Suivi de courbes libres fermées déformables par processus stochastique
Christophe Avenel

To cite this version:
THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l'Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale MATISSE

présentée par

Christophe Avenel

préparée à l’unité de recherche 6074 IRISA
Institut de Recherche en Informatique et Systèmes Aléatoires
Université Rennes 1

Suivi de courbes libres
fermées déformables
par processus stochastique

Thèse soutenue à Rennes
le 08/12/2011
devant le jury composé de :

Pierre DEL MORAL
INRIA / rapporteur
Nikos PARAGIOS
École Centrale de Paris / rapporteur
Philippe ARBOGAST
Météo-France / examinateur
François LE GLAND
INRIA / examinateur
Étienne MÉMIN
INRIA / directeur de thèse
Patrick PÉREZ
Technicolor Corp. Research / co-directeur de thèse
Le premier soir je me suis donc endormi sur le sable à mille milles de toutes les terres habitées. J’étais plus isolé qu’un naufragé sur un radeau au milieu de l’océan. Alors vous imaginez ma surprise, au lever du jour, quand une drôle de petite voix m’a réveillé. Elle disait :

- S’il vous plaît... dessine-moi un mouton !

J’ai sauté sur mes pieds comme si j’avais été frappé par la foudre. J’ai bien frotté mes yeux. J’ai bien regardé. Et j’ai vu un petit bonhomme tout à fait extraordinaire qui me considérait gravement. Je regardai donc cette apparition avec des yeux tout ronds d’étonnement. N’oubliez pas que je me trouvais à mille milles de toutes les régions habitées. Quand je réussis enfin à parler, je lui dis :

- Mais... qu’est-ce que tu fais là ? Et il me répêta alors, tout doucement, comme une chose très sérieuse :

- S’il vous plaît... dessine-moi un mouton. Et c’est ainsi que je fis la connaissance du petit prince.

Le Petit Prince, Antoine de Saint-Exupéry
Remerciements

Je remercie François Le Gland pour avoir présidé mon jury de thèse, ainsi que Pierre Del Moral et Nikos Paragios pour avoir accepté d’être rapporteurs de ma thèse. Je suis également reconnaissant envers Philippe Arbogast pour avoir accepté d’être examinateur de mon travail.

Je remercie tout particulièrement Étienne Mémin et Patrick Pérez pour leur encadrement complémentaire. Je salue leur qualités tant sur le plan scientifique qu’humain, qui m’ont permis de garder la motivation nécessaire tout au long de cette thèse.

Je souhaite également remercier l’ensemble des personnes rencontrées pendant ces (longues) années de thèse, aussi bien dans l’équipe Vista que Fluminance — certains parfois trop tardivement —. Un grand merci aux amis Rennais, aux Nantais qui m’ont accepté comme squatter à mi-temps, aux RECois qui m’ont fait progresser plus rapidement en apéros qu’en grimpe, à mes deux collocs successives, et à tous ceux qui m’ont entourés et supportés dans les bons moments comme dans les moins bons.

Enfin un merci tout particulier à Nadia pour avoir été présente tout au long de ma thèse et m’avoir attendu patiemment pendant quatre longues années.
Table des matières

Introduction générale 11

I Suivi de courbes 15

Introduction 17

1 Suivi de contour par processus de segmentation itérés 19
 1.1 Introduction ... 19
 1.2 Segmentation d’image dans la littérature 19
 1.2.1 Histogrammes d’intensité 19
 1.2.2 Contours actifs déformables 20
 1.2.3 Lignes de niveau 22
 1.3 Enchaînement de segmentations successives 27
 1.3.1 Segmentations successives 27
 1.3.2 Ajout d’un modèle dynamique 29
 1.3.3 Limites de la segmentation image par image dans le suivi de courbes 30
 1.4 Conclusion ... 30

2 Technique d’assimilation variationnelle 31
 2.1 Introduction ... 31
 2.2 Historique .. 31
 2.3 Assimilation variationnelle 32
 2.3.1 4D-Var à contrainte forte 32
 2.3.2 Le 4D-Var à contrainte faible 34
 2.4 Assimilation de courbes 35
 2.4.1 Modèle dynamique 35
 2.4.2 Condition initiale 35
 2.4.3 Équations de mesure 35
 2.5 Conclusion ... 36
Conclusion

II Filtrage stochastique appliqué au suivi à partir de séquences d’images

Introduction

3 Cadre du filtrage
 3.1 Introduction .. 45
 3.2 Modèles de Markov 45
 3.2.1 Espace d’état à temps discret 45
 3.2.2 Espace d’état continu-discret 47
 3.2.3 Motivation de l’utilisation du cas continu-discret 47
 3.2.4 Exemples .. 47
 3.3 Filtre de Kalman 48
 3.3.1 Système linéaire gaussien 48
 3.3.2 Extensions au filtre de Kalman 49
 3.4 Filtre particulier 50
 3.4.1 Méthode de Monte Carlo 50
 3.4.2 Acceptation rejet 50
 3.4.3 Échantillonnage pondéré 51
 3.4.4 Méthodes séquentielles de Monte Carlo 51
 3.5 Conclusion ... 52

4 Dynamique stochastique pour des courbes libres
 4.1 Introduction .. 55
 4.2 Rappels mathématiques 55
 4.2.1 Intégrale d’Itô 56
 4.2.2 Formule d’Itô-Wentzell 56
 4.2.3 Avantages de l’intégrale d’Itô 57
 4.3 Une dynamique stochastique pour les courbes libres 57
 4.3.1 Expression de l’incertitude 57
 4.3.2 Calcul de la différentielle 58
 4.3.3 Calcul de la vraisemblance 61
 4.4 Conclusion ... 63
TABLE DES MATIÈRES

5 Modèles de dérive 65
 5.1 Introduction ... 65
 5.2 Dérive de flot optique 65
 5.2.1 Estimation de flot optique 65
 5.2.2 Méthode utilisée 67
 5.3 Dérive trajectorielle 68
 5.4 Composante photométrique locale 70
 5.5 Conclusion ... 71

Conclusion 73

III Suivi de contours : validation expérimentale 75

Introduction 77

6 Validations 79
 6.1 Introduction ... 79
 6.2 Différents modèles de dérive 79
 6.2.1 Exemples de suivis avec dérive de flot optique 79
 6.2.2 Exemples de suivis avec dérive trajectorielle 80
 6.3 Dynamique stochastique à temps continu 82
 6.4 Visualisation et analyse de la variance 82
 6.5 Gestion d’occultations partielles et totales 85

7 Prédiction et apprentissage de paramètres 93
 7.1 Introduction ... 93
 7.2 Prédiction à court terme 93
 7.2.1 Utilisation de la dérive trajectorielle 93
 7.2.2 Quelques résultats de prédiction 94
 7.3 Apprentissage des paramètres 94
 7.4 Conclusion ... 97

Conclusion 99
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusion générale et perspectives</td>
<td>101</td>
</tr>
<tr>
<td>Annexes</td>
<td>105</td>
</tr>
<tr>
<td>A Résultats de la méthode variationnelle de suivi</td>
<td>105</td>
</tr>
<tr>
<td>B Détails du calcul de dérive de vitesse trajectorielle</td>
<td>109</td>
</tr>
</tbody>
</table>
Introduction générale

Contexte général

Avec l’expansion de la vidéo numérique, l’analyse d’image et de séquences d’images est appelée à jouer un rôle majeur dans la vie de tous les jours. Dans ce domaine, l’étude du mouvement et des déformations est cruciale aussi bien pour l’analyse et le traitement de vidéos que pour l’étude par imagerie de nombreux phénomènes physiques (déformation d’organes en imagerie médicale, mouvement de fluides en météorologie ou mécanique des fluides expérimentale, par exemple). L’analyse de tels mouvements dans des séquences d’images est un axe de recherche riche et difficile, et de nombreux problèmes restent ouverts à l’heure actuelle. En particulier, le suivi de structures déformables telles que les courbes libres sans a priori particulier sur les formes admissibles est un problème délicat qui est souvent résolu en considérant une succession de problèmes de détections ou de segmentations instantanées. Ce type d’approches ne permet un suivi effectif que dans les cas très simples où les luminances du fond et des objets sont facilement caractérisables dans le temps, c’est à dire non ambigües, stationnaires et nettement contrastées, et où l’entité suivie reste toujours visible au cours de la séquence (ie sans occultation). On entend ici par suivi effectif un suivi comprenant une cohérence temporelle robuste, permettant la gestion d’occlusions partielles voire totales, peu sensible au bruit et robuste sur de longues séquences. Des méthodes telles que celle de Bibby et Reid [16] permettent ce genre de suivi sur de très longues séquences, en obligeant toutefois à garder une forme globale de l’objet fixe.

Le but de notre travail est de permettre le suivi de régions quelconques dans de longues séquences d’images (certaines séquences d’images sur plusieurs années à raison d’une image par jour comportent plus de 1000 images). Ces séquences d’images représentent la plupart du temps des projections en deux dimensions de phénomènes complexes en trois dimensions. Ces phénomènes peuvent être régis par des dynamiques extrêmement complexes (par exemple dans les cas de séquences météorologiques). La projection sur un plan en deux dimensions de ces objets complexes encore la construction d’une dynamique de l’entité observée dans l’espace d’image à partir de lois physiques. En effet, l’interface que nous voulons suivre n’a en général pas de réalité physique simple dans l’espace image : elle peut en effet regrouper plusieurs couches différentes de l’objet à différentes hauteurs. Les images de la figure 1 nous montrent le genre de données rencontrées. Il est
donc quasi-impossible de construire une dynamique physique régissant le déplacement de notre contour.

De plus, les objets des séquences étudiées auront des contours extrêmement déformables. Cela est aussi en partie dû à la projection sur un plan de la structure de l'objet suivi. En effet, la projection d'une structure complexe pourra changer de topologie et de forme générale avec de très simples modifications de la forme de l'objet dans l'espace.

Deux exemples présentés dans ce manuscrit permettent de mesurer la complexité que pourrait représenter la construction d'une dynamique physique de l'interface à suivre, et montrent également la grande déformabilité des courbes.

- Tout d'abord, le suivi de masses nuageuses convectives est l'exemple typique de projection 2D de structures 3D complexes. La projection que l'on récupère sous forme d'image n'est pas physiquement cohérente.
- Le second exemple représentatif est celui des mouvements de la densité des glaces au pôle nord. En effet, ces mouvements proviennent de changements de température complexes et de paramètres que nous ne maîtrisons pas. Il est donc a priori extrêmement difficile d'envisager de construire une dynamique physique efficace qui dicterait ce mouvement sur plusieurs années. De plus, les informations fournies par cette séquence durant les mois d'été sont fausses en raison de l'épaisseur d'eau à la surface de la glace. Cela met en exergue la nécessité d'introduire un modèle d'incertitude sur le déplacement de l'interface d'intérêt.

Ces deux exemples nous amènent donc à définir le fondement de la méthode présentée dans ce manuscrit. Ce fondement repose sur deux principes fondamentaux que nous devrons appliquer :

- Construire une dynamique à partir des données et de l'histoire de la courbe.
- Introduire dans cette dynamique empirique des incertitudes.

Ces deux idées de base requièrent l'emploi de modèles probabilistes.
Contributions

Afin de traiter des séquences contenant des régions subissant de fortes déformations et potentiellement caractérisées par des changements topologiques, nous utilisons la technique dite des courbes de niveaux pour décrire nos courbes. Cette représentation a le grand avantage de formuler l'évolution de la courbe dans un cadre euclidien, ce qui évite la définition de stratégèmes de fusion et de division utilisés dans les représentations à base de splines lorsque la courbe est soumise à des changements topologiques.

De nombreuses approches de suivi de courbes de niveaux proposées jusqu'à aujourd'hui sont définies comme des enchaînements quasi-indépendants de segmentations d'image, en prenant comme contour de départ à chaque nouvelle image le contour estimé à l'image précédente. Bien qu'il y ait par ce biais une stratégie d'initialisation temporelle, on ne peut réellement considérer ces techniques comme des processus de suivi, puisqu'elles ne garantissent pas une quelconque cohérence temporelle des trajectoires des points de la courbe. Ces incohérences temporelles seront d'autant plus visibles que les ambiguïtés dues au bruit ou au changement d'intensité lumineuse seront observées.

Parallèlement à ces techniques, quelques méthodes probabilistes ont été proposées pour le suivi de courbe dans la littérature. Celles-ci sont souvent construites à partir de modèles dynamiques linéaires ad hoc et ne sont donc valables que pour le suivi d'objets subissant de petites déformations quasi-rigides.

Dans la solution que nous proposons, la loi d'évolution est définie comme une dynamique stochastique en temps continu. Le suivi est formulé comme un problème de filtrage stochastique dans lequel les données photométriques disponibles sont filtrées par ces lois d'évolution. Dans un cas général, le filtrage stochastique en grande dimension étant extrêmement difficile à mettre en œuvre efficacement au moyen de filtres à particules ou de filtres d'ensemble, il est crucial de s'appuyer sur une dynamique décrivant le phénomène aussi précis que possible, tout en circonscrivant l'espace des déformations aléatoires appliquées sur la courbe afin de permettre une exploration efficace de l'espace d'état de la courbe considérée. À cette fin, la dynamique de la courbe sur laquelle nous nous appuyons est formulée comme une équation de transport stochastique définie directement sur la fonction implicite de la surface. Elle comprend des incertitudes sur le déplacement le long de la normale à la courbe ainsi que le long de sa tangente. La vitesse de transport à chaque point de la courbe peut être déduite de plusieurs manières. La plus simple s'appuiera sur les mesures de mouvement estimées à partir de la séquence d'images. Une autre technique qui aura l'avantage d'être indépendante des mesures de mouvement produites par des estimateurs externes consistera à déduire cette vitesse des trajectoires passées. Pour ce faire, le champ de vitesse de transport sera calculé grâce à une fonction vectorielle implicite supplémentaire qui aura pour rôle de maintenir dans le temps les correspondances entre l'emplacement actuel des points de la courbe et leur posi-
tion d'origine. La dynamique décrivant l'évolution de cette fonction auxiliaire intègre également les incertitudes sur les déformations de la courbe. La dynamique de la courbe sera ensuite complétée par une information photométrique locale définie comme une force additionnelle permettant de guider plus efficacement la prédiction de cette courbe vers l'observation suivante.

Description du document

Ce document est organisé en trois parties, réparties selon le plan suivant :

Partie I : Suivi de courbes

La première partie présente les différentes méthodes de suivi de courbes fermées déformables existantes. Elle est séparée en trois chapitres. Le premier chapitre présente les techniques basées sur des segmentations successives avec initialisation de la courbe sur chaque image à partir de la courbe estimée sur l'image précédente. Les techniques de suivi à proprement parler sont présentées dans le deuxième chapitre. Enfin nous discuterons des défauts de ces techniques dans le troisième chapitre.

Partie II : Filtrage stochastique appliqué au suivi

La seconde partie est consacrée à la description du filtrage stochastique appliqué au suivi de courbes libres, fermées et déformables. Elle est composée de trois chapitres détaillant successivement :

- le cadre du filtrage.
- la dynamique stochastique proposée.
- différentes méthodes d'obtention de dérive pour la dynamique stochastique de courbe libre proposée.

Partie III : Suivi de contours : applications particulières

Nous consacrons la troisième et dernière partie à la présentation de quelques contributions dans les cadres météorologiques, océanographiques, etc. Nous y présentons également les intérêts connexes de notre méthode, tels que la prédiction ou l’apprentissage au cours du temps.

Enfin, une synthèse de ces travaux est présentée dans la conclusion générale.
Première partie

Suivi de courbes
Introduction

Cette première partie a pour but de présenter les différents travaux existants dans le domaine du suivi de courbe, en détaillant les principales techniques de la littérature. Elle nous permettra également de nous positionner par rapport à celle-ci. Cette partie est structurée ainsi :

- Le chapitre 1 présente un état de l’art de la détection de contour dans des images fixes, et la façon dont ces techniques ont pu être adaptées au suivi de courbes. Nous discuterons également de la validité de ces adaptations.

- Dans le chapitre 2, nous présenterons des techniques de suivi issues de la théorie du contrôle optimal. Ces techniques d’assimilation déterministe garantissent une cohérence temporelle et sont adaptées à des variables d’état définies dans des espaces de très grande dimension.
Chapitre 1

Suivi de contour par processus de segmentation itérés

1.1 Introduction

Les objets sont souvent définis en grande partie par leur silhouette ou par leurs frontières. Il est donc important de pouvoir extraire de façon automatique le contour d’un objet à partir d’une image. Ce contour nous permet de séparer le fond et l’intérieur de l’objet, ce qui définit une certaine forme de segmentation ou de classification en deux régions distinctes : fond et objet. De nombreux travaux ont été réalisés sur la segmentation d’images depuis de nombreuses années. Cette section présentera en premier lieu les principes généraux de ces travaux, puis décrira les adaptations faites pour passer d’un problème de segmentation spatiale à un instant donné à la résolution d’un problème de suivi de contours dans le temps. Nous présenterons enfin les limites de ces adaptations.

1.2 Segmentation d’image dans la littérature

Les algorithmes de segmentation peuvent grossièrement être séparés en deux catégories principales. D’une part, les techniques reposant sur les histogrammes de la fonction de luminance et, d’autre part, celles ayant recours aux modèles déformables (contours actifs). Nous nous intéresserons tout particulièrement à ces dernières après avoir présenté rapidement les premières. Nous présenterons ensuite les techniques de courbes de niveaux rencontrées couramment dans les contours actifs.

1.2.1 Histogrammes d’intensité

Méthode de seuillage

En raison de leur simplicité d’application, les méthodes reposant sur les histogrammes d’intensité sont les plus anciennes. En effet, seuiller une image en fonction d’un niveau de gris donné est rapide à mettre en œuvre. Ces techniques sont d’ailleurs toujours présentes dans de nombreux
domaines d’application lorsque les images sont suffisamment homogènes. La principale difficulté est alors de trouver le seuil adéquat [104]. Pour cela, on se base fréquemment sur les histogrammes d’intensité lumineuse. Un histogramme représentera l’intérieur de l’objet et un autre l’extérieur. Le seuil est alors choisi de manière à séparer de la meilleure façon les deux histogrammes. Cette méthode comporte de très nombreuses limitations sur l’image traitée. Il faut que cette image soit non bruitée, ou le moins possible, et que l’intensité lumineuse soit homogène ou quasi-constante. Un exemple typique comprendrait un objet clair sur fond sombre.

Modèle de mélange gaussien

Afin de ne pas être confronté à ces problèmes, de nombreuses méthodes [52, 69, 75, 110] ont recours aux modèles de mélange finis. Cela permet de gérer plus aisément les cas de distribution non uni-dimensionnelle. Pour cela, à chaque pixel de l’image est étiquetée une classe dépendante de sa position dans la distribution d’intensités de l’image. Cet étiquetage est souvent réalisé selon un modèle de mélange fini, et plus particulièrement selon un modèle de mélange de gaussiennes [52]. En effet, la plupart des densités non Gaussiennes peuvent être approchées par des mélanges de gaussiennes, ce qui est plus simple à formaliser. On estime ensuite généralement la classe d’un pixel en prenant en compte la vraisemblance maximum ou maximum a posteriori. Les algorithmes EM (Expectation maximization) sont alors appliqués.

Champs aléatoires de Markov

Pour avoir une segmentation plus robuste, certains auteurs [17, 54, 100] ont eu recours à des champs aléatoires markoviens. Cette méthode a l’avantage d’introduire une cohérence spatiale entre les pixels. C’est-à-dire que plusieurs pixels proches sont enclins à être de la même classe ou auront des propriétés similaires. On y ajoute donc une cohérence spatiale en modélisant les influences mutuelles entre les pixels voisins.

Ces méthodes améliorent substantiellement la tolérance au bruit par rapport aux méthodes de mélange gaussien. Elles sont en revanche généralement plus coûteuses car elles mettent en jeu dans le cas général des algorithmes d’optimisation globale.

1.2.2 Contours actifs déformables

Nous allons présenter ici les principes de différentes méthodes de segmentation d’image qui mettent en jeu des contours actifs déformables. Une première section s’intéressera aux formulations reposant directement sur le contour tandis que la seconde section détaillera les formulations reposant sur les régions des objets d’intérêts.
1.2. SEGMENTATION D’IMAGE DANS LA LITTÉRATURE

Modèle *Snake*

Il est commun, lorsqu’on s’intéresse à la segmentation d’images, de partir du principe que le contour est une zone de fort gradient. Il est donc naturel que les premières méthodes aient cherché à délimiter ce contour en ciblant les maxima locaux du gradient. Dans ce cas, on cherche à présenter le problème dans un cadre standard de minimisation d’énergie.

Les premières méthodes visant à utiliser ce cadre s’appuient sur les modèles dits *Snake*, introduits par Kass, Witkin et Terzopoulos dans [68]. Ces modèles permettent de représenter le contour de l’objet comme une suite de points reliés entre eux, auxquels on applique une fonction d’énergie de la forme :

\[
E^*_C = \int_0^1 E_C(v(q))
\]

Cette fonction d’énergie a deux composantes, l’une dite extérieure provenant des données image et permettant de coller au contour de l’objet, l’autre dite intérieure représentant l’énergie du *Snake* et garantissant un compromis entre rigidité et élasticité de la courbe. Ces approches sont souvent associées à une représentation paramétrique de la courbe libre de type splines.

Ce modèle n’est performant que dans les cas les plus simples. En effet il comporte de fortes limitations intrinsèques. On s’aperçoit tout d’abord que le recours à une simple méthode de descente de gradient amène à une extrême dépendance à l’initialisation, en raison de la non-convexité de \(E^*_C \). En effet, le minimum trouvé n’est que local et relativement proche de cette initialisation. De plus, les changements de topologie ne peuvent être traités sans passer par de complexes divisions et unions de *Snakes*.

Un autre problème rencontré sera celui du bruit de l’image. En effet, sans floutage préalable, on risque d’arriver à des minima ne représentant pas l’objet mais le fouillis environnant. L’ajout d’un floutage amène quant-à-lui une perte de précision dans le contour. Enfin, il est obligatoire de fixer à la main les paramètres d’élasticité et de rigidité en fonction du résultat souhaité.

Caselles, Kimmel et Spiro [24] ont proposés les contours actifs géodésiques dans le but de combler certaines des lacunes des méthodes de type splines. Un modèle géométrique est introduit afin de supprimer toute paramétrisation manuelle, en reformulant les équations de façon intrinsèque. C’est un cas particulier de la méthode *Snake* sans contrainte sur le contour lui-même, c’est-à-dire en prenant \(\beta = 0 \) dans la formule 1.1. De plus, le terme d’énergie extérieur \(y \) est remplacé par une fonction \(g \) strictement décroissante tendant vers \(0 \) à l’infini :

\[
E^*_C = \int_0^1 \left(\alpha |C'(q)|^2 + \lambda g(|\nabla I(C(q))|) \right) dq.
\]

Avec les principes de Maupertuis et Fermat, il a été montré dans [24] que minimiser cette énergie
revenait à minimiser l’énergie suivante :

\[E_C^r = \int_0^L (|C'(q)| g (|\nabla I(C(q))|)) \, dq. \] (1.3)

qui peut être reparamétré sur l’ensemble de la courbe comme :

\[E_C^r = \int_0^L (g (|\nabla I(C(s))|)) \, ds. \] (1.4)

Séparation de régions

Afin de dépasser les problèmes inhérents aux méthodes ne se basant que sur le contour de l’objet ont été introduites les méthodes de séparation des régions [28, 32, 78, 89, 101, 108, 111]. Pour cela, on cherche à partitionner notre image en fonction d’hypothèses d’homogénéité de certaines propriétés de l’image telles que la couleur, l’intensité, la texture, etc.

L’idée principale est de voir une courbe comme l’interface séparant deux régions distinctes. Ainsi, on peut prendre en compte des informations plus globales de l’image, et ne pas tomber dans des minima locaux nécessitant une bonne initialisation comme c’est le cas dans les méthodes de contours actifs vues précédemment.

Ivins et Porrii ainsi que Zhu et Yuille ont alors tenté de généraliser l’idée dans [60] et [111] respectivement, en ajoutant une information de couleur et de texture.

En s’inspirant de ces différents travaux, Paragios et Deriche ont ensuite introduit la notion de Région active géodésique pour de la segmentation de texture [88, 91] et d’image [89] puis de suivi [92, 90].

Les méthodes de régions actives géodésiques sont généralement mises en pratique dans un cadre de courbes de niveaux, nous les détaillerons donc dans la section 1.2.3 qui suit.

1.2.3 Lignes de niveau

La plupart des méthodes vues précédemment qui ne reposent pas sur des techniques de contours actifs sont fondées sur les ensembles de lignes de niveau. C’est donc ce que nous allons détailler dans cette section.
Figure 1.1 – Vue en coupe de la courbe et modélisation par lignes de niveau : exemple de changement de topologie sur la courbe

Définition

La méthode de Level-Set, introduite par [83], s’appuie sur une idée très simple : représenter une courbe comme étant une ligne de niveau d’une fonction d’ordre supérieur. Cette méthode apporte des facilités sur deux principaux points :

– Une souplesse vis à vis de l’initialisation dans la mesure où ces méthodes s’avèrent être moins dépendantes de la courbe initiale que les techniques de contours actifs.

– Les modifications de la topologie de la courbe tels que les fusions ou les séparations (voir figure 1.1) sont facilement représentables par des courbes de niveaux.

L’idée est ensuite de coupler la vitesse de déformation de ces courbes avec les données de l’image. L’évolution de la courbe est alors étudiée à partir uniquement des mesures géométriques telles que la normale ou la courbure.

Nous allons présenter quelques définitions introduisant les techniques de Level-Set. Ces définitions proviennent en grande partie du premier chapitre de [82]. Pour une surface φ au temps t :

1. La frontière $\Gamma(t)$ est définie par $\{x|\varphi(x, t) = 0\}$. La région $\Omega(t) = \{x|\varphi(x, t) < 0\}$ est entourée par $\Gamma(t)$ et son extérieur est défini par $\{x|\varphi(x, t) > 0\}$.

2. Le vecteur unitaire normal \mathbf{n} de $\Gamma(t)$ est donné par :

$$
\mathbf{n} = \frac{\nabla \varphi}{|\nabla \varphi|}.
$$
3. La courbure moyenne est donnée par :
\[\kappa = -\nabla \cdot \left(\frac{\nabla \varphi}{|\nabla \varphi|} \right). \]

4. La fonction de Heaviside \(H(x) \) associée à \(\varphi \) est :
\[H(x) = \mathbf{1}_{\varphi(x)<0} \quad \text{avec} \quad \mathbf{1}_{\text{cond}} = \begin{cases} 1 & \text{si cond est respectée} \\ 0 & \text{sinon} \end{cases}. \]

5. La dérivée directionnelle de la fonction de Heaviside le long de la normale est la fonction de Dirac \(\delta(x) = \delta(\varphi)|\nabla \varphi| \), avec \(\delta(x) \) une fonction delta uni-dimensionnelle.

6. L'intégrale de la surface en 3D (ou de la ligne en 2D) d'une quantité \(p(x,t) \) sur \(\Gamma \) est :
\[\int_{\Gamma} p(x,t) \delta(\varphi) dx |\nabla \varphi|. \]

7. L'intégrale du volume en 3D (ou de l'aire en 2D) d'une quantité \(p(x,t) \) sur \(\Omega \) est :
\[\int_{\Omega} p(x,t) H(-\varphi) dx. \]

Utilisation des Level-Set pour la segmentation

La technique de Level-Set en imagerie est intensivement utilisée pour des problèmes de segmentation d'images. Cette partie va décrire comment une telle segmentation est opérée.

Afin de mettre en place un processus de segmentation par Level-Set, l'évolution de la courbe \(\Gamma(t) \) est modélisée dans un temps algorithmique. Ce temps décrit les étapes algorithmiques d'une position initiale de la courbe à sa position finale sur une image fixe et n'a rien à voir avec la variable temporelle indexant la séquence d'images. La dérivée totale de la surface implicite sur la courbe \((\varphi(x) = 0) \) est donnée par :
\[\frac{d\varphi(\Gamma,t)}{dt} = \frac{\partial \varphi}{\partial t} + \nabla \varphi \cdot \frac{\partial \Gamma}{\partial t}. \]

Mumford et Shah : Le modèle de Mumford-Shah [78] est un exemple de processus de segmentation modélisé comme la minimisation d'une fonctionnelle. Son but est de segmenter une image en régions homogènes avec frontières lisses.

La forme générale de la fonction de Mumford-Shah est donnée par :
\[E(f,\Gamma) = \beta \int R |f-I|^2 \ dA + \alpha \int \int_{R \Gamma} |\nabla f|^2 \ dA + \gamma \oint_{\Gamma} ds, \]
avec \(I \) les données observées (images), \(f \) l'approximation par morceau de la courbe, avec des discontinuités seulement le long de \(\Gamma \), et \(R \) le domaine de l'image. Cette fonction de Mumford-Shah est non triviale, elle est donc peu rencontrée en pratique. En revanche, de nombreuses méthodes reposent sur une simplification du modèle de Mumford-Shah.

Chen et Vese : La méthode variationnelle de Chen et Vese [27] est une des simplifications du modèle de Mumford-Shah appliquée aux ensembles de niveaux. L'image est segmentée suivant un
1.2. SEGMENTATION D’IMAGE DANS LA LITTÉRATURE

Figure 1.2 – Illustration du modèle de Chan et Vese sur un exemple simple. Seule la courbe Γ dessinée dans (d) minimise la fonction J.

Ce modèle considérant les intensités moyennes du fond et de la forme d’un objet. La fonctionnelle à minimiser est donnée par :

$$J(m_0, m_f, \varphi) = J_{int} + J_{ext} + \int_\Gamma |\nabla \varphi(x)| dx,$$

avec $J_{int} = \int_\Omega [(m_0 - I(x))^2 \mathbf{1}_{\varphi(x)<0}] dx$ et $J_{ext} = \int_\Omega [(m_b - I(x))^2 \mathbf{1}_{\varphi(x)>0}] dx.$

Cette méthode permet de comparer un modèle donné d’image avec l’image à segmenter, tout en pénalisant la longueur du contour. Comme le montre la figure 1.2, J atteint son minimum lorsque la courbe est le long de la frontière entre le fond et la forme.

On obtient la solution du problème de Chan et Vese en résolvant les équations d’Euler-Lagrange associées à ce modèle. On atteint les moyennes désirées en procédant itérativement :

$$\frac{\partial \varphi}{\partial t} = \nabla \cdot \left(\frac{\nabla \varphi}{||\nabla \varphi||} \right) + (m_b - I(x))^2 - (m_0 - I(x))^2 \delta(\varphi).$$

On aura recours à cette méthode dans la partie 2 de ce manuscrit.

D’autres méthodes telles que celle introduite par Zhao, Chan, Merriman et Osher [65] ou celle de Chan et Vese [109] permettent d’étendre les principes vus précédemment à la segmentation de plusieurs zones.

Freedman et Zhang : Le modèle proposé par Freedman et Zhang [48] est proche de celui
de Chan et Vese mais prend en compte des densités de probabilité à l’intérieur et à l’extérieur de l’objet, au lieu de l’intensité. Les intensités sont comparées aux deux intensités de référence par une distance appropriée.

Segmentation de surfaces actives géodésiques

Une des techniques de suivi de courbe formulée dans le cadre des surfaces implicites, est celle introduite par [90], reposant sur les surfaces actives géodésiques [91]. Afin de faciliter l’approche, nous allons considérer uniquement le cas simple d’une segmentation de deux régions distinctes, avec les définitions et hypothèses suivantes :

- Soit I l’image prise en entrée, composée des deux classes (h_A, h_B).
- Soit $P(R) = \{R_A, R_B\}$ une partition du domaine d’images R dans deux régions non superposées.
- Soit δR_A la frontière de R_A.
- Supposons avoir des connaissances a priori sur la position du partitionnement via une fonction de densité de frontière conditionnelle $p(I(s)|B)$ qui mesure la probabilité qu’un pixel soit sur la frontière R_A.

Ensuite, pour trouver le partitionnement optimal, il suffit d’extraire exactement les frontières entre R_A et R_B en prenant le modèle de contour actif géodésique suivant :

$$E(\delta R_A) = \int_0^1 g \left(\frac{c(I(\delta R(c)))|B}{\text{attraction de frontière}} \delta R_A(p) \right) \delta \text{Régularité} dc$$

où g est une fonction décroissante, $\delta R_A(p) : [0, 1] \to \mathbb{R}^2$ est une paramétrisation des frontières de la région dans une forme planaire, et l’opérateur $\delta R_A(p)$ une dérivée partielle par rapport au temps.

Améliorations possibles

Un des gros problèmes que soulève le recours aux courbes de niveau est celui de la rapidité d’exécution. En effet, on manipule des surfaces sur l’ensemble de l’image ce qui peut être rapidement consommateur de temps et de ressource mémoire. Certaines améliorations ont été proposées pour contrer ce problème.

La plus répandue est de se restreindre à une bande étroite autour de la courbe dans laquelle sera mise à jour la fonction implicite [1]. Ainsi, les calculs ne sont pas effectués sur l’ensemble de l’image mais uniquement sur une petite partie contenant l’information utile. Cette bande doit être réactualisée régulièrement en fonction de l’emplacement de la courbe. Pour cela, il faut en réalité deux bandes C_{B1} et C_{B2} avec $C_{B1} \subset C_{B2}$ (figure 1.3). La fonction implicite est alors mise à jour dans la bande C_{B2}, et lorsque la courbe de niveau 0 touche la bande C_{B1}, les deux bandes
1.3. ENCHAÎNEMENT DE SEGMENTATIONS SUCCESSIVES

Figure 1.3 – Illustration de la méthode de Narrow Band : $C_{B1} \subset C_{B2}$. C évolue uniquement à l'intérieur de C_{B2}. Les bandes sont mises à jour lorsque C atteint une frontière de C_{B1}.

...mises à jour. Cette méthode – bien que restant plus coûteuse qu’une méthode de contour actif de type Snake – améliore grandement les performances, d’où son adoption massive dans les communautés incluant les courbes de niveau.

La méthode de "Fast Marching" introduite dans [103] est une autre amélioration plus efficace encore que de se limiter à des bandes étroites autour de la courbe. Elle est par contre plus contraignante sur les déformations acceptées. En effet, la vitesse doit être de signe constant le long de la normale à la courbe. Cette restriction rend caduque l’utilisation de cette approche dans le cadre de notre travail. La méthode "Fast Marching" correspond à la mise en œuvre de la méthode de Dijkstra pour les ensembles de niveau.

1.3 Techniques de suivi par enchaînement de segmentations successives

...approches ont été proposées jusqu’à aujourd’hui pour faire du suivi de courbes à partir de segmentations successives des images de la séquence. Nous allons ici détailler les principales idées de ces méthodes puis leurs limites.

1.3.1 Segmentations successives

L’idée de base de ces techniques consiste à segmenter un objet sur une image donnée, puis de prendre cette segmentation propagée correctement comme point de départ pour la segmentation de l’image suivante. Plusieurs approches sont possibles, certaines favorisant le maintien d’une forme prédéfinie, d’autres permettant de gérer les occultations, voire de garder une consistance temporelle. Chacune de ces méthodes a recours à une information de mouvement permettant de propager au
mieux la courbe entre deux images. C'est cette information de mouvement qui peut varier selon les méthodes. Nous exposons ici les principaux exemples de la littérature.

Méthodes sans cohérence temporelle

Nous commencerons par présenter quelques travaux qui ne permettent pas de garantir de réelle cohérence temporelle.

Afin de contrecarrer ce défaut, Mansouri induct dans [98] des hypothèses probabilistes sur la conservation de luminance dans la région d'intérêt. Cette technique ne nécessite pas de calcul de flot optique préalable. Elle ne permet cependant toujours pas de gérer d'occultations qu'elles soient partielles ou totales, puisque les lignes de niveau tendent à chaque instant vers le contour le plus proche de l'image.

On peut également citer Sundaramoorthi, Yeazzi et Mennucci qui ont introduit dans [107] l'ajout d'une métrique de Sobolev permettant d'éviter de tomber dans un minimum local lors de la descente de gradient de la minimisation d'énergie de contour actif et qui robustifie ces techniques.

Les problèmes d'occultations restent cependant interprétés comme des changements de forme de l'objet. Il est clair que de fortes ambiguïtés, un bruit important ou des occultations même partielles et de courtes durées ne peuvent être traitées par ces approches.

Cohérence de forme

Les techniques de cette classe de méthodes incorporent des *a priori* sur la forme des objets. Cet *a priori* permet de gérer efficacement les occultations partielles ou totales de courtes durées. En effet, le contour tend à rester dans une forme prédéfinie ou apprise.

Dans [76], Leventon, Grimson et Faugeras gardent une information sur la forme de l'objet d'intérêt apprise au cours d'une phase préalable d'apprentissage. Un ensemble de courbes décrivant l'objet est donné et permet de récupérer un modèle statistique de la forme souhaitée. La méthode a ensuite recours à une descente de gradient sur l'image pour maximiser l'estimation de la forme et de la position de l'objet. Le tout est toujours représenté par une technique de ligne de niveau.

Cremers et Schnorr ont pris quant'à eux dans [33] une représentation de type contours actifs, à laquelle ils ajoutent un *a priori* statistique sur la forme des bornes du mouvement. À nouveau, cela est fait par une phase préalable d'apprentissage. Du fait de sa représentation en courbe fermée paramétrique, cette méthode ne gère pas les changements de topologies, et son apprentissage de forme ne lui permet pas non plus la gestion des occultations.

\textbf{Cohérence temporelle}

Dans cette troisième sous-section, nous présenterons enfin les méthodes garantissant un minimum de cohérence temporelle dans le suivi de l'objet.

Tout d'abord, Bertalmío, Sapiro et Randall ont proposé une méthode [15] où ils réalisent un \textit{morphing} d'une image à l'autre par une équation aux dérivées partielles (EDP) en suivant parallèlement les déformations du contour de l'objet par une seconde EDP. Ils projectent ensuite les vitesses de la première équation vers la seconde. Ainsi, ils sont capables de gérer de courtes occultations.

Ensuite, Bartesaghi et Sapiro [12] ont introduit une des premières méthodes permettant une réelle cohérence temporelle. Cependant, cette cohérence temporelle n'est assurée que pendant les occultations. En effet, ils ajoutent une interpolation temporelle sur les images lorsque l'objet est absent. Malgré tout, l'utilisateur doit préciser un ensemble de points à l'intérieur de l'objet de façon manuelle. Ils peuvent ainsi gérer de fortes occultations.

Enfin, on peut citer Goldenberg, Kimmel et Rudski qui ont recours dans la deuxième approche de [51] à un lissage spatio-temporel. Ce lissage n'est réalisé que dans un deuxième temps, une fois le suivi par segmentations successives réalisé sur l'ensemble de la séquence.

\subsection{Ajust d'un modèle dynamique}

Pour améliorer les techniques vues dans la section précédente, certains auteurs ont proposé d'incorporer dans la technique de suivi un modèle dynamique de la vitesse des contours. Cela permet d'une meilleure consistance temporelle et améliore donc les gestions d'occlusions partielles ou totales que l'on peut rencontrer. Ces méthodes sont nettement plus rares dans la littérature, en voici quelques exemples.

Dès 1990, Peterfreund [95] formule ce suivi au moyen d'un filtre de Kalman (que nous présenterons dans la partie suivante du manuscrit) prenant en compte les gradients de l'image. Ces courbes sont représentées par des contours actifs et sont guidées par un flot optique. Cette méthode est particulièrement couteuse en temps de calcul, et les résultats sont très variables en fonction de la texture du fond. A nouveau, en raison de la représentation choisie, les changements topologiques ne sont pas pris en compte.

Niethammer et Tannenbaum [80] arrivent à coupler la propagation et la segmentation de leur courbe en minimisant une énergie simultanément sur la position et sur la vitesse de la courbe. Cette courbe est représentée par un contour dynamique géodésique et peut gérer des occultations partielles. Des extensions de cette méthode ont ensuite été proposées dans [97] et [38] reposant...
respectivement sur un filtre particulière et sur un filtre de Kalman inodore (présentés tous deux dans la prochaine partie du manuscrit).

Jackson, Yezi et Soatto [61] ajoutent quant à eux à la représentation sous forme d’ensemble de lignes de niveau un modèle dynamique sur la vitesse leur permettant de gérer de fortes occlusions. Leur méthode est fortement restrictive puisque la vitesse et l’accélération doivent être faibles pour être prises en compte dans le modèle.

1.3.3 Limites de la segmentation image par image dans le suivi de courbes

Certaines des méthodes présentées ici cherchent à gérer au mieux les occultations. Malheureusement la plupart ne peuvent être considérées comme un véritable processus de suivi, puisqu’elles ne garantissent pas de cohérence temporelle de la trajectoire des points de la courbe. Les quelques tentatives pour ajouter une dynamique ou une cohérence temporelle ne permettent de gérer que certains types d’occlusions généralement de faibles durées et partielles et font souvent une hypothèse implicite d’objet faiblement déformable lors de l’étape d’estimation associée.

Nous verrons dans le chapitre 6 un exemple de suivi à partir de segmentations successives — utilisant l’opérateur de segmentation introduit par Chan et Vese —. Cet exemple nous montrera la difficulté que l’on peut rencontrer avec ces méthodes pour limiter l’expansion de la courbe dans des cas de grandes similitudes entre les couleurs de l’objet d’intérêt et celles du fond.

1.4 Conclusion

Beaucoup d’approches proposées jusqu’à présent pour le suivi d’une courbe fermée sont définies comme des techniques de segmentations successives quasi-indépendantes sur chaque image de la séquence. Même si ces techniques comportent pour certaines une stratégie d’initialisation temporelle, elles ne peuvent réellement être considérées comme un processus de suivi, car elles ne garantissent pas de cohérence temporelle de la trajectoire des points de la courbe. Ces incohérences temporelles sont d’autant plus importantes que des ambiguïtés dues au bruit ou des variations d’illumination sont observées.
Chapitre 2

Suivi de contours par technique
d’assimilation variationnelle

2.1 Introduction

Ce chapitre va principalement présenter les travaux introduits dans [84] et reposant sur des techniques variationnelles d’assimilation de données. Ces techniques seront présentées dans la première section de ce chapitre.

La méthode proposée permet un suivi continu d’une séquence d’images. Cette approche est formalisée comme un problème de contrôle optimal formulé comme la minimisation d’une fonction de coût globale. Le processus de minimisation résultant s’appuie sur une formulation adjointe et consiste en une intégration directe d’une loi d’évolution, suivie d’une intégration rétrograde d’un modèle d’évolution adjoint. Les courbes fermées sont représentées par des surfaces implicites définies comme dans la partie précédente.

Il s’agit d’une technique déterministe qui repose sur l’hypothèse d’une incertitude gaussienne du système dynamique. C’est également une technique non itérative dans le sens où elle n’opère pas uniquement sur les données image du passé. Elle peut donc difficilement être utilisée dans un contexte de suivi temps réel.

2.2 Historique

D’après [72], l’assimilation variationnelle est "l’ensemble des méthodes permettant de combiner, de façon optimale, les différents types d’information auxquels on a accès : information mathématique sur les processus décrits par le modèle et information physique des observations."

Nous allons voir dans un premier temps l’historique des méthodes ayant débouché sur la mise en place de l’assimilation variationnelle.

Dès 1922, Richardson introduit l’idée d’interpoler les observations disponibles au temps 0, et d’associer un modèle de prévision [90]. En raison du manque de contraintes physiques, les résultats
sont peu performants et le modèle explosera très rapidement.

La méthode de Cressman [34], proposée dans les années 1950 et toujours d’actualité pour sa simplicité, permet de considérer une pondération entre une réalisation (une ébauche) du modèle dynamique associé au système d’intérêt à partir d’une condition initiale, et les observations. Ainsi, l’observation laisse la place à l’ébauche dans les domaines moins observés.

On trouve ensuite les méthodes 4DDA qui s’appuient principalement sur l’idée de relaxation Newtonienne. L’idée consiste à ajouter un terme proportionnel à la différence entre la variable calculée et la valeur observée de la variable d’état. Ce terme permet de maintenir le vecteur d’état proche des observations :

\[
\frac{dx}{dt} = M(x) \quad \text{devient donc} \quad \frac{dx}{dt} = M(X) - K(H(x) - y^o). \tag{2.1}
\]

Le modèle 4D-Var a remplacé l’ancien modèle depuis 2000 au sein du modèle de prévision de Météo-France, ceci grâce à l’augmentation des moyens de calculs et aux meilleurs résultats fournis comparativement au 3D-Var.

2.3 Assimilation variationnelle

Dans cette section, nous prendrons les notations suivantes : \(x \) est le vecteur d’état, \(x^f \) le vecteur d’état vrai, \(x^b \) le vecteur de l’ébauche et \(x^a \) le vecteur de l’état analysé. L’opérateur \(M_{k\rightarrow k+1} \) permet de passer d’un état \(x_k \) au temps \(k \) à un vecteur \(x_{k+1} \) au temps \(k+1 \) :

\[
\forall k, \quad x_{k+1} = M_{k\rightarrow k+1}(x_k). \tag{2.2}
\]

Le vecteur d’observations est noté \(y^o \), l’opérateur d’observation non linéaire \(H \) nous permet de passer de l’espace d’état à l’espace des observations : \(Hx = y \), et la matrice de covariance d’erreur des observations est notée \(R \).

2.3.1 4D-Var à contrainte forte

Nous allons considérer dans cette première section les modèles parfaits. Nous pouvons donc considérer un 4D-Var à contrainte forte comme introduit par Y. Sasaki [102]. Nous verrons ensuite, section 2.3.2, le cas plus général du 4D-Var à contrainte faible.
2.3. ASSIMILATION VARIATIONNELLE

Algorithm 2.1 – 4D-Var

Initialisation : \(x = x^0, \ n = 0 \)

Tant que \(\| \nabla J \| > \epsilon \) ou \(n < n_{\text{max}} \), **faire** :

- Calcul de \(J \) grâce au modèle direct \(M \)
 - et à l'opérateur d'observation \(H \).
- Calcul de \(\nabla J \) grâce au modèle tangent linéaire adjoint \(\partial M^T \)
 - et à l'adjoint \(H^T \) de l'opérateur d'observation.
- Descendre et mettre à jour de \(x \)
 - \(n = n + 1 \)

On peut décomposer la fonction de coût en deux termes : \(J(x) = J^b(x) + J^o(x) \) liés respectivement à l'ébauche et aux observations. Le terme d'ébauche est simple :

\[
J^b(x) = \frac{1}{2} (x - x^b)^T B^{-1} (x - x^b),
\]

(2.3)

Le calcul du terme \(J^o \) nécessite l'intégration du modèle d'évolution de \(t = 0 \) à \(t = N \).

L'algorithme d'assimilation identifie un état \(x^0 \) de la variable \(x \) à l'instant \(t = 0 \) (une condition initiale), qui, intégré par le modèle d'évolution, fournit une trajectoire d'analyse optimale au sens des moindres carrés sur l'ensemble de la fenêtre d'assimilation.

\[
J^o(x) = \frac{1}{2} \sum_{i=0}^{N} (y^o_i - H_i x_i)^T R_i^{-1} (y^o_i - H_i x_i),
\]

(2.4)

\[
J^o(x) = \frac{1}{2} \sum_{i=0}^{N} (y^o_i - H_i M_{0 \rightarrow i}(x_0))^T R_i^{-1} (y^o_i - H_i M_{0 \rightarrow i}(x_0)).
\]

(2.5)

Le gradient pris en compte pour la minimisation du coût est donc le suivant :

\[
\nabla J(x) = B^{-1} (x_0 - x^b) - \sum_{i=0}^{N} M_{0 \rightarrow i}^T H_i^T R_i^{-1} (y^o_i - G_i x_0).
\]

(2.6)

Il est possible d'évaluer directement le terme \(J^b \). En revanche, le \(J^o \) est plus complexe puisqu'il demande une intégration du modèle sur la fenêtre d'assimilation. Pour faire face à cette difficulté, une technique de minimisation reposant sur une variable adjointe est introduite.

On va donc avoir recours pour ce faire à une méthode de descente de gradient itérative permettant de minimiser la fonction de coût \(J \) à partir de la valeur de \(\nabla J \).

On prendra \(x^b \) comme première estimation, puis \(\nabla J \) sera estimé par une technique d'optimisation reposant sur l'introduction de l'opérateur tangent linéaire adjoint associé au modèle dynamique [73].
2.3.2 Le 4D-Var à contrainte faible

Le cadre précédent peut être étendu à un modèle dynamique non parfait, incorporant un terme d’erreur modèle. Un terme encodant les coûts de cette erreur modèle est alors rajouté dans la fonction de coût. En prenant comme erreur du modèle :

$$q_i = x_i - M_{i+1}(x_{i-1})$$ \hspace{1cm} \text{(2.7)}

la fonction coût J peut alors s’écrit

$$J(x, q_1, \cdots, q_N) = \frac{1}{2} (x - x^b)^T B^{-1} (x - x^b)$$

$$+ \frac{1}{2} \sum_{i=0}^{N} (y_i^o - G_i x)^T R^{-1} (y_i^o - G_i x)$$

$$+ \frac{1}{2} \sum_{i=0}^{N} q_i^T q_i^{-1} q_i$$ \hspace{1cm} \text{(2.8)}

Un cadre similaire d’optimisation permet de minimiser cette fonction de coût.
2.4 Assimilation de courbes

Cette section va nous permettre de voir l’application de l’assimilation variationnelle au suivi de courbe, telle que présentée dans [84]. Le problème étudié est celui du suivi de courbes fermées dans une séquence d’images. Les auteurs utilisent un flux optique tel que présenté section 5.2.1 en entrée du système. Les observations sous forme de différents types de mesures viennent compléter le système. Comme vu dans le chapitre précédent, la courbe est représentée sous forme d’ensemble de lignes de niveaux. Cela permet de gérer les changements de topologies plus simplement.

2.4.1 Modèle dynamique

Pour appliquer l’assimilation de données au suivi de courbe, il est nécessaire d’estimer l’état de la courbe représentée par sa surface implicite \(\Phi \), le tout sur l’intégralité de la séquence d’images considérée. À cette fin, une loi d’évolution dynamique \(a \ \text{priori} \) de cette surface est introduite : la courbe est supposée transportée par un champ dense entre chaque image. Dans le cas le plus simple, ce champ dense est supposé fourni par un estimateur extérieur comme détaillé section 5.2.1. Le cadre de l’assimilation variationnelle pris en compte ici est celui du 4D-Var détaillé section 2.3.2, avec la matrice de covariance fixée comme une matrice diagonale constante.

2.4.2 Condition initiale

La condition initiale est obtenue par une segmentation donnée de l’image de départ de la séquence. Une technique de seuillage simple peut être choisie pour trouver ce premier contour \(C \). On calcule ensuite la fonction implicite \(g \) comme étant la carte de distance signée à ce contour : cette surface \(g \) est prise comme condition initiale au problème de suivi. Cette surface est considérée comme vraie à une fonction de contrôle près :

\[
\Phi(x, t_0) = g(x, C) + \eta(x),
\]

(2.9)

2.4.3 Équations de mesure

Diverses méthodes sont possibles pour fixer l’équation de mesure liant la variable d’état aux observations. La première prend directement en entrée les contours de l’objet, avec une méthode de segmentation identique à celle choisie pour la condition initiale. La seconde méthode se base uniquement sur les images comme observations, avec un modèle identique à celui proposé par Chan et Vese [27]. Enfin, un dernier modèle couple l’approche de la seconde méthode avec les travaux de Freedman et Zhang [48].

Observations de contours bruitées

Dans ce premier modèle, les observations sont données directement sous forme de surface implicite représentant le contour. Ainsi, les observations et la variable d’état sont dans le même espace,
ce qui simplifie l'opérateur d'observation qui devient l'identité. De même que pour l'initialisation, les observations sont définies comme la distance signée à un contour donné par serillage. Elles sont généralement de mauvaise qualité en raison de la simplicité de la méthode de segmentation.

Les matrices de covariance d'observations sont définies diagonales, avec des valeurs faibles dans le voisinage de la courbe et fortes plus loin de ces observations. En l'absence d'observations, elles sont définies à l'infini.

Observations image

Dans le second modèle, les mesures liées à l'emplacement du contour sont directement données par les images. On prend un modèle d'image similaire à celui introduit par Chan et Vese [27], où l'image est séparée en deux régions d'intensité lumineuse constante. Ce modèle sera détaillé section 5.4.

Dans ce modèle, l'opérateur d'observation fabrique une image synthétique, et la covariance du bruit est déterminée par la covariance de l'intensité locale en chaque position spatio-temporelle. Les matrices de covariance sont à nouveau diagonales, et correspondent aux covariances photométriques locales empiriques minimales.

Ajout d'un modèle de densités de probabilité locales

Enfin, dans ce troisième modèle, on couple le modèle vu précédemment avec les travaux de Freedman et Zhang [48]. On calcule une densité de probabilité sur chaque pixel au voisinage de la courbe de niveau 0 de la fonction implicite représentant la courbe. On compare ensuite ces densités aux densités de références de l'intérieur et de l'extérieur de l'objet.

Des résultats de cette méthode de suivi sont présentés en annexe A.

2.5 Conclusion

Nous avons exposé dans ce chapitre la méthode de suivi de courbe le long d'une séquence d'image introduite par Papadakis et Ménin dans [84]. C'est une méthode à base d'assimilation variationnelle qui permet de construire des déformations continues de l'objet cible pendant l'intégralité de la séquence. Nous avons vu trois modèles différents possibles pour la mesure guidant le suivi, selon le type d'observation pris en compte (contours, images ou densités de probabilité locales).

L'intégralité de cette méthode repose sur des champs de vitesse estimés au préalable. Il est également possible de les assimiler au cours du temps afin de gérer au mieux les occultations partielles et totales.

Ces méthodes soulèvent un certain nombre de points négatifs vis à vis de notre objectif :

- Elles sont non récursives, et nécessitent donc l'ensemble de la séquence sur une fenêtre temporelle.
2.5. CONCLUSION

- La fenêtre d’assimilation est en général très courte.
- Les déformations en pratique ne sont pas très importantes autour de la courbe initiale transportée par le champ.
- L’hypothèse de gaussianité implique une dynamique linéaire ce qui n’est évidemment pas le cas.
- Elles ne proposent pas d’estimation des erreurs d’estimation.

Ces défauts des méthodes variationnelles pour le suivi de contours vont nous amener à proposer une nouvelle méthode de suivi décrite comme un problème de filtrage stochastique. La description de cette méthode fait l’objet du chapitre suivant.
CHAPITRE 2. TECHNIQUE D’ASSIMILATION VARIATIONNELLE
Conclusion

Nous avons exposé dans cette partie un état de l’art du suivi de courbes libres. Dans le chapitre 1, nous avons décrit les méthodes de suivi reposant sur des adaptation ad hoc de techniques de segmentation d’images. Tandis que dans le chapitre 2 nous avons présenté le cadre formellement plus satisfaisant des techniques de suivi formulées comme un problème d’assimilation variationnelle. Nous avons également montré les limites de ces méthodes.

Ces limitations nous conduisent à quitter un cadre purement déterministe et, dans la seconde partie de ce manuscrit, nous allons donc aborder le suivi de courbes dans un cadre de filtrage stochastique.

Dans la seconde partie de ce manuscrit, nous allons donc aborder le suivi de courbes dans un cadre de filtrage stochastique. Cette méthode aura l’avantage d’être beaucoup plus robuste au bruit ou aux occultations et permettra de considérer des objets subissant des déformations importantes tout en garantissant une cohérence temporelle des trajectoires. Contrairement aux méthodes vues dans ce dernier chapitre, ces techniques pourront être appliquées en ligne, sans avoir dès le départ l’intégralité de la séquence.
CHAPITRE 2. TECHNIQUE D’ASSIMILATION VARIATIONNELLE
Deuxième partie

Filtrage stochastique appliqué au suivi à partir de séquences d’images

Introduction

Cette seconde partie présente l’application du filtrage stochastique au problème du suivi de courbes libres, fermées et déformables.

– Nous introduisons le cadre du filtrage utilisé dans le chapitre 3. Nous y présenterons également d’autres méthodes de filtrage afin de justifier le choix du filtrage particulière dans notre méthode.

– Le chapitre 4 présentera la dynamique stochastique d’une représentation par courbes de niveau sur laquelle nous nous reposerons dans un tel contexte.

– Enfin le chapitre 5 exposera deux variations possibles de cette dynamique selon que l’on souhaite une dynamique stochastique à partir de flot optique, ou que l’on préfère utiliser une dérive de dynamique stochastique basée sur l’historique des trajectoires des courbes.
Chapitre 3

Cadre du filtrage

3.1 Introduction

Ce chapitre présente le cadre du filtrage stochastique dont nous nous servirons dans la suite du manuscrit. Pour cela, nous commençons par présenter les modèles de Markov cachés dans un espace d’état fini puis continu. Nous verrons ensuite les différents filtres existants pour résoudre ces modèles : Les filtres de Kalman et ses différentes extensions dans les cas linéaires gaussiens, puis dans un cas non linéaire plus général, le filtrage particulaire. Nous présenterons plus en détails ce dernier sur lequel nous nous appuierons dans le reste du manuscrit. En effet, il nous permet de nous placer dans un cadre non linéaire et non gaussien. Son application dans notre cadre sera décrite dans les parties suivantes. La plupart des algorithmes décrits proviennent de [8], [37] et de [22].

3.2 Modèles de Markov

Toutes les méthodes de filtrage sont basées sur des modèles de Markov. Ces modèles sont représentés par un processus d’état et un processus d’observation. On va s’intéresser dans un premier temps à des variables aléatoires et des processus discrets en temps, définis dans des espaces finis. Nous verrons ensuite le cas de variables définies pour un temps continu.

3.2.1 Espace d’état à temps discret

Dans le cas d’un espace d’état à temps discret, on considère un système dynamique composé de deux processus aléatoires à temps discret \(\{x_k\}_{k \in \mathbb{N}}, \ x_k \in \mathbb{R}^n \) et \(\{z_k\}_{k \in \mathbb{N}}, \ z_k \in \mathbb{R}^n \).

Le processus \(\{x_k\} \) est le processus d’état, inconnu et markovien de distribution initiale \(p(x_0) \) et de loi de transition \(p(x_k|x_{k-1}) \) (décrivant le modèle d’évolution de l’état).

Le processus \(\{z_k\} \) est le processus d’observation bruité, qui observe le processus \(\{x_k\} \) indirectement. Il sera décrit par la distribution \(p(z_k|x_k) \).

Ce système sera alors modélisé par une chaîne de Markov cachée (voir figure 3.1), décrite par
les distributions suivantes :

\[p(x_0) \] (3.1)

\[p(x_k | x_{0:k-1}, z_{1:k-1}) = p(x_k | x_{k-1}) \] (3.2)

\[p(z_k | x_{0:k}, z_{1:k-1}) = p(z_k | x_k) \] (3.3)

La résolution du problème de filtrage consiste alors à construire un algorithme itératif permettant d’estimer la distribution a posteriori de l’état à l’instant courant en fonction de l’ensemble des mesures passées et présentes \(p(x_k | z_{1:k}) \). Une résolution récursive de cette distribution, appelée distribution de filtrage, est donnée par le filtre bayésien optimal. Ce filtre se calcule en deux étapes :

- En supposant \(p(x_{k-1} | z_{1:k-1}) \) connue, la première étape permet de prédire la distribution :

\[p(x_k | z_{1:k-1}) = \int p(x_k | x_{k-1}) p(x_{k-1} | z_{1:k-1}) dx_{k-1} \] (3.4)

- Le filtre \(p(x_k | z_{1:k}) \) se déduit ensuite du filtre prédit \(p(x_k | z_{1:k-1}) \) selon la formule de correction :

\[p(x_k | z_{1:k}) = \frac{p(z_k | x_k) p(x_k | z_{1:k-1})}{\int p(z_k | x_k) p(x_k | z_{1:k-1}) dx_k} \] (3.5)

Maintenant que nous avons établi les équations du filtre optimal, nous allons voir comment le mettre en œuvre dans la pratique. Deux cas différents, selon que les équations 3.4 et 3.5 sont calculables explicitement ou non.

- Dans le cas linéaire/gaussed, ces équations admettent une solution explicite. On obtient alors le filtre de Kalman [66], détaillé plus loin.

- Dans le cas contraire, il est nécessaire de faire appel à des techniques d’approximation. La première idée a été de lineariser le système autour de l’estimée courante : voir le filtre de Kalman étendu. Enfin, les méthodes qui nous intéresseront tout particulièrement sont celles de Monte Carlo dites filtres particulaires, de par leur simplicité de mise en œuvre.
3.2. MODÈLES DE MARKOV

3.2.2 Espace d'état continu-discret

Un deuxième cas intéressant est celui d'un espace d'état continu-discret. C'est celui que l'on utilisera dans la suite du manuscrit. Il correspond au cas où l'état suit un processus d'évolution stochastique, tandis que les observations arrivent à des instants discrets. On peut donc écrire :

\[dx_t = f(t, x_t) dt + \sigma(t) dB_t \]

\[z_k = g(x_{t_k}, v_k), \]

avec \(B_t \) un mouvement Brownien standard.

Cette équation peut être vue comme une équation intégrale :

\[x_t = x_0 + \int_0^t f(s, x_s) ds + \int_0^t \sigma(s) dB_s, \]

avec la première intégrale définie au sens de Riemann et la deuxième au sens de Itô. La solution de cette équation différentielle stochastique est donc un processus de Itô, décrit plus précisément dans le chapitre suivant.

On retrouvera la même propriété d'évolution markovienn e de l'état que dans le cas discret. De même, le graphe de dépendance peut être vu comme une extension de la figure 3.1, avec une infinité d'états entre chaque observation.

3.2.3 Motivation de l'utilisation du cas continu-discret

Le cas présenté à l'instant n'est pas celui que l'on rencontre le plus dans la littérature. En effet, l'état et les observations ne sont pas synchronisés, le premier suivant un processus d'évolution stochastique tandis que les observations arrivent à temps discret. On le retrouve malgré cela dans de nombreux domaines tels que les sciences environnementales. Il permet en effet de modéliser des phénomènes continus observés à temps discret, et offre la possibilité d'avoir des observations espacées de pas de temps différents.

3.2.4 Exemples

Ces modèles de Markov sont appliqués pour la résolution de problèmes de filtrage dans de nombreux domaines. Dans le domaine de la vision par ordinateur, on les rencontre principalement dans le cadre de suivi d'objets dans des séquences d'images [10, 59, 94]. Mais on trouve également ces modèles dans d'autres domaines variés tels que la biologie, la physique, les mathématiques financières, etc.

Les biologistes furent dans les premiers à utiliser des représentations sous forme de modèle à espace d'état, dans la description des séquences d'ADN [55], des mouvements de cellules [58], des propagations de maladies infectieuses [6, 56] et bien d'autres.
Dans le domaine de la finance, ils peuvent par exemple représenter les modèles de volatilité stochastiques [23], ou servir à l’analyse de séries temporelles [43].

En analyse d’image, ces modèles sont le plus souvent mis en œuvre dans un contexte de suivi, dans les domaines aussi variés que la robotique, la reconstruction 3D, l’imagerie médicale ou la météorologie.

3.3 Filtre de Kalman

Le filtre de Kalman ainsi que ses extensions est décrit en détails dans [5], et sa dérivation en temps continu dans [81], nous ne présenterons ici que les idées principales.

3.3.1 Système linéaire gaussien

On considère un modèle linéaire et gaussien :

\[
x_{k+1} = F_k x_k + b_k + w_k \tag{3.9}
\]
\[
z_k = H_k x_k + d_k + v_k, \tag{3.10}
\]

avec les hypothèses suivantes :

- \(x_0 \) est gaussien, d’espérance \(\hat{x}_0 \) et de covariance \(\Sigma_0 \)
- \(F_k \) et \(H_k \) sont des matrices déterministes d’état et de mesure.
- les bruits d’état \(w_k \) et de mesure \(v_k \) sont des bruits blancs gaussiens de moyennes nulles et de covariances respectives \(Q_k \) et \(R_k \) connues.

Pour un modèle linéaire gaussien, la distribution de filtrage est gaussienne : \(p(x_k|z_{1:k−1}) = \mathcal{N}(\hat{x}_k, \Sigma_k) \) et \(p(x_k|z_{1:k}) = \mathcal{N}(\hat{x}_k, \Sigma_k) \) et ses deux premiers moments sont donnés par les équations récursives suivantes :

- initialisation : \(\hat{x}(0|0) = \hat{x}_0, \Sigma(0|0) = \Sigma_0 \)
- prédiction :

\[
\hat{x}_{k|k-1} = F_k \hat{x}_{k-1|k-1} + b_k
\]
\[
\Sigma_{k|k-1} = F_k \Sigma_{k-1|k-1} F_k^T + Q_k
\]

- correction :

\[
K_k = \Sigma_{k|k-1} H_k^T (H_k \Sigma_{k|k-1} H_k^T + R_k)^{-1}
\]
\[
\hat{x}_k = \hat{x}_{k|k-1} + K_k [z_k - (H_k \hat{x}_{k|k-1} + d_k)]
\]
\[
\Sigma_k = (I - K_k H_k) \Sigma_{k|k-1}
\]
3.3. FILTRE DE KALMAN

3.3.2 Extensions au filtre de Kalman

Filtre de Kalman étendu

Si le système n’est pas linéaire, en gardant les mêmes hypothèses sur les bruits, on peut utiliser le filtre de Kalman étendu [62] comme suit :

\[
\begin{align*}
x_k &= f_k(x_{k-1}) + w_k \\
z_k &= h_k(x_k) + v_k,
\end{align*}
\]

(3.11)

Ce système peut alors être approché par un modèle linéaire gaussien par linéarisation des équations d’état et de mesure. On peut par exemple développer l’équation au premier ordre, ce qui donne le système linéaire suivant :

\[
\begin{align*}
x_k &= F_k x_{k-1} + b_k + w_k, \\
z_k &= H_k x_k + d_k + v_k, \\
\end{align*}
\]

\[\text{avec } b_k = f_k(\hat{x}_{k-1|k-1}) + F_k \hat{x}_{k-1|k-1} \]

\[\text{avec } d_k = h_k(\hat{x}_{k|k-1}) + H_k \hat{x}_{k|k-1} \]

(3.12)

On peut ensuite appliquer le filtre de Kalman et en déduire les équations du filtre de Kalman étendu au premier ordre. On a donc une approximation de la loi de filtrage \(p(x_k|z_{1:k}) \) par une loi gaussienne.

Le principal inconvénient de ce filtre réside dans les erreurs de linéarisation qui peuvent amener une divergence de la méthode dans le cas de non linéarités trop prononcées.

Filtre de Kalman inodore

Afin d’éviter le problème soulevé dans le filtre de Kalman étendu, le filtre de Kalman inodore [64, 63] permet de décrire l’approximation gaussienne par un nuage de points pondérés, mis à jour récursivement en utilisant les modèles non linéaires. Ainsi, le calcul des deux premiers moments sera effectué sur ce nuage de points et ne nécessitera plus de linéarisation.

Filtre par mélange de lois gaussiennes

Lorsqu’on ne peut approcher la loi de filtrage par une loi normale, les algorithmes vus précédemment ne peuvent être appliqués. On peut alors considérer des approximations par mélange de lois.

Pour cela, le filtre par mélange de lois gaussiennes approche la loi de filtrage \(p(x_k|z_{1:k}) \) par un mélange de densités gaussiennes, auxquelles on applique un filtre de Kalman étendu pour calculer leurs moyennes et covariances.

Ce filtre ne résout malheureusement pas le problème puisqu’il y a une augmentation exponentielle de composants, ainsi qu’un manque de précision du filtre de Kalman étendu.

Filtre de Kalman d’ensemble

Enfin, le filtre de Kalman d’ensemble [45, 46] permet de traiter des distributions multimodales dans le cas non linéaire. De même que le filtre particulier décrit dans la section suivante, ce filtre
repousse sur une approximation de type Monte-Carlo à laquelle on applique sur chaque élément le filtre de Kalman. Ce filtre repose donc pour l’étape de correction du filtre de Kalman sur une hypothèse linéaire gaussienne. Il ne permet donc pas de résoudre entièrement le problème du filtrage non linéaire.

3.4 Filtrage particulier

Les algorithmes vus dans la partie précédente ne sont performants que sous certaines hypothèses contraignantes. Ils ne fonctionnent que sur des modèles spécifiques, avec des hypothèses fortes sur les densités mises en jeu qui sont rarement rencontrées en pratique.

Les filtres partiels ([7], [41], [42]) apportent une méthode plus générale pour résoudre ce problème. Leurs performances sont bien meilleures dans le cas général non linéaire et non gaussien. On pourra trouver une description plus détaillée de ces méthodes dans les cours [22] et [74]. La convergence de ces méthodes est décrite dans [35] et [39], et l’extension au cas continu dans [36] et [40].

3.4.1 Méthode de Monte Carlo

Le principe de base est d’approcher une distribution de probabilité \(p(x) \) dont on ne connaît pas l’expression exacte par un ensemble d’échantillons discrets obtenus par simulation. Soit \(x^{(i)}_{1..N} \) un ensemble de réalisations indépendantes et identiquement distribuées selon \(p(x) \). On peut approcher cette densité par la loi discrète :

\[
p_N(x) = \frac{1}{N} \sum_{i=1}^{N} \delta_{x^{(i)}}(x)
\]

(3.13)

avec \(\delta_{x^{(i)}}(x) \) représentant la mesure de Dirac prise en \(x^{(i)} \). On peut donc approcher des intégrales

\[
I(\phi(x)) = \mathbb{E}_{p(x)}[\phi(x)] \text{ par des sommes } I_N(\phi(x)):
\]

\[
I_N(\phi(x)) = \frac{1}{N} \sum_{i=1}^{N} \phi(x^{(i)})
\]

(3.14)

Toute quantité de la forme \(\mathbb{E}_{p(x)}[\phi(x)] \) peut donc être estimée à partir des échantillons \(\{x^{(i)}\}_{i=1}^{N} \).

En revanche, lorsque la loi objective \(p(x) \) n’est que partiellement connue et qu’il n’est pas possible d’en tirer des échantillons, il faut utiliser les algorithmes d’acceptation rejet ou d’échantillonnage pondéré décrits dans les parties suivantes.

3.4.2 Acceptation rejet

Dans le cas où la loi objective \(p(x) \) n’est pas échantillonnable, mais qu’il est possible de l’évaluer en tout point à une constante près, il est possible d’en obtenir un ensemble de réalisations par l’algorithme d’acceptation rejet. Pour cela, il faut pouvoir échantillonner selon une loi \(\pi(x) \) relativement proche de \(p(x) \) telle que \(p(x) \leq c \pi(x) \), avec \(c \) une constante telle que \(c < \infty \).
L'algorithme consiste à générer un échantillon $x^{(i)}$ de la loi $\pi(x)$ et à l'accepter avec la probabilité $\frac{p(x^{(i)})}{\pi(x^{(i)})}$.

Il y a deux problèmes principaux dans cet algorithme. D'une part, cette probabilité étant en $1/c$, la méthode est impraticable lorsque c est grand. D'autre part, il n'est pas toujours possible de trouver un majorant à $p(x^{(i)})/\pi(x^{(i)})$.

3.4.3 Échantillonnage pondéré

Pour ne plus être confronté au problème lié à la constante c, on suppose simplement que l'on sait tirer des échantillons selon une loi de probabilité d'importance $\pi(x)$ telle que $p(x) > 0 \Rightarrow \pi(x) > 0$. On peut alors écrire la relation suivante :

$$ I(\phi(x)) = \int \phi(x) p(x) \, dx = \int \phi(x) \frac{p(x)}{\pi(x)} \pi(x) \, dx. $$

Dans le cas où il est possible de tirer N échantillons de la loi $\pi(x)$, associés à leurs poids d'importance $\omega^{(i)}$ ($\omega^{(i)} = \frac{p(x^{(i)})}{\pi(x^{(i)})}$), un estimateur de $I(\phi(x))$ est donné par :

$$ I_N(\phi(x)) = \frac{1}{N} \sum_{i=1}^{N} \phi(x^{(i)}) \omega^{(i)}. $$

Lorsque la constante de normalisation de $p(x)$ n'est pas connue, les poids $\omega^{(i)}$ ne peuvent être évalués qu'à une constante près, il faut donc les normaliser :

$$ I_N(\phi(x)) = \sum_{i=1}^{N} \phi(x^{(i)}) \tilde{\omega}^{(i)}, $$

avec les poids d'importance normalisés $\tilde{\omega}^{(i)}$:

$$ \tilde{\omega}^{(i)} = \frac{\omega^{(i)}}{\sum_{j=1}^{N} \omega^{(j)}}. $$

3.4.4 Méthodes séquentielles de Monte Carlo

L'application de l'algorithme d'échantillonnage pondéré vu précédemment dans un cadre bayésien où la loi objectif est $p(x_{0:k}|z_{1:k})$ nous amène aux méthodes de Monte Carlo séquentielles que nous allons décrire dans cette partie.

Notre système est décrit par $p(x_0)$, $p(x_k|x_{k-1})$ et $p(z_k|x_k)$.

Considérons l'intégrale suivante :

$$ I(\phi(x_{0:k})) = \int \phi(x_{0:k})p(x_{0:k}|z_{1:k})dx_{0:k} $$

On peut en obtenir un estimateur grâce à l'application de l'algorithme d'échantillonnage pondéré vu ci-dessus :

$$ I_N(\phi(x_{0:k})) = \sum_{i=1}^{N} \phi(x_{0:k}^{(i)}) \tilde{\omega}^{(i)}_{k} $$
avec les poids d’importance normalisés \(\tilde{\omega}_k^{(i)} \):

\[
\tilde{\omega}_k^{(i)} = \frac{\omega_k^{(i)}}{\sum_{j=1}^{N} \omega_k^{(j)}} \quad \text{et} \quad \omega_k^{(i)} = p(x_{0:k}^{(i)} | z_{1:k}) p(x_{0:k-1}^{(i)}) \pi(x_{0:k}^{(i)} | x_{0:k-1}^{(i)}, z_{1:k}) \tag{3.21}
\]

et donc approcher la loi objectif \(p(x_{0:k} | z_{1:k}) \) par la somme pondérée :

\[
p_N(x_{0:k} | z_{1:k}) = \sum_{i=1}^{N} \tilde{\omega}_k^{(i)} \delta_{x_{0:k}^{(i)}}(x_{0:k}) \tag{3.22}
\]

Cela nous donne donc une procédure non séquentielle. Pour passer à une solution itérative, nous allons utiliser un algorithme d’échantillonnage pondéré séquentiel.

Tout d’abord, chaque particule \(x_{0:k-1}^{(i)} \) est augmentée d’un état \(x_{k}^{(i)} \) tiré selon la fonction d’importance \(\pi(x_{k}^{(i)} | x_{0:k-1}^{(i)}, z_{1:k}) \). Ensuite, en réécrivant (3.21) à l’aide des factorisations des loi \(p \) et \(\pi \), les nouveaux poids sont calculés et normalisés d’après :

\[
w_{k}^{(i)} \propto w_{k-1}^{(i)} \frac{p(z_{k}^{(i)} | x_{k}^{(i)}) p(x_{k}^{(i)} | x_{0:k-1}^{(i)})}{\pi(x_{0:k}^{(i)} | x_{0:k-1}^{(i)}, z_{1:k})} \tag{3.23}
\]

On note que le mage pondéré obtenu permet une estimation de la marginale de loi de filtrage \(p(x_{k} | z_{1:k}) \) ainsi que de toute quantité de la forme \(\mathbb{E}_{p(x_{k} | z_{1:k})}[\phi(x_{k})] \) pour toute fonction \(\phi \) intégrable par rapport à \(p(x_{k} | z_{1:k}) \). En effet :

\[
p(x_{k} | z_{1:k}) = \int \sum_{i=1}^{N} \tilde{\omega}_k^{(i)} \delta_{x_{0:k}^{(i)}}(x_{0:k}) dx_{0:k-1} = \sum_{i=1}^{N} \tilde{\omega}_k^{(i)} \delta_{x_{k}^{(i)}}(x_{k}) \tag{3.24}
\]

Pour finir, on procède après cette étape d’échantillonnage à une étape de rééchantillonnage lorsqu’elle est nécessaire. La décision de réaliser ou non cette étape de sélection se fait par le calcul de la taille efficace du N-échantillon, qui est une mesure de dégénérescence des particules. Cette étape de rééchantillonnage permet d’éviter l’augmentation au cours du temps de la variance des poids. Elle supprime les particules à faible poids et duplique celles à poids plus fort. Cette étape est décrite en détails dans [41].

Lorsque la distribution d’importance est égale à la loi de transition \(p(x_{k} | x_{k-1}) \) du système, la règle de mise à jour des poids (3.23) se simplifie : on récupère alors directement la vraisemblance des nouvelles données \(p(z_{k} | x_{k}^{(i)}) \) avant normalisation. Cette instance particulière du filtre particulier est nommé filtre Bootstrap dans la littérature. C’est ce filtre qui sera utilisé dans le reste du manuscrit.

3.5 Conclusion

Nous avons présenté dans ce chapitre les principales méthodes de filtrage existantes, du filtrage de Kalman standard au filtrage particulier. Nous avons plus particulièrement insisté sur ce dernier qui sera utilisé dans la suite du manuscrit pour réaliser le suivi de courbes. En effet, le filtrage
particulière permet de résoudre le problème de filtrage dans un cas général de modèles non linéaires et non gaussiens.

Nous allons maintenant pouvoir présenter la dynamique de courbe libre sur laquelle s'appuie ce filtrage. Cette dynamique reposera sur une modélisation des incertitudes de déformation et incorporera des données ou des estimés passés de la courbe.
Chapitre 4

Dynamique stochastique pour des courbes libres

4.1 Introduction

Ce chapitre introduit la nouvelle dynamique que nous proposons pour modéliser l’évolution stochastique de courbes libres. Nous la présenterons dans le cadre le plus général possible, en détaillant certains points dans le chapitre suivant. Nous regrouperons très brièvement dans une première section les notions mathématiques de calcul stochastique nécessaires à l’établissement de cette dynamique, qui sera elle-même détaillée dans une deuxième section.

4.2 Rappels mathématiques

Nous présentons dans cette section une brève introduction au calcul stochastique et aux problèmes qu’il peut soulever. Plus de détails pourront être trouvés dans [67], [49], [70], [81] ou [29]. Nous nous limiterons ici au principe de l’intégration stochastique dans le cadre d’Itô.

Pour comprendre l’intégration stochastique, reprenons la définition de l’intégrale de Riemann

\[\int_{a}^{b} f(t) \, dt \]

et partitionnons la en \(n \) intervalles entre \(a \) et \(b \) :

\[\int_{a}^{b} f(t) \, dt = \lim_{n \to \infty} \sum_{j=0}^{n-1} f(\tau_j)(t_{j+1} - t_j), \]

(4.1)

avec \(\tau_j \in [t_j, t_{j+1}] \) et \(a = t_0 < t_1 < ... < t_n = b \). On peut généraliser cette somme par l’intégrale de Riemann-Stieltjes :

\[\int_{a}^{b} f(t) \, dg(t) = \lim_{n \to \infty} \sum_{j=0}^{n-1} f(\tau_j)(g(t_{j+1}) - g(t_j)). \]

(4.2)

Pour une mesure \(g(t) \) suffisamment lisse, on converge alors vers une solution unique quel que soit \(\tau_j \) entre \(t_j \) et \(t_{j+1} \).

Il est évident qu’une trajectoire de mouvement Brownien ne sera jamais lisse, puisqu’elle est seulement \(\frac{1}{2} \)-höldérienne. Il n’est donc pas possible d’utiliser ce type de méthodes pour calculer
\[\int_0^t f(s)dB(s) \] avec \(dB(s) \) un mouvement Brownien. On introduit donc l’intégrale stochastique d’Itô.

Cette intégrale est définie pour \(\tau_j = t_j \). Une variante nommée intégrale de Stratonovitch, que nous ne développerons pas, repose sur un \(\tau_j \) centré entre \(t_j \) et \(t_{j+1} \).

4.2.1 Intégrale d’Itô

Afin de comprendre intuitivement le fonctionnement d’une intégrale d’Itô, il est possible de revenir à l’intégrale \(\int_0^t B(s)dB(s) \) et de l’approcher par la somme \(\sum_{j=0}^{n-1} B(t_j)(B(t_{j+1}) - B(t_j)) \).

Cette somme peut être développée en :

\[
\sum_{j=0}^{n-1} B(t_j)(B(t_{j+1}) - B(t_j)) = \frac{1}{2} B^2(t) - \frac{1}{2} \sum_{j=0}^{n-1} (B(t_{j+1}) - B(t_j))^2. \tag{4.3}
\]

La somme de carrés peut alors être calculée en utilisant la variation quadratique de mouvement Brownien, connue pour être égale à \(t \):

\[
\langle B, B \rangle_t \overset{\text{def}}{=} \lim_{n \to \infty} \sum_{j=0}^{n-1} (B(t_{j+1}) - B(t_j))^2 = t. \tag{4.4}
\]

L’intégrale se réécrit donc simplement :

\[
\int_0^t B(s)dB(s) = \frac{1}{2} B^2(t) - \frac{1}{2} t. \tag{4.5}
\]

Il est alors possible de généraliser cette intégrale à toute intégrale de la forme \(\int_0^t X(s)dB(s) \) avec \(X(s) \) un processus stochastique d’Itô de la forme \(X_t = X_0 + \int_0^t \sigma_s dB_s + \int_0^t \mu_s ds \).

Cela nous mène au lemme d’Itô : pour toute fonction \(f : \mathbb{R} \to \mathbb{R} \) de classe \(C^2 \), on a

\[
df(X_t) = f'(X_t) dX_t + \frac{1}{2} f''(X_t) d\langle X, X \rangle_t dt. \tag{4.6}
\]

\[
f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) d\langle X, X \rangle_s . \tag{4.7}
\]

4.2.2 Formule d’Itô-Wentzell

Le lemme d’Itô vu précédemment ne s’applique qu’aux fonctions \(f \) déterministes ou à variations bornées. Nous introduisons maintenant la formule d’Itô-Wentzell permettant de généraliser la formule d’Itô au cas où \(f \) est une semi-martingale et où l’on est donc en présence d’une composition de processus stochastiques :

\[
df(X_t) = f'(X_t) dX_t + \frac{1}{2} f''(X_t) d\langle X, X \rangle_t dt + d(X) \langle f', X \rangle_t . \tag{4.8}
\]

Comparée à la formule d’Itô classique, cette différentielle comporte un terme supplémentaire rendant compte de la dépendance entre les deux processus. Ce terme est calculé en point fixe.
4.2.3 Avantages de l’intégrale d’Itô

Nous avons ici fait le choix de l’intégrale d’Itô pour résoudre nos équations différentielles stochastiques, plutôt que celle de Stratonovich. Nous détaillons ici plusieurs points ayant motivé ce choix.

- Le modèle d’Itô utilise $\tau_j = t_j$, c’est-à-dire le temps de l’observation courante, contrairement à Stratonovich qui prend $\tau_j = t_{j+0.5}$, entre l’observation courante et l’observation suivante. Le fait de chercher une méthode ne regardant pas dans le futur amène donc naturellement à considérer prioritairement Itô.

- Les intégrales de Stratonovich ne sont pas des martingales, ce qui nous poserait des difficultés mathématiques importantes.

- Il est de toutes façons possible de passer d’une formulation à l’autre en utilisant la formule d’Itô. De plus, l’implémentation des intégrales de Stratonovich passe obligatoirement par un retour à Itô.

4.3 Une dynamique stochastique pour les courbes libres

4.3.1 Expression de l’incertitude

Réaliser un échantillonnage efficace dans un espace de grande dimension est un problème bien connu. En effet, du fait de la règle dite *Curse of dimensionality*, ou malédiction des grandes dimensions, le nombre d’échantillons croît exponentiellement avec la dimension pour avoir un échantillonnage efficace.

Dans notre cas, l’espace d’état est celui des surfaces implicites, qui est de dimension infinie. Même dans le cas d’une discrétisation sur la grille image, sa dimension reste extrêmement élevée et il est donc inimaginable d’utiliser un si grand nombre de particules. La solution que nous proposons vise donc à construire une dynamique suffisamment précise pour pouvoir se contenter d’un bruit de très petite dimension. Nous faisons donc ici le choix de modéliser l’incertitude sur la courbe par deux mouvements Browniens constants le long de la courbe, l’un dirigé le long de la normale, n, et l’autre le long de la tangente, n^\perp. La déformation de la courbe s’exprime alors :

$$dC_t = w_n n dt + \sigma_n n dB_{n,t} + \sigma_\tau n^\perp dB_{\tau,t},$$

où C_t est la courbe fermée. Dans cette équation, $B_{n,t}$ et $B_{\tau,t}$ sont deux mouvements Browniens standards sur \mathbb{R} décrivant l’incertitude sur la courbe et σ_n et σ_τ sont deux coefficients de diffusion scalaires, n est le vecteur unité normal à la courbe et $w_n = v^T n$ est la projection sur la normale d’un transport déterministe v que nous détaillerons dans le chapitre suivant. La somme des deux termes aléatoires représente l’incertitude que nous imposons sur la déformation de la courbe.
4.3.2 Calcul de la différentielle

Afin de gérer tous types de déformations pendant le suivi, il est important d’utiliser une représentation de la courbe permettant de manipuler simplement les changements de topologies. En effet, l’objet suivi peut se diviser en plusieurs composantes connexes ou au contraire se regrouper pour n’en former qu’une, et ce à tout moment du suivi. C’est pourquoi nous utiliserons ici le formalisme des courbes de niveau exposé précédemment. Il a en effet été introduit spécifiquement pour s’affranchir des limitations des représentations paramétriques de courbes libres dans ce type de situation.

Dans cette représentation, la courbe \(C_t \) au temps \(t \) est définie comme étant le niveau zéro d’une fonction scalaire \(\varphi(x, t) : \Omega \times \mathbb{R}^+ \to \mathbb{R} \):

\[
C_t = \{ x \in \Omega | \varphi(x, t) = 0 \},
\]

\(\Omega \) étant le domaine spatial de l’image. La surface implicite \(\varphi \) est choisie de sorte que ses valeurs soient strictement positives à l’intérieur de la courbe et négatives à l’extérieur. Nous initialisons la courbe en utilisant la distance signée, ce qui est un des choix les plus courants dans la littérature. Il est important de signaler que d’autres initialisations sont possibles.

L’évolution de la surface est ensuite définie de manière à ce que la courbe de niveau zéro colle à tout instant à la dynamique du contour. Cette représentation a le grand avantage de nous permettre de représenter un ensemble de courbes imbriquées avec une seule surface implicite.

Considérons maintenant une fonction \(C^2(\Omega) : \varphi : \mathbb{R}^2 \times \mathbb{R}^+ \to \mathbb{R} \), définie comme la surface implicite représentant notre courbe, et telle que :

\[
\varphi(t, x) = 0.
\]

La surface étant transportée par la déformation de la courbe, on doit avoir :

\[
d\varphi(t, x) = 0.
\]

Nous pouvons donc maintenant utiliser \(\varphi \) pour exprimer une extension des déformations \(d\mathcal{X}_t \) de la courbe (4.9) dans \(\Omega \) tout entier :

\[
d\mathcal{X}_t = w^* \frac{\nabla \varphi}{|\nabla \varphi|} dt + \sigma_n \frac{\nabla \varphi}{|\nabla \varphi|} dB_{n,t} + \sigma_\tau \frac{\nabla \varphi}{|\nabla \varphi|} dB_{\tau,t},
\]

où \(w^* \) est une extension à tout le support \(\Omega \) du terme de transport déterministe \(w_n \) de la courbe libre. La notation \(\nabla f^\perp \) représente ici les gradients orthogonaux d’une fonction \(f \) \((\nabla f^\perp = (-\partial_y f, \partial_x f)^T) \). Appliquée à \(\varphi \), \(\frac{\nabla \varphi}{|\nabla \varphi|} \) nous donne le vecteur unitaire tangent des courbes de niveau \(\varphi \).

Afin d’avoir une expression de la déformation de la surface implicite, il est nécessaire de calculer la différentielle \(d\varphi(\mathcal{X}_t, t) \), qui doit être nulle en raison du transport de la fonction \(\varphi \) par la déformation. Considérer \(\varphi \) comme une fonction déterministe (d’un argument aléatoire) différentiable en
temps nous conduirait selon la formule d’Itô à avoir

\[d\varphi(x, t) = \partial_x \varphi_t(x) + \frac{1}{2} \sum_{i,j} d\langle X^i, X^j \rangle_t \frac{\partial^2 \varphi}{\partial x_i \partial x_j} + \sum_{i} d\left(\frac{\partial \varphi}{\partial X^i}, X^i \right)_t + \nabla \varphi \sigma dB_{n,t} = 0, \]

ce qui amènerait à considérer en raison de la séparation d’échelle du terme aléatoire et du terme à variation bornée que \(\nabla \varphi \sigma = 0 \) et donc \(\sigma = 0 \). Ce qui nous ramènerait à une équation déterministe contraire à nos hypothèses. L’interface \(\varphi \) est donc aléatoire.

Dans la mesure où \(\varphi \) est aléatoire, pour un point \(y \in \Omega \) fixé, la fonction \(\varphi \) est solution de l’équation stochastique différentielle suivante :

\[d\varphi_t(y) = b(y, t)dt + f(y, t)dB_{n,t} + g(y, t)dB_{\tau,t}, \quad (4.14) \]

où l’incrément temporel \(d\varphi \) de la fonction \(\varphi_t(x) = \varphi(x, t) \) en un point fixé \(x \) de la grille est défini par :

\[d\varphi_t(y) = \varphi(y, t + \epsilon) - \varphi(y, t). \quad (4.15) \]

Comme \(\varphi(y, t) \) est une semi-martingale, la différentielle de \(\varphi(X_t = x, t) \) doit être calculée en utilisant la formule d’Itô-Wentzell (différentielle de la composition de deux processus stochastiques : \(\varphi \circ X_t \)) comme vu section 4.2 :

\[d\varphi_t(x) = d\varphi_t(x) + \nabla \varphi^T dX + \frac{1}{2} \sum_{i,j} d\langle X^i, X^j \rangle_t \frac{\partial^2 \varphi}{\partial x_i \partial x_j} + \sum_{i} d\left(\frac{\partial \varphi}{\partial X^i}, X^i \right)_t \]

\[+ \frac{\sigma_n^2}{2} \left(\nabla^2 \varphi - \frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \nabla \varphi \right) + \frac{\sigma_n^2}{2} \left(\frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \right) dt \]

\[+ \frac{\sigma_n dt}{|\nabla \varphi|} \sum_i \frac{\partial g}{\partial x_i} \left(\frac{\partial \varphi}{\partial x_i} \right) \]

\[+ \frac{\sigma_n dt}{|\nabla \varphi|} \sum_i \frac{\partial f}{\partial x_i} \left(\frac{\partial \varphi}{\partial x_i} \right) = 0. \quad (4.16) \]

En incorporant l’équation (4.14) dans l’équation (4.17), et en identifiant deux à deux les termes aléatoires et les termes déterministes, on peut voir que \(f(x, t) = -\sigma_n |\nabla \varphi| \) et que \(g(x, t) = 0 \).

En utilisant \(\sum_i \left(\frac{\partial \varphi}{\partial x_i} \right) \left(\frac{\partial \varphi}{\partial x_i} \right) = -\frac{\sigma_n^2}{|\nabla \varphi|^2} (\nabla \varphi^T \nabla^2 \varphi \nabla \varphi) \), on peut alors calculer \(b(x, t) \):

\[b(x, t) = -\nabla \varphi^T w_n^* - \frac{\sigma_n^2}{2} \left(\nabla^2 \varphi - \frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \nabla \varphi \right) \]

\[- \frac{\sigma_n^2}{2} \left(\frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \nabla \varphi \right) \]

\[- \frac{\sigma_n}{|\nabla \varphi|} \sum_i \frac{\partial f}{\partial x_i} \left(\frac{\partial \varphi}{\partial x_i} \right) \]
\[
b(x, t) = -\nabla \varphi^T w^*_n - \frac{\sigma^2_n}{2} \left(\nabla^2 \varphi - \frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \nabla \varphi \right) \\
+ \frac{\sigma^2_n}{2} \left(\frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \nabla \varphi \right).
\]

(4.18)

Puisque \(d\varphi(x, t) = 0 \):

\[
d\varphi^t(x) = b(y, t)dt + f(y, t)dB_{n,t} \\
= -\nabla \varphi^T w^*_n dt \\
- \frac{\sigma^2}{2} dt \left(\nabla^2 \varphi - \frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \nabla \varphi \right) \\
+ \frac{\sigma^2}{2} dt \left(\frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \nabla \varphi \right) - \sigma_n |\nabla \varphi| dB_{n,t}.
\]

(4.19)

Un modèle simplifié de cette dynamique peut être obtenu en considérant que le champ de déplacement \(w^*_n \) incorpore un terme correctif relatif à la courbure moyenne de la courbe tel que :

\[
w^*_n = u^*_n - \frac{\sigma^2}{2} \frac{\nabla \varphi}{|\nabla \varphi|} \kappa,
\]

avec la courbure \(\kappa \) définie par

\[
\kappa = \text{div} \left(\frac{\nabla \varphi}{|\nabla \varphi|} \right) = \frac{1}{|\nabla \varphi|} (\Delta \varphi - \varphi^T \nabla^2 \varphi \nabla \varphi).
\]

(4.21)

On a alors :

\[
d\varphi^t(x) + \nabla \varphi^T u^*_n dt + \sigma_n |\nabla \varphi| dB_{n,t} \\
= \frac{\sigma^2}{2} dt \nabla^2 \varphi + \frac{\sigma^2_n}{|\nabla \varphi|^2} \left(\varphi^T \nabla^2 \varphi \nabla \varphi \right).
\]

(4.22)

Dans le cas particulier où les coefficients sur les incertitudes sont pris égaux \((\sigma_n = \sigma) \), le modèle correspond à une équation plus intuitive d’advection diffusion :

\[
d\varphi^t(x) + \nabla \varphi^T u^*_n dt + \sigma_n |\nabla \varphi| dB_{n,t} = \frac{\sigma dt}{2} \nabla^2 \varphi.
\]

(4.23)

Ce modèle introduit néanmoins un biais sur le champ des vitesses et ne sera pas utilisé dans nos techniques de suivi.

On peut noter que le terme correctif de courbure moyenne n’a pas à être explicitement implémenté. C’est ici une hypothèse implicite qui est directement prise en compte dans l’évolution de la courbe de niveau.

La dynamique ainsi obtenue est donc :

\[
d\varphi^t(x) = -\nabla \varphi^T w^*_n dt \\
- \frac{\sigma^2}{2} dt \left(\nabla^2 \varphi - \frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \nabla \varphi \right) \\
+ \frac{\sigma^2}{2} dt \left(\frac{1}{|\nabla \varphi|^2} \nabla \varphi^T \nabla^2 \varphi \nabla \varphi \right) - \sigma_n |\nabla \varphi| dB_{n,t}.
\]

(4.24)

Si l’on compare ce modèle à la loi d’évolution déterministe classique des courbes de niveau, on voit que cette expression introduit une composante brownienne dirigée le long de la courbe.
4.3. UNE DYNAMIQUE STOCHASTIQUE POUR LES COURBES LIBRES

normale et un terme de lissage supplémentaire de second ordre. Une partie de ce terme de lissage mettant en jeu un mouvement de courbure moyenne peut être interprétée comme une conséquence de l'incertitude sur la déformation de la courbe le long de sa tangente.

Cette équation différentielle stochastique est discrétisée en utilisant le schéma classique d'Euler et en subdivisant l'intervalle $[0, T]$ en N sous-intervalles de même longueur.

4.3.3 Calcul de la vraisemblance

Le calcul de la vraisemblance permet de donner à chaque particule un poids différent, dans la construction de la loi de filtrage que l'on cherche à estimer. Il est donc important que cette vraisemblance soit suffisamment discriminante pour négliger les courbes trop éloignées du résultat recherché. Ici, nous avons décidé de baser cette vraisemblance sur la différence entre les couleurs de l'intérieur de la courbe au temps $t = 0$ et celles au temps $t = k$ pour chaque particule. Pour calculer cette différence de couleurs, nous utilisons la distance entre histogrammes (méthode détaillée plus bas) :

- À l'instant $t = 0$, un histogramme tridimensionnel est créé, répertoriant les couleurs contenues à l'intérieur de la courbe.
- À l'instant $t = k$, on crée un histogramme $h_k^{(i)}$ pour chaque particule i (avec $i = 1, ..., N$).
- On calcule $d_k^{(i)}$ la distance entre l'histogramme initial h_0 et chaque autre $h_k^{(i)}$.
- La vraisemblance est donnée par la formule $v_k^{(i)} = e^{-\lambda(1-d_k^{(i)})}$.

Histogrammes de couleur

Il existe plusieurs possibilités pour caractériser la couleur d'une surface par histogramme. Une solution simple est de compter le nombre de pixels de chaque composante de couleur. Cela nous donne un histogramme de taille 3×255 pour les images utilisées. Malheureusement, cette solution ne permet pas de différencier une surface comprenant par exemple une zone bleue et une zone verte d'une surface avec une zone cyan. La solution choisie dans notre algorithme réside dans l'utilisation d'histogrammes tridimensionnels, où chaque dimension correspond à une couleur. Cela nous permet, avec peu d'éléments par dimension, de caractériser chaque couleur d'une façon plus précise.

Pour cela, nous commençons par définir un (m^3)-histogramme (figure 4.1) qui associe chaque index $u \in (m \times m \times m)$ à une couleur de l'image. Nous définissons ensuite une fonction c qui associe à chaque coordonnée de l'image un indice dans l'histogramme tridimensionnel :

$$c : \mathbb{R}^2 \to \{1..m\} \times \{1..m\} \times \{1..m\}$$

avec m le nombre d'éléments par dimension. Enfin, pour caractériser une région S de l'image (telle que S est délimitée par la courbe C), nous créons l'histogramme regroupant toutes les couleurs des
pixels intérieurs à la courbe.

Distance entre histogrammes

Il existe de très nombreux moyens différents pour calculer la distance entre histogrammes dans la littérature. Nous en avons essayé plusieurs. La distance choisie se doit de respecter certains critères pour être applicable dans le cadre d’histogrammes de couleurs :

- Une perception correcte, c’est à dire qu’une distance faible implique deux couleurs proches visuellement.
- De la robustesse afin que le calcul ne dépende pas ou peu des conditions d’acquisition de l’image.
- La distance ne doit pas dépendre de la taille de la base, afin de ne pas pénaliser les zones ayant moins ou plus d’information.
- Enfin, le temps de calcul peut se révéler décisif, pour une tâche simple mais répétée un très grand nombre de fois dans notre méthode.

Définissons tout d’abord h_1 et h_2 deux histogrammes, on peut alors citer les différentes distances et divergences suivantes :

- Distance Euclidienne :

 $$d(h_1, h_2) = \sqrt{\sum_{k=1}^{K} (h_1(k) - h_2(k))^2}.$$

La distance Euclidienne peut être généralisée par la distance de Mahalanobis :

$$d(h_1, h_2) = \sqrt{(h_1 - h_2)^T \Sigma^{-1} (h_1 - h_2)},$$

avec Σ la matrice de covariance. On retombe sur la distance Euclidienne dans le cas où Σ est l’identité. Cette distance est simple à implémenter mais ne donne pas toujours de résultat convaincant en ce qui concerne la perception des couleurs et la robustesse du calcul.
4.4 Conclusion

- Intersection :

\[d(h_1, h_2) = 1 - \sum_{k=1}^{K} \min(h_1(k), h_2(k)). \]

Une des premières distances introduites. Nous ne l’utiliserons pas par la suite en raison de sa non symétrie.

- Divergence de Kullback-Leibler :

\[d(h_1, h_2) = \sum_{k=1}^{K} (h_2(k) - h_1(k)) \ln \frac{h_2(k)}{h_1(k)}. \]

Cette distance permet de mesurer l’entropie relative des deux histogrammes.

- Distance de Hellinger : La distance de Hellinger est obtenue à partir du coefficient de Bhattacharyya \(BC(h_1, h_2) = \sum_{k=1}^{K} \sqrt{h_1(k) \times h_2(k)} : \)

\[d(h_1, h_2) = \sqrt{1 - BC(h_1, h_2)}. \]

Nous utilisons principalement la distance de Hellinger dans la suite du manuscrit, étant celle qui répond le mieux aux critères décrits plus haut.

Pour chaque particule, la vraisemblance est donc définie comme :

\[v_k^{(i)} \propto \exp^{-\lambda d(h_0, h_k^{(i)})}, \quad (4.25) \]

avec \(d \) la distance entre les histogrammes \(h_0 \) de référence instancié à l’instant initial et \(h_k^{(i)} \) l’histogramme de couleur intérieur associé à la \(i \)ème ligne de niveau à l’instant \(k \), et \(\lambda \) un paramètre positif.

4.4 Conclusion

Nous avons introduit dans cette partie notre nouvelle dynamique. Nous avons proposé un modèle combinant des mesures de l’image en temps discret avec une dynamique stochastique en temps continu. Cette dynamique s’appuie sur deux incertitudes différentes sur le déplacement de la courbe, dirigées respectivement le long de la normale à la courbe et le long de la tangente. Cette dynamique contient en plus du terme représentant l’incertitude un terme déterministe qui sera détaillé dans le chapitre suivant. Elle a ensuite été formulée sur la courbe implicite, via l’extension de certains termes.
Chapitre 5

Modèles de dérive pour une dynamique stochastique de courbe libre

5.1 Introduction

La dynamique introduite dans la section précédente repose sur deux termes principaux. L’un, représentant l’incertitude sur la courbe, est composé des mouvements Browniens normaux et tangents. L’autre est déterministe et dépend d’un champ de transport. C’est sur ce dernier que nous allons nous pencher dans ce chapitre, en exposant deux méthodes différentes pour le définir. Il est important de garder à l’esprit que ce terme sera le seul prenant en compte les données, il doit donc être le plus précis possible pour assurer un suivi cohérent.

Dans une première section, nous montrerons comment obtenir une estimation du champ de mouvement à partir de la séquence d’images. Cette solution ayant plusieurs défauts, nous verrons dans une seconde section une méthode d’obtention d’un champ ne reposant que sur l’information transmise par les particules aux instants précédents.

5.2 Dynamique stochastique avec une dérive fixée par une mesure de flot optique

La loi d’évolution présentée dans la section précédente repose sur un champ de vitesse de transport. Cette composante de transport peut être extraite de différentes manières. La plus simple que nous présentons ici consiste à la définir à partir de mesures de mouvement estimées sur la séquence d’images.

5.2.1 Estimation de flot optique

La mesure du flot optique est utilisée dans de nombreux domaines et depuis fort longtemps. Le terme flot optique apparaît dans les années 50 dans [50]. Cette mesure de mouvement peut servir
à la segmentation, au suivi, à la détection d'objets, au guidage de robots, ou à la récupération d’informations de formes [3, 79, 105]. On trouve dans la littérature nombre de méthodes efficaces pour cette estimation. Nous allons donc ici revenir sur les principes de base de la grande majorité de ces méthodes, puis décrire les spécificités de la méthode utilisée.

État de l’art

Équation de contrainte du mouvement apparent

La grande majorité des méthodes d’estimation de flot optique repose sur une relation de conservation d’invariants photométriques dans le temps. Certaines méthodes s’appuient sur des invariants géométriques, mais elles sont peu nombreuses et moins efficaces, nous ne reviendrons donc pas dessus. Les invariants photométriques considérés sont en général déduits d’une hypothèse de conservation de l’intensité lumineuse. Cette méthode prend le nom d’équation de contrainte du mouvement apparent (ECMA) :

$$\forall x, \frac{dI}{dt}(x) = I_t(x) + \nabla I(x) \cdot v(x) = 0,$$

avec $I_t(x)$ l’intensité lumineuse du point x à l’instant t et le vecteur $v(x)$ le champ des vitesses recherché. Cette équation suppose une illumination constante de la scène. C’est à dire que seul le mouvement induit un changement de luminosité. Cette hypothèse forte va donc empêcher la gestion d’occultations ou de changements d’intensité lumineuse dans la scène observée (spécularité, ombre, etc.) On peut déduire directement de cette équation le calcul de la vitesse parallèle au gradient spatial d’intensité (la vitesse normale) :

$$v_n(x) = - \frac{I_t(x)}{\|\nabla I(x)\|} \cdot \frac{\nabla I(x)}{\|\nabla I(x)\|} $$

Malheureusement, seule cette vitesse peut être calculée (problème de l’ouverture; Fig. 5.1). De plus, la précision de cette méthode est fortement limitée dans les zones uniformes ($\nabla I \simeq 0$), ou dans les cas bruités (∇I grand en raison du bruit).

Il existe des méthodes permettant d’estimer la vitesse orthogonale au gradient d’intensité, en prenant par exemple en compte l’ensemble des destinations possibles pour chaque point et en
5.2. DÉRIVE DE FLOT OPTIQUE

![Diagram](image)

(a) Image à \(t = 0 \) \hspace{2cm} (b) Image à \(t = 1 \)

Figure 5.1 – Problème de l’ouverture : Seule la composante parallèle au gradient du déplacement peut être estimée. La composante orthogonale n’est jamais mesurable.

gardant la plus vraisemblable ([137]). Ces techniques restent peu fiables et nous ne les détaillerons pas.

Approche multi-échelles

La grande majorité des méthodes d’estimation de flot optique mettent en œuvre une déclinaison multi-échelle. Cela permet en effet de gérer plus simplement les grands déplacements comme les petits (les grands déplacements seront gérés à une échelle plus grande.) Elles permettent également de ne pas fixer à l’avance et manuellement la meilleure échelle de discrétisation spatio-temporelle manuellement. L’adaptation multi-échelle permet également de réduire grandement le temps de calcul des algorithmes.

5.2.2 Méthode utilisée

Le composant de mouvement \(\mathbf{v} = (v^x, v^y)^T \) est ici fourni par un estimateur de flot optique robuste et rapide. Il est défini comme étant le minimiseur de la fonction objective suivante :

\[
\int_{\Omega} f(|| \nabla I^T \mathbf{v} + I(t + dt) - I(t) ||) \mathbf{1}_{v^y(x) \geq 1 - \epsilon(x)} \, dx + \lambda \int_{\Omega} (|| \nabla v^x ||^2 + || \nabla v^y ||^2) \, dx.
\]

La fonction \(f \) est une fonction robuste dont le rôle est d’éliminer les données qui s’écartent fortement de l’hypothèse de préservation de la luminosité. Cette fonction, en adéquation avec la fonction caractéristique définie par une vraisemblance locale, caractérise la photométrie de l’objet d’intérêt. Cette vraisemblance est calculée sur un voisinage \(\nu(x) \) de \(x \in \Omega \) (eq. 4.25). Cette fonction robuste et la fonction caractéristique permettent de ne prendre en compte que les données de l’objet ou du phénomène que nous désirons suivre, en ne gardant que les points ayant une vraisemblance supérieure à un certain seuil. Par contre, par le biais du deuxième terme de lisage, cette fonctionnelle autorise un champ de mouvement lisse dans l’ensemble de l’image. Cette composante de mouve-
ment est une description sommaire des mouvements de l’objet délimité par la courbe d’intérêt, car calculée sur deux images consécutives éventuellement éloignées en temps. Il est donc raisonnable de la combiner avec une force de contour photométrique, comme nous le verrons dans la section 5.4.

Cette méthode d’estimation du mouvement présente plusieurs inconvénients. Elle augmente considérablement le coût de calcul et repose sur l’utilisation d’une technique d’estimation externe dont les incertitudes sont inconnues. Par ailleurs, une telle solution n’est pas adaptée pour gérer les zones d’occlusions, où l’estimation du mouvement est sujette à des erreurs importantes. L’utilisation de mesures de vitesse exigerait donc l’introduction d’un mécanisme de détection d’occlusion supplémentaire et la définition d’un champ de vitesse alternatif lorsque les occlusions se produisent, à la manière de [12].

5.3 Dynamique à dérive fixée à partir des trajectoires des courbes libres

Dans cette deuxième section nous proposons, en lieu et place de l’utilisation du flot optique, de déduire directement la vitesse de chaque particule de son déplacement précédent, via une deuxième représentation implicite qui conserve la mémoire de l’emplacement de départ de chaque point dans le plan de l’image. Comme proposé dans [96], afin de garder ces points de correspondances, nous introduisons une ligne de niveau vectorielle \(\psi \) qui encode le transport de l’emplacement des points de la courbe depuis le temps initial. Garder ainsi la trace de ces correspondances ponctuelles entre la courbe courante et une instant récente de cette courbe va nous permettre de dériver une estimation du champ de vitesse des points de la courbe.

Plus précisément, en introduisant les coordonnées cartésiennes de l’emplacement des points de la courbe à l’instant précédent et en les encodant par une surface implicite vectorielle \(\psi^k : \mathbb{R}^2 \times \mathbb{R}^+ \to \mathbb{R}^2 \) de manière à ce que \(\psi^k(x, t) \) définisse l’emplacement que le point \(x \in \Omega \) au temps \(t \in [k-1, k] \) occupait à l’instant précédent \(k - 1 \), on obtient :
\[
\psi^k(x, k - 1) = x.
\] (5.2)

Cette nouvelle ligne de niveau est attachée de façon intrinsèque à la courbe et suit les déformations dictées par la loi d’évolution stochastique de la courbe (4.9). Nous donnons ci-dessous les détails du calcul de sa différentielle.

Le champ \(\psi \) est conduit par le même champ de vitesses (4.13) que \(\varphi \). Par les mêmes arguments que précédemment, on montre que \(\psi \) est une fonction aléatoire non différentiable en temps. On a donc également recours à la formule de Itô-Wentzell. Pour un point fixé \(y \) et une coordonnée \(i \), cela nous donne :
\[
d\psi^i_t(y) = b^i_t(y, t)dt + f^i_t(y, t)dB_{n,t} + g^i_t(y, t)dB_{r,t}.
\] (5.3)
5.3. DÉRIVE TRAJECTORIELLE

De la même manière que pour \(\varphi \), la différentielle de \(\psi(X_t, t) \) au point \(X_t = x \) s’écrit :

\[
d\psi^i(x_t, t) = d\psi^i(x) + (\nabla \psi)^T d\mathcal{X} \\
+ \frac{1}{2} \sum_{\ell,j} d \left(X^i_t, X^j_t \right) \frac{\partial^2 \psi^i}{\partial x_i \partial x_j} + \sum_t d \left(\frac{\partial \psi^i}{\partial x_t}, X^t \right) \\
= 0.
\]

(5.4)

En développant l’expression comprise entre crochets avec (5.3) et en identifiant deux à deux dans (5.4) les différents termes déterministes et les termes aléatoires, nous obtenons :

\[
f'_i(x, t) = -\sigma_n(\nabla \psi^i)^T \frac{\nabla \varphi}{|\nabla \varphi|}, \quad (5.5)
\]

\[
g'_i(x, t) = -\sigma_\tau(\nabla \psi^i)^T \frac{\nabla \varphi}{|\nabla \varphi|}, \quad (5.6)
\]

À partir de ces équations, le terme de dérivée s’écrit :

\[
b'_i(x, t) = - (\nabla \psi^i)^T w^*_n - \frac{1}{2} A_i + F_i + G_i, \quad (5.7)
\]

avec

\[
A_i = \sigma_n^2 \nabla \psi^i T \nabla \varphi \nabla \varphi + \sigma_\tau^2 (\nabla \varphi^\perp)^T \nabla \psi^i \nabla \varphi, \\
F_i = \frac{\sigma_n}{|\nabla \varphi|} \nabla \varphi \left[\nabla^2 \psi^i \nabla \varphi + \nabla \varphi \nabla \psi^i \\
- \frac{1}{|\nabla \varphi|^2} ((\nabla \psi^i)^T \nabla \varphi \nabla \varphi \nabla \varphi) \right], \\
G_i = \frac{\sigma_\tau}{|\nabla \varphi|} (\nabla \varphi^\perp)^T \left[\nabla^2 \psi^i \nabla \varphi^\perp + \nabla \varphi \nabla \psi^i \\
- \frac{1}{|\nabla \varphi|^2} ((\nabla \psi^i)^T \nabla \varphi \nabla \varphi \nabla \varphi) \right].
\]

(5.8)

L’obtention de ces différentes expressions est détaillée dans l’annexe B.

La différentielle en temps de \(\psi \) pour un point fixé s’écrit donc finalement :

\[
d\psi^i(x) = - (\nabla \psi^i)^T v^*_n dt \\
- \sigma_n(\nabla \psi^i)^T \frac{\nabla \varphi}{|\nabla \varphi|} dB_n, t - \sigma_\tau(\nabla \psi^i)^T \frac{\nabla \varphi^\perp}{|\nabla \varphi|} dB_\tau, t \\
- \frac{dt}{2|\nabla \varphi|^2} A_i + dt \frac{\sigma_n}{|\nabla \varphi|} F_i + dt \frac{\sigma_\tau}{|\nabla \varphi|} G_i = 0,
\]

(5.9)

Cette fonction nous permet de définir la composante de transport de la courbe :

\[
v(x, t) dt = \frac{1}{\Delta t} (x - E(\psi^{k-1}(x, k-1)|C_{k-1})), \quad t \in [k - 1, k],
\]

(5.10)

où \(E(\cdot|C_i) \) désigne l’espérance par rapport à la trajectoire de \(C_i \) jusqu’au temps \(t \). Ce champ de vitesse de transport est donc défini comme une fonction déterministe calculée à partir des réalisations de la courbe (par sa fonction implicite \(\varphi_i \)) jusqu’à l’instant précédent \(k - 1 \). En considérant
l'approximation des particules, ce champ de vitesse est calculé comme suit :

$$v(x, t)dt = \frac{1}{\Delta t} \left(x - \frac{1}{N} \sum_{i=1}^{N} w(i) \psi^{k-1,(i)}(x, k-1) \right),$$

(5.11)

pour $t \in [k-1, k]$, où $\psi^{k-1,(i)}$ correspond à la fonction de distance associée à la particule $\varphi^{(i)}$ et où $w^{(i)}$ est son poids. Nous appellerons ce type de dérive une dérive trajectorielle dans le sens où elle est issue des trajectoires des courbes.

Notons que $v(x, t)$ ne peut être utilisé qu'à partir de l'instant $t = 1$. Nous devons donc définir la composante de transport pour tous les instants t entre 0 et 1. Cette composante de transport au temps initial est définie comme étant le champ de vitesse estimé entre les deux premières images, donné par un estimateur de flot optique tel que vu précédemment.

5.4 Composante photométrique locale

Afin d'affiner le suivi, il semble naturel de compléter les deux méthodes vues dans ce chapitre par une composante photométrique locale. On utilise pour ce faire un potentiel local $F(\varphi)$ correspondant à l'opérateur de segmentation introduit par Chan et Vese [27] étendu aux histogrammes de couleur [26], comme présenté au paragraphe 1.2.3. Cela nous permet d'affiner le suivi en prenant en compte les informations de couleur, et en utilisant des mesures locales qui sont peu coûteuses à calculer.

L'utilisation d'une force guidée par les données dans la dynamique conduit à un modèle d'espace d'état qui n'est plus un modèle classique de Markov caché. Il a toutefois été démontré que les dérivation standards qui conduisent à la récursivité du filtrage peuvent toujours être utilisées avec ce type de modèle moyennant des hypothèses d'indépendance conditionnelle. On a alors ce que l'on appelle un filtrage conditionnel [9].

Les deux composants sont combinés de façon linéaire avec les proportions $\beta(t) \in [0, 1]$ et $1 - \beta(t)$ respectivement, ce qui nous donne :

$$w_n = \beta(t) v^T n + (1 - \beta(t)) \partial_\varphi F(\varphi),$$

(5.12)

où $F(\varphi)$ est calculée selon la méthode de Chan et Vese présentée section 1.2.3.

Pour un suivi efficace, la composante photométrique est particulièrement utile dans le voisinage temporel de l'image courante, tandis que la composante de vitesse est plus susceptible d'être significative dans le voisinage temporel de l'image précédente. Cela est particulièrement vrai lorsque l'écart temporel entre deux images est important. En conséquence nous avons choisi de changer graduellement la proportion de chacun des composants en fonction de :

$$\beta(t) = t - k + 1, \quad t \in [k-1, k].$$

(5.13)
Il est évident que ce terme peut être adapté en fonction du besoin. En cas de séquences à fortes occlusions par exemple, il est possible d’accorder plus d’importance au terme de vitesse et de limiter la composante photométrique locale.

5.5 Conclusion

Nous avons exposé dans ce chapitre différentes méthodes de calcul du composant déterministe de transport de notre contour. La première repose sur l’utilisation de flot optique, calculé par une méthode externe d’estimation de champs denses robustes. Cette première méthode donne de bons résultats lorsque la séquence ne présente pas ou peu d’occlusions. En effet, le champ calculé ne prend pas en compte ces occlusions, c’est donc le filtrage seul qui peut les détecter.

Pour gérer ce genre de problème, notre deuxième solution passe par le calcul des correspondances de points. Nous gardons en mémoire la trajectoire de chaque point de nos courbes, afin de pouvoir déduire de leur mouvement passé leur force présente. Cette méthode permet donc de garder une vitesse propre en particulier pendant les occlusions. Il est bien entendu possible de coupler ces deux méthodes afin d’obtenir un suivi d’autant plus robuste.

Enfin, nous proposons de guider notre courbe par l’utilisation conjointe de cette force et d’une composante photométrique locale. Cette composante est extraite en utilisant l’opérateur de segmentation local introduit par Chan et Vese [27] et modifié pour prendre en compte la couleur.

Les résultats obtenus avec ces différentes méthodes sont présentés dans le chapitre 6 et seront alors comparés aux résultats obtenus par des méthodes de la littérature.
CHAPITRE 5. MODÈLES DE DÉRIVE
Conclusion

Nous avons introduit dans cette partie le modèle dynamique décrivant l'évolution de courbes libres et le cadre de filtrage dans lequel nous l'utilisons.

Nous avons proposé un modèle combinant des mesures de l'image à des instants discrets et une dynamique stochastique en temps continu. Cette dynamique s'appuie sur deux incertitudes différentes sur le déplacement de la courbe, dirigées respectivement le long de la normale à la courbe et le long de la tangente. Elle comprend également un champ de vecteurs de transport que l'on a décliné en deux cas, selon que la dérive est de flot optique ou trajectorielle. Dans le premier cas, notre transport est directement issu d'une estimation de flot optique. La deuxième solution prend en compte l'historique de la trajectoire des points de la courbe et définit un modèle de vitesse à partir du déplacement total de ces points entre deux images consécutives. Ces différentes options sont ensuite combinées à une force basée sur l'image (liée à la photométrie locale). La vraisemblance prise en compte dans ce modèle est construite à partir d'histogrammes couleur de l'objet à l'intérieur et à l'extérieur d'une frontière délimitée par l'utilisateur sur la première image de la séquence.

La mise en œuvre se fait via un filtre à particules dont la densité de proposition est définie à partir de la simulation sur plusieurs pas de temps d'une équation différentielle stochastique discrétisée. Cette représentation stochastique de l'évolution temporelle de la courbe nous permettra dans la dernière partie de tirer des échantillons de courbes déformées prédites.
Troisième partie

Suivi de contours : validation expérimentale
Introduction

Cette troisième partie présente dans un premier temps quelques résultats expérimentaux de notre méthode. Nous présentons les résultats des différentes variations possibles du terme de dérive, et comparons avec quelques méthodes standards de la littérature. Nous montrons dans un second temps des améliorations et quelques avantages de notre méthode. Il s’agit en particulier de la possibilité de prédire l’évolution de nos contours à court terme, et d’avoir un apprentissage en temps réel des paramètres du suivi.
Chapitre 6

Validations

6.1 Introduction

Ce chapitre va nous permettre de montrer plusieurs exemples de suivi réalisés avec notre approche. Nous tenterons également de les comparer avec des méthodes de segmentations successives afin de voir les avantages d’une approche de filtrage pour le suivi de courbes. Nous essaierons de souligner les principales qualités de ce suivi sur des séquences de natures diverses. En effet, l’un des principaux objectifs fixés étant l’absence d’a priori sur les déplacements, il est important de tester notre approche sur un jeu varié de séquences. Nous présenterons donc des séquences météorologiques, des mouvements de fonte des glaces, mais également des séquences de déplacements de personnes, ou d’animaux. Dans l’ensemble des séquences, nous fixons le nombre de particules à 100, ce qui nous suffit pour un échantillonnage représentatif et reste correct en temps de calcul et taille de mémoire.

6.2 Différents modèles de dérive

6.2.1 Exemples de suivis avec dérive de flot optique

Le premier modèle de dérive présenté chapitre 5 repose sur un champ de mouvement estimé à partir de la séquence d’images. Les deux exemples présentés dans cette section sont réalisés avec cette méthode. Un estimateur de flot optique robuste a été utilisé et le champ obtenu constitue une entrée de notre algorithme.

La figure 6.1 nous montre un lion courant sur un fond jaune et vert. La séquence est composée de 30 images d’assez mauvaise qualité. On peut voir que le fond et l’objet d’intérêt sont extrêmement proches d’un point de vue colorimétrique. Nous avons également testé cette séquence en utilisant une méthode de suivi par segmentations successives de type Chan et Vese (Fig. 6.1 - (e) à (h)). Dans ce cas, le fond est rapidement assimilé à l’objet d’intérêt. Le manque de cohérence temporelle est ici flagrant.

La courbe rouge est obtenue en prenant le niveau 0 de la surface moyenne du filtrage. C’est une
approximation représentant le contour à partir de l’ensemble des particules.

La bande blanche autour de la courbe rouge représente l’incertitude du contour et sera détaillée section 6.4. Elle est obtenue localement en calculant pour chaque pixel du niveau 0 de la surface moyenne la variance de l’ensemble des surfaces. Cette variance nous donne la largeur de bande pour chacun de ces points.

Sur l’exemple de la figure 6.2, nous essayons de suivre le déplacement d’un skieur et de son ombre sur une piste enneigée. La principale difficulté de cette séquence est le très fort déplacement de l’objet d’intérêt entre deux observations. Pour une meilleure visibilité, les images ont été zoomées sur le skieur à chaque instant après que le suivi est été effectué, mais le déplacement du skieur par rapport à sa taille sur la séquence originale était un problème peu simple. Sur cette séquence, la composante de mouvement extraite d’un estimateur de flot optique robuste est primordiale, puisqu’elle permet de gérer les forts déplacements. En effet, la deuxième ligne de la figure 6.2 nous montre la même séquence sans cette composante de mouvement. Le contour a alors tendance à perdre une partie de l’objet d’intérêt, en se focalisant ici uniquement sur l’ombre du skieur.

6.2.2 Exemples de suivis avec dérive trajectorielle

Nous présentons maintenant d’autres résultats obtenus en utilisant une dérive trajectorielle, comme nous l’avons vu section 5.3.

L’exemple de la figure 6.3, qui sera repris figure 6.7, permet de voir pour une réalisation de la dynamique — une particule du filtrage — les trajectoires de certains points de la courbe calculées à partir de la fonction implicite ψ. En effet, en plus de permettre le calcul de la dérive guidant
6.2. DIFFÉRENTS MODÈLES DE DÉRIVE

Figure 6.2 – Suivi du contour d’un skieur et de son ombre. Sur la ligne du haut, la composante de mouvement est fournie par un estimateur de flot optique robuste. La deuxième ligne présente la même séquence sans cette composante de mouvement.

Figure 6.3 – Suivi de turbulences météorologiques (a - d) et exemples de trajectoires et vitesses de points basées sur une séquence d’échantillons obtenus par filtrage particulier (e - h)
l'équation différentielle stochastique principale, cette fonction implicite nous permet de garder l'historique de la trajectoire de chaque point de chaque courbe. Nous avons également affiché les forces déduites de ces trajectoires, et utilisées pour le calcul de la dérive.

Un deuxième exemple avec dérive trajectorielle est donné figure 6.4. Il s'agit d'une séquence météorologique radar contenant 110 images. La zone d'intérêt représente une zone de fortes pluies (en vert sur la figure.) Nous verrons dans le chapitre suivant comment le fait d'avoir recours à une dérive trajectorielle sur cette séquence nous permet de faire de la prédiction à court terme.

6.3 Avantages d'une dynamique stochastique à temps continu

Une des caractéristiques distinctives de notre approche est qu'elle repose sur une dynamique stochastique en temps continu. Cela permet l'exploitation de la continuité temporelle, même lorsque les déformations entre les images successives sont drastiques. Nous avons utilisé cette continuité temporelle dans une séquence représentant un déplacement de méduse Fig. 6.5. Cette séquence comporte 100 images et bien que la couleur du fond soit bien distincte de la couleur de l'objet, les tentacules de la méduse sont sources d'ambiguïté avec le chapeau. Le suivi se concentre bien sur le chapeau de la méduse, qui est fortement déformable. On peut alors voir figure 6.6 que l'utiliser d'une technique de suivi à partir de segmentations successives ne répond pas le problème de l'appréciation de l'expansion de la courbe (le contour ne se restreint pas au chapeau).

De même, la séquence de radar météorologique de la Fig. 6.7 montre que sur une séquence de 80 images avec un objet d'intérêt se déplaçant et se déformant rapidement entre deux images, il est possible d'avoir un suivi temporellement cohérent. Cette séquence météorologique nous montre l'évolution rapide (par rapport au taux d'acquisition) et complexe de cellules convectives indiquant des zones d'orages et de fortes pluies.

Cet exemple nous montre également l'intérêt d'obtenir des informations de suivi inter-images dans le contexte où les images successives de la séquence sont assez éloignées dans le temps. Ici, cette information nous permet de suivre l'évolution de masses nuageuses entre les observations.

Pour ces deux séquences, nous avons utilisé une dérive trajectorielle couplée à une composante photométrique de type Chan et Vese comme vu section 5.3.

6.4 Visualisation et analyse de la variance

La figure 6.8 présente une séquence de course d'un tigre. Dans cette séquence les couleurs de l'arrière-plan et de la cible sont très proches, ce qui est source de fortes ambiguïtés. Nous pouvons observer en particulier que pour les zones autour des pattes de l'animal, l'incertitude est importante. Les résultats obtenus sont bons, sans aucun champ de mouvement externe. En plus de la qualité des résultats, l'évaluation de la confiance locale via la visualisation (ou l'analyse) de la
Figure 6.4 – Suivi de nuages sur une séquence de 110 images. La zone suivie (en vert) est une zone de fortes pluies et orages.
Figure 6.5 – Suivi du contour d’une méduse. L’objet est ici extrêmement déformable.
6.5 Gestion d’occultations partielles et totales

Un autre avantage offert par l’utilisation d’une dérive trajectorielle vis-à-vis de la récupération d’un flux optique externe réside dans la gestion naturelle des occultations. En effet, que la région d’intérêt soit visible ou non, la mesure de vitesse de la courbe est toujours disponible. Cette mesure peut donc être utilisée à tous les instants, sans aucune restriction sur la visibilité ou non du point considéré. Nous n’avons donc pas à recourir à des détecteurs empiriques d’occultation externes. Le terme photométrique en revanche n’est plus disponible, mais il a moins d’incidence que la vitesse en l’absence de données correctes. En exemple, les séquences représentées sur les figures 6.10 à 6.12, montrant le mouvement des glaces au pôle Nord pendant trois ans, comportent de nombreuses occultations totales (le 18/06/2006, ou encore du 04/10/2006 au 12/10/2006, etc.) Cela est dû à des problèmes de satellite persistants pendant plusieurs jours. On voit que la forme est conservée pendant les occultations, et que le contour est vite mis à jour dès que l’occultation est terminée.

Un deuxième exemple de gestion d’occultation est représenté figure 6.13. La personne suivie

Figure 6.6 – Suivi d’une méduse, en utilisant une technique deterministe de type Chan et Vese

variance locale est une fonctionnalité intéressante de notre approche. L’ensemble des échantillons pondérés des fonctions implicites fournies par filtrage particulaire permet une telle visualisation. Cette information peut être d’un grand intérêt pratique, entre autres dans les applications d’imagerie médicale où la capacité de quantifier localement la qualité d’un résultat est essentielle pour les utilisateurs finaux. La variance locale est ici représentée par une bande de couleur blanche autour de la courbe moyenne ; plus la variance est faible, plus la bande d’incertitude est étroite.

Pour illustrer cette représentation de variance, nous montrons Fig. 6.9 les résultats obtenus sur une deuxième séquence météorologique illustrant le déplacement de l’ouragan tropical Vince, datant des 9 et 10 octobre 2005. Sur cette séquence particulière, nous pouvons voir qu’une cellule au moment de sa disparition aura une bande d’incertitude plus large. Cela est dû aux quelques particules ayant déjà cessé de suivre l’objet.
Figure 6.7 – Suivi de turbulences météorologiques : cellules convectives en mouvement
Figure 6.8 – Suivi du contour d’un tigre
Figure 6.9 – Suivi de l’ouragan Vince, par canal infrarouge du satellite Meteosat. La composante de mouvement est fournie par un estimateur de flot optique robuste.

Disparaît ici sur les images d et g, mais le suivi retrouve la silhouette dès la fin de l’occultation. Nous pouvons observer que durant les occultations, l’incertitude augmente sur l’ensemble du contour.
Figure 6.10 – Suivi du mouvement de fonte des glaces au pôle Nord. Une image est prise chaque jour de l’année. Cette première partie couvre l’année 2005.
Figure 6.11 – Suivi du mouvement de fonte des glaces au pôle Nord. Une image est prise chaque jour de l’année. Cette deuxième partie couvre l’année 2006.
Figure 6.12 – Suivi du mouvement de fonte des glaces au pôle Nord. Une image est prise chaque jour de l’année. Cette troisième et dernière partie couvre l’année 2007.
Figure 6.13 – Exemple d’occlusion d’une silhouette se déplaçant derrière des arbres.
Chapitre 7
Prédiction et apprentissage de paramètres

7.1 Introduction

Ce chapitre présente quelques améliorations et fonctionnalités apportées à notre méthode de suivi de courbes qui sont obtenues grâce au filtrage particulier et au type de dérive utilisé dans notre dynamique. En effet, la première partie du chapitre montrera qu’il est possible lorsque l’on a recours à une dérive trajectorielle dans notre dynamique, de prévoir l’évolution du contour suivi à court terme (de l’ordre de 4 ou 5 pas de temps entre observations). La deuxième partie du chapitre s’attachera à montrer qu’il est possible d’estimer directement les coefficients de diffusion σ_n et σ_τ (introduits section 4.3) pendant le suivi.

7.2 Prédiction à court terme

7.2.1 Utilisation de la dérive trajectorielle

Nous avons vu section 5.4 qu’il était possible de combiner la composante de vitesse avec une composante photométrique selon des proportions, $\beta(t)$ et $1 - \beta(t)$ respectivement, qui peuvent varier dans le temps. Or dans le cas de l’utilisation d’une dérive trajectorielle, il est également possible de se passer de cette composante photométrique pour quelques images. Étant donné que la dérive trajectorielle ne dépend pas des observations, cela nous permet de prolonger le suivi sans aucune observation pendant quelques pas de temps.

Pour cela, nous utilisons notre méthode de suivi avec une dérive trajectorielle couplée à une composante photométrique jusqu’au temps t. Nous fixons ensuite $\beta(t) = 1$ et continuons le suivi jusqu’à $t + 5$. Cela nous donne une prédiction entre les temps t et $t + 5$ sans observations. Nous revenons ensuite au temps t et continuons notre suivi normalement jusqu’à $t + 1$ en utilisant l’observation fournie à $t + 1$, et recommençons la prédiction jusqu’à $t + 6$. Ainsi, les prédicitions sont mises à jour à chaque nouvelle observation pour 5 pas de temps.
7.2.2 Quelques résultats de prédiction

Les figures 7.1 à 7.4 nous montrent 4 instants différents d’une même séquence, pour \(t = 17, 22, 28 \) et 40 respectivement. Les prédictions sont affichées de \(t + 1 \) à \(t + 5 \) par les courbes rouges. La courbe jaune est la courbe au temps \(t \) non transportée. La zone suivie est la zone verte au milieu du bleu.

Les résultats sont satisfaisants et on peut voir sur la séquence complète la mise à jour de la prédiction à chaque nouvelle observation. Ainsi, plus une prédiction est proche dans le futur plus elle est précise.

7.3 Apprentissage des paramètres

Notre méthode s’attache à être la plus générale possible afin de s’appliquer pour le suivi d’objets quelconques dans toute séquence imaginable. Un des points négatifs de la dynamique proposée était de devoir fixer manuellement les coefficients de diffusion \(\sigma_n \) et \(\sigma_r \) servant à donner un poids différent au mouvement Brownien tangent et au mouvement Brownien normal. Or ces coefficients \(\sigma_n \) et \(\sigma_r \) peuvent être déduits directement du champ de déplacement entre deux images consécutives, comme nous le montrons ici.

Soit \(u(x, t) \) le déplacement du point \(x \in \Omega \) au temps \(k \) vers sa position correspondante au temps
Figure 7.2 – Résultats de prédiction jusqu’à \(t + 5 \), avec cinq minutes entre chaque observation.

Figure 7.3 – Résultats de prédiction jusqu’à \(t + 5 \), avec cinq minutes entre chaque observation.
Figure 7.4 – Résultats de prédiction jusqu’à $t + 5$, avec cinq minutes entre chaque observation.

$k + 1$, selon l’évolution de la fonction implicite φ entre ces deux instants. Nous supposons que ce déplacement est une version bruitée du déplacement v :

$$u(x, k) = v(x, k) + \sigma_n n dB_{n,t} + \sigma_\perp n_\perp dB_{\perp,t},$$

(7.1)

avec des bruits normaux et tangents à la surface de niveaux φ ayant les mêmes caractéristiques que ceux de l’équation (4.9). Nous supposons donc ici que les bruits de la vitesse observée et ceux de la courbe sont colinéaires et ont la même variance. Nous supposons également que le champ de vitesse de transport est tel que $v(x, t) = E(\mathbf{u}(x, k))/dt$. Les variations de ce déplacement observées le long de la normale et de la tangente nous donnent une estimation des variations de bruit σ_n^2 et σ_\perp^2 :

$$\sigma_n^2 = \frac{1}{N-1} \sum_{i=1:N} \left(\frac{1}{n-1} \sum_{x \in C_i} (dn - E(dn))^2 \right)$$

(7.2)

$$\sigma_\perp^2 = \frac{1}{N-1} \sum_{i=1:N} \left(\frac{1}{n-1} \sum_{x \in C_i} (dn_\perp - E(dn_\perp))^2 \right).$$

(7.3)

Pour l’intervalle de temps entre les deux premières images, les valeurs de ces paramètres sont calculées en partant du champ de vitesse estimé entre les deux premières images, donné par un estimateur de flot optique tel que vu précédemment.
7.4 Conclusion

Nous avons montré dans ce chapitre la possibilité d’une part de prédire le déplacement d’un contour sur plusieurs pas de temps, en utilisant la dérive trajectorielle comme unique transport déterministe et sans recours aux observations, et d’autre part la possibilité d’estimer au fur et à mesure du suivi les coefficients de diffusion de notre dynamique. L’efficacité de la prédiction est montrée sur une séquence météorologique, et l’on voit sur les séquences complètes que la prédiction est actualisée à chaque nouvelle observation pour coller au mieux au contour suivi en fonction du déplacement courant.
Conclusion

Nous avons donc présenté dans cette dernière partie de nombreuses expérimentations des différentes variations de notre méthode. Nous avons ainsi pu montrer que cette méthode de suivi conduit à des résultats cohérents dans le temps et robustes sur des séquences en conditions réelles. Nous avons pu comparer notre méthode à une méthode de segmentation itérative de la littérature et voir les avantages d’un filtrage particulier sur le genre de séquences étudiées. Nous avons également montré l’intérêt d’une telle méthode dans l’analyse et la visualisation de la variance dans le but de quantifier la qualité du résultat final en tout point du contour.

Nous introduisons également dans cette dernière partie certaines fonctionnalités et améliorations possibles de notre algorithme. Nous montrons ainsi la possibilité de faire de la prédiction de déplacement de contour à court terme grâce à l’utilisation d’une dérive trajectorielle dans notre dynamique. Nous présentons enfin une méthode d’estimation à la volée des paramètres de bruit de notre dynamique, ce qui permet de réaliser un suivi dans le cas général sans avoir à fixer à la main ces paramètres.
Conclusion générale et perspectives

Nous nous sommes intéressés dans ce document à la construction d’un filtre bayesien pour le suivi de courbes fermées déformables à partir de séquences d’images et d’une segmentation initiale.

Nous avons exposé dans la première partie un état de l’art du suivi de courbes, par des méthodes de segmentation d’objets, ainsi que dans le cadre de l’assimilation variationnelle. Nous avons également montré les limites de ces méthodes et la nécessité d’un filtrage stochastique pour un suivi efficace dans un contexte général.

Nous avons ensuite introduit une dynamique stochastique pour la déformation de courbes libres et le cadre de filtrage dans lequel nous l’utilisons. Le modèle décrit combine des mesures image en temps discret et une dynamique stochastique en temps continu. Cette dynamique s’appuie sur deux incertitudes différentes sur le déplacement de la courbe, dirigées respectivement le long de la normale à la courbe et le long de la tangente. Elle comprend également un champ de vecteurs de transport que l’on a décliné en deux cas, selon que la dérive est de flot optique ou trajectorielle. Dans le premier cas, le transport est directement issu d’une estimation de flot optique. La deuxième solution prend en compte l’historique de la trajectoire des points de la courbe et cherche à garder une mémoire des déplacements des points de la courbe. Ces différentes options sont ensuite combinées à une force locale extraite de l’image courante. Les mesures prises en compte dans ce modèle sont construites à partir d’histogrammes couleur de l’objet délimité par l’utilisateur sur la première image. La mise en œuvre se fait via un filtre à particules dont la densité proposée équivaut à la simulation en plusieurs pas d’une équation différentielle stochastique discrétisée.

Enfin, la dernière partie a permis de valider notre méthode sur de nombreuses séquences de natures diverses. Les résultats obtenus sont robustes, cohérents dans le temps, et permettent la gestion d’occultations partielles ou totales sur des séquences variées. Nous avons également montré l’intérêt d’une telle méthode dans l’analyse et la visualisation de la variance dans le but de quantifier la qualité du résultat final en tout point du contour.

D’autres fonctionnalités et améliorations possibles sont également présentées dans cette dernière partie. Nous montrons ainsi la possibilité de faire de la prédiction de déplacement de contour à court terme grâce à l’utilisation d’une dérive trajectorielle dans notre dynamique. Cette possibilité est illustrée sur un exemple météorologique complexe. Enfin, nous avons présenté une méthode.
d'apprentissage à la volée des paramètres de bruit de notre dynamique, ce qui permet de réaliser un suivi dans un cas plus général sans avoir à fixer à la main ces coefficients.

Les perspectives liées à ce travail sont nombreuses. Nous allons détailler quelques-unes des possibilités d'améliorations ou d'extensions des méthodes décrites dans ce document.

L'incertitude ajoutée dans la dynamique stochastique de courbe libre telle que décrite section 4.3 est un mouvement Brownien uniforme sur l'ensemble de la courbe, décomposé en deux parties, l'une normale et l'autre tangente à la courbe. Il semble pertinent d'imaginer des incertitudes plus complexes et non uniformes le long de la courbe afin de parcourir un espace plus large. Il faut malgré tout rester prudent afin de ne pas nécessiter une augmentation trop importante du nombre de particules nécessaires dans notre filtre.

Les dérivées décrites chapitre 5 permettent dans un cas de prendre en compte le mouvement global de l'image, et dans l'autre l'historique du déplacement des courbes. Il peut être intéressant de mêler ces dérivées en fonction du type de séquence, afin de garder les avantages des deux solutions. Ainsi, la dérive trajectorielle pourrait être mise en avant dans un cas d'occultation tandis que la dérive de flot optique permettrait une meilleure prise en compte des déplacements non continus.

De même, le calcul de la vraisemblance pourrait être amélioré, limitant ainsi la redondance avec le terme photométrique de type Chan et Vese (tous deux utilisent le même principe de distance d'histogramme, l'un localement, l'autre globalement). Il pourrait par exemple être intéressant d'utiliser d'autres propriétés des objets telles que leur taille, leur forme, etc.

Il serait intéressant de chercher également à améliorer le temps de calcul pris par notre méthode. Malgré une parallélisation des calculs sur une grille de plusieurs centaines de machines, le code n'est pour l'instant pas optimisé suffisamment. Avoir recours aux méthodes de Narrow Band pourrait déjà diminuer ce temps de calcul.

De manière plus générale, il pourrait être intéressant de chercher à combiner ces méthodes probabilistes de suivi avec les méthodes variationnelles présentées chapitre 2, afin de tirer parti des avantages de chacune des méthodes.
Annexes
Annexe A

Résultats de la méthode variationnelle de suivi

Nous présentons ici quelques résultats de la méthode de suivi variationnelle, extraits de [85]. Les résultats présentés ici sont obtenus à partir de trois types de séquences distincts. La première séquence comporte 16 images représentant le déplacement d’une raie sur le sable (fig. A.1). Étant donné que ce genre de poisson possède un mécanisme naturel de camouflage, sa luminance et sa texture sont extrêmement similaires au sable l’entourant. Les contours d’un tel objet sont donc très difficiles à extraire. Pour cette séquence a été utilisé un simple algorithme de segmentation basé sur une sélection de courbes de niveaux d’intensité. Dans le but de démontrer la robustesse de cette méthode de suivi, des observations ont été relevées seulement toutes les 3 images (i.e pour $t = 0, 3, 6, 9, 12, 15$). On peut noter que dans la deuxième ligne de la figure A.1, la forme globale et les positions successives de la raie ont été correctement reproduites à tous les instants t compris entre $t = 0$ et $t = 16$. Les contours bruités et instables qui ont été observés ont été lissés de manière satisfaisante et adéquat. Par exemple, il est intéressant de souligner que la technique utilisée a permis de gérer l’occultation partielle générée par les mouvements de la nageoire ventrale de la raie. (Voir les images (e) à (g) dans la figure A.1.)

La deuxième séquence (Fig. A.2) montre une personne jouant au tennis de table. C’est une séquence comportant 20 images où la caméra effectue un zoom arrière. Les courbes observées sont générées par une technique de détection de mouvement. Pour cette séquence, aucun masque n’a été détecté entre les images (c) et (f). Les masques de contours n’apparaissent donc que pour les images (a) à (b) ; et pour les images (g) à (h). On peut en outre remarquer que les courbes observées varient beaucoup entre deux images consécutives. Par exemple, la raquette n’est pas toujours détectée par la technique de détection de mouvements. La figure A.2 montre un échantillon de courbes observées et les résultats correspondants. On peut observer que les courbes récupérées suivent assez fidèlement la silhouette du joueur même dans les intervalles de temps où il n’a pas été possible d’observer quoi que ce soit.
Figure A.1 – Suivi du contour d’une raie par méthode variationnelle : La ligne du haut montre les courbes fournies comme observation. Les courbes corrigées par la méthode sont au deuxième rang.
Figure A.2 – Suivi du contour d’un joueur de ping pong par méthode variationnelle : La ligne du haut montre les courbes fournies comme observation. Les courbes corrigées par la méthode sont au deuxième rang.
ANNEXE A. RÉSULTATS DE LA MÉTHODE VARIATIONNELLE DE SUIVI

Figure A.3 – Suivi du contour d’une séquence d’images météorologique par méthode variationnelle : La ligne du haut montre les courbes fournies comme observation. Les courbes corrigées par la méthode sont au deuxième rang.

Comme dernier exemple, nous pouvons voir en figure A.3 les résultats obtenus sur une séquence d’images météorologiques d’un canal à infrarouges de Météosat. La courbe observée est une ligne de niveau à valeur donnée dans une région d’intérêt. Ainsi, l’objectif est de suivre une courbe d’isotempérature. Les résultats montrent que la technique proposée garde les propriétés de changements de topologie des courbes de niveau, et inclut dans le même temps une cohérence temporelle a priori.

En ce qui concerne le temps de calcul de la méthode, le code prend moins d’une minute pour une séquence de 20 images. Il est à noter que ce code, écrit en langage C, n’a pas été optimisé. Les différentes intégrations considérées ont été réalisées sur tout le plan de l’image.
Annexe B

Détails du calcul de dérive de vitesse trajectorielle

Le champ ψ suit la même loi d’évolution (4.13) que le champ φ. Nous avons donc pour un y

donné :

$$d\psi^i(y) = b_i^r(y,t)dt + f_i^r(y,t)dB_{n,t} + g_i^r(y,t)dB_{\tau,t}. \quad (B.1)$$

De la même façon que pour φ, la différentielle de $\psi(x,t)$ doit être calculée en utilisant la
formule de Itô-Wentzell :

$$d\psi^i(x,t) = d\psi^i(x) + (\nabla \psi^i)^T d\mathcal{X}$$

$$+ \frac{1}{2} \sum_{i,j} d\left(\mathcal{X}^i, \mathcal{X}^j\right) \frac{\partial^2 \psi^i}{\partial x_i \partial x_j} + \sum_{t} d\left(\frac{\partial \psi^i}{\partial x_t}, \mathcal{X}^t\right)$$

$$= d\psi^i(x) + (\nabla \psi^i)^T w_n^*_i dt$$

$$+ \sigma_n (\nabla \psi^i)^T \frac{\nabla \varphi}{|\nabla \varphi|} dB_{n,t} + \sigma_\tau (\nabla \psi^i)^T \frac{\nabla \varphi^\perp}{|\nabla \varphi|} dB_{\tau,t}$$

$$+ \frac{dt}{2|\nabla \varphi|^2} A_i + dt \frac{\sigma_n}{|\nabla \varphi|} F_i + dt \frac{\sigma_\tau}{|\nabla \varphi|} G_i = 0, \quad (B.2)$$

avec

$$A_i = \sigma_n^2 \nabla \varphi^T \nabla^2 \psi^i \nabla \varphi + \sigma_\tau^2 (\nabla \varphi^\perp)^T \nabla^2 \psi^i \nabla \varphi^\perp,$$

$$F_i = \frac{\sigma_n}{|\nabla \varphi|} \nabla \varphi \left[\nabla^2 \psi^i \nabla \varphi + \nabla^2 \varphi \nabla \psi^i \right.$$

$$- \frac{1}{|\nabla \varphi|^2} \left((\nabla \psi^i)^T \nabla \varphi \nabla^2 \varphi \nabla \varphi \right) \right],$$

$$G_i = \frac{\sigma_\tau}{|\nabla \varphi|} (\nabla \varphi^\perp)^T \left[\nabla^2 \psi^i \nabla \varphi^\perp + \nabla^2 \varphi \nabla \psi^i \right.$$

$$- \frac{1}{|\nabla \varphi|^2} \left((\nabla \psi^i)^T \nabla \varphi^\perp \nabla^2 \varphi \nabla \varphi \right) \right]. \quad (B.3)$$

Cela nous amène donc à :

$$f^i(x,t) = -\sigma_n (\nabla \psi^i)^T \frac{\nabla \varphi}{|\nabla \varphi|}, \quad (B.4)$$
\[g'(x,t) = -\sigma_t (\nabla \psi)^T \frac{\nabla \varphi}{|\nabla \varphi|} \]
(B.5)

et

\[b'(x,t) = - (\nabla \psi)^T w_n^* - \frac{1}{2} A_i - F_i - G_i. \]
(B.6)

On peut donc réinjecter \(f', g' \) et \(b' \) dans l'équation B.1, ce qui nous donne pour la différentielle de \(\psi(x,t) \):

\[
d\psi^i(x) = - (\nabla \psi)^T v^*_n dt \\
- \sigma_n (\nabla \psi)^T \frac{\nabla \varphi}{|\nabla \varphi|} dB_{n,t} - \sigma_t (\nabla \psi)^T \frac{\nabla \varphi}{|\nabla \varphi|} dB_{t,t} \\
- \frac{dt}{2|\nabla \varphi|^2} A_i + dt \frac{\sigma_n}{|\nabla \varphi|} F_i + dt \frac{\sigma_t}{|\nabla \varphi|} G_i = 0, \]

(B.7)
Table des figures

1 Exemples d’images météorologiques rencontrées ... 12

1.1 Vue en coupe de la courbe et modélisation par lignes de niveau : exemple de changement de topologie sur la courbe ... 23

1.2 Illustration du modèle de Chan et Vese sur un exemple simple. Seule la courbe Γ dessinée dans (d) minimise la fonction J ... 25

1.3 Illustration de la méthode de Narrow Band : $C_{B1} \subset C_{B2}$. C évolue uniquement à l’intérieur de C_{B2}. Les bandes sont mises à jour lorsque C atteint une frontière de C_{B1} ... 27

2.1 Figure présentant l’algorithme 4D-Var. Une intégration rétrograde de la variable adjointe est réalisée (courbe "analyse") après l’intégration de la condition initiale x_0 (courbe "estimation"). Cette intégration rétrograde suit les différences de mesure entre observations et estimation. On corrige alors la trajectoire par un incrément ∂x_0 (courbe "trajectoire corrigée") ... 34

3.1 Graphe de dépendance .. 46

4.1 Repère de couleur tridimensionnel .. 62

5.1 Problème de l’ouverture : Seule la composante parallèle au gradient du déplacement peut être estimée. La composante orthogonale n’est jamais mesurable. 67

6.1 Suivi du contour d’un lion en pleine course. Sur la ligne du haut, la composante de mouvement est fournie par un estimateur de flot optique robuste. La deuxième ligne présente la même séquence avec un enchaînement de segmentations. 80

6.2 Suivi du contour d’un skieur et de son ombre. Sur la ligne du haut, la composante de mouvement est fournie par un estimateur de flot optique robuste. La deuxième ligne présente la même séquence sans cette composante de mouvement. 81
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Suivi de turbulences météorologiques ((a - d)) et exemples de trajectoires et vitesses de points basées sur une séquence d'échantillons obtenus par filtrage partiels ((e - h)).</td>
</tr>
<tr>
<td>6.4</td>
<td>Suivi de images sur une séquence de 110 images. La zone suivie (en vert) est une zone de fortes pluies et orages.</td>
</tr>
<tr>
<td>6.5</td>
<td>Suivi du contour d'une méduse. L'objet est ici extrêmement déformable.</td>
</tr>
<tr>
<td>6.6</td>
<td>Suivi d'une méduse, en utilisant une technique déterministe de type Chan et Vese.</td>
</tr>
<tr>
<td>6.7</td>
<td>Suivi de turbulences météorologiques : cellules convectives en mouvement.</td>
</tr>
<tr>
<td>6.8</td>
<td>Suivi du contour d'un tigre.</td>
</tr>
<tr>
<td>6.9</td>
<td>Suivi de l'ouragan Vince, par canal infrarouge du satellite Meteosat. La composante de mouvement est fournie par un estimateur de flot optique robuste.</td>
</tr>
<tr>
<td>6.10</td>
<td>Suivi du mouvement de fonte des glaciers au pôle Nord. Une image est prise chaque jour de l'année. Cette première partie couvre l'année 2005.</td>
</tr>
<tr>
<td>6.11</td>
<td>Suivi du mouvement de fonte des glaciers au pôle Nord. Une image est prise chaque jour de l'année. Cette deuxième partie couvre l'année 2006.</td>
</tr>
<tr>
<td>6.12</td>
<td>Suivi du mouvement de fonte des glaciers au pôle Nord. Une image est prise chaque jour de l'année. Cette troisième et dernière partie couvre l'année 2007.</td>
</tr>
<tr>
<td>6.13</td>
<td>Exemple d'occlusion d'une silhouette se déplaçant derrière des arbres.</td>
</tr>
<tr>
<td>7.1</td>
<td>Résultats de prédiction jusqu'à (t + 5), avec cinq minutes entre chaque observation.</td>
</tr>
<tr>
<td>7.2</td>
<td>Résultats de prédiction jusqu'à (t + 5), avec cinq minutes entre chaque observation.</td>
</tr>
<tr>
<td>7.3</td>
<td>Résultats de prédiction jusqu'à (t + 5), avec cinq minutes entre chaque observation.</td>
</tr>
<tr>
<td>7.4</td>
<td>Résultats de prédiction jusqu'à (t + 5), avec cinq minutes entre chaque observation.</td>
</tr>
<tr>
<td>A.1</td>
<td>Suivi du contour d'une raie par méthode variationnelle : La ligne du haut montre les courbes fournies comme observation. Les courbes corrigées par la méthode sont au deuxième rang.</td>
</tr>
<tr>
<td>A.2</td>
<td>Suivi du contour d'un joueur de ping pong par méthode variationnelle : La ligne du haut montre les courbes fournies comme observation. Les courbes corrigées par la méthode sont au deuxième rang.</td>
</tr>
<tr>
<td>A.3</td>
<td>Suivi du contour d'une séquence d'images météorologique par méthode variationnelle : La ligne du haut montre les courbes fournies comme observation. Les courbes corrigées par la méthode sont au deuxième rang.</td>
</tr>
</tbody>
</table>
Table des algorithmes

2.1 4D-Var .. 33
Bibliographie

Résumé

L'analyse conjointe du mouvement et des déformations est cruciale dans un grand nombre d'applications de vision par ordinateur. Cette thèse propose d'introduire un filtre stochastique non linéaire afin de suivre une courbe libre dans le temps. L'approche proposée est implémentée à travers un filtre particulier inchant des mesures colorimétriques caractérisant respectivement la cible et le fond. La dynamique impliquée est formulée sous la forme d'une équation différentielle stochastique. Cela permet d'avoir une représentation continue de la trajectoire de la courbe, et d'être ainsi capable d'en déduire les déformations entre images. La courbe est définie par une courbe de niveau implicite, et la dynamique stochastique s'exprime sur cette dernière. Cela prend la forme d'une équation différentielle stochastique avec un mouvement Brownien de faible dimension. Dans ces modèles d'évolution sont combinées les informations de mouvement locales extraites des images et un modèle d'incertitude de la dynamique. Le filtrage associé proposé pour le suivi de courbes appartient ainsi à la famille des filtrages particulaires conditionnels. Ses capacités sont vérifiées sur différentes séquences contenant des objets fortement déformables.

Abstract

The joint analysis of movement and deformation is crucial in many computer vision applications. This thesis proposes a stochastic non-linear filter to track a free curve in time. The proposed approach is implemented through a particle filter including colorimetric measurements characterizing respectively the target and the background. The involved dynamics is formulated as a stochastic differential equation. This allows a continuous representation of the curve trajectory, and thus the possibility to deduce the deformation between images. The curve is defined by an implicit level set, on which the stochastic dynamics is expressed. This takes the form of a stochastic differential equation with a Brownian motion of small dimension. We combined in these evolution models a local motion information extracted from the images and a model of the uncertainty of the dynamics. The associated filter proposed for curve tracking thus belongs to the family of conditional particle filters. Its capabilities are tested on different sequences containing highly deformable objects.