P. Ball, Water as an Active Constituent in Cell Biology, Chemical Reviews, vol.108, issue.1, pp.74-108, 2008.
DOI : 10.1021/cr068037a

M. Grossman, B. Born, and M. Havenith, Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site, Nature Structural & Molecular Biology, vol.269, issue.10, pp.1102-1108, 2011.
DOI : 10.1021/JP984217F

P. Ball, Biophysics: More than a bystander, Nature, vol.144, issue.7370, pp.467-468, 2011.
DOI : 10.1038/478467a

W. Doster and M. Settles, Protein???water displacement distributions, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1749, issue.2, pp.173-186, 2005.
DOI : 10.1016/j.bbapap.2005.03.010

P. W. Fenimore, H. Frauenfelder, and R. D. Young, Bulk-solvent and hydration-shell fluctuations, similar to ??- and ??-fluctuations in glasses, control protein motions and functions, Proc. Natl. Acad. Sci. USA, pp.14408-14413, 2004.
DOI : 10.1073/pnas.0405573101

A. C. For and H. Frauenfelder, We thank the EPSRC (Cross-disciplinary Interfaces Program) for support, J.J. was supported by a Marie Curie International Incoming Fellowship. ? REFERENCES Chem. Rev, vol.108, issue.12, p.74, 2008.

I. C. Gunsalus, W. Doster, S. Cusack, W. Petry, G. Zaccai et al., Hydration Effects on Protein Function: The Kinietics of Ligand Binding to Myoglobin, Proceedings of the Italian Physical Society Advances in Protein Chemistry, pp.5355-754, 1945.

L. A. Svensson, E. Thulin, and S. Forsen, Proline cis-trans isomers in calbindin D9k observed by X-ray crystallography, Journal of Molecular Biology, vol.223, issue.3, pp.601-606, 1992.
DOI : 10.1016/0022-2836(92)90976-Q

J. Kordel, S. Forsen, T. Drakenberg, and W. J. Chazin, The rate and structural consequences of proline cis-trans isomerization in calbindin D9k: NMR studies of the minor (cis-Pro43) isoform and the Pro43Gly mutant, Biochemistry, vol.29, issue.18, pp.4400-4409, 1990.
DOI : 10.1021/bi00470a020

B. Frick and M. Gonzalez, Five years operation of the second generation backscattering spectrometer IN16???a retrospective, recent developments and plans, Physica B: Condensed Matter, vol.301, issue.1-2, pp.8-19, 2001.
DOI : 10.1016/S0921-4526(01)00492-6

K. Wood, C. Caronna, P. Fouquet, W. Haussler, F. Natali et al., A benchmark for protein dynamics: Ribonuclease A measured by neutron scattering in a large wavevector-energy transfer range, Chemical Physics, vol.345, issue.2-3, pp.305-314, 2008.
DOI : 10.1016/j.chemphys.2007.09.012

M. Diehl, W. Doster, W. Petry, and H. Schober, Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering, Biophysical Journal, vol.73, issue.5, pp.2726-2732, 1997.
DOI : 10.1016/S0006-3495(97)78301-2

K. Wood, U. Lehnert, B. Kessler, G. Zaccai, and D. Oesterhelt, Hydration Dependence of Active Core Fluctuations in Bacteriorhodopsin, Biophysical Journal, vol.95, issue.1, pp.194-202, 2008.
DOI : 10.1529/biophysj.107.120386

C. 7. Dynamique, . Groupements, . Par, . Élastique, and . Neutrons, Les poudres de protéines lyophilisées ont ensuite été séchées sur P 2 O 5 durant 18 jours pour HMeth/DCB et HLys/DCB, sur un porte-échantillon plat en aluminium de surface 4 x 3 cm 2 . Le niveau d'hydratation résultant a été défini comme correspondant à 0 g H 2 O /g H-Protéine. Dans le cadre des mesures des protéines sans couche d'hydratation, les poudres sèches de HMeth/DCB (123 mg) et de HLys/DCB (302 mg) ont été utilisées telles quelles

. Pour-l-'échantillon and . Hmeth, O : 80% des groupements methyle (6 912 barns), 12% de la protéine deutérée (1 178 barns) et

C. 7. Dynamique, . Groupements, . Par, . Élastique, and . Neutrons, A habitat for psychrophiles in deep Antarctic ice, Proc Natl Acad Sci, vol.97, pp.1247-1251, 2000.

M. Tehei, B. Franzetti, D. Madern, M. Ginzburg, B. Ginzburg et al., Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering, EMBO reports, vol.5, issue.1, pp.66-70, 2004.
DOI : 10.1038/sj.embor.7400049

H. Hartmann, F. Parak, W. Steigemann, G. Petsko, D. Ponzi et al., Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K., Proceedings of the National Academy of Sciences, vol.79, issue.16, pp.4967-4971, 1982.
DOI : 10.1073/pnas.79.16.4967

R. Austin, K. Beeson, L. Eisenstein, H. Frauenfelder, and I. Gunsalus, Dynamics of ligand binding to myoglobin, Biochemistry, vol.14, issue.24, pp.5355-5373, 1979.
DOI : 10.1021/bi00695a021

H. Ishikawa, K. Kwak, S. Kim, and M. Fayert, Direct observation of fast protein conformational switching, Proceedings of the National Academy of Sciences, vol.105, issue.25, pp.8619-8624, 2008.
DOI : 10.1073/pnas.0803764105

J. Mccammon and S. Harvey, Dynamics of proteins and nucleic acids, 1987.

W. Doster, S. Cusack, and W. Petry, Dynamical transition of myoglobin revealed by inelastic neutron scattering, Nature, vol.337, issue.6209, pp.754-756, 1989.
DOI : 10.1038/337754a0

M. Ferrand, A. Dianoux, W. Petry, and G. Zaccai, Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering., Proceedings of the National Academy of Sciences, vol.90, issue.20, pp.9668-9672, 1993.
DOI : 10.1073/pnas.90.20.9668

J. Rupley and G. Careri, Protein Hydration and Function, Adv In Protein Chem, vol.41, pp.37-173, 1991.
DOI : 10.1016/S0065-3233(08)60197-7

D. Svergun, S. Richard, M. Koch, Z. Sayers, S. Kuprin et al., Protein hydration in solution: Experimental observation by x-ray and neutron scattering, Proceedings of the National Academy of Sciences, vol.95, issue.5, pp.2267-2272, 1998.
DOI : 10.1073/pnas.95.5.2267

S. Ebbinghaus, S. Kim, M. Heyden, X. Yu, U. Heugen et al., An extended dynamical hydration shell around proteins, Proceedings of the National Academy of Sciences, vol.104, issue.52, pp.20749-20752, 2007.
DOI : 10.1073/pnas.0709207104

W. Doster, The dynamical transition of proteins, concepts and misconceptions, European Biophysics Journal, vol.288, issue.2, pp.591-602, 2008.
DOI : 10.1007/s00249-008-0274-3

H. Frauenfelder, G. Chen, J. Berendzen, P. Fenimore, H. Jansson et al., A unified model of protein dynamics, Proceedings of the National Academy of Sciences, vol.106, issue.13, pp.5129-5134, 2009.
DOI : 10.1073/pnas.0900336106

P. Ball, Water as an Active Constituent in Cell Biology, Chemical Reviews, vol.108, issue.1, pp.74-108, 2008.
DOI : 10.1021/cr068037a

P. Ball, Water as a Biomolecule, ChemPhysChem, vol.103, issue.18, pp.2677-2685, 2009.
DOI : 10.1002/cphc.200800515

J. Rodríguez, Y. Zeng, A. Wilks, and M. Rivera, The hydrogen-bonding network in heme Oxygenase also functions as a modulator of enzyme dynamics : Chaotic motions upon disrupting the H-bond network in heme Oxygenase from Pseudomonas aeruginosa, J Am Chem Soc, vol.129, pp.11730-11742, 2007.

A. De-la-lande, S. Martí, O. Parisel, and V. Moliner, Long Distance Electron-Transfer Mechanism in Peptidylglycine ??-Hydroxylating Monooxygenase:?? A Perfect Fitting for a Water Bridge, Journal of the American Chemical Society, vol.129, issue.38, pp.11700-11707, 2007.
DOI : 10.1021/ja070329l

C. Babu and C. Lim, ???Carboxylate Interactions in Metalloenzymes, Journal of the American Chemical Society, vol.132, issue.18, pp.6290-6291, 2010.
DOI : 10.1021/ja101494m

D. Nutt and J. Smith, Dual Function of the Hydration Layer around an Antifreeze Protein Revealed by Atomistic Molecular Dynamics Simulations, Journal of the American Chemical Society, vol.130, issue.39, pp.13066-13073, 2008.
DOI : 10.1021/ja8034027

D. Simone, A. Dodson, G. Verma, C. Zagari, A. Fraternali et al., Prion and water: Tight and dynamical hydration sites have a key role in structural stability, Proceedings of the National Academy of Sciences, vol.102, issue.21, pp.7535-7540, 2005.
DOI : 10.1073/pnas.0501748102

M. Lopez, V. Kurkal-siebert, R. Dunn, M. Tehei, J. Finney et al., Activity and Dynamics of an Enzyme, Pig Liver Esterase, in Near-Anhydrous Conditions, Biophysical Journal, vol.99, issue.8, pp.62-64, 2010.
DOI : 10.1016/j.bpj.2010.07.066

R. Young, H. Frauenfelder, and P. Fenimore, Mössbauer effect in proteins, Phys Rev Lett, vol.107, pp.1-4, 2011.

E. Knapp, S. Fischer, and F. Parak, Protein dynamics from Moessbauer spectra. The temperature dependence, The Journal of Physical Chemistry, vol.86, issue.26, pp.5042-5047, 1982.
DOI : 10.1021/j100223a002

A. Markelz, J. Knaba, J. Chena, and Y. Hea, Protein dynamical transition in terahertz dielectric response, Chemical Physics Letters, vol.442, issue.4-6, pp.413-417, 2007.
DOI : 10.1016/j.cplett.2007.05.080

K. Wood, A. Frolich, A. Paciaroni, M. Moulin, M. Haertlein et al., Coincidence of Dynamical Transitions in a Soluble Protein and Its Hydration Water:?? Direct Measurements by Neutron Scattering and MD Simulations, Journal of the American Chemical Society, vol.130, issue.14, pp.4586-4587, 2008.
DOI : 10.1021/ja710526r

K. Wood, C. Caronna, P. Fouquet, W. Haussler, F. Natali et al., A benchmark for protein dynamics: Ribonuclease A measured by neutron scattering in a large wavevector-energy transfer range, Chemical Physics, vol.345, issue.2-3, pp.305-314, 2008.
DOI : 10.1016/j.chemphys.2007.09.012

F. Gabel, Protein dynamics in solution and powder measured by incoherent elastic neutron scattering: the influence of Q-range and energy resolution, European Biophysics Journal, vol.41, issue.1, pp.1-12, 2005.
DOI : 10.1007/s00249-004-0433-0

A. Paciaroni, S. Cinelli, and G. Onori, Effect of the Environment on the Protein Dynamical Transition: A Neutron Scattering Study, Biophysical Journal, vol.83, issue.2, pp.1157-1164, 2002.
DOI : 10.1016/S0006-3495(02)75239-9

K. Wood, D. Tobias, B. Kessler, F. Gabel, D. Oesterhelt et al., The Low-Temperature Inflection Observed in Neutron Scattering Measurements of Proteins Is Due to Methyl Rotation: Direct Evidence Using Isotope Labeling and Molecular Dynamics Simulations, Journal of the American Chemical Society, vol.132, issue.14, pp.4490-4991, 2010.
DOI : 10.1021/ja910502g

K. Wood, M. Plazanet, F. Gabel, B. Kessler, D. Oesterhelt et al., Coupling of protein and hydration-water dynamics in biological membranes, Proceedings of the National Academy of Sciences, vol.104, issue.46, pp.18049-18054, 2007.
DOI : 10.1073/pnas.0706566104

K. Wood, S. Grudinin, B. Kessler, M. Weik, M. Johnson et al., Dynamical Heterogeneity of Specific Amino Acids in Bacteriorhodopsin, Journal of Molecular Biology, vol.380, issue.3, pp.581-591, 2008.
DOI : 10.1016/j.jmb.2008.04.077

URL : https://hal.archives-ouvertes.fr/hal-00518913

V. Réat, H. Patzelt, M. Ferrand, C. Pfister, D. Oesterhelt et al., Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering, Proceedings of the National Academy of Sciences, vol.95, issue.9, pp.4795-4797, 1998.
DOI : 10.1073/pnas.95.9.4970

G. Caliskan, R. Briber, D. Thirumalai, V. Garcia-sakai, S. Woodson et al., Dynamic Transition in tRNA is Solvent Induced, Journal of the American Chemical Society, vol.128, issue.1, pp.32-33, 2006.
DOI : 10.1021/ja056444i

S. Khodadadi, J. Roh, A. Kisliuk, E. Mamontov, M. Tyagi et al., Dynamics of Biological Macromolecules: Not a Simple Slaving by Hydration Water, Biophysical Journal, vol.98, issue.7, pp.1321-1326, 2010.
DOI : 10.1016/j.bpj.2009.12.4284

M. Jasnin, L. Van-eijck, M. Koza, J. Peters, C. Laguri et al., Dynamics of heparan sulfate explored by neutron scattering, Physical Chemistry Chemical Physics, vol.345, issue.14, pp.3360-3362, 2010.
DOI : 10.1039/b923878f

URL : https://hal.archives-ouvertes.fr/hal-01063055

B. Rasmussen, A. Stock, D. Ringe, and G. Petsko, Crystalline ribonuclease A loses function below the dynamical transition at 220 K, Nature, vol.357, issue.6377, pp.423-424, 1992.
DOI : 10.1038/357423a0

H. Frauenfelder, S. Sligar, and P. Wolynes, The energy landscapes and motions of proteins, Science, vol.254, issue.5038, pp.1598-1603, 1991.
DOI : 10.1126/science.1749933

R. Daniel, J. Smith, M. Ferrand, S. Héry, R. Dunn et al., Enzyme Activity below the Dynamical Transition at 220 K, Biophysical Journal, vol.75, issue.5, pp.2504-2507, 1998.
DOI : 10.1016/S0006-3495(98)77694-5

R. Dunn, V. Réat, J. Finney, M. Ferrand, J. Smith et al., Enzyme activity and dynamics: xylanase activity in the absence of fast anharmonic dynamics, Biochemical Journal, vol.346, issue.2, pp.355-358, 2000.
DOI : 10.1042/bj3460355

G. Schiro, C. Caronna, F. Natali, M. Koza, M. Cupane et al., The ???Protein Dynamical Transition??? Does Not Require the Protein Polypeptide Chain, The Journal of Physical Chemistry Letters, vol.2, pp.2275-2279, 2011.
DOI : 10.1021/jz200797g

H. Lichtenegger, W. Doster, T. Kleinert, A. Birk, B. Sepiol et al., Heme-Solvent Coupling: A M??ssbauer Study of Myoglobin in Sucrose, Biophysical Journal, vol.76, issue.1, pp.414-422, 1999.
DOI : 10.1016/S0006-3495(99)77208-5

A. Tsai, D. Neumann, and L. Bell, Molecular Dynamics of Solid-State Lysozyme as Affected by Glycerol and Water: A Neutron Scattering Study, Biophysical Journal, vol.79, issue.5, pp.2728-2732, 2000.
DOI : 10.1016/S0006-3495(00)76511-8

A. Sokolov, The glass transition: general scenario and crossover temperature, Journal of Non-Crystalline Solids, vol.235, issue.237, pp.235-237, 1998.
DOI : 10.1016/S0022-3093(98)00637-1

M. Tarek and D. Tobias, Role of Protein-Water Hydrogen Bond Dynamics in the Protein Dynamical Transition, Physical Review Letters, vol.88, issue.13, 2002.
DOI : 10.1103/PhysRevLett.88.138101

A. Tournier, J. Xu, and J. Smith, Translational Hydration Water Dynamics Drives the Protein Glass Transition, Biophysical Journal, vol.85, issue.3, pp.1871-1875, 2003.
DOI : 10.1016/S0006-3495(03)74614-1

A. Froelich, F. Gabel, M. Jasnin, U. Lehnert, D. Oesterhelt et al., From shell to cell: neutron scattering studies of biological water dynamics and coupling to activity, Faraday Discuss., vol.301, pp.117-130, 2009.
DOI : 10.1039/B805506H

G. Zaccai, Structure and hydration of purple membranes in different conditions, Journal of Molecular Biology, vol.194, issue.3, pp.569-572, 1987.
DOI : 10.1016/0022-2836(87)90683-8

J. Baudry, E. Tajkhorshid, F. Molnar, J. Phillips, and K. Schulten, Molecular Dynamics Study of Bacteriorhodopsin and the Purple Membrane, The Journal of Physical Chemistry B, vol.105, issue.5, pp.905-918, 2001.
DOI : 10.1021/jp000898e

J. Teixeira, M. Bellissent-funel, A. Dianoux, and S. Chen, Experimental determination of the nature of diffusive motions of water molecules at low temperatures, Physical Review A, vol.31, issue.3, pp.1913-1917, 1985.
DOI : 10.1103/PhysRevA.31.1913

M. Bellissent-funel, S. Chen, and J. Zanotti, Single-particle dynamics of water molecules in confined space, Physical Review E, vol.51, issue.5, pp.4558-4569, 1995.
DOI : 10.1103/PhysRevE.51.4558

M. Jasnin, M. Moulin, M. Haertlein, G. Zaccai, and M. Tehei, Down to atomic-scale intracellular water dynamics, The EMBO Journal, vol.45, issue.6, pp.543-547, 2008.
DOI : 10.1103/PhysRevA.31.1913

M. Tehei, B. Franzetti, K. Wood, F. Gabel, E. Fabiani et al., Neutron scattering reveals extremely slow cell water in a Dead Sea organism, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.766-771, 2007.
DOI : 10.1073/pnas.0601639104

W. Plaxco and M. Gross, The importance of being unfolded, Nature, vol.386, issue.6626, p.657, 1997.
DOI : 10.1038/386657a0

J. Dyson and P. Wright, Intrinsically unstructured proteins and their functions, Nature Reviews Molecular Cell Biology, vol.278, issue.3, 0197.
DOI : 10.1038/nrm1589

H. Dyson, Expanding the proteome: disordered and alternatively folded proteins, Quarterly Reviews of Biophysics, vol.78, issue.04, pp.467-518, 2011.
DOI : 10.1016/j.bbrc.2009.02.151

G. Singh and D. Dash, How expression level influences the disorderness of proteins, Biochemical and Biophysical Research Communications, vol.371, issue.3, pp.401-404, 2008.
DOI : 10.1016/j.bbrc.2008.04.072

K. Gunasekaran, C. Tsai, S. Kumar, D. Zanuy, and R. Nussinov, Extended disordered proteins: targeting function with less scaffold, Trends in Biochemical Sciences, vol.28, issue.2, pp.81-85, 2003.
DOI : 10.1016/S0968-0004(03)00003-3

P. Tompa, Intrinsically unstructured proteins, Trends in Biochemical Sciences, vol.27, issue.10, p.527, 2002.
DOI : 10.1016/S0968-0004(02)02169-2

M. Jensen, P. Markwick, S. Meier, C. Griesinger, M. Zweckstetter et al., Quantitative Determination of the Conformational Properties of Partially Folded and Intrinsically Disordered Proteins Using NMR Dipolar Couplings, Structure, vol.17, issue.9, pp.1169-1185, 2009.
DOI : 10.1016/j.str.2009.08.001

P. Bernadó, L. Blanchard, P. Timmins, D. Marion, R. Ruigrok et al., A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering, Proceedings of the National Academy of Sciences, vol.102, issue.47, pp.17002-17007, 2005.
DOI : 10.1073/pnas.0506202102

M. Jensen, P. Bernadó, K. Houben, L. Blanchard, D. Marion et al., Structural Disorder within Sendai Virus Nucleoprotein and Phosphoprotein, Protein Pept Lett, vol.3, pp.952-960, 2010.
DOI : 10.1002/9781118135570.ch4

H. Hegyi and P. Tompa, Intrinsically Disordered Proteins Display No Preference for Chaperone Binding In Vivo, PLoS Computational Biology, vol.5, issue.3, pp.1-7, 2008.
DOI : 10.1371/journal.pcbi.1000017.t001

D. Russo, J. Pérez, J. Zanotti, M. Desmadril, and D. Durand, Dynamic Transition Associated with the Thermal Denaturation of a Small Beta Protein, Biophysical Journal, vol.83, issue.5, pp.2792-2800, 2002.
DOI : 10.1016/S0006-3495(02)75288-0

J. Fitter, R. Herrmann, R. Lechnerd, H. Dencher, and N. , Dynamical properties of ??-amylase in the folded and unfolded state: the role of thermal equilibrium fluctuations for conformational entropy and protein stabilisation, Physica B: Condensed Matter, vol.301, issue.1-2, pp.1-7, 2001.
DOI : 10.1016/S0921-4526(01)00490-2

J. Fitter, A Measure of Conformational Entropy Change during Thermal Protein Unfolding Using Neutron Spectroscopy, Biophysical Journal, vol.84, issue.6, pp.3924-3930, 2003.
DOI : 10.1016/S0006-3495(03)75120-0

Z. Bu, J. Cook, and D. Callaway, Dynamic regimes and correlated structural dynamics in native and denatured alpha-lactalbumin, Journal of Molecular Biology, vol.312, issue.4, pp.865-873, 2001.
DOI : 10.1006/jmbi.2001.5006

Z. Bu, D. Neumann, S. Lee, C. Brown, D. Engelman et al., A view of dynamics changes in the molten globule-native folding step by quasielastic neutron scattering, Journal of Molecular Biology, vol.301, issue.2, pp.525-536, 2000.
DOI : 10.1006/jmbi.2000.3978

V. Receveur, P. Calmettes, J. Smith, M. Desmadril, G. Coddens et al., Picosecond dynamical changes on denaturation of yeast phosphoglycerate kinase revealed by quasielastic neutron scattering, Proteins: Structure, Function, and Genetics, vol.229, issue.3, pp.380-387, 1997.
DOI : 10.1002/(SICI)1097-0134(199707)28:3<380::AID-PROT8>3.0.CO;2-G

E. Mamontov, O. Neill, H. Zhangand, and Q. , Mean-squared atomic displacements in hydrated lysozyme, native and denatured, Journal of Biological Physics, vol.79, issue.3, pp.291-297, 2010.
DOI : 10.1007/s10867-009-9184-6

A. Gaspar, M. Appavou, S. Busch, T. Unruh, and W. Doster, Dynamics of well-folded and natively disordered proteins in solution: a time-of-flight neutron scattering study, European Biophysics Journal, vol.276, issue.278, pp.573-582, 2008.
DOI : 10.1007/s00249-008-0266-3

H. Nakagawa, H. Kamikubo, and M. Kataoka, Effect of conformational states on protein dynamical transition, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.1, pp.27-33, 2010.
DOI : 10.1016/j.bbapap.2009.06.025

M. Bokor, V. Csizmók, D. Kovács, P. Bánki, P. Friedrich et al., NMR Relaxation Studies on the Hydrate Layer of Intrinsically Unstructured Proteins, Biophysical Journal, vol.88, issue.3, pp.2030-2037, 2005.
DOI : 10.1529/biophysj.104.051912

N. Sengupta, S. Jaud, and D. Tobias, Hydration Dynamics in a Partially Denatured Ensemble of the Globular Protein Human ??-Lactalbumin Investigated with Molecular Dynamics Simulations, Biophysical Journal, vol.95, issue.11, pp.5257-5267, 2008.
DOI : 10.1529/biophysj.108.136531

S. Chakraborty and S. Bandyopadhyay, Dynamics of Water in the Hydration Layer of a Partially Unfolded Structure of the Protein HP-36, The Journal of Physical Chemistry B, vol.112, issue.20, pp.6500-6507, 2008.
DOI : 10.1021/jp710904c

G. Zaccai, How Soft Is a Protein? A Protein Dynamics Force Constant Measured by Neutron Scattering, Science, vol.288, issue.5471, pp.1604-1607, 2000.
DOI : 10.1126/science.288.5471.1604

B. Frick, A. Magerla, Y. Blanca, and R. Rebescoa, The new backscattering spectrometer IN16 at the ILL, Physica B: Condensed Matter, vol.234, issue.236, pp.234-236, 1997.
DOI : 10.1016/S0921-4526(96)00212-8

T. Becker and J. Smith, Energy resolution and dynamical heterogeneity effects on elastic incoherent neutron scattering from molecular systems, Physical Review E, vol.67, issue.2, p.21904, 2003.
DOI : 10.1103/PhysRevE.67.021904

M. Weingarten, A. Lockwood, S. Hwo, and M. Kirschner, A protein factor essential for microtubule assembly., Proceedings of the National Academy of Sciences, vol.72, issue.5, pp.1858-1862, 1975.
DOI : 10.1073/pnas.72.5.1858

M. Von-bergen, P. Friedhoff, J. Biernat, J. Heberle, E. Mandelkow et al., Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming beta structure, Proceedings of the National Academy of Sciences, vol.97, issue.10, pp.5129-5134, 2000.
DOI : 10.1073/pnas.97.10.5129

M. Mukrasch, S. Bibow, J. Korukottu, S. Jeganathan, J. Biernat et al., Structural Polymorphism of 441-Residue Tau at Single Residue Resolution, PLoS Biology, vol.25, issue.2, pp.1-6, 2009.
DOI : 10.1371/journal.pbio.1000034.sg004

M. Mukrasch, P. Markwick, J. Biernat, M. Bergen, P. Bernadó et al., Highly Populated Turn Conformations in Natively Unfolded Tau Protein Identified from Residual Dipolar Couplings and Molecular Simulation, Journal of the American Chemical Society, vol.129, issue.16, pp.5235-5243, 2007.
DOI : 10.1021/ja0690159

E. Mandelkow and E. Mandelkow, Tau in Alzheimer's disease, Trends in Cell Biology, vol.8, issue.11, pp.425-427, 1998.
DOI : 10.1016/S0962-8924(98)01368-3

R. Kapust and D. Waugh, maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused, Protein Science, vol.12, issue.8, pp.1668-1674, 1999.
DOI : 10.1110/ps.8.8.1668

T. Pons, H. Uyeda, I. Medintz, and H. Mattoussi, Hydrodynamic Dimensions, Electrophoretic Mobility, and Stability of Hydrophilic Quantum Dots, The Journal of Physical Chemistry B, vol.110, issue.41, pp.20308-20316, 2006.
DOI : 10.1021/jp065041h

P. Yang and J. Rupley, Protein-water interactions. Heat capacity of the lysozyme-water system, Biochemistry, vol.18, issue.12, pp.2654-2661, 1979.
DOI : 10.1021/bi00579a035

M. Dolman, P. Halling, B. Moore, and S. Waldron, How dry are anhydrous enzymes? Measurement of residual and buried18O-labeled water molecules using mass spectrometry, Biopolymers, vol.103, issue.3, pp.313-321, 1997.
DOI : 10.1002/(SICI)1097-0282(199703)41:3<313::AID-BIP6>3.0.CO;2-V

M. Von-bergen, S. Barghorn, J. Biernat, E. Mandelkow, and E. Mandelkow, Tau aggregation is driven by a transition from random coil to beta sheet structure, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1739, issue.2-3, pp.158-166, 2005.
DOI : 10.1016/j.bbadis.2004.09.010

T. Bartels, J. Choi, and D. Selkoe, ??-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation, Nature, vol.443, issue.7362, pp.107-110, 2011.
DOI : 10.1038/nature10324

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166366

M. Tanaka, Y. Kim, G. Lee, E. Junn, T. Iwatsubo et al., Aggresomes Formed by ??-Synuclein and Synphilin-1 Are Cytoprotective, Journal of Biological Chemistry, vol.279, issue.6, pp.4625-4631, 2004.
DOI : 10.1074/jbc.M310994200

F. Volino and A. Dianoux, Neutron incoherent scattering law for diffusion in a potential of spherical symmetry: general formalism and application to diffusion inside a sphere, Molecular Physics, vol.2, issue.2, pp.271-279, 1980.
DOI : 10.1080/00268978000102761

M. Tarek and D. Tobias, The Dynamics of Protein Hydration Water: A Quantitative Comparison of Molecular Dynamics Simulations and Neutron-scattering Experiments, Biophysical Journal, vol.79, issue.6, pp.3244-3257, 2000.
DOI : 10.1016/S0006-3495(00)76557-X

S. Chen, J. Teixeira, and R. Nicklow, Incoherent quasielastic neutron scattering from water in supercooled regime, Physical Review A, vol.26, issue.6, pp.3477-3482, 1982.
DOI : 10.1103/PhysRevA.26.3477

D. Leitner, M. Gruebele, and M. Havenith, Solvation dynamics of biomolecules: Modeling and terahertz experiments, HFSP Journal, vol.2, issue.6, pp.314-323, 2008.
DOI : 10.2976/1.2976661

A. Bergner, U. Heugen, E. Bründermann, G. Schwaab, M. Havenith et al., New p-Ge THz laser spectrometer for the study of solutions: THz absorption spectroscopy of water, Review of Scientific Instruments, vol.76, issue.6, pp.63110-063115, 2005.
DOI : 10.1063/1.1928427

B. Born, H. Weingärtner, E. Bründermann, and M. Havenith, Solvation Dynamics of Model Peptides Probed by Terahertz Spectroscopy. Observation of the Onset of Collective Network Motions, Journal of the American Chemical Society, vol.131, issue.10, pp.3752-3755, 2009.
DOI : 10.1021/ja808997y

S. Ebbinghaus, S. Kim, M. Heyden, X. Yu, M. Gruebele et al., Protein Sequence- and pH-Dependent Hydration Probed by Terahertz Spectroscopy, Journal of the American Chemical Society, vol.130, issue.8, pp.2374-2375, 2008.
DOI : 10.1021/ja0746520

A. Perriman, H. Cölfen, R. Hughes, C. Barrie, and S. Mann, Solvent-Free Protein Liquids and Liquid Crystals, Angewandte Chemie International Edition, vol.38, issue.34, pp.6242-6246, 2009.
DOI : 10.1002/anie.200903100

A. Perriman, A. Brogan, H. Cölfen, N. Tsoureas, G. Owen et al., Reversible dioxygen binding in solvent-free liquid myoglobin, Nature Chemistry, vol.82, issue.8, pp.622-626, 2010.
DOI : 10.1021/jp9058966

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Perriman and S. Mann, Liquid Proteins???A New Frontier for Biomolecule-Based Nanoscience, ACS Nano, vol.5, issue.8, pp.6085-6091, 2011.
DOI : 10.1021/nn202290g

J. Roh, V. Novikov, R. Gregory, J. Curtis, Z. Chowdhuri et al., Onsets of Anharmonicity in Protein Dynamics, Physical Review Letters, vol.95, issue.3, 2005.
DOI : 10.1103/PhysRevLett.95.038101

G. Schiró, C. Caronna, F. Natali, and A. Cupane, Direct Evidence of the Amino Acid Side Chain and Backbone Contributions to Protein Anharmonicity, Journal of the American Chemical Society, vol.132, issue.4, pp.1371-1376, 2010.
DOI : 10.1021/ja908611p

J. Roh, R. Briber, A. Damjanovic, D. Thirumalai, S. Woodson et al., Dynamics of tRNA at Different Levels of Hydration, Biophysical Journal, vol.96, issue.7, pp.2755-2762, 2009.
DOI : 10.1016/j.bpj.2008.12.3895

F. Gabel and M. Bellissent-funel, C-Phycocyanin Hydration Water Dynamics in the Presence of Trehalose: An Incoherent Elastic Neutron Scattering Study at Different Energy Resolutions, Biophysical Journal, vol.92, issue.11, pp.4054-4063, 2007.
DOI : 10.1529/biophysj.106.092114

Z. Zanotti, G. Gibrat, and M. Bellissent-funel, Hydration water rotational motion as a source of configurational entropy driving protein dynamics. Crossovers at 150 and 220 K, Physical Chemistry Chemical Physics, vol.82, issue.236, pp.4865-4870, 2008.
DOI : 10.1039/b808217k

M. Krishnan, V. Kurkal-siebert, and J. Smith, Methyl Group Dynamics and the Onset of Anharmonicity in Myoglobin, The Journal of Physical Chemistry B, vol.112, issue.17, pp.5522-5533, 2008.
DOI : 10.1021/jp076641z

M. Keniry, A. Kintanar, R. Smith, H. Gutowsky, and E. Oldfield, Nuclear magnetic resonance studies of amino acids and proteins. Deuterium nuclear magnetic resonance relaxation of deuteriomethyl-labeled amino acids in crystals and in Halobacterium halobium and Escherichia coli cell membranes, Biochemistry, vol.23, issue.2, pp.288-298, 1984.
DOI : 10.1021/bi00297a018

A. Lee and A. Wand, Microscopic origins of entropy, heat capacity and the glass transition in proteins, Nature, vol.411, issue.6836, pp.501-504, 2001.
DOI : 10.1038/35078119

O. Awile, A. Krisko, I. Sbalzarini, and B. Zagrovic, Intrinsically Disordered Regions May Lower the Hydration Free Energy in Proteins: A Case Study of Nudix Hydrolase in the Bacterium Deinococcus radiodurans, PLoS Computational Biology, vol.8, issue.7, 2010.
DOI : 10.1371/journal.pcbi.1000854.s003

URL : https://hal.archives-ouvertes.fr/inserm-00704881

K. Krewulak, C. Shepherd, and H. Vogel, Molecular Dynamics Simulations of the Periplasmic Ferric-hydroxamate Binding Protein FhuD, BioMetals, vol.22, issue.4, pp.375-384, 2005.
DOI : 10.1007/s10534-005-3712-z

L. Plupart-des-taux-d, hydratation sont choisis pour avoir 0.4 g H2O/g H-Protéine (situation de monocouche d'eau). L'échantillon de RNase fait exception et est hydraté à 0