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Résumé en Français

Contexte des Travaux

L’analyse d’écoulements de fluide est une pierre angulaire dans nombre de disciplines scienti-
fiques et techniques. Les études d’aérodynamique préalables à la conception d’avions ou à l’implé-
mentation d’un parc éolien, la prévision météorologique à court terme tout comme la simulation
du changement climatique, et bien entendu la physique fondamentale des fluides ; ces exemples
s’appuient tous, à des degrés et des échelles variés, sur des analyses d’écoulements. Mais avant
toute analyse, il est nécessaire de s’assurer de la connaissance de l’état de l’écoulement en question
– c’est à dire, de le décrire à partir de certaines, sinon toutes, des grandeurs caractéristiques que
sont la vitesse, la pression, la température. . . S’il est souvent possible de recourir à des simulations
numériques, ces dernières peuvent néanmoins s’avérer complexes ou coûteuses à mettre en oeuvre.
Par ailleurs, certaines de ces approches numériques se “nourrissent” de mesures réelles, c’est donc
à ces dernières que nous nous intéresserons ici, et plus particulièrement à la mesure de la vitesse.

Les mouvements de fluides ont une nature complexe, qui est modélisée par les célèbres équations
de Navier-Stokes. Lorsque le fluide est dans un état turbulent, ses mouvements font intervenir un
grand nombre de tourbillons et vortex qui interagissent sur une vaste gamme d’échelles spatiales
et temporelles. La description d’un tel écoulement demande donc de tenir compte de l’évolution
spatiale et temporelle de ces structures, aussi finement que possible ; c’est ici que les choses se
corsent. L’expérimentateur se heurte en effet à un dilemme : d’un coté, l’utilisation de sondes,
par exemple l’anémométrie par fil chaud, permet d’obtenir une mesure très fine de l’évolution
temporelle, mais qui reste limitée à un point unique de l’espace. Il est bien entendu possible d’utiliser
un réseau de capteurs pour obtenir plusieurs mesures simultanées, mais cela augmente la complexité
du dispositif et peut s’avérer intrusif pour l’écoulement, tout en ne fournissant qu’une résolution
spatiale très grossière. D’un autre coté, les structures et le comportement d’un écoulement sont très
simplement mises en évidence aux yeux de l’expérimentateur par l’utilisation de traceurs : colorant,
fumée, petites particules (Figure 1). . . Ou, plus naïvement, nuages, écume ou feuilles mortes, dont
l’observation du mouvement renseigne immédiatement tout un chacun sur la direction du vent ou
du courant sous-jacent . Il est ainsi possible de mettre en évidence puis d’analyser qualitativement
des phénomènes complexes de la mécanique des fluides, comme le montre le célèbre album de
photographie de M. van Dyke An Album of Fluid Motion [43]. Mais alors, comment tirer partie,
d’un point de vue quantitatif, de ces observations ?

C’est ici que la mécanique des fluides rencontre la vision par ordinateur. Ce domaine s’inté-
resse à l’étude des mécanismes de la vision humaine, et au développement d’approches artificielles
similaires. Acquisition d’image, reconnaissance de formes, mais aussi estimation de mouvement
sont quelque-uns des nombreux aspects du problème. Ces techniques ont grandement bénéficié du
développement exponentiel, à la fin du XXe siècle, de l’informatique et de l’imagerie numérique, au
point d’être aujourd’hui utilisées dans des applications aussi diverses que le suivi des inondations
par satellite, la compression vidéo, la navigation autonome (voitures, drones, . . .), l’archéologie ou
la chirurgie (e.g. reconstruction 3D). La porte est alors ouverte à l’utilisation de ces techniques,
en particulier l’estimation de mouvements à partir de d’images, dans le cadre de l’observation de
fluides présentée plus tôt. Il s’agit donc de mettre en place une visualisation de l’écoulement consi-
déré, d’en réaliser un enregistrement numérique à l’aide d’une caméra adéquate, et enfin de traiter
les images obtenues pour en extraire le mouvement supposé.

xi
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Figure 1 – Visualisation, à l’aide de particules, de l’écoulement autour d’une dune en forme de
croissant (barkhane, forme sombre en haut). La recirculation créée à l’abri de la dune montre des
trajectoires complexes à faible vitesse, tandis que l’écoulement extérieur présente des trajectoires
quasi rectilignes et des vitesses beaucoup plus élevées.

Remarque. Afin d’éviter d’allonger inutilement cette synthèse, certains symboles utilisés ci-après
ne sont pas explicités dans cette partie. Le lecteur est invité à se reporter au besoin à la liste des
Notations & Abréviations page ix.

Approches Usuelles
Si le concept est simple, sa mise en pratique l’est cependant bien moins. Il est important de

garder à l’esprit que les méthodes décrites ci-après se proposent d’estimer le mouvement apparent,
ou flux (flot) optique, qui est la projection 2D, dans le plan de l’image, du mouvement réel a priori
3D. On utilise alors les variations temporelles et spatiales d’une quantité observable de l’image,
telle que la luminance, pour déterminer le mouvement apparent entre deux images consécutives.

Estimation de mouvement – premiers concepts

Il s’agit, dans un premier temps, de relier le champ de vitesse inconnu aux données image.
L’équation qui s’en charge est appelée modèle de données, elle découle souvent d’une hypothèse
de conservation de la luminance (intensité lumineuse) le long de la trajectoire d’une particule. En
notant I(x, t) la luminance en un point de l’image x ∈ Ω et à un instant t et v(x, t) le champ de
vitesse apparente que l’on cherchera à estimer,

dI(x, t)

dt
=
∂I

∂t
(x, t) + v(x, t) · ∇I(x, t) = 0 . (1)

A ce stade, une première difficulté surgit. En effet, de par l’équation ci-dessus, seule la composante
de mouvement perpendiculaire aux courbes d’iso-intensité de l’image peut être déduite ; cette situa-
tion est connue comme le problème de l’ouverture. Puisqu’aucune information sur la composante
tangentielle n’est disponible, une infinité de solutions est envisageables – le problème d’estima-
tion est donc sous-déterminé. En outre, la composante perpendiculaire ne peut être estimée qu’en
présence de gradients spatio-temporels de luminance non nuls, ce qui pose un nouveau problème
d’indétermination à l’intérieur d’éventuelles zones uniformes. Afin de lever cette indétermination,
il est ainsi nécessaire d’ajouter un mécanisme de régularisation, qui, avec le modèle de données,
constituent les deux aspects fondamentaux du problème d’estimation de mouvement.
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Méthodes d’estimation

La technique la plus répandue se nomme Digital Image Correlations (DIC), elle réalise un
ensemble de mesures indépendantes et locales sur des sous-régions de l’image. Il s’agit ici de corréler
une région (fenêtre) de la première image avec une autre région de la seconde image ; le vecteur qui
engendre un pic maximal de corrélation est gardé comme une mesure du déplacement au centre
de la fenêtre en question. Le modèle de données est ici la fonction de corrélation croisée, et la
régularisation est imposée par un vecteur constant sur une fenêtre donnée, fenêtre dont la taille
doit être choisie de façon à contenir suffisamment d’information pour s’affranchir du problème
d’indétermination. En considérant un sous-ensemble de points de l’image ΩC ∈ Ω, le problème
d’estimation s’écrit

∀x ∈ ΩC , v̂(x) = argmin
v

∑
y∈W (x)

− (I1(y + v)− µ1(x+ v)) (I0(y)− µ1(x))

σ2
1(x+ v)σ2

0(x)
, (2)

où µj(x) et σj(x) sont des estimations de la moyenne et la variance de la luminance de l’image
Ij , sur une fenêtre W (x) centrée en x ∈ ΩC . Les principaux inconvénients de cette méthode sont,
d’une part que le modèle de données et la régularisation sont fixes, d’autre part que la résolution du
champ obtenu est plus grossière que les images d’origine (typiquement, un vecteur tous les 4 pixels).
En revanche, elle est robuste, s’implémente efficacement grâce à la transformée de Fourier rapide, et
comme les mesures sont indépendantes, elle est en outre fortement parallélisable. Les corrélations
fonctionnent particulièrement bien avec les images de particules (Particle Image Velocimetry, PIV),
elles sont ainsi couramment utilisées en laboratoire.

Une seconde famille de méthodes, dites paramétriques, régularise le problème en adoptant une
formulation paramétrique locale. Tout comme la méthode des corrélations, ces approches reposent
sur un ensemble de sous-régions de l’image. A l’intérieur de chaque région, le champ de vitesse
recherché est exprimé en fonction d’un petit nombre de paramètres. Les champs obtenus sont
typiquement constant, affines ou quadratiques par morceaux. Le problème d’estimation s’écrit par
exemple : 

v(x) = Φ(x)θ ,

θ̂x = argmin
θ

1

2

∫
W (x)

g(x− y)
[
∂tI(y) +∇I(y) · Φ(y)θx

]2
dy ,

(3)

où θx est le jeu de paramètres pour la fenêtreW (x), et g une fonction de pondération donnant plus
d’importance aux pixels y proches de x (typiquement, une gaussienne). L’estimateur de Lucas &
Kanade [27], couramment employé, s’appuie sur une formulation constante par morceaux.

Une troisième famille de méthodes, enfin, s’attache à fournir une solution globale via la minimi-
sation d’une fonctionnelle définie sur tout le domaine de l’image. Par abus de langage, ces méthodes
sont généralement appelées optical flow (flux, flot optique), bien que formellement les approches
paramétriques ou par corrélations croisées mesurent également le flux optique. Le problème peut
s’exprimer comme :

v̂ = argmin
v

Jdata(I,v) + αJ
reg

(v)

= argmin
v

1

2

∫
Ω

[
fdata(I(x, t),v(x, t))

]2
dx+

α

2

∫
Ω

[
freg(v(x, t))

]2
dx

(4)

où fdata et freg sont le modèle de données et la régularisation, respectivement, et α un paramètre
scalaire qui équilibre les deux termes de la fonctionnelle. Les modèles de données les plus fréquem-
ment employés découlent de (1) ; selon que l’on garde la dérivée particulaire ou que l’on l’intègre
entre deux instants, on obtient les modèles connus sous les noms d’Optic Flow Constraint (OFC)
et de Displaced Frame Difference (DFD). En notant I0(x) = I(x, t) et I1(x) = I(x, t + 1) la
luminance de deux images successives dans la séquence considérée, ces modèles s’écrivent :

(OFC) I1(x)− I0(x) + v(x) · ∇I1(x) = 0 ; (5)
(DFD) I0(x)− I1(x+ v(x)) = 0 . (6)

L’OFC (5) est linéaire en v, ce qui facilite grandement la minimisation de la fonctionnelle. Ce
modèle n’est en revanche valide que pour de petits déplacements (dans la zone de linéarité de la
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luminance), de sorte qu’en pratique il est nécessaire de l’imbriquer dans un schéma de minimisation
incrémental. Ces schémas réalisent une succession d’estimations, à partir d’approximations d’abord
grossières, puis de plus en plus fines, des images. La solution du problème est donnée par la somme
des mouvements estimés aux différents étages de la “pyramide” d’images ainsi constituée. Ces
approches ont l’inconvénient de geler, à un étage donné, les estimés précédemment obtenus. La
DFD (6) est non-linéaire en v, ce qui complexifie le problème de minimisation. En revanche, elle
n’est pas restreinte aux petits déplacements. Ses limites découlent plutôt de l’existence de minima
locaux, qui peuvent notamment surgir dans le cadre de grands déplacements. Enfin, les termes de
régularisation tendent classiquement à privilégier une solution “lisse”, en pénalisant les gradients
trop importants :

J
reg

(v) =
1

2

∫
Ω

|∇v1(x)|2 + |∇v2(x)|2 dx . (7)

Ce lissage au premier ordre a été introduit par Horn & Schunck [20]. Un des grands avantages des
méthodes de flux optique est leur modularité : il est en effet possible d’adapter le modèle de données
et le terme de régularisation aux spécificités des images et du type de mouvement considérés. En
outre, ces approches retournent un champ dense, soit un vecteur par pixel ; elles permettent ainsi
l’estimation d’échelles plus fines que les méthodes précédentes. En revanche, elles impliquent un
bien plus grand nombre d’inconnues : pour des images de 1024× 1024 px, il y a 2 097 152 variables !
Enfin, comme la fonctionnelle est globale, la parallélisation est moins évidente.

Approches dédiées aux fluides

Les méthodes de corrélations croisées sont largement employées, et toujours développées [4].
Des systèmes complets, comprenant lasers, caméra, cartes d’acquisition et logiciel de traitement
sont ainsi disponibles sur le marché, tout comme des solutions libres.

Les approches paramétriques et denses ont été explorée plus récemment, en mécanique des
fluides expérimentale comme en géophysique. On trouve ainsi un modèle de données basé sur l’équa-
tion de continuité [11, 16], une modélisation paramétrique par “particules” de vortex et source [12],
ou linéaire par morceaux [2]. Du coté des termes de régularisation, les lissages au premier ordre
(7) sont peu adaptés : ils pénalisent du même coup la vorticité et la divergence du mouvement, qui
sont des quantités essentielles à la bonne représentation d’un écoulement. Des schémas d’ordre su-
périeurs, adaptés à ces quantités, ont ainsi été proposés [2, 11, 38, 45]. D’autres approches intègrent
directement des contraintes issues de la physique des fluides et de la modélisation de turbulence.
Il est ainsi possible d’imposer une divergence nulle [2, 45], ou de reproduire des caractéristiques
spectrales de la turbulence [18].

Problématique

Au vu des développements précédents, les challenges posés dans le cadre de ces travaux sont
les suivants :

– Proposer une méthode dense, accédant aux fines échelles du mouvement.
– Intégrer un formalisme multiéchelle, pour éviter dans la mesure du possible d’utiliser des
approches pyramidales (comme avec l’OFC), et pour tenir compte de la nature fortement
multiéchelle des mouvements de fluides turbulents.

– Offrir des schémas de régularisations généraux ou adaptés aux fluides, et simples à implé-
menter.

– Maintenir une complexité de calcul satisfaisante.
L’approche proposée se base sur une représentation en ondelettes du champ de vitesse estimé. Les
ondelettes constituent en effet des bases naturellement multiéchelle, qui rappellent favorablement la
structure multiéchelle des écoulements. Ces outils ont ainsi été utilisés à des fins d’analyse [29], de
simulation [13, 22] ou de modélisation [15] d’écoulements turbulents. Dans le cadre d’estimation de
mouvement, les ondelettes ont été également remarquées pour leurs propriétés multiéchelle [5, 44],
tout comme pour l’élaboration de schémas de régularisation [10]. Enfin, l’existence de transformées
rapides permet une implémentation efficace de l’algorithme envisagé.
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Ondelettes – quelques concepts
Les ondelettes permettent de mettre en place un cadre d’analyses multirésolutions (MRA)

de L2(R). Conceptuellement, il s’agit d’espaces d’approximation imbriqués notés Vj , d’échelle j
décroissante 1, vérifiant notamment :

∀j ∈ Z, Vj+1 ⊂ Vj ; (8)

∀(j, k) ∈ Z2, f(t) ∈ Vj ⇔ f(t− 2jk) ∈ Vj ; (9)
∀j ∈ Z, f(2t) ∈ Vj ⇔ f(t) ∈ Vj+1 ; (10)

lim
j→+∞

Vj =

+∞⋂
j=−∞

Vj = {0} ; (11)

lim
j→−∞

Vj = Clôture

 +∞⋃
j=−∞

Vj

 = L2(R) (12)

La propriété (8) traduit l’imbrication des espaces Vj , tandis que (10) permet de calculer une
approximation plus grossière dans Vj+1 à partir de celle de Vj . La MRA de L2(R) est formée
par l’ensemble {Vj}j∈Z [28].

Les espaces d’approximation Vj étant imbriqués, il peuvent être décomposés selon :

Vj = Vj+1 ⊕Wj+1 . (13)

Ces Wj sont les compléments des espaces d’approximation, ils sont appelés espaces de détails. Le
concept de décomposition en ondelettes réside dans cette association entre espaces d’approximation
et de détails, combinée à la propriété d’imbrication : un signal donné est récursivement séparé en
une approximation et les détails qui lui sont associés, de sorte qu’au terme du procédé ne restent
qu’une approximation grossière et un ensemble de détails à plusieurs échelles. Le signal peut être
reconstruit par l’opération inverse, qui réassocie à une approximation ses détails pour récupérer
une approximation plus fine, etc. Ces transformations sont illustrées Figure 2.

(a)

⇔

(b)

⇔

(c)

Figure 2 – Exemple d’une transformée en ondelettes 2D (ici dyadique et isotrope). L’image en
entrée (a) est transformée en (b) : une approximation grossière (coin supérieur gauche) et des
détails (tout le reste), et le processus peut être répété (c) et/ou inversé pour récupérer (a). Les
détails nuls apparaissent en blanc.

Bases, coefficients et transformées rapides

Selon la manière dont sont définis les Wj , on obtient des bases orthogonales ou biorthogonales
pour les différents espaces d’approximation et de détails. Les fonctions de ces bases sont construites

1. Voir Remarque 1 page x sur la notation des échelles.
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par des dilatations et des translations 2 de la fonction d’échelle et de l’ondelette “mères”, respective-
ment notées ϕ et ψ . La décomposition d’un signal f ∈ L2(R) jusqu’à une approximation grossière
d’échelle C ∈ Z s’écrit par exemple :

f(x) =
∑
k∈Z

aC,kϕC,k(x) +
∑
j≤C

∑
k∈Z

dj,kψj,k(x) , (14)

où les {aC,k}k et {dj,k}j,k sont les coefficients d’approximation et de détails, respectivement, et
sont donnés dans le cas orthogonal par les produits scalaires :

aC,k = 〈f ; ϕC,k〉L2 and dj,k = 〈f ; ψj,k〉L2 .

On retrouve bien dans (14) une approximation grossière à l’échelle C et une somme de détails à
des échelles plus fines j ≤ C. En pratique, les signaux considérés sont discrets et finis. Dans ce
cadre, on construit des bases de L2([0, 1]) au lieu de L2(R) ; l’approche la plus simple consiste à
périodiser les diverses fonctions de la base originale en les enroulant sur [0, 1]. L’échelle accessible
la plus grossière est toujours C = 0, tandis que la plus fine correspond à la discrétisation initiale
du signal (F < 0 pour un signal de 2−F échantillons).

Enfin, grâce à la propriété d’imbrication (8), les fonctions d’échelles et les ondelettes vérifient
les relations d’affinage, ici données dans le cas orthogonal :

ϕ1,0(x) =
1√
2
ϕ(
x

2
) =

+∞∑
n=−∞

h[n]ϕ0,n(x) , avec h[n] = 〈ϕ1,0 ; ϕ0,n〉 ;

ψ1,0(x) =
1√
2
ψ(
x

2
) =

+∞∑
n=−∞

g[n]ϕ0,n(x) , avec g[n] =
〈
ψ1,0 ; ϕ0,n

〉
;

(15)

Les séquences h et g sont appelées filtres miroir conjugués ; ces filtres permettent la mise en oeuvre
de la transformé en ondelettes rapide (FWT). Les coefficients d’approximation et de détails sont
ainsi calculés récursivement, à travers des bancs de filtres, par des opérations de décimation/ex-
pansion et de convolution avec h et g :

aj+1,p =

+∞∑
n=−∞

h[n− 2p]aj,n ;

dj+1,p =

+∞∑
n=−∞

g[n− 2p]aj,n ;

aj,p =

+∞∑
k=−∞

h[p− 2n]aj+1,n +

+∞∑
k=−∞

g[p− 2n]dj+1,n

(16)

Les algorithmes de décomposition/reconstruction ainsi constitués ont une complexité linéaire du
nombre d’échantillons signal considéré. Tous ces concepts sont ensuite étendus sans difficulté au cas
2D, pour former des bases séparables de L2(R2) et L2([0, 1]2). Selon la manière dont on réalise la
décomposition, on aboutit en outre à une transformée isotrope (cas présenté Figure 2) ou anisotrope.

Applications particulières
Bases à divergence nulles

La décomposition de Helmholtz sépare un champ de vitesse suffisamment régulier en ses com-
posantes à vorticité nulle (irrotationelle) et à divergence nulle (solénoïdale) :

v =

(
v1

v2

)
∈ L2(R2)× L2(R2)⇒ v = vcurl + vdiv ;

avec vcurl ∈ Hcurl(R2) =
{
v ∈ (L2(R2))2 , curl(v) = ∂x1v2 − ∂x2v1 = 0

}
,

et vdiv ∈ Hdiv(R2) =
{
v ∈ (L2(R2))2 , div(v) = ∂x1v1 + ∂x2v2 = 0

}
.

(17)

2. Voir Remarque 2 page x.
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La composante irrotationelle vcurl correspond à la présence de puits ou de sources dans l’écoulement,
tandis que la partie solénoïdale vdiv est liée aux structures tourbillonnaires. Dans les équations de
Navier-Stokes pour un fluide incompressible, la densité constante implique un champ à divergence
nulle. Dès lors, il peut être intéressant de s’assurer que le champ de vitesse estimé par le flot
optique vérifie cette contrainte de divergence nulle. Une possibilité consiste à construire des bases
de Hdiv(R2) pour le problème d’estimation, afin de reconstruire explicitement des mouvements à
divergence nulle.

A cet effet, on considère la fonction courant, notée ici z ∈ H1(R2), tel que v = curl(z) ∈
Hdiv(R2). On construit ensuite une MRA et une base d’ondelettes pour la fonction courant (dans
H1(R2)), de telle sorte que le curl 3 de ces ondelettes produise une nouvelle MRA et une base
d’ondelettes biorthogonales à divergence nulle (dans Hdiv(R2)). Cette construction, non triviale,
fait intervenir des résultats sur les dérivées et primitives d’ondelettes et fonctions d’échelles [22, 25].
A terme, on obtient des relations directes entre les coefficients représentant la fonction courant z,
notés ddiv

j,k, et ceux notés dij,k représentant chaque composante scalaire vi, i = 1, 2 du champ à
divergence nulle v = curl(z) :

d1
j,k = 2j2+2ddiv

j,k , (18)

d2
j,k = −2j1+2ddiv

j,k , (19)

ddiv
j,k =

1

2j1+2 + 2j2+2
(d1

j,k − d2
j,k) . (20)

Il est à noter que l’implémentation pratique (signaux discrets et finis) de telles bases comporte
quelques difficultés supplémentaires qui doivent être abordées convenablement.

Equivalence de norme et coefficients de connexion

Les propriétés de dérivation d’une ondelette permettent de construire une équivalence entre,
d’une part la norme L2 de la n-ième dérivée d’une fonction donnée, d’autre part une pondération
de la norme l2 des coefficients représentant cette fonction dans une base d’ondelettes appropriée
[24]. Cette équivalence peut s’écrire, dans le cas 1D, comme :∥∥∥∥dnfdxn

∥∥∥∥
L2

∼
∥∥(−4)n2njdj,k

∥∥
l2
, (21)

où les dj,k sont les coefficients d’ondelettes représentant f . Cette relation permettra plus loin
d’élaborer de simples schémas de régularisation.

D’autres schémas de régularisation plus généraux, moins simplistes, peuvent être construits en
utilisant les coefficients de connexion de la base d’ondelettes considérée. Ces coefficients corres-
pondent à des termes de forme〈

ϕi,p ; ϕ
(n)
j,k

〉
L2

=

∫
R
ϕi,p(x)

dnϕj,k
dxn

(x)dx . (22)

Les relations d’affinage (15) permettent de calculer simplement les coefficients de connexion d’une
base d’ondelettes donnée [7], par le biais d’un problème de vecteurs propres et d’une transformée
en ondelettes.

Méthodes Proposées
Les ondelettes ont déjà été utilisées dans un contexte d’estimation de mouvement. Bernard [5]

projette l’OFC (5) sur une base multiéchelle, pour construire un schéma d’estimation incrémental.
Il n’introduit pas de terme explicite de régularisation, mais utilise à la place l’hypothèse d’un
déplacement constant sur le support des fonctions de la base, et obtient finalement un ensemble de
petits problèmes linéaires à inverser. L’approche de Wu & Kanade [44] est similaire à celle retenue
ici : seul le champ de vitesse est projeté sur une base multiéchelle. Les coefficients sont estimés en

3. Le curl d’un champ scalaire z(x) est donné par (∂x2z,−∂x1z)
T – voir Notations page ix.
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minimisant l’erreur incrémentale quadratique de la DFD (6), en procédant séquentiellement des
échelles les plus grossières vers les plus fines. A chaque nouvelle échelle de détails, les coefficients
précédemment estimés sont utilisés comme point de départ de la minimisation. L’ondelette de Cai-
Wang [8] qu’ils utilisent leur permet de calculer directement les coefficients à une échelle donnée,
là où les ondelettes plus classiques demandent de calculer d’abord tous les coefficients aux échelles
plus fines par les bancs de filtres (16). Un inconvénient de leur approche est le temps de calcul :
il est nécessaire de recalculer la matrice hessienne du problème à chaque nouvelle échelle, puis la
méthode de minimisation (Levenberg-Marquard) demande d’inverser un système linéaire de très
grande taille, ce qui devient rapidement prohibitif à mesure que l’on considère des échelles de
plus en plus fines ou des images de grande taille. Enfin, l’absence de mécanisme de régularisation
complique l’estimation aux plus fines échelles, ou lorsque les images sont peu texturées. Enfin, Chen
et al. [10] implémentent un estimateur de Horn & Schunck [20]. Chacun des termes de l’OFC au
carré (e.g. [∂x1I1]2), tout comme le champ de vitesse, est projeté sur une base d’approximation (non
multiéchelle), et le terme de régularisation au premier ordre (7) est évalué à partir des coefficients
de connexion (22). Un système de très grande dimension est finalement assemblé, puis inversé.
Bien que précise, cette approche est également couteuse. En outre, elle n’intègre pas d’aspect
multiéchelle, ce qui peut compliquer l’estimation de grands déplacements.

Notre approche reprend certains de ces concepts : le champ uniquement est projeté sur une
base multiéchelle, et ses coefficients sont estimés successivement en partant des échelles grossières
jusqu’aux plus fines. Diverses régularisations sont proposées, en tronquant la base, ou s’appuyant
sur l’équivalence de norme (21) ou les coefficients de connexion (22). La méthode de minimisation
L-BFGS permet finalement de conserver une complexité satisfaisante.

Représentation du champ de vitesse

Chaque composante scalaire vi du champ v recherché est projetée sur une base d’ondelettes
multiéchelle. On note Θi l’ensemble des coefficients (approximation et détails) représentant vi, et
Θ est l’ensemble de tous les coefficients représentant v :

Θ =

(
Θ1

Θ2

)
. (23)

On écrit alors :
∀x ∈ Ω, vi(x) = ΦT (x)Θi , i = 1, 2 ,

v(x) = ΦT (x)Θ .
(24)

où Φ(x)est un vecteur contenant les valeurs des fonctions de base en x, et Φ s’écrit :

ΦT (x) =

(
ΦT (x) 0 · · · 0
0 · · · 0 ΦT (x)

)
. (25)

En pratique, toutes les transformées en ondelettes directes (décomposition) ou inverses (reconstruc-
tion) sont réalisées par les bancs de filtres. Les inconnues du problème d’estimation sont à présent
les coefficients Θ, et le problème original (4) devient : v̂(x) = ΦT (x)Θ̂ , ∀x ∈ Ω

Θ̂ = argmin
Θ

Jdata(I,Θ) + αJ
reg

(Θ) .
(26)

Modèle de données

Les modèles de données sont simplement obtenus en replaçant v par ΦT Θ. Le terme de données
pour la DFD devient par exemple :

Jdata(I,Θ) =
1

2

∫
Ω

[
I0(x)− I1(x+ ΦT (x)Θ)

]2
dx. (27)
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L’évaluation de son gradient par rapport à Θ est nécessaire à la minimisation du problème. Il est
très rapide de montrer que pour un coefficient θi,p ∈ Θi quelconque, on a

∂Jdata(Θ)

∂θi,p
=

〈[
I0(·)− I1(·+ ΦT (·)Θ)

]∂I1(·+ Φ(·)T Θ)

∂xi
; φp

〉
L2([0,1]2)

, (28)

où φp est l’atome de la base correspondant à θi,p. Ainsi, les composantes du gradient sont simple-
ment donnés par les coefficients résultant de la transformée en ondelettes, sur la base considérée,
des deux termes : [

I0(·)− I1(·+ ΦT (·)Θ)
]∂I1(·+ Φ(·)T Θ)

∂xi
pour i = 1, 2 . (29)

L’utilisation de l’OFC (5) au lieu de la DFD, ou d’une base à divergence nulle (17) au lieu des
bases usuelles, ne pose pas de difficulté particulière.

Tout comme la méthode de Wu & Kanade [44], notre approche estime séquentiellement les
coefficients, échelle par échelle, de la plus grossière à la plus fine. A une échelle donnée, les co-
efficients précédemment estimés font toujours partie des inconnues, de sorte qu’ils continuent à
être mis à jour cependant que les nouveaux coefficients de détails sont estimés. Le mouvement
est ainsi recherché et mis à jour dans des espaces imbriqués de résolution de plus en plus fine,
jusqu’à atteindre l’échelle fine F souhaitée. Pour limiter le coût en calcul malgré le grand nombre
de variables, nous nous appuyons sur l’algorithme de minimisation l-BFGS [32] qui approxime la
hessienne et ne nécessite pas de stocker la matrice complète.

Régularisations

Une première approche consiste à réduire le nombre d’inconnues en tronquant la base considérée
aux petites échelles. Typiquement, les coefficients du mouvement correspondant aux deux ou trois
espaces de détails les plus fins ne sont pas estimées. On retrouve alors une formulation de type
paramétrique (3), et ici, la solution est une approximation polynomiale par morceaux, dont le
degré dépend de la régularité (du nombre de moments nuls) des fonctions de la base considérée.
Cette approche a le mérite d’être extrêmement simple, mais ne permet pas d’estimer les plus fines
échelles du mouvement. En outre, le choix de l’échelle de coupure n’est pas forcément évident. Trop
grossière, et le mouvement estimé risque de manquer d’énergie, Trop fine, et les incertitudes du
problème d’ouverture engendrent une solution fortement irrégulière, en l’absence de terme explicite
de régularisation.

Une seconde alternative, appelée “approximation discrète”, repose sur l’équivalence de norme
(21). Elle permet d’approcher des termes de la forme

J reg(v) =
1

2

∑
i,p=1,2

∥∥∥∥∂nvi∂xnp

∥∥∥∥2

L2

(30)

directement par des pondérations des coefficients Θ du champ de vitesse v. Dans le cadre d’une
transformée isotrope, on obtient ainsi :

J
reg

(v) ∼ J
reg

(Θ) =
1

2

∑
i=1,2

∑
j,k

(4nj)
∣∣dij,k∣∣2 . (31)

L’évaluation de ces termes est peu couteuse, puisqu’elle ne demande que des multiplications point
à point de matrices et des sommes.

Une troisième option, enfin, utilise les coefficients de connexion (22). Cette approche, appelée
“approximation continue”, permet l’élaboration de schémas beaucoup plus évolués tout en assurant
une évaluation plus précise. Les schémas obtenus s’écrivent comme une somme de termes de la
forme :

· · · ±Θi :
(
N (n1)ΘjN

(n2)T
)
± · · · (32)

où Θi est la matrice des coefficients représentant vi, et N (n1), N (n2) sont deux matrices obtenues à
partir des coefficients de connexion, matrices qui ne dépendent que de la base choisie et de l’ordre
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de dérivation et peuvent donc être précalculées. A titre d’exemple, le schéma de régularisation du
gradient de la vorticité s’écrit :

Jreg(Θ) =
1

2

∫
Ω

|∇ curl(v)(x)|2 dx

=
1

2
Θ1 :

(
N (0)Θ1N

(4) +N (2)Θ1N
(2)
)

+
1

2
Θ2 :

(
N (4)Θ2N

(0) +N (2)Θ2N
(2)
)

−Θ1 :
(
N (3)Θ2N

(1)T
)
−Θ2 :

(
N (1)Θ1N

(3)T
)
.

(33)

Cette approche est plus couteuse, puisque chaque terme de type (32) demande trois multiplications
matricielles.

Résultats

Les estimateurs proposés sont dans un premier temps testés et validés sur deux séquences syn-
thétiques, pour lesquelles le déplacement effectif est connu, permettant ainsi des mesures d’erreur.
Deux types d’images, habituellement employés dans le cadre de visualisation d’écoulements, sont
ici considérés : particules et advection/diffusion d’un scalaire. Les influences des divers paramètres
(nombre d’échelles, type et nombre de moments nuls de l’ondelette, régularisation. . .) et le domaine
de fonctionnement optimal sont mis en avant à travers plusieurs séries d’expériences. Il est ainsi
possible de conclure favorablement à l’intérêt d’une base multiéchelle, ainsi qu’à l’avantage net de
la DFD sur l’OFC, même lorsque cette dernière est imbriquée dans un cadre incrémental. Si le
mouvement sous-jacent est effectivement à divergence nulle, les bases tronquées à divergence nulle
s’avèrent particulièrement efficaces, tout comme les bases usuelles avec pénalisation explicite de la
divergence, en particulier si les images sont faiblement texturées. Sur les images de particules, les
méthodes présentées dépassent l’état de l’art ; elles sont en revanche légèrement moins performantes
sur les images de scalaire.

Dans un deuxième temps, les méthodes sont appliqués à des images réelles de PIV, corres-
pondant à deux configurations classiques de mécanique des fluides expérimentale : le sillage de
cylindre à Reynolds 3900, et la couche de mélange turbulente. Les champs estimés sont comparés à
ceux fournis par les corrélations croisées (2) et des sources externes (littérature ou anémométrie),
sur la base de quantités statistiques utilisées pour la description d’écoulements turbulents. Sur le
cas du cylindre, les résultats donnés par les deux approches vision (corrélations croisées et flot
optique) sont souvent très proches, avec toutefois une résolution supérieure pour les estimés de
la méthode proposée. A titre d’exemple, une comparaison de la vorticité calculé à partir de deux
estimés est présentée Figure 3 ; le gain apporté aux fines échelles y est clairement visible. L’expé-
rience de couche de mélange permet de mettre en avant les limites posées par l’utilisation de bases
périodiques, qui peuvent entrainer une “pollution” du champ estimé près des bords de du domaine.
Elle semble également suggérer que l’utilisation d’images comportant de grands déplacements (∼10
pixels), nécessaires au bon fonctionnement des corrélations croisées (contrairement au flot optique),
peuvent détériorer la qualité des estimés, notamment pour les structures les plus rapides.

Les solutions proposées remplissent globalement les objectifs fixés. Il serait néanmoins intéres-
sant d’améliorer la gestion des conditions de bords. Si les temps de calculs sont acceptables (d’une
dizaine de seconde, pour des images de 256× 256 px à quelques minutes pour des 1024× 1024 px),
il reste des efforts à fournir pour atteindre des objectifs de temps réel. Un gain important se trouve
probablement du coté des convolutions des transformées en ondelettes, à travers une implémenta-
tion GPGPU. Les bases à divergence nulle peuvent sembler anecdotiques ici, dans la mesure où
les mouvements apparents 2D d’un écoulement 3D ne sont pas à divergence nulle. En revanche,
dans le cadre d’estimation de mouvements 3D, actuellement en développement, elles pourraient
s’avérer un outil puissant si le coût en calcul reste acceptable. Enfin, un autre aspect important
concerne les critères de qualité des estimés, en l’absence de vérité terrain. Le choix de ces critères
et le développement des algorithmes en conséquence ne peut se faire sans l’appui des utilisateurs,
spécialistes en fluides, expérimentateurs et techniciens.
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Figure 3 – Comparaison de la vorticité obtenue pour deux estimés différents, par corrélations
croisées (haut) ou flot optique avec régularisation du second ordre (bas). Cas du sillage de cylindre.

Organisation du Document
Outre cette synthèse en français et une courte introduction, ce document est organisé en quatre

grandes parties. La première, qui recouvre le contexte des travaux, développe tout d’abord les as-
pect liés à la mécanique des fluides et la visualisation d’écoulements (Chapitre 1), puis à la vision
par ordinateur et l’estimation de mouvement (Chapitre 2). La seconde partie, plus mathématique,
introduit les bases ondelettes, les transformées et leur propriétés (Chapitre 3), puis certaines ap-
plications parmi lesquelles les bases à divergence nulle (Chapitre 4). La troisième partie détaille
les méthodes proposées, en s’attachant tout d’abord au terme de données (Chapitre 5), puis aux
régularisations (Chapitre 6) et enfin à certains aspects de l’implémentation (Chapitre 7). La qua-
trième partie procède à l’évaluation des algorithmes, sur les cas synthétiques dans un premier temps
(Chapitre 8) puis sur les images expérimentales réelles (Chapitre 9). Enfin, en annexe se trouvent
les détails de l’implémentation pratique des bases à divergence nulle (Annexe A), et sur le coût
en calcul des bancs de filtres (Annexe B). Une liste des figures est par ailleurs disponible page vii,
ainsi qu’un récapitulatif des notations et abréviations employées page ix.
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Introduction

General Problematic

From fluid-structure interactions in aircraft design to wind farm conception, from very short-
term rain forecast to climate change simulation, the comprehension of fluid dynamics phenomenons
influences our direct environment on a very wide range of scales. If some aspects of fluid dynamics
are now well-described, many others, such as turbulence, are still only partially understood despite
extensive studies.

Figure 4: Observation of laminar-to-turbulence transition in a pipe flow, as drawn by Osborne
Reynolds in his An experimental investigation of the circumstances which determine whether the
motion of water in parallel channels shall be direct or sinuous and of the law of resistance in parallel
channels paper, 1883 [37].

Tackling such a demanding subject requires adequate tools. Aside from direct observation, the
only available option remained for a long time “probe-like” measurements, in the sense that it gives
a temporal evolution, on a single spacial point, of a physical quantity. As such, it does not enable to
recover an instantaneous, spatially dense measure – unless, of course, an array of probes is employed
to record simultaneous measurements in different locations, which is not without adding issues. Yet
the second half of the XXth century has seen a flourishing breakthrough in microelectronics and
informatics that made available the ingredients for another category of measurement approaches.
The development of CCD sensors gave rise to the digital photography, which now extends from our
mobile phones to earth observation satellites. With the help of the ongoing increase of computing
power, computer vision algorithms were soon designed to extract information from images, e.g.
objects recognition, 3D reconstruction, or, more interesting to us, motion estimation. A wide
family of methods, known as optical flow, indeed enables to recover the apparent motion in an
image sequence. These methods rely on a so-called data-model, which links image data to the
unknown apparent motion.

Adapting these computer vision approaches to the context of fluid motion estimation was an-
other issue, due to the specificities of fluid flows. One has to cope with particular structures like
eddies, complex 3D displacements over a wide range of spatial and temporal scales, . . . Today, the
most operational and widely used method is probably the Particle Image Velocimetry, where photos
of a fluid flow seeded with particles are processed with a cross-correlations software. This method
however has the drawback of returning estimated velocity vectors on a grid coarser than input
image data. Dense methods (i.e. returning a dense motion field, contrary to the cross-correlations)
are available, but suffer from other issues, e.g. their poor ability to deal with large displacements
and their computational efficiency due to the very high number of unknowns involved. Moreover,
adding extern priors is mandatory, as image data itself does not contain all the necessary informa-
tion to recover the motion with certainty. This is known as the aperture problem, and is shared by
other motion estimation approaches as well. The choice of this prior – the regularizer – is of high
importance, as it largely influences the characteristics of the returned motion estimate.

We believe that dense estimation methods deserve to be developed and used. By giving access to

1
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smaller structures otherwise invisible in cross-correlations estimates, they enable a more complete
comprehension of flow dynamics. Moreover, their flexible framework allows the use of various
data-models and regularizers that can be chosen accordingly to the specificities and physics of the
investigated images and flow.

The Question

From previous remarks, our objective is to find a suitable representation for the motion, com-
patible with fluid flow specificities while being adapted to dense optical flow methods.

Regarding the fluid aspect, the critical points are the kinematic properties of the fluid – notably
a wide range of motion scales and amplitudes – and the computational efficiency, from the very
high number of variables involved. The mathematical tool known as wavelets may answer these
two points. Wavelets are functions verifying a few specific properties, they can be used to design
particular bases in which signals are represented. The (often) compact support of these functions
leads to a fast implementation widely known as the Fast Wavelet Transform (FWT). Moreover,
wavelet form intrinsically multiscale bases, which echoes to the multiscale nature of fluid dynamics.
In this context, wavelets have been first used for turbulent flow analysis [29], then to build specific
bases (e.g. divergence-free) for flow simulation purpose, while handling boundary conditions [13, 22].
Wavelet-based turbulence models have been proposed as well [15].

Within the motion estimation context, we need to design general regularizers to close the
estimation problem. From the sensitivity of these methods to large displacements, a multiscale ap-
proach is also mandatory. Once again, wavelets seem to provide an appropriate answer. They have
been noticed already for their multiscale properties [5, 44]. The computation of their connection
coefficients enabled Chen et al. [10] to implement a first order (Horn & Schunk) regularizer.

The proposed work combines and extends these ideas: a wavelet representation of the motion
field leading to a “natural” multiscale sequential estimation, fluid-dedicated regularizers built from
wavelet properties, divergence-free bases to incorporate a physical constraint, while keeping in mind
the computational efficiency of the overall algorithm.

Overlook on the Dissertation

This document is organized as follows. Part I explicits the context of this work, starting with
fluid dynamics before addressing the computer vision aspects. Part II is more mathematical, as it
introduces the wavelet framework and some of its applications later used. Next Part III presents the
proposed wavelet-based optical flow approach and its implementation. Technical details, especially
related to divergence-free bases implementation, are also available in appendices Part V. Resulting
algorithms are finally evaluated on synthetic and real data in Part IV. Note that a table of figures is
available after the table of content page vii, as well as a list of the main notations and abbreviations
used in this document page ix.
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Chapter 1

Fluid Motion and Turbulence

1.1 Flow Visualization Methods

When I was taught surfing, a very important topic – even before any technical aspect – was the
observation and analysis of our playground. Sat on the top of a dune, we looked at the tide, wave’s
amplitude and period of course; even more important for safety considerations were the wind and
the surface currents. One option among many to determine wind direction is to grab a handful of
sand, drop it slowly and watch it as it flies away. Regarding the currents, the easiest way is to look
at the foam, or at other surfers as they are transported by the flow. These two situations are simple,
yet legitimate examples of the use of passive tracers to infer the otherwise invisible flow motion –
just like looking at fallen leaves, or clouds, passing by. Indeed, flow visualization techniques have
been used for a long time to enlighten some characteristics, behaviors or structures of fluid flows.
M. Van Dyke’s An Album of Fluid Motion [43] is a remarkable compilation of black and white shots
illustrating many different aspects of fluid dynamics and featuring several visualization techniques.
Most of these visualization methods fall within the two families presented below.

Now, since we – as human beings – are able to make pertinent analyses from the observation
of the aforementioned tracers, next stage consists in developing computer programs that mimic
our eyes-brain faculties in order to process flow visualization pictures and extract the underlying
motions, in a more systematic and efficient way than we could do. This step, obviously much
more recent, is detailed in Chapter 2: “Motion Estimation and Inverse Problems”. For now, let us
present some visualization methods.

Figure 1.1: Clouds reveal the presence of a von Kármán vortex street, as the wind hits one of the
Juan Fernandez Island (located top-left).

5
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Passive Tracers

Methods using passive tracers might involve the addition of external objects – our tracers –
to the flow: sand, foam and leaves in our introductory examples; more realistically smoke, oil,
dye, small bubbles, . . . are employed. Generically named particles, their passive nature means their
characteristics (weight, shape, size, . . . ) do not perturb the flow to be studied in which they are
added – flow is said to be “seeded”. Flow behavior may then be deduced from the observation
of tracer motions: Figure 1.2 shows an example of flow visualization using particles, and gives a
quick interpretation of the visible structures. Figure 1.1 is another example exploiting clouds as
tracers. The most common images, from laboratory experiments, rely on small particles of smoke,
or oil or water droplets. Such images are usually processed using particle image velocimetry (PIV)
algorithms. Other images feature the transport and diffusion of a passive scalar quantity, such as
dye concentration, water vapor concentration or sea surface temperature. . . These images might
be taken by satellite imagery devices, and do not necessarily correspond to the visible range of
the electromagnetic spectrum. Pictures of sea surface temperature, for instance, are often taken
at specific wavelengths in the infrared spectrum – an example is displayed Figure 1.3. Contrary
to particle images, scalar-transport images often show almost uniform, low textured areas, which
makes them more complicated to process. The reason is explained in Chapter 2.

Figure 1.2: This image results from the combination (average) of 500 successive PIV frames,
revealing particle trajectories – this is somehow equivalent to taking a single long-exposure shot.
The dark, crescent-shaped area on the top of the picture is a sand dune – a “barchan” – viewed
from above. This dune is plunged into a water stream, going downward on the picture. Left and
right, almost straight particle trajectories reveal this main stream. Below (more exactly, behind)
the dune, particle paths are more complex: this is the recirculation, a lower velocity region due to
the shield created by the dune.

Optical Methods

In a given fluid, density gradients caused by flow motion result in local variations in the fluid
refractive index. Optical methods exploit light ray distortions, caused by these local variations,
to visualize structures in the flow: lighter regions correspond to positive density gradients, darker
regions to negative gradients. The two main methods are the shadowgraph and the schlieren
photography (Figure 1.4).
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Figure 1.3: An example of sea surface temperature (SST) image, in the Gulf of Mexico region.
Cold waters are in purple-blue, warm waters in orange-red. This image is computed thanks to
AVHRR instrument of satellite Metop, mixing measurements from four different channels (one in
the visible range, three in the infrared range). Clouds unfortunately block the wavelengths at which
photographs are taken, resulting in grey areas with no data available. SST can be considered as a
passive scalar; its temporal evolution reveals the underlying currents and surface motions.

1.2 Basic Fluid Dynamics
Fluid dynamics is modeled by the Navier-Stokes equations, presented here for an incompressible

newtonian fluid. In this simplified form, the system has four unknowns – three components of the
velocity field v, and a scalar pressure field p:

v(x, t) =

v1(x, t)
v2(x, t)
v3(x, t)

 ∈ R3 and p(x, t) ∈ R, x ∈ R3 . (1.1)

The incompressible Navier-Stokes equations write:

div(v) = ∇ · v = 0 ; (1.2)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + f . (1.3)

Equation (1.2) specifies a volume conservation; it is derived from the mass conservation principle
along with the incompressibility hypothesis. Velocity field v is here divergence-free, which means
there are neither sources nor sinks in the flow. Equation (1.3) is the momentum conservation, where
ρ is the constant density (incompressible fluid), p is the pressure, µ the fluid cinematic viscosity
and f the external forces.

Since (1.3) is a vector equation, the full incompressible Navier-Stokes system is made of four
partial differential equations. From convection term v ·∇v, momentum conservation equations are
non-linear in v. Taking the divergence of 1.3 together with the divergence-free constraint, we have:

∆p = − div(v · ∇v − f) .

Pressure is hence solution of a Poisson equation, which has a redistribution effect on the whole
resolution domain. This non-local characteristic, associated to the non-linear advection term,
makes the specificity of the Navier-Stokes equation. There is generally no analytical solution
to the system, save for a very few specific cases; even the numerical resolution is known to be
challenging.

When the convection term v · ∇v becomes prominent, non-linearities have other consequences.
First, the system is much more sensitive to its initial and boundary conditions: it impacts consid-
erably the accuracy of predictions of the system evolution from a given state, unless this state is
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(a) (b)

Figure 1.4: Two examples of visualization by schlieren photography of a bi-dimensional flow on
the surface of a soap film. Figure 1.4a shows vortices of comb-generated turbulence. Figure 1.4b
is another manifestation of the von Kármán instability previously shown in Figure 1.1.

perfectly known – a major issue in meteorology, for instance! Second, the flow may develop chaotic
behaviors. This specific regime, known as turbulence, is more precisely studied hereafter.

1.3 Turbulence

Turbulence characterizes the state of a fluid flow. Arising from non-linearities in the momen-
tum conservation equation (1.3), turbulence is described mathematically by chaotic fluctuations of
flow variables v, p, as well as a higher sensitivity to initial and boundary conditions. Physically,
turbulent flows exhibit complex and highly tri-dimensional motions over a wide range of scales and
amplitudes, by contrast with laminar flows which have slower and more regular behaviors.

Giving a robust description of turbulence phenomenology is challenging and out of the scope
of this dissertation; this section rather aims at giving intuitions on the most important aspects of
turbulence physics before introducing a few models. Readers looking for an extensive yet pedagogic
presentation might refer to Chassaing [9] (in French) or Bernard [6] (in English). Classical books
include e.g. Yaglom & Monin [31].

1.3.1 Easy Phenomenology

An immediate, visual criterion characterizing turbulent flows might be their numerous vortical
structures, giving turbulent flow a rather “irregular” look – see Figure 1.4a. In other words,
turbulent flows have a non-zero vorticity, where the vorticity is defined as the curl of the velocity
field:

ω = curl(v) = ∇× v . (1.4)

These vortices and eddies, which appear over a wide range of scales, are responsible for the energy
transfer mechanism inside the flow. Biggest structures are influenced by flow configuration (notably,
the geometry), their size being about the same as the characteristic scale of the flow (e.g. the width
of a canal, the diameter of a cylinder, . . . ). At this scale, viscous effects are negligible. Kinetic
energy, initially given to these large-scale structures by the mean flow, is progressively transferred
to smaller and smaller vortices through complex, non-linear interactions, unless these vortices reach
a critical size known as the Kolmogorov scale. There, viscous dissipation finally balances inertial
forces, so kinetic energy is transformed into heat by molecular dissipation. The process of energy
transfer through scales is known as the energy cascade – Figure 1.5.
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Figure 1.5: An illustration of the energy cascade occurring in turbulent flows.

Ratio between inertial and viscous forces in Navier-Stockes equations (1.3) is therefore an impor-
tant point to describe turbulence mechanisms. This ratio may be quantified through dimensional
analysis, for a given flow configuration, by the dimension-less Reynolds number noted Re:

Re =
ρvL

µ
, (1.5)

with ρ, µ the fluid density and the dinamic viscosity, and v, L are characteristic velocity and scale
of the flow, respectively. At “small” Re, viscous forces of the diffusion term dominates, flow is
laminar. At “high” Reynolds, the convection term and its non-linearities control the behavior of
the flow, which can be turbulent.

Turbulent flows are also characterized by the apparent loss of the symmetries present in the
Navier-Stokes equation. These symmetries are however restored in the statistical point of view of
isotropy and homogeneity. A statistic description is therefore preferred to the usual deterministic
point of view. Studied quantities include for instance the velocity increment structure functions:

(transversal) St(s, p) = E [|(v(x+ sl)− v(x)) · t|p] = E [δvt(x, s)
p] , (1.6)

(longitudinal) Sl(s, p) = E [|(v(x+ sl)− v(x)) · l|p] = E [δvl(x, s)
p] (1.7)

= E [δvl(s)
p] ∀x, l if homogeneous and isotropic (1.8)

where E[·] is the expectation, δvl(x, s) and δvt(x, s) the longitudinal and transversal velocity
increments at scale s and point x, respectively; l, t are the longitudinal and transversal directions,
and p is the order. The skewness and flatness, the third and fourth normalized moments of a
random variable, are also considered. They are given by:

(skewness) γ1 = E

[(
X − µ
σ

)3
]
, (1.9)

(flatness) β2 = E

[(
X − µ
σ

)4
]
, (1.10)

with X the random variable, µ and σ its mean and variance.
To make a long story short, the ideas on turbulent motions to be kept for the following are:
– they present complex, irregular motions featuring vortical structures;
– energy is redistributed by a cascade-like mechanism over a wide range of scale;
– they require a statistical description.
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Chapter 2

Motion Estimation and Inverse
Problems

In the previous chapter, we established how the vision-based observation and analysis of fluid
flow dynamics are made possible. The first step consists in setting up a visualization method to
enlighten some structures or behaviors of the flow – using particles, smoke, shadows, etc. The
observer is then able to make suppositions on the dynamics of the flow, using the same tools as
in his everyday life – his eyes to capture the visual information, his brain to process it. The
processing step, although very natural and unconscious, is actually extremely complex: involving
shape and pattern recognition as well as distance and motion estimation, it also relies on some
“prior” knowledge progressively collected from birth.

Computer vision is the field dedicated to the study and development of the automated coun-
terpart to human vision. Similarly, it involves tasks such as data acquisition, object recognition,
motion estimation, machine learning and so on, in order for the system to observe and analyze
its surrounding environment. Applications include for instance navigation (autonomous drones,
driverless cars, . . . ) detection (video surveillance, satellite-based monitoring of forest fires, floods
or crops, . . . ), 3D reconstruction (medical imagery, cinema, . . . ) [17].

Getting back to fluid dynamics, our concern is here restricted to the motion estimation task
only. Resulting motion fields can be later used for turbulence dynamics study by researchers, or
injected into a data assimilation scheme in the context of meteorological prediction, etc. Let us note
already that more complex processes have already been set up, featuring for instance recognition
and tracking of specific structures of the flow – cyclones [34], convective cells [3] – or even flow
control [40]. This chapter starts by presenting the general concepts behind motion estimation
methods, then focuses on the fluid-dedicated approaches.

2.1 Motion Estimation Context

Optic flow aims at recovering the apparent 2D displacement of a 3D scene depicted by a sequence
of images, typically obtained from a camera. The time and space variations of an observable image
quantity, e.g. its brightness, are used to infer the underlying motion occurring in the image plane
between two consecutive frames.

2.1.1 From Images to Motion: a First Intuition

In the following, we will denote by Ω ⊂ R2 the image domain. Our observable image quantity
is noted I(x, t) at pixel x ∈ Ω and discrete time index t – see Figure 2.1. The apparent motion,
as a 2D vector field v(x, t) : Ω × N 7→ R2, is the observable projection on the image plane of the
actual 3D motion. As such, it does enable to recover any actual motion component normal to the
image plane, unless a stereoscopic imaging system is employed.

In order to recover the apparent displacement, the first required ingredient is an equation linking
the observable image quantity I to the underlying motion v: the data term. Such equations are

11
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time

domain

frame

frame

apparent motion?

Figure 2.1: An example of image sequence.

usually built upon assumptions on the behavior of photometric invariants. The most simple and
widely used models rely on the assumption of the brightness consistency along an image point
trajectory, thus involving the transport equation:

dI

dt
(x, t) =

∂I

∂t
(x, t) + v(x, t) · ∇I(x, t) = 0. (2.1)

However this assumption is not necessarily valid in the presence of illumination changes from one
frame to the next, occlusions, or motions components normal to the image plane.

2.1.2 The Aperture Problem

Although being fairly intuitive, consistency assumption (2.1) has a major drawback: it does
not provide any information on the motion component normal to the brightness gradient. Or
equivalently, only motions perpendicular to image contours can be inferred. Writing v(x, t) =
vN (x, t) + vT (x, t), with vN and vT the components respectively normal and tangential to the
luminance level sets, equation (2.1) gives:

∂I

∂t
(x, t) + [vN (x, t) + vT (x, t)] · ∇I(x, t) = 0

⇒ vN (x, t) = − ∂tI(x, t)

‖∇I(x, t)‖
∇I(x, t)

‖∇I(x, t)‖ .
(2.2)

The impossibility to determine the tangential component vT leads to an ambiguous state, since
different kinds of motion could possibly fit. This situation is named the aperture problem; it is
illustrated by Figure 2.2. In order to close the estimation problem, it is necessary to resort to
regularization schemes applied to the estimated motion – this will be our second ingredient. These
regularizations compensate the lack of information from images, often by enforcing continuity
properties or parametric expressions of the solution. Classically, spacial smoothing terms are
employed.

From (2.2), it is clear that no motion can be estimated as soon as any of the temporal or
spacial gradients (∂tI(x, t) or ∇I(x, t), respectively) vanishes. This problematic situation occurs
in particular with images featuring constant, uniform areas: inside such regions no information
is available from our brightness consistency assumption – in other words, there exists an infinite
number of solutions. From this last remark, we can directly conclude that optic flow methods in
general will behave better on textured images.
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Figure 2.2: An illustration of the aperture problem. A gradient-filled rectangular object is diago-
nally shifted between time t and t+ 1. However, within the given observation window, luminance
gradient of the rectangle remains always horizontal (level sets are vertical). Therefore the horizon-
tal motion component (normal to level sets) is immediately identified, but the vertical component
(tangential to level sets) cannot be inferred visually.

2.2 Motion Estimation Methods: a Quick Overview
We have established in Section 2.1.1 and 2.1.2 that a motion estimation method features two

main aspects: the data term (or data model), to link the estimated motion to image data, and a
regularization term to compensate for local lack of information. Let us now introduce the three most
common types of estimation methods. Some more specific wavelet-based variants may be quickly
mentioned hereafter; they will be more extensively presented in Chapter 5 after the preliminary
introduction of wavelets.

2.2.1 Digital Image Correlations
This family of methods, named digital image correlations, performs independent local esti-

mations on subregions of the images. The idea is to correlate a small region of the first image
with a translated region of the second image; the translation vector inducing a correlation peak is
considered to be the displacement at the center of the considered region.

A set of small windows W (x) centered at various points x of a subset ΩC ∈ Ω of the image
domain is considered. For each window, the algorithm looks for the constant displacement v that
minimizes the (normalized and centered) cross-correlation function:

∀x ∈ ΩC , v̂(x) = argmin
v

∑
y∈W (x)

− (I1(y + v)− µ1(x+ v)) (I0(y)− µ1(x))

σ2
1(x+ v)σ2

0(x)
, (2.3)

where µj(x) and σj(x) are estimations of the mean and the variance, respectively, of image j
brightness over window W (x) centered at x. Here, the data term is the cross-correlation func-
tion. Regularization is implicitly defined by the size of windows W (x), over which the sought
displacement is assumed to be constant. The window should be large enough to contain enough
information for the matching process to overcome local uncertainties due to the aperture problem.
Such methods usually produce sparse motion fields, i.e. at a much lower resolution than input im-
ages. Evolved methods have been proposed, for instance to adapt locally the shape and orientation
of the window [4]. Nevertheless, their efficient implementation in the Fourier domain and relative
robustness has broaden their use, leading to widely used commercial solutions.
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time t time t+1

Figure 2.3: Illustration of the correlation-based method. At time t, window W (x) (red area) is
centered at x ∈ ΩC (white dots). At time t+ 1, the green area W (x+ v) is the translated region
that maximizes cross-correlations (2.3). The according translation vector v is the displacement at
point x. With the given grid, windows W (x) have 50% overlay; here 9 vectors will be obtained
(one per white dot).

2.2.2 Parametric Formulations

Another approach to tackle the aperture problem consists in adopting a local parametric for-
mulation of the motion field v:

v(x) = Φ(x)θ , (2.4)

where Φ(x) is a 2×pmatrix that depends on the chosen parametrization only and θ is the parameter
vector of size p. Similarly to correlation methods, a set of subregions is considered. In each area
W (x), parameters θx are estimated by the minimization of a functional based on the brightness
consistency (2.1):

θ̂x = argmin
θ

1

2

∫
W (x)

g(x− y)
[
∂tI(y) +∇I(y) · Φ(y)θx

]2
dy , (2.5)

where g is a weighting function giving more importance to pixels y closer to the center x –
typically, a gaussian function. Affine or quadratic parametrization can be considered, resulting
in a piece-wise affine (or quadratic) motion. The well-known Lucas & Kanade estimator uses a
constant parametrization [27]; the wavelet-based estimator proposed by Bernard [5] also relies on
this assumption.

2.2.3 Differential Methods and Dense Estimation

A third family of methods aims at estimating dense motion fields, that is to say to get one
velocity vector at every pixel of the considered images, vector which is dependent on other velocities
in the neighborhood (by opposition to the correlations). These methods are often named optic flow,
although from our first definition correlations-based and parametric approaches are also optic flow
methods. Hence, in the following optic flow will refer explicitly to dense estimation methods.

Contrary to the two previous approaches which work locally, optic flow methods look for a
global solution through the minimization of a functional, similar to an energy, defined over time
and image domains:

v̂ = argmin
v

Jdata(I,v) + αJreg(v)

= argmin
v

1

2

∫
Ω

[
fdata(I(x, t),v(x, t))

]2
dx+

α

2

∫
Ω

[
freg(v(x, t))

]2
dx

(2.6)

where function fdata is the data model (it depends on motion v and images I), freg is the regu-
larization term (depends on v and its derivatives only, and possibly on some extern parameters),
and α is a scalar parameter that balances the two terms. Apart from returning dense fields, a
remarkable interest of optic flow methods lies in the wide choice of data and regularization terms,
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which might be adapted to the nature of images, the behavior of the observed quantity and the
specificities of the sought motion field. Horn and Schunck described in their famous 1981 article
[20] the first design of such a dense motion estimator. They introduced a data model based on
the brightness consistency assumption, which is now known as the optical flow constraint, and a
first-order smoothing regularization term.

Before going into details, we have to keep in mind that estimation of a dense field involves
a (very) high number of unknowns: with a square image of N × N = N2 px, the corresponding
dense 2D motion field has 2N2 values. Even with images as small as 256× 256 px, 131 072 different
values have to be estimated. Considering instead 1024× 1024 px images, the number of unknowns
rises up to 2 097 152. Numerical resolution of problems involving such a high number of variables is
to be addressed carefully. Furthermore, not only the aperture problem leads to uncertainties, but
there are twice more unknowns than independent measurements (two unknowns per pixel), so that
the estimation problem is even more underconstrained. Hence regularization is of very important
matter.

Data Models

The two data terms presented below are obtained from the brightness consistency assumption
(2.1). Nevertheless, a wide range of other models have been proposed.

From now on, we will denote by I0 and I1 the two successive frames of size N × N pixels at
time t and t+ 1, respectively:

I0(x) , I(x, t) and I1(x) , I(x, t+ 1) , ∀x ∈ Ω . (2.7)

The optic flow constraint (OFC) is directly obtained from the brightness consistency assumption
(2.1). Time derivative ∂tI is replaced by a finite difference. With ∆t = 1, one gets:

(OFC) I1(x)− I0(x) + v(x) · ∇I1(x) = 0 (2.8)

This model is linear in v.
The displaced frame difference equation (DFD) is the integrated version of OFC, obtained by

integrating (2.1) between t and t + 1, under the assumption of a constant displacement during
the image inter-frame latency (v(x, t) = v(x)). Contrary to the later, it remains valid whatever
the motion amplitude. It is, however, non linear in v, and thus requires a specific optimization
strategy.

(DFD) I0(x)− I1(x+ v(x)) = 0 (2.9)

Regularizations

A common strategy consists in adding a regularization term J
reg

(v) to the data-term functional,
as in (2.6). The most simple choice is to drive the estimation toward a “smooth” solution, using a
first-order regularization introduced by Horn & Schunck [20] that penalizes strong gradients:

J
reg

(v) =
1

2

∫
Ω

|∇v1(x)|2 + |∇v2(x)|2 dx . (2.10)

Many other, more complex schemes have been proposed in order to deal with the multiple natures of
motions to be recovered – e.g. dealing with discontinuities. Some of these schemes, more adapted to
fluid motion estimations, will be detailed later in Section 2.3. An issue, common to any penalization
term, concerns the choice of parameter α that balances the relative importance given to the data
model or to the regularization. Let us note that the estimation of the balance parameter α is a
difficult problem in its own. This hyper-parameter estimation problem can be solved by tools such
as bayesian selection, as well as with various criterions such as the L-curves.
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Figure 2.4: Illustration of the restriction of OFC (2.8) validity to displacements laying within the
linear region L of brightness. Since x+ v does not belong to L, the OFC is not verified.

2.2.4 Dealing with Large Displacements
Validity of some data models, such as the OFC model (2.8), is restricted to displacements laying

within the linear region of image brightness – Fig. 2.4. When large displacements are involved, or
in the presence of strong brightness gradients, the model is no longer valid. A common approach to
overcome these limitations consists in adopting an incremental multiresolution estimation scheme.
Images are sequentially subsampled and low-pass filtered, until apparent displacements are small
enough for the linearity assumption to be valid. The resulting set of images is called a “pyramid”.
Motions are incrementally estimated at each level of the pyramid, following a coarse-to-fine scheme.

At scale 1 j ≤ 0, approximations of images are computed by a gaussian filtering, followed by a
decimation, of finer scale j − 1 images:

Iji =↓ ◦
(
G ? Ij−1

i

)
, i = 0, 1 , (2.11)

where ↓ denotes the decimation operator and G s a gaussian kernel of variance proportional to 2−j .
Motions are estimated from the coarsest scale C ≤ 0 down to the finest scale F ≤ C. At scale j,

vj = ṽj + δvj ,

with ṽj =
∑

j<k≤C
Pj(δvk) . (2.12)

Let us clarify decomposition (2.12): current motion vj is split into a known approximation ṽj , the
sum of the projection Pj at current resolution 2−j of all estimates obtained at coarser pyramid
levels k > j, and an incremental part δvj to be estimated. A first-order Taylor development of
Ij1(x+ vj(x)) around known approximation ṽj leads to:

Ĩj1(x)− Ij0(x) + δv(x) · ∇Ĩj1(x) = 0

where Ĩ1(x) , Ĩ1(x+ ṽj(x)) is the motion-compensated image.
(2.13)

The initial OFC estimation problem (2.8) is turned into a set of successive coarse-to-fine estima-
tions, using (2.13) as the data model. Finally, the solution to the estimation problem is given by

1. See Remark 1 p. x regarding scale/resolution definitions and notations.
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Figure 2.5: Illustration of the usual incremental approach. First the image pyramid is built (left),
then apparent motions are estimated from coarser images (top) to the finest ones (bottom).

the sum of all coarse-to-fine estimates:

v = δvF +
∑

F<j≤C
PF (δvj) . (2.14)

A major drawback of this so-called incremental scheme is the freezing, at a given scale j, of all
previous estimates δvi with j < i ≤ C. In addition, the low-pass filtering and decimation of the
image essentially lie on heuristic arguments.

As previously pointed out, the DFD (2.2.3) validity is not limited to a certain range of dis-
placements. However, being non-linear in v, gradient-based minimization methods are likely to
get caught in local minima, especially as large displacements are involved. We will see however
that in practice the DFD is able to cope with much larger displacements that the OFC does, even
associated to the incremental scheme described above.

2.3 Fluid-Dedicated Approaches
Correlation-based methods (Section 2.2.1) have been employed for long. Full systems including

lasers, high-speed cameras, data acquisition interfaces and a digital image correlation software (e.g.
Lavision’s DaVis) are available and commonly used in laboratories. Free softwares are available
as well, such as GPiv [42]. These approaches are particularly efficient with particle-seeded images
(PIV) [4].

Optic-flow and parametric methods have been explored more recently in experimental fluid me-
chanics or in geophysics. Regarding the optic-flow data term, a model derived from the continuity
equation was proposed by Fitzpatrick [16]. More consistent with the dynamics of fluid flows, its
integrated version (ICE) was successfully used by Corpetti et al. [11]:

(ICE) I1(x+ v(x))− I0(x)e− divv = 0 . (2.15)

Among the parametric approaches, Cuzol & Mémin [12] modeled the flow with a small number
of vortex and source “particles”, whereas Auroux & Fehrenbach [2] adopted a piecewise linear
formulation.



18 CHAPTER 2. MOTION ESTIMATION AND INVERSE PROBLEMS

When considering turbulent fluid motions, usual regularizations such as Horn & Schunck first-
order scheme are not well-suited: the curl and divergence of the flow are important quantities
expressed as linear combinations of motion gradients (Section 1.3.1). Hence, penalizing gradients
without any consideration could result in inaccurate curl and divergence fields, and fail to describe
accurately the flow. In order to preserve those quantities, fluid-dedicated regularization terms have
been introduced by Suter [38] and later used by Corpetti et al. [11]. This regularization penalizes
strong curl and divergence gradient, thereby moving the solution towards smooth blobs of vorticity
and divergence:

J
reg

(v) =
1

2

∫
Ω

|∇ curl(v)(x)|2 + |∇ div(v)(x)|2 dx . (2.16)

Although leading to very good results, the implementation of this regularization term described
by [11] is complex. More generally, high-order regularizations are more difficult to implement,
since they require advanced discretization schemes. Yuan et al. [45] used finite mimetic difference
method, while Auroux & Fehrenbach [2] chose instead finite elements. We will see how the wavelet
formalism enables simple yet efficient implementations of such schemes.

Alternatively, constraints can be derived from some physical law governing the considered
motion. When dealing with incompressible flows, an option consists in penalizing the divergence
of the estimated motion, either by directly incorporating the constraint [45] or through an explicit
regularization term [2]. Here, divergence-free vector wavelet bases will be built in Section 4.1.
When dealing with turbulent fluid motion, Heas et al. [18] have used Kolmogorov’s turbulence
modeling. When the velocity increment function is strictly self-similar, isotropic and homogeneous,
its p-th order longitudinal structure function behaves like a power law:

Sl(s, p) = E [δvl(s)
p] ∼ βpspζp ∀s ∈ I the inertial range, (2.17)

where exponent ζp is though to be universal and depends on space dimension only, whereas βp is
a function of energy flux ε. From this self-similar prior, a set of constraint are derived at different
scales s ∈ I for the second order structure function. The estimation problem finally writes:

v̂ = argmin
v

Jdata(I,v)

s.t. hs(v) ,
1

2

(
E
[
δvl(s)

2
]
− βsζ

)
= 0 , ∀ s ∈ I .

(2.18)

Power law parameters β and ζ are either given, or estimated using bayesian model selection recipes
[18]. The later approach has the advantage of removing the need to supply external parameters β
and ζ, however it requires much more computational time.
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Chapter 3

Wavelets Framework

In order to analyze or exhibit some properties of a given signal, two interdependent spaces are
often considered: the physical space, which describes temporal or spacial variations of the signal,
and the spectral space, which instead gives information in terms of frequency – e.g. by the means of
the Fourier transform. These two approaches are mutually exclusive: no frequency-related content
can be accessed within the spacial space, and reciprocally. Wavelet transforms offer a sort of trade-
off, giving a simultaneous access to both physical and spectral information, at the price however
of a lower resolution in both spaces.

Roughly speaking, a step of the (dyadic) wavelet decomposition will split the input signal into
a set of details, corresponding to information contained by a certain range of frequencies at spatial
locations, and a coarser approximation of the signal. This step may then be applied again to
this coarse approximation, giving again details and an even coarser approximation, and so on.
Ultimately, a (very) coarse approximation remains, along with several sets of details containing
spatially-localized information at various ranges of frequencies. Of course, by re-combining the
remaining approximation with the various sets of details, the initial signal can be recovered. This
forward and inverse transforms are illustrated in Fig 3.1.

(a)

⇔

(b)

⇔

(c)

Figure 3.1: Example of a 2D (dyadic, isotropic) wavelet transform. Input image (a) is transformed
into (b): a coarser approximation (top-left corner) and details (everything else), and the process
can be repeated again (c) and/or reversed to retrieve (a). Details were processed to enhance their
visualization, vanishing values are in white.

3.1 General Principles

The following section introduces some of the basic principles of the wavelet formalism; most of
this material is adapted from Stephane Mallat’s A Wavelet Tour of Signal Processing: The Sparse
Way [28], along with Kadri Harouna et al. [23]. The concept of nested approximation spaces that
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form a multiresolution analysis is first derived for real 1D signal; construction of function bases
for those spaces follows. Those principles are then extended to the case of real 2D signals, before
considering the practical application to discrete signals.

3.1.1 Multiresolution Approximations and Detail Spaces
A multiresolution approximation of L2(R) is built from a sequence {Vj}j∈Z of closed subspaces,

so-called approximation spaces, verifying:

∀j ∈ Z, Vj+1 ⊂ Vj ; (3.1)

∀(j, k) ∈ Z2, f(t) ∈ Vj ⇔ f(t− 2jk) ∈ Vj ; (3.2)
∀j ∈ Z, f(2t) ∈ Vj ⇔ f(t) ∈ Vj+1 ; (3.3)

lim
j→+∞

Vj =

+∞⋂
j=−∞

Vj = {0} ; (3.4)

lim
j→−∞

Vj = Closure

 +∞⋃
j=−∞

Vj

 = L2(R) (3.5)

∃ϕ such that {ϕ(t− n)}n∈Z Riesz basis of V0. (3.6)

Property (3.1) traduces the fact that approximation spaces are nested. From property (3.2), space
Vj is invariant by any translation proportional to the considered scale 2j . A representation in a
given space Vj is sufficient to compute a coarser representation in space Vj+1, thanks to property
(3.3). Finally, the set {Vj}j∈Z is called a multiresolution analysis (MRA) of L2(R).

Since approximation spaces are sequentially included within each other (3.1), they can be
decomposed:

Vj = Vj+1 ⊕Wj+1 . (3.7)

Those Wj are complements of approximation spaces, they are called detail spaces. The concept of
wavelet decomposition resides in this association between approximation and detail spaces, along
with the nesting property: a given signal is recursively split into details and approximation, in
order to obtain a set of details at several scales and a remaining coarse approximation.

3.1.2 Wavelet Bases
Functions forming bases of Vj and Wj are called scaling and wavelet functions, respectively.

From (3.7) only, the Wj are not unique. The completion of this definition will lead, either to the
construction of orthogonal bases, or to the more general case of biorthogonal bases.

Orthogonal Wavelet Bases

We consider here the Riesz basis of V0 (Prop. (3.6)) to be orthonormal – if necessary by
orthonormalizing the original basis, see [28]. Using dilations and translations of this mother scaling
function ϕ – see (3.2), (3.3) and remark 2, one can construct orthonormal bases of spaces Vj :

Vj = span{ϕj,k, k ∈ Z}, with 〈ϕj,p ; ϕj,q〉L2(R) = δpq ∀ j, p, q ∈ Z. (3.8)

Then Wj is defined as the orthogonal complement of Vj in Vj−1:

Wj = Vj−1 ∩ (Vj)
⊥ . (3.9)

Similarly to (3.8), orthogonal bases of Wj are built from translations and dilations of the mother
wavelet function denoted by ψ :

Wj = span{ψj,k, k ∈ Z}, with
〈
ψi,p ; ψj,q

〉
L2(R)

= δijδpq ∀ i, j, p, q ∈ Z. (3.10)

Figure 3.2 gives an example of scale and wavelet functions along with their dilations.
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Figure 3.2: Example of (periodized) scale (left) and wavelet (right) functions. They correspond to
the Daubechies wavelet family, with 5 vanishing moments.

Biorthogonal Wavelet Bases

An alternative option to (3.9) is to define Wj from another multiresolution analysis {Ṽj}j∈Z, of
scaling and wavelet functions ϕ̃ and ψ̃ , respectively:

Wj = Vj−1 ∩ (Ṽj)
⊥ . (3.11)

Then {Vj , Ṽj}j is called a biorthogonal multiresolution analysis (BMRA) of L2(R). The biorthog-
onality property arises from following relations:

〈
ϕj,p ; ϕ̃j,q

〉
L2(R)

= δpq ;〈
ψi,p ; ψ̃j,q

〉
L2(R)

= δijδpq ;〈
ϕj,p ; ψ̃j,q

〉
L2(R)

= 0 ;〈
ϕ̃j,p ; ψj,q

〉
L2(R)

= 0 ; ∀ i, j, p, q ∈ Z .

(3.12)

As a consequence, orthogonal multiresolution analyses are a particular case of biorthogonal ones,
where ϕ̃ = ϕ, ψ̃ = ψ and Ṽj = Vj . To remain general, the biorthogonal formulation will be
employed in the following.
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Refinement Relations

Property 3.1 rises up the following two-scale relations (a.k.a. refinement relations) between
scaling and wavelet functions:

ϕ1,0(x) =
1√
2
ϕ(
x

2
) =

+∞∑
n=−∞

h[n]ϕ0,n(x) , with h[n] = 〈ϕ1,0 ; ϕ̃0,n〉 ; (3.13)

ϕ̃1,0(x) =
1√
2
ϕ̃(
x

2
) =

+∞∑
n=−∞

h̃[n]ϕ̃0,n(x) , with h̃[n] = 〈ϕ̃1,0 ; ϕ0,n〉 ; (3.14)

ψ1,0(x) =
1√
2
ψ(
x

2
) =

+∞∑
n=−∞

g[n]ϕ0,n(x) , with g[n] =
〈
ψ1,0 ; ϕ̃0,n

〉
; (3.15)

ψ̃1,0(x) =
1√
2
ψ̃(
x

2
) =

+∞∑
n=−∞

g̃[n]ϕ̃0,n(x) , with g̃[n] =
〈
ψ̃1,0 ; ϕ0,n

〉
. (3.16)

Sequences {h[n]}n∈Z, {h̃[n]}n∈Z, {g[n]}n∈Z and {g̃[n]}n∈Z are called the conjugate mirror filters
associated to scaling and wavelet functions, respectively. They are linked together by:

g[n] = (−1)1−nh̃[1− n];

g̃[n] = (−1)1−nh[1− n].
(3.17)

Should an orthogonal basis be considered, then h̃ = h and g̃ = g.
In practice, mother wavelet and scaling functions are often defined by their respective filter

instead of an analytical formula. These filters also play an important role in the fast implementation
of the forward and inverse wavelet transforms introduced hereafter.

3.1.3 Finite Signals and Fast Transforms
In practice, we work with finite and discrete signals. We will first see how to handle the discrete

aspect and the fast transforms that arise, before considering a way to deal with the finiteness.

Approximation and Wavelet Coefficients

Let {z[n], n ∈ Z} be a discrete signal sampled every 2F , F ∈ Z. Formally, in order to achieve
a wavelet decomposition of this signal, it is necessary:
(i) to associate to {z[n]}n a function w(x) ∈ VF ;
(ii) from which we may compute the coefficients of its representation in the chosen basis of VF .

Assuming we already completed (i), a wavelet decomposition (ii) of this function w consists in its
projection to a coarser space VC , with F ≤ C and to the complementary detail spaces Wj , with
F + 1 ≤ j ≤ C:

w = PC(w) +

C∑
F+1

Qj(w) ∈ VF ,

where PC(w) ∈ VC
and Qj(w) = Pj(w)− Pj+1(w) ∈Wj .

(3.18)

Projections Pj(w) and Qj(w) are defined by:

Pj(w) =

+∞∑
k=−∞

aj,kϕj,k , aj,k = 〈w ; ϕ̃j,k〉 , (3.19)

and similarly:

Qj(w) =

+∞∑
k=−∞

dj,kψj,k , dj,k = 〈w ; ψ̃j,k〉 . (3.20)
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Coefficients aj,k and dj,k in (3.19) and (3.20) are called approximation and detail coefficients,
respectively. Altogether, the set {aC,k , dj,k , F + 1 ≤ j ≤ C , −∞ ≤ k ≤ +∞} from projection
(3.18) is the representation of function w in the considered wavelet basis of VF . Now, before
addressing the choice of function w (i), let us see how these coefficients are actually computed.

Fast Transforms

Thanks to refinement relations (3.13) and (3.15), wavelet coefficients in (3.19) and (3.20) can
be computed recursively with a fast algorithm that cascades convolutions with conjugate mirror
filters and decimation/expansion operations – a filterbank. The forward wavelet transform (decom-
position) computes, from a given approximation Pj(w), coefficients of the coarser approximation
Pj+1(w), along with its details Qj+1(w):

aj+1,p =

+∞∑
n=−∞

h̃[n− 2p]aj,n = aj ?
¯̃
h[2p] ;

dj+1,p =

+∞∑
n=−∞

g̃[n− 2p]aj,n = aj ? ¯̃g[2p] ;

(3.21)

where ·̄ denotes the time-reverse operator, i.e. x̄[n] = x[−n]. Conversely, the inverse wavelet
transform (reconstruction) recombines the coefficients of an approximation Pj+1(w) with its details
Qj+1(w) in order to recover the coefficients of finer approximation Pj(w):

aj,p =

+∞∑
k=−∞

h[p− 2n]aj+1,n +

+∞∑
k=−∞

g[p− 2n]dj+1,n

= ǎj+1 ? h[p] + ďj+1 ? g[p] ;

(3.22)

where ·̌ denotes the expansion operator, i.e. x̌[n] = x[p] if n = 2p, 0 elsewhere. These so-called
filterbanks are represented Figure 3.3.

(a) Forward transform (b) Inverse transform

Figure 3.3: Filterbanks for the 1D orhogonal transforms.

Initialization

From fast decomposition expressions 3.21, it suffices to know the fine approximation coefficients
{aF,k} representing w in VF to be able to compute iteratively every coefficients of coarser approx-
imations and detail spaces. Now, how can this w be chosen (i) so that the {aF,k} can be deduced
easily from known samples {z[n]}n? Mallat [28] suggests

w(x) =

+∞∑
n=−∞

z[n]ϕ
(
2−F t− n

)
∈ VF ,

which, assuming w is regular, leads to

z[n] =
√

2−FaF,n ≈ w
( n

2−F

)
⇒ aF,k =

1√
2−F

z[k] ∀k ∈ Z . (3.23)

Hence the fine approximation coefficients are simply the input samples, up to a normalization
factor. Other approaches exists, but were not considered in the presented work.
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Finite signals

Finally, we must consider finite signals: {z[n] , 0 ≤ n ≤ 2−F − 1} has 2−F samples only. There-
fore the set of fine approximation coefficients {aF,k}k given by 3.23 is finite as well. Then, problems
arise when computing convolutions in 3.21 and 3.22, as values are required outside boundaries of
aF . To get past these difficulties, input signals are considered to be defined on a discretization of
[0, 1] ⊂ R, the resolution of this discretization increasing with the number of samples. Wavelet and
scaling functions are then transformed to get bases of L2([0, 1]) instead of L2(R).

The simplest way to achieve this transformation, according to [28], is to periodize each basis
function over [0, 1]:

f ∈ L2(R) ⇒ fper(x) =

+∞∑
k=−∞

(x+ k) , ∀x ∈ [0, 1] . (3.24)

Considering [0, 1] instead of R and applying periodization 3.24 has three important practical con-
sequences:

– the coarsest scale available is always 0;
– at a given scale j ≤ 0, there are only 2−j different periodized functions ϕper

j,k and ψper
j,k , and

as many coefficients;
– the only practical modification is to replace convolutions in fast transforms 3.21 and 3.22 by
circular convolutions.

Our discrete, finite signal {z[n]}n is now represented by{
{aC,k , F ≤ C ≤ 0 , 0 ≤ k ≤ 2−C − 1} ; {dj,k , F + 1 ≤ j ≤ C , 0 ≤ k ≤ 2−j − 1}

}
.

The main drawback of this periodization is the creation of high-amplitude coefficients near bound-
aries. Alternative approaches are available (e.g. folding, padding . . . ) but are more complicated
to implement. In the following, we will always consider periodized bases (see again Fig. 3.2), and
drop notation ·per accordingly.

For our 1D signal z of NF = 2−F samples and wavelet filters h, g with K non-zero coefficients,
a “full decomposition” (i.e.up to coarsest approximation P0(w)), or a “full reconstruction” (i.e.
recovering w from P0(w) and all details Qj(w), F − 1 ≤ j ≤ 0) is achieved in less than 2KNF
additions and multiplications. As a consequence, the computational cost of a fast wavelet transform
is directly proportional to the length of the support of filters g, h. These supports are related to
the supports of the associated scaling or wavelet functions. As we shall see in the forthcoming
section 3.2.1, they are also directly related to ϕ and ψ regularity.

3.1.4 Extension to 2D Signals
Previous results are extended to the case of 2D signals, using tensor products of the one-

dimensional periodized wavelet bases, in order to obtain separable multiscale bases of L2([0, 1]2).
The orthogonal case only is presented here, in order to keep notations simple.

From a given multiresolution analysis {Vj}j of L2([0, 1]), we define space Vj ⊗ Vj ⊂ L2([0, 1]2)
as:

Vj ⊗ Vj = span
{
ϕj,k1 ⊗ ϕj,k2 , (k1, k2) ∈ [0; 2−j − 1]2

}
, ∀ j ∈ Z , (3.25)

where
(ϕj,k1 ⊗ ϕj,k2) (x) , ϕj,k1(x1)ϕj,k2(x2) , ∀x = (x1, x2)

T ∈ [0, 1]2 .

The set of spaces {Vj ⊗ Vj}j∈N− forms a multiresolution analysis of L2([0, 1]2). Then, there exists
two different kinds of 2D dyadic wavelet transform, according to the way the detail spaces are
introduced.

Isotropic Transform

The so-called isotropic transform is derived using (3.7):

Vj ⊗ Vj = (Vj+1 ⊕Wj+1)⊗ (Vj+1 ⊕Wj+1)

= (Vj+1 ⊗ Vj+1)⊕ (Vj+1 ⊗Wj+1)⊕ (Wj+1 ⊗ Vj+1)⊕ (Wj+1 ⊗Wj+1) .
(3.26)
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...

Figure 3.4: Illustration of the isotropic wavelet transform. Approximation spaces are recursively
split into a coarser approximation space and three detail spaces.

Thus each approximation space Vj ⊗ Vj is recursively split into a coarser approximation space and
three detail spaces; this is illustrated in Fig. 3.4. Basis functions corresponding to those detail
spaces are given by translations and dilations of the three following mother wavelets:

ψ1(x) ,(ϕ ⊗ ψ)(x) = ϕ(x1)ψ(x2) , for V0 ⊗W0 ; (3.27)

ψ2(x) ,(ψ ⊗ ϕ)(x) = ψ(x1)ϕ(x2) , for W0 ⊗ V0 ; (3.28)

ψ3(x) ,(ψ ⊗ ψ)(x) = ψ(x1)ψ(x2) , for W0 ⊗W0 . (3.29)

Supplemented by mother scaling function ϕ ⊗ ϕ associated to approximation spaces (Eq. (3.25)),
it gives a total of four types of basis functions, each one having one dilation and two translation
parameters: j ∈ N− and k = (k1, k2) ∈ [0; 2−j − 1]2.

Anisotropic Transform

In order to derive the anisotropic transform, one starts by recursively applying (3.7) to Vj , e.g.:

Vj = V0 ⊕W0 ⊕W−1 ⊕W−2 ⊕ · · · ⊕Wj+1 , (3.30)

Inserting the latter expression into Vj ⊗ Vj leads to:
Vj ⊗ Vj = (V0 ⊕W0 ⊕W−1 ⊕ · · · ⊕Wj+1)⊗ (V0 ⊕W0 ⊕W−1 ⊕ · · · ⊕Wj+1)

= (V0 ⊗ V0)⊕
j+1⊕
j2=0

(V0 ⊗Wj2)⊕
j+1⊕
j1=0

(Wj1 ⊗ V0)⊕
j+1⊕

j1,j2=0

(Wj1 ⊗Wj2) .
(3.31)

This approach is equivalent to performing a 1D wavelet decomposition along lines, then another
one along columns – see Fig. 3.5. Basis functions corresponding to these spaces are given as well
by translations and dilations of ϕ and ψ in following expressions:

(ϕ ⊗ ϕ)(x) = ϕ(x1)ϕ(x2) , for V0 ⊗ V0 ; (3.32)
(ϕ ⊗ ψ)(x) = ϕ(x1)ψ(x2) , for V0 ⊗W0 ; (3.33)
(ψ ⊗ ϕ)(x) = ψ(x1)ϕ(x2) , for W0 ⊗ V0 ; (3.34)
(ψ ⊗ ψ)(x) = ψ(x1)ψ(x2) , for W0 ⊗W0 . (3.35)

Therefore basis functions for the anisotropic transform have four parameters: two dilations and
two translations (one per direction): j = (j1, j2) ∈ N− × N− and k ∈ [0; 2−j1 − 1]× [0; 2−j2 − 1].

Fast Transforms

Just like the 1D transforms and thank to the separability of the 2D bases, both isotropic and
anisotropic 2D transforms find fast implementations by filterbanks. Figure 3.6 gives the filterbanks
structure for the forward and inverse isotropic transforms. Filterbanks for the anisotropic transform
are exactly the same as the 1D case (Figure 3.3), applied first to rows, then to columns. Considering
a 2D signal of (NF )2 = 2−2F samples, full decomposition or reconstruction are achieved in less
than 8

3K(NF )2 operations – see (B.1) and [28]. Finally, the biorthogonal case is very simple to
handle, as it suffices to replace filters g, h at the decomposition by g̃, h̃, juste like the 1D case
Figure 3.3.
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... ...

Figure 3.5: Illustration of the anisotropic wavelet transform. A 1D transform is applied along
lines until the desired coarse approximation space is reached; then the operation is repeated along
columns.

Rows Columns

(a) Forward transform

RowsColumns

(b) Inverse transform

Figure 3.6: Filterbanks for the 2D isotropic orthogonal transforms.

3.2 Advanced Properties

This section introduces some more elaborate properties of the wavelet formalism that we shall
use later.

3.2.1 Vanishing Moments and Regularity

Vanishing Moments

The notion of vanishing moments (VM) simply traduces the orthogonality of a function to
polynomials up to a certain order: f in L2(R) has m vanishing moments if and only if

〈f ; xp〉L2 =

∫
R
xpf(x)dx = 0 , ∀ 0 ≤ p < m . (3.36)

Lipschitz regularity

The Lipschitz regularity gives a measure of the local regularity of a given signal. A function
w(t) is pointwise-Lipschitz α ≥ 0 at t0 if there exists a local polynomial Pt0(t) of degree n = bαc
and K constant such that

|w(t)− Pt0(t)| ≤ K|t− t0|α (3.37)

It is then uniformly-Lipschitz α over [a, b] if it satisfies (3.37) for any t0 ∈ [a, b], withK independent
of t0.

Coefficients decay and vanishing moments

The uniform Lipschitz regularity of a signal can be related to the asymptotic decay, across
scales, of its wavelet coefficients amplitude. Let us consider a signal w ∈ L2([0, 1]), uniformly
Lipschitz α over [0, 1], and its projection on a wavelet basis. The wavelet has n vanishing moments
and is Cn with fast decay derivatives. At fine scales,
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– if n < α, the decay of coefficient amplitude depends on n:∣∣∣〈w ; ψjp
〉
L2

∣∣∣ = |dj,p| ∼ 2−j(n+1/2) ;

– if n ≥ α, it depends on α [28]:

∃A > 0 such that |dj,p| ≤ A2−j(α+1/2) .

A similar condition relates the uniform Lipschitz regularity and the asymptotic decay of Fourier
coefficients. However, wavelets outperform the Fourier basis as they also allow to measure the local
(pointwise) Lipschitz regularity [21].

Wavelet Approximations

Approximations of a given signal are obtained by keeping a small portion of basis atoms, for
compression purposes for instance. Two different approaches are possible:

– The linear approximation projects the signal on the N first low-frequency atoms of the basis.
– With the non-linear approximation, the N “more interesting” atoms of the basis are chosen,

according to the considered signal.
In both cases, excluding atoms of the basis leads to approximation errors. With uniformly regular
signals, both approaches give comparable results. However, when the signal is not uniformly regular
(e.g. in the presence of local, rapid variations or discontinuities), non-linear approximations enables
to locally adjust the precision of the approximation, in order to minimize the error [28].

Thanks to their regularity properties, wavelets are able to encode the regular part of a signal
with a small number of coefficients at coarse scales, then detail coefficients at finer scales appear
only where the signal is locally irregular. This can be seen in Figure 3.1: non-vanishing coefficients
are visible at the edges of the van (discontinuities), or within the grass and sand where the image
is quite irregular. At the contrary, no small-scale coefficients are present within uniform (regular)
areas, such as the sky or the shadow under the van. Wavelets therefore constitutes a powerful
tool for non-linear approximation, as it suffices to keep the basis atoms corresponding to the N
largest amplitude coefficients. Furthermore, there exists a bound on the reconstruction error as a
function of N [28]. These last properties, combined to the local regularity measurement property,
make wavelet bases a very powerful tool for signal compression and sparse representations, with
numerous applications such as the JPEG2000 image compression standard.
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Chapter 4

Wavelets Applications

After introducing some of the main concepts of the wavelet formalism in previous Chapter 3, we
may now focus on particular applications that will be later involved into the design of our wavelet-
based optical flow estimators. The first application is the construction of divergence-free wavelet
bases – Section 4.1, which directly incorporate the physical null-divergence constraint. Then, we
will examine some properties of wavelet derivatives in Section 4.2, as well as the computation of
their connection coefficients, in order to set-up regularization schemes in Section 6.2.

4.1 Divergence-Free Bases

4.1.1 Helmholtz’s Decomposition and the Divergence-Free Constraint

The fundamental theorem of vector calculus, also known as Helmholtz’s decomposition theorem,
states that any smooth-enough, rapidly decaying vector field can be uniquely represented by the
sum of a curl-free (irrotational) and a divergence-free (solenoidal) vector fields:

v =

(
v1

v2

)
∈ L2(R2)× L2(R2)⇒ v = vcurl + vdiv ;

where vcurl ∈ Hcurl(R2) =
{
v ∈ (L2(R2))2 , curl(v) = ∂x1

v2 − ∂x2
v1 = 0

}
,

and vdiv ∈ Hdiv(R2) =
{
v ∈ (L2(R2))2 , div(v) = ∂x1

v1 + ∂x2
v2 = 0

}
.

(4.1)

Figure 4.1 shows the Helmholtz decomposition applied to a sample vector field. The irrotational
component vcurl Fig. 4.1b corresponds to sources or sinks in the flow, whereas the solenoidal
component vdiv Fig. 4.1c is related to vortical structures. Here we considered null border condition
at infinity for field v; otherwise, the Helmholtz decomposition is defined up to an harmonic function,
which encodes non-null boundary conditions.

 

 

(a) v ∈ (L2(R2))2

=

 

 

(b) vcurl ∈ Hcurl(R2)

+

 

 

(c) vdiv ∈ Hdiv(R2)

Figure 4.1: Vector field (a) is the sum of an irrotational vector field (b), i.e. curl-free, and a
solenoidal vector field (c), i.e. divergence-free. Color intensity codes for vectors magnitude.
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In the incompressible Navier-Stokes equations (1.2), the constant fluid density implies a divergence-
free field. Then, back to our fluid motion estimation context, it might be particularly advantageous
to ensure that solutions given by the optical flow problem respect this null-divergence constraint.
Let us now see how, by building bases of Hdiv(R2) or Hcurl(R2), it is possible to explicitly consider
such divergence-free (or similarly, curl-free) vector fields.

2D divergence-free vector fields are generated by stream functions: if there exists a scalar field
z such that v = curl(z) 1, then div(v) = ∇ · (∂x2z, −∂x1z)

T = 0, so that v ∈ Hdiv(R2). From
there, space Hdiv(R2) may also be defined from the curl of stream functions:

Hdiv(R2) =
{
v = curl(z) ∈ (L2(R2))2 , z ∈ H1(R2)

}
, (4.2)

where H1(R2) is the Sobolev space of functions in L2(R2) whose first-order derivatives also belong
to L2(R2). Since v = curl(z) is a combination of theses first-order derivatives, this ensures
v ∈ (L2(R2))2. A multiresolution analysis of Hdiv(R2) can therefore be built by taking the curl
of an usual multiresolution analysis of H1(R2). The construction of divergence-free bases proceeds
as follows: first, by looking for MRAs of H1(R2) that are, in some sense, “compatible” with the
derivation. Then by applying the curl operator and expressing the basis functions of Hdiv(R2).
Finally, by relating coefficients of the divergence-free basis to “regular” basis coefficients, in order
to simplify implementation. For convenience reasons, note that the following construction is based
on the anisotropic wavelet transform (Section 3.1.4); elements for the isotropic transform can be
found in [22].

4.1.2 Preliminary Results – Wavelet derivatives

Applying the curl operator to a wavelet basis gives rise to derivatives of scaling and wavelet
functions. In order to build multiresolution bases ofHdiv(R2), we must ensure that those derivatives
still respect some properties. The following results from Lemarié-Rieusset [25] enlighten the nature
of such derivatives.

Let (ϕ1, ϕ̃1) be a pair of biorthogonal scaling functions associated to biorthogonal wavelets
(ψ1, ψ̃1), with ϕ1 ∈ C1+ε(R), ε > 0. Then there exists another couple of biorthogonal scaling
functions (ϕ0, ϕ̃0) and wavelets (ψ0, ψ̃0) such that:

dϕ1

dx
(x) = ϕ0(x)− ϕ0(x− 1) ;

dϕ̃0

dx
(x) = ϕ̃1(x)− ϕ̃1(x− 1) ;

ψ1(x) = 4

∫ x

−∞
ψ0(t)dt ;

ψ̃0(x) = −4

∫ x

−∞
ψ̃1(t)dt .

(4.3)

As a consequence, the derivative of a scaling function corresponds to a finite difference of another
scaling function; the derivative of a wavelet is another wavelet. Moreover, BMRAs {V 1

j , Ṽ
1
j }j and

{V 0
j , Ṽ

0
j }j of L2(R) associated to the biorthogonal functions introduced in (4.3) also verify the

following properties [24]:

d

dx
V 1
j = V 0

j ,

Ṽ 0
j =

∫ x

−∞
Ṽ 1
j ,

(4.4)

d

dx
P1
j (f) = P0

j (
df

dx
) ,

d

dx
P̃0
j (f) = P̃1

j (
df

dx
) , ∀f ∈ H1(R) .

(4.5)

1. The curl of scalar field z is given by (∂x2z,−∂x1z)
T – see Notations page ix.
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where Pij(f) is the projection of f onto V ij .
From scaling functions ϕ1 and ϕ0 previously related by (4.3), let us now consider their associated

one-dimensional MRA of L2(R): {V 1
j }j∈Z and {V 0

j }j∈Z. Using tensor product like in Section 3.1.4,
we build:

V 1
j ⊗ V 0

j = span
{
ϕ1
j,k1(x1)ϕ0

j,k2(x2) ; k1, k2 ∈ Z
}
, j ∈ Z (4.6)

or
V 0
j ⊗ V 1

j = span
{
ϕ0
j,k1(x1)ϕ1

j,k2(x2) ; k1, k2 ∈ Z
}
, j ∈ Z . (4.7)

The sequence of nested spaces made up from either (4.6) or (4.7) is a multiresolution analysis of
L2(R2). Note that having space V 1 associated to dimension x1 different from V 0 associated to
x2, contrary to Section 3.1.4, does not restrain from building fast transform algorithms: taking
{V 1

j ⊗ V 0
j }j as an example, a fast decomposition is set up using filters associated to (ϕ̃1, ψ̃1) for

x1-direction and (ϕ̃0, ψ̃0) for x2. Similarly, the fast reconstruction will use filters from (ϕ1, ψ1) for
x1 and (ϕ0, ψ0) for x2.

4.1.3 Multiresolution Analyses of Hdiv(R2)

From (4.2), null-divergence spaceHdiv(R2) is obtained from the curl ofH1(R2). Let us consider
a multiresolution analysis of H1(R2) generated by nested spaces V aj ⊗ V bj , with V a 6= V b. Taking
its curl leads to:

curl(V aj ⊗ V bj ) =

(
V aj ⊗ (V bj )′

−(V aj )′ ⊗ V bj

)
. (4.8)

It follows from (4.8) that manipulating scaling and wavelet functions in curl(V aj ⊗ V bj ), with
a 6= b, requires to use filters associated to the four one-dimensional MRA {V aj }j , {(V aj )′}j , {V bj }j ,
{(V bj )′}j , of which filters of {(V aj )′}j , and {(V bj )′}j are a priori unknown. Fortunately, from (4.4),
we have

curl(V 1
j ⊗ V 1

j ) ⊂ (V 1
j ⊗ V 0

j )× (V 0
j ⊗ V 1

j ) , Vdiv
j , (4.9)

where space Vdiv
j preserves the null-divergence property. Indeed, using (4.4),

∀v ∈ Hdiv(R2), div(Pj(v)) = Pj(div(v)) = 0 ,

where Pj(v) , (P1
j ⊗ P0

j )× (P0
j ⊗ P1

j )

and Pj(v) , P0
j ⊗ P0

j .

(4.10)

Hence the divergence-free approximation spaces, obtained from curl(V 1
j ⊗ V 1

j ) where V1 and its
associated functions ϕ1, ψ1 were chosen according to (4.3), are given by:

Vdiv
j = span

{
ϕdiv
j,k , k ∈ Z2

}
, ∀ j ∈ Z , (4.11)

with basis functions

ϕdiv
j,k = curl

(
ϕ1
j,k1 ⊗ ϕ1

j,k2

)
=

(
ϕ1
j,k1 ⊗ (ϕ1

j,k2)′

−(ϕ1
j,k1)′ ⊗ ϕ1

j,k2

)
. (4.12)

Similarly, the corresponding anisotropic detail spaces are given by:

Wdiv
j = span

{
ψdiv

j,k , k ∈ Z2
}
, ∀ j ∈ Z2 , (4.13)

with

ψdiv
j,k = curl

(
ψ1
j1,k1 ⊗ ψ1

j2,k2

)
=

(
ψ1
j1,k1 ⊗ (ψ1

j2,k2)′

−(ψ1
j1,k1)′ ⊗ ψ1

j2,k2

)
. (4.14)

Moreover, thanks to relations (4.3) between wavelet functions derivative, previous expression (4.14)
further simplifies to give:

ψdiv
j,k =

(
(2−j2+2)ψ1

j1,k1 ⊗ ψ0
j2,k2

−(2−j1+2)ψ0
j1,k1 ⊗ ψ1

j2,k2

)
. (4.15)
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Figure 4.2: Examples of ([0, 1]-periodized) divergence-free basis functions ψdiv
j,k, obtained from

Coiflets with m = 10 vanishing moments. Left is the vector field generated by the vector-wavelet,
right is its corresponding vorticity. Upper row has j = (0, 0) and k = (0, 0); bottom row has
j = (0,−1) and k = (0, 0). These functions represent a pattern of several counter-rotative vortices.

Figure 4.2 shows examples of wavelets ψdiv
j,k. We finally obtain bases for Hdiv(R2):

∀v ∈ Hdiv(R2) , v =
∑

j,k∈Z2

ddiv
j,kψ

div
j,k , with ddiv

j,k ,
〈
v ; ψ̃

div
j,k

〉
L2(R2)×L2(R2)

. (4.16)

So far, we have derived wavelet bases for divergence-free space Hdiv(R2), so that any divergence-
free vector field v ∈ Hdiv(R2) has a unique decomposition following (4.16). Basis functions ψdiv

j,k

are vector wavelets in L2(R2) × L2(R2); their associated coefficients ddiv
j,k are scalar values. It is

important to remember that from our construction, these coefficients are in fact at the same time
the representation of v’s stream function z:

z =
∑
j,k

ddiv
j,k

(
ψ1
j1,k1 ⊗ ψ1

j2,k2

)
, with ddiv

j,k ,
〈
z ; ψ̃1

j1,k1 ⊗ ψ̃1
j2,k2

〉
L2(R2)

. (4.17)

Only the choice of basis functions (scalar {ψ1
j1,k1
⊗ψ1

j2,k2
}j,k for z, or vector {ψdiv

j,k}j,k for v) gives
either the stream function z or the corresponding v such that v = curl(z). The last step shows how
those coefficients can be in practice computed from regular scalar wavelet transforms, resulting in
a somewhat simple implementation of the divergence-free wavelet transform.

4.1.4 Fast Divergence-Free Transforms
We have seen in (4.16) and (4.17) that our divergence-free motion field v is represented by a set

of scalar coefficients {ddiv
j,k}j,k, associated to vector wavelet basis {ψdiv

j,k}j,k (4.15). In practice, it
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is much more convenient to handle the two motion components vi, i = 1, 2, separately. Therefore
we seek a relation between divergence-free coefficients {ddiv

j,k}j,k and “regular” coefficients {dij,k}j,k
associated to single component vi.

The sequence of spaces Vdiv
j = (V 1

j ⊗ V 0
j ) × (V 0

j ⊗ V 1
j ), j ∈ Z, is a MRA of L2(R2) × L2(R2)

that preserves the null-divergence property – (4.9). From definition (4.1), Hdiv(R2) ⊂ (L2(R2))2,
so that any v in divergence-free space can be decomposed on a basis of (L2(R2))2. The standard
anisotropic vector wavelets associated to MRA {Vdiv

j }j are:

ψ1
j,k =

(
ψ1
j1,k1

⊗ ψ0
j2,k2

0

)
, ψ2

j,k =

(
0

ψ0
j1,k1

⊗ ψ1
j2,k2

)
. (4.18)

Therefore any v ∈ Hdiv(R2) satisfies:

v =

(
v1

v2

)
=

∑
j,k∈Z2

d1
j,kψ

1
j,k +

∑
j,k∈Z2

d2
j,kψ

2
j,k , (4.19)

from which a simple identification gives

v1 =
∑

j,k∈Z2

d1
j,kψ

1
j1,k1 ⊗ ψ0

j2,k2 ,

v2 =
∑

j,k∈Z2

d2
j,kψ

0
j1,k1 ⊗ ψ1

j2,k2 .
(4.20)

Then, from ψdiv
j,k expression (4.15) we obtain the relation:

ψdiv
j,k = (2−j2+2)ψ1

j,k − (2−j1+2)ψ2
j,k . (4.21)

And finally:

d1
j,k = 2−j2+2ddiv

j,k , (4.22)

d2
j,k = −2−j1+2ddiv

j,k , (4.23)

ddiv
j,k =

1

2−j1+2 + 2−j2+2
(d1

j,k − d2
j,k) . (4.24)

From (4.24), null-divergence coefficients ddiv
j,k associated to vector wavelets ψdiv

j,k, are given by a
linear combination of coefficients d1

j,k and d2
j,k resulting from the regular scalar wavelet decom-

position of fields v1, v2; and reciprocally. As a consequence, decomposition and reconstruction
for the divergence-free bases are simply performed using the corresponding scalar transforms with
appropriate filters.

The theoretical construction of divergence-free bases is finally relatively simple to handle: first,
two sets of biorthogonal wavelets are required, (ψ1, ψ̃1) and (ψ0, ψ̃0), linked by derivation/integra-
tion relations (4.3). Then divergence-free coefficients are computed from the two sets of regular
coefficients corresponding to the two scalar components of the motion, and reciprocally, using rela-
tions (4.22)–(4.24). Only the wavelet bases associated to these scalar components vi are somewhat
unusual, for they use a different function for each direction xi – Eq. (4.20) – contrary to the classi-
cal tensorial construction of Section 3.1.4. The practical implementation of these bases is however
slightly more complex. The computation of conjugate mirror filters h, g associated to the two sets
of biorthogonal wavelets is to be clarified, as well as the way to deal properly with finite signals.
These elements are extensively detailed in Appendix A.

4.2 Norm Equivalence & Connection Coefficients

4.2.1 Norm Equivalence
Wavelet function derivative properties, introduced above in Section 4.1.2 with divergence-free

bases, lead to an equivalence relation between the L2-norm of the n-th derivative of a given function
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and a weighted l2-norm of coefficients representing this function in a given wavelet basis. Detailed
proofs of following results can be found in [24].

Let (ψ1, ψ̃1) be a pair of at least n times differentiable biorthogonal wavelet functions. Applying
n times the wavelet derivation property (4.3) leads to another couple of biorthogonal wavelets
(ψ0, ψ̃0) such that:

dnψ1(x)

dxn
= 4nψ0 and

dnψ̃0(x)

dxn
= (−4)nψ̃1 . (4.25)

For any sufficiently smooth function f ∈ L2(R), we consider the projection of its n-th derivative
on the wavelet basis having ψ0 as mother wavelet:

dnf(x)

dxn
=
∑
j,k

d̄j,kψ
0
j,k(x) , where d̄j,k =

〈
dnf

dxn
; ψ̃0

〉
L2

. (4.26)

Then, {ψ0
j,k}j,k being a Riesz basis, the norm equivalence holds. There exists two constants

0 < C1 ≤ C2 < +∞ such that

C1

∥∥d̄j,k∥∥l2
≤
∥∥∥∥dnfdxn

∥∥∥∥
L2

≤ C2

∥∥d̄j,k∥∥l2
. (4.27)

Using integration by parts and (4.25) leads to:

d̄j,k =

∫
R

dnf(x)

dxn
ψ̃0
j,k(x)dx

= (−4)n2−nj
∫
R
f(x)ψ̃1

j,kdx

= (−4)n2−njdj,k , with dj,k =
〈
f ; ψ̃1

j,k

〉
L2

.

(4.28)

The (−4)n factor arises from (4.25), whereas the 2−nj comes from the scaling factor in ψ̃0
j,k. Finally,

following equivalence holds: ∥∥∥∥dnfdxn

∥∥∥∥
L2

∼
∥∥(−4)n2−njdj,k

∥∥
l2
, (4.29)

which involves coefficients of the function f instead of those of its n-th derivative. This relation
can be easily extended to 2D signals; it will be used later in Section 6.2.1 to design high-order
regularizers.

4.2.2 Wavelet Connection Coefficients

More precise and complex regularization schemes can be designed by transferring derivative
computations from the function to the wavelet basis atoms [7].

Using refinement relations (3.13), the autocorrelation of a scaling function ϕ ∈ L2(R) verifies a
two-scale relation:

J (0)
ϕ (x) =

∫
R
ϕ(y)ϕ(y − x)dy

=

∫
R

(
√

2
∑
m∈Z

h[m]ϕ(2y −m)

)(
√

2
∑
m∈Z

h[n]ϕ(2(y − x)− n)

)
dy

=
∑
m∈Z

∑
n∈Z

2h[m]h[n]

∫
R
ϕ(2y −m)ϕ(2(y − x)− n)dy

=
∑
k∈Z

∑
m∈Z

h[m]h[m− k]

∫
R
ϕ(y)ϕ(y − 2x+ k)dy

=
∑
k∈Z

i[k]J (0)
ϕ (2x− k) , with i[k] =

∑
m∈Z

h[m]h[m− k] . (4.30)
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Similarly, the correlation J (n)
ϕ of a scaling function ϕ and its n-th order derivative ϕ(n) verifies:

J (n)
ϕ (x) =

∫
R
ϕ(y)ϕ(n)(y − x)dy

= 2n
∑
k∈Z

i[k]J (n)
ϕ (2x− k) . (4.31)

If ϕ has a compact support, so does filter h (Section 3.1.3) and therefore autocorrelation filter i. In
order to recover connection coefficients of the form 〈ϕj,p ; ϕ

(n)
j,q 〉L2 = J

(n)
ϕ (q − p), the two relations

above may be rewritten as a linear system:

HJ (n)
ϕ =

1

2n
J (n)
ϕ , n ≥ 0 , (4.32)

where H is a matrix formed with elements i[k] and J
(n)
ϕ is the vector of connection coefficients.

As a consequence, our connection coefficients 〈ϕj,p ; ϕ
(n)
j,q 〉L2 are components of the eigenvector of

matrixH associated to eigenvalue 1/2n, with n ≥ 0 the derivation order. Finally, similar connection
coefficients involving wavelet functions are obtained using the second refinement relation (3.15),
e.g. :

〈ψ0,p ; ψ0,q〉L2 =

∫
R
ψ(y − p)ψ(y − q)dy

=

∫
R
ψ(y)ψ(y + p− q)dy

=

∫
R

(
√

2
∑
m∈Z

g[m]ϕ(2y −m)

)(
√

2
∑
m∈Z

g[n]ϕ(2(y + p− q)− n)

)
dy

=
∑
k∈Z

∑
m∈Z

2g[m]g[m− k]

∫
R
ϕ(y)ϕ(y + 2(p− q) + k)dy

=
∑
k∈Z

∑
m∈Z

2g[m]g[m− k]J (0)
ϕ (2(q − p)− k) . (4.33)

In practice, it can be shown that in order to recover every connection coefficients of a given
derivation order n for a given anisotropic multiscale basis, it suffices:

(i) to compute these connection coefficients for the fine scale F approximation functions: 〈ϕF,p ; ϕ
(n)
F,q〉L2

for 0 ≤ p, q < 2−F with the eigenvalue problem (4.32);
(ii) to apply the anisotropic forward wavelet transform, up to the chosen coarse scale C, to the

matrix P (n) where
(P (n))p,q = 〈ϕF,p ; ϕ

(n)
F,q〉L2 .

Should a biorthogonal basis be considered (Section 3.1.2), this forward transform has to be
done cautiously. For instance, if the chosen biorthogonal transform uses filters (h̃, g̃) for
the decomposition and (h, g) for the reconstruction (e.g. in (3.21) and (3.22)), then the
decomposition applied to matrix P (n) must be carried out using (h, g) instead of (h̃, g̃), in
order to get the appropriate connection coefficients.
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Part III

Wavelet-Based Motion Estimator
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Chapter 5

Data-Term

Considering turbulence characteristics presented in Section 1.3, optic flow specificities of Sec-
tion 2.2.3 and wavelet properties of Chapters 3 and 4, adopting a wavelet representation in the
context of optic flow estimation may yield the following advantages:

– it provides a multiscale representation which not only echoes to the multiscale turbulent
structure, but also constitutes an interesting framework for optic flow coarse-to-fine estima-
tion;

– it enables the implementation of various regularization schemes for optic flow, based on
motion derivatives.

Indeed some of these ideas have already been explored. Bernard [5] projects the full OFC equation
(2.8) onto a multiscale wavelet basis in order to build a coarse-to-fine estimation scheme. No explicit
smoothing term is introduced; instead, under the hypothesis of motion consistency on the support
of basis functions, he obtains a set of small linear systems to be inverted. An interesting innova-
tion is the use of analytic wavelets: such functions induce less vanishing coefficients than with real
wavelets, which largely stabilizes the flow estimation. Wu & Kanade [44] used a different frame-
work: motion components only are projected onto a multiscale wavelet basis; their coefficients are
estimated sequentially, from coarse to finer scales, by minimizing the incremental quadratic error of
the DFD (2.9), leading to a quadratic functional. At a given scale, previously estimated coefficients
are still considered as unknowns, so as to enable their update or correction as the solver progresses
towards finer scales. They used the specific Cai-Wang wavelet [8], which is built from a 4-th order
B-spline. Its major feature is that coefficients corresponding to a given scale can be computed
directly, whereas the conventional transform requires to go through all finer scales coefficients first.
As we shall see later, a serious drawback in their approach is the computational efficiency: the
computation of the Hessian matrix of their functional, and even more a matrix inversion in their
minimization algorithm rapidly become prohibitive as fine scales and/or large images are consid-
ered. Furthermore, no regularization mechanism is involved, which may complicate the estimation
when applied to low-textured images (such as scalar advection-diffusion, see e.g. Fig. 8.4b). Chen
et al. [10] consider Horn & Schunck formulation [20]. They project every image-related function
of the squared OFC (e.g. [∂x1I1]2), as well as motion components, onto an approximation basis
(i.e. non-multiscale, contrary to previous approaches). First-order smoothing terms are computed
accurately thanks to the connection coefficients of the chosen basis (Section 4.2.2). A large linear
system is assembled, then inverted, in order to minimize the functional. Although being accurate,
this approach is computationally expensive, just as Wu & Kanade’s. Moreover, and contrary to
the two previous methods, the lack of multiresolution scheme may cause issues when dealing with
large displacements.

Our proposal shares some concepts with Wu & Kanade and Chen et al.: we consider the pro-
jection of motion components only, on a multiscale basis. A sequential coarse-to-fine estimation
process is designed to handle large displacements without freezing coarse-scale estimates. Regu-
larization schemes based on motion coefficients are proposed, including high-order schemes relying
on connection coefficients. This chapter introduces our wavelet representation of the motion field
and its integration to optic flow data terms. The derivation of the sequential estimation process
follows (Section 2.2.3), and is finally extended to divergence-free bases. Regularization terms are
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later tackled in the next chapter.

5.1 Wavelet Representation of the Motion Field

We now consider square images of 2−F × 2−F samples, i.e. at pixel scale F . The observable
displacement, unknown of the optic flow problem, is

v ∈ L2([0, 1]2)× L2([0, 1]2) (5.1)

In Chapter 3, we introduced multiresolution analyses (MRAs) of L2([0, 1]2). Let VF = VF ⊗ VF
be such a MRA. We consider each component vi of the motion field to belong to VF :

vi ∈ VF = VF ⊗ VF , i = 1, 2 ⇒ v ∈ VF ×VF ⊂ L2([0, 1]2)× L2([0, 1]2) . (5.2)

Then, taking a coarse scale C > F , we consider a wavelet decomposition of VF . In the following,
we will use the isotropic orthogonal decomposition (3.26), however the approach is very similar
with an anisotropic and/or biorthogonal decomposition:

VF = VF ⊗ VF = (VC ⊗ VC)⊕
⊕

F+1≤j≤C
(Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj) . (5.3)

For each motion component vi, Θi is the vector containing all coefficients (i.e. approximations and
details) resulting from the projection of vi on the set of spaces in (5.3) – see Section 3.1.3 and
Figure 5.1 for a graphical illustration. Then we denote by Θ the superset of all coefficients related
to v:

Θ =

(
Θ1

Θ2

)
. (5.4)

Each component vi is obtained from Θi by the appropriate inverse wavelet transform:

∀x ∈ Ω, vi(x) = ΦT (x)Θi , i = 1, 2 , (5.5)

where Φ(x) is a vector containing values of all wavelet basis functions at current point x. In order
to simplify notations, we also define the “vector” reconstruction:

v(x) = ΦT (x)Θ , (5.6)

where operator Φ writes:

ΦT (x) =

(
ΦT (x) 0 · · · 0
0 · · · 0 ΦT (x)

)
. (5.7)

In representations (5.5) and (5.6), operators Φ and Φ are a vector of size 2−2F × 1 and a matrix of
size 2−2F+1 × 2, respectively. The reader should keep in mind that in practice, every decomposi-
tion/reconstruction operation involves the efficient filterbanks implementation presented in Section
3.1.3.

The unknown variables of the optic flow problem correspond to the set of coefficients Θ repre-
senting the velocity field v in the chosen wavelet basis. Accordingly, the original problem (2.6) is
replaced by:  v̂(x) = ΦT (x)Θ̂ , ∀x ∈ Ω

Θ̂ = argmin
Θ

Jdata(I,Θ) + αJ
reg

(Θ) .
(5.8)

5.2 Data Models

Wavelet-based data models are simply obtained by inserting our wavelet representation (5.6)
into usual data models introduced in Section 2.2.3.
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motion field

vectors

wavelet representation

coefficients

Figure 5.1: Illustration of the isotropic wavelet representation of the motion field v.

5.2.1 DFD model
From DFD equation (2.9), the wavelet DFD becomes:

(wav-DFD) I0(x)− I1(x+ ΦT (x)Θ) = 0 . (5.9)

Using a quadratic penalty, the corresponding data functional writes:

Jdata(I,Θ) =
1

2

∫
Ω

[
I0(x)− I1(x+ ΦT (x)Θ)

]2
dx. (5.10)

Its gradient is required by the optimization process. Let θi,p be the p-th coefficient of vector Θi

related to component vi, and φp its corresponding basis function (either a scale function if θi,p is
an approximation coefficient, or a wavelet function otherwise – see (3.19) and (3.20)):

θi,p = 〈vi ; φp〉L2([0,1]2) . (5.11)

The partial derivative of functional (5.10) with respect to θi,p writes:

∂Jdata(Θ)

∂θi,p
=

∫
Ω

[
I0(x)− I1(x+ ΦT (x)Θ)

]∂I1(x+ ΦT (x)Θ)

∂xi

∂(xi + ΦT (x)Θi)

∂θi,p
dx

=

∫
Ω

[
I0(x)− I1(x+ ΦT (x)Θ)

]∂I1(x+ ΦT (x)Θ)

∂xi
φp(x)dx

=

〈[
I0(·)− I1(·+ ΦT (·)Θ)

]∂I1(·+ Φ(·)T Θ)

∂xi
; φp

〉
L2([0,1]2)

.

(5.12)

From (5.12), one notices that the gradient component
∂Jdata(Θ)

∂θi,p
corresponds to the p-th coefficient

resulting from the projection of[
I0(·)− I1(·+ ΦT (·)Θ)

]∂I1(·+ Φ(·)T Θ)

∂xi
(5.13)

onto the considered wavelet basis. Hence, gradient components of DFD functional (5.10) are simply
given by the wavelet decomposition of the two terms given by (5.13) with i = 1, 2.

5.2.2 OFC model
Similarly, inserting wavelet representation (5.6) into OFC model (2.8) leads to:

(wav-OFC) I1(x)− I0(x) +
(
ΦT (x)Θ

)
· ∇I1(x) = 0 . (5.14)
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Then the corresponding data functional writes:

Jdata(I,Θ) =
1

2

∫
Ω

[
I1(x)− I0(x) +

(
ΦT (x)Θ

)
· ∇I1(x)

]2
dx. (5.15)

The partial derivative of this functional (5.15) with respect to a given coefficient θi,p writes:

∂Jdata(Θ)

∂θi,p
=

∫
Ω

[
I1(x)− I0(x) +

(
ΦT (x)Θ

)
· ∇I1(x)

]∂I1(x)

∂xi
φp(x)dx

=

〈[
I1(x)− I0(x) +

(
ΦT (x)Θ

)
· ∇I1(x)

]∂I1(x)

∂xi
; φp

〉
L2([0,1]2)

.

(5.16)

Just like with DFD gradient (5.12), one identifies a wavelet coefficient. Again, gradient components
of OFC functional (5.15) are given by the coefficients obtained by the projection, on the chosen
wavelet basis, of the two terms:[

I1(x)− I0(x) +
(
ΦT (x)Θ

)
· ∇I1(x)

]∂I1(x)

∂xi
, with i = 1, 2 . (5.17)

5.2.3 Sequential Estimation

Up to now, improvements brought by the wavelet formalism are somewhat minor: a simple
change of basis, however leading to a nice formula for functional gradients. The first major idea,
already introduced by Wu & Kanade [44], consists in taking advantage of the intrinsic multiscale
representation given by wavelet analysis to design a sequential, coarse-to-fine motion estimation
scheme that does not rely on the usual and heuristic image pyramidal representation described in
Section 2.2.3.

Coefficients Θ are estimated sequentially, scale after scale, starting with coarse approximation
coefficients then gradually adding details. At a given scale j with F ≤ j ≤ C, let us denote by Θ|j
the set of all coefficients corresponding to scales coarser than (and including) j, i.e. approximations
and details at scales k, where j ≤ k ≤ C. Current unknown Θ|j is initialized to coefficients
estimated at previous scale j + 1, and to zeros for the new details to be estimated:

Θ|j =

(
Θ1|j
Θ2|j

)
=


Θ̂1|j+1

0

Θ̂2|j+1

0

 , (5.18)

where we assume that

Θ̂|j+1 =

(
Θ̂1|j+1

Θ̂2|j+1

)
= argmin

Θ|j+1

Jdata(I,Θ|j+1) + αJ
reg

(Θ|j+1) (5.19)

result from the estimation process at previous coarser scale j+ 1. Note that from the non-linearity
of the DFD data-model, Θ̂|j+1 can be a local minimum instead of the global one. At the end
of the step, coarser coefficients have been updated if necessary; new details at scale j (that were
initialized to zero) have been estimated. It is then possible to move to finer scale j − 1 and repeat
the process. In other words, solution v̂ is sequentially sought within more and more detailed spaces,
until finest scale F (pixel) is finally reached: (VC ×VC) ⊂ (VC−1 ×VC−1) ⊂ · · · ⊂ (VF ×VF ).
This approach enables to update previous estimates while estimating new details, contrary to usual
multiresolution schemes which freeze coarser estimates.

5.2.4 Computational Aspects

So far, some aspects still have to be clarified, starting with boundary conditions.
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Boundary Conditions

The handling of boundary conditions has not been really mentioned yet. We consider images
I0, I1 and motion v to be defined on [0, 1]2. Wavelet basis functions might have a support larger
than [0, 1]2, especially with high numbers of vanishing moments; it is therefore necessary to modify
these functions. Three options are available [28]:

– periodization of the signal over [0, 1]2 (giving an infinite 1-periodic signal);
– folding of the signal at x = (0, 0)T (giving an infinite 2-periodic signal);
– using boundary wavelets whose support stays within [0, 1]2.

Building and implementing boundary wavelets is quite complex. The simplest option is the peri-
odization, since it is only requires to change convolutions in fast transforms (Section 3.1.3) into
circular convolutions. If the signal is non-periodic – as often, in practice – discontinuities at borders
xi = 0, 1 create high-amplitude coefficients. The same happens with the folding: signal is made
continuous at borders, yet its first derivative is not.

From its experiments, Bernard [5] chose to pad the signal with either symmetric (i.e., folding)
or constant values at the boundaries, as much as required by the support of the filters. In this
work, we only implemented the periodization, being the simplest way. Our benchmarks being done
on pre-existing periodic data (Section 8.1), it was not particularly inopportune. However on real,
non-periodic data, consequences of the periodization on estimated motions are clearly visible and
can be disadvantageous; it will be illustrated in Section 9.2.

Gradient and Warping Computation

We saw in (5.12) and (5.16) how data-term gradient components are obtained by wavelet trans-
forms of image-like objects (5.13) and (5.17). At a given scale j, gradient components corresponding
to Θ|j only are necessary. Since the usual wavelet decomposition computes coefficients from fine
to coarse scales, it implies that all coefficients corresponding to scales k finer than j (F ≤ k < j)
need to be computed but are finally discarded, which clearly constitutes a waste of resources –
especially at the beginning of the process. Wu & Kanade [44] used the specific Cai-Wang wavelet
transform [8], which allows to compute wavelet coefficients from coarse to fine scales, to get around
this issue. However, our estimator should be generic in terms of choice of wavelet basis, so we do
not want to restrict ourselves to this specific wavelet.

A similar situation appears in particular with DFD model, where warped image I1(x + v(x))
has to be computed. At scale j, warping I1 requires a fine-resolution motion, i.e. v ∈ VF ×VF ,
although finest scale F has not been reached yet. Wu & Kanade used interpolation to get a
dense motion. In our approach, the fine-resolution motion is obtained by replacing non-estimated
coefficients with zeros (that is to say, at every scale k finer than current scale j: F ≤ k < j), then
performing the wavelet reconstruction. This strategy has the drawbacks of inducing many useless
operations involving null fine-scale coefficients.

Both of these computational issues, although not critical, can be conveniently addressed by using
“smart” filterbanks. Details on design and performance improvements brought by such filterbanks
are given further in Chapter 7: “Implementation”.

Optimization Routines

Wu & Kanade pointed out the main weakness of their algorithm as its overall computational
efficiency. First, their approach requires the evaluation of the (not-so-sparse) Hessian matrix, of
size 2−2j×2−2j with j the current scale, once at each scale level. Then, since they used Levenberg-
Marquard optimization method, a linear system of the same size is later to be inverted in ordain
to obtain the minimum. Computational cost and memory usage rapidly become prohibitive, hence
motion estimation has to be restricted to coarsest scales only. This might be sufficient for most
optic flow applications; when dealing with fluid flows however smaller scales often need not to be
neglected. Our algorithm follows Wu & Kanade’s suggestion to use a gradient-based optimization
method, furthermore since gradient evaluation finds in our case a simple formulation. Since a high
number of unknowns is involved, we suggest l-BFGS algorithm [32] which approximate the Hessian,
thus avoiding its direct computation. Moreover, it does not require to store the full matrix (e.g.
242 ' 4.4× 1012 elements with 1024× 1024 px images!).
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Pseudocode Synthesis

Figures 5.3 and 5.2 present a pseudocode synthesis of DFD gradient computation and sequential
estimation process, respectively.

5.3 Null-Divergence Estimator
The null-divergence version of our wavelet-based motion estimator is set up analogously to

the generic estimator presented before. Here, the unknown of the optical flow problem is the
set of coefficients {ddiv

j,k}j,k representing stream function z ∈ H1(R2) from which divergence-free
v = curl(z) ∈ Hdiv(R2) is obtained – Section 4.1. We write Θdiv the set of all coefficients
representing the stream function z, and the problem becomes: v̂

div(x) = ΦdivT (x)Θ̂div , ∀x ∈ Ω

Θ̂div = argmin
Θdiv

Jdata(I,Θdiv) + αJ
reg

(Θdiv) .
(5.20)

Nevertheless the theoretical developments leading to vector wavelets ψdiv
j,k in (4.16), such func-

tions are in practice never manipulated to build v from {ddiv
j,k}j,k. Equivalence formulas of Sec-

tion 4.1.4 are much more convenient, as they involve usual scalar basis functions. However, as
already warned at the end of Section 4.1, the practical implementation of divergence-free bases
for finite and discrete signals rises up several subtle aspects that are clarified in Appendix A. In
particular, the coarse scale C – Eq. (5.3) – must be set to 0, and adiv

(0,0),(0,0) = 0.
Motion v corresponding to Θdiv is rebuilt when necessary (e.g. for warping I1) using relations

of Section A.3.1 (pseudocode also available Fig. A.6). Just like the previous estimator working
with usual wavelet bases, data functional gradients are again given by the projection, on the
considered divergence-free wavelet basis, of terms (5.13) and (5.17). Explicit formulas are given in
Appendix A.3.3. The main difference with the previous estimator is the number of unknowns, two
times smaller since coefficients corresponding to the irrotational field (yielding divergence) are not
estimated.

It should be noticed that divergence-free bases allow to represent zero-mean velocity fields only.
In practice, when a uniform translation is present, the estimation of a divergence-free motion can
be carried out in two steps:
(i) a first estimation of the translational motion component, vtrans, using the generic estimator.

This step is very fast, since it suffices to estimate the two approximation coefficients at coarse
scale C = 0. Image I1 is then warped with v̂trans, to “remove” the translation.

(ii) a second estimation of vdiv, the divergence-free component, using the divergence-free estima-
tor.

The final estimate is the sum of both translation and diverge-free components:

v̂ = v̂trans + v̂div . (5.21)
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/∗∗∗∗ Sequen t i a l Est imat ion ∗∗∗∗/

Θ|C = 0 ; // i n i t i a l i z a t i o n

for ( j=C; j>=F; j−−) // loop over s ca l e s , coarse to f i n e
{

// curren t s c a l e e s t imate by l−BFGS
Θ̂|j = l−BFGS_min(I0, I1,Θ|j , eval_Jdata_grad ) ;

Θ|j+1 =
(
Θ̂T

1|j , 0 , Θ̂T
2|j , 0

)T ; // next i n i t i a l i z a t i o n
}

return ΦT Θ̂ ; // re turn motion

Figure 5.2: Sequential estimation pseudocode. L-BFGS implementations usually work as black
boxes, it is only required to give the algorithm a procedure to evaluate the objective functional
and its gradient, such as eval_Jdata_grad() given Figure 5.3 and a few parameters.

/∗∗∗∗ DFD Gradient & Funct iona l Computation ( s c a l e j ) ∗∗∗∗/

[ ∂1Jdata , ∂2Jdata , Jdata ] = eval_Jdata_grad (I0 , I1 , Θ1|j , Θ2|j )
{
//−r e b u i l d f u l l −r e s o l u t i o n motion from c o e f f i c i e n t s
Θ =

(
ΘT

1|j , 0 · · · 0 , ΘT
2|j , 0 · · · 0

)T ; // f i l l remaining f i n e s c a l e s wi th 0
v = ΦT Θ ; // ac t ua l l y , use smart f i l t e r b a n k s

//−image g rad i en t s
Iw = warp (I1 ,v ) ; //warp image
Iw,x1

= grad (Iw ,x1 ) ; // s p a c i a l g r ad i en t s
Iw,x2

= grad (Iw ,x2 ) ;
It = I0 − Iw ; // temporal d i f f e r e n c e

//−terms to be decomposed
Gx1

= It . mul (Iw,x1
) ; // point−wise mu l t i p l i c a t i o n here

Gx2
= It . mul (Iw,x2

) ;

Θx1 = Φ−1Gx1 ; // wave l e t decomposi t ion
Θx2

= Φ−1Gx2
; // a c t u a l l y use smart f i l t e r b a n k s again

//−keep current s c a l e s on ly (C to j )
∂1Jdata = Θx1|j ; // g rad i en t w. r . t . f i r s t motion component
∂2Jdata = Θx2|j ; //and w. r . t . second component

//− f i n a l l y compute f un c t i o na l va lue
Jdata = .5∗ sum(It . mul (It ) ) ; // point−wise square then sum

}

Figure 5.3: Algorithm – DFD gradient & functional computation pseudocode.
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Chapter 6

Regularization Schemes

As introduced in Section 2.1.2, regularization schemes are necessary in order to compensate
for the lack of information that arises from the aperture problem, as well as to “correct” spurious
motion estimates resulting, for instance, from noisy data.

6.1 A Simple Closure: Truncated Bases
A first, very simple approach lowers the number of unknowns by neglecting small scales co-

efficients: motion is estimated on a truncated basis. Let L be the finest estimated scale, taken
strictlycoarser than pixel scale F : F < L ≤ C. The motion therefore belongs to a lower-resolution
space, v ∈ (VL ×VL) ⊂ (VF ×VF ) ⊂ L2(R2)× L2(R2). The problem writes:

v̂ = ΦT Θ̂|L , L > F

Θ̂|L = argmin
Θ|L

Jdata(I,Θ|L) . (6.1)

Solution is obtained following the sequential estimation presented previously in Chapter 5, stopping
at scale L. In order to recover a full-resolution motion, coefficients corresponding to non-estimated
small scales are replaced by zeros, similarly to what is done in order to compute warped image in
Section 5.2.4.

The only parameter of this estimator, leaving aside the choice of the wavelet basis, is L. The
full-scale motion has twice more unknowns as pixels in images. By neglecting the current finest
scale, the number of coefficients is divided by four; therefore it is theoretically possible to pick
L = F + 1, i.e. to neglect the pixel scale only. In practice, it often remains ill-posed due to the
aperture problem (Section 2.1.2). Going towards fine scales, the size of support of wavelet functions
decreases. If input images are not textured enough, so that image gradients vanish over the support
of wavelet functions at a given scale L, then data model no longer provides information and any
coefficient could possibly fit. As a consequence, local "homogeneity" is lost, leading to erroneous
and noisy solutions. In practice, L must be taken “coarse enough” according to input images, and
in any case greater than F .

6.1.1 Properties of the solution
The choice of the wavelet basis is actually of high importance, especially since smallest scales

are neglected. Indeed, the regularity of the solution, as well as the quantity of energy “lost” from
small scales cancellation, depends on the wavelet basis through the number of vanishing moments.

Polynomial approximations

From vanishing moments definition (3.2.1), a wavelet with n VM is orthogonal to any polynomial
of degree n−1. Consequently, piece-wise 1 polynomials of degree n−1 belonging to VF are exactly

1. On the support of {ϕF+1,k}.

49
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described in VF+1, since wavelet basis atoms belonging to its orthogonal complement WF+1 have
vanishing coefficients. Therefore v̂ ∈ VL × VL, solution of (6.1), is a piece-wise polynomial of
order n− 1 in VL−1 ×VL−1 over the support of scaling functions.

Truncation error

Because of the energy conservation provided by the wavelet transform, truncating small scales
coefficients certainly introduces an error – the smaller those coefficients are, and the fewer energy
is lost. Using the Lipschitz regularity of the estimated motion, it is possible to obtain a bound for
the number of VM, above which this truncation error no longer depends on the number of VM,
but on the motion regularity only.

The amplitude of truncated small-scales coefficients depends on either α the signal regularity,
or n the number of vanishing moments of the analyzing wavelet. Therefore the amount of energy
lost by neglecting small scales will depend either on the wavelet basis, when n < α, or on the signal
regularity if n ≥ α. Consequently, using a “high enough” number of vanishing moments should
ensure that the amount of neglected energy does not depend on the wavelet basis. The interest
of this simple rule however has to be balanced, since raising the number of VM also results in a
significant increase of the computational burden, due to the wider support of basis functions.
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Figure 6.1: Effects of fine scales canceling, applied to a 1D slice of a the first component v1 of a
turbulent flow v ∈ V−8. This slice y is projected to V−6 by canceling the two finest detail scales,
using Daubechies wavelets with 1, 2 or 3 VM (a). The corresponding error (y−P−6(y)) is plotted
in (b).

6.2 Dense Schemes
While previous regularization avoided the aperture problem by truncating the wavelet basis

and neglecting the smallest motion scales, dense schemes allow to continue the estimation up to
the finest (pixel) scale. Such regularizers compensate for the aperture problem by enforcing some
spatial smoothness to the optical flow solution, through penalizations of combinations of motion
derivatives. We present two families of schemes that benefit from the wavelet formalism and work
on a similar fashion. The first family is based on a norm equivalence, it is limited to “basic”
schemes only, yet is very simple to set up. The second family transfers derivatives calculations
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to the wavelet basis; it enables to design much more general schemes such as the fluid-dedicated
“curl gradient” introduced by Suter (Section 2.3). These high-order regularizers are added to the
data-term functional, with a scalar factor α that gives a higher magnitude to either the data-term
or to the regularizer. From (2.6), the estimation problem writes: v̂ = ΦT Θ̂ ∈ VF ×VF

Θ̂ = argmin
Θ

Jdata(I,Θ) + αJ
reg

(Θ) .
(6.2)

Jdata may be either DFD (5.10) or OFC (5.15) data models, or any other model designed the same
way. Various regularizers J

reg
and their gradients are given below. Estimation process follows the

gradient-based sequential estimation introduced in Section 5.2.3, using full functional gradient:

∇J(Θ) = ∇Jdata(I,Θ) + α∇J
reg

(Θ) . (6.3)

In the following, concepts are derived for the anisotropic wavelet transform (Section 3.1.4) since
they find a simpler derivation and implementation, especially regarding continuous approximations
of Section 6.2.2. Reasonings however hold true for the isotropic transform as well.

6.2.1 Discrete Approximation
This approach gives basic yet high-order regularization schemes that write, with n the derivation

order:

J reg(v) =
1

2

∫
Ω

∑
i,p=1,2

(
∂nvi(x)

∂xnp

)2

dx =
1

2

∑
i,p=1,2

∥∥∥∥∂nvi∂xnp

∥∥∥∥2

L2

. (6.4)

Contrary to continuous approximations of Section 6.2.2, more general derivatives combinations
(e.g. ‖∆vi‖2L2) cannot be obtained. The derivation order is the only parameter; setting n = 1, one
recognizes the classical first-order regularizer by Horn & Schunck.

In Section 4.2.1, we introduced an equivalence relation between the norm of a function derivative
and the norm of this function’s coefficients. Extended to 2D signals and applied to a motion
component vi, this relation writes:∥∥∥∥∂nvi∂xnp

∥∥∥∥
L2

∼
∥∥(−4)2n2njpdij,k

∥∥
l2
, with dij,k =

〈
vi ; ψj1,k1 ⊗ ψj2,k2

〉
. (6.5)

Consequently, amplitude of motion derivatives can be controlled by a weighted penalization of the
motion coefficients, which are the variables of the estimation problem. Dropping factor (−4)2n

which depends on derivation order only, regularizer (6.4) may be rewritten:

Jreg(v) ∼ Jreg(Θ) =
1

2

∑
i=1,2

∑
j,k

(4−nj1 + 4−nj2)
∣∣dij,k∣∣2 . (6.6)

Its partial derivative with respect to coefficient dij,k is

∂Jreg(Θ)

∂dij,k
= (4−nj1 + 4−nj2)dij,k . (6.7)

A similar development using instead the isotropic transform leads to:

Jreg(v) ∼ Jreg(Θ) =
1

2

∑
i=1,2

∑
j,k

(4−nj)
∣∣dij,k∣∣2 , (6.8)

and corresponding gradient components are given by:

∂Jreg(Θ)

∂dij,k
= (4−nj)dij,k . (6.9)

The constants C1, C2 of norm equivalence (4.27) are not be computed. It is indeed simpler to
embed the unknown upper constant within balance parameter α (Eq. 6.2).



52 CHAPTER 6. REGULARIZATION SCHEMES

Figure 6.2: Illustration of weighting matrixW (1), from Horn & Schunk first-order scheme. Matrices
are associated to space V−6, decomposed up to coarse scale C = −2. The darker the color, the
higher the amplitude.

Computational aspects

These schemes are very simple to implement: at given scale F ≤ j ≤ C of the multiscale
estimation process, a matrix W (n) of size 2−j × 2−j is built, containing coefficients 4−nk1 + 4−nk2

with ji ≤ ki ≤ C corresponding to the tensorial structure of the multiscale basis – see Figure 6.2
for an illustration. For each component Θi, gradient is computed by

∇Jreg(Θi) = W (n) ◦Θi , (6.10)

where ◦ denotes the Hadamard product (element-wise multiplication). Functional value is then
given by

J
reg

(Θ) =
1

2

∑
i=1,2

Θi : ∇J
reg

(Θi) , (6.11)

with : the Frobenius inner product (the sum of Hadamard product elements). Finally, the evalu-
ation of this regularization scheme requires four point-wise matrix multiplications and two sums.
Matrices W (n) and Θi are of the same size as input images (np = 2−F ×2−F pixels) at most (when
scale j = F , last step of the process), so the cost of this evaluation is of order np operations.

6.2.2 Continuous Approximation

Continuous operator approximation allows to set up general regularization schemes by trans-
ferring the computation of motion derivatives and their integrals to the wavelet basis atoms. They
rely on mass and stiffness matrices presented in Section 4.2.2, and take advantage of the tensorial
structure of the wavelet basis (separability) to split computations. Concepts are first explained
with a simple example, formulas for full operators follow.

Introductory Example

Let f be a scalar 2D field of 2−F × 2−F samples and its representation aF in the corresponding
approximation space VF = VF ⊗ VF :

f(x) =
∑
k

aF,kϕF,k1 ⊗ ϕF,k2(x)

=
∑
k

aF,kϕF,k1(x1)ϕF,k2(x2) , with 0 ≤ k1, k2 ≤ 2−F − 1 . (6.12)
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We consider a simple regularization term involving only the first-order partial derivative with
respect to the first variable:

J
reg

(f) =
1

2

∥∥∥∥ ∂f∂x1

∥∥∥∥2

L2

. (6.13)

Inserting wavelet representation (6.12) and using the separability of the basis leads to 2:∥∥∥∥ ∂f∂x1

∥∥∥∥2

L2

=

∫
R2

(
∂f(x)

∂x1

)2

dx

=

∫
R2

[∑
k

aF,k
∂

∂x1
(ϕF,k1(x1)ϕF,k2(x2))

]2

dx

=
∑
k,k′

aF,kaF,k′

∫
R

dϕF,k1(x)

dx

dϕF,k′1(x)

dx
dx

∫
R
ϕF,k2(x)ϕF,k′2(x)dx

=
∑
k,k′

aF,kaF,k′
〈
ϕ

(1)
F,k1

; ϕ
(1)
F,k′1

〉
L2

〈
ϕF,k2 ; ϕF,k′2

〉
L2 (6.14)

Let M (0) and M (2) two matrices of elements indexed by 0 ≤ p, q ≤ 2−F − 1:(
M (0)

)
p,q

=
〈
ϕF,p ; ϕF,q

〉
L2

and
(
M (2)

)
p,q

=
〈
ϕ

(1)
F,p ; ϕ

(1)
F,q

〉
L2 = −

〈
ϕF,p ; ϕ

(2)
F,q

〉
L2 .

(6.15)

These connection coefficients are computed once for all by solving eigenvalue problems, as presented
in Section 4.2.2. Hence regularizer (6.13) rewrites:

J
reg

(aF ) =
1

2

∑
k,k′

aF,kaF,k′(M
(2))k1,k′1(M (0))k2,k′2

=
1

2

∑
k

aF,k

(
M (2)aFM

(0)T
)
k

=
1

2
aF :

(
M (2)aFM

(0)T
)
. (6.16)

where aF is the matrix of approximation coefficients, i.e.
(
aF
)
k

= aF,k, and : is still the Frobenius
inner product. Shall a multiscale wavelet basis be considered (i.e. with approximation and details),
the appropriate connection matrices N (0) and N (2) would be obtained by applying the wavelet
decomposition 3 to matrices M (0) and M (2). Gradient components of (6.16) are finally given by:

∂J
reg

(aF )

∂aF,k
=
(
M (2)aFM

(0)T
)
k
. (6.17)

To sum-up, the regularization functional is simply set-up by:
(i) building connection matrices M (0) and M (2), according to chosen basis and current space

VF , at the beginning of the estimation.
(ii) from current motion representation aF , computing

∇J
reg

(aF ) = M (2)aFM
(0)T (three matrix products)

from which functional value is given by

J
reg

(aF ) =
1

2
aF : ∇J

reg
(aF ) (pointwise product and sum).

2. Notation ·(n) stands for the derivation order and has nothing to do with exponents that previously appeared,
e.g. in definitions of isotropic or divergence-free bases.

3. See point (ii) of Section 4.2.2 if biorthogonal bases are involved.



54 CHAPTER 6. REGULARIZATION SCHEMES

Full Schemes for Regular Bases

High-order regularizers are obtained by following a reasoning similar to our introductory ex-
ample. All schemes write as a sum of several terms of the form

· · · ±Θi :
(
N (n1)ΘjN

(n2)T
)
± · · · (6.18)

with (Θi) is the set of multiscale coefficients corresponding to motion component vi, taken as a
matrix. Index nj , j = 1, 2, is the total derivation order with respect to variable xj , e.g. n1 = 2
and n2 = 0 in example (6.16). The convention adopted for schemes formulas given below is the
following: matrices N (n) correspond to connection terms of the form〈

ψ
(n/2)
i,p ; ψ

(n/2)
j,q

〉
L2 if n is even;〈

ψ
(1)
i,p ; ψ

(n−1)
j,q

〉
L2 if n is odd.

(6.19)

These matrices are symmetric when n is even, so that transpose notation T will be dropped
eventually. In order to compute their elements, it is necessary to iterate several integrations by
parts until terms of the form

〈
ψi,p ; ψ

(n)
j,q

〉
L2

arise (up to some factor, function of the scales and
the derivation order). Following Section 4.2.2, these dot products are given by a wavelet transform
of
〈
ϕF,p ; ϕ

(n)
F,q

〉
L2
, which are initially computed by solving eigenvalue problems.

– Horn & Schunk first order regularizer (2.10) writes

Jreg(Θ) =
1

2

∑
i=1,2

Θi :
(
N (2)ΘiN

(0) +N (0)ΘiN
(2)
)
. (6.20)

Figure 6.3 illustrates the structure of these multiscale connection coefficient matrices N (0)

and N (2).
– The divergence regularizer is

Jreg(v) =
1

2

∥∥ div(v)
∥∥2

L2

⇒ J
reg

(Θ) = Θ1 :
(
N (2)Θ1N

(0)
)

+ Θ2 :
(
N (0)Θ1N

(2)
)

+ Θ2 :
(
N (1)Θ1N

(1)
)
. (6.21)

– Laplacian regularizer is given by

J
reg

(v) =
1

2

∑
i=1,2

∥∥∆vi
∥∥2

L2

⇒ J
reg

(Θ) =
1

2

∑
i=1,2

Θi :
(
N (4)ΘiN

(0) +N (0)ΘiN
(4) + 2N (2)ΘiN

(2)
)
. (6.22)

– The curl gradient regularizer (2.16) is

J
reg

(Θ) =
1

2
Θ1 :

(
N (0)Θ1N

(4) +N (2)Θ1N
(2)
)

+
1

2
Θ2 :

(
N (4)Θ2N

(0) +N (2)Θ2N
(2)
)

−Θ1 :
(
N (3)Θ2N

(1)T
)
−Θ2 :

(
N (1)Θ1N

(3)T
)
.

(6.23)

– And divergence gradient regularizer, also in (2.16):

Jreg(Θ) =
1

2
Θ1 :

(
N (4)Θ1N

(0) +N (2)Θ1N
(2)
)

+
1

2
Θ2 :

(
N (0)Θ2N

(4) +N (2)Θ2N
(2)
)

+ Θ1 :
(
N (1)Θ2N

(3)T
)

+ Θ2 :
(
N (1)Θ2N

(3)T
)
.

(6.24)
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Figure 6.3: Illustration of connection coefficients matrices N (0) and N (2), from Horn & Schunk
first-order scheme (6.20). Matrices are associated to space V−6, decomposed up to coarse scale
C = −2. Connection coefficients were computed using Daubechies-10 wavelets; non-zero values
are in red. This basis is orthogonal, hence N (0) (left) is the identity matrix. N (2) (right) reveals
inter-scale connections, as well as the periodic boundary conditions.

Full Schemes for Divergence-free Bases

When divergence-free bases are employed, regularizers must be computed from stream function
z coefficients Θdiv. Their expressions are obtained by inserting v = (v1 , v2)T = (∂x2

z , −∂x1
z)T

in regularizers such as (2.10) or (2.16).
– Horn & Schunk regularizer (2.10) then writes

Jreg(Θdiv) =
1

2
Θdiv :

(
N (0)ΘdivN (4) +N (4)ΘdivN (0) + 2N (4)ΘdivN (4)

)
. (6.25)

– The curl gradient regularizer (2.16), now identical to the Laplacian regularizer from the
divergence-free property, becomes:

Jreg(Θdiv) =
1

2
Θdiv :

(
N (0)ΘdivN (6) + 3N (2)ΘdivN (4)

+N (6)ΘdivN (0) + 3N (4)ΘdivN (2)
)
.

(6.26)

Computational aspects

At each new step of the sequential estimation, the multiscale basis is completed with atoms
corresponding to new detail coefficients to be estimated. Therefore matrices N (n) have to be re-
computed according to the new basis. At the beginning of the estimation process at current scale
j, this is done by:

(i) computing matrix M (n) corresponding to the current approximation space Vj = Vj ⊗ Vj ;
(ii) then applying the 2D isotropic decomposition to this matrix (taken as an image) so as to

recover connection coefficient matrix N (n) corresponding to the multiscale tensorial structure

Vj =
(
VC ⊕WC ⊕ · · · ⊕Wj+1

)
⊗
(
VC ⊕WC ⊕ · · · ⊕Wj+1

)
.

Scaling functions have a compact support, therefore only a small number of connection coefficients
is necessary to build M (n) at step (i). These values are pre-computed for every chosen scaling
generator, for different orders, with the eigenvalue problem presented in Section 4.2.2. The only
requirement is that the considered generator must be regular enough to stand its derivation up
to order n. Identically to discrete approximation regularizers, matrix M (n) has at most the same
size as input images (np = 2−F × 2−F pixels), so the cost of the wavelet transform to get N (n) at
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step (ii) is a linear function of the total number of pixels np. Finally, the most expensive steps in
functional (and gradient) evaluation are the triple matrix products of the form (N (n1)ΘiN

(n2)T );
each one require at most (np)

3/2 multiplications. Hence the overall complexity of this regularization
is of order (np)

3/2.



Chapter 7

Implementation

7.1 Smart Filterbanks

As seen in Section 5.2.4, the proposed coarse-to-fine estimation process relies on inverse and
forward wavelet transforms that involve useless operations: motion reconstruction to warp I1 with
null coefficients, and gradient evaluation where fine detail coefficients are computed to be later
discarded. In order to minimize this waste of computations, we propose a simple modification of
the decomposition and reconstruction filterbanks. Considering a given scale F ≤ j ≤ C of the
estimation process:

– at the decomposition, useless fine scale details (scales s, F ≤ s < j) are not computed;
– at the reconstruction, null fine scale details (scales s, F ≤ s < j) are not added.

Either at the reconstruction or at the decomposition, this approach saves 62.5% of computations at
each fine scale having null or useless coefficients – see Appendix B. Remaining filterbank iterations
are performed with the usual form.

At the beginning of the estimation process, almost all of the coefficients are null/useless, hence
the gain is quite considerable. Figure 7.1 shows the improvements observed at the decomposition
by the use of modified filterbanks, it can be up to 70, 80% as soon as several scales are neglected.
Results at the reconstruction are very similar.
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Figure 7.1: A wavelet decomposition up to coarsest scale C = 0 is applied to images of side size 256,
512 and 1024 px (Daubechies wavelet generator with 5 VM). The number of useless, neglected fine
scales ranges from 0 (usual decomposition) to the maximum (only coarse approximation coefficients
are kept). The time gain brought by the use of modified filterbanks instead of usual ones is given
in percent. It is a mean value, computed over 100 successive decompositions.
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7.2 Software
Current version of the software uses a custom C++ library for wavelet transform. It was written

keeping it mind readability, hence it is far from being optimized. Therefore, computation times
can be hardly compared to those of other algorithms. Other libraries involved are:

– CImg, a C++ image-processing library [26];
– libLBFGS, a C library implementing Nocedal’s l-BFGS [32];
– Spline, a C library to handle spline-based interpolation and derivation [41], used for warping
and spacial gradient computation;

– cLapack and cBLAS [1] for the matrix-related operations (eigenvalue problem of Section 4.2.2
and matrix products of high-order regularizations Section 6.2.2) ;

– netcdf (optional), a C library to support NetCDF data files [36].
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Chapter 8

Code Validation

The purpose of this chapter is to assess general performances and behaviors of the proposed
algorithm. In particular, the following points must be answered:
(i) In which range of apparent displacements does the method perform best?
(ii) What is the influence of scale parameters C, L?
(iii) Which wavelet family should be used; how much vanishing moments?
(iv) Which data model, between OFC and DFD, gives the best results?
(v) What does the null-divergence estimator bring?
(vi) How do the various proposed regularization schemes behave?
(vii) How does the algorithm rank, compared to state-of-the-art?
The effects of those various parameters are not easily uncoupled: for instance, some regularizations
or the null-divergence bases require “smooth enough” bases. Hence we propose to consider, in
the first place, the simplest estimator with regularization by small scale truncation (Section 6.1),
in order to study points (i) to (v). Then, having chosen the best data model, the optimal scale
parameters and so on, more complex regularizations (vi) and comparisons to state-of-the-art (vii)
will be examined.

Now, how can motion estimates be evaluated? Often the overall flow configuration is known, or
can be determined visually, so that a qualitative evaluation is almost always possible. On the other
hand, reference values are necessary to make quantitative comparisons and error measurements,
yet no ground truth velocity value is generally known. One possibility is to refer to another
measurement, obtained either by probes (hence punctual only) or by another image-based method
such as the cross-correlations. This approach will be used in the next chapter, to investigate
estimates from two laboratory experiments. The second option, chosen below, consists in using
synthetic reference data for which the ground-truth velocity is known.

8.1 Synthetic Dataset

8.1.1 3D Turbulence & Cylinder Wake
These synthetic particle image velocimetry (PIV) datasets present two radically different flow

configurations:
– a 3D isotropic homogeneous turbulent flow, denoted IHT hereafter;
– a cylinder wake at Reynolds 3900, referred to as wake in the following.

Both sequences were created in a similar fashion. From a 3D numerical simulation of the flow,
a velocity field corresponding to a single time-step is kept. 100 000 particles are then advected
within this stationary (time-constant) 3D flow using the Lagrangian equation for non-heavy par-
ticles, and synthetic visualizations are finally obtained by simulating the lightning of a single slice
of the volume. Sample synthetic images as well as the vorticity field of the underlying flow vref are
presented Fig. 8.1. The IHT flow was obtained by Direct Numerical Simulation using GHOST 1

1. Geophysical High Order Suite for Turbulence
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software with 2563 spatial points [30]; resulting images size is 256× 256 px. Wake flow was com-
puted by Large Eddy Simulation [35]; images size is 338× 192 px. Particles are of very small radius,
below 2px. Histograms of these synthetic images are similar to those observed on real experimental
PIV images, such as the ones processed in Chapter 9.

A total of 100 images are available for each sequence, they were computed every 100 time-steps
of the particle transport simulation. Resulting displacements, from one frame to the next one,
are very small: mean displacement is of order 0.04 px/frame and 0.1 px/frame for IHT and wake
sequence, respectively. Such low amplitudes are hardly detectable by the human eye. However,
since for both sequences the velocity field is constant in time, this configuration enables interesting
benchmarks. Indeed, the observable displacement between two given images is the time-integration
of a particle trajectory during the time separating each frame acquisition – let us call it δt. This δt
has to be chosen carefully, according to the flow configuration and the capacities of the analyzing
method. Large apparent motions may lead to poor estimations of the actual instantaneous velocity
– Fig. 8.2 – and similarly too small displacements result in erroneous estimations due to the
numerical precision limit. Therefore the goal is to find the displacements range for which the
algorithm gives optimal results, and to test whether the various parameters have any influence on
this validity range.
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Figure 8.1: Synthetic 3D flow datasets: homogeneous isotropic turbulence (top) and cylinder wake
(bottom). Sample synthetic PIV images for estimation (left), vorticity curl(vref) of the underlying
ground-truth motion (right).

Experiments with IHT and wake sequences will process as follows. Both sequences have 100
frames sampled every dt. We will perform estimations between frames at instants 0 and n · dt = δt
with 1 ≤ n ≤ 100, that is to say with I0(x) = I(x, 0) and

– I1(x) = I(x, dt)⇒ δt = dt;
– I1(x) = I(x, 2 · dt)⇒ δt = 2 · dt;
– . . .
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particle trajectory
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Figure 8.2: A particle is represented along its trajectory at arbitrary time intervals dt. Observable
displacements (dashed lines) corresponding to different acquisition times δt = n ·dt, with n ∈ [1; 6],
and their corresponding instantaneous velocity (arrows) after conversion. Picking large δt leads to
inaccurate estimations of the velocity.

– I1(x) = I(x, 100 · dt)⇒ δt = 100 · dt.
Since the underlying flow is constant in time, we should be able to recover the same estimation
of the instantaneous velocity for every n . In practice this will not occur, not only because with
large n the apparent motion no longer reflects the actual velocity (see Fig. 8.2) so that large,
fast structures are poorly estimated, but also since the estimator gets lost in local minima that
arise with non-linearities and the amplitude of apparent displacements, as n increases. Therefore
errors will be given, normalized in px/frame, as a function of n. The mean and max displacements
corresponding to a given n will be displayed as well. Similar errors of estimates obtained with the
open cross-correlations software MatPIV [39] are given for comparison. They were obtained using
a multigrid schemes of 64× 64 px, 32× 32 px, 16× 16 px and 8× 8 px, with 50% overlay and two
successive passes at each grid level.

Following results are mostly error graphs. In order to illustrate the output of the methods,
vorticity of “good” estimated fields are given in Figure 8.3 for the wavelet optical flow with truncated
bases or smoothing regularizer, as well as for the cross-correlations.

8.1.2 2D Turbulence
This dataset was created in the context of the FLUID project 2, to serve as a reference for image-

based fluid-motion estimation algorithms. It features two sequences, of 256× 256 px synthetic
images, representing the most common flow visualization methods: the first sequence is again
PIV images (referred to as particle images in the following), the second one is scalar transport
images (called scalar images hereafter for short) – see Section 1.1. The underlying fluid motion
is first computed by numerical simulation of incompressible Navier-Stokes equations at Reynolds
Re = 3000; it is a 2D periodic turbulent flow. It features relatively small displacements, with a
maximum magnitude of order 3.5 px/frame, which is adapted to optical flow methods. From there,
particle and scalar images are generated using the Lagrangian equation for non-heavy particles
transported by the flow. Simulation details can be found in [19]. Figure 8.4 presents a sample
vorticity field of ground-truth motion vref, along with sample images from both particle and scalar
sequences.

This simulated incompressible flow has a null-divergence by construction – see Section 1.2.
It is therefore adapted to test the null-divergence estimator. It should be noted that previously
introduced 3D flows are incompressible and divergence-free as well; however, as we look at a 2D

2. http://fluid.irisa.fr

http://fluid.irisa.fr
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(c) truncated basis
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(e) Laplacian regularizer
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(f) Laplacian regularizer
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Figure 8.3: IHT (left) and wake (right) sequences. Vorticity of ground truth (upper row) and good
estimates obtained with truncated wavelet basis (2nd row, 20 VM and L = −6), full wavelet basis
with Laplacian regularizer (3rd row , 5 VM and α = 0.01), and cross-correlations (bottom row).
Time step is δt = 20dt.
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slice of this 3D flow, observable motions are not divergence free – especially in the presence of a
motion component normal to the observation plane. Furthermore, the two very different types of
images (particle and scalar) associated to the same flow may help to enlighten how the estimation
accuracy is influenced by image nature and characteristics. Finally, estimates from other state of
the art methods are available for this dataset, so that we may benchmark our estimator.
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Figure 8.4: Sample particle (left) and scalar (middle) images from the synthetic 2D turbulence
dataset, ground-truth motion vorticity ∇× vref (right).

8.1.3 Notes on Evaluation Criteria

When ground-truth velocity is known, accuracy of estimates is evaluated in terms of root mean
square end-point error (RMSE), in pixels:

RMSE =

(
1

np

∑
x∈Ω

∣∣v̂(x)− vref(x)
∣∣2) 1

2

. (8.1)

8.2 Basic Estimator

The first algorithm to be evaluated is the basic estimator presented in Section 6.1, with regu-
larization by small scale truncation. Its main parameters are the number of vanishing moments of
the wavelet basis, the coarsest scale considered C ≤ 0 (i.e. the depth of the wavelet decomposition)
and the finest scale estimated L with F < L ≤ C. The data model and the use of a divergence-free
estimator are also to be discussed. Unless specified, the wavelet family is the Daubechies wavelet.

8.2.1 Influence of Scale Parameters

IHT, particle and scalar images Fig. 8.1a, 8.4a and 8.4b are of size 256× 256 px, so their finest
scale is F = −8. The wavelet transform requires square images of size a power of two, so the
338× 192 px wake images Fig. 8.1c are inserted at the center of a 512× 512 px uniform canvas.
Hence their finest scale is F = −9.

Finest Estimated Scale (L)

The finest estimated scale parameter L fixes the approximation space VL ×VL in which the
solution is sought. Its choice is a tradeoff between the need to reduce the number of unknowns,
in order to close the estimation problem, and the will to estimate the finest scales of the motion.
With L = 0, only the two coarse approximation coefficients are estimated; it corresponds to a
purely translational motion. Setting L = F , all detail scales are estimated, but from observations
in Section 6.1 the problem is underconstrained (too many unknowns, not even mentioning the
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aperture problem) and results would be noisy. Therefore the optimal value should lay somewhere
between these two extrema.

In order to study the influence of this parameter L, we set for the moment the coarse scale
parameter C to 0: this is a “full-depth” decomposition. Estimations are then achieved for both
IHT and wake sequences, with various values L ≥ F , a 5 vanishing moments (VM) wavelet basis
and every time-steps δt = n · dt with 1 ≤ n ≤ 100. Particle and scalar sequences are processed as
well.

Figure 8.5 presents results obtained for IHT and wake sequences. Optimum is L = −6 for
both sequences. It is not surprising to find the same value for both cases, since images share
approximatively the same particle size and density. As expected, these values are higher than
F . The optimal displacements range is of order [0.5; 5] px, it is not influenced by L. Results for
particle and scalar sequences are given in Fig. 8.6. Optima are L = −6 and L = −5 for particle
and scalar images, respectively. As previously mentioned, scalar diffusion images have much more
low-gradient areas. Uncertainties due to these low gradients arise sooner than with particle images
(as we proceed towards finer scales), therefore it is not surprising to find that the optimum solution
space is coarser with scalar images than with particles.

These observations already raise up a limitation of our basic estimator – the main limitation,
actually: parameter L must be chosen “small enough” in order to stay below the critical scale
where aperture problem appears. Not only this critical scale highly depends on the nature of input
images, but it may also vary within a given image (in the case of a non-homogeneously seeded flow,
for instance). When no ground-truth is available, the only way to figure out a “reasonably good”
value is to achieve several estimates and rely on a qualitative evaluation.

Coarsest Scale Considered (C)

Parameter C fixes the number of scales comprised within coarse approximation space VC , and
the number of remaining detail scales up to VL: VF = VC ⊕WC ⊕ · · · ⊕WL+1. Setting L = −6 for
IHT and wake sequences, we may consider :

V−6 = V0 ⊕W0 ⊕W−1 ⊕ · · · ⊕W−5

= · · ·
= V−2 ⊕W−2 ⊕ · · · ⊕W−5

= V−5 ⊕W−5 .

The closer is C to L, the lesser is the number of detail scales to be estimated. This choice has two
main consequences:
(i) with C close to L, the sequential estimation process involves less steps since fewer detail

scales are considered. Also, forward and inverse wavelet transforms require less operations,
resulting in an overall much faster process;

(ii) however, it has been observed that in the presence of strong non-linearities, in particular
for large displacement, a high value of C will result in the impossibility to capture those
high-amplitude motions.

Results obtained with various values of C are given in Fig. 8.7 for IHT & wake. Contrary to
the previous experiment with L, this parameter C has a clear influence on the estimator ability
to cope with larger displacements as n increases. With small displacements (n < 20), it suffices
to take C = −5 to obtain satisfactory results; it corresponds to a decomposition with a coarse
approximation and one detail scale only. With larger magnitude motions however, it is necessary
to use at least C = −3, which corresponds to a 3 detail scale decomposition. When more detail
scales are considered, the price to pay is a longer estimation time: with IHT images, it increases by
25% with C = −3 instead of C = −4, and by 100% with C = 0. With appropriate C values, the
optimal displacements range is still around [0.5; 5] px. Figure 8.8 gives results for particle & scalar
sequences. Contrary to IHT & wake datasets which feature large amplitude motions at large n,
here displacements stay within the “comfort zone” (below 5px) all sequence long. Almost identical
solutions are obtained for any 0 ≤ C ≤ L + 1. In terms of computations, C = L + 1 is the best
choice.
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Figure 8.5: Influence of fine scale parameter L. Optimum value is L = −6 for both IHT & wake
sequences. The displacements range for which the estimator gives the best results is of order
[0.5; 5] px, it does not depend on F .
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Figure 8.6: Influence of fine scale parameter L. Optimum value is L = −6 for particle and −5 for
scalar.
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Figure 8.7: Influence of coarse scale parameter C, having set L = −6. When displacements
magnitude rises up (n > 20), it is necessary to consider “deeper” decompositions (i.e. C → 0) to
maintain the accuracy. The optimal displacement range is therefore linked to C.
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Figure 8.8: Influence of coarse scale parameter C, having set L = −6 for particles and −5 for
scalar. Almost identical solutions are obtained for any 0 ≤ C ≤ L+ 1. In terms of computations,
C = L+ 1 is the best choice.
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8.2.2 Impact of Vanishing Moments

Basis functions with a larger support “analyze” the signal over a wider area, hence we may
wonder if wide supports enable a better handling of large displacements. Since the size of basis
functions support is linked to their number of VM, we display in Fig. 8.9 results obtained for IHT
and wake sequences using various VM. Low VM values (1, 3) lead to a generally lower accuracy
which rapidly deteriorates as the observable displacements magnitude increases. Also, increasing
much the number of VM does not further widen the optimal displacement range, which is still
around [0.5;5] px.

8.2.3 Choosing the Data Model

Experiment on fine scale parameter L (Fig. 8.5) is repeated with the IHT sequence, using this
time the linear OFC data model – Eq. (5.14). This model does not require to warp image I1 with
v each time the functional is evaluated; it is therefore incomparably faster yet only remains valid
within the linearity region of the image brightness (Fig. 2.4). For small n our image sequence shows
very small displacements, likely to be valid with respect to the linear region, therefore it may be
advantageous to use the OFC instead of DFD. A very simple pyramidal scheme is added on top of
the estimator to try to extend the validity domain.

Figure 8.11 compares errors given by DFD and OFC data models. Although the OFC shows
a much more regular behavior, its performance are far beyond those of the DFD, even at low
amplitudes. The two-level pyramidal approach reduces the gap; the three-level pyramid shows a
more unstable behavior. The OFC may however be used in as a first approach to obtain very quick
results.

8.2.4 The Null-Divergence Constraint

For the particle and scalar sequences, the flow is divergence-less. We may now question the
interest of incorporating the divergence-free constraint directly by the means of divergence-free
wavelet bases introduced in Section 4.1. Coarse scale parameter C is necessary 0, as explained
in Appendix A.3. Estimations with various L parameter values are achieved, results are given
Fig. 8.12 to be compared with those of Fig. 8.6. Since the construction of divergence-free bases
requires to derivate the wavelet, a more regular function was chosen: 10 VM instead of 5 VM in
previous experiment. As illustrated in Fig. 8.10, using more VM should not drastically change
results.

Optima L values with divergence-free bases are the same as with usual bases, i.e. −6 and −5
for particle and scalar, respectively. Divergence-free bases clearly enhance the estimate accuracy:
mean RMS error, over the 100-frame sequences, drops down from 0.092 px to 0.072 px (-22%) with
particles. It is much more spectacular with scalar images: from 0.45 px down to 0.26 px (-42%)
thank to divergence-free bases.

Vorticity of estimates obtained from either usual or divergence-free bases are compared Fig.
8.13. Vorticity maps look rather alike at first glance, yet a closer look reveals spurious structures
in estimates on usual bases that are corrected thanks to the divergence-free constraint, especially
regarding scalar results (Fig 8.13d and 8.13e).

8.2.5 Synthesis

Before considering the addition of regularization schemes and the estimation up to the finest
pixel scale, let us sum-up what previous experiments taught us.

(i) The wavelet-based approach gives its best results for apparent displacements laying roughly
within [0.5; 5] px.

(ii) The fine scale cut-off parameter L must be chosen accordingly to input images characteristics,
in order to exclude scales where the aperture problem becomes prominent (Fig. 8.6).

(iii) The choice of the coarsest scale parameter C influences the ability to cope with large dis-
placements (Fig. 8.6). A basis with several detail scales (i.e. C close to 0) is to be preferred.
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Figure 8.9: Influence of vanishing moments. Estimations are achieved with Daubechies wavelets
having 1, 3, 5, 7, 10, 15 and 20 VM. Very low values not only lead to low accuracy but also show
a worse behavior with high amplitude motions. Choosing more VM helps reducing the error but
is more expensive in terms of computation time: +30% from 5 to 20 VM with IHT images.
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Figure 8.10: Influence of vanishing moments. Particle sequence (left) shows a behavior similar to
IHT and wake PIV sequences (Fig. 8.9). Regarding scalar sequence however (right), raising too
much the number of VM slightly deteriorate the estimation accuracy, which is best with 5 VM
only.
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Figure 8.11: Results previously obtained with DFD (left) are compared to OFC estimates (right),
with an optional pyramidal scheme (levels > 1) and parameters (L,C) = (−5, 0). If accuracy is
much lower than with DFD, so is the computation time: for n = 20, it took 25.6 s with DFD versus
3.6 s only with OFC and 2 levels.
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Figure 8.12: Interest of null-divergence bases. Results are to be compared with those of Fig. 8.6.
Best L values are similar to those of the previous experiment: −6 and −5 for particle and scalar,
respectively. With these parameters, divergence-free bases drops down the mean RMS error, over
the 100-frame sequences, by 22% for particle and 42% for scalar.
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(a) ground-truth (b) particle – usual bases (c) particle – null-divergence bases

(d) scalar – usual bases (e) scalar – null-divergence bases

Figure 8.13: Ground-truth vorticity Fig. (a). Comparison of vorticity fields of estimates obtained
using either usual (middle) or divergence-free bases (right), for particle (top) and scalar (bottom)
images.

(iv) Very low values of vanishing moments should be avoided, as they lead to poorly accurate
solutions and negatively influence the ability to deal with largest displacements (Fig. 8.9).
High values do not bring in much, in terms of RMS error, and increase the computation time.

(v) The DFD data model gives much better results than the OFC and is more adaptable to large
displacements (Fig. 8.11). OFC model is incomparably faster.

(vi) Null-divergence bases enhance estimation of null divergence flows (Fig. 8.12), especially when
images gives poor information – e.g. with scalar images.

8.3 Adding Regularizations

After playing with the various parameters of the basic motion estimator which relies on small
scales truncation, we will now consider full-scale estimations (i.e. up to pixel scale) using regularizers
introduced in Chapter 6. We will focus on the norm and the vorticity of the solution, as well as
on the RMS error (8.1). As a differential quantity, vorticity enlightens the structures of the flow
and also emphasizes its local variations.

Regarding explicit smoothing schemes (Sections 8.3.1 and 8.3.2), we will examine the behavior
of the solution as parameter α, which balances between data term and regularization – Eq. (6.2),
is increased. For each regularizer, two estimates obtained from particle images will be presented:
one using the “best” α in terms of RMS error and another one over-regularized (i.e. with a too
high α), in order to exhibit the effects of the various schemes. Optimal α values were tuned for
each case by methodic searches, performing estimations for image pair at instant t = 20 with every
α = a× 10b, a ∈ [1; 9] and b ∈ Z.
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8.3.1 Discrete Approximation of High-Order Schemes

We consider first the simple regularization schemes introduced in Section 6.2.1 that rely on
norm equivalence (Section 4.2.1). Figures 8.14 and 8.15 display results obtained for orders 1 and
2, respectively. As expected, the order 2 regularization gives better results than the order 1: RMS
error is lower and the vorticity map presents a better aspect, i.e. better-defined structures and less
noise.

8.3.2 Continuous Approximation of High-Order Schemes

Continuous approximation of Section 6.2.2 enables to design more general schemes than the
discrete approximation does. Following results were obtained using regularizers:

– ‖∇v1‖2 + ‖∇v2‖2, “Horn & Schunck”, Eq. (6.20): Fig. 8.16.
– ‖ div(v)‖2, “div”, Eq. (6.21): Fig. 8.17.
– ‖∆v1‖2 + ‖∆v2‖2, “laplacian”, Eq. (6.22): Fig. 8.18.
– ‖∇(curl(v))‖2, “grad(curl)”, Eq. (6.23): Fig. 8.19.
– ‖ div(v)‖2 + ‖∇(curl(v))‖2, “div + grad(curl)”: Fig. 8.20.
– ‖∇(curl(v))‖2 + ‖∇(div(v))‖2, “grad(div) + grad(curl)”: Fig. 8.21.
– divergence-free basis + ‖∇(curl(v))‖2, “div-0 + grad(curl)”: Fig. 8.22.

These tests confirm the expected effects of the various regularizers – for instance, best “grad-
curl” estimate (Fig. 8.19) indeed shows more regular blobs of vorticity than best “div” estimate
(Fig. 8.17), whereas vorticity of “Horn & Schunck” estimate (Fig. 8.16) remains noisy. According
to the chosen quality criterion (RMSE on the velocity fields), overall best results are obtained by
divergence penalization, whether by an explicit regularization term (Fig. 8.17) or by the use of
divergence-free bases (Fig. 8.22). This is not surprising: ground-truth motion being divergence-
free, these regularizers have the most physical meaning. It is however interesting to notice that
the simple divergence penalization gives even better results, in terms of velocity RMSE, than the
more evolved divergence-free basis associated to curl gradient penalization. Should the RMSE be
computed on the vorticity map, this ranking would have been probably different, judging from
the visible artifacts in “div” penalization vorticity map (Fig. 8.17c). This point emphasizes the
difficulty of choosing an appropriate quality criterion.

8.4 Comparisons to State-of-the-Art

Comparison between proposed approaches

In the first place, the various proposed regularizations are compared between each others:
– small-scale truncation, both with usual and divergence-free bases;
– divergence penalization;
– divergence and curl gradient penalization;
– divergence-free bases with curl gradient penalization.

When needed, α parameter values are the “optimal” values found by methodic searches at instant
t = 20, as explained in Section 8.3. Figure 8.23 displays RMS error values measured over the 100
first frames of both particle and scalar sequences.

Let us first focus on particle images. Regarding the basic estimator with small scales trunca-
tion, the use of divergence-free bases clearly enhances the estimates by incorporating the physical
constraint. Then, as already stated in regularizer tests of Section 8.3.2, the simple divergence pe-
nalization clearly outperforms any other approach – although showing a slightly irregular behavior.

Scalar sequence results illustrate the difficulty of choosing the α parameter. As explained above,
these “optimal” α values where determined from many experiments at t = 20. Nevertheless, due
to the diffusion process occurring in the scalar sequence, the characteristics of these scalar images
slightly evolve along the sequence (e.g. less uniform areas, but also less contrast). Therefore,
and contrary to the particle sequence, there is absolutely no reason to assume that this optimal
α obtained at t = 20 would still be optimal several frames later. This is particularly visible
Figure 8.23b, where estimators with a penalization term show a good behavior around t = 20, but
are later clearly outperformed by the truncated divergence-free basis.
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(a) 0.102 (2× 10−2) (b) 0.470 (2× 100)

(c) (d)

Figure 8.14: Discrete approximation, order 1. Vector norm (up) and vorticity (bottom). RMS error
(pixels) below norm images, with α value between brackets.

(a) 0.085 (3× 10−1) (b) 0.450 (5× 102)

(c) (d)

Figure 8.15: Discrete approximation, order 2.
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(a) 0.093 (7× 10−3) (b) 0.473 (3× 10−1)

(c) (d)

Figure 8.16: Continuous approximation, Horn & Schunk. Vector norm (up) and vorticity (bottom).
RMS error (pixels) below norm images, with α value between brackets.

(a) 0.054 (5× 10−1) (b) 0.380 (6× 102)

(c) (d)

Figure 8.17: Continuous approximation, div.
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(a) 0.074 (2× 10−2) (b) 0.537 (2× 101)

(c) (d)

Figure 8.18: Continuous approximation, laplacian. Vector norm (up) and vorticity (bottom). RMS
error (pixels) below norm images, with α value between brackets.

(a) 0.092 (4× 10−2) (b) 0.526 (2× 101)

(c) (d)

Figure 8.19: Continuous approximation, grad(curl).
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(a) 0.068 (3× 10−2) (b) 0.401 (1× 101)

(c) (d)

Figure 8.20: Continuous approximation, div & grad(curl). Vector norm (up) and vorticity (bottom).
RMS error (pixels) below norm images, with α value between brackets.

(a) 0.078 (9× 10−3) (b) 0.482 (1× 101)

(c) (d)

Figure 8.21: Continuous approximation, grad(div) & grad(curl).
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(a) 0.062 (9× 102) (b) 0.122 (3× 104)

(c) (d)

Figure 8.22: Divergence-free & continuous approximation, grad(curl). Vector norm (up) and vor-
ticity (bottom). RMS error (pixels) below norm images, with α value between brackets.

Comparison to state of the art

The best sequences for the small-scale truncation and high-order regularization are then com-
pared to other state of the art methods:

– Horn & Schunk [20] first-order regularization;
– Heas et al. autosimilarity regularization [18];
– Becker et al. adaptive correlations [4];
– Yuan et al. mimetic difference [45];
– LaVision’s cross-correlations (DaVis software).

Results for the 100 first frames of the particle and scalar sequences are given Figure 8.24. Regarding
the particle sequence, both proposed approaches (truncated divergence-free basis; usual basis with
divergence penalization) outperform most of state of the art methods. Let us note that the only
competitive approach, Heas et al. autosimilarity regularization, is very well suited to homogeneous
isotropic turbulent flows such as in this test sequence. It is however not adapted to flows showing
different regimes in the same domain (laminar, transition toward turbulence).

On the scalar sequence, performances of our methods (divergence-free basis, truncated or with
curl gradient penalization) are slightly less satisfactory. Similarly to previous tests, estimators
featuring an explicit smoothing term, and therefore an α parameter, see their results progressively
deteriorate. It illustrates again one the difficulty of setting α, and from that point of view, our
simple estimator with a truncated divergence-free basis seems very reasonable.
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Figure 8.23: Comparison between various proposed approaches, for the particle (top) and scalar
(bottom) sequences.
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Figure 8.24: Comparison to state of the art, for the particle (top) and scalar (bottom) sequences.



Chapter 9

Experimental Results

After assessing the performances of proposed wavelet-based approaches on synthetic data, we
will now focus on their application to actual images obtained during laboratory experiments. With-
out any ground-truth, estimates will be compared to measurements obtained using alternative
approaches, such as vision-based cross-correlations and sensor-based hot-wire anemometry. Two
classical configurations of turbulence physics will be investigated: a turbulent mixing layer and a
cylinder wake.

9.1 Cylinder Wake
This first experiment was conducted in 2011 at IRSTEA Rennes 1 by A. Guibert & D. Heitz.

It consists of several configurations of cylinder wake flows, using either one or three cylinders
and different spacial and/or temporal resolutions. For this study, we chose a configuration which
has already been extensively studied: the cylinder wake at Reynolds 3900. Set up of the experi-
ment is detailed in Figure 9.1. Unless explicitly stated, all results presented hereafter have been
nondimensionalized with respect to the cylinder diameter length d and far flow velocity v∞ :

x[mm]⇒ x/d ; y[mm]⇒ y/d ;

v1[m/s]⇒ v1/v
∞ ; v2[m/s]⇒ v2/v

∞ ;

etc.

Cross-correlations estimates for this 3072 frame-long sequence have been obtained using Lavi-
sion’s software Davis, using 32× 32 px windows with 50% overlay. This gives a sparse field of 64×64
velocity vectors. Several estimations were then performed with the wavelet-based algorithms, using
Daubechies wavelet with 10 VM. Before going into details, Figure 9.2 presents vorticity maps of
the near-wake, obtained from three different estimates:
(i) using cross-correlations (Section 2.2.1): 64× 64 estimated vectors;
(ii) or the simple estimator with small-scale truncation (Section 6.1): 5 smallest scales neglected,

leaving as many unknowns as with (i), but representing 1024× 1024 vectors;
(iii) and the discrete second-order regularization (Section 6.2.1), with parameter α = 10: 1024×

1024 estimated vectors.
All three fields are alike, both in terms of structures and magnitude. The estimate given by
neglecting small scales – (ii) and Figure 9.2b – corresponds quite well to the one obtained from
cross-correlations, (i) and Figure 9.2a, but shows much more regularity. The use of an explicit
smoothing scheme further enables to recover finer scales and better defined structures – (iii) and
Figure 9.2c. It should be noted that the unknowns of the two first estimates represent only 0.4%
of the total unknowns, so that (i) and (ii) can be considered as rather efficient estimations. In the
following we will restrict ourselves to the comparison between cross-correlations (i) and optic flow
with explicit smoothing terms (iii).

1. http://www.irstea.fr/linstitut/nos-centres/rennes
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 far flow

Figure 9.1: Configuration of the cylinder wake experiment (not on scale). Cylinder diameter is
d = 12mm; the 1024× 1024px image area covers 78× 78mm. Image pairs are acquired at 1.5 kHz
(' every 666 µs), while the time step between the two frames of a pair is 70 µs. To obtain a Reynolds
of 3900 with a kinematic viscosity ν = 15.6× 10−6 m2/s, input flow velocity v∞ is 5.07m/s, which
corresponds to a displacement of ' 4.7px within a frame pair.

9.1.1 Mean Flow

From the complexity of turbulence dynamics, as quickly mentioned in Section 1.3.1, the analysis
of turbulent flows requires a statistical description. A first step consists in studying the agreement
between both methods for the time-averaged motion:

v̄i =
1

N

N∑
n=1

vi(n) , i = 1, 2 ; (9.1)

with vi(k) the i-th motion component estimated at discrete time k. These mean flows, computed
over the N = 3072 estimates given by both methods, are displayed Figure 9.3. Cross-correlations
and optical flow results are likely, again both in terms of structures and amplitudes. Some small
deformations are visible in correlations estimate Figures 9.3a and 9.3a, this is caused by a halo-
shaped lightning artifact in input images that could be corrected prior to applying optical-flow.
Spurious structures located at the right border can be noticed for both estimates, they are also
caused by lightning artifacts. Optic flow results seems however less sensitive to these artifacts,
maybe thank to regularization schemes. In order to quantify differences between both results,
cross-correlations estimate is interpolated to match with optic-flow grid, using Matlab’s cubic
interpolation. Absolute relative differences with respect to optic flow values are then computed.
The two mean first components V1 show a remarkable agreement in Figure 9.3e: there is less than
2.5% difference almost everywhere, save for the recirculation region. Differences on the second
mean component V2 enlighten the consequences of lightning artifacts Figure 9.3f.

9.1.2 Cross Fluctuations

The second quantities to be examined are the mean Reynolds tensions:

〈v′iv′j〉 =
1

N

N∑
n=1

(vi(n)− v̄i) (vj(n)− v̄j) , i, j = 1, 2 , (9.2)

where v̄i are components of the mean flow (9.1). Cross fluctuations 〈v′1v′2〉 are the most interesting
here, they are displayed in Figure 9.4. Again, both cross-correlations and optical flow estimates
lead to very similar results, with a better resolution for the optical flow.



9.1. CYLINDER WAKE 83

x/d

y/
d

 

 

1 2 3 4 5 6
−1

−0.5

0

0.5

1

(a) cross-correlations (i)

x/d

y/
d

 

 

1 2 3 4 5 6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) truncated small-scales (ii)

x/d

y/
d

 

 

1 2 3 4 5 6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) second-order regularization (iii)

Figure 9.2: Comparison of vorticity maps of the near-wake, for three different estimates.

9.1.3 Skewness
Skewness is the third moment of the velocity field considered as a random variable (Sec-

tion 1.3.1); it quantifies the asymmetry of the signal. Here it is estimated by:

γi =
1
N

∑N
n=1 [vi(n)− v̄i]3

1
N

[∑N
n=1 [vi(n)− v̄i]2

]3/2 . (9.3)

γ2 (i.e. for second component v2) is displayed Figure 9.5. Again, both results are in good agreement.
The finer resolution brought by optical flow however reveals periodic patterns. Profiles are extracted
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along black dotted lines of Figure 9.5a and 9.5b, and plotted below, Figure 9.5c. The spatial step
between two cross-correlations vectors is of the same order as the wavelength of the signal, which
makes it harder to detect. This wavelength λ/d is of order 0.23 to 0.25; it may be connected to
the vortices of Kelvin-Helmholtz instability shown Figure 9.6. These vortices, much smaller than
von Kármán’s, develop in the shear layer. Their wavelength λ/d is indeed of order 0.25.

This example illustrates one of the advantages of the optical flow approach over the cross-
correlations: with the dense estimation, more structures are resolved; it give access to a more
complete description and therefore a better understanding of the dynamics of the studied configu-
ration.

9.1.4 Power Spectral Density
Temporal signals are extracted from the 3072-frame sequence, at various x locations in the

near wake, and at y points corresponding to different situations: the far flow, the shear layer, the
recirculation region (see Figure 9.1). A power spectral density (PSD) estimate is obtained for each
temporal signal using Welch’s method with 512 point windows. These so-called periodograms are
displayed Figure 9.7, for x = −2.33 (recirculation region) and x = 0.42 (near wake). For symmetry
reasons, spectra corresponding to the upper half of the flow only are shown.

The frequency peak corresponding to von Kármán instability shows up at 77.6Hz, in agreement
with spectra computed from cross-correlations results (not shown). A nondimensional number is
usually associated to this vortex shedding frequency: the Strouhal (St), defined as:

St =
fL

v
; (9.4)

where f is the frequency of the phenomenon (in Hz), L and v are characteristic length and velocity
(in m and m/s, respectively). Using L = d (the cylinder diameter) and v = v∞, the von Kármán
frequency corresponds to St = 0.183. This value is slightly below references from the literature
which rather give a Strouhal between 0.2 and 0.21 at Reynolds 3900, e.g. in Ong & Wallace [33],
Dong et al. [14] or Parnaudeau et al. [35]. However, this Strouhal value highly depends on the
choice of the characteristic velocity v. Here, it can be noted that in practice, observed far flow
velocity values are closer to 0.9× v∞ (see Figure 9.3c). Using this value for the Strouhal gives this
time St = 0.204. The Kelvin-Helmholtz instability peak, although less well-defined than the von
Kármán, can be seen within the shear layer around 300Hz to 400Hz.

9.2 Turbulent Mixing Layer
This experiment was also conducted at IRSTEA Rennes, by J. Carlier, A. Guibert and K.

Sodjavi in 2012. Two parallel flows at different velocities meet at the output of two wind tunnels.
The different velocities create a shear at the interface of the flows, where Kelvin-Helmholtz insta-
bilities develop. Flow visualization is also achieved by Particle Image Velocimetry. Several time
steps were used in order to obtain different magnitudes of apparent displacements, more adapted
either to optical flow or cross-correlations measurements. The main difficulty in processing these
sequences comes from the fact that vertical displacements are extremely small, compared to the
main horizontal motion. Setup of the experiment is given Figure 9.8.

Cross-correlations estimates for the 3072 frame-long sequence have been obtained using GPiv [42]
free software, using 32× 32 px windows with 50% overlay. Just like the cylinder wake experiment,
it gives a 64 × 64 vector field. Only the sequence featuring the largest time-step, 300 µs (and
therefore the largest displacements), was processed with this cross-correlation software. Estimates
from our proposed approach were achieved for all three sequences (time-steps of 100 µs, 200 µs and
300 µs) using a 7 VM Daubechies wavelet, with first-order regularization and parameter α = 0.05
and 0.1. In order to facilitate the convergence when large displacements are involved, a rough ap-
proximation of the mean horizontal displacement (a scalar value) was provided to the algorithm as
a first guess. Optical flow and cross-correlations estimates from a sample image pair are presented
Figure 9.9. Statistics obtained by hot-wire anemometry will be used as well, as a reference. Let us
point out that these statistics were acquired over a longer time than the 3072 image pairs cover,
thus are much better converged than what will be obtained from computer-vision estimates.
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9.2.1 Profiles Comparisons
Mean velocity profiles are displayed in Figure 9.10. First component v̄1 profiles (Figure 9.10a)

are in relatively good agreement, save for the borders. Indeed, as warned in Section 5.2.4, estimated
velocity fields with our proposed approach are periodic due to the periodization of wavelet bases. It
was already the case with the synthetic datasets and cylinder wake sequence, but was less noticeable
and/or prejudicial. Here, despite the difference of horizontal velocities at opposite horizontal image
borders, optical flow profiles show a strong inflection near borders and converge toward a mean
value.

Regarding second component v̄2 (Figure 9.10b), all estimates are rather in complete disagree-
ment. It can be noted however that optical flow profiles for the shortest time-step sequence
(dt = 100 µs) are closer to the anemometer profile than other profiles. And conversely, both
optic flow and cross correlations profiles at dt = 300 µs look totally unrelated to the anemometer
profile. Several explanations can be suggested. First of all, it seems that using larger time-steps
deteriorates the larger structures, resulting in these curious profiles at dt = 300 µs. Then, the
obvious underestimation of the amplitude at smaller time steps can be explained by the poor qual-
ity of computer vision estimates for very small displacements. Also, averaging a longer sequence
would probably help the convergence towards the anemometer profile. Finally, it may be noticed
that increasing parameter α smoothes the profiles – especially with dt = 100 µs, extremely small
displacements – but does not affect their general shape.

Reynolds tensions (Eq. 9.2) profiles are given Figure 9.11. Consequences of the periodic bases
can be seen again on 〈v′1v′1〉 profiles at the borders (Figure 9.11a), especially with large dt where the
difference between the apparent velocities is at its maximum. The underestimation of v2 component
by both computer vision methods is confirmed again Figure 9.11b.

9.2.2 Time Signals and Spectra
Time signals extracted from 500 successive estimates, representing half a second, are displayed

Figure 9.12. They were obtained from the third image sequence (dt = 300 µs). The point where
signals are extracted is located at the horizontal center of the image (x = 800mm) and as close
as possible to the inflection point of the mean profiles (y = −1mm). Let us recall that this
sequence is more adapted to the cross-correlations approach than to the optical flow, due to its
large displacements. The two graphs recall the high difference, in terms of magnitude, between
the longitudinal and transversal components – the later being 10 to 100 times smaller than the
former. As a consequence, although cross-correlations and optical flow signals look rather similar
for both components, the mean relative difference between the two estimates is much higher for
the transversal component (154 %) than for the longitudinal one (2.6%).

Figure 9.13 presents power spectral density computed from full time signals (3072 instants,
around 3 seconds) extracted at (x, y) = (800,−1)mm, for the optical flow estimates (all 3 sequences)
and the cross-correlations estimates (sequence with dt = 300 µs). These PSDs were again obtained
using Welch’s periodograms, with 768 point windows. It can be noted that, despite the differences
observed in time signals Figure 9.12, the PSDs of both optical flow and cross-correlations for
sequence with dt = 300 µs coincide perfectly. The frequency peak around 13Hz corresponds to the
Kelvin-Helmholtz instability.
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Figure 9.3: Comparison of mean flow fields, (a) to (b). Absolute relative difference between both
results with respect to optic flow values, in %, after interpolation of cross-correlations results.
Colored areas are below 10% difference. Errors in cross-correlations estimates due to the halo-
shaped artifacts are underlined in (f); it corresponds to the white crescent on the left and light
gray areas for x ∈ [1.5; 5].
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Figure 9.4: Comparisons of mean cross-fluctuations 〈v′1v′2〉/(v∞)2 computed from cross-correlations
(a) and optical flow (b) estimates. Superposition of cross-correlations (crosses) and optical flow
(continuous lines) profiles in (c) confirm the consistency of both estimates.
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Figure 9.6: Development, in the shear layer, and advection of Kelvin-Helmholtz instabilities. Left
vorticity maps were obtained from optical-flow estimates; right ones from cross-correlations.
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Figure 9.7: Power density spectra across the y direction for the crossflow velocity v2, in the
recirculation region (a) and near wake (b). Frequency peak of the von Kármán instability is
in blue (as well as its first and second octaves), at 77.6Hz. Higher frequency peaks corresponding
to the Kelvin-Helmholtz instability can be seen in the recirculation, within the shear layer only (in
red), around 300Hz to 400Hz.
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Figure 9.8: Configuration of the mixing layer experiment (not on scale). Flows speeds are 4m/s
and 2m/s. Image center is located at 800mm downstream of the trailing edge; each 1024× 1024px
image covers 124× 124mm. Image pairs at acquired at 1000Hz and time steps between two images
of a given pair are 100 µs, 200 µs and 300 µs. Resulting maximum apparent horizontal displacements
roughly cover 4 px to 10 px, while mean vertical displacements are almost always below 1 px.
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Figure 9.9: Norm and vorticity of motion estimates from image pair #6 of sequence with dt =
200 µs. Fields look rather similar, yet it can be noticed that optical flow estimate (upper row)
shows an unexpected behavior near top and bottom borders of the image domain.
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Figure 9.10: Comparison of mean flow profiles at x = 840mm from the trailing edge, obtained from
proposed wavelet-based optical flow (colored lines), cross-correlations (black crosses) or hot-wire
anemometry (red triangles). Dashed lines profiles were obtained with a stronger α parameter.
Optical flow profiles are periodic, due to the periodization of the wavelet basis.
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Figure 9.11: Comparison of mean Reynolds tensions profiles at x = 840mm from the trailing edge,
obtained from proposed wavelet-based optical flow (colored lines), cross-correlations (black crosses)
or hot-wire anemometry (red triangles).
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Figure 9.12: Comparison of time signals at (x, y) = (800,−1)mm given by cross-correlations (black)
and optic flow (red). Displayed signal (half a second) represents values extracted from 500 image
pairs. Mean relative difference between the two estimates, for the whole sequence (3072 frames),
is 2.6% for v1 and 154% for v2, which illustrates again the difficulty to obtain reliable estimations
for very small displacements.
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Figure 9.13: Comparison of power spectral density of time signals extracted at (x, y) =
(800,−1)mm. Blue spectra correspond to optical flow estimates, black spectra are for the cross-
correlations. Spectra for both estimates of the third sequence (lagoon blue and black) coincide
perfectly. Frequency peak at 13Hz corresponds to the Kelvin-Helmholtz instability.



Conclusions

Across this document, I described the design and some elements of the practical implemen-
tation of a 2D wavelet-based optical flow estimator. While being explicitly directed at fluid flow
processing, it is not absolutely restricted to this very specific family of motions. Presented works
cover a basic estimator using regular wavelet bases, the addition of more specific divergence-free
bases, as well as several regularization schemes that rely on wavelet properties.

The various versions of the estimator showed satisfying results on the synthetic datasets used
for validation and evaluation, both in terms of behavior and with respect to other state-of-the-
art methods – principally on particle images. The chosen quality criterion (root mean square
norm of the difference between estimated and ground truth velocity vectors) however must not
be considered as absolute, as many other criteria could have been employed (e.g. error on the
reconstructed vorticity, power spectrum behavior, etc.). To me, these experiences therefore do not
reflect much else than ensuring that the concept works and the regularizers act the way we expected,
as well as giving some ideas on the influence of the various parameters and the operational domain
– especially in terms of apparent displacements magnitude.

The second set of experiments, featuring the real datasets of the cylinder wake and mixing layer,
is in my opinion much more meaningful. Because these experiments rely on actual, realistic, large
images; because they illustrate well both the advantages and weaknesses of our method. And since
the quality criteria – statistical quantities – seem more convincing to me than any “instantaneous”
error measurement, in the first place. The wake experiment showed how finer structures, missed
by cross-correlations, can be recovered using the proposed method. An animated sequence is sadly
impossible to reproduce here, yet it would show beautiful dynamics with interactions between all
scales, and a remarkable temporal continuity which tends to furthermore legitimate these optical
flow results. On the contrary, the mixing layer experiment exhibited some limits of our wavelet-
based approach. The first one being the periodic boundary conditions, employed for the sake
of simplicity, which may corrupt the estimate near border regardless of local image data. The
second one is shared by cross-correlations approach as well, it concerns the poor quality of second
component estimates. This may be linked to the huge difference, in magnitude, between the first
and the second apparent motion components, but more investigations are required.

On a more technical note, this work showed that a multiscale wavelet representation of the
motion field, associated to the non-linear DFD, enables to recover apparent motions, up to a certain
limit between 5px to 10 px, without resorting to the traditional incremental scheme. Although the
cross-correlations are able to handle higher magnitudes, it should be kept in mind that excessively
large displacements may result in inaccurate estimations of larger, faster structures. Therefore
our wavelet-based approach should probably give very satisfactory results, if the set-up of the
experiment can be arranged to ensure the apparent displacements stay below this upper bound.
The boundary condition issue however has to be fixed. There is also much to be done to lower
the computation time for large images, notably by taking advantages of GPGPU to speed up the
convolutions of the wavelet transforms. The divergence-free bases may seem somewhat anecdotal
within this 2D context, as most of apparent 2D motions, actually 3D, are not divergence-free. It
could however constitute a very powerful tool for 3D optical flow estimation, which is currently
under development, if the computational cost of 3D wavelet transforms remain acceptable.

As implicitly suggested above, discussions and investigations on the quality criteria for recon-
structed motion fields are to be considered, especially since these results are likely to be used,
theoretically, for tasks such as fundamental turbulence studies, or embed into data assimilation
processes in the context of meteorological or oceanographical simulations. This cannot be achieved
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without a close cooperation with end users, fluid specialists, experimenters and technicians.
At the beginning of this thesis, I was a complete stranger to the field of computer vision,

and had barely heard of wavelets and their applications. Although I was already interested in
fluid dynamics, with its wide physics and beautiful instabilities, my main concern were images.
I have always felt attracted by this medium, whether from a rather iconographic point-of-view,
or simply as a raw material. My discovery of Milton van Dyke’s collection of photography in its
1982 An album of fluid motion [43] made me realize how visualization techniques, and therefore
images, are deeply connected to the study and comprehension of fluid dynamics. Not only such
visualizations happen to give rise to actually beautiful images, but these images also constitute
a powerful tool to describe and analyze the ongoing phenomenons. Un dessin vaut mieux qu’un
long discours; a picture speaks a thousand words. I was then shown how computer vision methods
are able to extract some motion information from such fluid flow image sequences, as well as the
inherent difficulties in the process. And during these three years of developments and tests of my
own wavelet-based motion estimator, I finally found myself creating pictures out of the extracted
motions to help me analyze what had been recovered. From pictures, to motion, to pictures.
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Appendix A

Divergence-Free Bases: Practical
Implementation

Consider a scalar field z ∈ H1(R2) and v = curl(z) = (∂x1
z,−∂x2

z)T = (v1, v2)T ∈ Hdiv(R2)
the divergence-free vector field uniquely defined by the curl of z. In Section 4.1, we derived
(B)MRAs of these two function spaces so that motion v and its associated stream function z write:

z(x) =
∑
j,k

ddiv
j,kψ

1
j1,k1(x1)ψ1

j2,k2(x2) ;

v1(x) =
∑
j,k

d1
j,kψ

1
j1,k1(x1)ψ0

j2,k2(x2) ;

v2(x) =
∑
j,k

d2
j,kψ

0
j1,k1(x1)ψ1

j2,k2(x2) ;

(A.1)

with j,k ∈ Z2. We derived formulas to compute ddiv
j,k coefficients from d1

j,k and d2
j,k, and recip-

rocally – Eq. (4.22), (4.23), (4.24). However, the practical implementation of such bases reveals
numerous subtle aspects which deserve to be clarified, such as the computation of the various filters
involved in forward and inverse transforms. Above all, the use of periodic bases (in order to deal
with finite signals) leads to non-trivial relations between the three sets of coefficients involved, that
must be taken into account in order to design exact decomposition/reconstruction algorithms.

A.1 Filters
Two sets of scaling and wavelet functions are necessary to form divergence-free bases:
– (ϕ1, ϕ̃1) and (ψ1, ψ̃1) form a basis for the stream functions space H1(R2);
– (ϕ0, ϕ̃0) and (ψ0, ψ̃0) that, along with previous functions, form a basis for Hdiv(R2).

These functions are related by derivation and integration relations (4.3). In practice, their corre-
sponding filters are required for fast transforms. There are two ways to construct the set of all
low-pass filters, either starting from the biorthogonal pair (h0, h̃0) or from (h1, h̃1), as illustrated
in Figure A.1. Derivation and integration functions slightly differ between cases (a) and (b). Cor-
responding pseudocodes are given Section A.4, Figures A.4 and A.5. High-pass filters (gi, g̃i) are
then computed from (hi, h̃i) for i = 0, 1 by conjugate mirror formulas (3.17). Finally, we have four
pairs of high- and low-pass filters in total: (h0, g0), (h̃0, g̃0), (h1, g1), (h̃1, g̃1). Their various uses
are:

– {ddivj,k}j,k 7→ z: primal filters (h1, g1).
– z 7→ {ddivj,k}j,k: dual filters (h̃1, g̃1).
– {d1

j,k}j,k 7→ v1: primal filters (h1, g1) for dimension x1, (h0, g0) for x2.
– v1 7→ {d1

j,k}j,k: dual filters (h̃1, g̃1) for dimension x1, (h̃0, g̃0) for x2.
– {d2

j,k}j,k 7→ v2: primal filters (h0, g0) for dimension x1, (h1, g1) for x2.
– v2 7→ {d2

j,k}j,k: dual filters (h̃0, g̃0) for dimension x1, (h̃1, g̃1) for x2.
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derivationintegration

(a)

derivation integration

(b)

Figure A.1: Relations between filters for divergence-free bases.

– DFD gradient (see Section A.3.3): primal filters (h0, g0) and (h1, g1).
– connection coefficients for high-order regularization on {ddivj,k}j,k (Section 6.2.2): primal filters

(h1, g1).
Regarding the optical flow problem, only primal filters (h0, g0) and (h1, g1) are used (inverse trans-
forms, gradient computation and connection coefficients). It should be noted that in (3.17), primal
high-pass filter gi is obtained from dual low-pass filter h̃i.

A.2 Finite Signals & Scaling Functions Derivatives

Before going any further, we must remind that we work with finite signals with a fine (pixel)
scale F < 0: z ∈ H1([0, 1]2) and v ∈ Hdiv([0, 1]2). Above expressions (A.1) are no longer correct,
since there are a finite range of scales, form the finest F ≤ 0 to a given coarsest F ≤ C ≤ 0. Hence
the following expression for stream function z ∈ V 1

F ⊗ V 1
F :

z(x) =
∑
k

adiv
(C,C),k ϕ

1
C,k1(x1)ϕ1

C,k2(x2)

+
∑
j,k

bdiv
(C,j),k ϕ

1
C,k1(x1)ψ1

j,k(x2) + cdiv
(j,C),k ψ

1
j,k(x1)ϕ1

C,k2(x2)

+
∑
j,k

ddiv
j,k ψ

1
j1,k1(x1)ψ1

j2,k2(x2) ;

(A.2)

where j ∈ [F + 1;C]2, j ∈ [F + 1;C], k ∈ [0; 2−j1 − 1]× [0; 2−j2 − 1], and the coefficients are given
by:

adiv
(C,C),k =

〈
z ; ϕ̃1

C,k1 ⊗ ϕ̃1
C,k2

〉
L2 ;

bdiv
(C,j),k =

〈
z ; ϕ̃1

C,k1 ⊗ ψ̃1
j2,k2

〉
L2 ;

cdiv
(j,C),k =

〈
z ; ψ̃1

j1,k1 ⊗ ϕ̃1
C,k2

〉
L2 ;

ddiv
j,k =

〈
z ; ψ̃1

j1,k1 ⊗ ψ̃1
j2,k2

〉
L2 .

(A.3)

Similarly, first motion component v1 in V 1
F ⊗ V 0

F writes

v1(x) =
∑
k

a1
(C,C),k ϕ

1
C,k1(x1)ϕ0

C,k2(x2)

+
∑
j,k

b1(C,j),k ϕ
1
C,k1(x1)ψ0

j,k(x2) + c1(j,C),k ψ
1
j,k(x1)ϕ0

C,k2(x2)

+
∑
j,k

d1
j,k ψ

1
j1,k1(x1)ψ0

j2,k2(x2) ;

(A.4)



A.2. FINITE SIGNALS & SCALING FUNCTIONS DERIVATIVES 105

whith the coefficients:
a1

(C,C),k =
〈
v1 ; ϕ̃1

C,k1 ⊗ ϕ̃0
C,k2

〉
L2 ;

b1(C,j),k =
〈
v1 ; ϕ̃1

C,k1 ⊗ ψ̃0
j2,k2

〉
L2 ;

c1(j,C),k =
〈
v1 ; ψ̃1

j1,k1 ⊗ ϕ̃0
C,k2

〉
L2 ;

d1
j,k =

〈
v1 ; ψ̃1

j1,k1 ⊗ ψ̃0
j2,k2

〉
L2 .

(A.5)

Finally, second component v2 ∈ V 0
F ⊗ V 1

F is:

v2(x) =
∑
k

a2
(C,C),k ϕ

1
C,k0(x1)ϕ1

C,k2(x2)

+
∑
j,k

b2(C,j),k ϕ
0
C,k1(x1)ψ1

j,k(x2) + c2(j,C),k ψ
0
j,k(x1)ϕ1

C,k2(x2)

+
∑
j,k

d2
j,k ψ

0
j1,k1(x1)ψ1

j2,k2(x2) ;

(A.6)

and the coefficients:
a2

(C,C),k =
〈
v2 ; ϕ̃0

C,k1 ⊗ ϕ̃1
C,k2

〉
L2 ;

b2(C,j),k =
〈
v2 ; ϕ̃0

C,k1 ⊗ ψ̃1
j2,k2

〉
L2 ;

c2(j,C),k =
〈
v2 ; ψ̃0

j1,k1 ⊗ ϕ̃1
C,k2

〉
L2 ;

d2
j,k =

〈
v2 ; ψ̃0

j1,k1 ⊗ ψ̃1
j2,k2

〉
L2 .

(A.7)

The goal is therefore to find the relations between stream function z coefficients (A.3) and motion
components v1, v2 coefficients (A.5) & (A.7), using v = curl(z).

Applying curl operator (∂x2 ,−∂x1)T to (A.2) will bring up first-order derivatives of the various
basis functions involved: d

dxϕ
1
C,k(x) and d

dxψ
1
j,k(x). From derivation/integration relations (4.3), we

obtain:
d

dx
ϕ1
C,k(x) = 2−C

[
ϕ0
C,k(x)− ϕ0

C,k(x− 1)
]

= 2−C
[
ϕ0
C,k(x)− ϕ0

C,k+1(x)
]

;

d

dx
ψ1
j,k(x) = 2−j+2ψ0

j,k ;

(A.8)

again with j ∈ [F + 1;C] and k ∈ [0; 2−j − 1]. Wavelet functions derivation simply rises a
2−j+2 factor. The crucial point is related to the k + 1 translation that appears in scale function
derivative. Since our basis is separable, we may first focus on the 1D case. Let us consider the fine
scale approximation of signal f :

f(x) =

2−F−1∑
k=0

aF,k ϕ
1
F,k(x) .

Computing its derivative and inserting expression (A.8) leads to:

df

dx
(x) =

2−F−1∑
k=0

aF,k
dϕ1

F,k

dx
(x)

=

2−F−1∑
k=0

2−FaF,k
[
ϕ0
F,k(x)− ϕ0

F,k+1(x)
]

= 2−F
[
aF,0 ϕ

0
F,0(x)− aF,2−F−1 ϕ

0
F,2−F (x)

]
+

2−F−1∑
k=1

2−F
[
aF,k − aF,k−1

]
ϕ0
F,k .

In order to deal with finite signals, basis functions are periodized – Section 3.1.3: at scale F ,
functions are 2−F periodic. Therefore, ϕ0

F,2−F (x) = ϕ0
F,0(x), and we obtain:

df

dx
(x) = 2−F

[
aF,0 − aF,2−F−1

]
ϕ0
F,0(x) +

2−F−1∑
k=1

2−F
[
aF,k − aF,k−1

]
ϕ0
F,k ;
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Finally, we may write the relation between coefficients aF,k of f and ãF,k of f ′ by identification:

df

dx
(x) =

2−F−1∑
k=0

ãF,k ϕ
0
F,k(x) ⇒

{
ãF,0 = 2−F

(
aF,0 − aF,2−F−1

)
ãF,k = 2−F

(
aF,k − aF,k−1

)
, for 1 ≤ k ≤ 2−F − 1 .

Three important points are deduced from this last result:

(i) Approximation coefficients {ãF,k}k of a function derivative are given by a finite difference of
that function approximation coefficients {aF,k}k, with periodic boundary conditions.

(ii) Due to periodization, inverting the system (i.e. deducing {ãF,k}k from {aF,k}k) is generally
impossible.

(iii) A special case appears with F = 0⇒ k = 0: ã0,0 = 2−F (a0,0 − a0,0) = 0. Indeed, with peri-
odization, the coarsest scaling function ϕ0,0 of any wavelet basis is always the unit-constant
function [28]; it is not surprising to find that its derivative is null. A direct consequence is
that underdetermination (ii) disappears so that the system can be inverted.

Keeping these observations in mind, me may now go back to our motion field.

A.3 Application to z and v

We will now design algorithms to compute v coefficients from z coefficients (the “reconstruc-
tion”), and reciprocally (the “decomposition”). Most of the time, only the reconstruction is used
within the motion estimation context. The decomposition is necessary, for instance, in order to
initialize the algorithm (the unknowns being stream function coefficients) with a given motion field.

Regarding the reconstruction, two different algorithms may be derived, using either multiscale
(i.e. with both scaling and wavelet functions, when F < C ≤ 0) or monoscale (scaling functions
only, C = F ) bases. From above remarks (ii)-(iii) however, the only available option at the decom-
position, in order to recover approximation coefficients, is to consider C = 0: a “full” multiscale
decomposition. Therefore both multiscale algorithms (decomposition and reconstruction) will be
derived setting C = 0.

A.3.1 Reconstruction from Approximation Coefficients Only

Here, we have set C = F in (A.2). Let us consider first what happens with component v1.

v1(x) =
∂z(x)

∂x2
=
∑
k

adiv
(F,F ),k ϕ

1
F,k1(x1)

[
ϕ1
F,k2

]′
(x2)

=
∑
k

2−Fadiv
(F,F ),k ϕ

1
F,k1(x1)

[
ϕ0
F,k2(x2)− ϕ0

F,k2+1(x2)
]

=
∑
k1

2−F
[
adiv

(F,F ),(k1,0) − adiv
(F,F ),(k1,2−F−1)

]
ϕ1
F,k1(x1)ϕ0

F,0(x2)

+
∑
k1

2−F−1∑
k2=1

2−F
[
adiv

(F,F ),k − adiv
(F,F ),(k1,k2−1)

]
ϕ1
F,k1(x1)ϕ0

F,k2(x2) ;

(A.9)

with k ∈ [0; 2−F − 1]2 and k1 ∈ [0; 2−F − 1]. Since v1 also writes

v1(x) =
∑
k

a1
(F,F ),k ϕ

1
F,k1(x1)ϕ0

F,k2(x2) , (A.10)

we find by identification, for k1 ∈ [0; 2−F − 1]:

a1
(F,F ),(k1,k2) =

{
2−F

[
adiv

(F,F ),(k1,0) − adiv
(F,F ),(k1,2−F−1)

]
, for k2 = 0 ;

2−F
[
adiv

(F,F ),(k1,k2) − adiv
(F,F ),(k1,k2−1)

]
, for k2 ∈ [1; 2−F − 1] .

(A.11)
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Approximation coefficients {a1
(F,F ),k}k of v1 are given by a finite difference along the second di-

mension of z coefficients {adiv
(F,F ),k}k, with periodic boundary conditions, and a normalization by

factor 2−F . Similarly, we find for v2, for k2 ∈ [0; 2−F − 1]:

a2
(F,F ),(k1,k2) =

{
− 2−F

[
adiv

(F,F ),(0,k2) − adiv
(F,F ),(2−F−1,k2)

]
, for k1 = 0 ;

− 2−F
[
adiv

(F,F ),(k1,k2) − adiv
(F,F ),(k1−1,k2)

]
, for k1 ∈ [1; 2−F − 1] .

(A.12)

Here, the finite difference with periodization proceeds along the first dimension. Should z be known
on a multiscale basis (with F<C, Eq. (A.2)), it suffices to perform the appropriate 2D inverse
wavelet transform until fine approximation coefficients only are left, prior to applying relations
A.11 and A.12. This whole reconstruction algorithm is summed up in Fig. A.6. Finally and as
already mentioned in remark (ii), it is impossible to invert the system in order to find z coefficients
from those of v.

A.3.2 Reconstruction & Decomposition from Multiscale Coefficients
These algorithms allow a full decomposition/reconstruction of motion v and its associated

stream function z. Here, we set C = 0, i.e. consider a full multiscale decomposition. From above
remark (iii), every term involving (ϕ1

0,0)′ = (ϕ1)′ vanishes. Starting again with the first component,
we start by expressing v1 as ∂x2z:

v1(x) = ∂x2
z = adiv

(0,0),(0,0) ϕ
1(x1)

[
ϕ1
]′

(x2)

+
∑
j,k

bdiv
(0,j),(0,k) ϕ

1(x1)
[
ψ1
j,k

]′
(x2) + cdiv

(j,0),(k,0) ψ
1
j,k(x1)

[
ϕ1
]′

(x2)

+
∑
j,k

ddiv
j,k ψ

1
j1,k1(x1)

[
ψ1
j2,k2

]′
(x2) ;

(A.13)

Moreover, from (A.4) with C = 0, v1 ∈ V 1
F ⊗ V 0

F also writes

v1(x) = a1
(0,0),(0,0) ϕ

1(x1)ϕ0(x2)

+
∑
j,k

b1(0,j),(0,k) ϕ
1(x1)ψ0

j,k(x2) + c1(j,0),(k,0) ψ
1
j,k(x1)ϕ0(x2)

+
∑
j,k

d1
j,k ψ

1
j1,k1(x1)ψ0

j2,k2(x2) ;

(A.14)

Inserting wavelet derivative expression (A.8) and canceling the appropriate terms finally leads to:

a1
(0,0),(0,0) = 0 ;

b1(0,j),(0,k) = (2−j+2) bdiv
(0,j),(0,k) for j ∈ [F + 1; 0], k ∈ [0, 2−j − 1] ;

c1(j,0),(k,0) = 0 for j ∈ [F + 1; 0], k ∈ [0, 2−j − 1] ;

d1
j,k = (2−j2+2) ddiv

j,k for j ∈ [F + 1; 0]2, k ∈ [0; 2−j1 − 1]× [0; 2−j2 − 1] .

(A.15)

As for second component v2, we have:

a2
(0,0),(0,0) = 0 ;

b2(0,j),(0,k) = 0 for j ∈ [F + 1; 0], k ∈ [0, 2−j − 1] ;

c2(j,0),(k,0) = (−2−j+2) cdiv
(j,0),(k,0) for j ∈ [F + 1; 0], k ∈ [0, 2−j − 1] ;

d2
j,k = (−2−j1+2) ddiv

j,k for j ∈ [F + 1; 0]2, k ∈ [0; 2−j1 − 1]× [0; 2−j2 − 1] .

(A.16)

Once v1 and v2 coefficients have been determined, the motion is obtained by applying the appropri-
ate inverse wavelet transform to each set of coefficients. Regarding v1, filters (h1, g1) are used for
the first dimension and (h0, g0) for the second; conversely for v2. Whereas previous reconstruction
algorithm Section A.3.1 requires one inverse transform at most, here two transforms are necessary,
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which makes it less interesting in terms of computations. However, and contrary to the previous
algorithm, the system can be inverted in order to recover stream function z coefficients from those
of v. It gives:

adiv
(0,0),(0,0) = 0 ;

bdiv
(0,j),(0,k) =

1

2−j+2
b1(0,j),(0,k) for j ∈ [F + 1; 0], k ∈ [0, 2−j − 1] ;

cdiv
(j,0),(k,0) =

−1

2−j+2
c2(j,0),(k,0) for j ∈ [F + 1; 0], k ∈ [0, 2−j − 1] ;

ddiv
j,k =

1

2−j2+2 + 2−j1+2

[
d1
j,k − d2

j,k

]
for j ∈ [F + 1; 0]2, k ∈ [0; 2−j1 − 1]× [0; 2−j2 − 1] .

(A.17)
These relations are displayed in Fig. A.2, pseudocode for decomposition and reconstruction algo-
rithms are given Fig. A.7 and Fig. A.8.

Figure A.2: Multiscale divergence-free decomposition/reconstruction schemes. Top left : disposi-
tion of coefficient sets a (red), b (green), c (blue), d (pink). v1 coeff. from z coeff. (Eq. (A.15),
bottom left); v2 coeff. from z coeff. (Eq. (A.16), top right); z coeff. from v1, v2 coeff. (Eq. (A.17),
bottom right).

A.3.3 DFD Gradient

The DFD gradient with respect to stream function z coefficients is obtained by applying the
chain formula.
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Gradient w.r.t. Fine Approximation Coefficients

Gradient of DFD functional with respect to a given fine approximation coefficient adiv
(F,F ),(p1,p2)

is given by:

∂JDFD

∂adiv
(F,F ),(p1,p2)

(v) = 2−F
〈
∂x1I1(·+ v(·))

[
I0 − I1(·+ v(·))

]
; ϕ1

F,p1 ⊗ ϕ0
F,p2 − ϕ1

F,p1 ⊗ ϕ0
F,p2+1

〉
L2

− 2−F
〈
∂x2I1(·+ v(·))

[
I0 − I1(·+ v(·))

]
; ϕ0

F,p1 ⊗ ϕ1
F,p2 − ϕ0

F,p1+1 ⊗ ϕ1
F,p2

〉
L2 ,

(A.18)
for all 0 ≤ p1, p2 ≤ 2−F − 1. Periodization of the basis has to be taken into account near borders:

pi = 2−F − 1⇒ pi + 1 = 0 .

Moreover, using Mallat’s approximation (3.1.3) for fine approximation coefficients simplifies previ-
ous expression and leads to:

∂J
DFD

∂adiv
(F,F ),(p1,p2)

(v) =
(
∂x1I1(·+ v(·))

[
I0 − I1(·+ v(·))

])
p1,p2

−
(
∂x1I1(·+ v(·))

[
I0 − I1(·+ v(·))

])
p1,p2+1

−
(
∂x2I1(·+ v(·))

[
I0 − I1(·+ v(·))

])
p1,p2

+
(
∂x2I1(·+ v(·))

[
I0 − I1(·+ v(·))

])
p1+1,p2

.

(A.19)

Gradient values with respect to multiscale coefficients can be obtained using direct formulas below,
or by applying the appropriate forward transform – with primal filters (h1, g1) – to the values of
(A.18).

Gradient w.r.t. Multiscale Coefficients

Let α be the set of all z coefficients in Eq. A.17 and β1, β2 the sets of all v1 and v2 coefficients
in Eq. A.15 and A.16:

∂JDFD(v)

∂αp
=

∫
Ω

∑
i=1,2

(
∂

∂vi

[
I0(x)− I1(x+ v(x))

]2∑
q

∂vi
∂βiq

∂βiq
∂αp

)
dx . (A.20)

We finally obtain:

∂J
DFD

∂adiv
(0,0),(0,0)

(v) = 0 ;

∂J
DFD

∂bdiv
(0,j),(0,k)

(v) = 2−j+2
〈
∂x1I1(·+ v(·))

[
I0 − I1(·+ v(·))

]
; ϕ1 ⊗ ψ0

j,k

〉
L2

∂J
DFD

∂cdiv
(j,0),(k,0)

(v) = −2−j+2
〈
∂x2I1(·+ v(·))

[
I0 − I1(·+ v(·))

]
; ψ0

j,k ⊗ ϕ1
〉
L2

∂JDFD

∂ddiv
j,k

(v) =
2−j2+2

〈
∂x1I1(·+ v(·))

[
I0 − I1(·+ v(·))

]
; ψ1

j1,k1 ⊗ ψ0
j2,k2

〉
L2

− 2−j1+2
〈
∂x2I1(·+ v(·))

[
I0 − I1(·+ v(·))

]
; ψ0

j1,k1 ⊗ ψ1
j2,k2

〉
L2 ,

(A.21)

with j ∈ [F + 1; 0]2, k ∈ [0; 2−j1 − 1] × [0; 2−j2 − 1] and j ∈ [F + 1; 0], k ∈ [0, 2−j − 1]. It is
important to notice that these gradient values are obtained by wavelet decomposition using primal
wavelet filters (h0, g0) and (h1, g1).

Synthesis

Relations between stream function z, motion field v = curl(z) and their respective fine approx-
imation or multiscale coefficients are synthesized Figure A.3, as well as the steps required for DFD
gradient computation.
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1 wavelet
transform
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(A.17)
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stream 
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motion
field

fine approx.
coefficients

fine approx.
coefficients

multiscale
coefficients

multiscale
coefficients

(a) Motion reconstruction/decomposition

motion
field

gradient w.r.t.
stream function

fine approx.
coefficients

gradient w.r.t.
motion

fine approx.
coefficients

gradient w.r.t.
stream function 

multiscale
coefficients

gradient w.r.t.
motion multiscale

coefficients(A.22)

(A.20)

1 wavelet
transform

2 wavelet
transforms

gradient w.r.t.
motion

components

(b) DFD gradient

Figure A.3: Synthesis of relations for divergence-free transforms (a) and DFD gradient (b). Within
the context of motion estimation, one usually works with multiscale coefficients of stream function
z. Motion v can be rebuilt following either the blue path (one wavelet transform) or the red one
(two transforms but less linear combinations). Stream function can be recovered from motion
following the unique green path.

A.4 Pseudocodes

This section gathers pseudocodes for divergence-free filters construction (Figures A.4, A.4) and
relations between stream function z and divergence-free motion v coefficients (Figures A.6, A.7,
A.8). Regarding filters construction, filters supports are not necessarily in N, and these supports
are modified by integration/derivation operations. In order to simplify notations, the following
convention is adopted:

– In algorithms below, an index (e.g. k in h[k]) refers to the memory index. Hence if the length
of filter h is L, then 0 ≤ k ≤ L− 1.
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– The actual “physical” index is obtained via the corresponding offset ih (the lower bound of h
support): for 0 ≤ k ≤ L− 1, h[k] corresponds to the value at actual index k + ih.

/∗∗∗∗ (h0, h̃0) from (h1, h̃1) ∗∗∗∗/

[h0 , h̃0 , ih0 , ih̃0
] = f i l t e r s_get0_from1 (h1 , h̃1 , ih1 , ih̃1

)
{

//−primal h0 ( d e r i v a t i on )
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L = length (h1 )−1; //h0 i s s ho r t e r than h1

ih0
= ih1

; // o f f s e t s are the same
h0 [ 0 ] = 2∗h1 [ 0 ] ; // f i r s t e lement
for ( int k=1; k<L ; k++){
h0 [ k ] = 2∗h1 [ k]−h0 [ k−1] ;

}

//−dua l h̃0 ( i n t e g r a t i o n )
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L = length ( h̃1 )+1; //h̃0 i s l onger than h̃1

ih̃0
= ih̃1

; // o f f s e t s are the same
h̃0 [ 0 ] = .5∗ h̃1 [ 0 ] ; // f i r s t e lement
for ( int k=1; k<L−1; k++){
h̃0 [ k ] = . 5∗ ( h̃1 [ k−1]+h1 [ k ] ) ;

}
h̃0 [ L−1] = .5∗ h̃1 [ L−2] ; // l a s t e lement

}

Figure A.4: Algorithm to compute (h0, h̃0) from (h1, h̃1).
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/∗∗∗∗ (h1, h̃1) from (h0, h̃0) ∗∗∗∗/

[h1 , h̃1 , ih1
, ih̃1

] = f i l t e r s_get1_from0 (h0 , h̃0 , ih0
, ih̃0

)
{

//−primal h1 ( i n t e g r a t i o n )
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L = length (h0 )+1; //h1 i s l onger than h0

ih1
= ih0

; // o f f s e t s are the same
h1 [ 0 ] = .5∗h0 [ 0 ] ; // f i r s t e lement
for ( int k=1; k<L−1; k++){
h1 [ k ] = . 5∗ (h0 [ k−1]+h0 [ k ] ) ;

}
h1 [ L−1] = .5∗h0 [ L−2] ; // l a s t e lement

//−dua l h̃1 ( d e r i v a t i on )
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L = length ( h̃0 )−1; //h̃1 i s s ho r t e r than h̃0

ih̃1
= ih̃0

+1; // o f f s e t i s s h i f t e d by +1

h̃1 [ L−1] = .5∗ h̃0 [ L ] ; // l a s t e lement
for ( int k=L−2 ; k>=0 ; k−−){
h̃1 [ k ] = 2∗h̃0 [ k+1] − h1 [ k+1] ;

}
}

Figure A.5: Algorithm to compute (h1, h̃1) from (h0, h̃0).
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/∗∗∗∗ Reconstruc t ion from Fine Approximation ∗∗∗∗/

//−ge t f i n e approximation o f stream func t i on
// from mu l t i s c a l e c o e f f i c i e n t s
//−−−−−−−−−−−−−−−−
{adiv

(F,F ),k}k = IW{adiv
(0,0),(0,0), b

div
(0,j),(0,k), c

div
(j,0),(k,0), d

div
j,k} ; // f i l t e r s (h1 ,g1 )

//−b u i l d {a1
(F,F ),k}k by f i n i t e d i f f e r e n c e a long 2nd dimension

//−−−−−−−−−−−−−−−−
for ( int k1=0 ; k1 < 2−F ; k1++){

for ( int k2=1 ; k2 < 2−F ; k2++){
a1

(F,F ),(k1,k2) = 2−F
[
adiv

(F,F ),(k1,k2) − adiv
(F,F ),(k1,k2−1)

]
;

}
// p e r i o d i z a t i o n f o r f i r s t e lement
a1

(F,F ),(k1,0) = 2−F
[
adiv

(F,F ),(k1,0) − adiv
(F,F ),(k1,2−F−1)

]
;

}
//−re turn to v1

//−−−−−−−−−−−−−−−−
v1 = 2−F ∗ a1

(F,F ) ; // t h i s i s Mal la t ’ s approximation

//−b u i l d {a2
(F,F ),k}k by f i n i t e d i f f e r e n c e a long 1 s t dimension

//−−−−−−−−−−−−−−−−
for ( int k2=0 ; k2 < 2−F ; k2++){

for ( int k1=1 ; k1 < 2−F ; k1++){
a2

(F,F ),(k1,k2) = −2−F
[
adiv

(F,F ),(k1,k2) − adiv
(F,F ),(k1−1,k2)

]
;

}
// p e r i o d i z a t i o n f o r f i r s t e lement
a2

(F,F ),(0,k2) = −2−F
[
adiv

(F,F ),(0,k2) − adiv
(F,F ),(2−F−1,k2)

]
;

}
// re turn to v2

//−−−−−−−−−−−−−−−−
v2 = 2−F ∗ a2

(F,F ); // again Mal la t ’ s approximation

Figure A.6: Algorithm for v reconstruction from z fine approximation coefficients.
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/∗∗∗∗ Reconstruc t ion from Mu l t i s c a l e Co e f f i c i e n t s ∗∗∗∗/

//v1 component
//−−−−−−−−−−−−−−−−
// wave l e t c o e f f i c i e n t s
for ( int j1=0; j1 < F ; j1++){

for ( int k1=0 ; k1 < 2−j1 ; k1++){
for ( int j2=0 ; j2 < F ; j2++){

for ( int k2=0 ; k2 < 2−j2 ; k2++){
d1
j,k = (2−j2+2) ddiv

j,k ;
}

}
}

}
// approx c o e f f i c i e n t s
for ( int j=0 ; j < F ; j++){

for ( int k=0 ; k < 2−j ; k++){
b1(0,j),(0,k) = (2−j+2) bdiv

(0,j),(0,k) ;
c1(j,0),(k,0) = 0 ;

}
}
a1

(0,0)(0,0) = 0 ;
// inv e r s e transform
v1 = IW{a1

(0,0),(0,0), b
1
(0,j),(0,k), c

1
(j,0),(k,0), d

1
j,k} ; // f i l t e r s (h1 ,g1 ) and (h0 ,g0 )

//v2 component
//−−−−−−−−−−−−−−−−
// wave l e t c o e f f i c i e n t s
for ( int j1=0; j1 < F ; j1++){

for ( int k1=0 ; k1 < 2−j1 ; k1++){
for ( int j2=0 ; j2 < F ; j2++){

for ( int k2=0 ; k2 < 2−j2 ; k2++){
d2
j,k = (−2−j1+2) ddiv

j,k ;
}

}
}

}
// approx c o e f f i c i e n t s
for ( int j=0 ; j < F ; j++){

for ( int k=0 ; k < 2−j ; k++){
b2(0,j),(0,k) = 0 ;
c2(j,0),(k,0) = (2−j+2) bdiv

(j,0),(k,0) ;
}

}
a2

(0,0)(0,0) = 0 ;
// inv e r s e transform
v2 = IW{a2

(0,0),(0,0), b
2
(0,j),(0,k), c

2
(j,0),(k,0), d

2
j,k} ; // f i l t e r s (h0 ,g0 ) and (h1 ,g1 )

Figure A.7: Algorithm for v reconstruction from z multiscale coefficients.
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/∗∗∗∗ Decomposition ∗∗∗∗/

// ge t v1 , v2 mu l t i s c a l e c o e f f i c i e n t s
//−−−−−−−−−−−−−−−−
// forward transform
{a1

(0,0),(0,0), b
1
(0,j),(0,k), c

1
(j,0),(k,0), d

1
j,k} = FW{v1} ; // f i l t e r s (h̃1, g̃1) and (h̃0, g̃0)

{a2
(0,0),(0,0), b

2
(0,j),(0,k), c

2
(j,0),(k,0), d

2
j,k} = FW{v2} ; // f i l t e r s (h̃0, g̃0) and (h̃1, g̃1)

//make z mu l t i s c a l e c o e f f i c i e n t s
//−−−−−−−−−−−−−−−−
// wave l e t c o e f f i c i e n t s
for ( int j1=0; j1 < F ; j1++){

for ( int k1=0 ; k1 < 2−j1 ; k1++){
for ( int j2=0 ; j2 < F ; j2++){

for ( int k2=0 ; k2 < 2−j2 ; k2++){
ddiv
j,k = 1/(2−j2+2 + 2−j1+2)

[
d1
j,k − d2

j,k

]
;

}
}

}
}
// approx c o e f f i c i e n t s
for ( int j=0 ; j < F ; j++){

for ( int k=0 ; k < 2−j ; k++){
bdiv
(0,j),(0,k) = 1/(2−j+2) b1(0,j),(0,k) ;
cdiv
(j,0),(k,0) = −1/(2−j+2) c2(j,0),(k,0) ;

}
}
adiv

(0,0)(0,0) = 0 ;

Figure A.8: Algorithm for v decomposition.



116 APPENDIX A. DIVERGENCE-FREE BASES: PRACTICAL IMPLEMENTATION



Appendix B

Computational Costs of Filterbanks

B.1 Usual Filterbanks
We consider filters h, g of length K and a current approximation aj at a given scale j ≥ 0

(i.e. with 2j × 2j coefficients). Applying one step of the decomposition filter bank (Figure 3.6a) to
compute {aj−1, d

1
j−1, d

2
j−1, d

3
j−1} from aj requires 8K22(j−1) multiplications, using the factorized

form:

(i) for each of the 2j rows:
– 2(j−1) convolutions with h̄;
– 2(j−1) convolutions with ḡ;
which give 4K22(j−1) multiplications;

(ii) for each of the 2× 2(j−1) columns:
– 2(j−1) convolutions with h̄;
– 2(j−1) convolutions with ḡ;
giving again 4K22(j−1) multiplications;

So that the grand total is 8K22(j−1) multiplications. For an input image of N = 2F × 2F pixels,
iteration of the filter bank to reach coarse scale C gives:

F∑
j=C+1

8K22(j−1) = 2K(2F )2
F∑

j=C+1

(
2(j−F )

)2

= 2KN

F∑
j=C+1

(
2j

2F

)2

= 2KN

(
1 +

1

4
+

1

16
+ · · ·

)
<

8

3
KN . (B.1)

B.2 Modified Filterbanks
During the estimation process, at a given scale s, finer scales coefficients (F < j < s) are not

considered. DFD gradient is computed by projecting the two terms terms (5.13) on the considered
basis. By dropping computation of useless details dij , i = 1..3 at fine scales F < j < s, there are:

(i) for each of the 2j rows:
– 2(j−1) convolutions with h̄;
which give 2K22(j−1) multiplications;

(ii) for each of the 2(j−1) columns left:
– 2(j−1) convolutions with h̄;
which give K22(j−1) multiplications;
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then the total number of required multiplications drops down to 3K22(j−1), hence saving 5/8 = 62.5%
of multiplications at each step involving useless details. A step of the reconstruction filter bank to
get aj from aj−1 (and eventually {d1

j−1, d
2
j−1, d

3
j−1}) requires the same amount of operations for

both cases. Therefore, at the reconstruction of motion v from a partial set of coefficients (up to
scale s), an identical reduction of computations is achieved by explicitly neglecting contributions
from finer scales F < j < s.
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