M. Desmaële, E. S. Boukallel, and . Régnier, A planar structure sensitive to out-of-plane forces for the force-controlled injection of suspended and adherent cells, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011.
DOI : 10.1109/IEMBS.2011.6092077

D. Desmaële, M. Boukallel, and E. S. Régnier, A Planar Resonant Structure Sensitive to Out-of-plane Forces, Proceedings EuroSensors XXV, 2011.
DOI : 10.1016/j.proeng.2011.12.144

J. H. Wang and B. P. Thampatty, An Introductory Review of Cell Mechanobiology, Biomechanics and Modeling in Mechanobiology, vol.34, issue.Pt B, pp.1-16, 2006.
DOI : 10.1007/s10237-005-0012-z

D. Kim, P. Kinwong, J. Park, A. Levchenko, and Y. Sun, Microengineered Platforms for Cell Mechanobiology, Annual Review of Biomedical Engineering, vol.11, issue.1, pp.203-233, 2009.
DOI : 10.1146/annurev-bioeng-061008-124915

G. Bao and S. Suresh, Cell and molecular mechanics of biological materials, Nature Materials, vol.2, issue.11, pp.715-725, 2003.
DOI : 10.1038/nmat1001

P. A. Janmey and C. A. Mcculloch, Cell Mechanics: Integrating Cell Responses to Mechanical Stimuli, Annual Review of Biomedical Engineering, vol.9, issue.1, pp.1-34, 2007.
DOI : 10.1146/annurev.bioeng.9.060906.151927

T. P. Lele, J. E. Sero, B. D. Matthews, S. Kumar, S. Xia et al., Tools to Study Cell Mechanics and Mechanotransduction, Methods in Cell Biology, vol.83, p.443, 2007.
DOI : 10.1016/S0091-679X(07)83019-6

B. D. Hoffman and J. C. Crocker, Cell Mechanics: Dissecting the Physical Responses of Cells to Force, Annual Review of Biomedical Engineering, vol.11, issue.1, pp.259-288, 2009.
DOI : 10.1146/annurev.bioeng.10.061807.160511

T. D. Brown, Techniques for mechanical stimulation of cells in vitro: a review, Journal of Biomechanics, vol.33, issue.1, pp.3-14, 2000.
DOI : 10.1016/S0021-9290(99)00177-3

G. Y. Lee and C. T. Lim, Biomechanics approaches to studying human diseases, Trends in Biotechnology, vol.25, issue.3, pp.111-118, 2007.
DOI : 10.1016/j.tibtech.2007.01.005

E. A. Peeters, Biomechanics of single cells under compression, 2004.

E. Evans and A. Yeung, Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration, Biophysical Journal, vol.56, issue.1, pp.151-160, 1989.
DOI : 10.1016/S0006-3495(89)82660-8

M. Sato, D. P. Theret, L. Wheeler, N. Ohshima, and R. M. Nerem, Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties, Journal of Biomechanical Engineering, vol.112, issue.3, pp.263-268, 1990.

H. Miyazaki, Y. Hasegawa, and K. Hayashi, A newly designed tensile tester for cells and its application to fibroblasts, Journal of Biomechanics, vol.33, issue.1, pp.97-104, 2000.
DOI : 10.1016/S0021-9290(99)00161-X

M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura et al., Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy, European Biophysics Journal, vol.28, issue.4, pp.312-316, 1999.
DOI : 10.1007/s002490050213

J. A. Van-der-rijt, K. O. Van-der-werf, M. L. Bennink, P. J. Dijkstra, and J. Feijen, Micromechanical Testing of Individual Collagen Fibrils, Macromolecular Bioscience, vol.357, issue.9, pp.697-702, 2006.
DOI : 10.1002/mabi.200600063

Q. S. Li, G. Y. Lee, C. N. Ong, and C. T. Lim, AFM indentation study of breast cancer cells, Biochemical and Biophysical Research Communications, vol.374, issue.4, pp.609-613, 2008.
DOI : 10.1016/j.bbrc.2008.07.078

S. E. Cross, Y. S. Jin, J. Tondre, R. Wong, J. Y. Rao et al., AFM-based analysis of human metastatic cancer cells, Nanotechnology, vol.19, issue.38, p.3840038, 2008.
DOI : 10.1088/0957-4484/19/38/384003

A. Pillarisetti, C. Keefer, and J. P. Desai, Mechanical characterization of fixed undifferentiated and differentiating mESC, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp.618-623, 2008.
DOI : 10.1109/BIOROB.2008.4762935

M. Boukallel, M. Girot, and S. Régnier, Characterization of cellular mechanical behavior at the microscale level by a hybrid force sensing device, Journal of the Mechanical Behavior of Biomedical Materials, vol.2, issue.3, pp.297-304, 2009.
DOI : 10.1016/j.jmbbm.2008.09.001

O. Thoumine, A. Ott, O. Cardoso, and J. Meister, Microplates: a new tool for manipulation and mechanical perturbation of individual cells, Journal of Biochemical and Biophysical Methods, vol.39, issue.1-2, pp.47-62, 1999.
DOI : 10.1016/S0165-022X(98)00052-9

N. Desprat, A. Guiroy, and A. Asnacios, Microplates-based rheometer for a single living cell, Review of Scientific Instruments, vol.77, issue.5, pp.5-511, 2006.
DOI : 10.1063/1.2202921

URL : https://hal.archives-ouvertes.fr/hal-00106167

P. Fernández, P. A. Pullarkat, and A. Ott, A Master Relation Defines the Nonlinear Viscoelasticity of Single Fibroblasts, Biophysical Journal, vol.90, issue.10, pp.3796-3805, 2006.
DOI : 10.1529/biophysj.105.072215

E. Gladilin, A. Micoulet, B. Hosseini, K. Rohr, J. Spatz et al., 3D finite element analysis of uniaxial cell stretching: from image to insight, Physical Biology, vol.4, issue.2, pp.104-113, 2007.
DOI : 10.1088/1478-3975/4/2/004

B. P. Chan, C. Li, K. L. Au-yeung, K. Y. Sze, and A. H. Ngan, A Microplate Compression Method for Elastic Modulus Measurement of Soft and Viscoelastic Collagen Microspheres, Annals of Biomedical Engineering, vol.16, issue.1, pp.1254-1267, 2008.
DOI : 10.1007/s10439-008-9507-y

E. Koay, A. Shieh, and K. Athanasiou, Creep indentation of single cells, Journal of Biomechanical Engineering, vol.125, p.334, 2003.

E. A. Peeters, C. W. Oomens, C. V. Bouten, D. L. Bader, and F. P. Baaijens, Mechanical and failure properties of single attached cells under compression, Journal of Biomechanics, vol.38, issue.8, pp.1685-1693, 2005.
DOI : 10.1016/j.jbiomech.2004.07.018

K. Sato, T. Adachi, D. Ueda, M. Hojo, and Y. Tomita, Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells, Journal of Biomechanics, vol.40, issue.6, pp.1246-1255, 2007.
DOI : 10.1016/j.jbiomech.2006.05.028

K. Van-vliet, G. Bao, and S. Suresh, The biomechanics toolbox: experimental approaches for living cells and biomolecules, Acta Materialia, vol.51, issue.19, pp.5881-5905, 2003.
DOI : 10.1016/j.actamat.2003.09.001

H. Huang, R. D. Kamm, and R. T. Lee, Cell mechanics and mechanotransduction: pathways, probes, and physiology, AJP: Cell Physiology, vol.287, issue.1, pp.1-11, 2004.
DOI : 10.1152/ajpcell.00559.2003

A. Geitmann, Experimental approaches used to quantify physical parameters at cellular and subcellular levels, American Journal of Botany, vol.93, issue.10, pp.1380-1390, 2006.
DOI : 10.3732/ajb.93.10.1380

K. A. Addae-mensah and J. P. Wikswo, Measurement Techniques for Cellular Biomechanics In Vitro, Experimental Biology and Medicine, vol.233, issue.7, pp.792-809, 2008.
DOI : 10.3181/0710-MR-278

J. J. Norman, V. Mukundan, D. Bernstein, and B. L. Pruitt, Microsystems for Biomechanical Measurements, Pediatric Research, vol.74, issue.5, p.576, 2008.
DOI : 10.1203/PDR.0b013e31816b2ec4

O. Loh, V. A. , and H. D. Espinosa, The Potential of MEMS for Advancing Experiments and Modeling in Cell Mechanics, Experimental Mechanics, vol.15, issue.465, pp.105-124, 2009.
DOI : 10.1007/s11340-007-9099-8

S. Sen and S. Kumar, Combining mechanical and optical approaches to dissect cellular mechanobiology, Journal of Biomechanics, vol.43, issue.1, pp.45-54, 2010.
DOI : 10.1016/j.jbiomech.2009.09.008

S. Eppell, B. Smith, R. Kahn, and . Ballarini, Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils, Journal of The Royal Society Interface, vol.287, issue.5453, pp.117-121, 2006.
DOI : 10.1126/science.287.5453.637

Z. L. Shen, M. R. Dodge, H. Kahn, R. Ballarini, and S. J. , Stress-Strain Experiments on Individual Collagen Fibrils, Biophysical Journal, vol.95, issue.8, pp.3956-3963, 2008.
DOI : 10.1529/biophysj.107.124602

N. Scuor, P. Gallina, H. Panchawagh, R. Mahajan, O. Sbaizero et al., Design of a novel MEMS platform for the biaxial stimulation of living cells, Biomedical Microdevices, vol.51, issue.3, pp.239-246, 2006.
DOI : 10.1007/s10544-006-8268-3

Y. Zhu, A. Corigliano, and H. D. Espinosa, microscopy testing: design and characterization, Journal of Micromechanics and Microengineering, vol.16, issue.2, pp.242-253, 2006.
DOI : 10.1088/0960-1317/16/2/008

S. Lu, Z. Guo, W. Ding, and R. S. Ruoff, Analysis of a microelectromechanical system testing stage for tensile loading of nanostructures, Review of Scientific Instruments, vol.77, issue.5, pp.56-103, 2006.
DOI : 10.1063/1.2198789

H. D. Espinosa, Y. Zhu, and N. Moldovan, Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization, Journal of Microelectromechanical Systems, vol.16, issue.5, pp.1219-1231, 2007.
DOI : 10.1109/JMEMS.2007.905739

G. F. Christopher, J. M. Yoo, N. Dagalakis, S. D. Hudson, and K. B. Migler, Development of a MEMS based dynamic rheometer, Lab on a Chip, vol.148, issue.20, pp.2749-2757, 2010.
DOI : 10.1039/c005065b

I. Kushkiev and M. A. Jupina, Modeling the thermo-mechanical behavior of a " V " -shaped composite buckle-beam thermal actuator, COMSOL Multiphysics User's Conference, 2005.

D. Girbau, A. Lázaro, and L. Pradell, RF MEMS switches based on the buckledbeam thermal actuator, 33rd European Microwave Conference, pp.651-654, 2003.

W. Zhang, M. Gnerlich, J. J. Paly, Y. Sun, G. Jing et al., A polymer V-shaped electrothermal actuator array for biological applications, Journal of Micromechanics and Microengineering, vol.18, issue.7, p.750208, 2008.
DOI : 10.1088/0960-1317/18/7/075020

M. Akbari, H. Niklaus, and . Shea, Arrays of EAP micro-actuators for singlecell stretching applications, Electroactive Polymer Actuators and Devices (EA- PAD), Y. Bar-Cohen, p.76420, 2010.

F. H. Crick and A. F. Hughes, The physical properties of cytoplasm, Experimental Cell Research, vol.1, issue.1, pp.37-80, 1950.
DOI : 10.1016/0014-4827(50)90048-6

C. Chiou, Y. Huang, M. Chiang, H. Lee, and G. Lee, New magnetic tweezers for investigation of the mechanical properties of single DNA molecules, Nanotechnology, vol.17, issue.5, pp.1217-1224, 2006.
DOI : 10.1088/0957-4484/17/5/009

J. Kanger, V. Subramaniam, and R. Van-driel, Intracellular manipulation of chromatin using magnetic nanoparticles, Chromosome Research, vol.66, issue.5, pp.511-522, 2008.
DOI : 10.1007/s10577-008-1239-1

M. K. Yapici, A. E. Ozmetin, J. Zou, and D. G. Naugle, Development and experimental characterization of micromachined electromagnetic probes for biological manipulation and stimulation applications, Sensors and Actuators A: Physical, vol.144, issue.1, pp.213-221, 2008.
DOI : 10.1016/j.sna.2007.12.029

Z. Zhang, K. Huang, and C. H. Menq, Design, Implementation, and Force Modeling of Quadrupole Magnetic Tweezers, IEEE/ASME Transactions on Mechatronics, vol.15, issue.5, pp.704-713, 2010.
DOI : 10.1109/TMECH.2009.2032179

A. H. De-vries, J. S. Kanger, B. E. Krenny, and R. Van-driel, Patterned Electroplating of Micrometer Scale Magnetic Structures on Glass Substrates, Journal of Microelectromechanical Systems, vol.13, issue.3, pp.391-395, 2004.
DOI : 10.1109/JMEMS.2004.828724

A. H. De-vries, B. E. Krenny, R. Van-driel, and J. S. Kanger, Micro Magnetic Tweezers for Nanomanipulation Inside Live Cells, Biophysical Journal, vol.88, issue.3, pp.2137-2144, 2005.
DOI : 10.1529/biophysj.104.052035

D. Simson, F. Ziemann, M. Strigl, and R. Merkel, Micropipet-Based Pico Force Transducer: In Depth Analysis and Experimental Verification, Biophysical Journal, vol.74, issue.4, pp.2080-2088, 1998.
DOI : 10.1016/S0006-3495(98)77915-9

F. J. Alenghat, B. Fabry, K. Y. Tsai, W. H. Goldmann, and D. E. Ingber, Analysis of Cell Mechanics in Single Vinculin-Deficient Cells Using a Magnetic Tweezer, Biochemical and Biophysical Research Communications, vol.277, issue.1, pp.93-99, 2000.
DOI : 10.1006/bbrc.2000.3636

J. Reed, M. Frank, J. Troke, J. Schmit, S. Han et al., High throughput cell nanomechanics with mechanical imaging interferometry, Nanotechnology, vol.19, issue.23, p.235101, 2008.
DOI : 10.1088/0957-4484/19/23/235101

R. C. Spero, L. Vicci, J. Cribb, D. Bober, V. Swaminathan et al., High throughput system for magnetic manipulation of cells, polymers, and biomaterials, Review of Scientific Instruments, vol.79, issue.8, pp.83-707, 2008.
DOI : 10.1063/1.2976156

A. H. De-vries, B. E. Krenn, R. Van-driel, V. Subramaniam, and J. S. Kanger, Direct Observation of Nanomechanical Properties of Chromatin in Living Cells, Nano Letters, vol.7, issue.5, pp.1424-1427, 2007.
DOI : 10.1021/nl070603+

N. J. Sniadecki, A. Anguelouch, M. T. Yang, C. M. Lamb, Z. Liu et al., Magnetic microposts as an approach to apply forces to living cells, Proceedings of the National Academy of Sciences, vol.104, issue.37, pp.14-553, 2007.
DOI : 10.1073/pnas.0611613104

N. J. Sniadecki, C. M. Lamb, Y. Liu, C. S. Chen, and D. H. Reich, Magnetic microposts for mechanical stimulation of biological cells: Fabrication, characterization, and analysis, Review of Scientific Instruments, vol.79, issue.4, pp.1-8, 2008.
DOI : 10.1063/1.2906228

H. Engelhardt and E. Sackmann, On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields, Biophysical Journal, vol.54, issue.3, pp.495-508, 1988.
DOI : 10.1016/S0006-3495(88)82982-5

P. K. Wong, W. Tan, and C. M. Ho, Cell relaxation after electrodeformation: effect of latrunculin A on cytoskeletal actin, Journal of Biomechanics, vol.38, issue.3, pp.529-535, 2005.
DOI : 10.1016/j.jbiomech.2004.04.008

K. A. Riske and R. Dimova, Electric Pulses Induce Cylindrical Deformations on Giant Vesicles in Salt Solutions, Biophysical Journal, vol.91, issue.5, pp.1778-1786, 2006.
DOI : 10.1529/biophysj.106.081620

R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr et al., Giant vesicles in electric fields, Soft Matter, vol.278, issue.7, pp.817-827, 2007.
DOI : 10.1039/b703580b

I. Guido, M. S. Jaeger, and C. Duschl, Dielectrophoretic stretching of cells allows for characterization of their mechanical properties, European Biophysics Journal, vol.94, issue.9, pp.281-288, 2011.
DOI : 10.1007/s00249-010-0646-3

V. L. Sukhorukov, H. Mussauer, and U. Zimmermann, The Effect of Electrical Deformation Forces on the Electropermeabilization of Erythrocyte Membranes in Low- and High-Conductivity Media, Journal of Membrane Biology, vol.163, issue.3, pp.235-245, 1998.
DOI : 10.1007/s002329900387

J. Korlach, C. Reichle, T. Müller, T. Schnelle, and W. Webb, Trapping, Deformation, and Rotation of Giant Unilamellar Vesicles in Octode Dielectrophoretic Field Cages, Biophysical Journal, vol.89, issue.1, pp.554-562, 2005.
DOI : 10.1529/biophysj.104.050401

H. Zou, S. Mellon, R. R. Syms, and K. E. Tanner, 2-dimensional MEMS dielectrophoresis device for osteoblast cell stimulation, Biomedical Microdevices, vol.10, issue.23, pp.353-359, 2006.
DOI : 10.1007/s10544-006-9818-4

L. A. Macqueen, M. M. Thibault, M. D. Buschmann, and M. R. Wertheimer, Electro-deformation of individual mammalian cells in suspension, 2010 10th IEEE International Conference on Solid Dielectrics, pp.1-4, 2010.
DOI : 10.1109/ICSD.2010.5568256

N. Bao, Y. Zhan, and C. Lu, Microfluidic Electroporative Flow Cytometry for Studying Single-Cell Biomechanics, Analytical Chemistry, vol.80, issue.20, pp.7714-7719, 2008.
DOI : 10.1021/ac801060t

A. Ashkin, Acceleration and Trapping of Particles by Radiation Pressure, Physical Review Letters, vol.24, issue.4, pp.156-159, 1970.
DOI : 10.1103/PhysRevLett.24.156

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, Demonstration of a fiber-optical light-force trap, Optics Letters, vol.18, issue.21, pp.1867-1869, 1993.
DOI : 10.1364/OL.18.001867

W. Singer, M. Frick, S. Bernet, and M. Ritsch-marte, Self-organized array of regularly spaced microbeads in a fiber-optical trap, Journal of the Optical Society of America B, vol.20, issue.7, pp.1568-1574, 2003.
DOI : 10.1364/JOSAB.20.001568

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert et al., Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications, Biomedical Microdevices, vol.1, issue.3, pp.703-710, 2007.
DOI : 10.1007/s10544-007-9079-x

C. W. Lai, S. K. Hsiung, C. L. Yeh, A. Chiou, and G. B. Lee, A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch, Sensors and Actuators B: Chemical, vol.135, issue.1, pp.388-397, 2008.
DOI : 10.1016/j.snb.2008.08.041

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind et al., Oral Cancer Diagnosis by Mechanical Phenotyping, Cancer Research, vol.69, issue.5, p.1728, 2009.
DOI : 10.1158/0008-5472.CAN-08-4073

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil et al., The regulatory role of cell mechanics for migration of differentiating myeloid cells, Proceedings of the National Academy of Sciences, vol.106, issue.37, p.15696, 2009.
DOI : 10.1073/pnas.0811261106

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, and C. C. Cunningham, The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells, Biophysical Journal, vol.81, issue.2, pp.767-784, 2001.
DOI : 10.1016/S0006-3495(01)75740-2

J. Guck, R. Ananthakrishnan, C. C. Cunningham, and J. Käs, Stretching biological cells with light, Journal of Physics: Condensed Matter, vol.14, issue.19, pp.4843-4856, 2002.
DOI : 10.1088/0953-8984/14/19/311

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind et al., Oral Cancer Diagnosis by Mechanical Phenotyping, Cancer Research, vol.69, issue.5, pp.1728-1732, 2009.
DOI : 10.1158/0008-5472.CAN-08-4073

K. S. Furukawa, T. Ushida, T. Nagase, H. Nakamigawa, T. Noguchi et al., Quantitative analysis of cell detachment by shear stress, Materials Science and Engineering: C, vol.17, issue.1-2, pp.55-58, 2001.
DOI : 10.1016/S0928-4931(01)00336-8

C. Dong and X. X. Lei, Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability, Journal of Biomechanics, vol.33, issue.1, pp.35-43, 2000.
DOI : 10.1016/S0021-9290(99)00174-8

J. W. Song, W. Gu, N. Futai, K. A. Warner, J. Nor et al., Computer-Controlled Microcirculatory Support System for Endothelial Cell Culture and Shearing, Analytical Chemistry, vol.77, issue.13, pp.3993-3999, 2005.
DOI : 10.1021/ac050131o

E. W. Young, A. R. Wheeler, and C. A. Simmons, Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels, Lab on a Chip, vol.126, issue.12, pp.1759-1766, 2007.
DOI : 10.1039/b712486d

E. Tkachenko, E. Gutierrez, M. H. Ginsberg, and A. Groisman, An easy to assemble microfluidic perfusion device with a magnetic clamp, Lab on a Chip, vol.38, issue.8, pp.1085-1095, 2009.
DOI : 10.1039/b812184b

H. Lu, L. Y. Koo, W. M. Wang, D. A. Lauffenburger, L. G. Griffith et al., Microfluidic Shear Devices for Quantitative Analysis of Cell Adhesion, Analytical Chemistry, vol.76, issue.18, pp.5257-5264, 2004.
DOI : 10.1021/ac049837t

J. K. Tsou, R. M. Gower, H. J. Ting, U. Y. Schaff, M. F. Insana et al., Spatial Regulation of Inflammation by Human Aortic Endothelial Cells in a Linear Gradient of Shear Stress, Microcirculation, vol.15, issue.4, pp.311-323, 2008.
DOI : 10.1080/10739680701724359

D. J. Quinn, I. Pivkin, S. Y. Wong, K. H. Chiam, M. Dao et al., Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems, Annals of Biomedical Engineering, vol.9, issue.3, pp.1041-1050, 2011.
DOI : 10.1007/s10439-010-0232-y

A. K. Harris, P. Wild, and D. Stopak, Silicone rubber substrata: a new wrinkle in the study of cell locomotion, Science, vol.208, issue.4440, pp.177-179, 1980.
DOI : 10.1126/science.6987736

S. Munevar, Y. Li-wang, and M. Dembo, Traction Force Microscopy of Migrating Normal and H-ras Transformed 3T3 Fibroblasts, Biophysical Journal, vol.80, issue.4, pp.1744-1757, 2001.
DOI : 10.1016/S0006-3495(01)76145-0

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur et al., Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates, Nature Cell Biology, vol.3, issue.5, pp.466-472, 2001.
DOI : 10.1038/35074532

C. G. Galbraith and M. P. Sheetz, A micromachined device provides a new bend on fibroblast traction forces, Proceedings of the National Academy of Sciences, p.9114, 1997.
DOI : 10.1073/pnas.94.17.9114

J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju et al., Cells lying on a bed of microneedles: An approach to isolate mechanical force, Proceedings of the National Academy of Sciences, pp.1484-1489, 2003.
DOI : 10.1073/pnas.0235407100

O. Du-roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier et al., Force mapping in epithelial cell migration, Proceedings of the National Academy of Sciences, vol.102, issue.7, pp.2390-2395, 2005.
DOI : 10.1073/pnas.0408482102

URL : https://hal.archives-ouvertes.fr/hal-00188271

S. Petronis, J. Gold, and B. Kasemo, Microfabricated force-sensitive elastic substrates for investigation of mechanical cell???substrate interactions, Journal of Micromechanics and Microengineering, vol.13, issue.6, pp.900-913, 2003.
DOI : 10.1088/0960-1317/13/6/313

Y. Zhao and X. Zhang, Cellular mechanics study in cardiac myocytes using PDMS pillars array, Sensors and Actuators A: Physical, vol.125, issue.2, pp.398-404, 2006.
DOI : 10.1016/j.sna.2005.08.032

J. Le-digabel, M. Ghibaudo, L. Trichet, A. Richert, and B. Ladoux, Microfabricated substrates as a tool to study cell mechanotransduction, Medical & Biological Engineering & Computing, vol.2, issue.10, pp.965-976, 2010.
DOI : 10.1007/s11517-010-0619-9

S. J. Han and N. J. Sniadecki, Cellular and Biomolecular Mechanics and Mechanobiology, ch. Nanotechnology Usages for cellular adhesion and traction forces, pp.177-198, 2011.

S. Yang and T. Saif, Reversible and repeatable linear local cell force response under large stretches, Experimental Cell Research, vol.305, issue.1, pp.42-50, 2005.
DOI : 10.1016/j.yexcr.2004.12.026

S. Yang and M. T. Saif, Force response and actin remodeling (agglomeration) in fibroblasts due to lateral indentation, Acta Biomaterialia, vol.3, issue.1, pp.77-87, 2006.
DOI : 10.1016/j.actbio.2006.07.005

A. Gopal, Z. Luo, J. Y. Lee, K. Kumar, B. Li et al., Nano-opto-mechanical characterization of neuron membrane mechanics under cellular growth and differentiation, Biomedical Microdevices, vol.11, issue.5, pp.611-622, 2008.
DOI : 10.1007/s10544-008-9172-9

D. B. Serrell, T. L. Oreskovic, A. J. Slifka, R. L. Mahajan, and D. S. Finch, A uniaxial bioMEMS device for quantitative force-displacement measurements, Biomedical Microdevices, vol.109, issue.Pt 17, pp.267-275, 2007.
DOI : 10.1007/s10544-006-9032-4

D. B. Serrell, J. Law, A. J. Slifka, R. L. Mahajan, and D. S. Finch, A uniaxial bioMEMS device for imaging single cell response during quantitative force-displacement measurements, Biomedical Microdevices, vol.109, issue.Pt 17, pp.883-889, 2008.
DOI : 10.1007/s10544-008-9202-7

J. Rajagopalan, A. Tofangchi, and S. M. , Drosophila Neurons Actively Regulate Axonal Tension In Vivo, Biophysical Journal, vol.99, issue.10, pp.3208-3215, 2010.
DOI : 10.1016/j.bpj.2010.09.029

S. Yang and M. T. Saif, Microfabricated Force Sensors and Their Applications in the Study of Cell Mechanical Response, Experimental Mechanics, vol.87, issue.2, pp.135-151, 2009.
DOI : 10.1007/s11340-007-9119-8

J. Rajagopalan, A. Tofangchi, and M. T. Saif, Linear High-Resolution BioMEMS Force Sensors With Large Measurement Range, Journal of Microelectromechanical Systems, vol.19, issue.6, pp.1380-1389, 2010.
DOI : 10.1109/JMEMS.2010.2076780

R. Fior, S. Maggiolino, M. Lazzarino, and O. Sbaizero, A new transparent Bio-MEMS for uni-axial single cell stretching, Microsystem Technologies, pp.1581-1587, 2011.
DOI : 10.1007/s00542-011-1325-8

J. Polesel-maris, L. Aeschimann, A. Meister, R. Ischer, E. Bernard et al., Piezoresistive cantilever array for life sciences applications, Journal of Physics: Conference Series, pp.955-959, 2007.
DOI : 10.1088/1742-6596/61/1/189

G. Lin, R. E. Palmer, K. S. Pister, K. P. Roos, S. M. Inc et al., Miniature heart cell force transducer system implemented in MEMS technology, IEEE Transactions on Biomedical Engineering, vol.48, issue.9, pp.996-1006, 2001.

Y. Sun, D. P. Potasek, D. J. Bell, S. N. Fry, and B. J. Nelson, Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration, Journal of Microelectromechanical Systems, vol.14, issue.1, pp.4-11, 2005.
DOI : 10.1109/JMEMS.2004.839028

Y. Sun, K. T. Wan, K. P. Roberts, J. C. Bischof, and B. J. Nelson, Mechanical property characterization of mouse zona pellucida, IEEE Transactions on Nanobioscience, vol.2, issue.4, pp.279-286, 2003.
DOI : 10.1109/TNB.2003.820273

E. T. Enikov and B. J. Nelson, Three-dimensional microfabrication for a multi-degree-of-freedom capacitive force sensor using fibre-chip coupling, Journal of Micromechanics and Microengineering, vol.10, issue.4, pp.492-497, 2000.
DOI : 10.1088/0960-1317/10/4/302

F. Beyeler, A. Neild, S. Oberti, D. J. Bell, Y. Sun et al., Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field, Journal of Microelectromechanical Systems, vol.16, issue.1, pp.7-15, 2007.
DOI : 10.1109/JMEMS.2006.885853

S. Muntwuler, B. E. Kratochwil, F. Beleyer, and B. J. Nelson, Monolithically Integrated Two-Axis Microtensile Tester for the Mechanical Characterization of Microscopic Samples, Journal of Microelectromechanical Systems, vol.19, issue.5, pp.1223-1233, 2010.
DOI : 10.1109/JMEMS.2010.2067443

Y. Mizutani, M. Tsuchiya, S. Hiratsuka, and K. Kawahara, Elasticity of Living Cells on a Microarray during the Early Stages of Adhesion Measured by Atomic Force Microscopy, Japanese Journal of Applied Physics, vol.47, issue.7, pp.6177-6180, 2008.
DOI : 10.1143/JJAP.47.6177

S. Hiratsuka, T. Mizutani, M. Tsuchiya, K. Kawahara, H. Tokumoto et al., The number distribution of complex shear modulus of single cells measured by atomic force microscopy, Ultramicroscopy, vol.109, issue.8, pp.937-941, 2009.
DOI : 10.1016/j.ultramic.2009.03.008

F. M. Sasoglu, A. J. Bohl, and B. E. Layton, Design and microfabrication of a high-aspect-ratio PDMS microbeam array for parallel nanonewton force measurement and protein printing, Journal of Micromechanics and Microengineering, vol.17, issue.3, pp.623-632, 2007.
DOI : 10.1088/0960-1317/17/3/027

F. M. Sasoglu, A. J. Bohl, K. B. Allen, and B. E. Layton, Parallel force measurement with a polymeric microbeam array using an optical microscope and micromanipulator, Computer Methods and Programs in Biomedicine, vol.93, issue.1, pp.1-8, 2008.
DOI : 10.1016/j.cmpb.2008.07.008

C. Moraes, Y. Sun, and C. A. Simmons, Cellular and biomolecular mechanics and mechanobiology, ser. Studies in mechanobiology, tissues engineering and biomaterials, Microfabricated devices for studying cellular biomechanics and mechanobiology, pp.145-175, 2011.

J. Voldman, ELECTRICAL FORCES FOR MICROSCALE CELL MANIPULATION, Annual Review of Biomedical Engineering, vol.8, issue.1, pp.425-454, 2006.
DOI : 10.1146/annurev.bioeng.8.061505.095739

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption, Optics Letters, vol.21, issue.14, pp.1090-1092, 1996.
DOI : 10.1364/OL.21.001090

H. Liang, K. T. Vu, P. Krishnan, D. Trang, T. C. Shin et al., Wavelength dependence of cell cloning efficiency after optical trapping, Biophysical Journal, vol.70, issue.3, pp.1529-1533, 1996.
DOI : 10.1016/S0006-3495(96)79716-3

K. C. Neuman, E. H. Chadd, K. Liou, G. F. Bergman, and S. M. Block, Characterization of Photodamage to Escherichia coli in Optical Traps, Biophysical Journal, vol.77, issue.5, pp.2856-2863, 1999.
DOI : 10.1016/S0006-3495(99)77117-1

E. J. Peterman, F. Gittes, and C. F. Schmidt, Laser-Induced Heating in Optical Traps, Biophysical Journal, vol.84, issue.2, pp.1308-1316, 2003.
DOI : 10.1016/S0006-3495(03)74946-7

G. Lin, K. S. Pister, and K. P. Roos, Surface micromachined polysilicon heart cell force transducer, Journal of Microelectromechanical Systems, vol.9, issue.1, pp.9-17, 2000.
DOI : 10.1109/84.825771

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.3173

Y. Zhao, C. C. Lim, D. B. Sawyer, R. Liao, and X. Zhang, Simultaneous orientation and cellular force measurements in adult cardiac myocytes using three-dimensional polymeric microstructures, Cell Motility and the Cytoskeleton, vol.87, issue.9, pp.718-725, 2007.
DOI : 10.1002/cm.20218

A. Kajzar, C. M. Cesa, N. Kirchgessner, B. Hoffmann, and R. Merkel, Toward Physiological Conditions for Cell Analyses: Forces of Heart Muscle Cells Suspended Between Elastic Micropillars, Biophysical Journal, vol.94, issue.5, pp.1854-1866, 2008.
DOI : 10.1529/biophysj.107.115766

M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura et al., Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy, European Biophysics Journal, vol.28, issue.4, pp.312-316, 1999.
DOI : 10.1007/s002490050213

M. Zhao, C. Srinivasan, D. J. Burgess, and B. D. Huey, Rate- and depth-dependent nanomechanical behavior of individual living Chinese hamster ovary cells probed by atomic force microscopy, Journal of Materials Research, vol.19, issue.08, pp.1906-1912, 2006.
DOI : 10.1529/biophysj.105.063826

Q. S. Li, G. Y. Lee, C. N. Ong, and C. T. Lim, AFM indentation study of breast cancer cells, Biochemical and Biophysical Research Communications, vol.374, issue.4, pp.609-613, 2008.
DOI : 10.1016/j.bbrc.2008.07.078

S. E. Cross, Y. Jin, J. Y. Rao, and J. K. Gimzewski, Nanomechanical analysis of cells from cancer patients, Nature Nanotechnology, vol.86, issue.12, pp.780-783, 2007.
DOI : 10.1038/nnano.2007.388

S. E. Cross, Y. Jin, Q. Lu, J. Y. Rao, and J. K. Gimzewski, Green tea extract selectively targets nanomechanics of live metastatic cancer cells, Nanotechnology, vol.22, issue.21, p.2151019, 2011.
DOI : 10.1088/0957-4484/22/21/215101

J. L. Maciaszek and G. Lykotrafitis, Sickle cell trait human erythrocytes are significantly stiffer than normal, Journal of Biomechanics, vol.44, issue.4, pp.657-661, 2011.
DOI : 10.1016/j.jbiomech.2010.11.008

J. L. Maciaszek, B. Andemariam, and G. Lykotrafitis, Microelasticity of red blood cells in sickle cell disease, The Journal of Strain Analysis for Engineering Design, vol.46, issue.5, pp.368-379, 2011.
DOI : 10.1177/0309324711398809

P. Carl and H. Schillers, Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing, Pfl??gers Archiv - European Journal of Physiology, vol.2, issue.Suppl 1, pp.551-559, 2008.
DOI : 10.1007/s00424-008-0524-3

M. M. Brandão, A. Fontes, M. L. Barjas-castro, L. C. Barbosa, F. F. Costa et al., Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease, European Journal of Haematology, vol.63, issue.4, pp.207-211, 2003.
DOI : 10.1182/blood.V99.5.1564

C. Rotsch and M. Radmacher, Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study, Biophysical Journal, vol.78, issue.1, pp.520-535, 2000.
DOI : 10.1016/S0006-3495(00)76614-8

M. Lekka and P. Laidler, Applicability of AFM in cancer detection, Nature Nanotechnology, vol.92, issue.2, p.72, 2009.
DOI : 10.1038/nnano.2009.004

J. M. Mauritz, T. Tiffert, R. Seear, F. Lautenschläger, A. Esposito et al., Detection of Plasmodium falciparum-infected red blood cells by optical stretching, Journal of Biomedical Optics, vol.15, issue.3, p.305173, 2010.
DOI : 10.1117/1.3458919

B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober et al., Attogram detection using nanoelectromechanical oscillators, Journal of Applied Physics, vol.95, issue.7, p.3694, 2004.
DOI : 10.1063/1.1650542

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, Zeptogram-Scale Nanomechanical Mass Sensing, Nano Letters, vol.6, issue.4, pp.583-586, 2006.
DOI : 10.1021/nl052134m

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.423.3616

A. Pillarisetti, W. Anjum, J. P. Desai, G. Friedman, and A. D. Brooks, Force Feedback Interface for Cell Injection, First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp.391-400, 2005.
DOI : 10.1109/WHC.2005.57

L. N. Virgin, Vibration of axially loaded structures, 2007.
DOI : 10.1017/CBO9780511619236

H. P. Lee, Effects of initial shapes on the natural frequencies of a beam with initial curvature and axial constraints, Mechanics Research Communications, vol.21, issue.6, pp.593-598, 1994.
DOI : 10.1016/0093-6413(94)90022-1

S. Emam, A theoretical and experimental study of nonlinear dynamics of buckled beams, 2002.

G. , V. Rao, and K. K. Raju, Large amplitude free vibrations of beams -an energy approach, Zeitschrift für Angewandte Mathematik und Mechanik, pp.493-498, 2003.

H. Nouira, E. Foltête, L. Hirsinger, and S. Ballandras, Investigation of the effects of air on the dynamic behavior of a small cantilever beam, Journal of Sound and Vibration, vol.305, issue.1-2, pp.243-260, 2007.
DOI : 10.1016/j.jsv.2007.04.013

F. J. Elmer and M. Dreier, Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium, Journal of Applied Physics, vol.81, issue.12, pp.7709-7714, 1997.
DOI : 10.1063/1.365379

S. Kirstein, M. Mertesdorf, and M. Schönhoff, The influence of a viscous fluid on the vibration dynamics of scanning near-field optical microscopy fiber probes and atomic force microscopy cantilevers, Journal of Applied Physics, vol.84, issue.4, pp.1782-1790, 1998.
DOI : 10.1063/1.368335

J. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope, Journal of Applied Physics, vol.84, issue.1, p.64, 1998.
DOI : 10.1063/1.368002

V. De-salvo, G. Muscolino, and A. Palmeri, A substructure approach tailored to the dynamic analysis of multi-span continuous beams under moving loads, Journal of Sound and Vibration, vol.329, issue.15, pp.3101-3120, 2010.
DOI : 10.1016/j.jsv.2010.02.016

A. Rollier, Technologies microsystèmes avancées pour le fonctionnement de dispositifs en milieu liquide et les applications nanométriques, 2006.

C. Riesch, E. K. Reichel, A. Jachimowicz, J. Schalko, P. Hudek et al., A suspended plate viscosity sensor featuring in-plane vibration and piezoresistive readout, Journal of Micromechanics and Microengineering, vol.19, issue.7, p.75010, 2009.
DOI : 10.1088/0960-1317/19/7/075010

A. Maali, C. Hurth, R. Boisgard, C. Jai, T. Cohen-bouhacina et al., Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids, Journal of Applied Physics, vol.97, issue.7, p.74907, 2005.
DOI : 10.1063/1.1873060

Y. H. Park and K. C. Park, High-Fidelity Modeling of MEMS Resonators???Part II: Coupled Beam-Substrate Dynamics and Validation, Journal of Microelectromechanical Systems, vol.13, issue.2, pp.248-257, 2004.
DOI : 10.1109/JMEMS.2004.825298

J. Vignola, J. Judge, J. Jarzynski, M. Zalalutdinov, B. Houston et al., Effect of viscous loss on mechanical resonators designed for mass detection, Applied Physics Letters, vol.88, issue.4, p.41921, 2006.
DOI : 10.1063/1.2165186

J. Judge, D. Photiadis, J. Vignola, B. Houston, and J. Jarzynski, Attachment loss of micromechanical and nanomechanical resonators in the limits of thick and thin support structures, Journal of Applied Physics, vol.101, issue.1, p.13521, 2007.
DOI : 10.1063/1.2401271

J. Seo and O. Brand, High q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment, Journal of Microelectromechanical Systems, vol.17, issue.2, pp.483-493, 2008.

A. Herrera-may, L. Aguilera-cortés, P. García-ramírez, and E. Manjarrez, Resonant Magnetic Field Sensors Based On MEMS Technology, Sensors, vol.9, issue.10, pp.7785-7813, 2009.
DOI : 10.3390/s91007785

H. Tilmans, M. Elwenspoek, and J. Fluitman, Micro resonant force gauges, Sensors and Actuators A: Physical, vol.30, issue.1-2, pp.35-53, 1992.
DOI : 10.1016/0924-4247(92)80194-8

URL : http://purl.utwente.nl/publications/15238

C. Van?curavan?cura, I. Dufour, S. M. Heinrich, F. Josse, and A. Hierlemann, Analysis of resonating microcantilevers operating in a viscous liquid environment, Sensors and Actuators A: Physical, vol.141, issue.1, pp.43-51, 2008.
DOI : 10.1016/j.sna.2007.07.010

D. S. Randall, M. J. Rudkin, A. Cheshmehdoost, and B. E. Jones, A pressure transducer using a metallic triple-beam tuning fork, Sensors and Actuators A: Physical, vol.60, issue.1-3, pp.160-162, 1997.
DOI : 10.1016/S0924-4247(97)01513-6

. White, Design and fabrication of thick-film PZT-metallic triple beam resonators, Sensors and Actuators A: Physical, vol.115, issue.2-3, pp.401-407, 2004.

A. Torrents, K. Azgin, S. W. Godfrey, E. S. Topalli, T. Akin et al., MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design, Journal of Micromechanics and Microengineering, vol.20, issue.12, p.125004, 2010.
DOI : 10.1088/0960-1317/20/12/125004

C. Barthod, Y. Teisseyre, C. Gehin, and G. Gautier, Resonant force sensor using a PLL electronic, Sensors and Actuators A: Physical, vol.104, issue.2, pp.143-150, 2003.
DOI : 10.1016/S0924-4247(03)00005-0

URL : https://hal.archives-ouvertes.fr/hal-00258212

K. Fukuzawa, T. Ando, M. Shibamoto, Y. Mitsuya, and H. Zhang, Monolithically fabricated double-ended tuning-fork-based force sensor, Journal of Applied Physics, vol.99, issue.9, p.94901, 2006.
DOI : 10.1063/1.2194123

T. Hayashi, Y. Katase, K. Ueda, T. Hoshino, H. Suzawa et al., Evaluation of tuning fork type force transducer for use as a transfer standard, Measurement, vol.41, issue.9, pp.941-949, 2008.
DOI : 10.1016/j.measurement.2008.01.002

T. Hoshino, T. Konno, K. Ishihara, and K. Morishima, A nano-needle interface self-assembled by using cell migration for recording intracellular activity: Nano-needle durability, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp.506-510, 2008.
DOI : 10.1109/BIOROB.2008.4762904

W. Ryu, Z. Huang, J. S. Park, J. Moseley, A. R. Grossman et al., Open micro-fluidic system for atomic force microscopy-guided in situ electrochemical probing of a single cell, Lab on a Chip, vol.411, issue.9, pp.1460-1467, 2008.
DOI : 10.1039/b803450h

W. Ryu, S. Bai, J. S. Park, Z. Huang, J. Moseley et al., Direct Extraction of Photosynthetic Electrons from Single Algal Cells by Nanoprobing System, Nano Letters, vol.10, issue.4, pp.1137-1143, 2010.
DOI : 10.1021/nl903141j

S. Bai, W. Ryu, R. J. Fasching, A. R. Grossman, and F. B. Prinz, In vivo O2 measurement inside single photosynthetic cells, Biotechnology Letters, vol.4, issue.8, pp.1675-1681, 2011.
DOI : 10.1007/s10529-011-0604-x

T. P. Burg and S. R. Manalis, Suspended microchannel resonators for biomolecular detection, Applied Physics Letters, vol.83, issue.13, pp.2698-2700, 2003.
DOI : 10.1063/1.1611625

V. Agache, G. Blanco-gomez, F. Baleras, and P. Caillat, An embedded microchannel in a MEMS plate resonator for ultrasensitive mass sensing in liquid, Lab on a Chip, vol.4, issue.15, 2011.
DOI : 10.1039/c1lc20011a

J. Lee, R. Chunara, W. Shen, K. Payer, K. Babcock et al., Suspended microchannel resonators with piezoresistive sensors, Lab Chip, vol.92, issue.4, pp.645-651, 2011.
DOI : 10.1039/C0LC00447B

C. H. Edwards, Ladders, moats and Lagrange multipliers, The Mathematica Journal, vol.4, issue.1, pp.48-52, 1994.

G. , V. Rao, and K. K. Raju, Large amplitude vibrations of spring hinged beams, AIAA Journal, vol.40, issue.9, pp.1912-1914, 2002.

H. Itoh, Y. Aoshima, and T. Egawa, Model for a Quartz-Crystal Tuning Fork Using Torsion Spring at the Joint of the Arm and the Base and Analysis of Its Frequency, Japanese Journal of Applied Physics, vol.41, issue.Part 1, No. 5B, pp.3422-3425, 2002.
DOI : 10.1143/JJAP.41.3422

Y. C. Hu, P. Z. Chang, and W. C. Chuang, An approximate analytical solution to the pull-in voltage of a micro bridge with an elastic boundary, Journal of Micromechanics and Microengineering, vol.17, issue.9, pp.1870-1876, 2007.
DOI : 10.1088/0960-1317/17/9/016

D. J. Morris, J. M. Yougsman, M. J. Anderson, and D. F. Bahr, A resonant frequency tunable, extensional mode piezoeletric vibration harvesting mechanism, Smart Materials and Structures, vol.17, p.650218, 2008.

N. Lobontiu, Dynamics of Microelectromechanical Systems, ser. Microsystems, pp.351-356, 2007.

L. Nicu and C. Bergaud, Modeling of a tuning fork biosensor based on the excitation of one particular resonance mode, Journal of Micromechanics and Microengineering, vol.14, issue.5, pp.727-736, 2004.
DOI : 10.1088/0960-1317/14/5/011

J. Seo and O. Brand, High Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment, Journal of Microelectromechanical Systems, vol.17, issue.2, pp.483-493, 2008.

J. Shieh, J. E. Huber, N. A. Fleck, and M. F. Ashby, The selection of sensors, Progress in Materials Science, vol.46, issue.3-4, pp.461-504, 2001.
DOI : 10.1016/S0079-6425(00)00011-6

D. J. Bell, T. J. Lu, N. A. Fleck, and S. M. Spearing, MEMS actuators and sensors: observations on their performance and selection for purpose, Journal of Micromechanics and Microengineering, vol.15, issue.7, pp.153-164, 2005.
DOI : 10.1088/0960-1317/15/7/022

M. D. Barrett, E. H. Peterson, and J. W. Grant, Extrinsic Fabry-Perot interferometer for measuring the stiffness of ciliary bundles on hair cells, IEEE Transactions on Biomedical Engineering, vol.46, issue.3, pp.331-339, 1999.
DOI : 10.1109/10.748986

H. C. Seat, E. Ouisse, E. Morteau, and V. Métivier, Vibration??displacement measurements based on a polarimetric extrinsic fibre Fabry??Perot interferometer, Measurement Science and Technology, vol.14, issue.6, pp.710-716, 2003.
DOI : 10.1088/0957-0233/14/6/302

URL : https://hal.archives-ouvertes.fr/in2p3-00023686

C. Lin and F. Tseng, A micro Fabry???Perot sensor for nano-lateral displacement sensing with enhanced sensitivity and pressure resistance, Sensors and Actuators A: Physical, vol.113, issue.1, pp.12-19, 2004.
DOI : 10.1016/j.sna.2004.01.015

C. Prelle, F. Lamarque, and P. , Reflective optical sensor for long-range and high-resolution displacements, Sensors and Actuators A: Physical, vol.127, issue.1, pp.139-146, 2006.
DOI : 10.1016/j.sna.2005.11.005

J. B. Faria, A theoretical analysis of the bifurcated fiber bundle displacement sensor, IEEE Transactions on Instrumentation and Measurement, vol.47, issue.3, pp.742-747, 1998.
DOI : 10.1109/19.744340

H. Z. Yang, S. W. Harun, and H. Ahmad, Displacement sensing with two asymmetrical inclined fibers, Microwave and Optical Technology Letters, pp.1271-1274, 2010.
DOI : 10.1002/mop.25173

H. Wang, Effects of fibre geometry on the modulation function of a reflective intensity modulation sensor, Journal of Modern Optics, vol.2070, issue.11, pp.2355-2366, 1996.
DOI : 10.1080/01468039408202250

P. B. Buchade and A. D. Shaligram, Simulation and experimental studies of inclined two fiber displacement sensor, Sensors and Actuators A: Physical, vol.128, issue.2, pp.312-316, 2006.
DOI : 10.1016/j.sna.2006.02.002

H. Golnabi and P. Azimi, Design and operation of a double-fiber displacement sensor, Optics Communications, vol.281, issue.4, pp.614-620, 2008.
DOI : 10.1016/j.optcom.2007.10.021

P. B. Buchade and A. D. Shaligram, Influence of fiber geometry on the performance of two-fiber displacement sensor, Sensors and Actuators A: Physical, vol.136, issue.1, pp.199-204, 2007.
DOI : 10.1016/j.sna.2006.11.020

G. Perrone and A. Vallan, A Low-Cost Optical Sensor for Noncontact Vibration Measurements, IEEE Transactions on Instrumentation and Measurement, vol.58, issue.5, pp.1650-1656, 2009.
DOI : 10.1109/TIM.2008.2009144

V. K. Kulkarni, A. S. Lalasangi, I. I. Pattanashetti, and U. S. Raikar, Fiber optic micro-displacement sensor using coupler, Journal of Optoelectronics and Advanced Materials, vol.8, issue.4, pp.1610-1612, 2006.

P. Polygerinos, L. D. Seneviratne, and K. Althoefer, Modeling of Light Intensity-Modulated Fiber-Optic Displacement Sensors, IEEE Transactions on Instrumentation and Measurement, vol.60, issue.4, pp.1408-1415, 2011.
DOI : 10.1109/TIM.2010.2085270

R. A. Barton, B. Ilic, S. S. Verbridge, B. R. Cypriany, J. M. Parpia et al., Fabrication of a Nanomechanical Mass Sensor Containing a Nanofluidic Channel, Nano Letters, vol.10, issue.6, pp.2058-2063, 2010.
DOI : 10.1021/nl100193g

C. Ayela and L. Nicu, Micromachined piezoeletric membranes with high nomila quality factors in a newtonian liquid media: a lamb's model validation at the microscale

S. M. Dickinson, The lateral vibration of slightly bent slender beams subject to prescribed axial end displacement, Journal of Sound and Vibration, vol.68, issue.4, pp.507-514, 1980.
DOI : 10.1016/0022-460X(80)90533-7

N. Yamaki and A. Mori, Non-linear vibrations of a clamped beam with initial deflection and initial axial displacement, Part I: Theory, Journal of Sound and Vibration, vol.71, issue.3, pp.333-346, 1980.
DOI : 10.1016/0022-460X(80)90417-4

I. Elishakoff, V. Birman, and J. Singer, Influence of initial imperfections on nonlinear free vibration of elastic bars, Acta Mechanica, vol.9, issue.No. 1, pp.191-202, 1985.
DOI : 10.1007/BF01175801

C. S. Kim and S. M. Dickinson, The flexural vibration of slightly curved slender beams subject to axial end displacement, Journal of Sound and Vibration, vol.104, issue.1, pp.170-175, 1986.
DOI : 10.1016/S0022-460X(86)80139-0

S. Bouwstra and B. Geijselaers, On the resonance frequencies of microbridges, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, pp.538-542, 1991.
DOI : 10.1109/SENSOR.1991.148932

F. Treyssède, Vibration analysis of horizontal self-weighted beams and cables with bending stiffness subjected to thermal loads, Journal of Sound and Vibration, vol.329, issue.9, pp.1536-1552, 2010.
DOI : 10.1016/j.jsv.2009.11.018

M. Boukallel, M. Girot, and S. Régnier, Characterization of cellular mechanical behavior at the microscale level by a hybrid force sensing device, Journal of the Mechanical Behavior of Biomedical Materials, vol.2, issue.3, pp.297-304, 2009.
DOI : 10.1016/j.jmbbm.2008.09.001

K. K. Liu, D. R. Williams, and B. J. Briscoe, The large deformation of a single micro-elastomeric sphere, Journal of Physics D: Applied Physics, vol.31, issue.3, pp.294-303, 1998.
DOI : 10.1088/0022-3727/31/3/008

N. Caille, O. Thoumine, Y. Tardy, and J. Meister, Contribution of the nucleus to the mechanical properties of endothelial cells, Journal of Biomechanics, vol.35, issue.2, pp.177-187, 2002.
DOI : 10.1016/S0021-9290(01)00201-9

V. Lulevich, T. Zink, H. Chen, F. Liu, and G. Liu, Cell Mechanics Using Atomic Force Microscopy-Based Single-Cell Compression, Langmuir, vol.22, issue.19, pp.8151-8155, 2006.
DOI : 10.1021/la060561p

Y. Murayama, C. E. Constantinou, and S. Omata, Development of Tactile Mapping system for the stiffness characterization of tissue slice using novel tactile sensing technology, Sensors and Actuators A: Physical, vol.120, issue.2, pp.543-549, 2005.
DOI : 10.1016/j.sna.2004.12.027

O. A. Lindahl, C. E. Constantinou, A. Eklund, Y. Murayama, P. Hallberg et al., Tactile resonance sensors in medicine, Journal of Medical Engineering & Technology, vol.2, issue.2, pp.263-273, 2009.
DOI : 10.1080/03091900802491188

V. Jalkanen, Hand-held resonance sensor for tissue stiffness measurements???a theoretical and experimental analysis, Measurement Science and Technology, vol.21, issue.5, p.55801, 2010.
DOI : 10.1088/0957-0233/21/5/055801

M. Radmacher, Measuring the elastic properties of biological samples with the AFM, IEEE Engineering in Medicine and Biology Magazine, vol.16, issue.2, pp.47-57, 1997.
DOI : 10.1109/51.582176

I. Sokolov and C. Nanotechnology, Atomic Force Microscopy in cancer cell research, pp.1-17, 2006.

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, Atomic force microscopy probing of cell elasticity, Micron, vol.38, issue.8, pp.824-833, 2007.
DOI : 10.1016/j.micron.2007.06.011

K. Liu, Deformation behaviour of soft particles: a review, Journal of Physics D: Applied Physics, vol.39, issue.11, p.189, 2006.
DOI : 10.1088/0022-3727/39/11/R01

A. B. Mathur, A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey, Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy, Journal of Biomechanics, vol.34, issue.12, pp.1545-1553, 2001.
DOI : 10.1016/S0021-9290(01)00149-X

Y. Murayama, C. E. Constantinou, and S. Omata, Micro-mechanical sensing platform for the characterization of the elastic properties of the ovum via uniaxial measurement, Journal of Biomechanics, vol.37, issue.1, pp.67-72, 2004.
DOI : 10.1016/S0021-9290(03)00242-2

J. B. Bureau, Conception, réalisation de micro-capteurs de forcè a base de jauges piézo-resistives pour la caractérisation mécanique dássemblageg cellulaires en milieu liquide, 2006.

S. P. Beeby and M. J. Tudor, Modelling and optimization of micromachined silicon resonators, Journal of Micromechanics and Microengineering, vol.5, issue.2, pp.103-105, 1995.
DOI : 10.1088/0960-1317/5/2/011

F. Shaker, Effect of axial load on mode shapes and frequencies of beam, NASA, 1975.

A. Bokaian, Natural frequencies of beams under compressive axial loads, Journal of Sound and Vibration, vol.126, issue.1, pp.49-65, 1988.
DOI : 10.1016/0022-460X(88)90397-5