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AbstractWith the widespread di�usion of XML as a format for representing data gen-erated and exchanged over the Web, main query and update engines have beendesigned and implemented in the last decade. A kind of engines that are playing acrucial role in many applications are main-memory systems, which distinguish forthe fact that they are easy to manage and to integrate in a programming environ-ment. On the other hand, main-memory systems have scalability issues, as theyload the entire document in main-memory before processing.This Thesis presents an XML partitioning technique that allows main-memoryengines to process a class of XQuery expressions (queries and updates), that wedub iterative, on arbitrarily large input documents. We provide a static analysistechnique to recognize these expressions. The static analysis is based on pathsextracted from the expression and does not need additional schema information.We provide algorithms using path information for partitioning the input documents,so that the query or update can be separately evaluated on each part in orderto compute the �nal result. These algorithms admit a streaming implementation,whose e�ectiveness is experimentally validated.Besides enabling scalability, our approach is also characterized by the fact thatit is easily implementable into a MapReduce framework, thus enabling parallelquery/update evaluation on the partitioned data.Keywords : XML, XQuery, XQuery updates, Projection, Data Partitioning,MapReduce.





Chapter 1Résumé en Français
Contents1.1 introduction générale . . . . . . . . . . . . . . . . . . . . 31.2 contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 61.3 l'organisation du manuscrit . . . . . . . . . . . . . . . . 8
1.1 introduction généraleLa dernière décennie a vu la di�usion rapide des données semi-structurées et enparticulier le standard XML (eXtensible Markup Language) dans nombreuxapplications qui s'appuient sur le web pour l'échange et le partage de données.XML est un successeur de SGML, il a été rapidement adopté comme format naturelpour représenter les données semi-structurées pour lesquelles le modèle relationnelet le modèle objet ne sont pas appropriés. La grande �exibilité des données XMLa rendu ce format universel et a permis son utilisation pour échanger des donnéesentre des applications di�érentes sur le Web.A�n de permettre la di�usion de XML, plusieurs outils ont été dé�ni pourla transformation, l'interrogation, la manipulation et la modélisation des donnéesXML. En particulier, le World Wide Web Consortium (W3C) a introduit XQuery[W3S10] comme langage de requête et XQuery Update [Gro11a, Gro11b] pour met-tre à jour des documents XML. Les deux langues ont été intensivement étudiées parla communauté scienti�que, en particulier dans un but d'optimisation de l'exécutiondes requêtes et des mises à jour.Une principale utilisation de XQuery est l'interrogation et la mise à jour des don-nées XML qui sont simplement stockées dans des �chiers ou générées en streaming.En général, dans ces contextes, toutes ces fonctionnalités complexes qui caractérisentles DBMS traditionnels ne sont pas nécessaires. Le besoin principal dans ces con-textes est la disponibilité d'un moteur de requête et mise à jour facile à installeret à intégrer dans un environnement de programmation. Pour cette motivation,de nombreux moteurs XQuery ont été mis au point pendant les dernières années,comme Galax [gal], Saxon [sax], Qizx [qiz] et eXist [exi]. Ces systèmes sont générale-ment conformes par rapport aux spéci�cations du W3C. Ils traitent les données enmémoire centrale: les données sont d'abord entièrement chargé dans la mémoire



4 Chapter 1. Résumé en Françaiscentrale, puis traitées (interrogés ou mises à jour). Pour cette raison, ces systèmessont généralement classés comme de systèmes mémoire-centrale.En citant Cong et al. [GCL12], les systèmes mémoire-centrale sont le meilleurchoix dans. . . plusieurs domaines comme les sciences de la vie (par exemple, Bi-ologie), l'astronomie, et même pour la gestion des documents XML typ-iques correspondant aux �chiers Microsoft O�ce (étant donné que lesprésentations PowerPoint, les �chiers Word et Excel sont actuellementstockées au format XML). Dans tous ces domaines, la gestion des docu-ments XML est centrée sur des �chiers et aucun système de gestion desdonnées XML traditionnels n'est mis en place.En particulier dans les domaines tels que les sciences de la vie et de l'astronomie,les documents XML ont une taille importante (plusieurs GBs), ce qui peut compro-mettre la possibilité d'utiliser un moteur de mémoire-centrale pour le traitement desrequêtes.Actuellement, les systèmes mémoire-centrale qui sont très �exibles et faciles àinstaller et à utiliser, ne peuvent pas passer à l'échelle.Une solution partielle pour ce problème est proposée. Cette solution est basée surla projection. La projection XML est une technique d'optimisation proposée dans lebut de surmonter les limitations des moteurs mémoire-centrale pour l'interrogationdes documents XML. Cette technique repose sur une observation simple selon laque-lle les requêtes sont en général sélectives cad qu'elles ciblent seulement une sous-partie des documents interrogés. L'idée consiste alors à identi�er de manière statiqueles parties nécessaires à l'évaluation des requêtes et à utiliser cette information pourne charger en mémoire centrale que les parties du document qui sont accédées parla requête. La projection permet ainsi de traiter des documents volumineux mêmesous des contraintes de mémoire importantes.La projection a été utilisée pour la première fois dans [MS03] puis étenduedans [BCCN06, KSS08] en prenant en compte le schéma du document interrogé.L'utilisation des schémas permet de réduire la taille de la projection en exploitant lapossibilité d'inférer de manière précise les données nécessaires à l'évaluation d'unerequête. Dans les techniques de [BCCN06, KSS08], l'information inférée consisteen l'ensemble des étiquettes des noeuds nécessaires à l'évaluation des requêtes. Cetensemble est appelé type-projecteur.Les approches précédentes et basées sur la projection ne fournissent qu'une so-lution partielle aux problèmes de scalabilité des systèmes mémoire-centrale, et lesdocuments d'entrées projetées pourraient encore dépasser la capacité de la mémoirecentrale. Cela peut être le cas lorsque (i) le �chier d'entrée est énorme, (ii) lasélectivité de la requête est faible (elle a besoin d'une grande partie du documentd'entrée), ou (iii) cas d'évaluation d'un workload (par exemple, un ensemble de re-quêtes qui doivent être évaluée sur le document d'entrée). Dans ce dernier cas, la



1.1. introduction générale 5taille de la projection globale peut dépasser la taille de la mémoire centrale. Laprojection globale peut être inutile puisque tout le document en entrée peut êtrenécessaire pour le workload.Il est important de dire que les problèmes de scalabilité dépendent également dutype particulier de moteur qu'on veut utiliser, et sur les paramètres de la mémoireinterne. En fait, la plupart des systèmes mémoire-centrale sont implémentés en Java,et leur scalabilité dépend de la quantité de mémoire centrale précisée en paramètre dela JVM (Java Virtual Machine). Dans tous les cas, même pour les grandes quantités,les problèmes de scalabilité de la projection standard sont toujours optimisés, lataille de la projection de documents augmente lorsque la taille du document enentrée augmente.L'objectif principal de cette Thèse est de proposer une technique qui assure lascalabilité pour les requêtes et les mise à jours indépendamment:� du type du système mémoire-principal.� de la quantité de mémoire centrale qui est valable.� de l'utilisation du schéma d'informations de schéma.À cette �n, dans cette Thèse, nous proposons une technique d'optimisation baséesur le partitionnement des données XML. Cette technique repose sur l'observationque, dans plusieurs cas pratiques, les requêtes XQuery et les mises à jour sélection-nent d'abord une séquence de sous-arbres à l'aide d'une sous-requête (par exemple,une expression XPath), puis évaluent des opérations sur cette séquence des sous-arbres. Par exemple, en ce qui concerne les requêtes, 13 des 20 requêtes de XMarkBenchmark [SWK+02b] véri�ent cette propriété et pour les mises à jour, 16 des 20mises à jour qui ont été proposées dans [BBC+11, Sah11] sont itératives.Dans le cas de requêtes, lorsque cette propriété est satisfaite par une requête
Q , le document d'entrée peut être divisé en un ensemble de parties {D1, . . . ,Dκ},de sorte que l'évaluation Q(D) de la requête Q sur le document d'entrée D estégale à la concaténation des évaluations Q(Di) de la requête Q sur les parties Didu document d'entrée D .Dans le cas des mises à jour, la même stratégie peut être adoptée, à la di�érenceque les mises à jour partielles U (Di) doivent être recombinées pour obtenir le docu-ment mis à jour U (D). Alors que dans le cas de requêtes, une simple concaténationdes résultats partiels est su�sant. En particulier, nous utilisons la commande catpour fusionner ces résultats partiels a�n de produire le résultat �nal. Pour les misesà jour, et puisque nous utilisons des informations supplémentaires lors de la créationdes partitions a�n de s'assurer que les parties créées sont bien formées, des informa-tions supplémentaires par rapport des balises supplémentaires sont nécessaires a�nde correctement re-combiner des parties mises à jour et éliminer ces balises pourobtenir le résultat �nal U (D). Ces informations auxiliaires sont opportunémentmises en place pendant le partitionnement.



6 Chapter 1. Résumé en FrançaisAvec la scalabilité, notre technique de partitionnement peut être facilement adap-tée dans un environnent MapReduce [DG08], ce qui permet l'interrogation et la miseà jour parallèle des parties. Cette évaluation parallèle est possible puisque dans lecas des requêtes et des mises à jour itératives, l'évaluation de chaque partie peutse faire indépendamment de l'évaluation des autres parties. Par conséquent, cetteapproche peut aisément transposée dans un environnement MapReduce qui joue unrôle très important dans les plates-formes basée sur le cloud.1.2 contributionsCette Thèse propose une nouvelle technique de partitionnement basé sur l'évaluationde requêtes XQuery et les mises à jour.La première contribution de cette Thèse se concerne les requêtes. Dans ce con-texte, les contributions principales sont les suivantes et sont également présentésdans [Nic12]:� Nous présentons d'abord une caractérisation formelle de la classe de requêtesqui satisfont la propriété de division décrite ci-dessus: nous appelons ces re-quêtes requêtes itératives. En s'appuyant sur cette caractérisation formelle,nous développons une technique d'analyse statique qui extrait des chemins etdes informations sur les variables liées à la requête, et puis les analyse a�nde détecter statiquement comment le document d'entrée est navigué par larequête. En se fondant sur les informations de chemin nous pouvons éviterl'utilisation d'informations de schéma qui n'est pas toujours disponible.� Nous présentons ensuite un algorithme de partitionnement qui exploite leschemins extraites lors de l'analyse statique pour identi�er la partition cor-recte pour le document d'entrée. Nous présentons d'abord une spéci�cationd'algorithme basée sur la représentation DOM puis nous utilisons le parseurSAX qui permet la possibilité d'e�ectuer le partitionnement en streaming, enutilisant peu de mémoire. Pour améliorer encore les avantages de notre ap-proche, nous combinons le partitionnement avec la projection standard, desorte que lors de la création de parties de document, les sous-arbres qui nesont pas nécessaires par la requête sont éliminées. L'utilisation de la projec-tion standard n'est pas cruciale pour assurer la scalabilité, ce qui est notreobjectif principal puisque dans notre approche, la taille maximale de chaquepartie peut réglée par l'utilisateur. La projection contribue à réduire le coûtdu partitionnement, car elle accélère l'exécution des requêtes sur la partition.� Ensuite, nous présentons une évaluation expérimentale intensive qui con�rmeque, lors que de l'utilisation de notre approche de partitionnement, des moteursmémoire centrale peuvent traiter des documents de taille arbitraire, au prixd'un coût d'exécution légèrement supérieur à celui des approches de projectionqui n'utilisent pas de schéma. Nos expériences montrent également que le



1.2. contributions 7partitionnement permet la scalabilité pour les workloads, car dans ce cas ledocument en entrée est divisé une fois pour toutes les requêtes (ou les mises ajour) du workload.La deuxième contribution de cette Thèse se concerne les mises à jour. Dans cecontexte, les contributions principales sont les suivantes:� Nous analysons d'abord les cas où l'évaluation des mises à jour peut êtrecorrectement appliquée sur les partitions, puis nous fournissons une anal-yse statique pour caractériser ces mises à jour, que nous appelons mises àjour itératives. Cette caractérisation exige des restrictions sur les mécanismesd'interrogation qui sont utilisés dans les expressions source et target des misesà jour. Nous allons montrer que ces restrictions sont acceptables puisque unelarge classe de mises à jour peut être traitée avec notre approche.� Et puis, nous présentons une technique de partitionnement qui se distingue dela technique des requêtes par les aspects suivants:Premier aspect: la projection n'est pas utilisée, a�n d'avoir une recombinaisonsimple et e�cace des mises à jour partielles. Ceci est également justi�é parle fait que le partitionnement est déjà su�sant pour générer su�samment depetites pièces (parties du document d'entrée). L'utilisation de la projectionexige un processus sophistiqué de la recombinaison (puisque les sous-arbresélagués au cours de partitionnement doivent être reconnus) et de remettre dansle résultat �nal du processus. Ce type d'opération a été fait par [BBC+11],où l'utilisation des informations de schéma a été cruciale pour assurer uneformalisation claire et e�cace.Deuxième aspect: les chemins utilisés au cours de partitionnement sont dé-duite en le mettant en compte la nature particulière de mises à jour. Ceschemins sont utilisés pour assurer que les sous-arbres qui éventuellement étésélectionnées par les chemins Target ne sont jamais divisés pendant le par-titionnement. L'atomicité de ces sous-arbres est nécessaire pour assurer quel'évaluation de la mise à jour peut être correctement répartir sur toutes lesparties d'entrée.� Ensuite, nous présentons les résultats des tests étendus montrant l'e�cacitéde notre technique. A la di�érence du cas des requêtes, la sur-coût du aupartitionnement n'est pas négligeable. Toutefois, les résultats de ces testsmontrent que notre objectif principal, la scalabilité est largement réalisée.Concernant les résultats des tests, nous avons utilisé deux moteurs mémoire-centrale principaux, Saxon [sax] et Qizx [qiz]. Notre choix est motivé par le faitque Saxon est un système très populaire, qui se distingue pour son exhaustivitédans la couverture de la plupart des normes du W3C pour le traitement XML (parexemple, le schéma XML, XSLT, XQuery et les mises à jour). Di�éremment, Qizx



8 Chapter 1. Résumé en Françaisest spécialisée dans la requête XQuery et la mise à jour, et soutient des techniquessophistiquées pour optimiser le temps d'exécution et la consommation de mémoire.La troisième contribution de cette Thèse montre est le fait que la techniqueproposée est été facilement adapté pour être exécuté dans un cadre MapReduce[DG08]. À cette �n, les notions principales de ce paradigme sont introduites puisl'architecture de la mise en oeuvre de notre technique sur MapReduce est été illustréeet discutée.1.3 l'organisation du manuscritCe manuscrit est composé de huit chapitres dont un chapitre de résumé en français,et un autre chapitre introduction.Les six autres chapitres sont organisés comme suit:� Chapitre 3 Le chapitre préliminaire est consacré à la présentation des nota-tions et des langages (XPath et XQuery [Gro03, W3S10]) de requêtes et demises à jour (XQuery update Facility [Gro11a]) utilisés tout au long de cemanuscrit.� Chapitre 4 Dans ce chapitre, nous examinons les principales caractéristiquesdes deux approches principales proposées pour la projection XML. La premièreapproche [MS03] concerne les requêtes, et est basé sur l'extraction des cheminsde la requête et l'utilisation de ces chemins pour projeter le document enentrée. La deuxième approche pour les requêtes a été proposé dans [BCCN06],et exige des informations sur le schéma des données. Nous ne parlerons pas parrapport a cette approche car cette thèse n'utilise pas le schéma des données, et,pour le fragment XQuery que nous considérons, les performances de [BCCN06]sont très proches à celle proposée dans [MS03] en termes de la réduction de lataille des documents.La deuxième technique que nous allons discuter concernant des mises à jour[BBC+11, BCMS09a, BCMS09b],qui et est la seule technique de projectionexistant pour les mises à jour. Elle est basé sur les informations de schémaet sur l'inférence des types, plus une opération Merge qui, comme nous leverrons, est nécessaire pour recombiner la mise à jour de la projection avec ledocument original.Dans ce chapitre, en plus d'illustrer comment la projection peut être utiliséepour traiter une large classe de requêtes et mises à jour XML pour des docu-ments de grande taille, nous allons montrer que ces techniques, même si ellessont assez e�caces, ne passent pas à l'échelle. Ceci a motivé notre intérêt pourdes technique de partitionnement.



1.3. l'organisation du manuscrit 9Le chapitre est organisé comme suit. La section 4.1 introduit la projectionstandard XML qui est proposée par [MS03] avec quelques dé�nitions princi-pales, l'algorithme analyse du chemin qui extrait l'ensemble des chemins de laprojection à partir d'une requête XQuery arbitraire. Ensuite, nous expliquonsl'algorithme de chargement dans la mémoire utilisé pour créer la projection.La section 4.1.1 illustre les limitations de la technique de projection standardXML en testant plusieurs requêtes sur des documents XMark et de base dedonnées DBLP. Dans la section 4.2, nous introduisons, à travers des exemples,le concept de la technique de projection basee sur le typage et proposé par[BBC+11]. Et puis, dans la section 4.2.1, nous illustrons les limitations decette technique dans la utilisant des mises à jour. En�n, nous concluons cechapitre dans la section 4.3.� Chapitre 5 Dans ce chapitre, nous avons présenté une nouvelle technique dela projection de partitionnement de document d'entrée XML. Cette techniquese généralise des approches existantes et basées sur le chemin, et s'applique àune large classe de requêtes.L'approche proposée analyse une requête d'entrée et, si la requête est itérative,l'approche va extraire tous les chemins pertinents et les utilise pour exécuter laprojection et le partitionnement sur le document d'entrée, et puis obtenir despetites parties. Notre étude expérimentale assure que l'exécution de la requêted'entrée sur chaque partie indépendamment et en combinant les résultats par-tiels obtenus par ces parties, n'importe quel moteur mémoire-centrale existantpeut traiter une requête itérative sur des très grand documents d'entrée.Ce chapitre contient trois parties principales. La première partie (les sec-tions 5.1, 5.2, 5.3) présente notre technique d'analyse statique utilisée pourcaractériser des requêtes itératives, pour lesquels les données XML peuventêtre partitionnés pour l'évaluation de la requête. La deuxième partie (Section5.5) présente notre algorithme de partitionnement. D'abord, une spéci�cationprécise est formalisée en s'appuyant sur une représentation basée sur DOMformalisation pour des arbres d'entrée. Et puis une version basée sur SAXest fournie. Comme indiqué dans l'introduction, pour accentuer les avantagesde notre stratégie, la projection est utilisée pendant le partitionnement. Latroisième partie (les sections 5.6, 5.7) explique la mise en oeuvre des algo-rithmes basés sur SAX parseur, et présente les résultats des tests obtenus àpartir d'expériences que nous avons menées en utilisant deux moteurs princi-paux pour XQuery. En�n, nous concluons ce chapitre dans la section 5.8.� Chapitre 6 Dans ce chapitre, nous présentons une technique de partition-nement pour les mises à jour XUF (XQuery Update Facility). Comme le casdes requêtes, le partitionnement permettant le traitement des grands docu-ments, et qui ne pouvait pas être mise à jour en utilisant des moteurs mémoire-centrale existants comme [qiz, exi, bas], même en utilisant la technique de la



10 Chapter 1. Résumé en Françaisprojection standard basée sur la technique proposée dans [BBC+11].Dans ce chapitre, nous caractérisons une classe des mises à jour, appelées misesà jour itératives, pour lesquelles une évaluation basée sur le partitionnementest possible : tout d'abord, les documents sont partitionnés en plusieurs partiespuis les parties sont mises à jour indépendamment, et en�n les parties misesà jour sont fusionnées en utilisant une opération de fusion a�n d'obtenir lerésultat �nal cad le document en entrée mis à jour.Pour caractériser des mises à jour itératives, nous utilisons une analyse baséesur des chemins. Les chemins extraits seront également utilisés pour le par-titionnement. A la di�érence des requêtes, le partitionnement ne s'appuierapas sur la projection, les chemins sont utilisés pour s'assurer uniquement quechaque partie contient tout ce qui est nécessaire pour chaque opération de miseà jour. La projection n'est pas utilisée, a�n d'éviter les opérations de fusioncomplexes sur des parties mises à jour, opération nécessaires pour récupérerles sous-arbres élagués lors de la construction du document global actualisé.L'e�cacité de l'approche proposée est démontrée par des expériences appro-fondies comparant notre approche basée sur le partitionnement avec la projec-tion proposé dans [BBC+11, MS03]. Il est important de dire que cette dernièreapproche basée sur le type des données est la seule approche de projection pourtraiter les mises à jour XQuery.Le chapitre est structuré comme suit. Dans la section 6.2, nous introduisonsquelques notations préliminaires sur le langage des mises à jour utilisées danscette approche, et puis nous présentons notre fonction d'extraction de chemins.Dans ls section 6.3, nous décrivons formellement les mises à jour itératives. En-suite, dans la section 6.4, nous présentons notre technique de partitionnementpour les mises à jour itératives, et introduisons les dé�nitions formelles etles spéci�cations basés sur DOM du partitionnement et de la fusion. Dansla section 6.5, nous fournissons les algorithmes (basés sur le streaming) departitionnement et de fusion utilisés pour exécuter notre scénario de parti-tionnement pour les mises à jour. Le chapitre se termine avec les résultats destests dans la section 6.6 et quelques conclusions présentées dans la section 6.7.� Chapitre 7 Avec la scalabilité, notre technique de partitionnement présentéedans les chapitres précédents possède un autre avantage celui de pouvoir exé-cuter les requêtes et les mises à jour en parallèle. Ceci est possible puisqueune large classe des requêtes et des mises à jour sont itératives et permettentl'évaluation de celles ci sur chaque partie indépendamment de l'autre.Dans ce chapitre, nous présentons les idées essentielles d'une mise en oeuvreparallèle possible de notre technique de partitionnement à l'aide du mod-èle de programmation MapReduce [DG08]. Nous tenons à souligner quel'architecture que nous proposons est le résultat d'une collaboration avec Carlo



1.3. l'organisation du manuscrit 11Sartiani (professeur adjoint à l'Università Basilicate della, Italie) et MaurizioNole (étudiant du Master à l'Università Basilicate della, Italie).Nous présentons d'abord les bases du paradigme MapReduce dans la section7.1, puis nous montrons comment notre technique peut être mise en oeuvredans une plate-forme de MapReduce dans la section 7.2. En�n, nous tironsnotre conclusion dans la section 7.3.� Chapitre 8 Conclusion et perspectives: Dans ce chapitre, nous avons présentéune nouvelle technique de partitionnement pour de document XML. Cettetechnique généralise les approches existantes et basées sur le chemin, ets'applique à une large classe de requêtes et mises à jour.Une des particularités de notre approche est qu'elle n'utilise pas le schéma. Ilutilise les informations de chemin provenant de la requête / mise à jour a�nd'e�ectuer l'analyse statique nécessaire pour reconnaître la nature itérative dela requête / mise à jour et utilise les informations de chemin pour e�ectuerle partitionnement. Une autre particularité de cette approche est qu'elle peuts'appuyer sur n'importe quel système mémoire-centrale, car aucune interven-tion dans le mécanisme interne du système n'est nécessaire. En�n, nous avonsvu que notre approche peut être mise en oeuvre dans une plate-forme par-allèle comme MapReduce de manière aisée permettant ainsi à l'interrogationet la mise à jour en parallèle. Pour les ensembles de documents de taille im-portante, et pour de grands cluster de machines, cette utilisation permet deréduire considérablement le temps comparé à une exécution sequentielle desrequêtes/mises à jour.Il existe plusieurs perspectives. Tout d'abord, nous prévoyons d'étendre cetteapproche aux autres fragments de XQuery en particulier à des requêtes con-tenant des opérateurs d'agrégation (telles que le group-by). En plus, nousprévoyons d'étendre cette technique dans le cas où les requêtes e�ectuent desjointures. Dans ce cas, des tests e�ectués ont révélé que le temps d'exécutionpeut être important en utilisant des systèmes mémoire-centrale. Pour perme-ttre le partitionnement de la requête / mise à jour on doit redé�nir l'analysestatique pour tenir compte des conditions de jointure et probablement recourirà la réécriture des requêtes /mises à jour. À notre avis, dans ce scénario uneapproche MapReduce pourrait aider à réduire le temps d'exécution.Comme deuxième perspective, nous aimerions explorer les possibilités de ma-nipulation des workloads constitués de requêtes et de mises à jour. Une foisl'analyse de chemin e�ectuée pour caractériser la nature itérative du workload,le partitionnement peut être e�ectué pour l'ensemble des requêtes et mises àjour composant ce workload.En�n, nous prévoyons d'utiliser la plate-forme MapReduce pour la mise enoeuvre de notre approche, en utilisant le schéma illustré dans le chapitre 7.



12 Chapter 1. Résumé en FrançaisEn particulier, nous allons nous concentrer sur notre implémentation, pouradapter notre code dans la plate-forme MapReduce. Dans ce contexte, nousallons également nous concentrer sur les tests expérimentaux a�n de dé�nirpour quel type de requête / mise à jour l'exécution de MapReduce est plusrapide plus que l'exécution traditionnelle centralisée.



Chapter 2Introduction
Contents2.1 contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2 structure of the thesis . . . . . . . . . . . . . . . . . . . 17The last decade has seen the rapid di�usion of the eXtensible Markup Language inmany application �elds. XML is a successor of SGML, and was rapidly adoptedas a natural format for representing semi-structured data, whose structure can notbe easily modeled according to standard relational and object-oriented data models.The great �exibility which is behind the XML data model made it a universal datarepresentation format, and allowed the use of XML as a convenient medium forexchanging data between di�erent Web applications.To support the di�usion of XML, several tools for transforming, querying, manip-ulating, and modeling XML data have been de�ned. In particular, the World WideWeb Consortium (W3C) introduced XQuery [W3S10] as the standard query lan-guage for XML data, and, more recently, XQuery Update Facility [Gro11a, Gro11b]as an extension of XQuery to update XML documents. Since their introduction,both languages have been intensively studied by the research community, in partic-ular in directions aiming at optimizing query and update execution.One of the main use of XQuery, is to query and update XML data that are sim-ply stored in �les or generated by a stream. Generally, in these contexts all thosecomplex functionalities characterizing traditional DBMSs are not needed. The mainneed in these context is the availability of a query/update engine which is easy toinstall and to integrate in a programming environment. With such motivation manylight-weight XQuery processors have been devised in recent years, like Galax [gal],Saxon [sax], Qizx [qiz], and eXist [exi]. These systems usually provide full compli-ance with respect to the W3C speci�cations, and process data in main memory fash-ion: data are �rst entirely loaded in the main-memory and then processed (queriedor updated). For this reason, these systems are usually classi�ed as main-memorysystems.By quoting Cong and al. [GCL12], main-memory systems are the best choice in. . . domains like Life sciences (e.g., Biology), Astronomy, and even forthe management of typical XML documents corresponding to Microsoft



14 Chapter 2. IntroductionO�ce �les (since powerpoint presentations, Word �les, and Excel spread-sheets are all currently stored as XML). In all these domains, the man-agement of XML documents is �le-system centric and no traditionalXML data management systems is yet in place (since non-expert usersoften �nd these latter systems to be hard to use and maintain).Especially in domains like Life science and Astronomy, XML documents arelikely to be huge (several GBs), which can jeopardize the possibility of using amain-memory engine for query processing. In other words, main-memory systems,while very �exible and easy to set-up and use, cannot scale up with documentsize. A partial solution to this problem is o�ered by projection-based techniques[BCCN06, KSS08, MS03] that allow one to prune out, at loading time, parts of thedata that are not necessary for the query or the workload being processed. For someof the existing projection techniques, schema information in the form of DTDs orXML Schema de�nition is needed [BCCN06, KSS08].Projection-based approaches provide only a partial solution to the scalabilityissues of main-memory systems, as the projected input documents may still exceedthe main-memory capacity. This may be the case when (i) the input �le is huge, (ii)the query selectivity is low and it needs a large part of the input, or (iii) a workload(i.e., a set of queries) has to be evaluated on the document. In the last case, a singleglobal projection meeting the query needs of the whole workload is likely to exceedthe main-memory size, while running a query at a time, and projecting (and loading)data for each run would result in a quite ine�cient and still failure-prone process.This due to that the global projection normally will be huge, and in the worst caseit will be contained the whole input document for satisfy all queries composed theworkload. Therefore, the standard projection still failure in case of processing aquery workload.It is worth observing that scalability issues also depend on the particular kindof engine one wants to use, and on internal memory settings. In fact, most ofmain-memory system are implemented in Java, and their scalability depends on theamount of main-memory given to the Java Virtual Machine. In any case, even forlarge amounts, scalability problems of standard projection still persist, as the sizeof document projection increases as the size of the input document increase.The main objective of this Thesis is to o�er a technique that ensures scalabilityfor both queries and updates independently of:� the kind of main-memory system.� the amount of available main-memory.� the presence of schema information.To this end, in this Thesis, we propose an optimization technique based ondata partitioning. This technique relies on the observation that, in many practical



2.1. contributions 15cases, XQuery queries and updates �rst select a sequence of subtrees by means of asubquery (e.g, an XPath expression), and then iterate operations on this sequenceof subtrees. For instance, concerning queries, 13 out of 20 queries of the XMarkbenchmark meet this property, while concerning updates, 16 out of 20 updates inthe benchmark adopted in [BBC+11, Sah11] are iterative.In the case of queries, when this property is satis�ed by a query Q , the inputdocument can be split into a collection of parts {D1, . . . ,Dκ}, so that the evaluation
Q(D) of the query Q over the document D turns out to be equal to the concatenationof the evaluations Q(Di) of the query Q over the document parts Di.For updates, the same strategy can be adopted, with the di�erence that partialupdates U (Di) have to be recombined so that the updated document U (D) can beobtained. While in the case of queries a simple concatenation of partial result issu�cient. In particular we use the command cat to combine these partial resultsin order to produce the �nal one. For updates, and since we use additional tagsduring the creation of the partitions in order to hold the well-formedness of thecreated parts, auxiliary information about these additional tags is needed in orderto correctly re-combine updated parts and eliminate these tags to obtain the �nalupdate result U (D). This auxiliary information is opportunely built up duringpartitioning.Besides scalability, our partitioning technique can be easily adapted to beadopted in a MapReduce [DG08] framework, enabling parallel querying or updatingof parts composing a partition. This is due to the fact that iterative queries andupdates enjoy the property that evaluation on each part does not need informationcoming from evaluation on another part. The possibility of an easy transpositionin a MapReduce framework plays an important role nowadays, given the currentlyrapid and large di�usion of cloud-based platform based on this paradigm.2.1 contributionsThis Thesis proposes a novel technique for partitioning-based evaluation of XQueryqueries and updates.The �rst contribution of this Thesis focuses on queries. In this context, maincontributions are the following ones, and are also reported in [Nic12]:� We �rst present a formal characterization of the class of queries that enjoy theabove described splitting property: we dub these queries as iterative queries.By relying on this formal characterization, we develop a static analysis tech-nique that �rst extracts paths and information about bound variables from thequery, and then analyses them in order to statically detect how the documentis navigated by the query. Relying on path information allows us to avoid theuse of schema information, which is not always available.



16 Chapter 2. Introduction� We then present a partitioning algorithm that exploits the paths extractedduring the static analysis to identify the correct partitioning for the inputdocument. We �rst present DOM-based speci�cation of the algorithm, andthen a SAX based on enabling the possibility of performing partitioning in astreaming fashion, with a very limited memory footprint. To further improvethe bene�ts of our approach, we combine partitioning with standard projec-tion, so that during the creation of document parts, sub-trees not needed bythe query are pruned out. The use of projection is not crucial to ensure scal-ability, which is our main purpose, since our approach is so that the maximalsize of each part can be tuned by the user. Projection helps in reducing theoverhead of partitioning, since it speeds up query execution on the partition.� Then, we present extensive experimental evaluation that corroborates that,when using our partitioning approach, main-memory engines can process doc-uments of arbitrary size, at the price of a modest overhead with respect toschema-less projection techniques; our experiments also show that partition-ing allows for a scalable management of workloads, as the input document ispartitioned once for all.The second contribution of this Thesis concerns updates. In this context, maincontributions are the following ones:� We �rst analyze cases in which update evaluation can be correctly done onpartitions, and then provide a static analysis to characterize such updates,which we call iterative updates. This characterization requires restrictions onthe querying mechanisms that can be used in source and target expressionsof updates. We will show that these restrictions are mild, in the sense that awide class of updates can be dealt with our approach.� We then present a partitioning technique which distinguishes from that ofqueries for the following two aspects.First, projection is not used, in order to have a simple and e�cient re-combination process of partial updates. This is also justi�ed by the fact thatpartitioning is already su�cient to generate small enough parts. The use ofprojection would require a sophisticate re-combination process, since subtreespruned out during partitioning should be recognized and reported in the �nalresult of the process. This kind of operation has been done [BBC+11], wherethe use of schema information was crucial to ensure a clear formalization ande�ciency.Second, paths used during partitioning are inferred by keeping into accountthe particular nature of updates. These paths are used in order to ensure thatsubtrees eventually selected by target paths are never split during partitioning.Atomicity of these subtrees is necessary to ensure that the update evaluationcan be correctly distributed over all the input parts.



2.2. structure of the thesis 17� Then, we present extensive test results showing the e�ectiveness of out tech-nique. Di�erently from the case of queries, the overhead due to partitioningis not negligible. However test results show that our main goal, scalability islargely attained.Concerning test results, we used two main-memory engines, Saxon [sax] and Qizx[qiz]. Our choice is motivated as follows. Saxon is a very popular system, whichdistinguishes for its exhaustiveness in covering most W3C standards for XML pro-cessing (e.g., XML Schema, XSLT, XQuery queries and updates). Di�erently, Qizxis specialized in XQuery query and update, and supports sophisticated techniquesto optimize both execution time and memory consumption.As a third contribution, this Thesis shows that the proposed framework can beeasily adapted in order to be run in a MapReduce framework [DG08]. To this end,main notions behind this paradigm are introduced �rst, and then the architectureof the MapReduce implementation of our framework is illustrated and discussed.2.2 structure of the thesisThe Thesis is organized as follows:� Chapter 2 Introduces XML and XQuery Update Facility and provides somebasic notions and de�nitions.� Chapter 3 Presents standard projection techniques and shows limitations ofthese ones in terms of scalability.� Chapter 4 Presents our partitioning technique for XQuery queries, togetherwith experimental results.� Chapter 5 Presents our partitioning technique for XQuery updates, togetherwith experimental results.� Chapter 6 Illustrates how our partitioning techniques can ensure parallelquery and update evaluation by means of the MapReduce paradigm.� Chapter 7 Discusses related works, conclusive remarks and directions forfuture works.





Chapter 3Preliminaries
Contents3.1 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.1.1 Textual Representation . . . . . . . . . . . . . . . . . . . . . 203.1.2 Well-Formedness of XML . . . . . . . . . . . . . . . . . . . . 203.2 Querying XML . . . . . . . . . . . . . . . . . . . . . . . . . . 223.2.1 XPath Language . . . . . . . . . . . . . . . . . . . . . . . . . 223.2.2 XQuery Language . . . . . . . . . . . . . . . . . . . . . . . . 263.2.3 XQuery Update Facility . . . . . . . . . . . . . . . . . . . . . 273.3 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30This chapter has two essential sections. In the �rst one, we present some basicnotions about XML data and its characteristics. In the second section, we�rst introduce the XML query languages: XPath and XQuery, and then introducethe update extensions provided by XQuery Update Facility language. All of theselanguages are W3C standards [Gro03, Gro11a, W3S10].3.1 XMLXML (eXtensible Markup Language) is among the most popular data formats forrepresenting data generated and exchanged by Web application. In particular, XMLis widely adopted to describe di�erent kinds of data such as HTML (HyperTextMarkup Language) data, relational and object database, multimedia �les (audio,video), and so on.XML actually is a simpli�ed form of SGML (Standard Generalized MarkupLanguage), and it is a W3C standard 1998 [BPMM08]. The syntax of XML datais very similar to that of HTML. However, there are some deep di�erences betweenboth of them. The most important one is that HTML has prede�ned element tagsand attributes whose behavior is well speci�ed, while XML does not. For instance,in XML the user can adopt a <name> tag, while in HTML the user is obliged to useprede�ned tags such as <body>, <head>, <title>, <p>, etc.The possibility of using non-prede�ned tags makes XML data self-describing.This, together with the possibility of free element nesting and mixed contents, makeXML an high �exible language for data representation.



20 Chapter 3. Preliminaries3.1.1 Textual RepresentationAccording to the W3C, the basic component of an XML document is the element,which consists of a piece of text enclosed by an open-tag and its correspondingclose-tag. The content of each XML element can be simple text value, a sequence ofelements, or a mixed sequence which includes the two previous forms (text values andelements). Figure 3.1 represents a simple fragment of an XML document. It showsthat elements are denoted by markup tags. For example, the open-tag <name> andthe close-tag </name> represent an XML element, and the text value Jean Scottincluded between both of them refers to the content of this XML element. Elementswith empty content are called empty elements, and have an abbreviated notation, asindicated by the empty element <email/>. The element <note> contains a complexsequence which includes elements such as <telephone> and text values. Elementscan be annotated with attributes that contain meta data about the element and itscontents. For example, the element <person> has a single attribute named genderwith a simple value M.<person gender = "M"><name> Jean Scott </name><age> 35 </age><email/><note> The personal phone of Jean is :<telephone> 0033110203040 </telephone></note></person>Figure 3.1: Textual representation of an XML fragment.3.1.2 Well-Formedness of XMLAccording to the W3C, an XML document is considered as well-formed if the fol-lowing constraints are met. We summarize below the main ones.� An XML document must be contain at least one element.� Only one element must be contain the whole XML document; this element iscalled the root element.� All element tags must be nested properly, and there is no overlap betweenthem.� Tags in XML are case sensitive. This means that <Name>, <NAME> and <name>are not the same.� Attribute values must always be quoted.Here, we have a list of non well-formed examples of XML elements:



3.1. XML 21� <name>Jean Scott</lastName>The open-tag and close-tag do not match.� <person><age></person></age>The element tags are not nested properly.� <country> </couNtry>Due to case sensitivity, open-tag and close-tag do not match.� <person gender = M>The attribute value misses quotes.As already said, in this Thesis we focus on a schema-less approach, in the sensethat we do not rely on schema information. However we brie�y introduce DTD(Document Type De�nition) which is a widely used schema language. This intro-duction will help in understanding related works on updates [BBC+11] that makeuse of schemas in the form of DTD.In a nutshell, A DTD schema consists of a set of declarations used for describingthe structure of elements and attributes. The content of each element is described bymeans of regular expressions. elements, attributes and another constructors are usedto describe the formal structure of the content for a well-formed XML document.To this end, regular expressions are used.DTD declarations have the following form:<!ELEMENT element-name (element-content)>where element-name represents the name of element tag in an XML document (suchas person, name, email, etc.) while element-content is either an empty content ora regular expression over tags and text-symbols representing the structure form ofthe element-content.Each DTD starts with the declaration of the root element, and then it continueswith speci�cation of other elements. A DTD for our (addressBook.xml) documentis described in Figure 3.2. In particular, the declaration says that its content has tobe a sequence of zero or more of elements tagged as person. The DTD also speci�esthat content of each element person consists of two elements name and age, followedby two optional telephone and email elements, and �nally an essential note ele-ment. The value #PCDATA is used to declare the text-content of each element nodein the document (addressBook.xml). This text-content consists of a sequence ofcharacters (string values) without interleaved XML element nodes. The declarationfor the person attribute says that two possible values are admitted, and that �M�is the default one.In many contexts, it is convenient to have a tree representation of an XMLdocuments. In many examples that we use in next chapters, we rely on tree rep-resentation. Any XML document is actually tree shaped. The root corresponds to



22 Chapter 3. Preliminaries<!DOCTYPE addressbook[<!ELEMENT addressbook (person *)><!ELEMENT person (name, age, telephone?, email?, note)><!ATTLIST person gender (M|F) "M"><!ELEMENT name (#PCDATA | (firstname, lastname))><!ELEMENT firstname (#PCDATA)><!ELEMENT lastname (#PCDATA)><!ELEMENT age (#PCDATA)><!ELEMENT telephone (#PCDATA)><!ELEMENT email (#PCDATA)><!ELEMENT note (#PCDATA | email | telephone)*>]>Figure 3.2: DTD of addressBook.xml XML document.the root element, children of this elements correspond to sub-elements and textualnodes, and so on. A tree representation of our addressBook element is given inFigure 3.4.In the next chapters, we will mainly focus on documents only containing ele-ments. This is to simplify the formal treatment; our approaches easily extend toattributes. As a consequence, �gures will be simpler too, as only element nodes willoccur.Figure 3.4 uses a graphical tree representation to describe the addressBook docu-ment. In this Thesis, we will often rely on graphical tree representation to illustrateour concepts.3.2 Querying XMLThis section introduces two XML query Languages: XPath and XQuery, bothW3C standards. An excellent overview about the XQuery language is presented in[KCD+03], and another overview about XPath language is introduced by [Gro03].A formal introduction to these languages is out of the scope of this Thesis. In thissection, we only focus on the basic structures of XPath expressions and XQuerylanguages, and introduce them mainly by means of examples. Subsequent chapterswill then provide formal characterizations of the fragments of these languages wewill deal with.3.2.1 XPath LanguageXML Path Language (XPath) is one of the most popular languages used in XMLtechnologies. It provides support for navigating through XML trees in order toselect nodes satisfying some structural and value-based properties.The main constructor in XPath language is the expression. Essentially, an XPathexpression consists of a sequence of steps separated by the symbol /. Each step



3.2. Querying XML 23<addressbook><person gender = "M"><name> Jean Scott </name><age>35</age><email/><note>The personal phone of Jean is :<telephone>+33110203040</telephone></note></person><person><name><firstname>Steven</firstname><lastname>Wesley</lastname></name><age>38</age><telephone>+33155209940</telephone><email>steven.wesley@ITcompany.com</email><note>Work administrator, his mobile phone:<telephone>+33811773700</telephone>his email:<email>steven.boss@speedymail.com</email></note></person></addressbook>Figure 3.3: A well-formed XML document.consists of three parts; two mandatory parts are axis and node test, while an optionalpart is predicate.Informally, the three components of step are de�ned as follows:1. an axis de�nes the relationship between the context node and the nodes se-lected by the step.2. a node test speci�es the node type and the expanded-name of the selectednodes.3. zero or more predicates, which use arbitrary expressions to further re�ne theset of selected nodes.The evaluation of each step returns a sequence of nodes. The current node overwhich a step is evaluated is called context node, and the value returned by an XPathexpression is the value returned by the last step of this expression.For example, when the following step child::person is evaluated, the axischild selects all children nodes of the context node. Then, among these nodes,the condition person selects only children nodes corresponding to elements namedas person. It is very important to note that nodes are resulted according to the



24 Chapter 3. Preliminaries

Figure 3.4: Tree representation of addressBook XML document.document order. Also, it is important to note that XPath assumes that navigationthrough a document always starts from what is called the document root, which canbe seen as a virtual node having as only child the document root element. Thedocument root is selected by the simple expression /, so for our previous address-Book document /child::addressbook selects the root element addressbook, while/child::addressbook/child::person select the sequence of all person elements.The following brief description presents some of available axes in XPath (Figure3.5 illustrates these navigating axes):� self axis selects the context node itself.� child axis selects all children of the context node.� descendant axis selects all descendants (children, grandchildren, etc.) of thecontext node.� descendant-or-self axis selects all descendants of the context node and thecontext node itself.� parent axis selects the parent of the context node, which is either an elementnode or the root node (or an empty sequence if the context node is the rootnode).� ancestor axis selects all ancestors (parent, grandparent, etc.) of the contextnode, from its parent to the root node.� ancestor-or-self axis selects all ancestors of the context node, from itsparent to the root, and the context node itself.As said before, the second essential part used to compose an XPath step is thenode test, which has one of the following forms:



3.2. Querying XML 25� node(): selects nodes of any type.� text(): selects text nodes.� tag: selects only nodes that have the element-name tag. For example, theelement-name age in the step child::age, which selects only nodes corre-sponding to elements named as age.

Figure 3.5: Navigational XPath axes.In the following we give some examples of XPath expressions. The next queryselects all email elements that are children of person elements. This is performed byusing a speci�c path to be followed in order to select the requested email elements:/child::addressbook/child::person/child::emailwhich can have the following abbreviated version (the child:: part is omitted)/addressbook/person/emailAnother abbreviation that is admitted is that allowing the use of //a instead of/descendant-or-self::node()/child::a. So the following query selects all emailelements in the document addressBook.xml.//emailXPath uses predicates in its query syntax to limit the extracted data from aninput XML document. The following predicate is used to select all person elementsthat have an attribute gender with a value "M":doc("addressbook.xml")//person[gender = "M"]



26 Chapter 3. Preliminaries3.2.2 XQuery LanguageThe XQuery language is a �exible and powerful query language for XML data.XQuery language is built on XPath expressions, and can be used in several tasks,such as:� Extract information from an XML database to use in a Web service.� Generate summary reports about data stored in an XML database.� Search textual documents on the Web for relevant information.� Transform XML data to XHTML to be published on the Web.In all these contexts, XPath is not su�cient, as mechanisms to select tuples ofnodes, and build new ones are needed. The most used fragment of XQuery consists ofFLWR expressions. The name FLWR comes from the initial letters of the followingclauses:� for-clauses �rst select a sequence of nodes, and then perform some queryoperations on each node;� let-clauses bind a sequence of nodes to a speci�c variable, which can be usedinto another expression;� where-clauses �lter nodes depending on a boolean expression;� returtn-clauses build values resulted by a query.Most of these clauses are optional, except the return clause .This clause isalways attached with at least one for or let clause. In general, a FLWR expressionmay contain many for/let clauses before the return clause.The simplest FLWR expression containing a for clause has the following form:for $x in Q1 return Q2First of all, this query evaluates Q1, and then for each node in the resultingsequence, it binds this node to the variable $x and evaluates Q2 accordingly. Notethat the evaluation of Q2 is performed according to the sequence order of Q1 result.The �nal result is obtained by concatenating all Q2 results.The following examples illustrate a query returns the sequence age element ofall person elements in the document addressBook.xml presented in Figure 3.3:for $x in doc("addressbook.xml")//personreturn $x/ageThe following example uses a where clause to select exactly the same result ofthe previously seen query doc("addressbook.xml")//person[gender = "M"]



3.2. Querying XML 27for $x in doc("addressbook.xml")//personwhere $x/@gender = "M"return $xXQuery also provides if-then-else expressions. For instance, the above queryis equivalent to the following one using this kind of expressions:for $x in doc("addressbook.xml")//personreturnif $x/@gender = "M" then $x else ()where () denotes the empty sequence.The following query produces two kinds of elements depending of the gender ofpersons:for $x in doc("addressbook.xml")//personreturnif $x/@gender = "M" then <m/> else <f/>An example illustrating how multiple for/let clauses can be combined is thefollowing one:let $x := doc("addressbook.xml") returnfor $y in $x//personlet $w := $y/agewhere $w > 35return $y/noteIn the above example, each for/let clause is evaluated in a scope determinedby previous clauses. The query above will return the following data:<note>Work administrator, his mobile phone:<telephone>+33811773700</telephone>and private email:<email>steven.boss@speedymail.com</email></note>3.2.3 XQuery Update FacilityThe XQuery language is provided with a powerful extension, called XQuery UpdateFacility (XUF), for updating XML documents. The XUF language became a W3Ccandidate recommendation in 2009, and was �nalized as recommendation in 2011[Gro11a]. Basic updating operations provided by XUF are the following ones:1. delete one or several nodes.



28 Chapter 3. PreliminariesDeleteExpre ::= "delete" ("node" | "nodes") TargetExprRenameExpre ::= "rename" "node" TargetExpr "as" string-valueReplaceExpr ::= "replace" ("value of node"|"node") TargetExpr"with" SourceExprInsertExpre ::= "insert" ("node" | "nodes")SourceExpr InsertExpreTargetChoise TargetExprInsertExprTargetChoice ::= "as" ("�rst"|"last") "into" | "after" | "before"Figure 3.6: The W3C syntax of simple XQuery updates.2. rename a name of an element node.3. replace an existing node with a new node or several new nodes.4. insert a node or several nodes into an existing node.The syntax of the XUF language, according to the W3C recommendation, isreported in Figure 3.6. In this syntax, theTargetExpr computes the target locationwhere the update operation is taking place, while the SourceExpr returns a newfragment which will be inserted or replaced in the target location.In Figure 3.7, we illustrate the main update mechanism by means of some ex-amples. The input document D is reported in Figure 3.7-(a).
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f(d) U3(D), (replace value of node) (e) U4(D), (rename node) (f) U5(D), (delete nodes)Figure 3.7: Simple XQuery updates.The result of the �rst simple update U1(D) on the input document D reportedin Figure 3.7-(a) is illustrated in Figure 3.7-(b). This update inserts an empty newnode <new/> after the last /a/b/c in D , by using the following expression:



3.2. Querying XML 29
U1 = insert node <new/> after doc(D .xml)/child :: a/child :: b/child :: c[last()]Figure 3.7-(c) illustrates the update result U2(D) of the document D producedby a simple update U2. This update replaces the node (and its subtree) selected by/a/b with another subtree selected by /a/d.
U2 = replace node doc(D .xml)/child :: a/child :: bwith doc(D .xml)/child :: a/child :: dFigure 3.7-(d) illustrates the updated result U3(D) after evaluating the simpleupdate U3 on D , which replaces the text-value of the last c-node located after thenode selected by /a/b with a new value "tata", as follows:
U3 = replace value of node doc(D .xml)/child :: a/child :: b/child :: c[last()]with ”tata”Figure 3.7-(e) illustrates the updated result U4(D) produced by evaluating thesimple update U4 on the document D . This update renames the label-name of thelast f-child node as "new", as follows:
U4 = rename node doc(D .xml)/child :: a/child :: f [last()] as ”new”The last update result U5(D) illustrated in Figure 3.7-(f) which deletes all sub-trees rooted at g-node of f-nodes existed in the document D , as follows:
U5 = delete nodes doc(D .xml)/child :: a/child :: f/child :: gA second form of XQuery updates relies on conditional or FLWR expressions.For example, consider the following conditional update:
U6 = let $x := doc(D .xml)/child :: a/child :: d returnif $x/child :: g thendelete node $xelsereplace value of node $x with ”node”This update deletes each child g-node of d-node if it exists, otherwise it replacesthe label-name of d-node with "node". The result of evaluating this update on thedocument D is illustrated in Figure 3.8-(b).Another example is used to apply a simple update rename during an iteration:
U7 = let $i := doc(D .xml) returnfor $x in $i/child :: a/child :: fwhere $x/child :: greturn rename node $x/child :: g as ”node”This update navigates the whole document D and checks each /a/f subtreewhether it contains a child g-node, if it exists then the update will rename the
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node(a) Input XML document D (b) U6(D), (conditional expression) (c) U7(D), (FLWR expression)Figure 3.8: Complex XQuery updates.label-name of g-node with a new label node, otherwise no update will be performedin D . The �nal update result U7(D) is illustrated in Figure 3.8-(c).It is worth noticing that according the W3C semantics, some constraints mustbe preserved during the update execution. For previous examples of simple/com-plex update expressions, these constraints are held and described in the followingremarks.Remark 1 In order to execute a simple insertion, the TargetExpr must be a singlenode, otherwise if it is an empty sequence or contains a set of nodes, a run-timeerror will rise and the insert update will not be performed.Remark 2 In order to perform a simple deletion, the TargetExpr must be a singleexpression to avoid getting a dynamic error during the execution.Remark 3 In order to perform a simple replacement, the SourceExpr must be acontent sequence which is either an empty sequence, a set of element nodes or stringvalues. Otherwise a runtime error is risen.Actually these constraints are orthogonal to our work, and we assume that ourupdate language satis�es these constraints.3.3 conclusionThis chapter has provided a simple introduction to XML, the query languageXQuery and the update language XQU. The presented introduction is far frombeing exhaustive. However, we have focused on a signi�cant fragment coveringmechanisms used in practice. In this Thesis we focus on such fragment.



Chapter 4XML Projection and itsLimitations
Contents4.1 path-based projection for queries . . . . . . . . . . . . 324.1.1 Limitations of Standard Projection for Queries . . . . . . . . 354.2 type-based projection for updates . . . . . . . . . . . . 394.2.1 Limitations of Update Type-based Projection . . . . . . . . . 454.3 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51As we said in the introduction, XML data projection is one of the most importanttechniques used for reducing the memory consumption of main-memory XML(query/update) engines. The main idea behind this technique is quite simple andproductive as well: given a query Q on an XML document t , instead of evaluating Qon t , the query Q is evaluated on a smaller document t ′ obtained from t by pruningout, at loading-time, all subtrees of t that are not necessary to evaluate Q . Theprojection t ′ is often much smaller than the original t due to the high selectivity ofqueries. This technique ensures a big improvement in terms of the execution memoryconsumption, as it allows the main-memory engine to query large documents, andalso ensures gains in terms of querying time.In this chapter, we discuss main features of two main approaches proposed forXML projection. The �rst one [MS03] concerns queries, and is based on querypath extraction and on the use of extracted paths to project the input document.Another approach for queries has been proposed in [BCCN06], and requires schemainformation about data. We will not discuss it as this Thesis is in a schema-lesssetting, and, for the XQuery fragment we consider, performances of [BCCN06] areclosed to that of [MS03] in terms of size reduction.The second technique we will discuss concerns updates [BBC+11, BCMS09a,BCMS09b], and is the only existing projection technique for updates. It is based onschema information and on type inference, plus a novel Merge operation that, as wewill see, is needed to recombine the updated projection with the original document.In this chapter, besides illustrating how projection can be used to process a wideclass of XML queries and updates on large XML documents, we will show that these



32 Chapter 4. XML Projection and its Limitationstechniques, even if quite e�ective, do not scale up with respect to document size.This has motivated our investigation towards partitioning techniques.The chapter is organized as follows. Section 4.1 introduces the XML standardprojection proposed by [MS03] and some principal de�nitions, the path analysis al-gorithm which extracts the set of projection paths from an arbitrary XQuery query.Then explain the loading algorithm used to create the projection. Section 4.1.1 illus-trates the limitations of the XML standard projection technique by testing severalqueries on XMark documents and DBLP database. In Section 4.2, we introduce,through examples, the concept of the type-based projection technique proposed by[BBC+11]. Then in Section 4.2.1, we illustrate the limitations of this technique withupdates. Finally, we draw our conclusion in Section 4.3.4.1 path-based projection for queriesThe path-based, and schema-less, approach for XML projection has been proposedby Marian and Siméon in [MS03]. The main contribution of this work is a staticanalysis algorithm used to extract paths from an XQuery query. Extracted pathsspecify which parts of an input XML document are su�cient to execute the XQueryquery, and are used by a streaming algorithm to prune out parts of the documentthat are not needed by the query.To illustrate, consider the following query on XMark documents [SWK+02a]:Q1 = for $b in /site/people/person[@id="person0"] return $b/addressBy evaluating this query on the input XML document D illustrated in Figure 4.1,we have that this query does not need to process all parts in the original document.Actually, it only needs to process parts corresponding to the following projectionpaths (we will see later the meaning of #):
P1 = /site/people/person/@id
P2 = /site/people/person/address#The resulting document obtained by using these paths for projection is illustratedin Figure 4.1.In [MS03], a simple fragment of XPath [Dra02] is used to de�ne the syntax ofthe projection paths. Each projection path starts from the root and consists of asimple path expression followed by an optional "#" �ag. This optional �ag is usedto indicate whether the descendant subtrees returned by the whole path expressionshould be kept in the projected document. In Figure 4.1 it can be observed thatthe whole subtree selected by the projection path P2 is kept in the projection.The syntax of a simple path expression is de�ned by the following grammars:



4.1. path-based projection for queries 33<site><regions>...</regions><people><person id="person0"><name>Xiulin Poch</name><emailaddress>mailto:Poch@unizh.ch</emailaddress><phone>+0 (847) 37140499</phone><homepage>http://www.unizh.ch/ Poch</homepage><creditcard>1655 3174 7975 9805</creditcard><watches><watch open_auction="open_auction124"/></watches></person><person id="person1"><name>Remco Sevcikova</name><emailaddress>mailto:Sevcikova@edu.sg</emailaddress><phone>+0 (628) 90891260</phone><address><street>69 Yaru St</street><city>Brunswick</city><country>United States</country><province>Maine</province><zipcode>23</zipcode></address><homepage>http://www.edu.sg/ Sevcikova</homepage></person>...</people>...</site>Figure 4.1: A fragment of the input XMark document D .
SimplePath ::= Axis :: NT | SimplePath/Axis :: NT

Axis ::= child | self | descendant
| descendant-or-self | attribute

NT ::= node() | text()As it can be seen, this technique assumes that XQuery queries use only downwardaxes.The path extraction algorithm proposed in [MS03] is able to extract a set ofprojection paths from an arbitrary XQuery expression. We omit here details aboutthe rules, and in the sequel we focus on the projection algorithm using extractedpaths, as partitioning algorithms we will present share some mechanisms with thisone.The projection algorithm processes the input in a SAX fashion [ver00]. In par-



34 Chapter 4. XML Projection and its Limitationsticular, this projection algorithm works in a recursive way. It starts to parse theoriginal document D , and considers each node read from D as an independent event.It uses the following speci�c SAX events during the process:
SAXEvent ::= OpeningTag (qName)

| Characters (String)

| ClosingTag (qName)The OpeningTag (qName) event occurs when the opening tag of an element ismet; the tag value is represented by (qName). The Characters event occurs whena text node is met during the parsing, and the text value is represented by String.The ClosingTag (qName) event is dual and occurs when a closing tag is met.When the SAX parser begins the processing operation, the loading algorithmstarts to check the correspondence between the current projection paths and theOpeningTag token of the current node qName. If this qName matches the �rststep of each projection path, this means that the loading algorithm should keep thisnode in the projection D ′ which is normally smaller than the original document D .Moreover, the algorithm in this case will check if the creation of D ′ needs to keepthe subtree of this current qName or not. If there is no match between the current
qName and the current projection paths, here the algorithm will skip this qNametogether with all the ones that follow until the corresponding close-tag.Figure 4.2 presents a simple XML example on which we will explain how theloading algorithm works:<a><g><b></b></g><b><c><f></f></c></b><d><e></e></d><b></b><c></c></a>Figure 4.2: An XML document fragment.In this example, the loading algorithm will use a certain set of projection paths/a/b/c#, /a/d to create a projected fragment from the original one presented inFigure 4.2. All operation steps of the loading algorithm are explained clearly inFigure 4.3.It is worth observing that the algorithm is not fully speci�ed in [MS03], sincethe focus is on the path-extraction algorithm. The description provided in [MS03]is limited to some examples, and the way itself and descendant axes are dealt withis not discussed in details. In the next chapters, we will formally specify both path-extraction and projection mechanism. Experimental results we provide next havebeen obtained by using our implementation which is presumably equivalent to that
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Figure 4.3: Loading algorithm of [MS03] for building a projection.of [MS03]. In our implementation, we have followed principles outlined in [MS03]in order to minimize as much as possible the size of projection. For instance, inthe presence of a projection path descendant :: a, the projection process prunes outnodes not having a descendant labeled as a.4.1.1 Limitations of Standard Projection for QueriesThe path-based XML projection technique introduced in [MS03] is an e�ective tech-nique: it allows main-memory systems to query large documents. Unfortunately,as already said in the introduction, this technique still has limitation since for verylarge documents and for queries needing a large part of the input for evaluation,the projected document is likely to be too big to be loaded for querying by themain-memory system.In particular, the following kinds of XQuery queries are likely to need too largeprojections.� Queries performing the descendant navigation are likely to select large portionsof the input. For instance, for XMark data, some performed tests revealed thatfor a simple query like //text, the projection takes around 65% of the originaldocument.� Full-text queries need to query textual nodes of the input. As textual contentof an XML document can cover large portions of it, the needed projection islikely to be large too. An example of such queries is the query N2 hereafterdiscussed.� Queries producing a document with the same content of the input, but withdi�erent structure, actually need the whole document to be processed. Actu-ally, even the structural reorganization concerns sub-parts of the document,



36 Chapter 4. XML Projection and its LimitationsSize of standard projection in (MB)Query 1GB 2GB 3GB 4GB 5GB
Q1 15,1 26,2 39,3 52,5 66,5
Q2 36,4 62,8 94,3 125,9 159,4
Q3 36,4 62,8 94,3 125,9 159,4
Q4 44,2 76,5 115 153,6 194,5
Q5 5,2 8,9 13,3 17, 8 22,5
Q6 6,61 11,5 17,3 23,1 29,3
Q7 30,9 53,4 80,1 106,8 135,4
Q8 21,5 37,2 55,9 74,5 94,5
Q9 25,2 43,5 65,4 87,3 110,8
Q10 77,1 133,2 200,1 266,9 338,6
Q11 28,1 48,7 73,1 97,6 123,8
Q12 21,3 36,8 55,4 73,9 93,8
Q13 33,1 57,2 85,9 114,5 145,5
Q14 328,4 567,4 851,2 1,1GB 1,4GB
Q15 149,8 258,3 386,5 514,1 651,2
Q16 153,3 264,3 395,6 526,2 666,4
Q17 20,9 36 54,1 72,2 91,6
Q18 7 12,1 18,2 24,3 30,8
Q19 20,5 35,5 53,3 71,1 90,2
Q20 12,8 22,2 33,4 44,5 56,5
N1 543,5 938 1,37GB 1,83GB 2,32GB
N2 670,8 1,13GB 1,69GB 2,26GB 2,86GB
N3 527,6 910,6 1,33GB 1,78GB 2,25GBTable 4.1: Size of projected documents.projection is likely to be too large. An example of such queries is the query

N1 discussed in the sequel.Query execution timeon the standard projectionQuery Projection Saxon Qizxsize in (MB) in (sec) in (sec)
D1 313 - 194,11
D2 517 - 381,43Table 4.2: Qizx and Saxon performances on projected DBLP document.The above queries are likely to occur in practice and need large projections evenfor not so big documents. However even quite selective queries, like the XMarkones, can make projection fail when the input is quite large. Next we will showexperimental results reporting the size of projections obtained by means of the



4.1. path-based projection for queries 37path-based technique, for each XMark queries and for documents with size rangingfrom 1GB to 5GB. We will also show the same kind of test results for three newXMark queries (N1, N2, and N3), also two queries (D1 and D2) to be evaluatedon a 800MB DBLP document [ver11]. These �ve new queries need to very largeprojections. The syntax of these new queries is illustrated below.
N1 = let $auction := doc(”xmark.xml”) returnfor $i in $auction/site//itemwhere $i/location/text() = ”UnitedStates”return <itemInfo name ="$i/name/text()"><paymentWay>$i/payment/text()</paymentWay><shippingWay>$i/shipping/text()</shippingWay><moreInfo>$i/description</moreInfo><mailboxInfo>$i/mailbox</mailboxInfo></itemInfo>
N2 = let $auction := doc(”xmark.xml”) returnfor $i in $auction/site//descriptionwhere contains(string(exactly-one($i)), "gold")return $i/node()

N3 = let $auction := doc(”xmark.xml”) returnfor $i in $auction/site//itemwhere empty($i/payment/text())return <item id="$i/@id" name="$i/name/text()" location="$i/location/text()">{$i/description, $i/mailbox}</item>
D1 = let $auction := doc(”dblp.xml”) returnfor $a in $auction/dblp//authorreturn <AuthorName> {$a/text()} </AuthorName>
D2 = let $auction := doc(”dblp.xml”) returnfor $a in $auction/dblp/node()return <item>{$a/author, $a/title, $a/booktitle, $a/year}</item>Test results about projection sizes are reported in Table 4.1 for what concernXMark documents, while Table 4.1 reports data about tests on queries D1 and D2on DBLP data.By analyzing XMark test results we can observe the following.



38 Chapter 4. XML Projection and its LimitationsSaxon query execution time (sec)on the standard projectionQuery 1GB 2GB 3GB 4GB 5GB
Q1 3,7 5,8 7,9 11,4 12,9
Q2 7 11,5 - - -
Q3 7,5 12,5 - - -
Q4 8,3 14 19,7 - -
Q5 1,5 2,2 3,1 3,9 5,2
Q6 2,1 3,1 4,5 5,4 7,2
Q7 4,9 7,6 11,1 14,1 -
Q8 - - - - -
Q9 - - - - -
Q10 - - - - -
Q11 - - - - -
Q12 - - - - -
Q13 4,7 6,1 8,8 10,8 14,6
Q14 - - - - -
Q15 9,5 - - - -
Q16 10,3 - - - -
Q17 4,4 7,2 10 13,5 17,24
Q18 2 2,9 4,4 5,22 6,5
Q19 7,3 12,1 18 25,9 -
Q20 3,5 5,7 8,3 10,5 13,9
N1 - - - - -
N2 - - - - -
N3 - - - - -Table 4.3: Saxon performance on projected documents.� Queries Q1, Q5, Q6, Q13, Q17, Q18 and Q20 are very selective, and resultingprojection are likely to be processed by main-memory engines.� Queries Q2, Q3, Q4, Q7, Q19 are less selective, and for systems like Saxon thesize of the projection is such that it can not be loaded in main-memory.� For full-text XMark queries Q14, Q15, Q16, we have that the standard projec-tion is not e�ective, and all projected documents generated for these queriestend to be quite big.� Concerning our queries N1, N2 and N3, these require very big parts (nodes andtext) of the input document to be evaluated. So projected documents havesize that can not be handled even by powerful systems like Qizx [qiz].The above discussion is focused on projection sizes. In the next sections, we willprovide tests precisely illustrating where projection fails for the two engines Saxon[sax] and Qizx [qiz].



4.2. type-based projection for updates 39Qizx query execution time (sec)on the standard projectionQuery 1GB 2GB 3GB 4GB 5GB
Q1 8,1 12,8 18 24,3 30,6
Q2 13,9 23,7 35,4 48 60,4
Q3 13,9 24,9 39,4 50,6 65,6
Q4 14,5 38,9 38 51,4 113,6
Q5 2,9 6,1 11,4 18,4 27,9
Q6 3,4 7,9 15,3 25,1 39,3
Q7 10,5 16,5 25,8 33,8 43,3
Q8 11,4 19,8 29,2 39 48,4
Q9 13,9 22,9 33,4 45 57,2
Q10 88,2 150,7 225,8 298 374,1
Q11 32,6 65,9 117,8 178 266,2
Q12 30,8 59,3 106,1 163,5 233
Q13 11,9 19,6 28,5 38 48,5
Q14 126,3 229,2 - - -
Q15 48,6 84 128,7 203,4 229,4
Q16 49,8 96,9 131,8 180,7 233,1
Q17 10,5 17,4 26 34,1 43,2
Q18 3,1 5 7,2 9,9 11,9
Q19 13,1 22,1 37,9 46,1 57,3
Q20 7,3 11,9 17,3 27,3 29,2
N1 275,2 - - - -
N2 338,8 - - - -
N3 213,5 - - - -Table 4.4: Qizx performance on projected documents.

Concerning DBLP data, we have that for the queries D1,D2 projections are quitelarge, making querying impossible when the engine can not rely on large amounts ofmain-memory. For systems like Saxon even if the allocated main-memory is large,projected �les are too big to be processed. We tried with 1GB for the Java VirtualMachine memory, and for both queries projection failed to be processed.Concerning Qizx, performed tests showed that projection worked for thesequeries with 512MB for the JVM memory, but since projection takes 35% and 50%of the input document, we strongly suspect that for bigger future versions of theDBLP database projections are likely to exceeds memory capacity of Qizx.4.2 type-based projection for updatesAs already said, concerning updates the only existing projection technique is theschema-based one proposed in [BBC+11] and extensively studied in Amine Baazizi



40 Chapter 4. XML Projection and its LimitationsThesis [Baa12] and Marina Sahakyan Thesis [Sah11]. So, even if our proposedapproach is schema-less, we discuss here about this schema-based approach.Schema information is used to perform a type inference operation that startsfrom the input update and schema yields what is called a type-projector. Essentially,this type-prjector consists of the set of types of nodes the update may need for itsevaluation. As we will illustrate next, the notion of type-projector which is adoptedis deeply di�erent from that of queries proposed in [BCCN06]. Also, projection isnot su�cient for the framework to work since after having updated the projectedinput we do not have yet global updated document. This is because, in particular,subtrees pruned during projection are missing. This motivated the adoption of aMerge operator allowing to merge in streaming the updated projection and theoriginal document, in order to produce the �nal updated document.More in detail, for an update U and input document t typed by a DTD D theframework works as follows:1. a type-projector π is inferred from the update U and with respect to the inputDTD D.2. a projection t ′ of t is built using a type-projector π.3. the update U is evaluated over the projection t ′, yielding the partial updatingresult U (t ′).4. an algorithm called Merge is used; this algorithm parses in streaming andsynchronized fashion both the input t and the partial result U (t ′) in order toproduce the �nal result U (t). This is done for recovering all nodes pruned outduring the projection of t .The main di�erence between these approaches is that the type-projector pro-posed in [BCCN06] is composed by one level, while a 3-level components used tobuild the type-projector proposed in [Baa12, BBC+11, Sah11].The type projector adopted for queries in [BCCN06] is one-level, while the type-projector proposed in [Baa12, BBC+11, Sah11] is 3-level. The main features ofusing a 3-level type projector are the following ones. The �rst one is to optimize(minimize) the size of projections. In particular, the 3-level type projector allowsto avoid keeping in the projection useless text nodes that would be kept with the1-level type projector proposed in [BCCN06]. This feature enables an interestingimprovement in case of using documents contain large parts of textual content. Thesecond feature of using the 3-level type projector is that no rewriting of the updateis required. The third feature is that this type-projector is speci�cally designed todeal with particular kinds of update expressions. This is done with the purpose tofacilitate the complexity of Merge process. The last feature is that this technique istotally independent from XQuery engines.More in detail, the 3-level type projector π proposed in [BBC+11] is composedby the following three components {πno, πolb, πeb}, where:



4.2. type-based projection for updates 41� the �rst component πno (node-only) is used to project only the nodes.� the second component πolb (one-level-below) is used to project the nodes plustheir children.� the third component πeb (everything-below) is used to project the nodes plusall their descendants.Next we are going to provide some examples to explain the mechanism of theupdate 3-level type projection technique. After this we will discuss limitations interms of scalability.Consider the following update u1 on the input document t illustrated in Fig-ure 4.4 and the DTD D illustrated in Figure 4.5:
u1 = for $x in /doc/child :: awhere $x/child :: d return delete $x/child :: bSuppose that the partial updated document u1(t

′) has been produced by updat-ing t ′ which is the projection of the original document t . In order to produce the�nal result u1(t), we parse, by using merge process, the original document t andthe partial updated document u1(t
′).The type-based projector in [BCCN06] assumes that each node (like a,b,c, ...)of the input document t is adorned with an identi�er i inside square brackets, asillustrated in Figure 4.4. Each node in t has an identi�er i is next denoted by t@i.The identi�er i of each node in t carries on information about the node position in

t , according to document order.In the projection t ′ of t , the identi�er of a projected node is preserved, thereforeit may not re�ect the new position of the node in t ′ (it is the case, for instance,of the node t′@1.4 in Figure 4.4-(4)). In the partial updated document u1(t
′), newidenti�ers are assigned to inserted or replaced nodes (see next examples).Now the Merge process is presented. This process starts to parse (merging) both

t and u1(t
′), nothing special happens until the nodes (labeled a) t@1 and u1(t

′)@1are met. Here, the two nodes checked by Merge are: the �rst child node t/@1.1labeled b of t@1, and the �rst child node u1(t
′)@1.4 labeled d of u1(t

′)@1. In theexamined nodes, the child rank 4 of u1(t
′)@1.4 is strictly greater than the child rank

1 of t@1.1. Also, the label b belongs to the projector π, indicating that the node
t@1.1 has been projected in t ′. Thus, the node t@1.1 is not output (it has beendeleted by the update u1), the original document t is further parsed.The next two nodes checked are: t@1.2 labeled c and u1(t

′)@1.4 labeled d. Onceagain, the child rank 4 of u1(t
′)@1.4 is strictly greater than the child rank 2 of t@1.2,however this time, the label c does not belong to the projector π (the node t@1.2was not needed for the partial update and thus not projected in t ′) and thus thenode t@1.2 is output in the �nal result, the original document t is further parsed.



42 Chapter 4. XML Projection and its Limitationsfor $x in /doc/awhere $x/d return delete $x/b

πno={doc, a, b, d}

πolb=πeb=∅(1) The update u1 (2) The projector π1 for u1doc
[ε]

a
[1]

b
[1.1]'oof' c

[1.2]
c

[1.3]
d

[1.4]

f
[1.4.1]

g
[1.4.2]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2]

doc
[ε]

a
[1]

b
[1.1]

d
[1.4]

a
[2]

d
[2.1](3) XML document t (4) Projection t ′ of t wrt π1doc

[ε]

a
[1]

d
[1.4]

a
[2]

d
[2.1]

doc
[ε]

a
[1]

c
[1.2]

c
[1.3]

d
[1.4]

f
[1.4.1]

g
[1.4.2]

a
[2]

d
[2.1]

f
[2.1.1]

f
[2.1.2](5) Partial update u1(t

′) (6) Final result u1(t)Figure 4.4: A simple example with type-based projection.The process will continue merging t and u1(t
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u2 = for $x in /doc/child :: areturn insert as last <e>new<e/> into $xIntuitively, the path corresponding to data needed for the update u2 is
/doc/child :: a and the types of nodes traversed by this path are π2={doc, a}. Theprojection π2(t) of t as well as the partial update u2(π2(t)) are illustrated in Figure4.6. Recall that node identi�ers in π2(t) correspond to node identi�ers in t, the sameholds for unchanged nodes in u2(π2(t)), and that new (inserted or replaced) nodesin u2(π2(t)) are given new identi�ers. In Figure 4.6, i and i

′ are new identi�ers.In the following, we will see how the Merge process parses both the originaldocument t and the partial update result u2(π2(t)) in order to produce the �nalresult u2(t). After parsing the root elements of both documents, the current twonodes examined byMerge are: t@1.1 labeled b and the new node u2(π2(t))@i labeled
e. Here, the new identi�er i does not carry any information about child rank of thenew node and even if the projector tells us that the node t@1.1 has been projected



4.2. type-based projection for updates 43<!DOCTYPE doc[<!ELEMENT doc (a*)><!ELEMENT a (b*,c*,d?)><!ELEMENT b (#PCDATA)><!ELEMENT c (#PCDATA)><!ELEMENT d ((f|g)*)><!ELEMENT f (#PCDATA)><!ELEMENT g (#PCDATA)>]>Figure 4.5: DTD of the XML document t illustrated in Figure 4.4.doc
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π2(t) πu2(t) u2(π2(t)) u2(πu2(t))Figure 4.6: Dealing with insertion.out, there is no way to decide whether it has to be output before the inserted nodeor after. Recall here the assumption made for Merge: information about the update
u2 is not available.In order to solve this problem, related to insertion, we modify the projector, totake into account that for the update u2 the path /doc/child :: a is the target ofan insertion. The projector πu2 will have 2 components: the type doc of categorynode-only and the type a of category one-level-below. Applying this new projectorto a document proceeds as follows: the nodes labeled by types of category node-onlyare projected; the nodes labeled by types of category one-level-below are projectedtogether with each of their children. Descendants of these children are not projected,unless other components of the projector require this projection.Going back to our example u2, applying the projector πu2=(πno, πolb) with
πno={doc} and πolb={a} to the document t leads to the document πu2(t) describedin Figure 4.6 together with the partial update u2(πu2(t)). Since now the new nodesare inserted inside the projection containing all their siblings, it is easy to checkthat the documents t and u2(πu2(t)) can be merged in a valid, and simple way.It is worth mentioning that our type projector avoids unnecessary node projec-tion: the projection of all children of a one-level-below node is forced, but labels ofthese children do not take part of the type projector.
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t3 π3(t3) u3(π3(t3)) πu3(t3)Figure 4.7: Dealing with string and mixed-contents.Dealing with String and mixed-content In order to deal these cases, we willmodify the DTD D by rede�ning the rule for b as <!ELEMENT b (String|c)*> andconsider the following update u3:
u3 = for $x in /doc/child :: awhere $x/child :: b/() =′ foot′ return delete $x/child :: dIntuitively, /doc/child :: a/child :: d and /doc/child :: a/child :: b/text() are thepaths corresponding to data needed for the update u3. The associated types are
π3={doc, a, b, String, d}. Let us consider the document t3 and its projection π3(t3)both illustrated in Figure 4.7. Notice that projecting t3 with respect to π3 has theside e�ect to concatenate the two Strings 'fo' and 'ot' and consequently, the node
u3(π3(t3))@1.4 labeled d is deleted when the update u3 is applied on the projecteddocument π3(t3). Recall the assumption that Merge is not supposed to change theelements parsed in t3 and u3(π3(t3)), and has only access to the projector. Thus,we cannot expect that merging the original document t3 and the partial updatedresult u3(π3(t3)) will produce the �nal updated document.The problem here is due to mixed-content nodes and solved by modifying theprojector in the same way as for insertion. The new projector πu3 generated forthe example will have 2 components: πno={doc, a, d} of category node-only and
πolb={b} of category one-level-below.Dealing with element extraction Consider the DTD D and the following up-date u4:
u4 = for $x in /doc/child :: areturn replace $x/child :: b with $x/child :: dFirst, it is clear that replace updates have to be treated like insert with respectto the target path $x/child :: b: replace is a delete followed by an insert. Second,because the path /doc/child :: a/child :: d is meant to return the element copied atthe target node computed by /doc/child :: a/child :: b, the complete subtrees rootedat nodes of type d have to be completely projected. For this update, we propose togenerate a projector πu4 composed of three sets of types:



4.2. type-based projection for updates 45� πno={doc} of category (node-only).� πolb={a} of category (one-level-below).� πeveryb={d} of category (everything-below).Now we will explain the behavior of the 3-level type projector with respect to thecategory (everything-below): a node labeled by a type of this category is projectedtogether with its sub-forest. Indeed, applying the projector πu4 on the document
t of Figure 4.4-(3) produces almost the whole document with the exception of theString 'oof' which is pruned out.Actually, the third component of the type projector ensures higher precision ande�ciency with respect to [BCCN06]. In particular, it allows avoiding to include thetypes of the nodes in the subtree of a (everything-below) node in the type projector,and accelerates the projection process it-self.In Table 4.5, we provide the composition of the 3-level type projector for 20XQuery updates proposed in Marina SAHAKYAN Thesis [Sah11].4.2.1 Limitations of Update Type-based ProjectionDespite the high precision of the 3-level type-projector approach, there are stillproblems in terms of scalability. As for queries, this is due to the fact that asthe input size increases, projection increases as well, and when mechanisms alreadydiscussed for queries are present in updates, projection can soon become too largeto be processed.Di�erently from queries, currently there is no benchmark for updates that iswidely recognized by the research community. Fortunately, a rich set of updateshas been proposed in Marina Sahakyan Thesis [Sah11]; these updates use XMarkdocuments as inputs, and a part of them has been used in [BBC+11]. These updatesare below indicated:U1. for $x in $doc/site/closed_auctions/closed_auctionwhere not ($x/annotation) returninsert node <annotation>Empty Annotation</annotation>as last into $xU2.for $x in $doc/site/people/person/addresswhere $x/country/text()="United States" return(replace node $x with<address><street>{$x/street/text()}</street><city>"NewYork"</city><country>"USA"</country><province>{$x/province/text()}</province>



46 Chapter 4. XML Projection and its Limitations
Update πno πolb πebU1 site, closed_auctions, annotation closed_auction ∅U2 site, people, address person, country, street,province, zipcode ∅U3 site, regions, africa, asia, australia, eu-rope, namerica, samerica, item location ∅U4 site, regions, africa, asia, australia, eu-rope, namerica, samerica, item, mail-box, mail ∅ ∅U5 site, regions, africa, asia, australia,europe, namerica, samerica, listitem,bold, mailbox, mail, item, description,text, open_auctions, open_auction,closed_auctions, closed_auction, an-notation, parlist

∅ ∅

U6 site, people, homepage, emailaddress person, name ∅U7 site, people,emailaddress person, name, country addressU8 site, regions, australia ∅ ∅U9 site, open_auctions, open_auction,closed_auctions closed_auction annotationU10 site, open_auctions, open_auction privacy ∅U11 site, open_auctions, bidder, initial open_auction, increase ∅U12 site, regions, africa, asia, australia,europe, namerica, samerica, mailbox,mail item, date ∅U13 site, open_auctions,open_auction,annotation, description, keyword,bold text, emph ∅U14 site, regions, africa, asia, aus-tralia, europe, namerica, samerica,item, description, parlist, listitem,mailbox, mail, closed_auctions,closed_auction, annotation,open_auctions, open_aucton, text,emph
∅ ∅

U15 site, categories, category, listitem description parlistU16 site, closed_auctions ∅ ∅U17 site closed_auctions ∅U18 site, categories, category, description,parlist listitem ∅U19 site, categories, category, description parlist listitemU20 site, open_auctions open_auction bidder, increaseTable 4.5: The composition of 3-level type projector for 20 updates used in [Sah11].



4.2. type-based projection for updates 47<zipcode>{$x/zipcode/text()}</zipcode></address>)U3.for $x in $doc/site/regions//item/locationwhere $x/text()="United States"return (replace value of node $x with "USA")U4.delete nodes $doc/site/regions//item/mailbox/mailU5.for $x in $doc/site//text/bold returnrename node $x as "emph"U6.for $x in $doc/site/people/personwhere not($x/homepage)return insert node<homepage>www.{$x/name/text()}Page.com</homepage>after $x/emailaddressU7.for $x in $doc/site/people/person,for $y in $doc/site/people/personwhere $x/name = $y/nameand not ($y/address)and $x/address/country='Malaysia'return insert node $x/addressafter $y/emailaddressU8. delete nodes $doc/site/regions/australiaU9. let $k := $doc/site/closed_auctions/closed_auction[last()]for $b in $doc/site/open_auctions/open_auction[last()]return replace node $k/annotation with $b/annotationU10. for $x in $doc/site/open_auctions/open_auctionwhere ($x/privacy="Yes")return delete node $xU11. for $x in $doc/site/open_auctions/open_auctionwhere $x/bidder/increase < 20return insert node<bidder><date>08/17/2000</date><time>15:15:15</time><personref/><increase>1.50</increase></bidder>after $x/initial



48 Chapter 4. XML Projection and its LimitationsU12. for $x in $doc/site/regions//itemwhere ($x/mailbox/mail/date/text()="07/04/1998")return insert node <incategory/> before $x/mailboxU13. for $x in $doc/site/open_auctions/open_auction/annotation/description/textwhere ($x/keyword/emph/text()="unique")and ($x/bold)return insert node <emph>newTexT</emph> before $x/boldU14. for $x in $doc/site//text/emphreturn delete node $xU15. for $x in $doc/site/categories/category/description/parlistwhere ($x/listitem/parlist) returnreplace node $x with $x/listitem/parlist[1]U16. for $x in $doc/site/closed_auctionsreturn delete node $xU17. for $x in $doc/site/closed_auctionsreturn insert node<closed_auction><seller/><buyer/><itemref/><price>39.58</price><date>02/15/1998</date><quantity>1</quantity><type>Regular_new</type><annotation/></closed_auction> as last into $xU18. for $x in $doc/site/categories/category/description/parlist/listitemwhere ($x/parlist)return replace node $x/parlist with <text>newText</text>U19. for $x in $doc/site/categories/category/description/parlist/listitemreturn replace node $x with $x/parlist/listitem[1]U20. for $x in $doc/site/categories/category/description/parlist/listitemreturn replace node $x with $x/parlist/listitemTable 4.6 illustrates the dimension of projections (in MB) for each update andfor XMark documents whose size ranges from 1GB to 10GB and 15GB.



4.2. type-based projection for updates 49Size of type projected documents in (MB)for 20 di�erent updatesInput Size U1 U2 U3 U4 U5 U6 U7 U8 U9 U101GB 19.1 46.6 11.1 14 69.6 36.6 43.1 4 KB 311 5.22GB 33 80.5 19.2 24.2 120.2 63.2 74.4 4 KB 535.6 9.13GB 48.1 120.8 28.9 36.4 180.3 85.1 111.9 4 KB 861.5 13.74GB 64.2 161.2 38.7 48.7 240.4 126.5 148.9 4 KB 1.15 GB 18.35GB 81.4 204.4 49.1 61.8 305 160.4 188.9 4 KB 1.45 GB 23.26GB 96.1 241.3 58 73 360.3 189.4 222.9 4 KB 1.72 GB 27.47GB 112.9 283.5 68.2 85.8 423.2 222.6 262 4 KB 2.02 GB 32.28GB 128.1 321.7 77.3 97.3 480.1 252.6 297.3 4 KB 2.29 GB 36.59GB 144.4 362.8 87.3 109.8 541.2 284.8 335.2 4 KB 2.58 GB 41.210GB 163 409.7 98.6 124 610.8 321.7 378.6 4 KB 2.91 GB 46.515GB 233.3 650.1 586.6 177.6 874.5 583.2 578.5 4 KB 4.46 GB 66.8Input Size U11 U12 U13 U14 U15 U16 U17 U18 U19 U201GB 57.2 68.7 59.2 69.3 16.1 4 KB 3.1 1.2 16.1 67.32GB 98.7 118.5 102.1 119.8 27.4 4 KB 5.4 2.1 27.3 116.13GB 148.1 177.9 161.1 179.7 45.4 4 KB 8.1 3.2 45.3 174.24GB 197.7 237.3 215.2 239.6 59.5 4 KB 10.8 4.3 59.3 232.65GB 250.4 301 272.8 304 75.8 4 KB 13.7 5.4 75.5 294.56GB 295.5 355.3 321.9 359 89.4 4 KB 16.1 6.4 89.2 347.57GB 347 417.3 378.5 421.8 104.7 4 KB 18.9 7.5 104.4 4088GB 393.5 473.2 429.4 478.4 117.2 4 KB 21.5 8.4 116.8 462.79GB 443.5 533.5 483.4 539.3 134 4 KB 24.2 9.6 133.6 521.510GB 500.7 602.4 546.4 608.7 149 4 KB 27.3 10.7 148.5 588.615GB 716.8 861.9 780.4 871.5 226.2 4 KB 39.1 15.5 225.5 883.9Table 4.6: Size reduction by type projection.
From test results about sizes of projections we can observe that used in manycases projection have a relatively small size. However, for systems like Saxon, start-ing from the 1GB document and for 512MB of main-memory for the JVM, severalupdates can not be evaluated. Of course if we increase the JVM memory size, prob-lems disappear for the 1GB document, but they re-appear after for bigger �les. ForSaxon thinks get worst for bigger sizes: for the 5GB document projection allows toexecute only 6 out 20 updates (see Table 4.7).For Qizx thinks are di�erent. However, scalability is still not ensured as it canbe seen for the 15GB �le: 12 our 20 updates could be executed (see Table 4.7).



50 Chapter 4. XML Projection and its LimitationsUpdate 1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB 10GB 15GBU1Saxon 7.671 13.125 31.594 - - - - - - - -Qizx 5.988 10.345 14.955 20.119 25.340 29.401 34.454 38.072 42.009 47.176 59.665U2Saxon 21.604 - - - - - - - - - -Qizx 45.356 84.15 93.026 120.582 151.153 - - - - - -U3Saxon 5.306 8.708 11.555 14.419 - - - - - - -Qizx 12.146 20.422 23.925 31.028 38.522 44.336 52.067 58.042 70.074 78.367 -U4Saxon 7.294 12.215 29.801 - - - - - - - -Qizx 13.781 20.744 26.778 34.861 44.135 52.545 60.968 67.108 78.656 89.855 99.554U5Saxon - - - - - - - - - - -Qizx 68.363 108.233 119.798 156.766 197.669 225.574 275.608 320.105 367.504 416.487 -U6Saxon 16.196 - - - - - - - - - -Qizx 45.768 65.636 78.783 102.380 129.314 - - - - - -U7Saxon 40.116 - - - - - - - - - -Qizx 86.084 197.421 324.657 523.130 823.594 1139.02 - - - - -U8Saxon 0.289 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266Qizx 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54U9Saxon - - - - - - - - - - -Qizx 226.217 - - - - - - - - - -U10Saxon 235.344 725.794 - - - - - - - - -Qizx 4.123 7.155 12.230 14.051 17.545 20.112 22.620 24.711 26.460 31.196 -Update 1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB 10GB 15GBU11Saxon - - - - - - - - - - -Qizx 60.327 111.701 121.640 144.387 188.488 219.966 - - - - -U12Saxon - - - - - - - - - - -Qizx 62.832 103.504 114.388 130.234 169.113 191.240 243.874 272.829 297.499 - -U13Saxon 8.849 14.267 - - - - - - - - -Qizx 31.476 53.16 83.797 106.396 138.138 185.425 204.588 236.866 895.262 - -U14Saxon - - - - - - - - - - -Qizx 60.584 77.854 108.855 141.928 187.238 213.861 254.537 297.178 343.826 - -U15Saxon 1.985 3.038 5.789 6.967 8.210 9.751 10.224 12.184 13.349 14.709 -Qizx 8.937 15.317 20.692 25.828 31.911 39.015 45.543 51.416 60.944 65.165 76.25U16Saxon 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264Qizx 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158U17Saxon 1.246 1.92 2.484 2.89 3.02 3.30 3.96 5.57 5.9 6.29 7.15Qizx 1.607 3.188 5.665 6.967 7.682 8.617 9.552 10.590 11.384 12.489 13.22U18Saxon 0.522 0.751 4.184 4.89 5.902 6.01 6.85 7.65 7.70 8.5 9.34Qizx 1.094 2.452 4.755 5.067 6.182 6.857 9.552 10.590 11.384 12.489 13.552U19Saxon 1.752 2.725 3.775 4.781 6.803 8.79 9.874 10.753 11.852 12.421 -Qizx 7.183 12.26 18.013 22.143 26.669 30.883 35.554 39.566 44.272 48.684 52.45U20Saxon - - - - - - - - - - -Qizx 67.878 113.731 129.587 173.089 222.251 287.289 332.112 376.297 437.769 483.709 -Table 4.7: Qizx and Saxon performances for type-based projected documents.



4.3. conclusion 514.3 conclusionIn this chapter, we introduce the XML projection technique, which is one of themost important technique used for reducing the memory consumption. Also, wepresent two mains approaches proposed for XML projection technique for queriesand updates. As illustrated in this chapter, these techniques still fail in several cases,for which the projected document is still quite big to be loaded in main memory.As we have seen, limitations are sensible to the kind of used engine, and to theamount of available main-memory allocated for the JVM. In the next chapters, wepropose our technique to solve overcome such limitations, we will choose a relativelysmall size for the main-memory (512MB) to show that the approach behaves well inthis context, by allowing querying and updating documents of arbitrary sizes undersome conditions met by the query/update expression.
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This chapter includes three main parts. The �rst part (Section 5.1, 5.2, 5.3)presents our static analysis technique used to characterize iterative queries,for which XML data can be partitioned for query evaluation. The second part(Section 5.5) presents our partitioning algorithm. First an high level speci�cation isformalized by relying on a DOM-based representation of input trees. Then a SAXbased version of the partitioning algorithm is provided. As said in the introduction,to accentuate bene�ts of our strategy, projection is used while partitioning. Thethird part (Section 5.6, 5.7) discusses about the implementation of the SAX-basedalgorithms, and presents test results obtained from experiments we conducted byusing two main XQuery engines. Finally, we draw our conclusion in Section 5.8.
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Figure 5.1: Projecting-partitioning scenario for an input document D and a givenquery Q and partitioning path PP .5.1 preliminaries5.1.1 Data ModelFollowing [BC09], we represent XML data by means of a store σ, which associatesto each node location (or identi�er) l either an element node or a text node. Forsimplicity we disregard attributes in the formal treatment, while they are consideredin the implementation.When l is an element node, we have σ(l)=a[L] (also written l ← a[L]∈σ) where
a is the element tag and L=(l1, . . . , ln) is the ordered sequence of the child locationsfor l. When l is a text node, we have σ(l)=text[s] (also written l← text[s]∈σ) wherethe string s is the textual content of the l node.An XML tree is a pair t=(σ, lt ), where lt is the root location of the tree. Wedenote by dom(σ) the set of locations of a store (analogously dom(t) for a tree).Given a location l∈dom(σ), σ@l denotes the subtree of σ rooted at l. Sometimes,for simplicity, when t=(σ, lt ), we abusively use t instead of σ and, for instance, wewrite l← a[L]∈t instead of l← a[L]∈σ, and similarly for an association of the form
l← text[s].In the following, we provide formal de�nitions of σ and its components.



5.1. preliminaries 55De�nition 5.1.1 (Location Sequence L) A location sequence L is de�ned by thefollowing grammar:
L ::= () | l | L, Lwhere () is the empty sequence, l is a single location, and L, L denotes the concate-nation of location sequences.De�nition 5.1.2 (XML Store σ) A store σ is a �nite mapping

σ = {l1 ← α1, l2 ← α2, · · · , ln ← αn}each αi can be either a text value text[s] where s is a string value referred to thetextual content of the node l; or a an element a[L] where L is a location sequence(see De�nition 5.1.1).We use {L} to denote the set of locations in the sequence L. Also, We say that
L
′ is a projection of L, denoted by L

′ � L, if L′ is obtained from L, by erasing someof its locations. Note that sequence projection preserves ordering.For instance l1, l3 � l1, l2, l3, while l3, l1 6� l1, l2, l3 (ordering is not preserved).In order to de�ne XML partition, we need the following notion of XML projec-tion.De�nition 5.1.3 (XML Projection) A tree t ′=(σ′, lt ′) is a projection of a tree
t=(σ, lt ), noted as t ′ � t , if lt ′=lt , and for each location l∈dom(σ′):

l← a[L′]∈σ′ implies (∃L. l← a[L]∈σ and L
′ � L)Note that projection preserves tree roots, and it is used to de�ne XML par-tition. Figure 5.2 shows a simple XML tree, its associated store, and a possibleprojection. In this �gure, we have that the root location is lt=l1, and the set oflocations in the projection σ′ is dom(σ′)={l1, l2, l3, l5}, and dom(σ′)⊆dom(σ) where

dom(σ)={l1, l2, l3, l4, l5, l6}.De�nition 5.1.4 (XML Partition) A collection of trees {t1, . . . , tκ} is a parti-tion of a tree t if, for each i=1 . . . κ, ti � t , and if for each location l∈dom(t), wehave:
l← text[s]∈t implies ∃ ti. l← text[s]∈ti or

l← a[L]∈t implies {L}=
⋃

l←a[Li]∈ti

{Li}A tree ti of the partition is called a part. The two above properties say that eachtext node has to belong to at least one part, and that element nodes are partitionedin such a way that no child is left out.Figure 5.3 contains two possible partitions of the document in Figure 5.2. Asa document can be partitioned in multiple ways, it is crucial to carefully designthe partitioning strategy, so that the query result equals to the concatenation ofquery results on each part of the partition. We will see next how to choose the rightpartition in terms of a path analysis on the query.
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l5 ← text[”co”]A projection t ′ of t The store t ′=(σ′, l1)Figure 5.2: Representation of XML trees as stores and projection.
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b l3 ”go” l4Part t1 Part t2 Part t′1 Part t′2 Part t′3Figure 5.3: Two possible partitions of the XML tree t of Figure 5.2.5.1.2 Query LanguageIn this approach, we use the fragment of XQuery described by the grammar illus-trated in Figure 5.4. This fragment comprises (for, let and return) clauses aswell as (if-then-else) statements, and allows the user to specify self , child , anddescendant-or-self XPath axes [BBC+10] (for simplicity, we will write dos insteadof descendant-or-self). The grammar uses a for tag symbols.In the grammar illustrated in Figure 5.4: () refers to the empty sequence; Expris an XQuery expression; Q1,Q2 denotes the query concatenation; a[Q ] denotes anelement node with a label "a", where the content of this node is a query Q .We say that a query Q is well-formed if and only if i) it does not contain freevariables (i.e., variables with no corresponding for/let binders), ii) no variablename is used twice in for/let bindings, and iii) it starts navigating the documentby means of non-self step.Condition (i) ensures that well-formed queries start navigating documents fromtheir root element. For instance, the query for y in x/Step return Q is notwell-formed because it starts the navigation from a variable x which does not rep-resent the root element, while the query for y in /Step return Q is well-formed.



5.1. preliminaries 57Query Q ::= () {empty sequence}
| Expr {XQuery expression}
| a[Q ] {element node labeled by a}
| Q1,Q2 {concatenation}
| if (Q) then Q1 else Q2 {conditional expression}
| for x in Q1 return Q2 {iteration}
| let x := Q1 return Q2 {let-binding}XQuery Expression Expr ::= x | x/Step | /StepXPath Step Step ::= Axis :: NTXPath Axis Axis ::= self | child | dosNode Test NT ::= a | node() | text()Figure 5.4: Query language grammar.The restriction (ii) simpli�es the analysis, and can be always obtained by renam-ing. Condition (iii) excludes queries like for y in /self :: NT return Q , it isassumed to simplify the formalization, and is non restrictive, as in most practicalcases queries start the navigation by means of either child or dos axis.In this approach, we focus on queries issued on a single document. Indeed,multiple document queries are likely to be not iterative, and their treatment goesfar beyond the scope of this approach. Also, we focus on for/let expressions usingelement construction only on the right-hand side expression Q2, as happens in mostpractical cases. For instance all XMark queries are of this form, provided that insome queries let bindings are inlined. Inlining consists of replacing each use oflet-variables with the query they are bound to. For instance,

let x := b[/child :: a] return res[x , /dos :: d]is rewritten into res[b[/child :: a], /dos :: d]. Of course, this rewriting preservesquery semantics.The evaluation of a query Q on an input tree t=(σ, lt ), denoted by Q(t), yieldsa pair (σQ , LQ), where the store σQ is a forest which extends the initial store σ withthe new elements built by Q , while LQ is the sequence of location nodes returned bythe query whose contents is described in σQ . In order to present a formal semanticsof this XQuery fragment, a concise and elegant formalization can be found in [BC09].In order to de�ne equivalence among query results, we also need the followingnotions. Equivalence among two trees, denoted by t ∼= t ′, holds if and only if the tworooted trees are isomorphic (they possibly di�er only in terms of name of locations).When σ and σ′ are forests and L=(l1, . . . , ln) and L
′=(l′1, . . . , l

′
n) are sequences oflocations, we write (σ, L) ∼= (σ′, L′) to state that, for i=1..n, we have σ@li ∼= σ′@l′i.
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1. E ((), Γ, m) = ()

2. E ((Q1,Q2), Γ, m) = E (Q1, Γ, m) ∪ E (Q2, Γ, m)

3. E (a[Q ], Γ, m) = {P{for y} | P{for y}∈Γ} ∪ E (Q , Γ, 1)

4. E (x , Γ, 0) = {P{for x} | P{for x}∈Γ}

5. E (x , Γ, 1) = {P{for x}/dos :: node() | P{for x}∈Γ}

6. E (/P , Γ, 0) = {/P}

7. E (/P , Γ, 1) = {/P/dos :: node()}

8. E (x/P , Γ, 0) = {P ′{for x}/P | P ′{for x}∈Γ}

9. E (x/P , Γ, 1) = {P ′{for x}/P/dos :: node() | P ′{for x}∈Γ}

10. E (if Q then Q1 else Q2, Γ, m) = E (Q , Γ, 0) ∪ E (Q1, Γ, 1) ∪ E (Q2, Γ, 1)

11. E (for x in Q1 return Q2, Γ, m) = Γ′ ∪ E (Q2, Γ ∪ Γ′, m)

where Γ′ = {P{for x} | P∈E (Q1, Γ, 0)}

12. E (let x := Q1 return Q2, Γ, m) = Γ′ ∪ E (Q2, Γ ∪ Γ′, m)

where Γ′ = E (Q1, Γ, 0)

13. E (P/@attr :: a, Γ, m) = E (P , Γ, m)Figure 5.5: Path extraction function.Finally, when σ and σ′ have disjoint domains (no common location), we de�ne theconcatenation (σ, L) · (σ′, L′) as the pair (σ ∪ σ′, (L, L′)), where L, L′ denotes theconcatenation of L and L
′.5.2 path extractionIn our approach, paths are used for characterizing iterative queries, and for parti-tioning and projecting an input document. Paths are extracted from a query byusing the path extraction function E () of Figure 5.5; this function resembles thatproposed in [BCCN06, MS03]. However, paths extracted according to E () carry aricher information, as they also describe the relation with for-variables. Paths obeythe following grammar:

P ::= ε | /S | P/S S ::= Step | Step{for x}where ε denotes the empty path.For instance, when a path P ′{for x}/P ′′ has been extracted from Q , it capturesthat a subquery of Q has the shape for x in Q1 return Q2 and (i) P ′ is extractedfrom Q1 and selects possible bindings for x while (ii) P ′′ has been extracted fromQ2in the context of the previous bindings or, in other words, x/P ′′ is extracted from
Q1.



5.2. path extraction 59Variable information in paths is important to characterize iterative queries and toidentify partitioning paths (see Section 5.3), while it will be ignored for the purposeof partitioning.Our path extraction function E () is de�ned in Figure 5.5 by structural inductionon queries de�ned in Figure 5.4. This Function has the form E (Q ,Γ,m). The �rstparameter is the query at issue. The second parameter is the environment Γ thatkeeps track of bindings of the form {for x} or {let x} between query variables andtheir corresponding paths. We use Γ because we always need to remember the set ofpaths corresponding to given variables in queries of the form for x in Q1 return Q2or let x := Q1 return Q2.The third parameter used in E () rules is a boolean �ag m to distinguish betweensubqueries that generate fragments of the result of the outer query (m=1) andsubqueries that are only used for binding variables or �ltering results (m=0). When(m=1), the terminal rules 5, 7 and 9 extend extracted paths with a dos :: node()step, so to capture all the nodes required by the query to build the result.For queries of the form for x in Q1 return Q2 (rule 11 in Figure 5.5), thefunction E () �rst extracts paths from Q1; these paths are, then, enriched withinformation about variable bindings and added to the environment Γ, which is usedfor the recursive extraction of paths from Q2. In particular Γ is used to associate theright path to each free occurrence of the variable x in Q2 (rules 4 and 5 in Figure 5.5).Rules of let expressions are similar, with the exception that they do not keep trackof information about let-variables (rule 12 in Figure 5.5). Information about let-variables is not needed because we are only interested in information telling us thatthere is an iteration performed by the query. Only for-variables are needed to thisend.Example 1 Consider the following query Q :Q = for $x in /child :: a/child :: breturn if ($x/child :: c) then $x/text() else ()This query is from the form (for x in Q1 return Q2) where:
Q1 = /child :: a/child :: b

Q2 = if ($x/child :: c) then $x/text() else ()By using our extraction function E (Q) de�ned in Figure 5.5, we have that:
Rules .6.8 E (Q1,Γ, 1) = {/child :: a, /child :: a/child :: b{for x}}

Rule .10 E (Q2,Γ,m) = E ($x/child :: c,Γ, 0) ∪ E ($x/text(),Γ, 1) ∪ E ((),Γ, 1)

= {/child :: a/child :: b{for x}/child :: c/dos :: node()} ∪

{/child :: a/child :: b{for x}/child :: text()} ∪ ()

= {/child :: a, /child :: a/child :: b{for x},

/child :: a/child :: b{for x}/child :: c/dos :: node()}

Rule .11 E (Q ,Γ,m) = {/child :: a, /child :: a/child :: b{for x},

/child :: a/child :: b{for x}/child :: c/dos :: node()}



60 Chapter 5. Partitioning and Projecting XML DocumentsSo the �nal set of extracted paths of this query is {P1, P2, P3}, with
P1 = /child :: a

P2 = /child :: a/child :: b{for x}

P3 = /child :: a/child :: b{for x}/child :: c/dos :: node()Example 2 Consider the following query Q :Q = for $x in /child :: afor $y in $x/child :: breturn ($y/child :: d , $y/child :: e)The set of extracted paths of this query is {P1, P2, P3, P4}, with
P1 = /child :: a{for x}

P2 = /child :: a{for x}/child :: b{for y}

P3 = /child :: a{for x}/child :: b{for y}/child :: d/dos :: node()

P4 = /child :: a{for x}/child :: b{for y}/child :: e/dos :: node()

�Paths extracted from a query express properties of the query data needs. InExamples 1, 2 we have that all nodes that are either selected by the paths ortraversed in order to reach a node selected by a path, form a sound projection forboth query examples. By sound projection we mean a projection of the input treethat preserves query results.We will see later that these projections can be obtained quite e�ciently byopportunely matching extracted paths against nodes of the input documents, visitedin a streaming fashion by means of a SAX parser.In our work we assume the following. For queries of the form
for x in Q1 return Q2, and similarly in case of let expression, we suppose thatthe subquery Q1 does not use concatenation. For example, the following query isnot allowed:Q = for $x in (/child :: a/child :: b, /child :: a/child :: b) return $xWe omitted this case from our study because we have two identical paths ex-tracted from the query Q (see below E (Q)), associated with the same binding vari-able x and coming from di�erent subexpressions. This could make formalizationsquite cumbersome, as information about the provenance of extracted path shouldbe gathered during extraction.

E (Q) = {/child :: a/child :: b{for x}, /child :: a/child :: c{for x}}Actually, for the purpose of partitioning (and projection) variable informationin extracted paths is not needed. Partitioning (and projection) will use extracted



5.3. iterative queries and partitioning paths 61paths once variable information has been eliminated. For instance, rather than
(/child :: a{for x}/child :: b{for y}) the path (/child :: a/child :: b) is used.Variable bindings are erased by means of the function ErVar(P) (illustrated inDe�nition 5.2.1) which indicates the path obtained from P by removing {for −}occurrences. Hereafter, for simplicity, we will often abbreviate E (Q , ∅, 1) with E (Q).De�nition 5.2.1 (ErVar (P)) Given a well-formed query Q and its set of extractedpaths P ∈ E (Q), the function ErVar(P) removes all {for −} occurrences in P ifthey exist. By induction on the structure of P , the syntax of ErVar(P) is de�nedas follows:

ErVar(ε) = ε

ErVar(/Step/P) = /Step/ErVar(P)

ErVar(/Step{for x}/P) = /Step/ErVar(P)where ε denotes the empty path (we assume /P/ε = /P).5.3 iterative queries and partitioning pathsOur approach is based on the idea of partitioning an input document t into acollection of documents {t1, . . . , tκ} and projecting each ti according to Q , so that
Q(t) ∼= (Q(t ′1), . . . ,Q(t ′κ)), where t ′i is the projection of ti. The input document ispartitioned according to a partitioning path P , which is opportunely chosen amongthe paths extracted from Q . Indeed, paths extracted from Q are also used toproject each partition ti. In order to guarantee the correctness of query evaluation,this approach can be applied only when Q �rst selects a sequence of nodes S, andthen iterates over the nodes in S by exploring their corresponding subtrees. Queriessatisfying this requirement are called iterative and are quite common in practice.The query of Example 1 is iterative. It selects the sequence S of nodes speci�ed bythe subquery /child :: a/child :: b. Then for each node in S, it evaluates the if-subquery. As a concrete example, 13 out of the 20 XMark queries are iterative: namely,queries from Q1 to Q6, and Q14 to Q20 are iterative. These queries are given inSection A.1 of Appendix A.For an iterative query over a document t , there may be more than one paththat could be used for partitioning t . We �rst characterize this set of candidatepartitioning paths and then show how to pick the best one. In the de�nition below,we say that the path P∈E (Q) is maximal if no other path in E (Q) contains P asa pre�x.De�nition 5.3.1 (Candidate Partitioning Paths) Given a well-formed query
Q , a candidate partitioning path for Q is a path ErVar(P) with P∈E (Q) such that:(i) P is of the form P0{for x}.(ii) P does not use text node test.(iii) for each maximal path P ′∈E (Q), P ′=P/P ′′.



62 Chapter 5. Partitioning and Projecting XML DocumentsThe set of all candidate partitioning paths for Q , is hereafter denoted by
Candidate(Q).Condition (i) states that each candidate path is used for iterating inside thequery Q . Condition (ii) rules out candidate paths that would iterate on text nodes(like in the query for x in /dos :: text() return Q ′) because we want to ensure thatpartitioning is performed on a sequence of element nodes rather than a sequence oftext nodes. The technical reason is that projection of text nodes which are siblingproduces a text node (the concatenation of the text nodes) rather than a sequence oftext nodes. Although this restriction can be relaxed, we give priority to presentingthe core of the partitioning method here. Condition (iii) is the most important one:the restriction on maximal paths is needed since otherwise the minimal commonpre�x of E (Q) paths would be a candidate.As an example, for the query and extracted paths in Example 1, we have that
ErVar(P1)=/child :: a and ErVar (P2)=/child :: a/child :: b are candidate paths.As another example, for the query and extracted paths presented in Example2, the ErVar(P1) and ErVar(P2) are candidate paths, while ErVar(P3) is not acandidate, as the pre�x relation does not hold with respect to the path P4. Figure 5.6illustrates the process of �nding the candidate paths of Example 2.

Figure 5.6: Scenario of �nding candidate paths of Example 2.Note that if we alter the query in Example 2 by considering the following newreturned clause return ($x/child :: d , $y/child :: e):Q = for $x in /child :: afor $y in $x/child :: breturn ($x/child :: d , $y/child :: e)then the only candidate is P1, while the path P2 cannot be safely used for parti-tioning the input due to $x/child :: d in the return clause.Also, if we change the query in Example 2 as follows (note that the path selectingnodes for the second iteration starts from the document root):



5.4. projection 63Q = for $x in /child :: a/child :: bfor $y in /child :: a/child :: breturn ($x/child :: d , $y/child :: e)then we have no candidates, because due to the presence of di�erent variables $x and
$y variables in extracted paths, condition (iii) of De�nition 5.3.1 does not hold forany paths. This query is not recognized as an iterative query (there is no candidatepath). In fact, the kind of partitioning we want to adopt can not be used for thisquery as it performs two iterations .De�nition 5.3.2 (Iterative Queries) A well-formed query Q is iterative if andonly if Candidate(Q) 6= ∅.If the query Q is iterative, then the sequence of nodes selected by a candidatepath in a document t , can be partitioned in order to split query evaluation.De�nition 5.3.3 (Partitioning Path) Given an iterative query Q , we say thatthe path P is the partitioning path for Q if and only if P is the candidate partitioningpath of Q having maximum length.In the following, a partitioning path will be denoted PP . Going back to thequery of Example 1, we have PP=/child :: a/child :: b.Another example, is about the query of the Example 2, we have that :

Candidate(Q) = {/child :: a, /child :: a/child :: b}and PP=/child :: a/child :: b because it has maximum length comparing with theother candidate path /child :: a.Several cases of XMark queries are recognized as iterative queries, some of thesequeries and their partitioning paths are reported in Figure 5.7.Picking up the longest candidate as partitioning path minimizes the size of treesbelonging to the sequence selected by the path, hence maximizing the likelihoodthat each part yielded by partitioning �ts in the available main-memory.5.4 projectionA particular feature of our approach is that while performing partitioning, projectionis performed too, in a single pass on the input document t : the projected partition
{t ′1, t

′
2, . . . , t

′
κ} is directly obtained from t, hence avoiding scanning the documenttwice and storing intermediate results on persistent storage.In this section, we will formalize the projection process, which will be thenplugged in the de�nition of the partitioning algorithm. As already said, projectionis made in terms of paths extracted from a query, once {for x} occurrences havebeen eliminated.



64 Chapter 5. Partitioning and Projecting XML DocumentsQuery Partitioning Path PP

Q1 /child :: site/child :: people/child :: person

Q2 /child :: site/child :: open_auctions/child :: open_auction

Q5 /child :: site/child :: closed_auctions/child :: closed_auction

Q13 /child :: site/child :: regions/child :: australia/child :: item

Q14 /child :: site/dos :: item

/child :: site/child :: closed_auctions/child :: closed_auction/child :: annotation

Q15 /child :: description/child :: parlist/child :: listitem/child :: parlist

/child :: listitem/child :: text/child :: emph/child :: keyword

Q16 /child :: site/child :: closed_auctions/child :: closed_auction

Q17 /child :: site/child :: people/child :: person

Q18 /child :: site/child :: open_auctions/child :: open_auction

Q19 /child :: site/child :: regions/dos :: item

Q20 /child :: site/child :: people/child :: personFigure 5.7: Partitioning paths of some iterative XMark queries.In the de�nition below, we will formalize our query projector, and present someexamples which explain how the projection process works.De�nition 5.4.1 (Query projector) Given a well-formed query Q , we de�ne theprojector τ of Q as the set τ={ErVar(P) | P∈E (Q)}.Projecting an XML document t according to a set of paths τ is a recursiveprocess and works as follows. According to the document order, each node is visitedand compared against the current set of paths to check whether the node matchesthe �rst step of each extracted path.The example below illustrates how projectionworks.Example 3 Consider the tree t in Figure 5.2 and assume to project it accordingto the path /child :: a/dos :: c. Before matching the �rst node (actually the rootelement node) against the path, we perform a level alignment transformation overthe path itself, by replacing the �rst step /child :: a with /self :: a, thus obtaining
/self :: a/dos :: c.We can, then, check that the l1 node matches the �rst step. Asa side result of this phase, the path is rewritten into the residual path /dos :: c,in order to prepare the matching against the nodes of the next tree level. Then,before analyzing the l2 node, a new alignment operation is performed. This time,due to the presence of the recursive step /dos :: c, two paths are produced: /self :: cand /self :: node()/dos :: c. These two paths are then compared with l2, which
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Figure 5.8: Path /child :: a/dos :: c transformations.actually matches the head self :: node() axes of the second path, which is thenrewritten into its residual /dos :: c. Path alignment then works as before andproduces /self :: c and /self :: node()/dos :: c for the node l5; in this case no path ismatched. The next node considered is l6, still matched against the paths /self :: cand /self :: node()/dos :: c. Now we have a matching with /self :: c, and the nodeis added to the projection. This entails that the ancestors l2 and l1 are included inthe projection as well. The process then goes on in a similar way with other nodes,which will not be included in the projection due to no matching with comparedpaths. Figure 5.8 illustrates the process above in details.
�Before illustrating the projecting-partitioning process, we need a few preliminaryde�nitions and notions. Hereafter a match for a path is called a terminal match,while an ancestor of a match is called a non-terminal match.For instance, for the input tree in Figure 5.9, and the path P = /dos :: c, terminalmatches are nodes l3, l10, l15 and l17, while non-terminal matches are ancestors ofthese nodes, i.e. l1, l2, l9 and l13.
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Projected document t ′ Projected part t ′1 Projected part t ′2Figure 5.9: Partition plus projection.Given a tree t=(σ, lt ) and a path P , we �nd terminal and non-terminal matchesof P by means of an iterative procedure that visits the tree t in a top-down manner,and matches each node to a set of paths obtained from P by means of two rewritingoperations.A �rst rewriting aims at aligning paths each time a deeper level is visited. Forinstance, in the previous example the root node is compared to the set of paths
{/self :: c, /self :: node()/dos :: c}, obtained by the alignment of P=/dos :: c. Thepath /self :: node()/dos :: c is an unfolding of the original one, and is needed tomatch c nodes at deeper levels in subsequent steps of the process.Projector alignment is performed by the function Down(τ), which aligns allpaths in a set τ , according to the following de�nition.De�nition 5.4.2 (Path Alignment) The alignment Down(τ) of a projector τ isde�ned as ⋃

P∈τDown(P) where:
1. Down(/child :: NT/P) = {/self :: NT/P}
2. Down(/dos :: NT/P) = {/self :: NT/P , /self :: node()/dos :: NT/P}
3. Down(ε) = {ε}Paths obtained by alignment all start with a self step, which a terminal ornon-terminal node has to necessarily match. After alignment, resulting paths maycontain consecutive steps using the self axis (in particular, if the path alreadycontained a self step before alignment). We assume that a path extracted froma query does not contain the self axis in the �rst step. This assumption is notrestrictive as in practice the �rst step always perform a downward navigation. Ifconsecutive self steps like in /self :: b/self :: c occur in an aligned path, then thepath is discarded from the process as it has empty semantics. Non-contradictoryconsecutive self steps (like /self :: b/self :: node()) are collapsed in a single self



5.4. projection 67step (like /self :: b) by means of a simple rewriting. These simple rewritings areroutinely made after each alignment operation; obtained paths are then consideredfor matching with the current node, as discussed shortly.We discuss now the second rewriting function. In the search of matches for apath P in a tree t , given a node whose tag or text value is α∈{a, text[s]}, and thecorresponding set of aligned paths is τ (obtained from P), the residuation function
Res(α; τ) returns a path set τ ′ and a value MATCH∈{ok_t, ok_nt, fail}. The pathset τ ′ will be recursively matched against children of the node after an alignmentoperation, while MATCH speci�es whether the current node is a terminal match,a possible non-terminal match, or neither a terminal nor a non-terminal node. Apossible non-terminal match is �nally con�rmed as such when one of its descendantshappens to be deemed as a terminal match in subsequent steps.Deriving the value MATCH produced by residuation relies on the following bi-nary (commutative and associative) function ], shown in Table 5.1, where the sym-bol − indicates any value.

MATCH1 MATCH2 MATCH1 ]MATCH2

ok_t − ok_t

ok_nt fail ok_nt

ok_nt ok_nt ok_nt

fail fail failTable 5.1: The function ].De�nition 5.4.3 (Path Residuation) The residual of a path P is de�ned by dis-tinguishing the following cases (recall that α ∈ {a, text[s]}):
Res(a ; /self :: NT ) = <ε ; ok_t> if NT∈{a,node()}

Res(a ; /self :: NT/P) = </P ; ok_nt> if P 6= ε and NT∈{a,node()}

Res(text[s] ; /self :: NT ) = <ε ; ok_t> if NT∈{text(),node()}

Res(α ; /P) = <ε ; fail> otherwiseThe residual of a path set τ={P1,P2, · · · ,Pn} is then de�ned as follows:
Res(α ; τ)=<

⋃n
i=1{P

′

i };
⊎n

i=1MATCHi> with Res(α;Pi)=<P
′

i ;MATCHi>As illustrated shortly, residuation is always applied after an alignment opera-tion, and produces paths that are immediately aligned when descending to a newlevel of the tree. That said, going back to our observation concerning the handlingof consecutive self steps, note that since each path extracted from a query neverstarts with a self step, and since multiple and consecutive self steps are eventuallycollapsed (otherwise the path is discarded) after alignment, residuation always takesas input paths starting with a self step, followed by a non-self step, and eventually



68 Chapter 5. Partitioning and Projecting XML Documentsproduces new paths by simply discarding the initial (matched) self step. This ex-plains why the de�nition of alignment (De�nition 5.4.2) does not include a case fora �rst self -step.To illustrate how the just presented rewriting functions are used to select ter-minal and non-terminal matches of a path, consider again the input tree in Figure5.9, and the path P=/dos :: c. Terminal and non-terminal matches of this path aredetermined as illustrated next, where for each node we indicate the correspondingaligned and residuated paths. We focus on the �rst 8 nodes, according to documentorder, as Table 5.2 illustrates.node α alignment residuation
l1 a τ1=Down({P}) Res(a; τ1)=<τ2; ok_nt>

={/self :: c, /self :: node()/dos :: c} with τ2={/dos :: c}

l2 b τ3 = Down(τ2) Res(b; τ3)=<τ4; ok_nt>

={/self :: c, /self :: node()/dos :: c} with τ4={/dos :: c}

l3 c τ5=Down(τ4) Res(c; τ5)=<τ6; ok_t>

={/self :: c, /self :: node()/dos :: c} with τ6={/dos :: c}. . .
l6 f τ7=Down(τ6) Res(f ; τ7)=<τ8; ok_nt>

={/self :: c, /self :: node()/dos :: c} with τ8={/dos :: c}

l7 d τ9=Down(τ8) Res(d; τ9)=<τ10; ok_nt>

={/self :: c, /self :: node()/dos :: c} with τ10={/dos :: c}

l8 text[gogo] τ11=Down(τ10) Res(text[gogo]; τ11)=<ε; fail>

={/self :: c, /self :: node()/dos :: c} with τ10={/dos :: c}Table 5.2: Rewriting functions Down(τ) and Res(α; τ).According to the residuation above indicated, l1 and l2 are deemed as non-terminal matches since both nodes have a descendant node l3 being a terminalmatch. Observe that a terminal match is selected when a single-step path in thecurrent set of aligned paths is matched by the current node: this means that thelast step of the initial path is successfully matched. Concerning nodes l6 and l7,they have no descendant that residuation deems as a terminal match, hence thesenodes are not deemed as non-terminal matches.Algorithm 1 presents the code of the Projection algorithm. It takes as input astore σ, a current location l, and a projector τ . It outputs a pair (σ′,Size) where σ′is the projection of the tree rooted at l (σ@l) with respect to the projector τ . Thevalue Size is the size of the projected document and will be used when combiningpartitioning and projection.This algorithm uses Down(τ) and Res(α; τ) for alignment and residual rewriting.These both function are at the core of our technique. In order to compute Size, thealgorithm uses the function length(x ) (see Example 4) returning the length of thestring of x (which can be either an element tag or a content of a textual node). Note



5.4. projection 69Algorithm 1: ProjectionInput: A store σ, a location l∈dom(σ), a projector τ ;Output: A store σ′, an integer Size;1 begin/* Case 1. σ(l) = text[s] */2 if Res(text[s]; τ) = <−; fail> then3 σ′:= ∅; Size:= 04 else5 σ′:= {l← text[s]}; Size:= length(s)/* Case 2. σ(l) = a[L] */6 <τ ′; MATCH>:= Res(a; τ);7 if MATCH = fail then8 σ′:= ∅; Size:= 09 else if MATCH = ok_nt and L = () then10 σ′:= {l← a[()]};11 else12 let L = (l1, l2, · · · , ln)13 for i = 1...n do14 (σi,Sizei):= Projection(σ; li; Down(τ ′))15 π:= {li∈L | σi 6= ∅}16 if (MATCH = ok_t) or (MATCH = ok_nt and π 6= ∅) then17 σ′:= {l← a[L|π]} ∪
⋃n

i=1σi; Size = 2.length(a) +
∑n

i=1Sizei18 else19 σ′:= ∅; Size:= 020 return (σ′,Size)that the size of an element includes the size of both the start and end tag.Example 4 Consider the tree t = <a><b>coco</b></a>. We have that:
length(<a>) = 1

length(</a>) = 1

length("coco") = 4

length(<b>"coco"</b>) = 1+ 4+ 1 = 6

length(t) = 1 + 6 + 1 = 8

�Also, in the algorithm the notation L|π indicates the location sequence obtainedfrom L by retaining only locations in the set π, and preserving the sequence ordering(we have L|π � L).Algorithm 1 consists of two main cases. When the current node location l con-tains a text node, if residuation does not fail, then for at least one path in the



70 Chapter 5. Partitioning and Projecting XML Documentsprojector the last step matches the node l (recall that only the �nal step in a pathcan use the text node condition).When the current location, instead, contains an element node, then a morecomplex analysis is necessary. If residuation fails, then the empty store is output. Ifthe current node is an intermediate match for the current projector, and the nodehas no child, then the node is added to the projection; this is necessary because thisnode can be later on matched as a terminal node after residuation of the projector,during the recursive process. For instance, consider a projector including /a/b/self ::

node() and a tree where the root a has an empty b element as child. Otherwise,projection is recursively propagated on child nodes. Then, if the current elementnode is a terminal match for the projector, this node is added to the projectiontogether with its projected subtrees; if the current element matches an intermediatestep of a path in the projector, then the node will be added to the projection if atleast one of its descendant will match a �nal step in the projector. If none of theabove conditions holds, the empty projection is output.Di�erently from [MS03] we provide here a formal speci�cation of the projectionalgorithm. Also, the algorithm described is DOM-oriented. We present it just toprovide a clear and formal speci�cation. In Section 5.6 we will provide some detailabout our SAX-based streaming implementation, which has a negligible memoryfootprint.Lemma 5.4.4 Let Q be a well-formed query, τ its associated projector and t=(σ, lt )a tree. Assuming that Projection(σ; l; Down(τ))=(σ ′;Size) we have:(i) Q(t) ∼= Q(t ′) where t ′=(σ′, lt), and(ii) Size=size(t ′)5.5 The partitioning algorithmThe partitioning algorithm takes as input an XML document D , an iterative query
Q , and a threshold value maxSize . Through the static analysis technique describedin the previous sections, the algorithm extracts the set of projection paths τ and thepartitioning path set PP . These two sets of paths τ and PP drive the projection-partitioning process, as the following example illustrates.Example 5 Consider the query Q below and the XML document of Figure 5.9.

Q = for x in /dos :: c return (x/child :: d, x/child :: e)According to previous de�nitions, this query is iterative with partitioning path PP =

/dos :: c. Also, the set of extracted paths τ is (for-variables are erased):
τ = {/dos :: c, /dos :: c/child :: d/dos :: node(), /dos :: c/child :: e/dos :: node()}Through τ we can prune out all nodes of the document that are not touched dur-ing query evaluation, and create after that the projected parts t ′1 and t ′2, containingthe fragments that are su�cient for correctly evaluating Q .



5.5. The partitioning algorithm 71This means that the store σ′ should contain only the following locations
{l1, l2, l3, l4, l5, l9, l10, l11, l13, l15, l16, l17, l18, l19} and neglect the others.

σ′ =



































l1 ← a[l2, l9, l13], l2 ← b[l3],

l3 ← c[l4, l5], l4 ← d[()],

l5 ← e[()], l9 ← b[l10],

l10 ← c[l11], l11 ← e[()],

l13 ← f [l15, l17], l15 ← c[l16],

l16 ← text[′′tata′′], l17 ← c[l18, l19],

l18 ← d[()], l19 ← h[()]If, just to illustrate, we assume that the above projection cannot be processed,then partitioning is needed. According to De�nition 5.3.3, the partitioning of theinput tree in Figure 5.9 is made according to the partitioning path in PP={/dos ::

c}. The tree is traversed top-down according to document order and the �rst partis determined as follows. During the visit of the tree, non-terminal and terminalmatches of the partitioning path are added to the part. Whenever a terminal matchof PP is met, its subtree is projected according to our projection (see Algorithm 1),in order to limit as much as possible the number of created parts.Just after a projected sub-tree of a PP terminal match has been added to thepart, a check is made in order to verify whether the current size of the part has ex-ceeded a given threshold maxSize . In the current example, we consider maxSize=12,which is exceeded when the subtree rooted at the second PP terminal match is addedto the part. Recall that each time an element is added to a part, the current sizeis incremented by twice the length of the element tag (both starting and endingtags have to be taken into account), while each time a text node is added to thepart the current size is incremented by the length of the text content of the node.This causes the creation of a second part. With maxSize=12 we �nally have thetwo parts indicated in Figure 5.9. Note that nodes that are neither non-terminalnor terminal matches of the partitioning path are pruned out during partitioning.These nodes can be safely pruned out because they are useless to the evaluation ofthe query Q . This is because PP is a pre�x of each path in τ (extracted from thequery, De�nition 5.3.1), and that a node is needed by Q if it is (an ancestor of) amatch of a path in τ (for the same reasons, in Figure 5.9, note that since subtreesrooted at terminal matches of PP are projected according to τ ; for instance, thenode l16 is not in the second part).Note that ancestors of PP nodes may belong to more than one part, in particularthis is the case for the document root node. At the same time, we need to createa store with unique locations, so we endow each li with an identi�er j indicatingthat li belongs to the part j of the partition. The partition will be represented bya single store σP.1 This store σP will contain two parts using the following indexed1While the de�nition of partitions rely on multiple trees (stores), we opt here for a single globalstore to easy the speci�cation of the algorithms. As we will see, each single tree of the partitioncan be recovered straightforwardly.



72 Chapter 5. Partitioning and Projecting XML Documentslocations:
dom(σP) = {l11, l12, l13, l14, l15, l19, l110, l111, l21, l213, l215, l217, l218, l219}

�Besides path alignment and residuation, the threshold value maxSize plays akey role in the whole partitioning process. The choice of maxSize depends on manyfactors, such as the input document, the query being processed, the speci�c queryprocessor being used, the hardware con�guration and the available main memory,the programming language used for implementing the query processor, the memorymanagement technique adopted, and the operating system running on the hard-ware. maxSize, therefore, can be determined only through a trial-and-error processdepending on the overall con�guration, and cannot be formally predicted.Note that if maxSize is too large, it can happen that one or more parts aretoo large to be loaded in main memory, hence undermining the whole approach.Surprisingly enough, as we will see later, our experimental evaluation showed thatthe actual value of maxSize does not in�uence either partitioning time or the totalquerying time on the partition.5.5.1 The AlgorithmAlgorithm 2 provides a formal presentation of our partitioning scheme. It is arecursive algorithm and takes as input a 5-tuple <l; τ ;PP ; cSize; pId ;> representingthe current state of the recursive process: namely, this tuple indicates that thecurrent node to be matched against the current aligned partitioning path-set PPand projector τ is l, that the current size of the part under construction is cSize, andthat the current number of created parts is pId . Of course, the algorithm is initiallyinvoked with cSize=0 and pId=1, while the location l is the root of the input XMLtree t = (σ, l). Also, PP is Down({PPQ}), the alignment of the initial partitioningpath for the iterative query Q to execute, while τ is Down(τQ), the alignment ofthe projector τQ of the query Q (see De�nition 5.4.1) . The store σ is assumed tobe a global parameter.In the algorithm, the function PartLabel (σ; pId ) produces a new store obtainedfrom σ by renaming each location l to lpId . We will use PartLabel−1(σ′) to undothe renaming in the store σ′.The algorithm distinguishes among three main cases. In the �rst case (lines3-10), the current node is an element node being a terminal match for the initialpartitioning path PP . In this case, our projection algorithm is called to compute theprojection of the subtree rooted at this node together with its size. If no projectionalgorithm is available, Projection(σ; l; τ ′) just returns the input subtree and its size.Then (lines 7-10) the algorithm adds the resulting subtree to the current part, andchecks whether the size of the projected subtree plus the current size does not exceedthe maximal size: if the check is positive, then the current size is incremented with



5.5. The partitioning algorithm 73Algorithm 2: PartitionInput: A location l∈dom(σ), a partitioning path-set PP , a projector τ , a part size
cSize, a part number pId ;Output: A store σP, a part size cSize ′ , part number pId ′ ;1 begin2 let σ(l) = a[L]/* Case 1. l is a PP target node */3 if Res(a;PP) = <−; ok_t> then4 τ ′:= Res(a; τ);5 (σ′,Size):= Projection(σ; l; Down(τ ′)); /* projection always keepsnode l in σ′ */6 σP:= PartLabel (σ′; pId);7 if cSize + Size ≤ maxSize then8 cSize ′:= cSize + Size; pId ′:= pId9 else10 cSize ′:= 0; pId ′:= pId + 1/* Case 2. l is not a PP target node */11 if Res(a;PP) = <PP ′; ok_nt> then12 pIdfirst:= pId ; σtemp:= ∅;13 cSizetemp:= cSize + 2.length(a);14 τ ′:= Res(a; τ);15 let L = (l1, l2, · · · , ln);16 for i = 1...n do17 (σP

i ; cSizetemp; pId):= PartProj (li,Down(PP ′),Down(τ ′), cSizetemp, pId);18 σtemp:= σtemp ∪ σP
i ;19 if σtemp = ∅ then20 cSize ′:= cSize/* no descendant of the current node l is added in thepartition */21 else22 cSize ′:= cSizetemp;/* Max-Pid returns the biggest part number used in the store*/23 pId last:= Max-Pid(σtemp);24 D:= dom(σtemp);25 σP:= σP ∪ σtemp;26 for p = pIdfirst...pId last do27 σP:= σP ∪ {(lp←a[rename−extr(L, p, D)])}28 pId ′:= pId ;/* Case 3. l does not match PP */29 else if Res(a; τ) = <−; fail> then30 σP:= ∅; cSize ′:= cSize; pId ′:= pId31 return (σP, cSize ′,pId ′)



74 Chapter 5. Partitioning and Projecting XML Documentsthe projection size Size, otherwise the current size is reset to 0 and a new (empty)part is created (this empty part will be �lled in subsequent steps of the processing).In the second case (lines 11-28), the current l node is a possible non-terminalmatch for the partitioning path PP . A temporary current size variable cSizetempregisters the current size plus twice the length of the current tag (both start andending tags have to be taken into account). By considering cSizetemp as the currentsize, the computation recursively goes on for each child li of the l node (lines 16-20).For each li partitioning is made according to paths obtained by alignment of pathsresulted by residuation (line 17), and the resulting parts are kept in a temporarystore σtemp. Also, partitioning for each child node li is made according to thecurrent size and partition number produced by the partition process for the child
li−1.Once partitioning for all children is done, the resulting store σtemp is checked foremptiness (line 19). If the store is empty, then the current node l is not deemed as anon-terminal match as it has no descendant being a terminal match. Hence, the nodedoes not contribute to the current part (it is pruned out), and the output currentsize is set to the input current size; note that in this case the input part identi�er
pId is unchanged. Otherwise (lines 21-27), the current partition and size have tobe updated. The output current size is set to cSizetemp (line 22), registering thecurrent size of the current part or, eventually, the last part created while processingchildren li. After this (lines 23-25), the current partition σP is enriched with σtempand (lines 26-27) with elements for the current location l indexed by all new partnumbers pId j's produced while processing li's subtrees (recall that for a child li morethan one part could be created). In this case l has to be indexed accordingly. To thisend, the algorithm uses a function rename−extr(L, p,D) which takes as input thesequence L of children locations, a part identi�er p, and the domain D=dom(σP )of the created sub-partition. The role of the function rename−extr(L, p,D) is toextract the sub-sequence of L used to create the part p in σP , and to adorn with peach location in this sub-sequence. Formally, we have:rename−extr(L, p,D) =















() if L = ()

lpi , rename−extr(L′, p,D) if L = li, L
′ and lpi∈Drename−extr(L′, p,D) if L = li, L
′ and lpi /∈DFor instance, if the current node of the case is l → a[l1, l2, l3] and for subtreesrooted at l1, l2 data are put in part 3, while for the subtree rooted at l3 data areput/split in two parts 4, 5, then the renaming extraction produces l31, l

3
2 and l43 and

l53. Finally, the third case (lines 29-30) applies when the current node does not matchthe partitioning path, hence the algorithm produces an empty part, and preservesthe current part size and number.
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d l25Figure 5.10: An input XML tree t .5.5.2 Dealing with a WorkloadA nice property of our projecting-partitioning system is that it can deal with aworkload formed by queries Q1, . . . ,Qn in a natural way. To this end, it su�ces toconsider a global projector τ = ∪n
1τi and set of partitioning paths PP = ∪n

1{ PP i}where τi and PP i are, respectively, the projector and the partitioning path of Qi.This follows from the fact that our system is already speci�ed to deal with aset PP (recall that Down() produces set of paths in the presence of dos axis). So,with PP = ∪n
1{ PP i} the partition is made in terms of nodes matching at least oneof the paths PP i's, and the corresponding subtrees are projected by means of theglobal projector τ keeping into account the data needs of the whole workload.To illustrate the e�ectiveness of our projecting-partitioning algorithm with work-load (described above). Example 6 explains, in details, how to deal with a workloadformed by two iterative updates.Example 6 Consider the following iterative queries on the XML document t illus-trated in Figure 5.10:

Q1 = for $x in /child :: a/child :: b return $x/child :: c

Q2 = for $y in /child :: a/child :: f return $y/child :: dSince that we have two independent queries, two di�erent stores (σ1, σ2) willbe created to specify a projection for each query during the process. According toDe�nition 5.4.1 and by using the function E () to extract paths from Q1 and Q2, wehave the following distinct projectors:
τ1 = {/child :: a, /child :: a/child :: b, /child :: a/child :: b/child :: c/dos :: node()}

τ2 = {/child :: a, /child :: a/child :: f, /child :: a/child :: f/child :: d/dos :: node()}Depending on the above described projectors, two projected trees t
′

Q1
and t

′

Q2can be created by using path information in the projectors, along the lines of stan-dard path-based projection [MS03]. As it can be seen, each projected tree containselement nodes that are su�cient to evaluate its query, as illustrated in Figure 5.11.Both sets of dom(t
′

Q1
),dom(t

′

Q2
) will contain only the following locations :

dom(t
′

Q1
) = {l1, l2, l3, l5, l8, l9, l10, l12, l16, l21, l23}

dom(t
′

Q2
) = {l1, l4, l6, l13, l14, l17, l22}
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Q2Figure 5.11: Standard projections t
′

Q1
, t

′

Q2
XML trees created from the input t .If, just to illustrate, we assume that trees whose size is bigger than 12 cannot beloaded for query processing (we assume that the size is in terms of characters) thenwe have that Q1 cannot be evaluated on the projection t

′

Q1
illustrated in Figure 5.11.Here, we need partitioning for query evaluation. According to De�nition 5.3.3, wehave that the partitioning path for Q1 is PP=/child :: a/child :: b. A safe choicefor the threshold value is maxSize = 10.
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Q2Figure 5.12: Partitioning scenario on t for a given iterative query Q1.Figure 5.12 shows the two parts created by partitioning (and projection). Inparticular, the new store σP
Q1

contains the following indexed locations:
dom(σP

Q1
) = {l11, l12, l18, l19, l13, l110, l121, l21, l23, l212, l25, l216, l223}After �nishing the partitioning process (described above), we can evaluate Q1on the two parts and obtain the �nal result by simply concatenating the two partialresults in the obvious order.Now, suppose that we want to evaluate a workload W = {Q1, Q2} on the sameXML tree t presented in Figure 5.10. By using standard projection, [MS03] proposeto consider a global projection for evaluating all queries. So we need to create aglobal projection of t by considering the global projector τW={τ1, τ2}, as illustratedin Figure 5.13:

τW = {/child :: a, /child :: a/child :: b, /child :: a/child :: b/child :: c/dos :: node(),

/child :: a, /child :: a/child :: f, /child :: a/child :: f/child :: d/dos :: node()}According to previous assumptions, we have once again that the global projectiondoes not �t in the memory. Fortunately, our technique adapts gracefully to the case
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d l17Figure 5.13: Global projection t ′ for the workload (Q1,Q2).of a workload, and this allows us to overcome the problem, as follows. We use thefollowing set of partitioning paths ∪n
1{ PP i} extracted from Qi, for i = 1, 2. Inparticular, PPW={PP1, PP2} where

PP1 = /child :: a/child :: b

PP2 = /child :: a/child :: fFigure 5.14 illustrates the global partitioning which is capable to satisfy thequery needs of the entire workload.
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3Figure 5.14: Partitioning scenario on the global projection t ′ of workload (Q1,Q2).
�In the above examples, we have that each single created pat has a size which isless than maxSize. According to our partitioning algorithm, this is not always thecase: it may happen a part creation ends as soon as its size exceeds the threshold.Soundness of partitioning is stated by the following theorem, using the notation

Parti(σ
P) to indicate the i-th part σi in the partition σP: formally σi = {li ←

a[L] | li ← a[L] ∈ σP}.Theorem 5.5.1 (Soundness of Partition and Projection) Let maxSize be asize threshold value, let Q1, . . . ,Qm be well-formed queries with their resp. projector
τj and partitioning path PPj . Let t=(σ, lt ) be an XML tree. Then:Assuming� τ= ∪m

1 τj,� PP= ∪m
1 {PP j} and



78 Chapter 5. Partitioning and Projecting XML Documents� Part(lt ;Down(τ);Down(PP); 0; 1) = (σP; cSize; pId).we have:
Qj(t) ∼= Qj(t1) · . . . ·Qj(tpId )where ti=PartLabel−1(Parti(σ

P )).5.6 streaming implementationWe implemented our partitioning algorithm in a streaming fashion on top of a SAXparser [ver00]. In our implementation, we considered the following SAX events:
SAXEvent := startDocument called at the start of the input document

| startElement(qName) called at the open-tag of the current qName
| endElement(qName) called at the close-tag of the current qName
| Characters(String) called to process the text-contentsof the current qNameIn our SAX implementation of partitioning we used four main stack-based datastructures (see lines 3-5 of Algorithm 3).These stacks are used to record the current status of the algorithm when an open-tag is met, so that the status can be recovered when the corresponding close-tag ismet.� The �rst stack stacktag is used to record open tag-name of the node qNamebeing processed, the result of the residuation of Res(qName;PP), the modal-ity value (which is either part or proj, it will be explained later), a boolean�ag isStored , which is set to true only when the open-tag has been written inthe current part.� The second stack stackτ is used to record all alignment results of the projectorpath-set.� The third stack stackpp records alignment results of the partitioning path-set.The implementation also tracks some global values in the following variables:� cSize, the size of the current part.� pId , the current number of created parts.� τ , the projector.� PP , the partitioning path set.� Size, the size of the XML subtree nodes rooted at the node matching PP .



5.6. streaming implementation 79By using this status information, we can split the projection-partitioning al-gorithm in two distinct procedures, which are executed when startElement andendElement are invoked, respectively.Before starting the processing, our algorithm takes the following inputs (seeAlgorithm 3):� the input XML document t .� the set of extracted paths τ and the set of partitioning path PP extractedfrom an iterative query Q .� the threshold integer value maxSize.and it is initially invoked with cSize=0 and pId=1 (line 2 of Algorithm 3). Also,all data structures needed to perform the partitioning stacktag , stackτ and stackppwill be initialized.Algorithm 3: Projection/Partition-Init-DataStructureInput: An input XML document t , a pre-de�ned integer value maxSize; a set ofpaths τ extracted from a given query Q , a partitioning path PP ;Output: Initialize global variables cSize, pId , and three stack-based data structures
stacktag, stackτ and stackpp ;1 begin2 cSize:= 0; pId := 13 stacktag:= ()4 stackτ := ()5 stackpp := ()Algorithm 4: SAX-startDocumentInput: A projector τ , a partitioning path PP , a �ag Modality ;Output: Side e�ect on τ , PP and Modality ;1 begin2 τ := Down(τ)3 PP := Down(PP)4 Modality := partBoth startElement and endElement algorithms work in two possible modalities,the partitioning modality (part) and the projection modality (proj). The �rst oneconcerns the case that the current node is either a (possible) non-terminal matchor a terminal match of a partitioning path in PP . Under this modality the algo-rithms implement the speci�cation reported in the DOM-based Algorithm 2). Thesecond possible modality captures the case where the current node belongs to asubtree rooted at terminal node of a partitioning path. Under this modality, thetwo algorithms implement the projection as given by Algorithm 1.



80 Chapter 5. Partitioning and Projecting XML DocumentsAlgorithm 5: SAX-charactersInput: A string value str, current part size cSizeOutput: Side e�ect on the current part size cSize1 begin2 MATCH:= Res(str; τ)3 if MATCH 6=fail then4 cSize:= cSize + length(str)5 writeOutput(str)In startDocument event (Algorithm 4), the algorithm performs the �rst align-ment Down(τ) of the projector τ and the �rst alignment of the partitioning path PP(see lines 2-4), then it initializes the Modality �ag with part, which is the startingmodality of our algorithm; projection starts when a target path of a partitioningpath is met.In startElement (see Algorithm 6), we put most of the logic of the DOM-basedspeci�cation partitioning and projection algorithms (Algorithms 1 and 2): indeed,all partitioning and projection decisions are based on information that is availablewhen an open tag is met. Concerning the partitioning modality (lines 2-26), weput here the updates of Size and cSize, as well as the residuation and alignmentof the current partitioning path PP (line 3), but we defer partitioning decisionsto endElement calls. Concerning the projection modality (lines 27-49), we puthere residuation of the current projector τ (line 28), the resulting case analysis todecide whether the current node has to be projected, and alignment of the path-setprojector to the next level.In endElement (see Algorithm 7), we �rst perform a pop operation on the stack
stackτ (line 2) and obtain information stored in the following variables (lines 3-5):
MATCH is the current match value, currModality is the current working modality,and currStoredCase is the current storing status of the current qName into theoutput. If currStoredCase = false then the algorithm simply terminates the close-tag corresponds to the open-tag not stored in the partitioning.If information got from the stack tell us that we are in the partitioning modalityand the current storing case currStoredCase=true, then we make the followingcase analysis on the MATCH information relative to the current close-tag, and gotfrom the stacktag (lines 6-30).In the case the current closing-tag is for a non-terminal match of partitioningpaths (MATCH=ok_nt) (lines 7-10), we increase the current part size cSize with
length(qName); write the current qName into the current part; and �nally pop thetop element of stackpp .If the current closing-tag is for a terminal match of a partitioning path(MATCH=ok_t) (lines 11-30) then a projection phase comes to its end. So wechange the Modality �ag to part (line 12); compare the current part size cSize plus



5.6. streaming implementation 81Algorithm 6: SAX-startElementInput: Open-tag qName, a part number pId , a part size cSize;Output: Side e�ect on cSize and Size, Modality , τ and PP ;1 begin/* qName is in the partitioning modality case */2 if Modality=part then3 MATCH:= Res(qName; PP)4 switch MATCH do5 case ok_nt/* Case 1. qName is non-terminal PP node */6 stacktag.add(qName, ok_nt, part, false)7 τ := stackτ .add(Down(τ))8 PP := stackpp .add(Down(PP))9 case ok_t/* Case 2. qName is a terminal PP node */10 for i=[0..(stacktag.size− 1)] do11 ancestTrNode_tagname:= stacktag(i).get(0)12 ancestTrNode_isStored:= stacktag(i).get(3)13 if ancestTrNode_isStored=false then14 stacktag(i).set(3):= true15 writeOutput(ancestTrNode_tagname)16 cSize:= cSize + length(ancestTrNode_tagname)17 else if ancestTrNode_isStored=true then18 SkipElement_stacktag(i)19 stacktag.add(qName, ok_t, part, true)20 τ := stackτ .add(Down(τ))21 PP := stackpp .add(Down(PP))22 cSize:= cSize + length(qName)23 writeOutput(qName)24 Modality := proj25 case fail/* Case 3. qName does not match PP */26 stacktag.add(qName, fail, part, false)/* qName is in the projection modality */27 else if Modality=proj then28 MATCHτ := Res(qName; τ)29 switch MATCH do30 case ok_nt/* Case 1. qName is non-terminal τ node */31 stacktag.add(qName, ok_nt, proj, false)32 τ := stackτ .add(Down(τ))33 Size:= Size + length(qName)34 case ok_t/* Case 2. qName is terminal τ node */35 for i=[0..(stacktag.size− 1)] do36 ancestTrNode_tagname:= stacktag(i).get(0)37 ancestTrNode_isStored:= stacktag(i).get(3)38 if ancestTrNode_isStored=false then/* Switch flag isStored to true value to write the currentelement stack into the current part t
′

pId
*/39 stacktag(i).set(3):= true40 writeOutput(ancestTrNode_tagname)41 cSize:= cSize + length(ancestTrNode_tagname)42 else if ancestTrNode_isStored=true then43 SkipElement_stacktag(i)44 stacktag.add(qName, ok_t, proj, true)45 τ := stackτ .add(Down(τ))46 Size:= Size + length(qName)47 writeOutput(qName)48 case fail/* Case 3. qName does not match τ */49 stacktag.add(qName, fail, proj, false)



82 Chapter 5. Partitioning and Projecting XML DocumentsAlgorithm 7: SAX-endElementInput: Close-tag qName, part size cSize, projection size Size, part number pId ;Output: Side e�ect on cSize, pId , τ , PP Modality ;1 begin/* Pop the top element from stacktag and keep match, currModality,currStoredCase values */2 τ := stackτ .pop3 MATCH:= stacktag.pop(stacktag(top).get(1))4 currModality:= stacktag.pop(stacktag(top).get(2))5 currStoredCase:= stacktag.pop(stacktag(top).get(3))6 if currModality=part and currStoredCase=true then7 if MATCH=ok_nt then8 cSize:= cSize + length(qName)9 writeOutput(qName)10 PP := stackpp .pop11 else if MATCH=ok_t then12 Modality := part13 if cSize + Size ≤ maxSize then14 cSize:= cSize + Size15 writeOutput(qName)16 else/* Close current part t
′

pId */17 writeOutput(qName)18 for i=[(stacktag.size− 1)..0] do19 currTagName:= stacktag(i).get(0)20 currStored:= stacktag(i).get(3)21 if currStored=true then22 writeOutput(currTagName)23 cSize:= 0; pId := pId + 1/* Create new part t
′

pId */24 for i=[0..(stacktag.size− 1)] do25 currTagName:= stacktag(i).get(0)26 currStored:= stacktag(i).get(3)27 if currStored=true then28 writeOutput(currTagName)29 cSize:= cSize + length(qName)30 PP := stackpp .pop31 else if currModality=proj and currStoredCase=true then32 if MATCH=ok_nt then33 cSize:= cSize + length(qName)34 writeOutput(qName)35 else if MATCH=ok_t then36 cSize:= cSize + length(qName)37 writeOutput(qName)



5.6. streaming implementation 83the projected subtree size Size with the maximal part size allowed maxSize (line13), and create a new part if the size the current part has exceeded maxSize. Thecreation of a new part requires one to iterate on the stack stacktag , close all theopen tags (lines 17-22); in this case the algorithm also resets cSize to 0 and increasethe part number pId by 1 (line 23); then reopen the same tags in reversal order inthe new part and increase cSize with the length of each tag length(currTagName)for each reopened tag (lines 24-28). At the end of both cases, we increase the cur-rent part size with length(qName) (line 29), then we pop the top element from the
stackpp (line 30).Going back to the case analysis on the modality got from the stack at thebeginning of the algorithm, the remaining case is that of the projection modality.If currStoredCase=false nothing happens. Otherwise, if currStoredCase=truethen we make a case analysis on the MATCH value (lines 31-37).In the case of the current closing-tag being a non-terminal match for the projectorpath-set (MATCH=ok_nt), we increase the current size cSize with the length ofclose-tag qName length(qName), and write it into the current part (lines 32-34).If the current closing-tag is a terminal match τ (MATCH=ok_t), we increasethe current size cSize with the length of this close-tag length(qName), and write itinto the current part (lines 35-37).In Characters event (see Algorithm 5), we only increase the current part size
cSize with the length of the text-content str of the current node qName and writeit into the current part.To illustrate how the streaming projection-partitioning algorithms works, we willuse the following example.Example 7 Consider the following iterative query Q :
Q = for $x in /child :: doc/child :: a/child :: b return $x/child :: cand the input XML document t reported in Figure 5.15 where we assume
maxSize=12, and we have the following partitioning path PP and the followingprojector τ :

PP = {/child :: doc/child :: a/child :: b}
τ = {/child :: doc, /child :: doc/child :: a, /child :: doc/child :: a/child :: b,

/child :: doc/child :: a/child :: b/child :: c}For our example, the processing starts with Down(τ), Down(PP) and in par-titioning modality. When the open tag <doc> (see Figure 5.16) is met, the algo-rithm performs a residuation on this tag and current partitioning path-set. We have
MATCH=ok_nt meaning that the current qName is a possible non-terminal matchfor the partitioning path-set (but it is not a target node). In this case, the algorithmadds the record [doc,ok_nt,part,false] at the top of stacktag. The same processrepeats for the next open-tag <a> which is non-terminal node for the partitioning



84 Chapter 5. Partitioning and Projecting XML DocumentsInput document t Projected Part t ′1 Projected Part t ′2<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc> <doc><a><b><c></c></b></a><a><b><c>co</c></b></a></doc> <doc><a><b><c></c></b></a></doc>Figure 5.15: An input document t and its projected parts t ′1, t
′
2.path-set. So the record [a,ok_nt,part,false] is added at the top of stacktag (seeFigure 5.17).Input document Projected Part stacktag

t t ′1 [qName,MATCH, Modality ,isStored ]<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc> <doc><a><b><c></c></b></a><a><b><c>co</c></b></a></doc> [doc,ok_nt,part,false]
PP = {/child :: a/child :: b}

τ = {/child :: a, /child :: a/child :: b, /child :: a/child :: b/child :: c}Figure 5.16: Projection-partitioning processing: the current open-tag is <doc>.Input document Projected Part stacktag

t t ′1 [qName,MATCH, Modality ,isStored ]<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc> <doc><a><b><c></c></b></a><a><b><c>co</c></b></a></doc> [a,ok_nt,part,false][doc,ok_nt,part,false]
PP = {/child :: b}

τ = {/child :: b, /child :: b/child :: c}Figure 5.17: Projection-partitioning processing: the current open-tag is <a>.The next event is for the open-tag <b> which residuation deems as a PP terminalnode. Here the algorithm visits the whole stack stacktag to write all ancestors open-tag relative to non-terminal matches and whose isStored value is false into thecurrent part t ′1. For each written open-tag the corresponding isStored value is setto true, and the whole record is kept into stacktag . Also, the size of each storedopen-tag is added to the current size cSize. Then we write the current open tag <b>into the current part t ′1 and add the following [b,ok_t,part,true] at the top of
stacktag. We then perform a new path alignment on both partitioning and projector



5.6. streaming implementation 85path-sets and put them in the corresponding stacks. Finally, we set Modality=projto indicate that a projection phase begins for the subtree rooted at the current <b>node. Figure 5.18 illustrates some e�ects of previous steps.Input document Projected Part stacktag

t t ′1 [qName,MATCH, Modality ,isStored ]<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc> <doc><a><b><c></c></b></a><a><b><c>co</c></b></a></doc> [b,okt,part,true][a,ok_nt,part,true][doc,ok_nt,part,true]
PP = {−} ; cSize = 3

τ = {/child :: c}Figure 5.18: Projection-partitioning processing: the current open-tag is <b>.The algorithm then goes to current qName which is <c> and deemed byresiduation as a terminal τ node. Here the algorithm will keep the record[c,ok_t,proj,true] at the top of stacktag ; write the current tag into the currentpart t ′1; performs Down(τ) and keep the result in stackτ ; increase the projectionsize Size with the length(c). E�ects are illustrated in Figure 5.19.Input document Projected Part stacktag

t t ′1 [qName,MATCH, Modality ,isStored ]<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc> <doc><a><b><c></c></b></a><a><b><c>co</c></b></a></doc> [c,okt,proj,true][b,okt,part,true][a,ok_nt,part,true][doc,ok_nt,part,true]
PP = {−} ; cSize = 4

τ = {−}Figure 5.19: Projection-partitioning processing: the current open-tag is <c>.Now we have the close-tag </c>. Here the algorithm performs the followingtasks: pop the top element of stacktag and keep [c,okt,proj,true] in the fol-lowing variables currTag,MATCH, currModality, currStoredCase values; pop thetop element of stackτ . Then the algorithm checks values for currModality and
currStoredCase. In the current case, we have proj and true. The process is inprojection modality so it increases the current part size cSize with length(</c>),and writes the close-tag </c> into the current part t ′1. E�ects are illustrated inFigure 5.20.Then the process goes to the next qName which is </b>. the algorithmpops the top element of stacktag. Here we have a close-tag of a PP target node(MATCH=ok_t, currModality=part and currStoredCase=true). In this case the
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t t ′1 [qName,MATCH, Modality ,isStored ]<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc> <doc><a><b><c></c></b></a><a><b><c>co</c></b></a></doc> [b,okt,part,true][a,ok_nt,part,true][doc,ok_nt,part,true]
PP = {−} ; cSize = 5

τ = {/child :: c}Figure 5.20: Projection-partitioning processing: the current close-tag is </c>.algorithm will perform the following tasks: increase the current part size cSize with
length(qName); pop the top element of stackpp ; put Modality=part to declare thatthe parsing of the current target node subtree is �nished. Then the algorithm checkswhether the current size cSize plus the projection size Size exceed the maximal size
maxSize ; this is not the case (current size is 6), so the algorithm add Size to thecurrent cSize, and write the current close-tag </b> into the current part t ′1, then goto the next qName </a>. E�ects are illustrated in Figure 5.21.Input document Projected Part stacktag

t t ′1 [qName,MATCH, Modality ,isStored ]<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc> <doc><a><b><c></c></b></a><a><b><c>co</c></b></a></doc> [a,ok_nt,part,true][doc,ok_nt,part,true]
PP = {/child :: b} ; cSize = 6

τ = {/child :: b, /child :: b/child :: c}Figure 5.21: Projection-partitioning processing: the current close-tag is </b>.Now we have qName </a> and [a,ok_nt,part,true] the top elementof stacktag . Here we have a non-terminal PP node (MATCH=ok_nt and
currModality=part), so the algorithm will increase cSize with length(qName);write it in the current part t ′1; and �nally pop the top element from stackpp , andthen goes to the next node (see Figure 5.22).The process parses an open tag <a> and repeats the same previous treatment. Itpushes [a,ok_nt,part,false] on the stacktag, then goes to the next node, whose
qName is <f> which does not match PP . Here the algorithm prunes out this qNameand does not write it into the current part t ′1, also no path alignments will be done.It only keeps the following values [f,fail,part,false] at the top of stacktag, andthe current size cSize does not increase. The algorithm continues in the same way forthe next node <c>, performs the same previous treatment and prune it out. The only
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t t ′1 [qName,MATCH, Modality ,isStored ]<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc> <doc><a><b><c></c></b></a><a><b><c>co</c></b></a></doc> [doc,ok_nt,part,true]
PP = {/child :: a/child :: b} ; cSize = 7

τ = {/child :: a/child :: b, /child :: a/child :: b/child :: c}Figure 5.22: Projection-partitioning processing: the current close-tag is </a>.thing that the algorithm will do is to add the following record [c,fail,part,false]at the top of stacktag. E�ects are illustrated in Figure 5.23.Input document Projected Part stacktag

t t ′1 [qName,MATCH, Modality ,isStored ]<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc> <doc><a><b><c></c></b></a><a><b><c>co</c></b></a></doc> [c,fail,part,false][f,fail,part,false][a,ok_nt,part,false][doc,ok_nt,part,true]
PP = {/child :: b}

τ = {/child :: b, /child :: b/child :: c}Figure 5.23: Projection-partitioning processing for parsing the subtree <a><f><c>.As illustrated in Figure 5.24, for the following nodes </c></f></a>, the algo-rithm just delete their information from stacktag and ignore writing them in thecurrent part t ′1, because their relative open-tags did not match PP (their σ value is
false).The process continues in the same way for the nodes <a><b><c>to</c> untilreading the close-tag of the target node </b>, here the algorithm checks if the currentsize cSize plus the projection size Size is more than the maximal size maxSize=12.In our case this check is positive, so the algorithm here close all open tags stacktag ,in backward order, in the current part t ′1, reset cSize to the value 0, and increase
pId with 1 to become 2 in our example. Then the algorithm starts a new part t ′2,�ushes open-tags in stacktag in the new part, according to document order. E�ectsare shown in Figure 5.25).Next steps of the process are similar. The process ends up with two di�erentprojected parts t ′1 and t ′2, each one contains only nodes that are su�cient to evaluate
Q , as illustrated in Figure 5.26.

�
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t t ′1 [qName,MATCH, Modality ,isStored ]<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc> <doc><a><b><c></c></b></a><a><b><c>co</c></b></a></doc> [doc,ok_nt,part,true]
PP = {/child :: a/child :: b}

τ = {/child :: a/child :: b, /child :: a/child :: b/child :: c}Figure 5.24: Projection-partitioning processing for parsing the following close-tags</c></f></a>.Input document Projected Part Projected Part stacktag

t t ′1 t ′2 [qName,MATCH, Modality ,isStored ]<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc>
<doc><a><b><c></c></b></a><a><b><c>to</c></b></a></doc> <doc><a> [a,ok_nt,part,false][doc,ok_nt,part,true]

PP = {/child :: b} ; cSize = 14 ≥ maxSize

τ = {/child :: b, /child :: b/child :: c}Figure 5.25: Parsing the subtree <a><b><c>to</c></b></a>, and create a new pro-jected part t ′2.After generating the projected parts, we evaluate our iterative query Q on eachpart t
′

i 's to obtain the results Q(t
′

i )'s, and we use a simple concatenation to mergeall partial results, to produce the �nal result Q(t), where: Q(t)=Q(t ′1).Q(t ′2).5.7 experimental evaluationIn the previous sections, we described a novel XML data partitioning scheme that,given a query Q and an input document t , partitions t in a set of fragments
{t1, . . . , tκ} so that Q(t) is equivalent to the concatenation of Q(t1), . . . , Q(tκ).When this partitioning scheme is applicable, it can improve the scalability of exist-ing main-memory engines, as it allows the system to process one part at time.In this section we present an experimental evaluation of the proposed approach.We will �rst show that the proposed algorithm signi�cantly improves the scalabilityof a popular main-memory query engine. Then, we will show that partitioning,when combined with a projection algorithm, introduces little overhead with respectto the projection algorithm. Finally, we will experimentally analyze the relationbetween the overall performance of the system and the actual value of maxSize (the



5.7. experimental evaluation 89Input document t Projected Part t ′1 Projected Part t ′2<doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a><a><f><d>go</d></f></a><a><b><c></c></b></a></doc> <doc><a><b><c></c></b></a><a><f><c></c></f></a><a><b><c>to</c></b></a></doc> <doc><a><f><d>go</d></f></a><a><b><c></c></b></a></doc>Figure 5.26: Final projected parts t ′1, t
′
2 produced by projection+partitioning algo-rithm.maximum part size).5.7.1 Experimental SetupWe implemented our partitioning algorithm, as well as a standard path-based pro-jection algorithm, in Java 6 and tested their behavior on the XMark benchmark[SWK+02a]. In particular, we evaluated our system on XMark documents by rely-ing on two widely used XQuery engines, Saxon [sax] and Qizx [qiz]. While Saxon isan engine supporting all main W3C standards for XML manipulation and schemavalidation, Qizx is specialized on querying and updating, and o�ers powerful op-timization techniques. However, we will see that even with the use of standardpath-based projection, these systems do not scale up in terms of document size(other powerful systems like BaseX [bas] have quite similar performances). Our testresults show that our technique overcome this limitation for iterative queries, as itallows these engines to scale up to arbitrary document sizes.All experiments were performed on a 2.53 Ghz Intel Core 2 Duo machine (4 GBmain memory) running Mac OSX 10.6.8. All XML documents were loaded on anexternal USB2 7200 rpm 1 TB disk unit.To avoid the perturbations introduced by system activity, we ran each experi-ment ten times, discarded the best and the worst performance, and computed theaverage of the remaining results.5.7.2 Tests ResultsWe used documents whose size ranges from 1GB to 5GB for Saxon and from 1GB to9GB for Qizx. Concerning the threshold value maxSize , we set (∼ 25MB) for Saxon,and (∼ 95.36 MB) for Qizx. These di�erences in terms of memory and part sizesare due to di�erences of performance between the two engines in terms of memorymanagement. For both Saxon and Qizx we allocated 512MBs for main memory ofthe Java Virtual Machine.Concerning queries, we considered XMark queries Q1−Q5, Q10, Q14−Q20, (seeSection A.1 of Appendix A) which form the iterative core of XMark [SWK+02a].Also, we wrote the following three new XMark queries (N1, N2 and N3):



90 Chapter 5. Partitioning and Projecting XML Documents
N1 = let $auction := doc(”xmark.xml”) returnfor $i in $auction/site//itemwhere $i/location/text() = ”UnitedStates”return <itemInfo name ="$i/name/text()"><paymentWay>$i/payment/text()</paymentWay><shippingWay>$i/shipping/text()</shippingWay><moreInfo>$i/description</moreInfo><mailboxInfo>$i/mailbox</mailboxInfo></itemInfo>
N2 = let $auction := doc(”xmark.xml”) returnfor $i in $auction/site//descriptionwhere contains(string(exactly-one($i)), "gold")return $i/node()

N3 = let $auction := doc(”xmark.xml”) returnfor $i in $auction/site//itemwhere empty($i/payment/text())return <item id="$i/@id" name="$i/name/text()" location="$i/location/text()">{$i/description, $i/mailbox}</item>and two queries (D1,D2) to be evaluated on a 800MB DBLP document [ver11]:
D1 = let $auction := doc(”dblp.xml”) returnfor $a in $auction/dblp//authorreturn <AuthorName> {$a/text()} </AuthorName>
D2 = let $auction := doc(”dblp.xml”) returnfor $a in $auction/dblp/node()return <item>{$a/author, $a/title, $a/booktitle, $a/year}</item>5.7.3 ExperimentsIn our �rst experiment we evaluate and compare scalability of both Saxon andQizx. We consider a 1GB document and a 5GB document for Saxon, and 2GBand 9GB for Qizx test. For each document and for each query, we compare totalexecution time obtained with only projection with that obtained with partitioning(and projection). Total execution time includes the overall time required by thesystem to partition and/or project the input document, to evaluate the input queryon the projection/partition, and (in the case of partitioning) to concatenate the �nalresults.
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Figure 5.27: Projection vs partitioning+projection - with input document 1GB -using Saxon.We �rst comment on results obtained by using Saxon. When projection only isused, this system starts showing limitations even for a 1GB document, for whichqueries Q10 and Q14 could not be executed due to memory failure. As shown in Fig-ure 5.27, our partitioning technique enables execution of all XMark iterative queries,with no overhead (absence of overhead is due to the combination of projection andpartitioning).As illustrated in Figure 5.28, for the 5GB document, improvements of our par-titioning technique are substantial: 8 queries could not be executed with only pro-jection, while all queries are executed by means of partitioning.Figure 5.29 reports execution times obtained with Saxon and partitioning, forall considered document size. As shown by the �gure, our technique scales up andhas a linear behavior.input in GB 1 2 3 4 5proj in GB 593.92 MB 0.98 1.48 1.97 2.50Table 5.3: Global projections size.Concerning Saxon, we also compared projection vs partitioning for a workloadcomprising all XMark iterative queries. Actually we performed this experimentby using a global projection, containing all paths extracted from XMark iterativequeries, and starting from 1GB until 5GB. By using only projection, already for a
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Figure 5.28: Projection vs partitioning+projection - with input document 5GB -using Saxon.

Figure 5.29: Scalability of the partitioning approach - using Saxon.1GB document we could not run the workload as the projected document was toolarge for Saxon. Table 5.3 illustrates the size of these global projected documents.



5.7. experimental evaluation 93Fortunately, by using our partitioning technique, we were able to run the workloadfor each size, as illustrated in Figure 5.30. Again, the technique features a linearbehavior.

Figure 5.30: Scalability of the partitioning approach: workload - using Saxon.

Figure 5.31: Projection vs partitioning - with input document 2GB - using Qizx.
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Figure 5.32: Scalability of the partitioning approach: workload - using Qizx.Concerning Qizx, we performed the same kind of experiments. As already said,Qizx is specialized on querying and updating, and this has permitted the adoptionof e�cient document representation in main-memory. For a 2GB document, Qizxdoes not exhibit any limitation with the use of projection. As can be seen in Figure5.31, again no overhead is exhibited by our partitioning technique.For the 9GB document, things are di�erent, see Figure 5.33. Five queries couldnot be executed with the sole use of projection. Instead, our partitioning techniqueenabled the processing of all queries.Results about scalability by using Qizx are reported in Figure 5.39. Again testresults show that our technique scales up with a linear behavior.Concerning Qizx and scalability on the workload of XMark iterative queries,results are reported in Figure 5.32. As the �gure illustrates, partitioning scales upwithout problems and still in a linear fashion. We repeated this experiment by usingprojection only; however, we got no experimental results, as, even in the case of the1GB document, the projected documents were too big to be handled by the queryengine.5.7.4 Experiments on Queries {N1, N2, N3}, and {D1, D2}In the previous chapter, we presented queries N1, N2 and N3 as examples of queriesrequiring large projections of XMark documents. With the same aim, we also pre-sented queries D1 and D2 over DBLP data.
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Figure 5.33: Projection vs partitioning - with input document 9GB - using Qizx.

Figure 5.34: Scalability of the partitioning approach - using Saxon.Actually, we evaluate our partitioning/projection technique on the queries
N1, N2 and N3. We consider a 1GB document until 5GB document for Saxontest. As illustrated in Figure 5.34, our partitioning technique enables executions ofthese three queries with no overhead. It is worth noticing that these queries couldnot be executed with only projection due to their large projected documents. As
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Figure 5.35: Projection vs partitioning - with input document 1GB - using Qizx.

Figure 5.36: Projection vs partitioning - with input document 2GB - using Qizx.shown by the �gure, our technique scales up and has a linear behavior.We repeat the same kind of previous experiments for our queries N1, N2, N3 withQizx. As illustrated in Figure 5.35, for a 1GB document Qizx does not exhibit anylimitation with the use of only projection, but query evaluation with partitioning



5.7. experimental evaluation 97resulted much faster. This can be explained by the fact that handling a big pro-jection entails some overhead which disappears when handling small parts. For the2GB document, the three queries could not be executed with the sole use of projec-tion (see Figure 5.36). Instead, our technique enabled the processing of these threequeries. Tests results on scalability from 1GB to 5GB are illustrated in Figure 5.37.The linear behavior previously observed is con�rmed once again.We then performed experiments on queries D1 and D2 on a 800MB DBPLdocument, by using on Saxon and Qizx, Table 5.4 reports the results for both queriesby using projection only, and by using our partitioning/projection technique. In thiscases Qizx was able to process both queries with only projection, but Saxons failed.With partitioning, Saxon was able to execute both queries.

Figure 5.37: Scalability of the partitioning approach - using Qizx.Performance of the partitioningapproach on DBLP databaseQuery Total Time (sec) Total Time (sec)with Saxon with Qizx
D1 249.23 208.47
D2 409.62 358.17Table 5.4: Qizx and Saxon performances with the partitioning approach - on DBLPdatabase.
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Figure 5.38: Relation between maxSize (pSize) and the performance of the parti-tioning approach.In our �nal experiment we investigate the relationship between maxSize andthe processing time, i.e., the impact of di�erent values of maxSize on the overallperformance of our approach. To this end, we evaluate all the queries in the iterativecore on the 4GB document and vary maxSize from 100000000 bytes to 700000000bytes (∼ 668 MB). This kind of tests is quite time consuming, so we focused onQizx, but we expect similar results for Saxon (by considering smaller part sizes).The results are shown in Figure 5.38. Surprisingly enough, we can observe thatthe value of maxSize has no signi�cant impact on the overall performance. Thiscould seem counter-intuitive, as bigger values of maxSize should decrease the totalnumber of bytes written to disk. Actually this test reveals that our technique canbe used even in contexts of high limitations concerning available memory. For sucha context, small maxSize values can be used without compromising performance.5.7.5 Summing UpTo summarize, our experiments show that existing main-memory engines do notscale with respect to document size. It is worth observing that this remains true evenfor bigger sizes of the main-memory of the Java Virtual Machine. Bigger memorywould only imply a shift of the maximal document size that can be handled.Instead, our experiments prove that the partitioning approach scales beautifullyand is only slightly slower than the projection approach. To make experimentsfeasible in a reasonable time we considered 5GB and 9GB as the maximal size ofdocuments. However, since the maxSize can be tuned to �t in the available mainmemory, we have that partitioning scales for arbitrary sizes.



5.8. conclusion 99We also discovered that the actual value of maxSize has no signi�cant impact onthe overall performance; this suggests that maxSize can be tuned by looking onlyat available main-memory.5.8 conclusionIn this chapter we presented a novel projection-partitioning technique for XMLdocument. This technique generalizes existing path-based approaches, and appliesto a large class of queries.The proposed approach analyzes an input query and, if the query is iterative,extracts all the relevant paths and uses them to project and partition the inputdocument. As shown in our experimental evaluation, by executing the input queryon each part and combining the partial results, existing main-memory query enginescan process an iterative query on very large input documents.As each part can be queried independently by a distinct instance of the query en-gine, we are currently investigating potential applications of the proposed approachto cloud computing environments.
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Figure 5.39: Scalability of the partitioning approach - using Qizx.
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Figure 6.1: Partitioning update scenario.approach with the projection-based one proposed in [BBC+11, MS03]. It is worthmentioning that this last one is type-based, and is the only available projection-based approach for updates.The chapter is structured as follows. In Section 6.2, we introduce a few prelim-inary notations about the update query language used in this approach, then weprovide our path extraction function. In Section 6.3, we formally describe iterativeupdates. Next, in Section 6.4, we present our partitioning technique for iterativeupdates, all formal de�nitions and DOM-based speci�cations of both partitioningand fusion. In Section 6.5 we provide all streaming algorithms (partitioning andfusion) used to perform our partitioning update scenario. The chapter ends withtest results in Section 6.6 and some conclusive remarks in Section 6.7.6.1 OverviewIn order to simplify the presentation and the formal treatment of our static analysis,we focus on a particular class of simple XUF updates, SXUF for short. In a nutshell,restrictions posed on the XUF fragment are the following ones. Only downwardXPath axes self , child and dos are allowed. Concerning update operations, sourceand target expressions use a simple class of queries. These restrictions are mildenough to capture a wide class of updates used in practice. More details will follow.



6.2. preliminaries 103The main steps of our partitioning scenario for an SXUF update U and an inputXML document t are the following ones:
❏ Path Extraction: We extract paths τ and target paths τap from an SXUFupdate U .
❏ Static analysis: We use the sets of extracted paths τ, τap to check whetherthe update U is iterative or not.
❏ Partitioning and Updating: If U is iterative, we use the partitioning tech-nique to create several parts t1, t2, · · · , tκ. As for queries, partitioning is sothat each ti is a well-formed XML document. For optimization purposes, byusing information coming from target paths in U , the partitioning process also�ags those parts that do not need to be updated as they contain no targetnode. We then update each part that needs to, and obtain the documents

t ′1, t
′
2, · · · , t

′
κ, where either t ′i = U (ti) or t ′i = ti (if this part is not to be up-dated) for i = 1 . . . κ. For simplicity, in the formal treatment made in thesequel we assume that each part is to be updated, while we will come back tothis assumption in Section 6.5, when discussing implementation issues.

❏ Fusion: After producing the updated parts, we use a fusion operation � toconcatenate them. During the fusion process, each U (ti) is processed in astreaming fashion, one at a time.Figure 6.1 illustrates the whole mechanism of our partitioning update scenario.It is worth noticing that one of the contributions of this approach is to providestreaming algorithms for performing partitioning and fusion. As already anticipated,the partitioning process is able to �ag parts that do not need to be updated, thussaving time when updating only parts that need to.6.2 preliminaries6.2.1 Simple XQuery Update Facilities (SXUF)The grammar of SXUF is illustrated in Figure 6.2. This language comprises for,let and return clauses as well as if-then-else conditional statement. Also, SXUFcontains all elementary XUF update expressions (delete, insert, rename and replace).The main restrictions behind SXUF are the following ones:� All query paths P and target paths Ptg used in the syntax of SXUF languageobey the same grammars illustrated in Section 5.2 of Chapter 5, which werecall below:



104 Chapter 6. Partitioning for XQuery UpdatesTarget Path Ptg ::= /P | x/PSimple Query Qs ::= () | b | /P | x/P

| <a>Qs</a> | Qs,QsTarget Position Pos ::= as first into | as last into
| before | afterNode Case N ::= node | nodesUpdates U ::= delete N Ptg {deletion}
| rename N Ptg as a {a is text-value}
| replace N Ptg with Qs {replacement}
| insert N Qs Pos Ptg {insertion}
| U ,U {sequence}
| if Q then U else U {conditional}
| for x in Q return U {iteration}
| let x := Q return U {let-binding}Figure 6.2: Syntax of SXUF.

P ::= /Step | P/Step

Step ::= Axis :: NT

Axis ::= self | child | dos

NT ::= a | node() | text()� Simple query expressions Qs, used as source expression for in replace/insert,are only allowed to use element and sequence construction, plus path naviga-tion to select nodes in the input document.� Query expressions Q used in for/let and conditional updates can be anyquery expression allowed by the query grammar presented in Figure 5.4 ofChapter 5.As already said, restrictions behind SXUF have the purpose of ensuring a smoothformal characterization of iterative updates. At the same time, SXUF is expressiveenough to cover most of needs in practical scenario.For instance, several update expressions used in W3C XQuery Update Facilities1.0 [Gro11b] strictly respect the syntax of the SXUF language, while other updatesuse function calls, conditions and arithmetic operations that are not supported byour simple grammar. However, as we will illustrate, our approach can be easilyextended to deal with these mechanisms by means of simple query rewriting. Asanother example, all update expressions used in [BBC+11] and in Marina Sahakyan'sThesis [Sah11] are SXUF updates. The syntax of these update expressions areillustrated in Section A.3 of Appendix A.Examples of SXUF expressions are below illustrated:
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U1 = delete nodes $doc/child :: a/child :: f

U2 = insert node <n/> as first into $doc/child :: a/child :: b

U3 = rename node $doc/child :: a/child :: f as ”new”

U4 = for $x in $doc/child :: a/child :: breturn insert node <m>”toto”</m> after $xThe following expressions are not SXUF updates:
U5 = insert node < new/ > after

$doc/child :: a/child :: f [last()]

U6 = for $x in $doc/child :: a/child :: f returnreplace value of node $x/d with $x ∗ 100In U5, the target Ptg makes use of the last() function not allowed by SXUF,while in U6 the source expression contains an arithmetical expression $x∗100, againnot allowed by SXUF. However, these two updates can be easily rewritten into thefollowing ones.
U ′5 = for $x in $doc/child :: a/child :: freturn insert node < new/ > after $x
U ′6 = for $x in $doc/child :: a/child :: f returnreplace value of node $x/d with $xThe rewriting is such that the iterative check and partitioning can be made interms of the rewritten update, while the original one is used for update evaluation onthe obtained partition. These simple rewritings can be easily lifted to the generalcase, thus enabling the application of our technique to a wide class of updatesoccurring in practice.6.3 iterative updatesAs already indicated, our update scenario is based on the idea of partitioning aninput document D for an update U into a collection of parts {D1,D2, · · · ,Dκ}, suchthat the �nal update result U (D) on the document D equals to the concatenationof all partial update results on each part Di produced by our partitioning strategy.This concatenation is performed by using a fusion operator �, so that:

U (D) ∼= U (D1) � U (D2) � · · ·� U (Dκ) (6.1)



106 Chapter 6. Partitioning for XQuery UpdatesEssentially, the fusion operator concatenates updated parts, by taking care ofconsidering only once nodes replicated in multiple parts by partitioning. We will givelater on details about formalization of its semantics and streaming implementation.In order to apply partitioning, we have to be sure that a partitioning for theinput can be done so that Equation 6.1 can hold. This needs to be decided statically,before activating the partitioning scenario. If an update meets this property (*) itis called iterative.Before providing a static analysis to recognize iterative updates, we see throughsome examples why our partitioning update scenario can be used in some cases ofupdates, while it is impossible to apply it in the other cases.In the following, we are going to present three di�erent kinds of updates: forthe �rst one (e.g., U8 and U9) any kind of partition works; for the second kind ofupdates (e.g., U10), only some partitions are good; for the last one (e.g., U11 and
U12), no partition works.We start the discussion with the �rst class. Figure 6.3 illustrates the XMLdocument t used as input for the following updates U8 and U9 used in examples.
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U8 = delete nodes /child :: a/child :: f/child :: g

U9 = for $x in /child :: a/child :: f/child :: greturn insert node <n/> after $xThe �rst update U8 deletes g-nodes selected by the target path /child :: a/child ::

f/child :: g. By evaluating U8 on the input t , we get the update result U8(t) whichis reported in Figure 6.4.Suppose that for the update U8, we consider the possible partition t1, t2 illus-trated in Figure 6.3.In order to ensure the possibility of distributing the update U8 on the partition
t1 and t2, the update result U8(t) must be equal to the concatenation of all partialupdate results U8(ti)'s produced by evaluating U8 on each part ti. Actually this isthe case as illustrated in Figure 6.4.
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2 of the XML document t .Another partition is illustrated in Figure 6.5 that also works with U8. Figure 6.6illustrates the equivalence between the updated result U8(t) and the concatenationof partial update results U8(t
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2). Actually, the update U8 is such that itsexecution can be spread over any possible partition.
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′
2).Now, let us consider the update U9 which inserts an empty new node <n/>after each g-node (child of /child :: a/child :: f) in the same document t . Byevaluating U9 on t and on its partition t1 ,t2 proposed in Figure 6.3, we have thatthe updated result U9(t) and the concatenation of the partial results U9(t1)�U9(t2)are equivalent, as Figure 6.7 illustrates.Also for the other partition (t ′1, t ′2) proposed in Figure 6.5 for the same inputdocument t , Equation 6.1 holds for the update U9.The update U8 meets the property (*) that ensures that each modi�cation per-formed by the update only depends on the current target node. The same propertyis met by update U9.The following update U10 which uses the input document t reported in Fig-
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U9(t) U9(t1) U9(t2) U9(t1) � U9(t2)Figure 6.7: Equivalence between U9(t) and U9(t1) � U9(t2).ure 6.8, illustrates that for some updates, one should be more careful in choosinga partition of the input document. This update inserts a new empty node <n/> aslast into the target path Ptg=/child :: a/child :: f , as follows:
U10 = for $x in /child :: a/child :: freturn insert node <n/> as last into $xThis update is similar to the two previous ones in that each modi�cation isfocused on the current target node, but, di�erently, each update operation needs thatthe sub-tree rooted at the current target node has not been split during partitioning.This is because of the as last into clause. If the subtree is split, say, in two parts,then the <n/> would be inserted twice for a target node. This is illustrated in thesequel.
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′
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2) are not equivalent, as il-lustrated in Figure 6.10. This is because the update U10 inserts a new node n aslast of each subtree rooted at f-node on the document D and its parts D ′1 and D ′2.This means that we will have two nodes n in the �rst subtree rooted at f of theconcatenation result D ′1 � D ′2.The next examples illustrate the third kind of updates previously discussed, andfor which no partition works.
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′
2).Consider the following update U11 on the input document t (illustrated in Fig-ure 6.3) which replaces a target node c with a set of nodes labeled by g:

U11 = replace node /child :: a/child :: b/child :: c with
/child :: a/child :: f/child :: gand let us evaluate this update on both partitions t1, t2 (illustrated in Figure 6.3)and t ′1, t
′
2 (illustrated in Figure 6.5) for the input document t .Observe that the above update performs two main operations: it navigatesthrough the whole document in order to evaluate the source expression Qs=/child ::

a/child :: f/child :: g, and use the obtained result to update target nodes found byevaluation of the target expression Ptg=/child :: a/child :: b/child :: c. This entailsthat distributing the update on any partition, would prevent the source expressionfrom correctly building its result. This in turns prevents Equation 6.1 from holding,as exempli�ed next.
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2, as Figure 6.12 illustrates, and any other partition.
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2)Figure 6.12: Non-equivalent case between U11(t) and U11(t

′
1) � U11(t

′
2).Consider now the update U12, evaluated on the input document t and its pro-posed parts t1 and t2, illustrated in Figure 6.3. This update inserts the set ofsubtrees /child :: a/child :: f/child :: g as last into the only b-node. As for theprevious update, the source expression needs the whole input tree for its evaluation.Then, partitioning can not be applied, as illustrated in Figure 6.13.

U12 = for $x in /child :: a/child :: breturn insert node /child :: a/child :: f/child :: g as last into $xConcerning U12, note that a slight variation would make partitioning applicable:
U ′12 = for $x in /child :: a/child :: breturn insert node $x/child :: c as last into $xNow the source expression $x/child :: c needs the current sub-tree selected bythe outer iteration, and this makes partitioning applicable.
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U12(t) U12(t1) U12(t2) U12(t1) � U12(t2)Figure 6.13: Non-equivalent case between U12(t) and U12(t1) � U12(t2).From previous examples, we can conclude that in order to guarantee the real-ization of Equation 6.1 for a given update U , our partitioning update scenario canbe applied only when the update U performs many times the same operation ondi�erent subtrees, and each subtree contains all the information for the operation.Previous examples also illustrate that these subtree should be not split by parti-tioning (see update U10). Updates satisfying this requirement are called iterativeupdates.Informally, iterative updates are those ones described by the SXUF grammarsand such that:



6.3. iterative updates 111� if the update is elementary, then its target expression is a simple update ex-pression, while its source expression Qs does not use XPath expressions (onlyelement, sequence and text node construction are allowed).� otherwise, the update �rst selects a sequence of nodes, and then performupdate operations inside each subtree rooted at one of these nodes.In order to formally characterize iterative updates and to performs data par-titioning for them, we need to extract paths P and target paths Ptg from theseupdates, and then we need to analyze these paths. To this end, we de�ne the func-tion Epath(U ) for extracting path, and the function Etarget(U ) to extract targetpaths from an update U . Both functions are de�ned along the same lines of the ex-traction function for queries, de�ned in Figure 5.5 of Chapter 5. The two functionsare de�ned in Figure 6.14.Example 8 Consider the following update U13 and the same XML document tillustrated in Figure 6.3.
U13 = for $x in /child :: a/child :: freturn rename node $x/child :: g as ”n”By using the path extraction functions Epath(U13) and Etarget(U13) illustratedin Figure 6.14, we show that the set of extracted paths is τ={P1,P2,P3}, and theset of target paths τap={P3}, where

P1 = /child :: a

P2 = /child :: a/child :: f{for x}

P3 = /child :: a/child :: f{for x}/child :: g/dos :: node()

�As for queries, the variable information is not useful to perform the partition.Hence and in the rest of this chapter, we will rely on extracted paths once variableinformation has been eliminated. In Example 8, we will use the path (/child ::

a/child :: f) rather than (/child :: a/child :: f{for x}). We will do this by meansof the function ErVar(P) (already de�ned in De�nition 5.2.1 of Chapter 5).We are now ready to provide a formal characterization of iterative updates.De�nition 6.3.1 (Iterative Update) Iterative updates are de�ned according thefollowing case analysis.� if U is an elementary update, then it is iterative if and only if one of thefollowing holds.
1. U = delete N Ptg

2. U = rename N Ptg as a

3. U = replace N Ptg with Qs

4. U = insert N Qs Pos Ptg
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Epath(U , Γ, m) τ

Epath(() , Γ, m) = ()

Epath((Qs1,Qs2) , Γ, m) = Epath(Qs1 , Γ, m) ∪ Epath(Qs2 , Γ, m)

Epath(<a>Qs</a> , Γ, m) = Epath(Qs , Γ, 1)

Epath(/P , Γ, 0) = {/P}

Epath(/P , Γ, 1) = {/P/dos :: node()}

Epath(x/P , Γ, 0) = {P ′{for x}/P |P ′{for x}∈Γ}

Epath(x/P , Γ, 1) = {P ′{for x}/P/dos :: node() |P ′{for x}∈Γ}

Epath(delete N Ptg , Γ, 1) = Epath(Ptg , Γ, 1)

Epath(rename N Ptg as a , Γ, 1) = Epath(Ptg , Γ, 1)

Epath(replace N Ptg with Qs , Γ, 1) = Epath(Ptg , Γ, 1) ∪ Epath(Qs , Γ, 1)

Epath(insert N Qs Pos Ptg , Γ, 1) = Epath(Qs , Γ, 1) ∪ Epath(Ptg , Γ, 1)

Epath((U1,U2) , Γ, m) = Epath(U1 , Γ, m) ∪ Epath(U2 , Γ, m)

Epath(if Q then U1 else U2 , Γ, m) = E (Q , Γ, 0) ∪ Epath(U1 , Γ, 1) ∪ Epath(U2 , Γ, 1)

Epath(for x in Q return U , Γ, m) = Γ′ ∪ Epath(U , Γ ∪ Γ′, m)

where Γ′={P{for x}|P∈E (Q , Γ, 0)}

Epath(let x := Q return U , Γ, m) = Γ′ ∪ Epath(U , Γ ∪ Γ′, m)

where Γ′=E (Q , Γ, 0)

Etarget(U , Γ, m) τap

Etarget(() , Γ, m) = ()

Etarget((Qs1,Qs2) , Γ, m) = ()

Etarget(<a>Qs</a> , Γ, m) = ()

Etarget(/P , Γ, 0) = {/P}

Etarget(/P , Γ, 1) = {/P/dos :: node()}

Etarget(x/P , Γ, 0) = {P ′{for x}/P |P ′{for x}∈Γ}

Etarget(x/P , Γ, 1) = {P ′{for x}/P/dos :: node() |P ′{for x}∈Γ}

Etarget(delete N Ptg , Γ, 1) = Etarget(Ptg , Γ, 1)

Etarget(rename N Ptg as a , Γ, 1) = Etarget(Ptg , Γ, 1)

Etarget(replace N Ptg with Qs , Γ, 1) = Etarget(Ptg , Γ, 1)

Etarget(insert N Qs Pos Ptg , Γ, 1) = Etarget(Ptg , Γ, 1)

Etarget((U1,U2) , Γ, m) = Etarget(U1 , Γ, m) ∪ Etarget(U2 , Γ, m)

Etarget(if Q then U1 else U2 , Γ, m) = Etarget(U1, Γ ∪ Γ′, 1) ∪ Etarget(U2, Γ ∪ Γ′, 1)

where Γ′={P |P∈E (Q , Γ, 0)}

Etarget(for x in Q return U , Γ, m) = Etarget(U , Γ ∪ Γ′, 1)

where Γ′={P{for x}|P∈E (Q , Γ, 0)}

Etarget(let x := Q return U , Γ, m) = Etarget(U , Γ ∪ Γ′, 1)

where Γ′=E (Q , Γ, 0)Figure 6.14: Path extraction function for updates.



6.3. iterative updates 113� if U is either a let-update or a for-update expression, then it is iterative if andonly if it satis�es the properties required by De�nition 5.3.2 in Chapter 5 byconsidering Epath(U ) as the set of extracted paths.� If U=U1,U2, · · · ,Un, then it is iterative if each Ui is.In the above de�nition, the �rst case has been already motivated by means ofexamples. The second case relies on De�nition 5.3.2 which presents iterative queries.It is worth noticing that when this case applies, the iterative update U may containelementary update sub-expressions not meeting properties 1-4, as in the followingexamples.Example 9 Consider the following update U :
U = for $x in /child :: a/child :: breturn insert nodes $x/child :: f/child :: g as last into $xAccording to De�nition 6.3.1, we have that the inner insert-update is not iter-ative, but the whole update is. As we will see, partitioning will be made in such away that a subtree selected by the partitioning path /child :: a/child :: b is neversplit into two distinct parts. This ensures the possibility of correctly distribute theupdate evaluation on subtrees selected by the partitioning path.

�Still concerning the second case, it is worth noticing that let-updates are iter-ative only if the let binding does not use paths. For instance, the following updateis not iterative.
U = let $x := /child :: a/child :: b returnif $x/child :: c thendelete node $xThis is because the let binding performs a global visit of the document beforeevaluating the inner update. For reasons already explained, this global visit preventsany possible partitioning based evaluation.Instead, the following update is iterative:
U = let $x := <c/> returnfor $y in /child :: a/child :: b returninsert $x after $yAlso note that in the second item of the de�nition of iterative updates, if-expressions are not considered. Actually these expressions may occur as inner sub-expressions of iterative updates, like in the following variant of the above example.
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U = let $x := <c/> returnfor $y in /child :: a/child :: b returnif $y/child :: d then insert $x after $yThe reason why if-expressions have been excluded as top-level expressions, isthat in the general case the query de�ning the if-condition may require a globalvisit of the input document, and as already seen this makes partitioning impossible.The third item of the characterization of iterative updates captures sequenceupdates. Partitioning can be applied for such updates, if it can be applied for eachsingle update. This is quite intuitive. Shortly an example will be discussed.As seen in previous examples, the crucial issue while partitioning for updatesis to avoid splitting some particular subtrees. In order to specify a partitioningalgorithm, we need to know how to recognize such subtrees. To this end, we use theset of target paths in the case the update is iterative according to conditions 1-4,or the partitioning path (De�nition 5.3.3) otherwise. We call such a path atomic,since subtrees they point to cannot be split. Since an update can be a sequence ofdi�erent updates, actually partitioning has to consider a set of atomic paths duringthe construction of a partition. The following example illustrates this.Example 10 Consider the following update U and the input XML document tillustrated in Figure 6.3:
U = (for $x in /child :: a/child :: b return delete node $x ),(for $x in /child :: a/child :: f return rename node $x as ”n” )Here, the set of atomic paths of U , denoted AP(U ), is {P1,P2} with

P1 = /child :: a/child :: b

P2 = /child :: a/child :: f

�From the above discussion the following atomic-paths extraction de�nition fol-lows. It faithfully re�ects the characterization of iterative updates. We denote withAP(U ) the set of atomic paths of the iterative update U .De�nition 6.3.2 (Atomic Paths) Assume U is an iterative update.� If one of the following holds
1. U = delete N Ptg

2. U = rename N Ptg as a

3. U = replace N Ptg with Qs

4. U = insert N Qs Pos Ptgthen AP(U ) = {Ptg}



6.4. partitioning for iterative updates 115� if U is either a let-update or a for-update expression, AP(U ) = {PP} where
PP is the partitioning path of U according to De�nition 5.3.3.� If U=U1,U2, . . . ,Un, then AP(u) =

n
⋃

i=1

AP(Ui)Note that the above two de�nitions directly give conditions to deal with a work-load of n iterative updates U1,U2, . . . ,Un. In this case the entire workload is iter-ative, and atomic paths can be extracted just as indicated above for the sequencecase.6.4 partitioning for iterative updatesAs already said in the introduction, our partitioning technique for updates doesnot perform projection. The main motivation for this is to avoid complex mergeoperations (like the ones used in [BBC+11]) for recovering subtrees pruned out byprojection. Actually, this is not a limitation since partitioning alone is alreadysu�cient to ensure that each part is small enough to be processed by any main-memory XQuery engine. This is because, as for queries, the size of each part can becontrolled by stopping its generation as soon as its size exceeds the threshold value
maxSize . This value can be �xed along the same principles indicated for queries inthe previous chapter, in particular by keeping into account main-memory featuresof the particular given used engine.Our partitioning algorithm takes as input an XML document D , an iterativeupdate U and a threshold maxSize value. Through the static analysis techniquedescribed in the previous sections, our technique extracts the set of atomic paths
τap = AP(U ) from the iterative U . These paths guide the partitioning process sothat, a said before, subtrees they select are not split.To illustrate how the partitioning algorithm works, let us consider the inputdocument t in Figure 6.15 and the following iterative update U :
U = for $x in /child :: a/child :: f returninsert node <n/ > as last into $xfor which we have AP(U )=/child :: a/child :: f . Let us assume that maxSize=8.During partitioning, similarly to the case of queries, and for the same reasons,both path alignment and residuation are performed on atomics paths.We start the partitioning process from the root element l1 (see in Figure 6.15)which is a Pap non-terminal node. Here a path alignment Down(Pap) is performed,the current size cSize is increased with the length of the current node 2.length(a)and the current l1 is added to the �rst part t1. The next node considered is l2.In this case, the current node is a terminal Pap node. In this case we perform thefollowing steps:
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12An XML document t Part t1 Part t2 Part t3Figure 6.15: An XML document t and its parts t1, t2, t3.� we parse the whole subtree of the current node and write it in the currentpart; while doing this we also calculate the size Size of this subtree.� we increase cSize with the length of the current node, and Size.� we add l2 (with its subtree l3) to the current part t1.The process goes on in a similar way with l4 and l5. After having parsed thesecond one, the current size happens to exceed the maxSize . This implies that thecurrent part has to be ended and a new one has to be started. To this end, thealgorithm resets cSize ′ to 0 value, increases the number of parts pId ′ with 1, andcreates new part tpId ′ (we have pId ′=2).Then, the process goes to the next location l6 which does not match Pap, andcontinues the parsing following locations of its subtree l7, l8, l9, and stop this parsingat the location l10, due to the fact that the current size of the part exceeds maxSize .So the algorithm will close the current part, and create another part which willcontain the rest of the input document locations {l10, l11, l12}. The process ends upwith three di�erent parts as illustrated in Figure 6.15.As for queries (Chapter 5), we adopt a unique store for the partitioning resultedby our algorithm. Again, some nodes may belong to more than one part; thishappens for the root node in particular. The resulting partitioning store containsthree di�erent parts formed by the following indexed locations:

dom(σP) = {l11, l12, l13, l14, l15, l21, l26, l27, l28, l29, l31, l36, l310, l311, l312}We now provide a formal presentation of our partitioning algorithm and itsauxiliary functions.6.4.1 Partitioning AlgorithmAlgorithm 9 provides a formal presentation of the partitioning process.This algorithm is recursive and takes as inputs the following 5-tuples
<l;Pap; cSize; pId ;ListpId> representing the current state of the recursive process.Namely, this tuple indicates that the current node to be matched against the currenttarget path Pap is l; that the current size of the part whose creation is in progress is



6.4. partitioning for iterative updates 117Algorithm 8: ParseInput: A store σ, a location l∈dom(σ);Output: A store σ′, an integer Size;1 begin2 if σ(l) = text[s] then3 σ′:= {l← text[s]}; Size:= length(s)4 if σ(l) = a[()] then5 σ′:= {l← a[()]}; Size:= 2.length(a)6 else7 let L = (l1, l2, · · · , ln)8 for i = 1...n do9 (σi,Sizei):= Parse(σ; li)10 σ′:= {l← a[L]} ∪
⋃n

i=1σi;11 Size = 2.length(a) +
∑n

i=1Sizei12 return (σ′, Size)

cSize; that the current number of created parts is pId ; and �nally that the currentindexed list ListpId included parts pId 's. Of course, the algorithm is initially invokedwith cSize=0 and pId=1, while the location l is the root of the input XML docu-ment (σ, l), and Pap is the set of atomic paths extracted from the iterative update
U according to De�nition 6.3.2.In this algorithm, we still use the function PartLabel (σ; pId ) which produces anew store obtained from σ by renaming each location l to lpId .The algorithm distinguishes two main cases.� In the �rst case (lines 3-11) the current node is a terminal match for the atomicpaths. In this case, the function Parse(σ; l) parses the subtree rooted at thecurrent node and results the corresponding store σ′ plus the size of the subtree

Size (line 4). The function Parse(σ; l) is illustrated in details in Algorithm 8,it performs a simple parse of the tree and updates the tree size each time anew node is encountered. After this parsing, the resulting subtree store σ′ islabeled by means of PartLabel (σ′; pId). Then (lines 6-11), the algorithm addsthe resulting subtree to the current part, and checks whether the Size size ofthe subtree plus the current size cSize exceeds the maximal size maxSize : Ifthe check is negative, then current size cSize is increased with Size, otherwisethe current size cSize is reset to 0, a new (empty) part is created, and thecurrent pId is increased with 1.In this case, in order to optimize the time consumed for updating parts, thealgorithm uses an integer list ListpId (lines 9-10) which contains a list of iden-ti�ers pId of the parts that needs to be updated. In this case we have a nodewhich is a possible target node of the updates, so the current part is added tothe list.



118 Chapter 6. Partitioning for XQuery UpdatesAlgorithm 9: PartitionInput: A location l∈dom(σ), a set of atomic paths Pap, a part size cSize, a partnumber pId , an empty list of part pId 's ListpId ;Output: A store σP, a part size cSize ′, part number pId ′, list of pId 's ListpId
′ ;1 begin2 let σ(l) = a[L]/* Case 1. the current l is a Pap terminal node */3 if Res(a;Pap) = <−; ok_t> then4 (σ′,Size):= Parse(σ; l)5 σP:= PartLabel (σ′; pId)6 if cSize + Size ≤ maxSize then7 cSize ′:= cSize + Size; pId ′:= pId8 else9 if pId ′ /∈ ListpId then10 ListpId

′:= ListpId , pId ′ /* Current closed part will beupdated */11 cSize ′:= 0; pId ′:= pId + 1/* Case 2. the current l is a Pap non-terminal node or does notmatch Pap */12 else13 pIdfirst:= pId ; σP:= ∅;14 let L = (l1, l2, · · · , ln)15 for i = 1...n do16 (σP
i ; cSize; pId ;ListpId ):= Partition(li;Down(Pap); cSize; pId ;ListpId );17 σP:= σP ∪ σP

i ;18 pId last:= Max-Pid(σP); D:= dom(σP);/* Max-Pid() returns the biggest part number used in the store*/19 for p = pIdfirst...pId last do20 σP:= σP ∪ {(lp←a[rename−extr(L, p, D)])}21 cSize ′:= cSize + 2.length(a)22 if cSize ′ ≤ maxSize then23 pId ′:= pId24 else25 cSize ′:= 0; pId ′:= pId + 126 return (σP, cSize ′, pId ′, ListpId
′)� In the second case (lines 12-25), the current node l either is a possible non-terminal match of atomic paths, or does not match them. In both cases, thecomputation recursively goes on for each child li of the l node, after havingaligned atomic paths to the new tree level (line 15). After this partitioningproceeds in a way which is similar to that of the partitioning algorithm forqueries (Algorithm 2). When the recursive calls on children of li has termi-



6.4. partitioning for iterative updates 119nated, and the partitioning store updated (lines 18-20), the current part sizeis updated and the check for eventually creating a new part is made (lines21-25).Going back to the iterative update U used in our previous example, thanks tothe use of the ListpId list, at the end of the partitioning process we know that thesecond part does not need to be updated because it does not contain any targetnode. Figure 6.16 illustrates the input three and updated parts.
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U (t) U (t1) t2 U (t3)Figure 6.16: Partitioning update scenario on the input document t and its parts,for a given iterative update U .In the following section, we will present our fusion operation and its formalde�nitions, then we will provide details about the streaming implementation of ourpartitioning and fusion algorithms.6.4.2 Fusion OperationAs illustrated before, the last step in our partitioning update scenario is the fusionoperation. The main idea behind this operation is to concatenate all partial up-date results U (Di)'s in a streaming way, to produce the �nal update result U (D).The parts Di's are already created by the partitioning algorithm 9, and the partialupdated results U (Di)'s are performed by using a particular XQuery engine.The fusion operation takes as input the set of updated parts U (Di) and returns
U (D). A particular issue in the fusion process concerns the presence of repeatedlocations is distinct parts. For our example, repeated locations are:

l11, l21, l31, l26, l36 ∈ dom(σP)The fusion process has to be carefully speci�ed in order to ensure that these locationsare re-collapsed to a unique location, as illustrated in Figure 6.17. In this �gure,the �nal update result U (t1) � t2 � U (t3) contains only one root element l1 and l6,while the repeated nodes appeared in distinct parts will be eliminated.The fusion operation � is de�ned via the following de�nitions.De�nition 6.4.1 (ErIndex (lji)) Given an indexed location lji, the function
ErIndex (lji) removes the index j from lji:

ErIndex (lji) = li
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U (t1) t2 U (t3) U (t1) � t2 � U (t3)Figure 6.17: Fusion scenario on distinct (updated and non-updated) parts.De�nition 6.4.2 (Fusion of locations F (li, C)) Given a collection of trees C =

{t1, t2, · · · , tκ}, we have
F (li, C) = li ← a[L]with

L = ErIndex (Li) · ErIndex (Li+1) · . . . · ErIndex (Lm)and lji ← a[Lj] ∈ tj for j = i . . . m, and for some i and m with 1 ≤ i ≤ m ≤ κ.De�nition 6.4.3 (Fusion �) The collection of trees C = {t1, t2, · · · , tκ} repre-sents the set of parts created by partitioning the input tree t = (σt , l) for an iterativeupdate. For each tree tj = (σj, lj) the root node lj is the same for all parts in C, butwith di�erent index j.The updated parts are noted as t
′

1, t
′

2, · · · , t
′

κ. The fusion operation � concatenatesall trees t
′

1, t
′

2, · · · , t
′

κ to produce the �nal update result of the input tree t , as follows:
t
′

1 � t
′

2 � · · ·� t
′

κ = (σ′, l)

where σ′ = {
⋃

li∈σt
F (li, C)} ∪ {l← a[ErIndex (L)] | ∃ i . l⊥ ← a[L] ∈ ti}Above, locations l⊥ are those newly created by the update.Soundness of our partitioning scenario is stated below, for the general case of anupdate workload.Theorem 6.4.4 (Soundness of Partition and Fusion) Let maxSize be a sizethreshold value, let U1, . . . ,Um be well-formed iterative updates with their respectingatomic path sets Papj

. Let t=(σ, lt ) be an XML tree. Then:Assuming� Pap= ∪m
1 {Papj

} and� Partition(lt ;Down(Pap); 0; 1; pId ) = (σP; cSize; pId).we have:
Uj(t) ∼= Uj(t1) � . . . � Uj(tpId )where ti=PartLabel−1(σP

i ; pId).In the following section, we will provide a streaming representation of our par-titioning and fusion algorithms.



6.5. streaming implementation 1216.5 streaming implementationPrevious formalizations of partitioning and fusion algorithms are not amenable tohandle big �les, as they are DOM-oriented: they assume that the whole input storesare available. As already said, this DOM-based formulation is presented to give aformal speci�cation of the algorithm.To handle arbitrary large �les, we implemented previous partitioning and fusionalgorithms in a streaming fashion on top of a SAX parser [ver00]. In our implemen-tation, we consider the SAX events already considered for the case of queries (seeChapter 5):
SAXEvent := startDocument

| startElement(qName)

| endElement(qName)

| Characters(String)Our SAX implementations has two essential tasks: the �rst one is to perform thepartitioning (see Section 6.5.1), and the second one is to apply the fusion operationover the updated partitioning (see Section 6.5.2).6.5.1 PartitioningThe SAX implementation of partitioning is similar to that for queries (Section 5.6of Chapter 4). It uses two main stack-based data structures. These stacks are usedto record the current status of the algorithm when an open-tag is met, so that thestatus can be recovered when the corresponding close-tag is met. The �rst stack
stacktag is used to record open-tag name of the current node being processed qName,the result of the residuation of Res(qName; τap), an identi�er tagId of the currentopen-tag node qName. The second stack stackτap

is used to record all alignmentresults Down(τap) of the atomic paths τap.Also, the partitioning algorithm uses and maintains two text-�les during theprocessing: the �rst one Fileart which contains all arti�cial tags and their tagId 's.These arti�cial tags are those ones created during partitioning to preserve the well-formedness of generated parts, but that do not belong to the original �les. Thesetags are closed and reopened when the creation of a part ends, and when the creationof the following part begins. The second text �le FilepId contains identi�ers (naturalnumbers) corresponding to parts that need to be updated. As already said, �lterpartitioning only parts mentioned in this �le will be updated, thus saving processingtime as some parts will be not processed.The implementation also records some values in the following global variables:� cSize the current size (nodes and text-values) of the current part.� pId the current number of created parts.� tagId the current identi�er node.



122 Chapter 6. Partitioning for XQuery Updates� τap the set of atomic paths.� containsAtomicNode the number of terminal τap nodes in the current part.Algorithm 10: Partition-Init-DataStructuresInput: An input XML document t , a pre-de�ned integer value maxSize, a set ofatomic paths τap extracted from a given update U ;Output: Initialize �ag containsAtomicNode, stacks stacktag and stackτap
, text �les

Fileart and FilepId ;1 begin2 cSize:= 0; pId := 1; tagId := 0; containsAtomicNode:= 03 stacktag:= ()4 stackτap
:= ()5 create Fileart6 create FilepIdAlgorithm 11: SAX-startDocumentInput: A set of atomic paths τap;Output: Side e�ect on τap and Modality ;1 begin2 τap:= Down(τap)3 Modality := partAlgorithm 12: SAX-charactersInput: A string-value str, current part size cSize;Output: Side e�ect on the current part size cSize;1 begin2 writeOutput(str)3 cSize:= cSize + length(str)Algorithm 13: SAX-endDocumentInput: Flag containsAtomicNode, part number pId ;Output: Side e�ect on the text-�le FilepId ;1 begin2 if containsAtomicNode=1 then/* Set the current part tpId to be updated */3 writeF ilepId(tpId ::to-be-updated)By using this status information, we can split the partitioning algorithm in twodistinct parts, which are executed when startElement and endElement are invoked,respectively.



6.5. streaming implementation 123Algorithm 14: SAX-startElementInput: Open-tag qName, part number pId , part size cSize, node id tagId ;Output: Side e�ect on cSize, tagId , τap and containsAtomicNode;1 begin2 MATCH:= Res(qName; τap)3 cSize:= cSize + length(qName)4 tagId := tagId + 15 if Modality=part then6 switch MATCH do7 case ok_nt/* qName is a non-terminal match τap */8 stacktag.add(qName, MATCH, tagId , part)9 stackτap
.add(Down(τap))10 τap:= stackτap

.peek11 case ok_t/* qName is a terminal match τap */12 stacktag.add(qName, MATCH, tagId , part)13 stackτap
.add(Down(τap))14 τap:= stackτap

.top()15 containsAtomicNode:= 116 Modality := parse17 case fail/* qName does not match τap */18 stacktag.add(qName, MATCH, tagId , part)19 writeNodeAttribute(qName, tagId)20 else if Modality=parse then21 stacktag.add(qName,−,−, parse)22 writeOutput(qName)Before starting the processing, our partitioning algorithm takes the followinginputs (see Algorithm 10):� the input XML document t .� the set of atomic paths τap extracted from the iterative updates (recall thatthe case of a workload is considered too).� the threshold integer value maxSize for the part sizes.and it is initially invoked with cSize=0, tagId=0 and pId=1 (line 2 of Algorithm10). Also, all data structures needed to perform the partitioning stacktag , stackτap
,

Fileart and FilepId will be de�ned (lines 3-6 of Algorithm 10).During partitioning we associate a unique identi�er tagId with each elementwe put in the partition. This identi�er is needed in order to distinguish among



124 Chapter 6. Partitioning for XQuery UpdatesAlgorithm 15: SAX-endElementInput: Close-tag qName, part number pId , part size cSizeOutput: Side e�ect on cSize, pId , τap and containsAtomicNode1 begin2 MATCH:= stacktag.pop(stacktag(top).get(1))3 currTagId:= stacktag.pop(stacktag(top).get(2))4 currModality:= stacktag.pop(stacktag(top).get(3))5 if currModality=part then6 Size:= length(qName)7 switch MATCH do8 case ok_nt9 τap:= stackτap
.pop10 case ok_t11 τap:= stackτap
.pop12 Modality := part13 if cSize + Size ≤ maxSize then14 cSize:= cSize + Size15 writeOutput(qName)16 else/* Close current part tpId */17 for i=[(stacktag.size− 1)...0] do18 currTagName:= stacktag(i).get(0)19 currTagId:= stacktag(i).get(2)20 writeOutput(currTagName)21 writeF ileart(currTagName | currTagId | pId | close)22 if containsAtomicNode=1 then/* Set the current part tpId to be updated */23 writeF ilepId(tpId ::to-be-updated)24 containsAtomicNode:= 0/* Reset cSize to 0 value and increase pId with 1 */25 cSize:= 0; pId := pId + 1/* Create new part tpId */26 for i=[0..(stacktag.size− 1)] do27 currTagName:= stacktag(i).get(0)28 currTagId:= stacktag(i).get(2)29 writeNodeAttribute(currTagName, currTagId)30 writeF ileart(currTagName|currTagId|pId |open)31 cSize:= cSize + length(currTagName)32 cSize:= cSize + length(qName)33 writeOutput(qName)34 else if currModality=parse then35 cSize:= cSize + length(qName)36 writeOutput(qName)



6.5. streaming implementation 125original and arti�cial tags, and will be erased during fusion. This identi�ers is apositive integer, whose value starts from 1 and which is incremented each time anew open-tag is met. Later on we will illustrate details of this aspect.In startDocument event (see Algorithm 11), the algorithm performs the �rstalignment Down(τap) (line 2) and initializes the modality �ag Modality with partvalue (line 3). We will explain the functionality of this �ag later.Both startElement and endElement algorithms work in two possible modalities,the partitioning modality (part) and the parsing modality (parse). The �rst oneconcerns the case that the algorithm is in the search of a terminal-match for Papand the terminal match is either not-found or the the current node is one. Underthis modality the two algorithms implement the speci�cation reported in the DOM-based Algorithm 9). The second possible modality is for the case that the currentnode is inside a subtree rooted at a terminal Pap node. Under this modality, the twoalgorithms implement the speci�cation given in the parsing DOM-based Algorithm8; under this modality, the a new part can not be created; the entire subtree has tobe added to the current part.In startElement event (see Algorithm 14), we put most of the logic of theDOM-based speci�cation partitioning and parsing algorithms (Algorithms 8 and 9).Actually, all partitioning decisions are based on information that are available whenan open-tag is met. Also, we put the updates of cSize, tagId and the residuation ofthe atomic paths set Res(qName; τap) (lines 2-4), but we defer partitioning decisionto endElement calls.Concerning the partitioning modality (lines 5-20) and if the MATCH value iseither ok_nt or ok_t, we put the current status (qName, MATCH, tagId , part) ofthe algorithm into the stacktag , we also perform a path alignment of the current τapand put the result into the stackτap
(lines 7-10 and 11-16). In addition to these tasks,and in case of MATCH=ok_t we do the following: we set containsAtomicNode to1 to indicate that the current part contains a terminal τap node (line 15) and assuch it has to be updated; �nally we set the Modality �ag with parse value duringthe ok_t matching case (line 16), as for the following subtree no new part has tobe created. If MATCH value is fail, we only keep the current information (qName,

fail, tagId , part) into the stacktag (line 18). Finally we write the current open-tag
qName into the current part. Note that in the partitioning modality, we add a newattribute tId which contains the current tagId value for each open-tag qName (line20).Concerning the parsing modality (lines 21-23), we only keep the following infor-mation of the current qName (qName, -, -, parse) into the stacktag (line 22), andwrite open-tag qName into the current part (line 23). Note that we do not considera tagId for each qName manipulated in the parsing modality.In endElement (see Algorithm 15), we �rst perform a pop operation on the
stacktag and keep the information in the following variables: MATCH is the cur-



126 Chapter 6. Partitioning for XQuery Updatesrent match value; currTagId is the current tag identi�er; and currModality is thecurrent working modality (lines 2-4). This pop operation permit to recover statusinformation at the moment the corresponding open-tag was met.If the information got from the stacktag tell us that we have a part currentmodality (line 5), we calculate the length of the current qName and keep it in
Size variable (line 6), then we make the following case analysis on the MATCHinformation relative with the current close-tag qName, and got from the stacktag(lines 5-34). While if the information tell us that we have a parse current modality(line 35), we only increase the current size cSize with the length(qName) (line 36),and then write the current close-tag qName in the current part (line 37).If the current close-tag is for a non-terminal Pap node (lines 8-9), we pop the topelement of the stackτap

. While If the current close-tag is for a terminal Pap node(lines 10-12), we pop the top element of the stackτap
, and change the Modality �agto part (line 12).Since the parsing of the atomic subtree has ended, we compare the current sizepart with the maximal part size allowed maxSize (line 13). If the creation of a newpart has to be done, then we iterate on the stack stacktag, close all the open tags(lines 17-21), and keep these closed-tags with their information tag-name, tagId ,

pId and tag-case which is either open or close into the text �le Fileart. Then wecheck if the current close part will be updated or not. To this end, we check if the
containsAtomicNode value equals 1 (line 22), we keep the current part name (tpId ::to-be-update) into another text �le FilepId (line 23), and reset containsAtomicNodevalue to 0 (line 24). Then the algorithm resets cSize to 0 and increases the partnumber pId by 1 (line 25). After that the new part is created, by reopening alltags kept into the stacktag into the new created part, in reversal order (lines 26-30). During this process, we add respective records [tag-name,tagId ,pId ,tag-caseopen] into the text �le Fileart (line 30), and increase cSize with the length of eachre-opened tag length(currTagName) (line 31). At the end, we increase the currentpart size with length(qName) (line 32), and �nally we write the current close-tag
qName in the current part (line 33).In Characters event (see Algorithm 12), we only write the text-content str ofthe current qName into the current part tpId (line 2), then add the length of str tothe current part size cSize (line 3).In endDocument (see Algorithm 13), we need to verify if the last created part tpIdwill be updated or not, we do this by checking the value of �ag containsAtomicNode .If it equals 1, this means that the current part will be updated, otherwise it isconsidered as non-updated part, and as we did before, we keep the checking resultinto the FilepId .To illustrate how the streaming partitioning algorithm works, we will use thefollowing iterative update.Example 11 Consider the following iterative update U :
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U = for $x in /child :: a/child :: b/child :: freturn rename node $x as ”n”and the input XML document t illustrated in Figure 6.18. This update renameseach child f-node of the b-node as "n". We have τap=/child :: a/child :: b/child :: fand assume maxSize = 9.Input document t Part t1 Part t2 Part t3<a><d><c></c></d><b><f><c>go</c></f><f><g>to</g></f></b><c><f><d></d></f></c></a>

<a tId="1"><d tId="2"><c tId="3"></c></d><b tId="4"><f tId="5"><c>go</c></f></b></a>
<a tId="1"><b tId="4"><f tId="6"><g>to</g></f></b></a> <a tId="1"><c tId="7"><f tId="8"><d></d></f></c></a>Figure 6.18: An input document t and its created parts t1, t2, t3.The partitioning process starts when the document is opened; at this momentatomic paths are aligned, and modality is set to partitioning. Then the root element<a> is met. Algorithm 14 performs a residuation Res(a; τap); increases the currentsize cSize with the length of the current node length(qName); increases the tagidenti�er tagId with 1. Since we are in partitioning modality, the algorithm checksthe MATCH value, which is in our case ok_nt. This means that we have a possiblenon-terminal τap node, so we add the following values [a,ok_nt,1,part] at the topof the stacktag, perform a path alignment Down(τap) and add it to the top of the

stackτap
, and �nally write the open-tag of the current qName with the current tagIdas attribute (we write <a tId="1">) into the current part (line 8 of Algorithm 14).Then the process goes to the next node (see Figure 6.19).Input document Part stacktag

t t1 [qName,MATCH, tagId ,Modality ]<a><d><c></c></d><b><f><c>go</c></f><f><g>to</g></f></b><c><f><d></d></f></c></a>
<a tId="1"><d><c></c></d><b><f><c>go</c></f></b></a> [a,ok_nt,1,part]

τap = {/child :: a/child :: b/child :: f}
cSize = 1Figure 6.19: Partitioning scenario: the current open-tag is <a>.The next event is for an open-tag <d> which does not match the current set ofatomic paths, so we only increase cSize with the length of the tag and tagId with1, add the following information [d,fail,2,part] at the top of the stacktag, and



128 Chapter 6. Partitioning for XQuery Updateswrite the current open-tag with the respective tagId attribute (<d tId="2">) intothe current part. We repeat the same treatment with the following open-tag <c>which does not match τap as well, and add the tuple [c,fail,3,part] at the topof the stacktag, and write this node with its tagId attribute <c tId="3"> into thecurrent part (see Figure 6.20).Input document Part stacktag

t t1 [qName,MATCH, tagId ,Modality ]<a><d><c></c></d><b><f><c>go</c></f><f><g>to</g></f></b><c><f><d></d></f></c></a>
<a tId="1"><d tId="2"><c tId="3"></c></d><b><f><c>go</c></f></b></a> [c,fail,3,part][d,fail,2,part][a,ok_nt,1,part]

τap = {/child :: b/child :: f}
cSize = 3Figure 6.20: Partitioning scenario: parsing the open-tags <d><c>.Now we have the close-tag </c>. Here the algorithm performs the followingtasks: pop the top element of the stacktag and keep the pop values in the followingvariables MATCH, currTagId and currModality. Then the algorithm checks the

currModality value which is part in the current case, so the process will update
Size, then add it to the current part size cSize, which now equals to 5 and does notexceed the maxSize . So we �nally write the current close-tag in the current part.We repeat the same process with the close-tag </d>, as illustrated in Figure 6.21Input document Part stacktag

t t1 [qName,MATCH, tagId ,Modality ]<a><d><c></c></d><b><f><c>go</c></f><f><g>to</g></f></b><c><f><d></d></f></c></a>
<a tId="1"><d tId="2"><c tId="3"></c></d><b><f><c>go</c></f></b></a> [a,ok_nt,1,part]

τap = {/child :: b/child :: f}
cSize = 5Figure 6.21: Partitioning scenario: parsing the close-tags </c></d>.The process continues in the same scenario for the next open-tag <b> which is anon-terminal match for atomic paths; the current cSize and tagId are increased; apath alignment Down(τap) is performed and the new τap is added to the stackτap

;also, the following record [b,ok_nt,4,part] is added at the top of the stacktag; and�nally the current open-tag with its tId attribute is written into the current part�le.



6.5. streaming implementation 129Then the process goes to the next node <f> which is a terminal Pap node. Thecurrent cSize and tagId are increased. Then, we perform the following tasks: weadd the current information [f,ok_t,5,part] at the top of the stacktag ; we performa path alignment Down(τap) and push the new τap on the stackτap
; we increase the

containsAtomicNode by 1 and change the partitioning modality to the parsing one
Modality=parse, to start the parsing of the subtree rooted at our current terminalmatch of atomic paths. Then we write the current open-tag with its tId attribute onthe current part. Note that in the parsing modality, we only keep the tag-name andthe current modality parse for each open-tag encountered in the current subtree.So for the following open tag <c> we add records of the form [c,-,-,parse] in thestack. The tag size is added to the current part size cSize , and write the encounteredopen- tag into the current part. Figure 6.22 illustrates all tasks performed above.Input document Part stacktag

t t1 [qName,MATCH, tagId ,Modality ]<a><d><c></c></d><b><f><c>go< /c >< /f ><f><g>to</g></f></b><c><f><d></d></f></c></a>
<a tId="1"><d tId="2"><c tId="3"></c></d><b tId="4"><f tId="5"><c>go< /c ></f></b></a> [c,-,-,parse][f,okt,5,part][b,ok_nt,4,part][a,ok_nt,1,part]

τap = {−}
cSize = 10Figure 6.22: Partitioning scenario: parsing the subtree <b><f><c>go.Now we have the current event is for the close-tag </c>. We are in parsingmodality. Here Algorithm 15 recovers information from the stacktag, and veri�esthat the corresponding open-tag does not match atomic paths. So it increases thecurrent size cSize with the length of the current close-tag </c>, and writes theclose-tag into the current part. The next close-tag </f> occurs still in a parsingmodality. The algorithm performs the following tasks: it recovers information fromthe stacktag and realizes that the tag is relative to a terminal match of atomic paths.So it pops path information from stackτap

, then changes the Modality �ag to partmode; then it checks whether the current part size cSize plus the Size value exceeds
maxSize or not. It is positive in the current case, so we will close all the open tags,and keep the information status [tag-name,tagId,1,close] of these new closed-tags into the Fileart. Then we reset cSize to 0 and increase the part number pId by1, then reopen the same tags in reversal order in the new created part, increase cSizewith the length of each new open-tag length(currTagName), and keep them withtheir information [tag-name,tagId,1,open] into the Fileart. Finally we increasethe current part size with length(qName), then we write it in the new created part
t2. Figure 6.23 shows us all previous tasks.The process continues parsing the subtree starting from the previous open-tag
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t t1 t2 [qName,MATCH,
tagId ,Modality ]<a><d><c></c></d><b><f><c>go</c></f><f><g>to</g></f></b><c><f><d></d></f></c></a>

<a tId="1"><d tId="2"><c tId="3"></c></d><b tId="4"><f tId="5"><c>go</c></f></b></a>
<a tId="1"><b tId="4"><f><g>to</g></f></b></a> [b,ok_nt,4,part][a,ok_nt,1,part]

τap = {/child :: f}
cSize = 14 ≥ maxSize

F ileart F ilepId[b,4,1,close][a,1,1,close][a,1,2,open][b,4,2,open] t1::to-be-updatedFigure 6.23: Partitioning scenario: parsing close-tags </c></f>, and create a newpart t2<b> and arrives to the current <f> which is again a terminal node for atomic paths.Then the current cSize and tagId will be updated. Then the same treatment withterminal nodes illustrated before will be repeated: we add the current information ofthis node [f,ok_nt,6,part] at the top of the stacktag; a path alignment on atomicpaths is performed and the new set is added to the stackτap
; the containsAtomicNodeis set to 1; and then the �ag Modality is changed to parse, to start the parsing ofthe subtree rooted at the current terminal match for atomic paths; �nally we writethe current tagId tag into the current part t2.Since the current modality is parse, we parse the subtree rooted at the cur-rent terminal match, and copy it to the current part, as done before. In particu-lar, this subtree contains the following fragment <g>to, so the information status[g,-,-,parse] is put into stacktag. Then the process goes to the next close-tagnode </g>. Figure 6.24 illustrates the e�ect of these steps.Both close-tags </g> and </f> will be written in the current part t2 by callingendElement event, because the checking of exceeding the maximal size maxSize isstill negative (cSize=8). While when we arrive to the close-tag </b>, the checkingsize will be positive. So we will close the current part t2 as we did before by creatinga new close-tag </a>, and add its information status [a,1,2,close] to the Fileart.We check then the updating status for the closed part which is to-be-updated part,and keep the result t2::to-be-updated into the FilepId ; �nally create a new part

t3 which starts with a new open-tag <a tId="1">. Then the process goes for thenext node <b>. Figure 6.25 illustrates all previous tasks.For the rest of the document, the process goes according the lines of previouslyillustrated steps, and ends up with three di�erent parts. Only parts t1, t2 will be
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t t1 t2 [qName,MATCH,
tagId ,Modality ]<a><d><c></c></d><b><f><c>go</c></f><f><g>to< /g >< /f ></b><c><f><d></d></f></c></a>

<a tId="1"><d tId="2"><c tId="3"></c></d><b tId="4"><f tId="5"><c>go</c></f></b></a>
<a tId="1"><b tId="4"><f tId="6"><g>to< /g ></f></b></a> [g,-,-,parse][f,okt,6,part][b,ok_nt,4,part][a,ok_nt,1,part]

τap = {−}
cSize = 6

F ileart F ilepId[b,4,1,close][a,1,1,close][a,1,2,open][b,4,2,open] t1::to-be-updatedFigure 6.24: Partitioning scenario: parsing open-tags <f><g>toInput document Part Part Part
t t1 t2 t3<a><d><c></c></d><b><f><c>go</c></f><f><g>to</g></f></b><c><f><d></d></f></c></a>

<a tId="1"><d tId="2"><c tId="3"></c></d><b tId="4"><f tId="5"><c>go</c></f></b></a>
<a tId="1"><b tId="4"><f tId="6"><g>to</g></f></b></a> <a tId="1"><b><f><d></d></f></b></a>

τap = {/child :: b/child :: f}
cSize = 10 ≥ maxSize

stacktag F ileart F ilepId

[qName, MATCH, tagId , Modality ][a,ok_nt,1,part] [b,4,1,close][a,1,1,close][a,1,2,open][b,4,2,open][a,1,2,close][a,1,3,open] t2::to-be-updated
t1::to-be-updatedFigure 6.25: Parsing close-tags </g></f></b>, and create a new part t3.�agged as parts that will be updated. The third one will be not �agged, because itdoes not contain any terminal Pap node, as illustrated in Figure 6.26.

�After generating three parts t1, t2 and t3, and updating the parts t1 and t2, thenext step is to concatenate the two updated parts with the non-updated third one
t3. To this end, we rely on the fusion algorithm which is illustrated next.



132 Chapter 6. Partitioning for XQuery UpdatesInput document t Part t1 Part t2 Part t3<a><d><c></c></d><b><f><c>go</c></f><f><g>to</g></f></b><c><f><d></d></f></c></a>
<a tId="1"><d tId="2"><c tId="3"></c></d><b tId="4"><f tId="5"><c>go</c></f></b></a>

<a tId="1"><b tId="4"><f tId="6"><g>to</g></f></b></a> <a><c tId="7"><f tId="8"><d></d></f></c></a>Figure 6.26: Final parts t1, t2, t3 produced by the partitioning technique.6.5.2 FusionThis section presents the SAX algorithms for the fusion process. The fusion algo-rithm takes as input the following values:� the number of created parts pId ;� the text �le Fileart which is already created during the partitioning process,and contains all information about arti�cial open/close tags.Since the parts will be parsed sequentially, one after the other, a dynamic SAXparser is initialized for parsing each created (updated/non-updated) part alone.When the parsing of the current part is �nished, the dynamic parser automaticallygoes to the next part to start the parsing process (see Algorithm 16).Once the �le Fileart is available, the fusion process has to perform very sim-ple operations. Essentially, for each open/close-tag, using the Fileart �le to checkwhether the current tag has to be put to the resulting document. Again, two essen-tial SAX event handlers are used, one for the event startElement (see Algorithm17), and one for the event endElement (see Algorithm 18).In order to accelerate lookup operation on Fileart, we �rst load all its contentand store it into an array we call arrayart. During this process, each line in Fileartis split, by using the delimiter "|" into four di�erent values (tagName, tagId, partId,tagCase), and added i to the arrayart. Once created this array will be not changed,and will be only used for lookup operations.Also we use the stacksync to synchronize the writing of open/close tags of thecurrent tag in the �nal result. In particular, we push in this stack the currentopen-tag with its tagId attribute when the startElement event occurs (see Algo-rithm 17), and pop the top element of this stack when endElement event occurs (seeAlgorithm 18).In startElement event, Algorithm 17 �rst checks whether the current tag con-tains an attribute tId:� if the check is positive, the algorithm will keep the tId value in the currTagIdvariable, otherwise put the value 0 in this variable (lines 2-5). Next, thealgorithm veri�es whether the current tag is will be put in the output tree



6.5. streaming implementation 133Algorithm 16: Fusion-mainProgramInput: A text �le Fileart, a number of parts pIdOutput: Create the �nal update result tfinal1 begin2 openFile(Fileart) /* Open the text-file Fileart */3 strLine:= ReadTextF ile(Fileart) /* Open Fileart and read itline-by-line */4 while (Fileart) is not �nished do5 split(strLine, ”|”) /* Split current string line by using thedelimiter "|", and keep the 4 different values obtained fromthis line into stackart */6 arrayart.add(tagName, tagId, partId, tagCase)7 closeF ile(Fileart) /* Close the text-file Fileart *//* Initialize a dynamic SAX parser for each Part */8 for i=[1..pId ] do9 StartParser(ti) /* Start parsing the current part ti */10 currPId:= i /* Keep the index i of the current part ti */11 return (tfinal)Algorithm 17: Fusion-startElementInput: open-tag qName, arrayart, stacksyncOutput: Side e�ect on arrayart and stacksync1 begin2 if qName.containAttribute(tId) then3 currTagId:= getTagIdAttribute(qName)4 else5 currTagId:= 0/* Check all open-tags in arrayart */6 for i=[0..(arrayart.size− 1)] do7 tempTagName:= arrayart(i).get(0)8 tempTagId:= arrayart(i).get(1)9 tempPId:= arrayart(i).get(2)10 tempCase:= arrayart(i).get(3)11 if qName=tempTagName and currTagId=tempTagId and
currPId=tempPId and tempCase=”open” then12 Skip(qName) /* Do not write the current open-tag qName into

tfinal */13 break14 else15 writeOutput(qName) /* Write the current open-tag qName into
tfinal */16 stacksync.add(qName, currTagId)



134 Chapter 6. Partitioning for XQuery UpdatesAlgorithm 18: Fusion-endElementInput: close-tag qName, arrayart, stacksyncOutput: Side e�ect on arrayart and stacksync1 begin/* Pop the top element from stacksync and keep (tagname, tagid)values */2 tagname:= stacksync.pop[top].get(0)3 tagid:= stacksync.pop[top].get(1)/* Compare the current close-tag qName with the content of arrayart*/4 for i=[0..(arrayart.size− 1)] do5 tempTagName:= arrayart(i).get(0)6 tempTagId:= arrayart(i).get(1)7 tempCase:= arrayart(i).get(3)8 if qName=tempTagName and qName=tagname and
tagid=tempTagId and tempCase=”close” then9 Skip(qName) /* Do not write the current close-tag qNameinto tfinal */10 arrayart.remove(i)11 break;12 else13 writeOutput(qName) /* Write the current close-tag qName into

tfinal */
tfinal or not. To this end, it veri�es whether arrayart contains a line matchingthe current tag and the current Id attribute, and whose tagCase is 'open'(line 11). If the check is positive, this means that the current open-tag isinsigni�cant and we do not write into the output tree tfinal, so it is dropped(lines 12-13).� if the check is negative (line 15), the algorithm simply writes the open-tagto the output tree tfinal (in this case either the node has been added by theupdate, or it is a node belonging to a subtree selected by an atomic path).In all the above cases, the algorithm add the tuple (qName, tId) into stacksync (line16).In the endElement event, the Algorithm 18 performs similar steps as above, withthe di�erence that at the beginning the top of the stacksync is popped. The poppedID attribute is used for checking whether the current close-tag should be writteninto the output tree tfinal or not (lines 4-13).Going back to our example, we see now how the fusion operation works toconcatenate three generated parts U (t1), U (t2) and t3 which are illustrated in Fig-ure 6.27. Note that t3 is not updated because it does not contains any terminal Papnode.
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U (t1) U (t2) non-updated t3 U (t1) � U (t2) � t3<a tId="1"><d tId="2"><c tId="3"></c></d><b tId="4"><n tId="5"><c>go</c></n></b></a>

<a tId="1"><b tId="4"><n tId="6"><g>to</g></n></b></a> <a><c tId="7"><f tId="8"><d></d></f></c></a>
<a><d><c></c></d><b><n><c>go</c></n><n><g>to</g></n></b><c><f><d></d></f></c></a>Figure 6.27: Updated parts U (t1),U (t2), non-updated t3, and the fusion �nal result.The fusion process starts parsing the �rst part, and read the �rst open-tag <atId="1">. By checking this tag, we show that this one is signi�cant tag, so we keepit in the output tree tfinal. The pair (a, 1) is pushed into the stacksync. The processgoes on in a similar way for the following open-tags <d tId="2"> and <c tId="3">,and pairs (d, 2) and (c, 3) are pushed into the stacksync.When the process arrives to the closed-tag </c>, the algorithm pops the topelement from stacksync which is (c,3). Then, by also considering the retrieved IDattribute and arrayart, it checks whether the current tag is needed to write into theoutput tree tfinal or not. This is not the case, so it writes </c> in tfinal. The samehappens for </d> .The fusion process continues in the same scenario for the rest of the currentpart t1, and write the following fragment <b><n><c>go</c></n> into the �nal result

tfinal. When the process arrives to the close-tag </b>, here we have that the currenttag is insigni�cant close-tag, so the algorithm does not write it. This happens for thefollowing </a> as well. At this moment, the parsing of the current part �nishes, andthe process goes to the updated second part, and then the third non-updated part,in a similar way. The process ends up with the �nal updated result U (t1)�U (t2)�t3as illustrated in Figure 6.27.6.6 experimental evaluationIn the previous sections, we presented our XML data partitioning scheme that,given an iterative update U and an input document D , partitions D in a set of parts
{D1, . . . ,Dκ} so that U (D) is equivalent to the concatenation ofU (D1)�. . .�U (Dκ),where � is our fusion operation. When this partitioning scheme is applicable, it canimprove the scalability of existing main-memory engines, as it allows the system toprocess one part per time.In this section we present an experimental evaluation of the partitioning updatetechnique. We will �rst show that the proposed algorithm signi�cantly improvesthe scalability of a popular main-memory query engine (particularly Saxon andQizx Query engines). Then, we will show that partitioning, when combined with afusion algorithm. Finally, we will experimentally analyze the relation between the



136 Chapter 6. Partitioning for XQuery Updatesoverall performance of the system and the actual value of maxSize (the maximumpart size).6.6.1 Experimental SetupWe implemented our partitioning algorithm, as well as our fusion algorithm, in Java6 and tested their behavior on the XMark benchmark [SWK+02a]. In particular, weevaluated our system on XMark documents by relying on two widely used XQueryengines, Saxon [sax] and Qizx [qiz]. Saxon is an engine supporting all main W3Cstandards for XML manipulation and schema validation, while Qizx is specialized onquerying and updating, and o�ers powerful optimization techniques. However, wewill see that even with the use of standard path-based projection, these systems donot scale up in terms of document size (other powerful systems like BaseX [bas] havequite similar performances). Our test results show that our technique overcome thislimitation for iterative updates, as it allows these engines to scale up to arbitrarydocument sizes.All experiments were performed on a 2.53 Ghz Intel Core 2 Duo machine (4GBmain memory) running Mac OSX 10.6.8. All XML documents were loaded on anexternal USB2 7200 rpm 1 TB disk unit.To avoid the perturbations introduced by system activity, we ran each experi-ment ten times, discarded the best and the worst performance, and computed theaverage of the remaining times.6.6.2 Tests ResultsWe used documents whose size ranges from 1GB to 5GB for Saxon and from 1GBto 15GB for Qizx. Concerning the threshold value maxSize , we set (∼ 25MB) forSaxon, and (∼ 95.36 MB) for Qizx. These di�erences in terms of memory andpart sizes are due di�erences of performances between the two engines in terms ofmemory management. For both Saxon and Qizx we allocated 512MBs for mainmemory of the Java Virtual Machine.Concerning updates, we used the following updates proposed by the PhD thesisof Marina Sahakyan [Sah11], which form the iterative core of XMark [SWK+02a]:U1. for $x in $doc/site/closed_auctions/closed_auctionwhere not ($x/annotation) returninsert node <annotation>Empty Annotation</annotation>as last into $xU3. for $x in $doc/site/regions//item/locationwhere $x/text()="United States"return (replace value of node $x with "USA")U4. delete nodes $doc/site/regions//item/mailbox/mail



6.6. experimental evaluation 137U5. for $x in $doc/site//text/bold returnrename node $x as "emph"U8. delete nodes $doc/site/regions/australiaU10. for $x in $doc/site/open_auctions/open_auctionwhere ($x/privacy="Yes")return delete node $xU11. for $x in $doc/site/open_auctions/open_auctionwhere $x/bidder/increase < 20return insert node<bidder><date>08/17/2000</date><time>15:15:15</time><personref/><increase>1.50</increase></bidder>after $x/initialU12. for $x in $doc/site/regions//itemwhere ($x/mailbox/mail/date/text()="07/04/1998")return insert node <incategory/> before $x/mailboxU13. for $x in $doc/site/open_auctions/open_auction/annotation/description/textwhere ($x/keyword/emph/text()="unique") and ($x/bold)return insert node <emph>newTexT</emph> before $x/boldU14. for $x in $doc/site//text/emphreturn delete node $xU16. for $x in $doc/site/closed_auctionsreturn delete node $xU17. for $x in $doc/site/closed_auctionsreturn insert node<closed_auction><seller/><buyer/><itemref/><price>39.58</price><date>02/15/1998</date><quantity>1</quantity><type>Regular_new</type><annotation/></closed_auction> as last into $x



138 Chapter 6. Partitioning for XQuery UpdatesU18. for $x in $doc/site/categories/category/description/parlist/listitemwhere ($x/parlist) returnreplace node $x/parlist with <text>newText</text>6.6.3 ExperimentsIn our �rst experiment we evaluate and compare scalability of Saxon. We consider a1GB document and a 5GB document for Saxon test. For each document and for eachupdate, we compare total execution time obtained with only standard projectionwith that obtained from the partitioning+fusion approach. Total execution timeincludes the overall time required by the system to partition the input document,to evaluate the input update on the parts, and to concatenate the partial results toproduce the �nal result.

Figure 6.28: Projection vs partitioning - with input document 1GB - using Saxon.
Concerning results obtained by using Saxon. When projection only is used, thissystem starts showing limitations even for a 1GB document, for which updates U5,U11, U12 and U14 could not be executed due to memory failure. As shown in Figure6.28. While our partitioning technique enables execution of all iterative updates.
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Figure 6.29: Projection vs partitioning - with input document 5GB - using Saxon.

Figure 6.30: Projection vs partitioning - with input document 1GB - using Qizx.As illustrated in Figure 6.29, for the 5GB document, improvements of our par-titioning technique are substantial: 9 updates could not be executed with only
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Figure 6.31: Projection vs partitioning - with input document 5GB - using Qizx.

Figure 6.32: Projection vs partitioning - with input document 10GB - using Qizx.projection, while all updates are executed by means of partitioning.Figure 6.34 reports execution times obtained with Saxon and partitioning, forall considered documents size. As shown by the �gure, our technique scales up andhas a linear behavior.
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Figure 6.33: Projection vs partitioning - with input document 15GB - using Qizx.Concerning Qizx, we consider 1GB, 5GB, 10GB and 15GB documents. For the1GB input document (see Figure 6.30) and for the 5GB document (see Figure 6.31),all 13 iterative updates could be executed with the sole use of projection.For the 10GB input document (see Figure 6.32), the standard projection tech-nique starts showing limitations, and the updates U10, U11, U12, U13 and U14could not be executed due to memory failure. As shown in Figure 6.32. While ourpartitioning technique enabled to process all 13 iterative updates.Also for the 15GB input document (see Figure 6.33). Seven updates could notbe executed with the sole use of projection. Instead, our partitioning techniqueenabled the processing of all 13 iterative updates.Figure 6.35 reports execution times obtained with Qizx and partitioning, for allconsidered documents size. As shown by this �gure, our technique scales up andhas a linear behavior.6.6.4 Summing UpTo summarize, our experiments prove that the partitioning approach scales beau-tifully and is only slightly slower than the projection approach with updates. Tomake experiments feasible in a reasonable time we considered 5GB for Saxon and15GB for Qizx as the maximal size of documents. However, since the maxSize canbe tuned to �t in the available main memory, we have that partitioning scales forarbitrary sizes.
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Figure 6.34: Scalability of the partitioning+update+fusion approach - using Saxon.



6.7. conclusion 1436.7 conclusionIn this chapter, we presented out partitioning based technique for XML updates.As we have seen, the techniques di�ers from that for queries in many aspect. Firstof all in what concern the characterization of iterative updates, and secondly inthe partitioning and fusion algorithms. Some preliminary results on experimentalevaluation, showed that the technique succeeds in its main purpose: overcomingscalability limitations of main memory systems. We believe that similar experi-mental results could be obtained by using other engines, like the BaseX [bas] forinstance, whose performances are close to that of Qizx. As future works we plan toperform more extensive tests, and to improve e�ciency of the fusion algorithm inorder to reduce the overhead in terms of time.Another interesting future direction would be to combine projection with par-titioning. This would require deep changes in the fusion algorithm, but probablypermit to further lower the time overhead.
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Figure 6.35: Scalability of the partitioning+update+fusion approach - using Qizx.
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Contents7.1 MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457.1.1 Logical View . . . . . . . . . . . . . . . . . . . . . . . . . . . 1477.1.2 Execution Overview . . . . . . . . . . . . . . . . . . . . . . . 1487.2 parallel evaluation of iterative queries and up-dates via MapReduce . . . . . . . . . . . . . . . . . . . . . 1507.3 conclusive remarks . . . . . . . . . . . . . . . . . . . . . . 152Besides ensuring scalability, our partitioning technique illustrated in previouschapters also has the advantage that it naturally paves the way to parallelprocessing. This is a consequence of the fact that iterative queries and updates aresuch that evaluation on a part does not depend on evaluation on another part. Asa consequence, parts in a partition can be queried/updated in parallel.In this chapter, we discuss the main lines of a possible parallel implementation ofour partitioning technique by means of the MapReduce programming model [DG08].We would like to outline that the architecture we propose is the results of a collabo-ration with Carlo Sartiani (Assistant Professor at Università della Basilicata, Italy)and Maurizio Nole (Master student at Università della Basilicata, Italy).We �rst introduce the basics of the MapReduce paradigm in Section 7.1, andthen illustrate how our technique can be implemented into a MapReduce platformin Section 7.2. Finally, we draw our conclusion in Section 7.3.7.1 MapReduceWhen the �rst computers were adopted, programs were executed in a sequentialmanner and by means of a unique processor. Parallelism was introduced after in or-der to improve performances of some particular tasks, by executing them in parallelon several processors and on di�erent chunks of data. These processors run eitheron a single computer or on multiple computers via a network. In order to aid pro-gramming in this context, parallel programming paradigms have been introduced.



146 Chapter 7. Parallel Query and Update EvaluationIn order to build a parallel program, we need to specify a set of tasks that canbe executed concurrently over the same input data, or create several parts of inputdata on which our tasks are concurrently executed. A typical scenario that is moreand more recurring in the context of large data collection generated over the Web,is that where the data collection is split into several parts and some prede�nedtasks are executed on these parts in parallel. To this end, we have several parallelimplementation techniques. The most popular one is called Master/Worker.Typically the Master initializes the parallel process, splits it into sub-tasks andassigns one of them to each Worker. Once the Worker has terminated it returnresults to the Master, which will opportunely combine them with other Workerresults.The MapReduce paradigm is based on these principles, and is currently adoptedin many contexts where queries have to be executed on large amount of data, and thesize of these data is such that a sequential evaluation would require an unacceptableamount of time.Following [DG08], MapReduce is a parallel framework for processing or dis-tributing large data sets, which often uses a large number of computers (nodes),either referred to a cluster, if these nodes are located in the same local network anduse similar hardware, or a grid, if the nodes are shared across distributed systems,and use di�erent hardware. MapReduce has been �rst introduced and adopted byGoogle [DG08].MapReduce is successfully used in a wide range of applications including: dis-tributed pattern-based searching, distributed sort, web access log states, invertedindex construction, document clustering, machine learning [CKL+07], and statisticalmachine translation. Moreover, this framework has been adapted to several com-puting environments like multi-core systems [RRP+07], desktop grids [TMC+10],dynamic cloud environments [MTT10] and mobile environments [DKG+10].MapReduce libraries have been written in many programming languages. Themost popular free implementation is Apache Hadoop [had]. The Apache Hadoopo�ers a framework that allows to perform the distributed processing of large datasets across clusters of computers using the MapReduce model. It is designed to scaleup from single servers to thousands of machines, each o�ering local computation andstorage. One of the main functionalities it provides is high robustness. The libraryitself is designed to detect and handle failures at the application layer. Each time atask is detected to have failed, it is restarted on another processing unit. In orderto ensure high robustness, Hadoop requires that each task stores results on thedistributed �le system (HDFS), so that in the case of a single task fails, only itsresults have to be regenerated, and there is no need to restart all the tasks. Hadooprequires the Java Runtime Environment JRE 1.6 or higher.



7.1. MapReduce 1477.1.1 Logical ViewThe main goal of the MapReduce paradigm is to provide a model that can beeasily adopted by programmers, even if they have no experience with parallel anddistributed programming. The possibility of rapid development of parallel programshas been one the main reasons of the success of this paradigm.The main idea behind MapReduce is to avoid the user to deal with operationsthat routinely occurs in parallel management of large data repositories. To de�nea MapReduce job, the programmer has to specify two functions, the Map functionand the Reduce function. These functions are assumed to work on a data modelconsisting of collections of (key, value) pairs. The key component is generally a scalarvalue, while the value component can also be a complex value like a record comingfrom a relational database, a textual document (an XML document in particular),or some other complex value.The semantics of Map and Reduce functions is described below.� The function Map, written by the user, takes one pair of the input dataset(k1, v1), and returns a list of pairs list(k2, v2). The Map function is appliedin parallel to every pair in the input dataset. This will produce a list of pairsfor each call.
Map (k1, v1) → list(k2, v2)� The MapReduce framework collects all pairs with the same key from all listsand groups them together, thus creating one group for each one of the di�erentgenerated keys.� The function Reduce which is written by the user and applied in parallel toeach group, accepts the intermediate key ki and the set of values vi for thatkey. It merges together these values to form a possibly smaller set of values.The intermediate values are supplied to the Reduce function via an iterator.This allows the user to handle lists of values that are too big to �t in memory.

Reduce (k2, list(v2)) → list(v3)The following example explains the mechanism of both Map and Reduce func-tions. One of the typical problems for which MapReduce can be successfully adoptedis that of counting the number of occurrences of each word in large collection of doc-uments. The Map and Reduce function the programmer has to specify can be asfollows:Example 12 Consider the following Map and Reduce functions:map(String key, String value):// key: document name// value: document contents



148 Chapter 7. Parallel Query and Update Evaluationfor each word w in value:EmitIntermediate(w, "1");reduce(String key, Iterator values):// key: a word// values: a list of countsint result = 0;for each v in values:result += ParseInt(v);Emit(AsString(result));
�Once these two functions have been speci�ed, their execution happens as follows.The MapReduce framework automatically splits the input key-value collection intoseveral splits (whose size is generally from 16MB to 64MB). Then a number of Mapand Reduce Workers are started on several processing units. The framework assignsa split to each Map workers. In the above example, each Map Worker produces alist of key-value pairs, where for each pair the key is a word encountered in one ofthe documents, and the value is simply 1, to indicate that one occurrence of theword has been encountered.Outputs of Map workers are processed by the framework so that key-value pairsthat Mappers (Map Workers) have produced are partitioned in such a way that allpairs sharing the same key are in the same part. Then the framework assigns anumber of such parts to each Reduce Worker.In the above example, each Reduce worker is guaranteed to have all occurrencesof a given word. Once these occurrences are counter, the results is made persistenton the �le system. The �nal result is the concatenation of all Reduce results.As the example illustrates, operations like initial partitioning of the key-valuecollections is done by the framework, as well as grouping operations before passingMappers results to Reducers. This is of particular importance for rapid and safedevelopment of parallel intensive data processing tasks, as the programmer has toconcentrate on the pure logic of query he/she needs to execute.7.1.2 Execution OverviewTo explain the execution model in more detail we rely on [DG08]. Figure 7.1 il-lustrates the overall �ow of a MapReduce job in the implementation proposed in[DG08]. When the user program calls the MapReduce functions, the following se-quence of actions occurs. Note that the numbered labels in Figure 7.1 correspondto the numbers in the list below.� The MapReduce library in the user program �rst shreds the input documentsinto m pieces of typically 16 megabytes to 64 megabytes (MB) per piece. Thenit starts up many copies of the program on a cluster of machines.



7.1. MapReduce 149

Figure 7.1: Execution overview.� Only one part of the program is considered as Master. While the rest are
Workers that are assigned work by the Master. There are m Map tasks and rReduce tasks to assign. The Master picks inactive Workers and assigns eachone a Map task or a Reduce task.� A Worker who is assigned a Map task reads the contents of the correspond-ing input shard. It parses key/value pairs out of the input data and passeseach pair to the user-de�ned Map function. The intermediate key/value pairsproduced by the Map function are bu�ered in memory.� Periodically, the bu�ered pairs are written to local disk, partitioned into rregions by the partitioning function. The locations of these bu�ered pairs onthe local disk are passed back to the Master, who is responsible for forwardingthese locations to the reduce Workers.� When a Reduce Worker is noti�ed by the Master about these locations, ituses remote procedure calls to read the bu�ered data from the local disks ofthe Map Workers. When a Reduce Worker has read all intermediate data,it sorts it by the intermediate keys so that all occurrences of the same key



150 Chapter 7. Parallel Query and Update Evaluationare grouped together. If the amount of intermediate data is too large to �t inmemory, an external sort is used.� The reduce Worker iterates over the sorted intermediate data and for eachunique intermediate key encountered, it passes the key and the correspondingset of intermediate values to the user's Reduce function. The output of theReduce function is appended to a �nal output �le for this reduce partition.� When all Map tasks and Reduce tasks have been completed, the Master wakesup the user program. At this point, the MapReduce call in the user programreturns back to the user code.After successful completion, the output of the MapReduce execution is availablein the r output �les. Typically, users do not need to combine these r output �lesinto one �le, they often pass these �les as input to another MapReduce call, or usethem from another distributed application that is able to deal with input that ispartitioned into multiple �les.7.2 parallel evaluation of iterative queries andupdates via MapReduceAs said before a MapReduce platform can be realized by means of several machineson which the Apache Hadoop open library runs. Hadoop makes all MapReducefunctionalities available, and is widely used. So we will refer to it in illustrating howour approach can be transposed into a MapReduce framework.We �rst focus on XML partitioning for queries. As seen in Chapter 4, projectioncan be pro�tably combined with partitioning so as to lower time overhead in theglobal query execution. Some features of our technique pose some constraints onthe possible resulting MapReduce architecture. We still assume that one documentis processed.First of all, partitioning must be executed by the Master (recall the schemagiven in Figure 7.1) since this operation can not be performed in parallel. As soonas parts are generated, parallel evaluation can be started. In order to acceleratepart generation, its better to decouple projection from partitioning.The resulting execution schema is illustrated in Figure 7.1. The illustratedschema is of the kind Master-Map. This a particular modality under which MapRe-duce can work according to Hadoop, and is characterized by the fact that only aMaster and Map Workers are adopted. In the �gure, the local �le system is wherethe input and output queries are stored, and is distinguished from the distributedHadoop �le system (HDFS) which is used to store input, output and intermediarydata of a MapReduce job.As already said, the Master takes the input document and performs the par-titioning (without performing projection). As soon as a part is generated, a �le
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Figure 7.2: Graphical representation of the Master-Map schema.partition N.xml is stored via HDFS (N indicates the number of the part, and isassumed to start from 0). Another �le which is maintained by the Master is Part-Number.txt which contains, for each part in the partition, the number of the partand corresponding HDFS URI; this information is needed by a Map Worker in orderto recover and process a part.Actually, the PartNumber.txt �le contains the key-value collection which ispassed to the MapReduce job. As anticipated, the job only activates Map workers.Rather than formally specifying the Map function, we describe the tasks it per-forms. It receives as input a number of pairs (part-number, part-URI) coming fromthe PartNumber.txt �le. For each such pair, then Map worker retrieves the XML�le corresponding to the part-number, and executes the projection algorithm on it(in a SAX fashion). The projected part is stored locally in order to avoid the over-head implied by HDFS. The Map worker then makes a call to a query engine locallyinstalled, in order to execute the query on the locally stored projected part. Thequery engine can be any existing query engine, e.g., Saxon or Qizx. Once the queryresult is available, it is communicated to the output-collector of the Map worker.This collector writes the result on the HDFS support. If the result is relative to thepart PartitionJ.xml, then the �le including the results is stored into a �le Output-J.Once all Map Workers have terminated Output-I.xml �les are available on HDFSfor being concatenated.



152 Chapter 7. Parallel Query and Update EvaluationAn alternative schema could be of the kind Master-Map-Reduce, where MapWorkers perform projections, and Reduce Workers deals with query evaluation oneach projected part. This schema seems to ensure an higher parallelism degree, butactually has the drawback that each projected �le in order to be passed to a ReduceWorker has to be stored on the HDFS. This operation can be much slower thanwriting the projection on the local �le system of the Map Worker. In particular, thisis due to the fact that HDFS handle duplicated versions of stored �les, distributedon several nodes connected via the network.We believe that, when compared to the centralized framework presented in pre-vious chapters, the above Master-Map schema could improve execution time for verylarge documents especially in those cases where the query performs time consum-ing operations on each part. Otherwise, the overhead implied by the MapReduceframework could entail higher total execution time.Concerning updates, a possible schema is totally similar to the above describedMaster-Map schema. With the di�erence that Map Workers are activated only toupdate those parts that really need to. Besides partitioning, also fusion operationshould be executed in a sequential fashion.7.3 conclusive remarksIn this short chapter we have described possible schemes of a MapReduce imple-mentation of our-partitioning based frameworks. The main purpose of the chapterwas to highlight another strength of our approach, that is the possibility of parallelquery and update evaluation by relying on the MapReduce model.



Chapter 8Related Works and Conclusion
Contents8.1 related works . . . . . . . . . . . . . . . . . . . . . . . . . . 1538.2 conclusive remarks and future directions . . . . . . 1548.1 related worksThe main aim of our technique is to allow main-memory systems to scale up withrespect to document size when querying and updating XML data. We have alreadycommented on main traditional projection based approaches [BBC+11, BCCN06,BCMS09a, BCMS09b, MS03], and seen that these techniques have limitations interms of scalability. On the positive side, these techniques do not pose restrictionson queries and updates. Di�erently, we have focused on a fragment of XQueryquery and update languages, and proposed a partitioning based techniques thatenable main-memory engines to scales up.Concerning queries, techniques for partitioning XML documents have alreadybeen explored. Our technique resembles that of [BLS09] where an horizontal parti-tioning technique has been proposed in order to ensure parallel execution of singleXPath queries. The partitioning technique proposed in this work can be performedon the main-memory representation of the XML document. As a consequence, verylarge XML documents cannot be managed. In [KÖD10], a vertical partitioningtechnique has been proposed still with the aim of parallel and distributed executionof XPath queries. The technique can handle very large documents, but requires theuse of schema information on the input document. Both techniques proposed in[BLS09, KÖD10] require strong interventions inside a query engine. A recent work[GCL12] proposes new e�cient algorithms for the distributed evaluation of XPathqueries. This work uses horizontal-vertical partitioning, and assumes data have beenstatically partitioned according to existing techniques.Di�erently from the above mentioned works, we address a wide class of XQueryqueries, we do not require schema information, and we are able to deal with aworkload executed on very large documents. Also, our technique does not requireto modify the internal components of a query engine.Concerning updates, to the best of our knowledge, we are not aware of anyexiting partitioning-based techniques. Techniques exist in order to optimize memory



154 Chapter 8. Related Works and Conclusionconsumptions. The type-based projection technique has already been discussed andperformed tests have illustrated improvements of our approach. Another e�ectivetechnique that can be used to ensure scalability when updating XML �les withmain-memory engines has been presented in [CGM11]. This technique allows toapply updates in a streaming fashion, so to minimize the memory usage. In mostcases the technique has high scalability abilities. At the same time, di�erently fromour approach, this technique requires interventions into query-engine, in order torecover the list of update operations to apply, and apply them in streaming to theinput. Also, in the case that a workload of distinct updates has to be applied toa document, this technique requires parsing the input document as many times asthe number of updates. In our case, if the workload is iterative, we can perform aunique partitioning, then evaluate the workload on the partition, and �nally performa unique fusion operation.8.2 conclusive remarks and future directionsIn this Thesis, we presented a novel partitioning technique for XML document. Thistechnique generalizes existing path-based approaches, and applies to a large class ofqueries and updates.A distinctive feature of our approach is that it is schema-less. It uses path infor-mation coming from the query/update in order to perform the static analysis neededto recognize the iterative nature of the query/update, and use path information toperform partitioning. Another distinctive feature, is that the approach can be easilyplugged on any main-memory system, as no intervention in the internal machineryof the system is required. Finally, we have seen that our approach is amenable to aneasy transposition in a MapReduce like processing framework, thus allowing parallelquerying and updating of parts in the partition. For huge document sets, and inthe presence of a reasonable big cluster of machines, this could entail consistenttime reduction with respect to the sequential approach we proposed here (parts arequeried/updated sequentially).We see several possible future directions. First of all, we would like to extendthe approach to larger fragments of XQuery, and in particular to queries performinggroup-by operations and aggregations. Also, we would like to extend the technique inthe case where queries performs joins. Especially in this second case, some performedtests have revealed that execution time can be huge with the use of main-memorysystem. To enable partitioning query/update evaluation would need to be split inseveral subtasks, some of which use partitioning. Then partial results of each taskshould be recombined. In our opinion, in this scenario a MapReduce approach couldhelp in reducing execution time.As a second future work, we would like to explore possibilities of handling work-loads formed by both queries and updates. Once the path analysis is available torecognize the iterative nature of the workload, and to perform partitioning, this last



8.2. conclusive remarks and future directions 155one could be performed once and reused many times, until the workload changes.An advantage would also come to the reduction of fusion operations, which wouldbecome useless as long as the workload is stable.Finally, we plan to further investigate MapReduce implementations of our ap-proach, along the lines of schemes illustrated in Chapter 7. In particular, we willfocus on implementation issues, and in adapting our code to the MapReduce frame-work. In this context, we will also focus on experimental tests in order to realize forwhich kind of queries/updates a MapReduce execution is faster than a traditionalcentralized execution.





Appendix AXQuery Expressions and XQueryUpdates
A.1 XMark Queries proposed in [SWK+02a]� Return the name of the person with ID person0.Q1 = for $b in doc("xmark.xml")/site/people/person[@id="person0"]return $b/name/text()� Return the initial increases of all open auctions.Q2 = for $b in doc("xmark.xml")/site/open_auctions/open_auctionreturn<increase>{$b/bidder[1]/increase/text()}</increase>� Return the IDs of all open auctions whose current increase is at least twice ashigh as the initial increase.Q3 = for $b in doc("xmark.xml")/site/open_auctions/open_auctionwherezero-or-one($b/bidder[1]/increase/text()) * 2 <=$b/bidder[last()]/increase/text()return<increasefirst="{$b/bidder[1]/increase/text()}"last="{$b/bidder[last()]/increase/text()}"/>� List the reserves of those open auctions where a certain person issued a bidbefore another person.Q4 = for $b in doc("xmark.xml")/site/open_auctions/open_auctionwheresome $pr1 in $b/bidder/personref[@person = "person20"],$pr2 in $b/bidder/personref[@person = "person51"]satisfies $pr1 << $pr2return <history>{$b/reserve/text()}</history>



158 Appendix A. XQuery Expressions and XQuery Updates� How many sold items cost more than 40?Q5 = let $auction := doc("xmark.xml") returncount(for $i in $auction/site/closed_auctions/closed_auctionwhere $i/price/text() >= 40return $i/price)� How many items are listed on all continents?Q6 = for $b in doc("xmark.xml")//site/regionsreturn count($b//item)� List all persons according to their interest; use French markup in the result.Q10 = let $auction := doc("xmark.xml") returnfor $i indistinct-values($auction/site/people/person/profile/interest/@category)let $p :=for $t in $auction/site/people/personwhere $t/profile/interest/@category = $ireturn<personne><statistiques><sexe>{$t/profile/gender/text()}</sexe><age>{$t/profile/age/text()}</age><education>{$t/profile/education/text()}</education><revenu>{fn:data($t/profile/@income)}</revenu></statistiques><coordonnees><nom>{$t/name/text()}</nom><rue>{$t/address/street/text()}</rue><ville>{$t/address/city/text()}</ville><pays>{$t/address/country/text()}</pays><reseau><courrier>{$t/emailaddress/text()}</courrier><pagePerso>{$t/homepage/text()}</pagePerso></reseau></coordonnees><cartePaiement>{$t/creditcard/text()}</cartePaiement></personne>return<categorie>{<id>{$i}</id>, $p}</categorie>



A.1. XMark Queries proposed in [SWK+02a] 159� List the names of items registered in Australia along with their descriptions.Q13 = for $i in doc("xmark.xml")/site/regions/australia/itemreturn<item name="{$i/name/text()}">{$i/description}</item>� Return the names of all items whose description contains the word `gold'.Q14 = for $i in doc("auction.xml")/site//itemwherecontains(string(exactly-one($i/description)), "gold")return $i/name/text()� Print the keywords in emphasis in annotations of closed auctions.Q15 = for $a indoc("auction.xml")/site/closed_auctions/closed_auction/annotation/description/parlist/listitem/parlist/listitem/text/emph/keyword/text()return <text>{$a}</text>� Return the IDs of those auctions that have one or more keywords in emphasis.Q16 = for $a in doc("xmark.xml")/site/closed_auctions/closed_auctionwherenot(empty($a/annotation/description/parlist/listitem/parlist/listitem/text/emph/keyword/text()))return<person id="{$a/seller/@person}"/>



160 Appendix A. XQuery Expressions and XQuery Updates� Which persons don't have a homepage?Q17 = for $p in doc("xmark.xml")/site/people/personwhere empty($p/homepage/text())return <person name="{$p/name/text()}"/>� Convert the currency of the reserve of all open auctions to another currency.declare namespace local = "http://www.foobar.org";declare function local:convert($v as xs:decimal?) as xs:decimal?{ 2.20371 * $v (: convert Dfl to Euro :)};Q18 = let $auction := doc("auction.xml") returnfor $i in $auction/site/open_auctions/open_auctionreturn local:convert(zero-or-one($i/reserve))� Give an alphabetically ordered list of all items along with their location.Q19 = for $b in doc("auction.xml")/site/regions//itemlet $k := $b/name/text()order by zero-or-one($b/location)ascending empty greatestreturn<item name="{$k}">{$b/location/text()}</item>� Group customers by their income and output the cardinality of each group.Q20 = let $auction := doc("auction.xml") return<result><preferred>{count($auction/site/people/person/profile[@income >= 100000])}</preferred><standard>{ count($auction/site/people/person/profile[@income < 100000 and @income >= 30000])}</standard>



A.2. Update Expressions used in [BBC+11] 161<challenge>{count($auction/site/people/person/profile[@income < 30000])}</challenge><na>{ count(for $p in $auction/site/people/personwhere empty($p/profile/@income)return $p)}</na></result>A.2 Update Expressions used in [BBC+11]U1. Insert a new node <annotation>Empty Annotation</annotation> as last ofeach closed_auction node.for $x in $doc/site/closed_auctions/closed_auctionwhere not ($x/annotation)return insert node<annotation>Empty Annotation</annotation>as last into $xU2. Replace address of each element which its country is United States withanother address.for $x in $doc/site/people/person/addresswhere$x/country/text()="United States"return(replace node $x with<address><street>{$x/street/text()}</street><city>"NewYork"</city><country>"USA"</country><province>{$x/province/text()}</province><zipcode>{$x/zipcode/text()}</zipcode></address>)U3. Replace each United States location with the value USA.for $x in $doc/site/regions//item/location



162 Appendix A. XQuery Expressions and XQuery Updateswhere $x/text()="United States"return (replace value of node $x with "USA")U4. Delete all subtrees rooted at mail from each item node.delete nodes $doc/site/regions//item/mailbox/mailU5. Rename each bold node with emph.for $x in $doc/site//text/boldreturn rename node $x as "emph"U6. Insert new homepage node for each person which does not have a homepage.for $x in $doc/site/people/personwhere not($x/homepage)return insert node<homepage>www.{$x/name/text()}Page.com</homepage> after $x/emailaddressU7. Insert ....for $x in $doc/site/people/person,for $y in $doc/site/people/personwhere $x/name = $y/nameand not ($y/address) and $x/country="Malaysia"return insert node $x/addressafter $y/emailaddressA.3 XQuery Update expressions in [Sah11]U1. for $x in $doc/site/closed_auctions/closed_auctionwhere not ($x/annotation) returninsert node <annotation>Empty Annotation</annotation>as last into $xU2.for $x in $doc/site/people/person/addresswhere $x/country/text()="United States" return(replace node $x with<address><street>{$x/street/text()}</street><city>"NewYork"</city><country>"USA"</country><province>{$x/province/text()}</province><zipcode>{$x/zipcode/text()}</zipcode></address>)



A.3. XQuery Update expressions in [Sah11] 163U3.for $x in $doc/site/regions//item/locationwhere $x/text()="United States"return (replace value of node $x with "USA")U4.delete nodes $doc/site/regions//item/mailbox/mailU5.for $x in $doc/site//text/bold returnrename node $x as "emph"U6.for $x in $doc/site/people/personwhere not($x/homepage)return insert node<homepage>www.{$x/name/text()}Page.com</homepage>after $x/emailaddressU7.for $x in $doc/site/people/person,for $y in $doc/site/people/personwhere $x/name = $y/nameand not ($y/address)and $x/address/country='Malaysia'return insert node $x/addressafter $y/emailaddressU8. delete nodes $doc/site/regions/australiaU9. let $k := $doc/site/closed_auctions/closed_auction[last()]for $b in $doc/site/open_auctions/open_auction[last()]return replace node $k/annotation with $b/annotationU10. for $x in $doc/site/open_auctions/open_auctionwhere ($x/privacy="Yes")return delete node $xU11. for $x in $doc/site/open_auctions/open_auctionwhere $x/bidder/increase < 20return insert node<bidder><date>08/17/2000</date><time>15:15:15</time><personref/><increase>1.50</increase></bidder>after $x/initial



164 Appendix A. XQuery Expressions and XQuery UpdatesU12. for $x in $doc/site/regions//itemwhere ($x/mailbox/mail/date/text()="07/04/1998")return insert node <incategory/> before $x/mailboxU13. for $x in $doc/site/open_auctions/open_auction/annotation/description/textwhere ($x/keyword/emph/text()="unique")and ($x/bold)return insert node <emph>newTexT</emph> before $x/boldU14. for $x in $doc/site//text/emphreturn delete node $xU15. for $x in $doc/site/categories/category/description/parlistwhere ($x/listitem/parlist) returnreplace node $x with $x/listitem/parlist[1]U16. for $x in $doc/site/closed_auctionsreturn delete node $xU17. for $x in $doc/site/closed_auctionsreturn insert node<closed_auction><seller/><buyer/><itemref/><price>39.58</price><date>02/15/1998</date><quantity>1</quantity><type>Regular_new</type><annotation/></closed_auction> as last into $xU18. for $x in $doc/site/categories/category/description/parlist/listitemwhere ($x/parlist)return replace node $x/parlist with <text>newText</text>U19. for $x in $doc/site/categories/category/description/parlist/listitemreturn replace node $x with $x/parlist/listitem[1]U20. for $x in $doc/site/categories/category/description/parlist/listitemreturn replace node $x with $x/parlist/listitem



A.4. XQuery Update Facilities 1.0 Use Cases 165A.4 XQuery Update Facilities 1.0 Use Cases1- Add a new user (with no rating) to the users.xml view.insert nodes<user_tuple><userid>U07</userid><name>Annabel Lee</name></user_tuple>into doc("users.xml")/users2- Enter a bid for user Annabel Lee on February 1st, 1999 for 60 dollars on item1001.let $uid :=doc("users.xml")/users/user_tuple[name="Annabel Lee"]/useridreturninsert nodes<bid_tuple><userid>{data($uid)}</userid><itemno>1001</itemno><bid>60</bid><bid_date>1999-02-01</bid_date></bid_tuple>into doc("bids.xml")/bids3- Insert a new bid for Annabel Lee on item 1002, adding 10% to the best bidreceived so far for this item.let $uid := doc("users.xml")/users/user_tuple[name="Annabel Lee"]/useridlet $topbid := max(doc("bids.xml")/bids/bid_tuple[itemno=1002]/bid)returninsert nodes<bid_tuple><userid>{data($uid)}</userid><itemno>1002</itemno><bid>{$topbid*1.1}</bid><bid_date>1999-02-01</bid_date></bid_tuple>into doc("bids.xml")/bids4- Set Annabel Lee's rating to B.let $user := doc("users.xml")/users/user_tuple[name="Annabel Lee"]returnif ($user/rating)



166 Appendix A. XQuery Expressions and XQuery Updatesthen replace value of node $user/rating with "B"else insert node <rating>B</rating> into $user5- Place a bid for Annabel Lee on item 1007, adding 10% to the best bid receivedso far on that item, but only if the bid amount does not exceed a given limit. The�rst query illustrates the desired behavior if the limit is exceeded.let $uid := doc("users.xml")/users/user_tuple[name="Annabel Lee"]/useridlet $topbid := max(doc("bids.xml")/bids/bid_tuple[itemno=1007]/bid)where $topbid*1.1 <= 200returninsert nodes<bid_tuple><userid>{data($uid)}</userid><itemno>1007</itemno><bid>{$topbid*1.1}</bid><bid_date>1999-02-01</bid_date></bid_tuple>into doc("bids.xml")/bids6- Place a bid for Annabel Lee on item 1007, adding 10% to the best bid receivedso far on that item, but only if the bid amount does not exceed 500. This illustratesthe behavior when the resulting value is within the limit.let $uid := doc("users.xml")/users/user_tuple[name="Annabel Lee"]/useridlet $topbid := max(doc("bids.xml")/bids/bid_tuple[itemno=1007]/bid)where $topbid*1.1 <= 500returninsert nodes<bid_tuple><userid>{data($uid)}</userid><itemno>1007</itemno><bid>{$topbid*1.1}</bid><bid_date>1999-02-01</bid_date></bid_tuple>into doc("bids.xml")/bids7- Erase user Dee Linquent and the corresponding associated items and bids.let $user := doc("users.xml")/users/user_tuple[name="Dee Linquent"]let $items := doc("items.xml")/items/item_tuple[offered_by=$user/userid]let $bids := doc("bids.xml")/bids/bid_tuple[userid=$user/userid]return (delete nodes $user,delete nodes $items,



A.4. XQuery Update Facilities 1.0 Use Cases 167delete nodes $bids)8- Erase user Dee Linquent and the corresponding associated items and bids.let $user := doc("users.xml")/users/user_tuple[name="Dee Linquent"]let $items := doc("items.xml")/items/item_tuple[offered_by=$user/userid]let $bids := doc("bids.xml")/bids/bid_tuple[userid=$user/userid]returndelete nodes $user, $items, $bids9- Add the element <comment>This is a bargain !</comment> as the last child ofthe <item> element describing item 1002.insert nodes<comment>This is a bargain !</comment>as last into doc("items.xml")/items/item_tuple[itemno=1002]10- Place a bid for Annabel Lee on item 1010, which does not exist in "items.xml".In this query, we assume that a referential integrity constraint in the underlyingdatabase system requires that no bid can be placed on an item unless it exists inthe database.let $uid := doc("users.xml")/users/user_tuple[name="Annabel Lee"]/useridreturninsert nodes<bid_tuple><userid>{data($uid)}</userid><itemno>1010</itemno><bid>60</bid><bid_date>2006-04-23</bid_date></bid_tuple>into doc("bids.xml")/bids11- Add a bid for Annabel Lee on item 1002, at a price 5 dollars below the currenthighest bid. A trigger in the underlying database ensures that a bid cannot be madeat a lower price than the highest bid made so far on that item.let $uid := doc("users.xml")/users/user_tuple[name="Annabel Lee"]/useridlet $topbid := max(doc("bids.xml")//bid_tuple[itemno=1002]/bid)returninsert nodes<bid_tuple><userid>{data($uid)}</userid><itemno>1002</itemno><bid>{$topbid - 5.00}</bid>



168 Appendix A. XQuery Expressions and XQuery Updates<bid_date>2006-04-23</bid_date></bid_tuple>into doc("bids.xml")/bids12- Delete all parts in "part-tree.xml".delete nodes doc("part-tree.xml")//part13- Delete all parts belonging to a car in "part-tree.xml", leaving the car itself.delete nodes doc("part-tree.xml")//part[@name="car"]//part14- Delete all parts belonging to a car in "part-list.xml", leaving the car itself.for $pt in doc("part-tree.xml")//part[@name="car"]//part,$pl in doc("part-list.xml")//partwhere $pt/@partid eq $pl/@partidreturndelete nodes $pl15- Add a radio to the car in "part-tree.xml", using a part number that hasn't beentaken.let $next := max(doc("part-tree.xml")//@partid) + 1returninsert nodes <part partid="{$next}" name="radio"/>intodoc("part-tree.xml")//part[@partid=0 and @name="car"]16- The head o�ce has adopted a new numbering scheme. In "part-tree.xml", add1000 to all part numbers for cars, 2000 to all part numbers for skateboards, and3000 to all part numbers for canoes.for $keyword at $i in ("car", "skateboard", "canoe"),$parent in doc("part-tree.xml")//part[@name=$keyword]let $descendants := $parent//partfor $p in ($parent, $descendants)returnreplace value of node $p/@partid with $i*1000+$p/@partid
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