance to general programs. They defined the next-use distance as

65

a < ... a < ... a < ...
< store a

b+ ... b+ ... b+ ...
< store b
7 7 7
if(...) if(...) if(...)
b < load
...+ Db ...+ Db ...+ Db
while(...) while(...) while(...)
a < load
— a ... £ a ... < a

(a) Original code (b) Min furthest first (c) Static spill cost

Figure 4.1: Counter-example of the efficiency of the furthest-first criterion (b)
extended by Hack et al. [58] versus static spill cost (c).

the minimal number of instructions over all possible paths leading to a next-use.
However, they did not demonstrate any runtime improvements in their paper.
We can easily build examples where a spiller using their criterion performs worse
that a spill-everywhere strategy using static spill cost, as depicted in Figure 4.1.
This is not surprising, as there is no frequency consideration in their model.
Nevertheless, using their method, one can perform a load/store placement
and not just a spill-everywhere optimization.

Braun and Hack [21] furthest extended the previous model. They proposed
to add a length on edges during the computation of the next-use distance. They
set a long length for edges that exit loops. The idea is to consider that uses
in loops are closer than uses outside a loop. Doing so, it is more likely that
variables in a loop will be kept in registers. However, this extension is not able
to avoid the bad pathological case of Figure 4.1.

From our point of view, both extensions lack a key point. The notion of
profitability based on the fact that the interval that is not used the longest
should be spilled is no more true for code that is not straight line code. Indeed,
live-ranges spawn several branches and of course, the minimal distance to the
next-use does not mean that it does not have the biggest not used interval.
Figure 4.2 shows an example where spilling choices are bad because the initial
spilled variable, b, does not have, globally, the longest live-range. To match
the original spirit of the furthest-first method, we think that the total length
of the live-ranges may be taken into account instead, not just a distance along
one particular path. Indeed, this metric is more representative of the extent
of the live-ranges where it helps reducing the register pressure. Moreover, a
tweak can be made to take into account the frequency, or at least the nesting of
loops, with the length of edges as proposed previously, as well as points where
register pressure is high and where it is not. Taking into account the fact that
the latency of a load can be hidden or not may be interesting too.

66

a, b+ ...

c+ ... ¢
—ct
(..)
—a
d+ ... ¢
—b,d?¢
—a

Figure 4.2: Spilling choice based on a furthest-first criterion with minimal next-
use distance will choose to spill b. This choice does not help for the second
over-pressured point around the live-range of d, thus a has to be spilled too.

4.2 Simplifying Assumptions

In Chapter 3, we investigated several methods to simplify the way we can han-
dle the ¢-functions of static single assignment (SSA). We do not come back
here on that aspect. Instead, in this section, we check the impact on runtime of
several assumptions, made in the literature or that we introduced, and that may
degrade the static spill cost. To do that, we used the experimental setup and
our ILP formulation defined in Chapter 3 in two different configurations: basic
(non-SSA) and pessimistic (SSA), followed, optionally, by our post latency op-
timization and /or using profiling feedback. See Chapter 3 for details on the ILP
formulation. Also, as explained in Chapter 3, we will report runtime numbers
for EEMBC benchmarks only.

4.2.1 The Instruction store

On most architecture, store instructions are an order of magnitude cheaper
than load instructions. Thus, it is a common practice for load/store placement
heuristics to simplify the handling of stores.

Considering That stores Are Free The biggest simplification consists in
considering that store instructions are free. In that setting, heuristics focus
only on the placement of loads according to their spilling cost model. Note
that, even if they are free, useless store instructions are of course not inserted
in the different methods we evaluated.

The red curve with square markers in Figures 4.3 to 4.8 shows the impact
of this assumption on the runtime. ! For the original Basic configuration, given
in Figure 4.3, i.e., with frequency estimate and without post latency optimiza-
tion, this assumption produces only few worse cases (5 over 38) that are above
5%. This assumption shows comparable impact in the Pessimistic configuration,
given in Figure 4.4. In both cases, on average, assuming that stores are free
does not change anything on the runtime, even if analyzing more precisely each
individual point may reveal interesting special cases.

Coupled with our post latency optimization, this assumption shows a similar
impact on runtime for both configurations, see Figures 4.5 and 4.6. Indeed, the

!n all these figures, benchmarks are sorted so that one of the curves (“store at definition”,
then “Base”) increases. This is an arbitrary choice to make the figures more readable.

67

Execution time

benchmarks
. Free store
—a— Store at definitions

—+— Free store blocked at definitions
—0— Load at uses, free blocked store

Figure 4.3: Impact of different simplifying assumptions on the runtime for Basic
configuration, over all benchmarks (horizontal axis). Numbers are normalized to
Basic configuration (original version) with frequency estimate. (Lower is better)

benchmarks where this assumption produces a runtime worse than the same
setting (blue curve with circle mark) are limited. Finally, when the ILP works
with accurate frequencies (i.e., with profiling feedback), the impact remains
limited, see Figures 4.7 and 4.8. Again, on average, this assumption does not
change anything. This is not so surprising because assuming that a store is
free does not depend on the frequency estimation. Note also that these figures
illustrate again the weakness of the static spill cost model, i.e., the model used
in our ILP, since, although this simplification is a restriction, the runtimes
improve in a few cases. Similarly, the Base curve, i.e., with accurate frequency,
sometimes produces a few cases worse than with the same configuration without
profiling feedback, i.e., with inaccurate frequency.

To conclude, assuming that a store costs nothing seems to be a reasonable
assumption. However, to our knowledge, this assumption is never used alone, it
is coupled with other assumptions as we will see now. It is indeed still important
to not let the formulation or heuristic place the store anywhere in the code,
even if it is considered as free.

Placing stores at Definitions A common assumption in spilling heuristics
is to place a store at each definition point of the related variable. In particular,
all heuristics that use a spill-everywhere approach, from linear scan to puzzle
solving through graph coloring [32, 51, 85, 89|, use that simplification. This is

68

Execution time

0.85 |- .
0.8
benchmarks
. Free store
—a— Store at definitions

—+— Free store blocked at definitions
—0— Load at uses, free blocked store

Figure 4.4: Impact of different simplifying assumptions on the runtime for Pes-
simistic configuration, over all benchmarks (horizontal axis). Numbers are nor-
malized to Pessimistic configuration with frequency estimate. (Lower is better)

also true for more recent SSA-based spilling approaches [39, 55, 21|. Moreover,
this simplification may be combined with the previous assumption, as in the
progressive spill-code placement of Ebner et al. [39].

The brown curve with triangle markers in Figures 4.3 to 4.8 shows the impact
of this assumption on the runtime. The black curve with star markers demon-
strates the impact when coupled with the previous assumption (free store).

Alone, this assumption has a very limited impact on the runtime and in
particular when performed under non-SSA programs, as depicted in Figure 4.3.
Under SSA, there are some very bad cases, see Figure 4.4, with 2 benchmarks
slowed down by more than 10%. Here, the fact that the frequency is estimated
plays a role as we will see. When assuming that stores are free, the impact
remains limited, as on average it does not change anything, but, still, a few
worse cases are observed. The situation is a bit worse in SSA, mainly because
SSA codes have more definitions (due to ¢-functions), some of them harder to
schedule in bundles, e.g., if several stores are inserted at the same place.

When our post latency optimization is enabled, as shown in Figures 4.5
and 4.6, the cases that are worse, i.e., the points above the Base curve (blue
curve with circle markers), are more limited. Indeed, this optimization also
helps to schedule the stores more freely. We directly see here the beneficial
impact of this latency optimization. Therefore, coupled or not, these different
assumptions make perfect sense for an heuristic in that configuration, i.e., with
inaccurate frequency and post latency optimization.

69

1.2

Execution time

0.6
benchmarks
—o— Base
o Free store
—a— Store at definitions

—— Free store blocked at definitions
—0— Load at uses, free blocked store

Figure 4.5: Impact of different simplifying assumptions on the runtime for Basic
configuration followed by post latency optimization. The “Base” curve presents
Basic in that configuration without any simplifying assumptions. Numbers are
normalized to Basic configuration with frequency estimate. (Lower is better)

As expected, with profiling feedback, the results are even better for the
simplification that considers stores only at definition, since its cost depends
on the block frequency. Also, as already stated, due to the inaccuracy of the
static spill cost model, the combination of both simplifications may sometimes
perform even better than the general formulation based only on spill cost: a
larger static spill cost, due to these limitations, may still produce a faster code.

4.2.2 The Instruction load

As load instructions are usually considered as expensive, the way they are han-
dled involves in general fewer simplifications. Based on the static spill cost
metric, Goodwin and Wilken [52] demonstrated that the optimality of this met-
ric is preserved if the insertion points of load instructions are limited to the
end of basic blocks or just before the related uses. This is easy to understand
because the static cost is the same for all program points of a given basic block
(the latency is not taken into account in such a cost). Spill-everywhere-based
heuristics use even more limited insertion points: loads are inserted just be-
fore all related uses, even if the variable has been already loaded earlier. It
is possible however to eliminate these redundant loads afterwards [10]. The
SSA-based spilling heuristic of Braun and Hack [21] does not explicitly limit
the insertion points of load instructions. However, by construction, it always

70

1.2

Execution time

0.6
benchmarks
—o— Base
o Free store
—a— Store at definitions

—— Free store blocked at definitions
—0— Load at uses, free blocked store

Figure 4.6: Impact of simplifying assumptions on the runtime for Pessimistic
configuration followed by post latency optimization. The “Base” curve presents
Pessimistic in that configuration without these simplifying assumptions. Num-
bers are normalized to Pessimistic with frequency estimate. (Lower is better)

inserts loads on edges, i.e., at the end of the previous basic blocks (there are
no critical edges), or just before uses. But a previously-loaded variable can be
reused, to avoid a redundant load.

Placing loads at Uses We decided to test a model simpler than the model
of Goodwin and Wilken, and of Braun and Hack, but more general than a spill-
everywhere strategy: in our ILP formulation, we limited the insertion points
of loads just before uses but unlike the spill-everywhere approach, we did not
force that every use of a spilled variable must be preceded by a load. Basically,
this is equivalent to an optimal, with respect to the static spill-cost model, spill-
everywhere approach coupled with a redundant load elimination optimization.
Moreover, we used the assumption that stores are free and blocked at defini-
tions as we showed they were valid simplifications for runtime performances.
The impact of this approach on runtime, in both a SSA and non-SSA context,
is given by the green curve with diamond markers in Figures 4.3 to 4.8. Since
this approach uses the frequency to determine the expected cost of a load,
the accuracy of this information has an impact on the runtime. Moreover, as
shown in Chapter 3, forcing loads to be placed just before uses produces the
worst possible latency. Thus, it is not surprising that the performance of this
simplification in the original setting is quite bad, as shown in Figures 4.3 and 4.4.

71

Execution time

benchmarks
—o— Base
o Free store
—a— Store at definitions

—— Free store blocked at definitions
—0— Load at uses, free blocked store

Figure 4.7: Impact of simplifying assumptions on the runtime for Basic with
profiling feedback and post latency optimization. The “Base” curve presents
Basic in that configuration without these simplifying assumptions. Numbers
are normalized to Basic with frequency estimate. (Lower is better)

This observation completely changes when our latency optimization is en-
abled, as shown in Figures 4.5 and 4.6. In this setting, this simplification is, on
average, as fast as its baseline (Base curve in blue with circle markers) but with
a few worse cases. The same pattern can be observed when profiling feedback
is enabled, see Figures 4.7 and 4.8.

In conclusion, we believe that this model is quite accessible to heuristics.
Moreover, we showed that its impact on runtime, as soon as it is coupled with a
latency optimization, is limited on average compared to an optimal model based
on static spill cost. Therefore, we suggest to investigate this simplified model
for a spilling heuristic. This has still to be explored.

4.3 Existing Heuristics

4.3.1 Graph Coloring

In graph-coloring-based approaches, spilling occurs when coloring fails. In this
model, spilling is an ad-hoc mechanism plugged into a heuristic used for a prob-
lem (coloring), which is NP-complete for general graphs [33]. In particular, the
effect of spilling is not well captured by the graph model. Indeed, unless the
target machine can use memory operands, which is usually highly constrained
when possible, spilled variables have to reside in registers at their definitions

72

1.2

1.1 *

Execution time

benchmarks
—o— Base
o Free store
—a— Store at definitions

—— Free store blocked at definitions
—0— Load at uses, free blocked store

Figure 4.8: Impact of simplifying assumptions on the runtime for Pessimistic
with profiling feedback and post latency optimization. The “Base” curve shows
Pessimistic in that configuration without these simplifying assumptions. Num-
bers are normalized to Pessimistic with frequency estimate. (Lower is better)

and uses. These additional short live-ranges imply nodes that are not repre-
sented in the graph and require to rebuild and redo the whole approach after
every spilling phase. This problem is known as spilling with holes, where holes
represent chunks of the memory live-ranges that must reside in register. In
other words, when a variable is spilled, a live-range with holes is placed in mem-
ory, and not the full live-range. Without holes, on chordal graphs, e.g., those
generated by SSA programs, an optimal spill-everywhere strategy can be pro-
duced in polynomial time when the number of registers is fixed [15]. However,
the problem on general graphs or with holes, i.e., the most common cases, are
NP-complete [15]. With holes, the expected benefits of a spilled variable may
completely vanish leading to overspill as illustrated in Figure 4.9. It is possible
to build more complex examples where spilling a variable helps to reduce the
chromatic number of the interference graph in a given iteration of the simplifi-
cation process, but becomes useless later as another variable is spilled.

It is possible to emulate a spilling problem without holes. For that, one can
reserve some registers to materialize the spilling code. Chow and Hennessy [34]
used this simplification for their priority-based coloring. However, doing so
decreases the number of possible colors that can be used when allocating the
variables to registers, and thus possibly increases the amount of spill. Therefore,
unless the target machine has a lot of registers, this is generally a bad idea.

73

a, b

d < a, b/ a b
~b,d/ d
<— a
(a) Original code (b) Interference graph
a, b d
d < a, b7 1
< store d a b
d; ¢ load
~ b, & 7
— a d
(c) Useless spilled code (d) Spilled interference graph

Figure 4.9: Spill-everywhere strategy coupled with graph-coloring model may
produce useless spill code. All variables have the same degree, but d has fewer
uses. Thus, the spill cost metric is the cheapest for d, which is chosen for spill.

To tackle the holes and the ineffective spill code problems, it is possible to
explicit in the interference graph (IG) the parts of the live-ranges that reside
in registers using (parallel) copy instructions. To our knowledge, this method
is not used because it blows up the size of the IG, which is a major concern
of graph-coloring-based approaches as it impacts their runtime and memory
footprint as well as the quality of the produced results (see Chapter 6).

Since graph-coloring-based approaches perform everything in a single phase,
post phases may have limited opportunities to optimize the generated code.
Indeed, the allocated code is more constrained for scheduling than before allo-
cation. In this situation, a post latency optimization may be blocked because
of the reuse of registers (anti dependences also known as write after read de-
pendence). Similarly, 1oad elimination optimization has fewer opportunities to
extend live-ranges, and so on.

4.3.2 Scan-Based Approaches

Scan approaches do not use an abstraction of the program, but work directly on
the program. As already stated, spilled variables help to decrease the register
pressure of at least one program point. This is a first advantage over graph-
coloring-based approaches. The original linear-scan approach was proposed by
Poletto and Sarkar [89]. Its main weakness is that it over-approximates the
actual live-ranges, increasing the register pressure, hence the amount of spill
code. Moreover, it reserves some registers for the whole program to emulate a
target featuring memory operand, thus enabling spill everywhere without holes.
These over-approximations are made for speed purposes.

Méossenbock and Pfeiffer [76] adapted the linear-scan approach to SSA-based
program. The notable improvement in terms of spill compared to the original
algorithm concerns the modeling of live-ranges. The live-ranges can contain
holes in the linearization of the program. Later, Wimmer and Mdssenbock [105]

74

introduced on-the-fly live-range splitting. This has two advantages. First, it
reduces the number of registers needed globally as a variable can change its
register on the fly. Second, they insert a split point before the next use of a
variable before spilling it. This results in spilling only this sub live-range, thus
yields better spill code than with a spill-everywhere strategy.

In 2007, Sarkar and Barik [95] in their extended linear-scan feature an exten-
sive live-range splitting framework to take advantage of all possible split points
for coloring. However, when they choose to spill, they do it in a spill-everywhere
fashion. Pereira and Palsberg [85], in their puzzle-based allocator, used a similar
approach but handle register aliasing.

Finally, to take spilling decisions, Barik [6, Ch.6] proposed a bipartite live-
ness graph that is more compact and more expressive than interference graphs.
On the left-hand side of this graph, there are variables, on the right-hand side,
the end point of each basic interval, i.e., a part of the live-range that is contigu-
ous in the linear ordering. The variables are connected to the end points where
they are alive. Then, each program point where the degree of the end points
(i.e., the right-hand side points) is at least k (the number of registers) is con-
sidered to take a spilling decision: the heuristic starts from the point with the
largest frequency and spills one of the connected variable with the smallest spill
cost, in a spill-everywhere fashion. This way, the heuristic forces the variables
that are highly executed to be kept in register.

All these approaches deal with global register allocation, in a non-decoupled
fashion, thus the difficulties that we pointed out for graph-coloring-based ap-
proaches regarding post phases also apply here.

4.3.3 Decoupled Approaches

To our knowledge, excluding the exact approaches [3, 65], only two decoupled
spillers were proposed so far and both work on SSA programs.

Hack et al. [58] defined an heuristic that performs a furthest-first analysis,
as discussed in Section 4.1.2.3, on each basic block independently. At the end of
this process, each basic block holds a set of variables that are in registers. Using
this information and the input set chosen for each basic block, the required loads
are placed on edges of the control flow graph (CFG) to match the occupancy
sets. This approach lacks global information during the local analysis, resulting,
potentially, in a lot of load instructions on CFG edges.

Braun et Hack [21] extended the furthest-first criterion for the whole pro-
gram, as explained in Section 4.1.2.3. We already pointed out some of the
weaknesses and advantages of their approach there. More generally, this ap-
proach is compile-time and memory-footprint efficient. Thus, it may be a good
match for a decoupled register allocation in a just-in-time (JIT) compiler. Of
course, as for all heuristics, it suffers some bad cases. One source of such be-
havior stems from the fact that this heuristic tries to saturate the register file,
i.e., to reload variables as soon as there is the space to do so. Figure 4.10 shows
how this can generate a bad spill code.

Both methods offer good opportunities to apply optimizing post phases as
the resulting code is not yet constrained by register assignment, only the register
pressure is guaranteed to be low enough everywhere.

75

X X X

< store x < store x
while(...) while(...) while(...)
7 7 7
if(almost never) if(almost never) if(almost never)
x < load x < load
— X — X — X
else else else
x < load
x < load
— X — X — X
(a) Original code (b) Braun and Hack spiller (¢) Optimal spiller

Figure 4.10: Bad spilling decision in Braun and Hack spiller [21] due to the
policy of saturating the registers. At the joint point of the if-then-else in
the while loop, x is available in register on the path where it is used. Since the
other path has room for this variable, it is reloaded there. Thus, x is available
in register at the exit of the while loop and no reload is necessary for the
final use. However, it would have been cheaper to reload x outside the loop as
shown in (c). Here, reloading x outside the loop would trigger the possibility to
eliminate the useless load by dead code elimination. This is not generally true.

4.4 Improving Runtime

This section is a collection of observations and ideas to help improving the
runtime performances of the generated code.

4.4.1 Latency

As we pointed out in Section 4.1, hiding latency is a key point to improve
runtime performances. Here we give the bases to account for latency in existing
spilling heuristics based on a spill cost.

As explained in Section 4.1.1.1, the static spill cost (the metric that states
how expensive a spill will be) is usually composed by the cost of the instruction
plus its latency. It is tempting to change the accounted latency with respect
to the minimal distance to the next use. This straightforward approach is not
realistic for the following reason. Actually, the target machine stalls at the point
of the use of the loaded variable. Hence, the remaining latency is paid at this
particular point and not at the place where the load has been issued. Moreover,
it remains some latency only if the path to the use issued a load and not each
time the use is processed. In other words, the remaining latency is paid at the
use point but not as frequently as the use is executed.

From this description, we can derive the following load cost: the base cost
of the instruction multiplied by the frequency of the point where it is placed
plus the maximum, over all next uses, of the remaining latency towards this
use multiplied by the path frequency to this use. As we are accounting for
the maximum couple (remaining latency, probabilities of its occurrence) in that
formula, we have a worst-case perspective of the runtime, assuming a fixed

76

a <

s .
, Use | Remaining latency
1

. U1 1
while(often

(f) u9 2

U — a (b) load-use distance if load at 1

Ug @ < a

(a) Input code

Latency cost

Model Cost
Ul ‘ U2

Static spill cost 3 4

Latency at use fu, *1 =150 fu, ¥2=2 51

Path to use fl, *Prytow, Y1 =05 | £, *Diytow, ¥2=1 2

(¢) 1oad cost at Iy where f denotes the frequency and p the probability with f;, =1, f,,; = 50,
fus = 1, D1y to w; = 0.5 and py; ¢o uy = 0.5

Figure 4.11: Impact of the latency model in the optimized load cost. The same
load in a given code (a) may have very different expected cost depending on the
model (c). All these models work statically, using or not the static information
of the remaining latency at a use point (b).

schedule, a perfect cache, and that the coloring phase will not remove or insert
instructions. Figure 4.11 gives an example of the different models of latency.
In the proposed models, the remaining latency from a given point to each
use is a critical information. This information is more complex to compute as
it may appear at first glance. Indeed, the insertion or removal of instructions
may change this information. With a fixed schedule, it is tempting to ignore
these possibilities as things are not supposed to move around. In fact, even with
this assumption, instructions may still appear/disappear because of live-range
splitting or coalescing that are usually performed during the assignment phase
of a decoupled register allocator. We now discuss these hard-to-model effects.
Unless a newly-inserted instruction uses a loaded variable, its impact on
latency is always beneficial. Indeed, it increases the load-use distance of other
variables or, said differently, it uses the remaining latency cycles to perform its
computation, improving the overall code productivity (ratio stall/computation).
However, if this instruction uses a loaded variable, the cost of the load may
be worse than expected in the model. This is the case if a move is inserted
just after a load. A possibility is to bias the coalescing process (the phase that
tries to assign the same registers to the two variables involved in a move) by
increasing the weight of such a move to take into account the remaining latency
penalty. Note that even if this is not a newly-inserted instruction, this bias will
improve the runtime behavior of the program, with respect to the accuracy of
the frequency estimation, as it may reduce the expected remaining latency.
Another situation is that, in case of coalescing, the related copy instructions
may disappear and thus may shorten some load-use distances as seen before
spilling, resulting in a worse runtime behavior 2. To avoid this degradation of

2More precisely, it impacts the productivity of the code (i.e., there are more empty slots

7

the performance, when computing the remaining latency for a given variable v,
we choose to consider the copy instructions in a conservative way as follows: if
the copy does not use v, we assume it will disappear, thus it does not decrease
the remaining latency, and if it uses v, we assume it is a regular use and will
produce a stall if the latency is not covered. This model is pessimist since it
assumes that the copies using v will not be coalesced and other copies will not
hide latency (this is the case if they are finally all coalesced).

Of course, this model is not perfect. In particular, due to its static nature, it
does not capture the insertion of other spilling instructions. However, it remains
conservative as inserting instructions will decrease the remaining latency for
others and thus will produce better expected solutions. Moreover, a spilling
heuristic that inserts spilling instructions on the fly may be able to account
for these new instructions for other insertions. However, to be applicable for
our experimental target, this model has to be refined as it does not take into
account the instruction level parallelism available in the processor. Indeed, on
our target, the latency is not eaten by instruction but by bundles. Thus, a
heuristic must have the knowledge or, more likely, an estimation of the bundles,
as bundles may change when spilling instructions are inserted. Moreover, it
should take into account the density of the bundles, i.e., how much room it
remains in bundles to hide the cost (not the latency) of spilling instructions.
Indeed, when filling a hole in a bundle, a spilling instruction may be completely
for free, regardless of the frequency of the bundle.

4.4.2 Helping the Scheduler

The runtime performance depends on the quality of the instruction schedule that
is finally produced, which in part depends on the freedom that the scheduler has
to place instructions. It is hard to tune the scheduler for register allocation and
vice versa. The scheduling performed prior to register allocation, usually called
the pre-scheduler, has to balance the actual schedule length and the expected
impact on the spilling cost (with a metric based on register pressure). On the
other hand, after register allocation, the post-scheduler has limited scheduling
possibilities as the code is over-constrained by register reuse.

From that perspective, the post latency optimization, which moves load and
store instructions after spilling but before register assignment, helps the sched-
uler to produce a shorter schedule length or a denser sequence of instructions.
Following the same idea, we gave in the previous section a general cost model,
which aims at hiding the latency at a more global scope than just basic blocks.
However, none of these approaches is able to move other instructions around.
Thus, if the pre-scheduler just tried to minimize the length of the live-ranges —
a classical approach before register allocation — the allocated code may result
in very bad runtime performances even if the spiller is very good. This prob-
lem is even more relevant on targets that feature instruction level parallelism
as ours. Indeed, sequences of code that can be executed in parallel prior to
register allocation may be completely sequentialized because of a too-tight reg-
ister pressure that created register dependences between unrelated instructions.
This is one beneficial side effect of spilling heuristics on runtime, compared to
optimal approaches as studied in Chapter 3. Indeed, spilling heuristics usually

in bundles), not necessarily its global runtime behavior.

78

over spill compared to optimal approaches and, as an unexpected consequence,
leave more freedom to the post-scheduler to hide latencies. Analyzing by hand
some of the final codes produced by the different approaches, we indeed found
cases where this situation occurs: the static spill cost is much better with the
optimal solutions but the heuristics can still produce codes with an equivalent,
or sometimes better, runtime performance, because the degradation in static
cost is compensated by the post-pass scheduler, which has more freedom to
hide latencies.

From our point of view, it may be interesting to have an estimation of the
schedule length and the degree of parallelism, if any, during the spilling algo-
rithm. Therefore, on hot spots, like loops, it may be interesting to spill more
that the fixed & limit so that the post-scheduler has more freedom to schedule
instructions. For instance, one can spill more live-through variables. An alter-
native would be to design a scheduler with “local” spilling/recoloring capabilities
after register allocation or after the spilling phase. Fully integrating scheduling
and register allocation is well-known to be expensive, if not intractable. How-
ever, in the context of a decoupled register allocation, integrating scheduling
and spilling, before register assignment, seems an interesting option to explore.

4.5 Conclusion

In this chapter, we showed the limitations and scopes of the existing criteria used
for spilling. In particular, we saw that in many existing spilling approaches, the
related spilling criterion is used outside its scope, thus making difficult to predict
the benefits on the runtime. In the case of the furthest-first criterion, we gave
some hints on how to extend its scope to achieve better runtime performances.

We then empirically validated some simplifying assumptions. In particular,
we showed that, if a post-spilling latency optimization (as explained in Chap-
ter 3) is available, it is a reasonable simplification to restrict to loads placed just
before the related uses, when optimizing the cost of the spill instructions. We
believe that this simplification may be interesting to design an efficient heuris-
tic, in particular for architectures with bundles where loads can sometimes be
completely hidden. With an adequate live-range splitting, this can be seen as a
spill-everywhere problem (on the variables created by this live-range splitting)
where stores are free and fixed at the definition point of the original variable.
This splitting can be obtained by adding, after each instruction, a new virtual
definition of all its arguments, coupled with the static single information (SSI)
representation [98, 2].

We pointed out that the abstraction of live-ranges induces an overestimation
of the register pressure in the case of linear scan and of the benefits of spilling
in almost all spill-everywhere approaches. For the latter, this assumption may
require to reserve a register, or several registers depending on the algorithm, to
emulate the spill-everywhere principle even when spilling is not necessary. We
also emphasized the interest of decoupled register allocations due to their use
of live-range splitting and the possibility to help the scheduler before assigning
the registers to variables.

Finally, we discussed a latency cost model to be used as an objective function
in spilling heuristics. This model is not intended to be used with the proposed
simplifying assumptions but should be seen as another way to tackle the spilling

79

problem. We also proposed to explicitly spill more variables to help the scheduler
to reduce the schedule length in the regions of the program that are frequently
executed. All these aspects are still to be explored. Indeed, optimizing for
runtime performance remains a difficult task. As we explained, in addition to
the fact that, given a cost model, the different optimizations are in general NP-
complete, the design of the model is itself difficult: how expensive a 1oad will be
is hard to measure, depending on the architecture and the post-pass scheduling.

80

Part 111

Coloring with Affinities and
Antipathies

81

The spilling phase is done. As a result, the register pressure is nowhere
greater than the number of registers. The challenge now consists in assigning
registers to the variables so that no additional spill code is generated. Moreover,
this assignment must respect the encoding, application binary interface (ABI),
and register aliasing constraints, while optimizing the performance of the code,
in particular, optimizing the register-to-register moves (coalescing).

In this part, we show that neither complex algorithms nor extensive live-
ranges splitting are required to handle such constraints, even in existing graph-
coloring-based allocators. The first chapter of this part (Chapter 5) deals with
encoding and ABI constraints. We present an extension of the interference graph
(IG) model to tackle these constraints without inserting any additional split
points. We show how to apply the same mechanism on scan-based approaches.
As a bonus, we define a new allocator, called tree-scan , that may be suitable for
just-in-time (JIT) compilation. In a second chapter (Chapter 6), we focus on
register aliasing constraints. We show how they can be handled in a decoupled
graph-coloring-based allocator without the size explosion of the intermediate
representation (IR) usually implied by these constraints.

82

Chapter 5

Coloring with Encoding
Constraints

An important detail of the register assignment process is register constraints
imposed by the instruction set architecture (ISA) or the application binary
interface (ABI). For example, the first integer argument of a function call on the
ARM Linux ABI must be passed in register Ry. Similarly the division in TA32
requires the source/destination operand to reside in register %eax and %edx.
Instruction sets may also impose two operands of the same instruction to use
the same register (two-address mode). These constraints, referred as operand
pinning, are local to instructions and are usually handled prematurely by the
allocator by splitting live-ranges, i.e., by introducing copy instructions, prior to
assignment. This places additional pressure on the coalescing to eliminate as
many of these extra copies as possible. Moreover, coalescing is the most costly
task of register allocation [23, 51] and is NP-complete (even with 3 registers) [17,
55].

This chapter proposes a new technique called repairing that deals with lo-
cal register constraints without requiring preliminary live-ranges splitting. We
emphasize that repairing is useful when certain instruction operands are re-
stricted to a subset of registers, possibly a singleton [70, 3, 51, 105]. The idea is
to relax register constraints during allocation and repair only afterward those
that have been violated. This approach allows to handle register constraints
without loosing the benefits of the elegant formalisms that have made graph
coloring [33], linear scan [89], and decoupled register allocation based on static
single assignment (SSA) form [15, 55, 27] appealing in the first place. Moreover,
it saves the overhead of premature live-range splitting. Lastly, the cost of a po-
tential repair can be integrated into a graph-coloring based register allocator,
e.g., the iterated register coalescer (IRC) [51], through the introduction of an-
tipathies (affinities of negative weight) that can be handled with minor changes
in the implementation.

We also present how repairing approach can be applied to a linear scan [89,
95, 103, 76, 105] or to its SSA form based improvement a tree-scan . Those al-
locators use an approach that decouples the spilling to the coalescing phase [3].
SSA form enables the design of decoupled register allocation schemes very natu-
rally as it provides to liveness and interferences nice properties [15, 27, 58] that

83

guarantee the register pressure of the program to equal its register demand.
Thus, in SSA-based register allocation, the spilling phase simply decreases the
register pressure to the number of available registers K. Then, a tree-scan that
traverses the dominance tree can produce a register assignment in linear time
without introducing further spilling [18].

Our repairing approach does not address register bank irregularities, such as
aliasing [99] or register pairing; we will present in Chapter 6 a method that han-
dles those constraints in the context of a decoupled register allocation scheme
that tries to avoid inserting copies at every program point as in the elementary
form [85] but still relies on live-range splitting. Handling aliasing constraints
without excessive and preliminary live-range splitting remains an open prob-
lem, which we do not attempt to address here. Repairing is concerned with
constraints that are local to individual instructions.

This chapter makes the following contributions:

e In Section 5.1, we extend the standard coalescing problem with antipathies
between variables to express the fact that a variable should not be coa-
lesced to another variable or register. Unlike affinities that have positive
weight to express the potential gain of coalescing the corresponding vari-
ables (removal of a copy), antipathies can be seen as negative affinities
that express the potential cost of assigning them to the same register (in-
troduction of copies). While coalescing aims at merging as many affinity
related variables as possible, alienation aims at making interfere as many
antipathy-related variables as possible. Using affinities and antipathies,
hints for register constraints can be modeled without significantly blowing
up the size of the interference graph (IG). We first show how antipathies
can be modeled by interferences and (positive weight) affinities and can
thus be incorporated into existing allocators by only modifying the IG
construction phase. We then present an elegant extension to the IRC that
directly handles antipathies, so avoiding the modification and size increase
of the IG.

e In Sections 5.2 and 5.3, we show how repairing can be used in scan like
allocators and describe a tree-scan. We show how to minimize the number
of repairing copies without the use of any graph-based coalescing. To this
end, we present several biased heuristics for coloring.

e Related work is reported in Section 5.4.

e Section 5.5 presents an extensive experimental evaluation that shows the
effectiveness of our techniques on the integer part of the Spec CINT2000
benchmark suite. The use of repairing technique produces IGs that have
26% less nodes (33% less edges) compared to the state-of-the art solution
with preliminary live-range splitting. Using antipathies and afterward
repairing does not change the quality in terms of run-time of the compiled
program. The base line tree-scan algorithm produces code of the same
quality as the IRC while showing an allocation time speedup of 8.81x.
Activating biasing techniques outperforms the run time performance of
the best IRC configuration while the allocation time speedup compared
to IRC is still 6.43x. These good results also carry against the recent
preference guided scan allocator from Braun et al. [22] where our algorithm
is 4.72x faster for a similar run-time quality.

Finally, Section 5.6 concludes the chapter.

84

a,c < ... a,c 4 ...

if (...) if (...)
(Ry,a") «+ (c,a)

I S) oo — Ri,a
ar < ¢(a,a’)
Cl QS(C, Rl)
. a,cC Lo oa,C
(a) Initial code (b) Code with live-range splitting

Figure 5.1: Effects of live-range splitting. (R1,a’) + (c,a) stands for parallel
copies where Ry + c and @’ < a are done in parallel. ¢™{F1} indicates that
operand c¢ has to be in the related subset of registers, here {R;}.

5.1 Graph Coloring with Repairing

Many compilers use an IG to guide register allocation (see Chapter 2 for more
details). In principle, any graph coloring register allocator can be modified to
handle register constraints through the introduction of pre-colored vertices [51].
Any variable that should be assigned to register R is initially merged with the
pre-colored vertex R. Any variable which assignment is constrained to a reg-
ister subset is made interfering with any register not part of the subset. The
fulfillment of operand constraints might require splitting live-ranges by inserting
copies. Indeed, a given variable may appear in two operands which constraints
are incompatible. Also, constraining at least two vertices to be assigned to
some given colors can make a graph initially colorable not colorable anymore,
thus causing additional spilling. To limit the lifetime of constrained variables,
the allocator usually splits, prior to coloring, live-ranges by inserting copies
around [76], or at least (for SSA code) just before [55] each constrained instruc-
tion. In general, this can reduce the amount of additional spilling, and for SSA
form programs it guarantees the register pressure to equal its register demand.
As illustrated in Figure 5.1 live-range splitting can be done through the use of
parallel copies that correspond to set of copies to be executed simultaneously.

5.1.1 Model and restrictions

Register constraints have different variants. Commonly several registers are
charged with a special meaning throughout the program such as the stack or
frame pointer. Hence, they are usually not subject to register allocation and
excluded from the set of available registers. In this chapter, we consider a more
local constraint were an instruction dictates that an operand has to be in a spe-
cific (subset of) register(s), e.g., a register class. Such constraints often occur
in calling conventions of the ABI. Each argument to a function call has to be
put into a dedicated register. Figure 5.2 illustrates how this constraint is mod-
eled using antipathies. In Figure 5.2a, b™{/: 73} states that the corresponding
operand that uses b is constrained to be in the register subset {R;, R3}. We
say [70, 91] that operand b is pinned to {R1, Rs}. If, for some reason, b is as-
signed to Ry then some shuffle code has to be inserted prior to (and after) the

85

a b+ ... a b Ri, Ry «

| —2w R:g — RZ
...+ pM{ALEs} 2 ...« Rs
1 2 Ry <+ Rj3
. a,b R3 A Rl,RQ
(a) Initial code (b) Interference graph (c) Allocated code

Figure 5.2: If a and b are respectively allocated to R; and Ry some repairing
code (in gray) is inserted. An antipathy (dashed lines) of weight —2w is used
to model this cost in the interference graph.

pinned operation to copy b to (and respectively from) either Ry or R3, as shown
in Figure 5.2c.

As shown in Figure 5.2b, an antipathy of weight —2w between b and R,
where w stands for the weight of a copy instruction, indicates that assigning
b to Ry will require at least two repairing copies around the pinned operation.
For coalescing, affinities that express the benefit of assigning two variables to-
gether are represented in the IG using dashed lines of positive weight. Similarly,
antipathies that express the repairing cost of assigning two variables together
are also represented using dashed lines but of negative weight. We say that an
affinity is satisfied by a coloring if the two corresponding are given the same
color (coalesced). Similarly, we say that an antipathy is satisfied by a coloring
if the two corresponding nodes are given two different colors (made interfering).

5.1.2 Strategies

We have integrated support for antipathies into the IRC, a graph-coloring based
register allocator by George and Appel [51]. The original IRC implementation
performs spilling and coalescing together (see Figure 2.4); as our compiler uses
a decoupled approach, and a different spilling algorithm, we focus on the coa-
lescing part. In other words, the potential spill, select, and actual spill can be
ignored at this stage of the discussion.

The IRC algorithm iteratively transforms the graph by merging (coalescing)
some affinity related nodes. It also removes nodes of low degree (i.e., of degree
smaller than the number of available registers) that are not affinity related
(simplification). Every simplified node is pushed onto a stack. This is the
coalescing-simplification phase. When all nodes are simplified it pops nodes from
the stack and assigns a color. This is the color phase. The coalescing process
uses an ordered (by decreasing weight) work-list of affinities (worklistMoves
in [51]). For each affinity the algorithm checks by simple rules (namely Brigg’s &
George’s) if both ends of the affinity can be coalesced conservatively (regarding
the graph colorability). If it can, it merges the nodes, otherwise, put the affinity
in some other lists. Optimistically, a judicious choice of color still has the
possibility to satisfy some or all of the non-coalesced affinities when it is later
popped from the stack and assigned a color; this is called biased coloring, as
discussed by Briggs et al. [26].

86

a b Add a node a ab b
o ---o ----o—o
—w w

Dummy node

Safe to add '@eee
interference?
a b a b
— o - -X-0
—w
Conservative Freeze

Figure 5.3: Strategies to deal with antipathies.

Our goal is to handle antipathies within this algorithm. As the notation
(dashed lines) suggests, one may want to consider antipathies as affinities of
negative weight. This allows the following formalism:

Definition 1 (Optimal coloring). Consider an IG G = (V, E) and a weighted
function that associates to each couple (z,y) € V xV a number w(z, y) (positive
for affinities, negative for antipathies, null for others). A k-coloring associates
to each vertex z € V a integer (color) col(xz) € [1,...,k] such that for each
(z,y) € E, col(x) # col(y). The weight w(col) of a k-coloring col is the sum over
each (z,y) € V x V such that col(x) = col(y) of w(z,y). A k-coloring is said to
be optimal if there is no other k-coloring with bigger weight.

This formalism imposes to have at most one affinity per pair of nodes. Thus
affinities and antipathies have to be summed during the build phase of the IG.
This is however always a good idea to merge affinities and antipathies between
nodes as coloring algorithms that aim at maximizing the overall weight are
heuristics. Notice also that this formalism allows an asymmetry for the function
w. In theory one can choose to set w(z,y) = w(y,x) = w for each affinity of
weight w between x and y or set (for example) w(z,y) = w and w(y,z) = 0.
One should just be coherent in his choice.

Using the IRC described above, we propose three different strategies to ad-
dress our generalized optimization problem.

5.1.2.1 Freeze

Representing antipathies by affinities of negative weight, and letting the IRC
cope with it is definitely a bad idea: Even if the weight of an affinity is negative,
it will try to satisfy it, in other words merge the two corresponding nodes.
Given a graph with affinities of negative weight, the simplest solution to avoid
this behavior is to ignore them during the simplification-coalescing phase. This
is done by initially freezing all negative affinities, i.e., by putting them in the
frozenMoves work-list of [51]. The biased coloring approach of the color phase
is modified to take the antipathies into account.

87

5.1.2.2 Dummy Nodes

The second technique consists in transforming a graph with antipathies into an
equivalent graph with only (positive) affinities. Every antipathy (z,y) of weight
—w is replaced by a sequence of an interference edge (z, zy), with a new vertex
zy called a dummy node, which does not correspond to an actual variable in
the program, and a (positive) affinity (zy,y) of weight w. Any existing graph
coloring algorithm can directly assign color for the resulting graph. Any optimal
coloring of this new graph will provide an optimal coloring of the original graph.

Definition 2 (Graph with dummy nodes). Consider an IG G = (V, E) and a
weighted function w. The corresponding graph with dummy nodes G’ = (V’, E')
and its corresponding weighted function w’ is defined and built as follow: (1)
for each x € V create a vertex x in V’; (2) for each (x,y) € E, create an edge
in E’; (3) for each (z,y) € V x V such that w(z,y) > 0 set w'(x,y) = w(z,y);
(4) for each couple (z,y) € V x V such that w(x,y) < 0, create a node zy in V’,
an edge (z,zy) in E’, and set w'(zy,y) = —w(x,y); (5) for all remaining couples
(z,y) € V! x V' set w'(z,y) = 0.

Theorem 1 (Equivalence with Dummy Nodes). Let k > 2. Consider an
IG G = (V,E) and a weighted function w. Consider its corresponding graph
with dummy nodes G' = (VJ D, E"), with w' its weighted function, and D the
dummy nodes.

(1) if there exists a k-coloring for G, then there also exists a k-coloring for G’;
(2) let col be an optimal k-coloring for G', then the restriction of col to V is an
optimal k-coloring for G.

Proof. (1) Consider a k-coloring of G with k& > 2. For each dummy node zy of
D interfering with z, set col(zy) to any color different than col(x). Such a color
exists as k > 2. This provides a k-coloring for G’.

If we force col(zy) to be equal to col(y) when possible, i.e., when col(y) # col(x),
then we have

’U)(CO') = Z w(x,y) + Z w(x,y) - Z w(x,y)
(z,y)EV XV (z,y)EV XV (z,y)EV XV,
w(z,y)>0 w(z,y)<0 w(z,y)<0,
col(z)=col(y) col(z)#col(y)
= Yoo Wy + Y wy+ D, w(ay)
(z,y)€V XV (z,y)€V XV (z,y)EV XV,
w(z,y)>0 w(z,y)<0 w(z,y)<0,
col(z)=col(y) col(zy)=col(y)
= Y Wyt Y way+ Y w(wy)
(z,y)eV XV (z,y)€EV XV (zy,y)€DXYV,
col(z)=col(y) w(z,y)<0 col(zy)=col(y)

In other words, by letting

W= > w(zy)
(z,y)EV XV
w(z,y)<0

we get
w(col) = w’(col) + W~ (5.1)

88

(2) Consider an optimal k-coloring col of G’. First, the restriction of col
to V provides a k-coloring of G. Indeed, given (z,y) € E, by step (2) in the
construction of G', (z,y) € E’, so col(x) # col(y).

Now, let us prove that for each zy € D, we have col(zy) = col(y) if and only
if col(x) # col(y). Indeed (by contraposition), if col(xz) = col(y), as col(zy) #
col(z) (zy interferes with z), this implies col(zy) # col(y). Reciprocally, if
col(z) # col(y), col(zy) can be set to col(y) which satisfies the affinity between
zy and y, and then provides a strictly better solution than if by absurd col(zy) #

col(y).
As equation 5.1 holds, this proves that if w’(col) is maximal for G’, w(col) is
maximal for G. O

5.1.2.3 Conservative Alienation

The basic idea of this third technique is to conservatively replace an antipathy
(z,y) with an interference edge, when doing so does not affect the colorability
of the IG. Recall that the work-list of affinities is sorted using their weight.
Our first modification consists in putting both antipathies and affinities in this
work-list and considering the absolute value of the weights in the way they are
sorted. Whenever a (positive) affinity is popped from the work-list, the code
is unchanged: The conservative coalescing tests [19] are performed and if suc-
cessful the two corresponding nodes are merged. When an antipathy is popped
from the work-list, the test consists in checking instead if the antipathy can by
conservatively (regarding the graph colorability) replaced by an interference. If
the test is successful the interference is actually added, the degrees of the corre-
sponding nodes updated, and their position in the many work-lists handled by
TIRC updated also. The rule can be stated as follow:

Definition 3 (Conservative Alienation). let k be the number of available regis-
ters. Let (u,v) be an antipathy; (u,v) can be replaced with an interference edge
if, u (or v) has at most k — 2 neighbors of high degree i.e., of degree at least k.

This rule is conservative regarding the greedy-k-colorability [17] of the graph.
A graph is said to be greedy-k-colorable if it can be reduced to an empty graph
by successively eliminating (simplification process mentioned above) low degree
nodes (degree less than k).

Theorem 2 (Preservation of greedy-k-colorability). The conservative interfer-
ing rule preserves the greedy-k-colorability. In other words, consider a greedy-k-
colorable IG G = (V, E). Consider two nodes u and v in this graph such that u
has at most k — 2 high degree neighbors. Then the graph G' = (V, EJ{(u,v)})
is greedy-k-colorable.

Proof. Clearly a sub-graph of a greedy-k-colorable graph is also greedy-k-colorable:
Any elimination order that fully reduces a graph can also be used to fully reduce
any sub-graph, as nodes on the sub-graph have a lower degree than in the initial
graph. Suppose u has at most & — 2 high degree neighbors. Adding an inter-
ference between u and v does not change the degree of nodes other than u and
v. All originally low degree neighbors of u (excluding v) can still be eliminated.
Remains at most k — 1 neighbors (including v), so w itself can then be elimi-
nated. The obtained graph is a sub-graph of the initial IG. This proves that the
introduction of such an interference does not change the greedy-k-colorability
of the graph. O

89

a<— ... Ry +
(a1,a2) < (Ry, Ry)

MRt o MHR1,Rs} Ry « qyT{B1Rs}
(H,l. [‘1)2) — ((12. Hl)
.+ a,c .. Ri,Ry
(a) Initial code (b) Allocated code (c) Interference graph

Figure 5.4: a,c have been assigned R;, Ry. Some parallel copies are introduced
to repair the inconsistency. The new local variables a; and as have to be allo-
cated. The corresponding interference graph.

5.1.3 Repairing Code

When coloring is over, repairing code has to be inserted for each actual an-
tipathies that have not been satisfied, i.e., whenever two antipathy-related nodes
have been assigned the same register. Repairing can be understood as an allo-
cation problem restricted to a very small region around the pinned operation.
Consider the example of Figure 5.4a. Suppose that, despite the affinity of ¢
with Ry and the antipathy of a with R; (as a is live-through), ¢ and @ have
been assigned respectively Ry and R;. To repair the inconsistencies, every vari-
able live-in of the pinned operation (a here) is copied to a new local variable
(a1 here). Any use in that operation is replaced by the corresponding freshly
created variable; hence the use of a is replaced by a use of a1. If, as a, a live-in
variable is both used in the operation and live-out of the operation then it is
duplicated, i.e., copied to another new local variable (here as): This duplication
will be the one that will traverse the pinned operation. Note that a; and as
are not made interfering here. Every defined variable (here c) is also replaced
by a new local variable; in our example, as for any variable whose constrained
subset is a singleton, we directly replaced this new local variable by the only
possible register it has to be allocated to, i.e., Ry. Now, for every variable live-
out of the pinned operation (here ¢ allocated to Ry, and a carried by as) a copy
back from the corresponding new local variable is inserted just after the pinned
operation. In our example, Ry (that carries the definition of ¢) is copied to ¢
(allocated to Rsy), and as is copied back to a (allocated to Ry). This leads to the
code of Figure 5.4b where assigned variables have been replaced by registers,
and where the freshly created local variables remain to be allocated. We end
up with a classical allocation problem where copies are affinities to be satisfied
and interferences link variables that cannot share the same register. The corre-
sponding IG is represented in Figure 5.4c. Affinities between interfering nodes
that could obviously not be satisfied have been represented for completeness. a;
and as respectively assigned R; and R would lead to a final code with a copy
Ry < R; before the operation and a swap of R; and Ry after. In practice,
the allocation problem being very local, the IG is not actually built. A greedy
ad-hoc heuristic, such as the one developed in Section 5.2.2, is designed instead.

After repairing, like for every approaches that use the parallel copies [3, 85,
22], we sequentialize them using swap, move and xor operations [55].

90

5.2 Tree-Scan

In the general graph-coloring setting, the minimum number of registers required
to color the graph might very well exceed the maximum register pressure of the
program. Recent results on SSA-based register allocation show [15, 27, 58] that
if the program is in SSA form, its register demand equals its maximum register
pressure. This allows for decoupling spilling and register assignment: once the
maximum register pressure in the program is lowered to the number of available
registers, a scan algorithm manages to assign registers without causing further
spills.

To this end, the tree-scan algorithm traverses the dominator tree in pre-
order, while processing the definitions and uses of variables in a manner similar
to linear scan register allocation [89]. However, in contrast to the original linear
scan algorithm, tree-scan does not over-approximate the live-ranges of variables
by intervals but uses precise liveness information.

Spilling techniques [21, 55] for SSA programs are not in the scope of this
chapter; we assume that spilling has already been performed and the register
pressure is nowhere larger than the number of registers.

5.2.1 The Basic Algorithm

The control flow graph (CFG) is processed in reverse post-order (RPO) (in
general any dominance-preserving order works). Each basic block is traversed
from top to bottom. A bit set of occupied registers is maintained. At the entry
of a basic block this should be set to the registers used by variables that are live-
in. However, SSA form allows to avoid the cost of pre-computing liveness sets in
favor of the fast liveness check developed by Boissinot et al. [14]. This technique
provides a query system to answer questions such as “is variable v live at location
¢’ but does not compute any set of live variables as the standard data-flow
analysis technique would do. The reason why liveness sets can be avoided under
SSA is that, a variable live-in of a block is also live-out of its already processed
immediately dominating block: the scan algorithm can reuse the occupancy set
of the end of the immediate dominator block, tests which of those variables
are live-in, and release unused registers accordingly. During the scan of a basic
block, whenever a definition of a variable is encountered, it is assigned the next
free register. Whenever a death point of a variable is encountered (the variable
is no more live after this program point), the corresponding register is released.
For this last task, fast liveness check can also be used.

Main loop (Algorithms 2 and 3) The pseudo code of the main loop is
given in Algorithm 2 and the details of the processing of a single operation
is given in Algorithm 3. As register assignment is classically assimilated to
graph coloring, the term colors will be used heavily in place of registers. In
these algorithms, code in gray corresponds to repairing features explained in
Section 5.2.2. The remaining code shows the basic algorithm that can be directly
implemented as it if no repairing is involved or if repairing is done as a separate
phase afterwards. In this case, the helper function CHOOSECOLOR called for
each variables definition simplifies to providing the first available register.

The first task TREESCAN does when processing a basic block block is to
initialize its set of live-in variables block.allocatedVariables: checking if variable v

91

is live-in of basic block block is done through v.islivein(block). It is then updated,
for each operation, op, by PROCESSOPERATION along with the corresponding
(not reported in the pseudo-code) bit-sets of occupied and available registers. To
avoid checking the set of all allocated variables, dead variables, i.e., variables not
live-out of the current operation (tested through wu.isliveout(op)), are extracted
from the set of variables used by the operation (op.arguments). At this point
¢-functions need a special treatment as explained below.

As every definition dominates all its uses, once an operation have been fully
processed, all its operands can be replaced by the assigned registers. This is done
through the call of function AsSIGNOPERANDSCOLOR which implementation
subtleties related to ¢-functions arguments are explained at the end of the next
paragraph.

Algorithm 2 Tree-scan main loop. Code in gray represents repairing code.

1: procedure TREESCAN(Region region)

2: for block in region.blocks using reverse post-order do
3: // Initialize set of occupied registers
4: block.allocatedVariables < if block.isEntry then @
else block.idom.allocated Variables
5: block.allocated Variables < {v € block.allocated Variables / v.islivein(block)}

6: // Forward traversal of the operations

7: for op in block.ops do

8 PRrOCESSOPERATION(block, op)

9 If op.next=_1 or op.next.isLateOperation then

10: // Last point of the block where we can insert code

11: FixGLoBALCoLOR(block, op.next)

12: If the late operation changes the global color, then the outgoing edges
13: // have to be split and FIXGLOBALCOLOR called on all created blocks.

Special treatments for ¢-functions Even if the instruction used to repre-
sent a ¢-function in the intermediate representation (IR) is usually placed at the
beginning of a basic block, its uses should semantically be considered as being
at the end of its corresponding predecessor basic blocks, or as here, on the cor-
responding incoming edges. This explains why line 5 of Algorithm 3 filters out
¢-functions: dead arguments (and in particular dead ¢-arguments) are released
when entering the basic block thanks to line 5 of Algorithm 2. Another subtlety
related to ¢-functions is that the set of ¢-functions of a given basic block should
be executed simultaneously. As an example, consider two ¢-functions written
in sequence in the IR of the program as follow: a1 = ¢(az,as); by = ¢(ba, bs).
Suppose a; is not used anywhere in the program. The code should not be un-
derstood as the sequence (1) assign aq; (2) release a1; (3) assign by. But as (1)
assign a; and by; (2) release a;. For that reason, the ¢-functions of a basic block
should be treated all together: lines 21 and 34 of Algorithm 3 should iterate
over all ¢-definitions, a1 and as in our example. Lastly, as already mentioned,
¢-function semantics also impacts the implementation of ASSIGNOPERANDS-
CoLOR: when reaching a ¢-function, the arguments that flow from a back-edge,
are not yet assigned. To avoid a special treatment of ¢-functions arguments at
the end of each basic blocks, a list of use operands (wv.unassignedUses), is at-
tached to each variable v. Those will be replaced by the assigned color as soon
as the definition is processed and the variable allocated.

92

Algorithm 3 Tree-scan operation processing. Code in gray represents repairing
code.

Require: The set of all ¢-functions of a basic-block should be encapsulated inside a
single operation
1: procedure PROCESSOPERATION(BasicBlock block, Operation op)

2: dead < @

3: parallelCopy <+ |]

4: /] @-function arguments are considered to be on the incomming edges, not here.
5: if op not is ¢ operation then

6: /] Check arquments constraints and release last used colors

7 for u € op.arguments do

8: // If current color does not match constraints, then repair

9: If u.ccolor ¢ op.constraints(u) then

10: success < REPAIRARGUMENT(block, op, u, ¶llelCopy)

11: If not success then

12: // Repairing heuristic failed. Replay all using graph coloring
13: GraPHCOLORING (block, op, ¶llelCopy)

14: goto end_of coloring

15: // Check whether u is last used here or not

16: if not u.isliveout(op) then dead < dead U {u}

17: // Release dead variables

18: block.allocated Variables <+ block.allocated Variables \ dead

19: // Assign definitions
20: for d € op.results do

21: [d.gcolor, d.ccolor] «+ CrooseCoLor(block, op, d)

22: If d.ccolor = L then

23: success <— REPATRREsuLT(block, op, d, ¶llelCopy)
24: If not success then

25: GRAPHCOLORING(block, op, ¶llelCopy)

26: goto end_of coloring

27: block.allocatedVariables <— block.allocated Variables U {d}
28: label end_of coloring:

29: // Instanciate repairing

30: INSERTPARALLELCOPY (block, op, parallelCopy)

31: AssiaNOPERANDSCOLOR(op)

32: // Release dead definitions
33: for d € op.defs if not d.isliveout(op) do
34: block.allocatedVariables < block.allocatedVariables \ {d}

93

5.2.2 Repairing

The goal of this section is to describe how the tree-scan can be extended to
handle register constraints and inline the repairing process during the traversal.

Each variable is assigned one global color, called gcolor. This is the color
that the variable has across basic blocks: the assignment at the entry and exit
of each basic block must obey the global coloring. On the other hand, so as to
fulfill some operand constraints inside a basic block, a variable can take, locally
to that basic block, different colors than its global one. This follows the spirit
of repairing advocated in the previous section: just as the repairing approach
in graph coloring context allows to reduce the size of the IG, the repairing
approach in scan context avoids the storage of each basic block boundary register
assignment.

In other words, as the tree-scan progresses, any allocated variable has a
current color (called ccolor) that might be different than its global color. The
current color of a variable can change (i.e., be different than at the immediately
dominating operation) whenever a pinned operation is encountered. Note that
its global color is not necessarily restored just after a constraining operation.
This is done lazily instead: if live-out of the basic block, the variable can, later be
allocated back to its global color when another pinned operation is encountered,
or at least just before reaching the end of the basic block.

Repairing at the end of a basic block (Algorithm 2) In Algorithm 2,
the repairing code inserted before a constrained operation is handled during the
call to PROCESSOPERATION. If, when reaching the end of the basic block, the
current color of a variable is different than its global color, a copy is inserted to
restore it by the call to FIxGLOBALCOLOR (Algorithm 4). By “end of the basic
block”, we mean the last point where a copy can be inserted i.e., not necessarily
at its really end but possibly just before an operation such as a jump (designed
as a late operation). The repairing code of PROCESSOPERATION (Algorithm 3)
is detailed hereafter in the corresponding paragraph.

Algorithm 4 Tree-scan fix global color process. For all variables that are not
in their global color, copy them in parallel to their global color.

Require: All allocated variables at this point have a different global color.
1: procedure FixGLoBALCoLOR(BasicBlock block, Operation op)

2: parallelCopy < |]

3 for var € block.allocatedVariables do

4: if var.ccolor # var.gcolor then

5 ApDToPARALLELCOPY (¶llelCopy, var, var.gcolor)

6

INSERTPARALLELCoOPY (block, op, parallelCopy)

Repairing at a constrained operation (Algorithm 3) When reaching a
pinned operation, a parallel copy (parallelCopy in Algorithm 3) might have to be
inserted just before the operation so as to match its register constraints. Recall
that the restoring to the global color is not done just after the operation but
lazily instead. The proposed heuristic that processes and fulfills constrained
operands one after an other can fail in finding a coloring. Graph coloring is

94

Algorithm 5 Tree-scan local assignment process.

1: procedure AssiaNOPERANDSCOLOR(Operation op)

2 for i < 0 to op.operands.length() do

3 v < op.operands]i].var

4: if v.ccolor # | then op.operands|i].color < v.ccolor
5 else v.unassignedUses < v.unassignedUses U (op,i)

6
7

for u € op.results do
for (op’,i) € u.unassignedUses do op’.operandsi].color < u.gcolor

used as a fallback solution. Procedure GRAPHCOLORING (Algorithm 10) is de-
tailed further in the corresponding paragraph. As the operands are processed,
if repairing is required, parallelCopy and the corresponding ccolor variables at-
tribute are updated by REPAIRARGUMENT (Algorithm 7) for arguments and
REPAIRRESULTS (Algorithm 9) for results (both procedures are detailed further
in the corresponding paragraphs). There are two situations that motivate the
insertion of repairing code: (1) if a pinned argument is not already in the re-
quired register class (line 9 of Algorithm 3); (2) if the colors of a pinned result
are already taken by other variables (line 22). For a variable v and an opera-
tion op, op.constraints(v) returns the register class v is restricted to on op. If
no restrictions apply, the whole register class of v, v.regClass, is returned. If
GRAPHCOLORING is called, repairing is done for all operands at once, paral-
lelCopy and variables attributes ccolor and gcolor are set accordingly. During
the processing of operands, parallelCopy is represented as a map that associates
copies to variables. It is instantiated as an actual parallel copy and inserted just
before the operation, only once all operands are processed through the call to
INSERTPARALLELCOPY.

Selecting a color for a variable (Algorithm 6) Repairing affects the
color choice in several ways. CHOOSECOLOR is called in three different con-
texts. First, at the definition point of some variable v (line 22 of Algorithm 3),
both its global color and local one have to be set. Here the global color to
choose must be different from the global colors used by interfering variables
i.e., not in block.allocatedVariables.gcolor (that abusively represents the set {
var.ccolor | var € block.allocatedVariables and wvar.ccolor # L }). However,
it might be that a free global color is locally in use at v’s definition (i.e., in
block.allocatedVariables.ccolor). This happens because of repairing: Another
variable took that color to fulfill a certain constraint. The algorithm first
checks if a color is both locally and globally available. Here, for a set colors
Pick(colors) returns one of its elements if none empty and L otherwise. Color
biasing techniques as addressed by Section 5.3 can be applied at this point. If
none of the allowed global colors are locally available, global and local assign-
ment have to be different. This temporary state will be automatically restored
later in the block thanks to the repairing process described further. The second
situation where CHOOSECOLOR is called is during repairing e.g., when a live-in
variable has to be recolored because of some local constraints. In that case, the
current color is preferably set to its global color (already set at its definition
point) if in allowedCColors. The last situation where CHOOSECOLOR is called
is right after the graph coloring of the current operation. The global color is
preferably set to its current color (set by graph coloring) if in allowedGColors.

95

Algorithm 6 Tree-scan color choice.

Require: The register pressure does not exceeded the number of registers.

Ensure: Returns ccolor if called by repairing, ggcolor if called by graph coloring,
[gcolor,ccolor] if called by the main tree-scan loop.

1: function CHOOSECOLOR(BasicBlock block, Operation op, Variable var, Register-
Set allowedCColors = op.constraints(var) \ block.allocated Variables.ccolor)

2: AllowedGColors < var.regClass \ block.allocatedVariables.gcolor

// Returns [geolor, ccolor]| (we have reached a definition point)
if var.gcolor = | and var.ccolor = 1 then

color < Pick(allowedCColors N allowedGColors)

if color # L then return [color, color]

else return [P1ck(allowedGColors), Pick(allowedCColors)]

N O Ot oW

oo

// Returns the new ccolor (required for repairing)

9: if var.gcolor # | and var.ccolor # 1 then

10: if var.gcolor € allowedCColors then return var.gcolor
11: else return Pick(allowedCColors)

12: // Returns gcolor (required by graph coloring that only sets ccolor)

13: if var.gcolor = 1| and var.ccolor # L then
14: if var.ccolor € allowedGColors then return var.ccolor
15: else return Pick(allowedGColors)

Repairing Arguments (Algorithm 7) REPAIRARGUMENT procedure is
called whenever an operand is pinned to a register subclass fully occupied by
some other variables. So as to release a color for the pinned operand, a variable
(we say a pawn) has to be moved out from its place. As moving out a variable
might require moving another variable, the procedure is recursive. forbidden,
initialized to the empty set, is used to avoid endless loop. All the colors the
variable var is allowed to take, are considered as candidates for receiving var
(line 3). The one used by unconstrained variables are considered first as they
will avoid recursion (line 6). For a given candidate, if the occupant (pawn) can
move to another place (line 12) the process succeeds and the move is committed
(lines 13-14). If it cannot, REPATRARGUMENT is called recursively. The current
color taken by var is made available for the recursively considered pawns, but
the color taken by pawn is marked forbidden so as to avoid considering it again
in the recursion (line 17). If the repairing succeeds, the procedure returns true.
In that case, parallelCopy contains the appropriate permutation of colors, and
the current colors of all involved variables are updated accordingly. Otherwise,
nothing is modified.

Note that, because of the recursion, the worst case complexity of this greedy
ad-hoc heuristic is exponential in the number of pinned operands even-though
a bipartite matching (with lower worst case complexity) could probably do a
better job in minimizing the amount of copies. We argue that repairing is rarely
required, and that the exponential behavior (only pinned operands to more than
one register impact the complexity) cannot appear at least for the architectures
we are aware of.

96

Algorithm 7 Tree-scan argument repairing process. No color is available, so
we take from a “pawn” already in place, that might itself move another pawn...
If success, makes the moves and recolor accordingly. If not return false.

Require: All variables live in front of the operation are in block.allocatedVariables.
No color is available for var.

Ensure: Performs the repairing if possible (update parallelCopy and ccolors accord-
ingly). Returns false otherwise.

1: function REPAIRARGUMENT(BasicBlock block, Operation op, Vari-
able var, ParallelCopy& parallelCopy, RegisterSet available = allColors
\ block.allocated Variables.ccolor, RegisterSet forbidden = ()

2: /] Try out every possible moves

3: ccolor <+ L

4: allowed < op.constraints(var) \ forbidden

5: while ccolor = | and allowed # @ do

6: // Not used in op = not constrained. So start trying not in op.uses first

7 if allowed \ op.uses.ccolor # () then

8: ccolor + CHOOSECOLOR(block, op, var, allowed \ op.uses.ccolor)

9: else ccolor + CHOOSECOLOR(block, op, var, allowed)

10: pawn < var € allocatedVariables | pawn.ccolor = ccolor

11: // Try to move out the pawn from ccolor

12: pawnAllowed < op.constraints(pawn) N (available U {var.ccolor})

\ forbidden

13: if pawnAllowed # () then

14: pawnColor «+— CHOOSECOLOR(block, op, pawn, pawnAllowed)

15: AppToPARALLELCOPY (parallelCopy, pawn, pawnColor)

16: success <— true

17: else

18: success < REPAIRARGUMENT(block, op, pawn, ¶llelCopy,
available U {var.ccolor},
forbidden U {pawn.ccolor})

19: // Failed. Continue.

20: if not success then

21: allowed < allowed \ {ccolor}

22: ccolor < L

23: // Commit if successed

24: if ccolor # 1 then

25: ADDToOPARALLELCOPY (parallelCopy, var, ccolor)

26: return true

27: return false

Algorithm 8 Tree-scan parallel copy update. Parallel copy structure maps a
variable to a pair of colors (source — destination).

1: procedure AppToParaLLeLCopy(ParallelCopy& parallelCopy, Variable var, Color
color)

2 if parallelCopy[var] = L then

3: set: parallelCopy][var| + var.ccolor — color

4: else

5: replace in parallelCopy|var]: src — dst by src — color

6 var.ccolor < color

97

Repairing Results (Algorithm 9) In theory repairing a result is similar
to repairing an argument. However, a cascading strategy with recursion would
requires a costly handling of sets of available colors depending on whether the
variable to move is a last use, a definition or a live through. The proposed
solution considers only the colors taken by live-through variables (designed as
the pawn) as candidates for receiving var. If pawn finds an available spot (line 9),
then the repairing succeeds. If not, the idea is to look for a last-use variable
(designed as arg) to be swapped with pawn. To be possible, (1) as moving arg
frees arg.ccolor only for the upper part of pawn’s live-range (arg is a last-use),
the lower part should already be free (line 14); (2) pawn should be allowed to
take arg’s color (line 15); (3) finally arg should be allowed to take pawn’s color
(line 16). If those three conditions are meet, the swap is committed (lines 18, 21),
and as arg occupies only the upper part, the lower part becomes free for var that
can take it without further ado (line 27).

Algorithm 9 Tree-scan result repairing process.

Require:

1: function RepairREsurt(BasicBlock block, Operation op, Variable var, ParallelCopy&
parallelCopy)

2 // Trying a move among all live-through only variables

3 allowed < op.constraints(var) \ op.defs.ccolors) \ op.uses.ccolors

4 while allowed # () and ccolor = | do

5: ccolor «+— CHooseCorLor(block, op, var, allowed)

6 pawn < var | var.ccolor = ccolor

7 pawnAllowed < op.constraints(pawn) \ op.defs.ccolors) \ op.uses.ccolors

8 if pawnAllowed # @ then

9: // There is an available spot for pawn

10: pawnColor < CrooseCoLoR(()block, op, pawn, pawnAllowed)
11: else

12: // pawn’s color could be free (for var) by swapping pawn with a last use
13: for arg € op.uses if not arg.isliveout(op) do

14: if arg.ccolor ¢ block.allocatedVariables.ccolor and

15: arg.ccolor € op.constraints(pawn) and

16: pawn.ccolor € op.constraints(arg) then
17: pawnColor < arg.ccolor

18: AppToParaLLeLCopry(¶llelCopy, arg, pawn.ccolor)
19: break

20: if pawnColor # 1 then

21: AppToParaLLeLCopry(¶llelCopy, pawn, pawnColor)

22: else

23: allowed « allowed \ {ccolor}

24: ccolor + L

25: // Commit if success

26: if ccolor # L then

27: var.ccolor <— ccolor

28: return true

29: return false

Fallback: Graph Coloring of the Operation (Algorithm 10) The re-
pairing process has a fall-back mechanism as soon as one of the heuristic fails
to find a coloring that fulfills the constraints. These failures mostly occur when
the register pressure is exceeded, which is unlikely unless the spilling phase gets
it wrong, or when there is a need for duplications. As opposed to a live-range

98

splitting that has the effect of moving a value from a resource to another, a du-
plication is a copy that lets the source variable alive. There are cases, such as for
variable a in the example of Figure 5.4c, where a duplication cannot be avoided.
In our register allocation scheme, such patterns are detected by the spilling
phase and required duplications are inserted prior to the coloring/coalescing.

The fall-back mechanism, based on a graph coloring, corresponds to the re-
pairing technique described in Section 5.1.3. First, every live-through variables
are duplicated (lines 10-16). Then the IG is built. Every live-in variable should
interfere with one another but for a variable with its duplicate (line 18); every
variable live at the definition point should interfere with one another (line 19).
Next operand constraints are expressed through interferences to non allowed
colors (line 21). Affinity setting presents two subtle differences with the de-
scription of Section 5.1.3. First, as the tree-scan restores the global color lazily
instead of right after the pinned operation, the affinity of a live-through vari-
able is 1 with its current color (line 23) plus 0.5 with its global color (lines 25).
Second, as the global color of definitions are not set yet, antipathies with the
global color of interfering variables are added (line 26). Once a coloring has been
found, duplicated variables that have been assigned the same color than their
respective parent can be deleted (lines 29-30). If not, the parallel copy could
contain twice the same copy, which should be detected when sequentialized.

Our register allocation scheme is fully decoupled, meaning that no spilling is
required during coloring/coalescing. However, a non fully decoupled approach
using an optimistic lightweight spilling phase could be considered. In that case,
Algorithm 10 should be able to perform spilling. loads and stores for some
live-through variables would be inserted around the current operation. So one
iteration of the IRC would do the job.

5.3 Biased Coloring

The goal of coalescing/alienation is to remove as many copies as possible. Some
are already present in the original code, some come from the use of SSA form
(through the form of ¢-functions), and the largest source of copies come from the
accommodation of register constraints (through preliminary live-range splitting
or repairing). Coalescing is a hard problem (it is already NP-complete for SSA
programs without register constraints [17]) and efficient coalescing algorithms
are too slow (see Section 5.5) in a context of just-in-time (JIT) compilation.

The goal of this section is to present several heuristics to bias the color choice
of the tree-scan algorithm to give move-related variables the same color in the
first place. As our experimental evaluation shows, these heuristics suffice to
waive the coalescing pass completely. Hereafter, we quickly review the adoption
of Mossenb6ck and Wimmer’s register hints [105] for tree-scan and then present
new biasing approaches.

Register hints This technique can be considered as a copy propagation dur-
ing the scan process. When assigning a color to the result of a move or parallel
copy, if the color of the argument is available, the algorithm takes it. We also
apply this technique for ¢-functions results. In a ¢-function, we have to chose
among multiple source variables: One for each incoming edge. We select the
color with the highest execution frequency (either determined by static analysis
or profile information) over all already allocated sources.

99

Algorithm 10 Tree-scan fall back repairing process.

Ensure: op is colored with respect to coloring constraints (current repairing is discarded)
Ensure: availableColors and block.allocatedVariables are updated
1: procedure GrarPHCOLORING(BasicBlock block, Operation op, ParallelCopy& parallel-

Co

O UL W N

-

2]

10:
11:
12:
13:

15:
16:
17:

29:
30:

32:
33:
34:
35:
36:
37:

38:
39:

py)

// Backtrack failed repairing

for var: src — dst in parallelCopy do var.ccolor < src
parallelCopy < []

block.allocated Variable < block.allocatedVariables \ op.defs
for var € op.defs do (var.gcolor, var.ccolor) < (L, L)

// Build live-sets
lastUses < {var € op.uses | not var.isliveout(op)}
liveThrough < block.allocatedVariables \ lastUses

// Duplicate variables that are both used and live-through
duplicates « ||
for i in op.arguments.indices if op.arguments|i].var € liveThrough do
dup + DupLicaTE(op.arguments][i].var)
duplicates|var]| < duplicates[var| U {dup}
op.arguments|i].var < dup
lastUses < lastUses U {dup}
dup.ccolor <— op.arguments|i|.var.ccolor

// Build the interference graph and do graph coloring potentially with local spill
interferenceGraph.addCliqueButForDuplicates(lastUses U liveThrough)
interferenceGraph.addClique(defs U liveThrough)
for var € op.operands do

interferenceGraph.addInterferences({var}, allColors \ op.constraints(var))
for var € lastUses U liveThrough do

interferenceGraph.add Affinity(var, var.ccolor, 1)
for var € liveThrough do

interferenceGraph.add Affinity(var, var.gcolor, 0.5)
interferenceGraph.add Antipathies(op.defs, block.allocated Variables.gcolor, 0.5)
coloring < interferenceGraph.color(op)

// Remove useless duplicates and apply the coloring result
for var € liveThrough do
for dup € duplicates|var]| if coloring|var] = coloring[dup| do
DeLeTE(coloring[dup])
DEeLETE(dup)
for var: color in coloring if var.ccolor # color do
var.ccolor < color
if var ¢ defs then AppToParaLLELCopPy(¶llelCopy, var, color)
else block.allocatedVariables < block.allocated Variables U {var}

/] Set greedily a global color to definitions
for d in op.defs do d.gcolor < CrooseCoror(block, op, d)

100

Aggressive pre-coalescing An aggressive coalescing merges as many copy
and ¢-function related variables as possible. It is easier than conservative co-
alescing as colorability of the resulting graph is not a concern. In particular
there exists very fast and efficient algorithms that exploit SSA properties and
do not even require the built of an IG (e.g., Boissinot et al. [13] and Budimlié¢
et al. [30]) . Instead of actually merging variables, our aggressive pre-coalescing
phase puts as many copy and ¢-function related variables into interference-free
sets (called equivalence classes by Sreedhar in [100]). Classes are then used dur-
ing the tree-scan to bias the coloring of a variable to the “color” of the class it
belongs to. The “color” of a class (initially undefined) corresponds to the global
color of its last assigned variable. In other words, when assigning a color to a
variable, the tree-scan checks if the color of the class is available, if so, it takes
it. If not, it picks a different color (based on the other heuristics presented here)
and updates the class’ color.

Caller-saved registers This technique tries to put variables that are live
across a call site into registers that are saved by the callee. Thus, it tries to
avoid caller-saved registers for these variables. The fast liveness check method
used by the original tree-scan algorithm is not very helpful, as the question that
arises at the definition point of the variable is to know whether that variable
is live across a call: In that case every call site dominated by the variable’s
definition should be tested. Instead, when using the caller-saved heuristics, we
resort to a classic liveness analysis. If aggressive pre-coalescing is used as well,
the across-a-call information is also propagated to the equivalence classes.

Round robin assignment The usual choice for a fresh register is to take the
first available color, usually in the order of the bit set that tracks the registers
in use. However, this paradigm usually leads to an unequal distribution of the
colors used. Freed registers are immediately reused by the variable defined next.
Hence, some registers are more frequently used than other ones. This has two
negative effects. First this usually decreases the chance that a move-related
variable can reside in the same register. Second, the allocated code contains
more anti-dependences, making the job of a post-pass scheduler much harder.
A round-robin strategy that affects registers in a cyclic manner aims at making
a more balanced assignment. Consider the example in Figure 5.5. The result
of the ¢-function c¢ is colored before its operand a. The variable d interferes
with a. Hence, assigning the register of the class {a,b,c} to d is bad because a
cannot get it anymore. With the classic allocation strategy this might easily
be the case. However, using round robin, the register of ¢ will only be reused
after K definitions, where K is the number of available registers. This increases
the chances that ¢’s register is available for a. Round robin assignment also has
a positive effect on post-allocation scheduling because it decreases the locality of
false dependencies. Thus, a post-allocation scheduler might have more freedom
to reorder the instructions while keeping the register allocation.

Move related To further increase the chance for move-related variables to get
“their” color (the one of their equivalence class),register file is divided into two
parts (of equal size in our case but could be tuned): The first part is reserved for
move-related variables and is only used by non-move-related variables if registers

101

while (...) {

while (...) {

while (...) {

c + ¢(a,b) Ri + ¢(a,Ry) Ry < ¢(a,R1)
+— c — Ry — Iy
d « Ry + ... Ry «+ ...
a <+ ... a <+ ... a <+ ...
< call < call < call
} } }

(a) Initial code (b) Classical color choice (¢) Round robin

Figure 5.5: Benefits of round robin on the color choice. Classical color choice
reuses ¢’s color for d and blocks the usage of that color for a. Round robin
increases the chances that ¢’s color will be available at a’s definition.

of the second part are exhausted. Inside the move-related part, round-robin
strategy is used to assign registers.

Figure 5.6 summarizes all presented bias techniques. It shows the different
allocation results for each technique on an example.

5.4 Related Work

Graph coloring and register constraints Chaitin et al. [33] showed that
every graph is the IG of a particular program, hence proving by reduction to
K-COLORABILITY the NP-completeness of register allocation. In this situation,
there was no interest in properties of the graph structure. Thus, register con-
straints were represented as interferences.

More recently, it was shown that the IGs of SSA-form programs are chordal,
which allows for coloring in polynomial time [15, 27, 58]. However, checking
the k-colorability of a chordal graph with at least two pre-colored nodes is not
polynomial anymore. Thus, early SSA-based allocators [58] used premature live-
range splitting in front of constrained instructions as well. Moreover, Odaira et
al. [79] show that live-range splitting implies an overhead of 20% on average in
the compile time of IRC.

Scan approaches The idea of linear scan register allocation goes back to
Traub et al. [103] and Poletto and Sarkar [89]. Allocation is done with a linear
scan over the assembly code. Poletto and Sarkar do not take control flow into
account and over-approximate the live-range of a variable by an interval on the
linearized assembly code. Thus, variables might occupy a register where they are
not live and might provoke unnecessary spill code. This method is simple and
fast, but gives worse results than standard graph-coloring approaches. Traub et
al. perform liveness analysis before and allow for holes in the intervals to avoid
the over-approximation of live-ranges.

Mossenbock and Pfeiffer [76] proposed a modification of the original linear

102

while (.) { Rl RQ R3 while (.) { R1 R2 R3 while (.) { Rl R2 R3

a<+ ¢(d,...) a+ ¢(d,...) a+ ¢d,...)
C— ... a C4— ... a C4— ... a
... b .o+ b ... b
d+ ¢ d+ c d+ c
call call call
d d d
} } }
(a) None (b) Register hints (c) Aggressive pre-coalescing

while (.) { R1 R2 R3 while (.) { R1 R2 R3 while (.) { R1 Rg \R3

a+ o(d,...) a+ ¢d,...) a+ ¢d,...) !
Cé ... a Cé ... a C ... ! a
d+ c d+ ¢ d+ ¢ 3
) call d y call d) call ' a
(d) Caller-saved (e) Round-robin (f) Move related

Figure 5.6: Different bias coloring strategies during tree-scan. For each tech-
nique, the left part represents the source code; the right part shows the allocation
of the variables with their live-range in the related column. The second argu-
ment e of the ¢-function is supposed to be already assigned to Ry. Ry and R,
are caller saved registers. For the aggressive pre-coalescing strategy, equivalence
classes are supposed to be {b}, {c}, and {a,d, e}. For the move-related strategy
the reserved set for move-related variables is supposed to be {Rs}.

scan to work on SSA. Unlike our tree-scan, they do not take advantage of SSA
properties to allow for an optimal register assignment. Like Traub et al., their
live-ranges have holes.

Mdossenbock and Wimmer [105] further improved linear scan. In particular,
they improved spill code placement and added on demand live-range splitting
to avoid spilling in some context. In 2007, Sarkar and Barik [95] extended the
linear scan. They explicitly split at basic block boundaries to avoid spilling
and to handle register constraints at the cost of shuffle code. In our setting,
the program is in SSA. Thus, introducing live-range splits in addition to ¢-
functions will not save any further spills [58]. In 2009, Rong [93] proposed the
tree register allocation, which generalizes linear scan approaches. However, this
algorithm needs global liveness information, in particular for the handling of
pre-colored constraints. The same year, Barik in his thesis [6, Ch.6] proposed
a linear scan approach that colors the basic intervals, i.e. part of the live-range
that is contiguous in the linear ordering, independently. His algorithm tries
to use the same color for the global interval, i.e. composed by several basic
intervals, to minimize shuffle code between basic blocks. To minimize move
cost, it builds another graph with all basic intervals and all move instructions,
also the one expected to be inserted on edges, and uses this graph to get the
preferred color of a basic interval when assigning its color. Overall, our approach
is simpler as it does not require to build an additional graph for coalescing
nor it requires to handle the shuffle code on the edges. Regarding coloring

103

constraints, Barik proposed two different approaches: (1) Choose an order of
the register class and assign them separately, starting with the most constrained
one. (2) Do everything at the same time with a register pressure by register
class. In that context, coalescing of basic intervals composing a variable may
be incompatible with already chosen color, thus creating a lot of moves. To
circumvent this bad behavior, instead of a top to bottom approach, i.e. basic
interval sorted by start date, Barik defined a bucket sorted list. With our
approach, the global interval is assigned a color, thus all basic intervals have
the same color a priori. Then, repairing makes the proper adjustments. The
frequency of these adjustments depend on the time invest in pre passes analysis.
In 2010, Wimmer and Franz [104] pointed out the interest of relying on SSA
to deal with liveness in linear scan. Finally, the same year, Braun et al. [22]
proposed a preference guided register allocator. Like our tree-scan, it works on
SSA. But unlike our approach, it processes the program using a linear ordering
of the basic blocks. This ordering is defined by a complete cover of the program
by traces. Moreover, it has to insert shuffle code at join point if all predecessors
have not been proceeded, using ¢-functions. Regarding coloring, it uses a new
bias technique, the preference sets, that gives the liked and disliked colors for
each variables. Like us, their allocator repairs the register constraints on the fly
but does not handle duplications, which must be set a priori. It splits all live
variables when at least one of them does not match the instruction constraints
and fixes the color for all split variables. It then solves a bipartite matching
problem for all the new variables. Overall, the preference guided allocator is
more complex than our approach.

Interestingly, already in 1999, Yang et al. [106] proposed a fast scan based
register allocation than uses the CFG. This allocator presents some similarities
with both the preference guided allocator and our tree-scan. Like the preference
guided, it performs a two phases allocation. First, it computes some preference
set as well as the last uses points' and second, it allocates the program. The
allocation uses a RPO ordering of the basic blocks, like us, and splits the CFG in
single entry multiple exits regions, i.e. it deals with tree like live-ranges. Like the
preference guided, at the end of each region it stores the result of the allocation.
If there is a mismatch between several predecessors of one region, it inserts some
shuffle code. When this process failed, it reallocates the related region. Overall,
again, this is more complex than our tree-scan, since we do not have to handle
shuffle code between region.

Coalescings In graph-coloring register allocation, many different coalescing
techniques have been developed. They fall into three categories: Aggressive,
conservative, and optimistic coalescing. Aggressive coalescing removes as many
copies as possible, regardless of the colorability of the IG [32]. While it removes
many copies, it may also increase the register demand of the program which
potentially causes spilling. Since we never want to trade a spill for a copy,
aggressive coalescing has to be used with caution. Conservative coalescing uses
conservative tests [26, 51, 15, 19] that ensure that the chromatic number of the
graph is not increased, before a copy is coalesced. Optimistic coalescing uses
aggressive coalescing and de-coalescing if the k-colorability was violated [80,
81]. On the other hand, Biased coloring tries to remove copies by giving the

ISince it does not use SSA, this information is not directly available

104

source and the target of the move the same color in the first place. Chow
and Hennessy [34] rely on copy propagation to remove moves in the priority-
based allocator. Briggs et al. [26] integrate biased coloring into graph-coloring
allocation. Mdssenbdck and Wimmer [105] use “register hints” in their linear
scan allocator to propagate copy information to the definition points of the
variables. They gave also a technique based on register next use distances to
assign caller-saved registers to local temporaries.

5.5 Experiments

The algorithms described earlier in the chapter were implemented in the back
end of a production compiler developed by our industrial partner, STMicro-
electronics for their commercial media processor based on the Lx architec-
ture [42]. This static C compiler uses open source version of the SGI Pro64 com-
piler [49] (OPENG64) as the code generator, linear assembly optimizer (LAO) as
the register allocator, and OPENG64 for post-allocation optimization and assem-
bly code emission. LAO can be used both in a static and dynamic compilation
context. While the funding of those developments was motivated by dynamic
compilation constraints, the industrial partner does not provide us with access
to the dynamic compilation tool-chain. The target processor is 4-issue very-
long instruction word (VLIW) with 32 general-purpose registers, 8 of which are
callee-saved. Compared to IA32, for example, the Lx architecture [42] has rel-
atively few register constraints. That being said, our results show significant
improvements compared to allocators that do not effectively handle register con-
straints; consequently, the disparity is likely to be even greater in our favor for
target architectures with more constraints.

Our experiments use a decoupled register allocation approach. The spilling
algorithms used is described in [55]; the purpose of the experiments is to compare
coalescers.

Our experiments use a subset of the Spec CINT2000 benchmarks compiled
using -O3 optimization level; our compiler cannot handle eon, which is written
in C++, and gce, which requires a frame pointer that our compiler does not
support. To give a better idea on how the different configurations may apply
to different targets, we made our experiments with three different numbers of
allocatable registers: 32, 16 and 8 registers.

5.5.1 Graph Coloring and Repairing

These experiments establish the efficacy of our approach to repairing on five
different coalescing configurations:

e IRC: The IRC algorithm without live-range splitting, but no repairing; this
algorithm is not guaranteed to find a k-coloring of the IG, so it is allowed
to spill, when necessary.

e Split: The IRC algorithm with live-range splitting, but no repairing.

e Freeze, Conservative, and Dummy Nodes: The IRC algorithm without
live-range splitting but with repairing implemented as described in Sec-
tion 5.1.2.

105

Figure 5.7 reports the normalized execution time of the code generated by
each configuration. Figure 5.8 reports the normalized number of vertices and
number of edges of the IG for each benchmark.

Finally, Figure 5.9 reports the normalized number of dynamically executed
copies for each configuration. We used frequency estimate [5] to find the number
of times each basic block executed. For each copy operation occurring in basic
block b, we use the weight assigned to b to estimate the number of times the
copy executes. These numbers are then summed to produce a per function cost,
and these costs are summed to produce a per benchmark cost. This metric
is architecture agnostic, as it ignores, for example, the possibility to hide the
copies by scheduling them in parallel with one another or with other operations,
or to schedule them in a branch delay slot.

Due to the number of configurations, these Figures depict just geometric
means. Detail per benchmark are given in the appendix, tables A.1 to A.6. All
numbers are normalized to IRC with 32 allocatable registers.

The baseline approaches are IRC and Split, denoted IRC Split in the Fig-
ures. Between those approaches, Split produces better quality code (Fig-
ures 5.7 and 5.9), but with a noticeable increase in the size of the IG (Fig-
ure 5.8). In its favor, Split is the only existing technique that can deal with
register constraints in a decoupled register allocation context. Our goal is to
identify a coalescer that achieves the code quality of Split but without increas-
ing the size of the IG.

We compare IRC and Split against three approaches to handle antipathies:

Dummy Nodes is the naive approach to extend graph coloring to deal with an-
tipathies. It represents antipathies using dummy nodes. As shown in
Figures 5.7 and 5.9, this approach produces good quality code, but the
dummy nodes that are added significantly increase the size of the 1G. Al-
though Dummy Nodes is not shown in Figure 5.8, its IGs are larger than
Split in virtually all instances. For this reason, we do not consider Dummy
Nodes to be a realistic approach.

Freeze only considers antipathies during the biased coloring phase at the end
of the coloring process. As shown in Figure 5.9, the quality of code gen-
erated by Freeze is inferior to that offer all other graph approaches: IRC,
Split, Dummy Nodes, or Conservative. In particular, it has big worse
cases (more than 28 times more moves than the IRC) when using with 32
and 16 registers. This becomes better when less choice are possible for the
color of each variable, i.e. using only 8 registers, its quality competes with
IRC. However, these bad performances on the number of moves barely show
up in runtime numbers as reported in Figure 5.7. In that case, Freeze is
slightly worse that Split but still better than IRC. Hence, inserting moves
to repair is cheaper than having additional spill code. In terms of IG size,
Freeze is comparable to IRC (Figure 5.8); the difference in size (due to a
small number of negative-weighted affinity edges) is negligible, and is not
shown in Figure 5.8.

Conservative converts antipathies into interference edges using criteria sim-
ilar to conservative coalescing. Conservative generates code that qual-
ity is comparable to Split, Dummy Nodes, and Freeze for runtime (Fig-
ure 5.7). It is one of the best regarding the dynamic number of moves

106

1.13 1.13

1.09 1.09
1.05 Il il fl-1.05
1.01 1.01
0.97 0.97
0.93 0.93
0.89 0.89
0.85 MU L D L L R S HEHEH g5
‘ L RS & o &

O & 2 . =) O - NS
RN VR S P ¥ O
DR R < Yi\?@ WIS &
S &Q‘Q@

Qo@ &

I 32 registers [116 registers 18 registers —— Min-Max

Figure 5.7: Geometric means over all benchmarks of the execution time of
the generated code. Each bar represents the runtime for the given number of
allocatable registers. The black lines in the middle of each bar represent the
variation, i.e. minimum and maximum, over all benchmarks. All numbers are
normalized to IRC with 32 registers (y=1). IRC stands for the iterated register
coalescer in a decoupled fashion. IRC Split is IRC plus live-range splitting. The
three next configurations are graph approaches with repairing as depicted in
Section 5.1.2. Preference reports preference guided numbers. Then, letters stand
for the mix of the bias coloring configurations applied to tree-scan. H: Hints; R:
Round-robin; C: Caller; M: Move related; A: Aggressive; W: Web; S: Split. For
tree-scan configurations, the results are sorted in increasing improvement with
32 registers. (Lower is better)

(Figure 5.9), while the size of the IG is comparable to that of IRC, and
is not shown in Figure 5.8. Among the three antipathy-based coalescers
considered here, Conservative is the only one to achieve the code quality
of Split with an IG size comparable to IRC.

5.5.2 Tree-Scan

This section evaluates the allocation time, i.e., the compile time dedicated to
register allocation, and the number of copy operations that execute dynamically
when coalescing is performed by the tree-scan algorithm with different biased
color assignment techniques, as discussed in Section 5.3. As this technique is
intended to be applied in a JIT context, but not restricted to, this section also
reports its memory footprint. To ease the comparison with existing approaches,
we included the most recent, to our knowledge, scan approach, the preference
guided register allocator [22] to our results.

107

1.8
1.6
1.4
1.2
1
0.8 N N
&\Q ® & (},5&\ Q’O@Q} Q&Q({\\k- $* @@+ *’/b& &0\@.@&\

H IRC - Vertices [Split - Vertices
IRC - Edges B Split - Edges

Figure 5.8: The normalized number of vertices and interference edges in the in-
terference graph for each benchmark. For a given benchmark, the sizes of the in-
terference graph of each function are summed. IRC, Freeze, and Conservative
have the same interference graph sizes, while Split’s interference graphs are no-
ticeably larger. Dummy nodes is not a realistic solution, so we do not report its
interference graph sizes, which would be large.

28.17 11.36
28.15 7.61 8.55 7.36
5.63 6.52 5.15 5.15 5.82

o . 2 Q- s (@]
o R SRS O <&
F T L TEE 9 x*’*’\»&
NalP) & @
@é‘ €
> ¢}
I 32 registers 116 registers [8 registers —— Min-Max

Figure 5.9: Geometric means of dynamic number of moves. See caption Fig-
ure 5.7 for the explanation of the configurations. The tree-scan configurations
are sorted in increasing improvement with 32 registers. (Lower is better)

108

5.5.2.1 Allocation Time

Figure 5.10 reports the normalized compile time of the different color assign-
ment approaches. The compile times reported include all memory allocation /de-
allocation, structure initialization/destruction, and liveness analysis; however,
they do not include the time required to translate out of SSA, which is not part
of the coloring process. For each benchmark, the runtime is the sum taken over
all functions. Due to the number of configurations, only the geometric means
over all benchmarks is reported. Detailed numbers are given in appendix, Ta-
bles A.7 to A.9.

As expected, the introduction of Register Hints to bias the color assign-
ment process during the tree-scan incurs no measurable overhead, while Round
Robin color assignment incurs an overhead of 10%. Pre-coalescing comes at a
higher price, 12% overhead for the Web strategy [30] and 27% for Aggressive
coalescing [13]; Move Related coalescing costs an additional 11% as we use a
pre-coalescing phase to know which variables are move related. The most ex-
pensive technique, however, is Caller, whose overhead is 50%; this overhead is
due to the data flow analysis required to compute liveness information and a
traversal of the CFG to identify variables that are live across calls. Lastly, we
also report the allocation time of the tree-scan with a Split strategy, where all
live-ranges are split prior to constrained instructions [55]; the overhead of this
technique is 71%.

Regarding the evolution of the different bias technique compile time with
respect to the number of allocatable registers, we see that tree-scan is more or
less not impacted by this number. The slight gain with 8 registers comes from
the way we chose the set of allocatable colors, here they are all callee-saved.
Thus, repairing on call site never occur anymore. The same observation applies
to Register Hints. For Round Robin, the compile time follows this number.
Nothing surprising as it traverses this set to find the next available color. The
pre-coalescing techniques depend on the program structure not the number of
registers. Thus, no patterns come out. Regarding Caller, the number of call
sites is not impacted by the number of registers. Thus the numbers are almost
the same. The slight gain with 8 registers comes again from choice of the
allocatable registers. When choosing the color for a variable having the caller
flag, the operations which restrict the possible colors will never end in an empty
set, thus error case is never reached. Finally, the Split strategy depends on
the number of live variable, which is directly linked to the number of register in
decoupled register allocation approach.

On average, the baseline tree-scan runs 8.81 times faster than IRC, which
respectively represents 4% and 26% of the whole back end compile time (17%
for preference guided). In contrast, even the slowest-running variant of tree-scan
has a runtime of less than 2 times than of the baseline version. Compared to
the preference guided allocator, tree-scan is 4.72 times faster.

For a JIT compiler, it is clear that tree-scan runs much more efficiently than
register allocation based on graph coloring. Moreover, it also beats the prefer-
ence guided allocator whatever the number of allocatable registers. However,
the gap is smaller with few registers and tree-scan is finally 2.96 times faster with
8 registers?). This is because the preference guided repairing process is faster

2The reported 2.82 is against the baseline tree-scan with 32 registers as all numbers use
the same base to normalize

109

8.81 12.09 4.72
7.31 9.28 3.52
513 6.42

2.82 2.29 2.36
1.9 1.9
1.7 1.7
1.5 1.5
1.3 1.3
58l BN EOR EOW MW N 09
@] ¥ 2 @ o S X X2 > 5 {
€ & q,@& R <z~°°° ¥ @%6\4 & N R
& & $
N Q€ ¥ ©
B 32 registers [_116 registers @8 registers —— Min-Max

Figure 5.10: Normalized geometric means of allocation time. Numbers are
normalized to tree-scan baseline (None) with 32 registers. Preference reports
preference guided numbers. Configurations to the right of None are tree-scan
algorithm with the related bias technique. (Lower is better)

when less variable are involved, whereas the tree-scan is more or less linear in
the number of instructions. Next, we look at the quality of the code generated
by the coalescers.

Note that by adding the techniques overhead, you get the allocation time
of the related composed method. For instance, caller plus web have composed
overhead of (1.5—1)+(1.12—1) = 0.62 on average. Thus, this composed method
is 1.62 times slower than the baseline.

5.5.2.2 Number of Dynamically Executed Copies

Figure 5.9 reports the number of dynamically executed copy operations that
result from different combinations of color assignment enhancements to the tree-
scan algorithm. See Section 5.5.1 to know how these numbers are computed.
We consider that tree-scan using register hints (H) is the most realistic baseline
implementation for tree-scan, due to its low runtime overhead. Thus, we did
not test tree-scan without any bias technique.

Let us first focus on the differences between the tree-scan configurations,
using register hints (H) as baseline. As the trends are the same whatever the
number of registers, we comment the numbers with 32 allocatable registers.
The impact of the caller heuristic (HC) in isolation is minimal: The compiler
inserts less repairing code, but fewer copies are coalesced. In many cases, two
move-related variables cannot be coalesced because one crosses a call and the
other does not; as we will see, the caller heuristic becomes more effective when
combined with better coalescers.

Round-robin (HR) increases the number of dynamically executed copies by
79%. It does not have any information about future uses of variables, e.g.,
as operands of ¢s. Consequently, the likelihood of eliminating the copies that

110

result during SSA destruction is quite low. Thus, the potential benefit of round-
robin, is possible only with a control on how it spreads the allocation over the
available colors. For instance, when combining round-robin with caller (HCR)
the negative impact is reduced from 79% to 20%.

The techniques that employ pre-coalescing (HW, HA) perform quite well.
Web and aggressive strategies respectively reduce the number of dynamically
executed copies by 20% and 35%. When combined with round-robin (HAR)
and move-related (HAM), the negative impacts observed for the round-robin
strategy, as described above, manifest themselves, but in a more limited fashion,
as the pre-coalescer gives a better guide for assigning registers.

Combining the pre-coalescer and caller heuristic (HAC) is beneficial, because
variables that are move-related to others that cross procedure call boundaries
are biased using callee-saved registers. Compared to register hints alone (H),
HAC reduces the number of dynamically executed copies by 76%. Augmenting
HAC with the round-robin strategy (HARC) achieves an additional percent of
improvement. Similarly, combining the move-related heuristic with the caller
heuristic and a pre-coalescer (HACM) achieves 78% of improvement.

Lastly, we wish to establish that pre-splitting is not necessary when using
repairing; the best result achieved with pre-splitting (HARCS) increasing the
number of dynamically executed copies by 25% for 32 registers. This bad result
comes from the way parallel copies inserted by split are handled in tree-scan.
The algorithm does not have any special care for such instruction. Thus, it
assigns the result in a sequential order. If the first result should not reuse the
color of the first argument because of some bias information, like the caller flag?,
the used color may not be available to coalesce one of the other result. In the
worse case, this error can propagate through all results of a given parallel copy,
whereas it would have been limited to few variables in the repairing case that
the bias information helps to avoid. However, with less registers, this problem is
less likely to occur and this configuration competes with the best configurations.
Nevertheless, the impact of pre-splitting on allocation time does not justify its
use in a JIT compiler.

Compared to graph based and preference guided approaches, tree-scan vari-
ants perform quite well. In particular, HAC, HARC, HACM and HARCM, are
better than IRC using live-range splitting and are close to the best achieved
quality: Conservative repairing strategy. For 32 registers, a tree-scan using
only an aggressive pre-coalescer (HA) achieves results almost as good as prefer-
ence guided. Thus, it competes with preference guided whereas it is 3.72 times
faster according to Figure 5.10. With 16 registers, this tree-scan configuration
has to be combined with at least the caller (HAC) technique to catch up the
gap in code quality against preference guided. In this case, it is still 1.64 times
faster. Finally, with 8 registers, the web pre-coalescer technique is sufficient for
tree-scan to beat the preference guided. In that configuration, it is 2.5 times
faster.

5.5.2.3 Run Time Performance

We compare the quality of the execution of the code generated by tree-scan
using the different biasing techniques. Figure 5.7 reports these results.

3Without other bias techniques, since split points are just a renaming of the variable, it is
always possible to reuse the color of the related argument.

111

Due to the advantage of a fully decoupled register allocation against IRC
decoupled approach, all programs compiled with tree-scan are always faster than
their counterparts compiled with IRC. Although tree-scan is approximately nine
times faster in allocation time than IRC.

The base tree-scan with register hints (H) generates code that is 3% faster
than IRC. More surprisingly, with the additional caller heuristic (HC), code is
only 2% faster than IRC even if the number of dynamic copies is less than register
hints (H). This is because of the VLIW processor we use for evaluation. When
the caller heuristic is not active, repairing often occurs at call sites. However,
at call sites there are usually enough free slots in the VLIW bundles to hide the
repairing code. Hence, this repairing code comes for free. If the caller heuristic
is active, the repairing move instructions occur at different places where they
are no longer easy to hide because of saturated VLIW bundles.

Round-robin (HR) gives an additional percent of improvement. This benefit
comes from the additional freedom for the post scheduler. On our machine,
post scheduling is very important because it places moves, stores, and loads in
unused slots of near bundles.

Using a pre-coalescing approach (HW, HA), tree-scan achieves 4% of im-
provement. This is almost as good as IRC with splitting or repairing technique.
Combining these approaches with caller heuristic (HAC), tree-scan gets an ad-
ditional percent of improvements and is as good as the best graph coloring
algorithms reported here. We achieve an additional percent by combining pre
coalescing with round robin (HAR), having tree-scan generated code running
faster than the best graph based approach.

Surprisingly, preference guided is just slightly better than tree-scan with
just register hints (H), despite the fact that it has far less dynamic moves than
this configuration. The reasons are twofold. Preference guided biases his color
using the same metric as the one used to count the dynamic number of moves.
However, this metric is based on an heuristic of frequency estimate and may not
reflect the actual runtime behavior. Moreover, like for the caller heuristic, the
repairing code is placed on saturated VLIW bundles, in that case, the edges.

In summary, we draw the following conclusions: Register hints should be
always used. Then, if there is a post-scheduling phase, round robin should be
applied. Although it does not help coalescing, the post scheduler has more
freedom and can hide more shuffle code in empty slots. On the other hand, it
might increase the number of moves. Here, the choice has to be made dependent
on the architecture. On our machine and our benchmarks, there were enough
empty slots in the VLIW bundles to hide those additional moves. The benefit
from relaxed post scheduling outweighed those extra copies.

Pre-coalescing has a non-negligible overhead but gives very good results and
can improve other heuristics, too. This is the main source of tree-scan’s perfor-
mance gain. The caller heuristic is quite expensive and gives bad results if used
alone. It should be avoided, unless pre-coalescing is enabled. Together, they
are more powerful in avoiding caller-saved registers for move-related variables
that are live across calls. We show that splitting before coloring does not give
any benefits in terms of run time. As it increases allocation time significantly,
it should be avoided in the JIT context.

112

21.24 29.27

2026 27.52
19.97 24.63 5.59
4.8 4.8
4.4 4.4
4 4
3.6 3.6
3.2 3.2
2.8 2.8
2.4 2.4
2 2
1.6 ij] 1.6
1.2 l]j m 1.2
0.8 L [[| 0.8
& QeQ\\& éef‘& & S &N eeé‘“e Q\&é o
& Q\é\ ?g%\ O\\QA
B 32 registers 116 registers 8 registers —— Min-Max

Figure 5.11: Normalized geometric means of memory footprint. Numbers are
normalized to tree-scan baseline (None) with 32 registers. Preference reports
preference guided numbers. Configurations to the right of None are tree-scan
algorithm with the related bias technique. (Lower is better)

5.5.2.4 Footprint

So far we show that tree-scan approach runs faster, produces faster code with
a comparable number of dynamic moves than IRC decoupled approaches and
preference guided. However, to be suitable for JIT, it also must have a small
memory footprint. This is what we show in that section.

Figure 5.11 reports the normalized footprint of the main classes of ap-
proaches. The numbers are normalized to tree-scan baseline (None) using 32
registers. The footprint measure all memory specifically allocated to perform
the related algorithm. Thus, it does not take into account the footprint of the
program representation, which is the same for all but IRC with live-range split-
ting approach, but it does take into account, for instance, the footprint of a
liveness