F. Alouges, Y. Chitour, and R. Long, A motion planning algorithm for the rolling-body problem, IEEE Trans. on Robotics, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00974885

A. Agrachev and Y. Sachkov, An intrinsic approach to the control of rolling bodies, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), pp.431-435, 1999.
DOI : 10.1109/CDC.1999.832815

A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint , Encyclopaedia of Mathematical Sciences, 87. Control Theory and Optimization , II, 2004.

A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D lie groups, Journal of Dynamical and Control Systems, vol.45, issue.2, pp.21-44, 2012.
DOI : 10.1007/s10883-012-9133-8

URL : https://hal.archives-ouvertes.fr/hal-00672261

R. Blumenthal and J. Hebda, The generalized Cartan-Ambrose-Hicks theorem, Geometriae Dedicata, vol.29, issue.2, pp.163-175, 1989.
DOI : 10.1007/BF00182117

R. Bryant and L. Hsu, Rigidity of integral curves of rank 2 distributions, Inventiones Mathematicae, vol.30, issue.no. 1127, pp.435-461, 1993.
DOI : 10.1007/BF01232676

A. Chelouah and Y. Chitour, On the controllability and trajectories generation of rolling surfaces, Forum Math, vol.15, pp.727-758, 2003.

Y. Chitour, A. Marigo, and B. Piccoli, Quantization of the rolling body problem with applications to motion planning, Systems and Control Letters, pp.999-1013, 2005.

G. Molina, M. Grong, E. Markina, I. Leite, and F. , An intrinsic formulation of the rolling manifolds problem, 2010.

K. Hüper and F. Silva-leite, On the Geometry of Rolling and Interpolation Curves on S n , SO n , and Grassmannian Manifolds, Journal of Dynamical and Control Systems, vol.13, issue.4, 2007.

D. D. Joyce, Riemannian Holonomy Groups and Calibrated Geometry, 2007.
DOI : 10.1007/978-3-642-19004-9_1

V. Jurdjevic, Geometric control theory, Cambridge Studies in Advanced Mathematics, vol.52, 1997.
DOI : 10.1017/CBO9780511530036

A. Marigo and A. Bicchi, Rolling bodies with regular surface: controllability theory and applications, IEEE Transactions on Automatic Control, vol.45, issue.9, pp.1586-1599, 2000.
DOI : 10.1109/9.880610

A. Marigo and A. Bicchi, Planning motions of polyhedral parts by rolling, Algorithmic foundations of robotics, Algorithmica, vol.26, pp.3-4, 2000.

F. Alouges, Y. Chitour, and R. Long, A motion planning algorithm for the rollingbody problem, accepted for publication in IEEE Trans, Robotics

A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D lie groups, Journal of Dynamical and Control Systems, vol.45, issue.2, 2010.
DOI : 10.1007/s10883-012-9133-8

URL : https://hal.archives-ouvertes.fr/hal-00672261

A. Agrachev and Y. Sachkov, An intrinsic approach to the control of rolling bodies, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), pp.431-435, 1999.
DOI : 10.1109/CDC.1999.832815

A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87. Control Theory and Optimization, II, 2004.

R. Blumenthal and J. Hebda, The generalized Cartan-Ambrose-Hicks theorem, Geometriae Dedicata, vol.29, issue.2, pp.163-175, 1989.
DOI : 10.1007/BF00182117

R. Bryant and L. Hsu, Rigidity of integral curves of rank 2 distributions, Inventiones Mathematicae, vol.30, issue.no. 1127, pp.435-461, 1993.
DOI : 10.1007/BF01232676

G. Bor and R. Montgomery, $G_2$ and the rolling distribution, L???Enseignement Math??matique, vol.55, issue.1, 2006.
DOI : 10.4171/LEM/55-1-8

A. Chelouah and Y. Chitour, On the controllability and trajectories generation of rolling surfaces, Forum Math, vol.15, pp.727-758, 2003.

Y. Chitour and P. Kokkonen, Rolling Manifolds: Intrinsic Formulation and Controllability, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00535711

E. Grong, Controllability of Rolling without Twisting or Slipping in Higher Dimensions, SIAM Journal on Control and Optimization, vol.50, issue.4, 2011.
DOI : 10.1137/110829581

S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, vol.34, 1978.
DOI : 10.1090/gsm/034

S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Mathematische Annalen, vol.26, issue.3, pp.209-215, 1979.
DOI : 10.1007/BF01421206

K. Hüper and F. Silva-leite, On the Geometry of Rolling and Interpolation Curves on S n , SO n , and Grassmannian Manifolds, Journal of Dynamical and Control Systems, vol.13, issue.4, 2007.

D. D. Joyce, Riemannian Holonomy Groups and Calibrated Geometry, 2007.
DOI : 10.1007/978-3-642-19004-9_1

V. Jurdjevic, Geometric control theory, Cambridge Studies in Advanced Mathematics, vol.52, 1997.
DOI : 10.1017/CBO9780511530036

I. Kolá?-r, P. Michor, and J. Slovák, Natural operations in differential geometry, 1993.

J. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, 2003.

A. Marigo and A. Bicchi, Rolling bodies with regular surface: controllability theory and applications, IEEE Transactions on Automatic Control, vol.45, issue.9, pp.1586-1599, 2000.
DOI : 10.1109/9.880610

A. Marigo and A. Bicchi, Planning motions of polyhedral parts by rolling, Algorithmic foundations of robotics, Algorithmica, vol.26, pp.3-4, 2000.

M. Molina, E. Grong, I. Markina, and F. Leite, An intrinsic formulation of the rolling manifolds problem, 2010.

D. Montgomery and H. Samelson, Transformation Groups of Spheres, The Annals of Mathematics, vol.44, issue.3, pp.454-470, 1943.
DOI : 10.2307/1968975

R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, 2006.
DOI : 10.1090/surv/091

R. Murray, Z. Li, and S. Sastry, A mathematical introduction to robotic manipulation, 1994.

M. Obata, On subgroups of the orthogonal group, Transactions of the American Mathematical Society, vol.87, issue.2, pp.347-358, 1958.
DOI : 10.1090/S0002-9947-1958-0095205-6

O. Neill and B. , Semi-Riemannian Geometry with Applications to Relativity, 1983.

H. Ozeki, Infinitesimal holonomy groups of bundle connections, Nagoya Math, J, vol.10, pp.105-123, 1956.

K. Pawel and H. Reckziegel, Affine Submanifolds and the Theorem of Cartan- Ambrose-Hicks, Kodai Math, J, 2002.

T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs, 149, 1996.

S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Mathematical Journal, vol.10, issue.3, pp.338-354, 1958.
DOI : 10.2748/tmj/1178244668

R. W. Sharpe, Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Graduate Texts in Mathematics, vol.166, 1997.

M. Spivak, A Comprehensive Introduction to Differential Geometry, 1999.

F. W. Warner, Foundations of Differentiable Manifolds, Graduate Texts in Mathematics, vol.94, 1983.

A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87. Control Theory and Optimization, II, 2004.

M. Berger, Sur les groupes d'holonomie homog??nes de vari??t??s ?? connexion affine et des vari??t??s riemanniennes, Bulletin de la Société mathématique de France, vol.79, pp.279-330, 1955.
DOI : 10.24033/bsmf.1464

R. Bryant, Geometry of manifolds with special holonomy: ???100 years of holonomy???, Contemporary Mathematics, vol.395, 2006.
DOI : 10.1090/conm/395/07414

R. Bryant and L. Hsu, Rigidity of integral curves of rank 2 distributions, Inventiones Mathematicae, vol.30, issue.no. 1127, pp.435-461, 1993.
DOI : 10.1007/BF01232676

É. Cartan, La géométrie des espaces de Riemann, Mémorial des sciences mathématiques, pp.1-61, 1925.

A. Chelouah and Y. Chitour, On the controllability and trajectories generation of rolling surfaces, Forum Math, vol.15, pp.727-758, 2003.

Y. Chitour, G. Molina, M. Kokkonen, and P. , Extension of de Rham decomposition theorem to non euclidean development

Y. Chitour and P. Kokkonen, Rolling Manifolds: Intrinsic Formulation and Controllability, 2011.
DOI : 10.24033/msmf.455

URL : https://hal.archives-ouvertes.fr/hal-00535711

E. Grong, Controllability of Rolling without Twisting or Slipping in Higher Dimensions, SIAM Journal on Control and Optimization, vol.50, issue.4, 2011.
DOI : 10.1137/110829581

S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, vol.34, 1978.
DOI : 10.1090/gsm/034

D. D. Joyce, Riemannian Holonomy Groups and Calibrated Geometry, 2007.
DOI : 10.1007/978-3-642-19004-9_1

V. Jurdjevic, Geometric control theory, Cambridge Studies in Advanced Mathematics, vol.52, 1997.
DOI : 10.1017/CBO9780511530036

V. Jurdjevic and J. Zimmerman, Rolling sphere problems on spaces of constant curvature, Proc. Camb, pp.729-747, 2008.
DOI : 10.1007/s00498-004-0143-2

I. Kolá?-r, P. Michor, and J. Slovák, Natural operations in differential geometry, 1993.

J. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, 2003.

A. Marigo and A. Bicchi, Rolling bodies with regular surface: controllability theory and applications, IEEE Transactions on Automatic Control, vol.45, issue.9, pp.1586-1599, 2000.
DOI : 10.1109/9.880610

M. Molina, E. Grong, I. Markina, and F. Leite, An intrinsic formulation of the rolling manifolds problem, 2010.

R. Murray, Z. Li, and S. Sastry, A mathematical introduction to robotic manipulation, 1994.

C. Olmos, A geometric proof of the Berger Holonomy Theorem, Annals of Mathematics, vol.161, issue.1, pp.579-588, 2005.
DOI : 10.4007/annals.2005.161.579

T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs, 149, 1996.

R. W. Sharpe, Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Graduate Texts in Mathematics, vol.166, 1997.

J. Simons, On the Transitivity of Holonomy Systems, The Annals of Mathematics, vol.76, issue.2, pp.213-234, 1962.
DOI : 10.2307/1970273

F. Alouges, Y. Chitour, and R. Long, A motion planning algorithm for the rolling-body problem, IEEE Trans. on Robotics, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00974885

R. Blumenthal and J. Hebda, The generalized Cartan-Ambrose-Hicks theorem, Geometriae Dedicata, vol.29, issue.2, pp.163-175, 1989.
DOI : 10.1007/BF00182117

J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, 1975.
DOI : 10.1090/chel/365

A. Chelouah and Y. Chitour, On the controllability and trajectories generation of rolling surfaces, Forum Math, vol.15, pp.727-758, 2003.

Y. Chitour and P. Kokkonen, Rolling Manifolds: Intrinsic Formulation and Controllability , preprint, arXiv:1011.2925v2 [math, 2011.
DOI : 10.24033/msmf.455

G. Molina, M. Grong, E. Markina, I. Silva-leite, and F. , An intrinsic formulation to the rolling manifolds problem, preprint, 2010.

G. Molina, M. Grong, and E. , Geometric conditions for the existence of an intrinsic rolling, preprint, 2011.

J. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, 2003.

K. Pawel and H. Reckziegel, Affine Submanifolds and the Theorem of Cartan-Ambrose- Hicks, Kodai Math, J, 2002.

J. W. Robbin and D. A. Salamon, Introduction to Differential Geometry, ETH, Lecture Notes, preliminary version, 2011.

T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs, 149, 1996.

R. W. Sharpe, Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Graduate Texts in Mathematics, vol.166, 1997.

F. Alouges, Y. Chitour, and R. Long, A motion planning algorithm for the rolling-body problem, IEEE Trans. on Robotics, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00974885

A. Agrachev and Y. Sachkov, An intrinsic approach to the control of rolling bodies, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), pp.431-435, 1999.
DOI : 10.1109/CDC.1999.832815

A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87. Control Theory and Optimization, II, 2004.

Y. Chitour and P. Kokkonen, Rolling Manifolds: Intrinsic Formulation and Controllability , Preprint, 2011.

Y. Chitour and P. Kokkonen, Rolling Manifolds and Controllability: the 3D case, 2011.

Y. Chitour and P. Kokkonen, Rolling manifolds on space forms, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.29, issue.6, 2011.
DOI : 10.1016/j.anihpc.2012.05.005

G. Molina, M. Grong, E. Markina, I. Leite, and F. , An intrinsic formulation of the rolling manifolds problem, 2010.

E. Grong, Controllability of Rolling without Twisting or Slipping in Higher Dimensions, SIAM Journal on Control and Optimization, vol.50, issue.4, 2011.
DOI : 10.1137/110829581

S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, vol.34, 1978.
DOI : 10.1090/gsm/034

D. D. Joyce, Riemannian Holonomy Groups and Calibrated Geometry, 2007.
DOI : 10.1007/978-3-642-19004-9_1

A. Marigo and A. Bicchi, Rolling bodies with regular surface: controllability theory and applications, IEEE Transactions on Automatic Control, vol.45, issue.9, pp.1586-1599, 2000.
DOI : 10.1109/9.880610

R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, 2006.
DOI : 10.1090/surv/091

T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs, 149, 1996.

R. W. Sharpe, Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Graduate Texts in Mathematics, vol.166, 1997.