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Foreword

Audio data occupy a central position in our life, whether it is for spoken communication, per-
sonal videos, radio and television, music, cinema, video games, or live entertainment. This
raises a range of application needs from signal enhancement to information retrieval, including
content repurposing and interactive manipulation.

Real-world audio data exhibit a complex structure due to the superposition of several sound
sources and the coexistence of several layers of information. For instance, speech recordings
often include concurrent speakers or background noise and they carry information about the
speaker identity, the language and the topic of the discussion, the uttered text, the intonation and
the acoustic environment. Music recordings also typically consist of several musical instruments
or voices and they carry information about the composer, the temporal organization of music,
the underlying score, the interpretation of the performer and the acoustic environment.

When I started my PhD in 2001, the separation of the source signals in a given recording
was considered as one of the greatest challenges towards successful application to real-world
data of audio processing techniques originally designed for single-source data. Fixed or adap-
tive beamforming techniques for target signal enhancement were already established, but they
required a large number of microphones which is rarely available in practice [BWO01]. Blind
source separation techniques designed for a smaller number of microphones had just started to
be applied to audio in, e.g., [MIZ01, BRO1, BGBOI1]. Eleven years later, much progress has
been made and source separation has become a mature topic. Thanks in particular to some of
the contributions listed in this document, the METISS team has gained a leading reputation in
the field, as exemplified by a growing number of technology transfer collaborations aiming to
enhance and remix speech and music signals in various use cases.

The use of source separation as a pre-processing step for the description of individual speech
or music sources within a mixture raises the additional challenge of efficiently dealing with non-
linear distortions over the estimated source signals. Robust methods interfacing source separa-
tion, feature extraction and classification have emerged in the last ten years based on the idea
of uncertainty propagation. This topic was part of my research program when I joined Inria in
2006 and it is currently undergoing major growth due to the ubiquity of speech applications for
hand-held devices [Denl1]. Current methods have not yet reached the robustness of the human
auditory system, though, and speech or speaker recognition in real-world non-stationary noise
environments remains a very challenging problem.

By comparison with the above two challenges, joint processing of the multiple layers of
information underlying audio signals has attracted less interest to date. It remains however a

9
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fundamental problem for music processing in particular [AP0O4, DBC09], where tasks such as
polyphonic pitch transcription and chord identification are typically performed independently of
each other without accounting for the strong links between pitch and chord information.

My work has been focusing on these three challenges and is based in particular on the the-
oretical foundations of Bayesian modeling and estimation on the one hand and sparse modeling
and convex optimization on the other hand. This document provides an overview of my contri-
butions since the end of my PhD along four axes: Chapter 1 is devoted to the formalization and
diagnostic assessment of certain studied problems, Chapter 2 to linear modeling of audio signals
and to some associated algorithms, Chapter 3 to variance modeling of audio signals and to some
associated algorithms, and Chapter 4 to the description of multisource and multilayer contents.
Chapter 5 summarizes the research perspectives arising from this work.

Throughout the document, I have chosen to adopt a rather unconventional writing style using
either first-person singular pronouns for the studies conducted as the unique or main researcher
or first-person plural pronouns for the studies conducted as supervisor or collaborator.



Chapter 1

Problems, evaluation, and diagnostic
assessment

Supervision: Valentin Emiya (postdoc), Gabriel Sargent (PhD student)
Main collaborations: Carl von Ossietzky Universitit Oldenburg (Germany), NTT Communica-
tion Science Labs (Japan), Queen Mary University of London (United Kingdom)

1.1 Source separation

Audio source separation is the problem of extracting the signals of one or more target sound
sources from a given recording. Back in 2006, the assessment and the comparison of different
separation algorithms remained challenging because the test signals and (sometimes unknow-
ingly) the definition of the task and the evaluation metrics changed from one author to another.
Independent component analysis (ICA)-based techniques either provided estimates of the source
signals up to arbitrary filtering [MLS07] or projected them back into different input channels
[MNO1]. Time frequency masking-based techniques typically outputted a masked version of a
single channel of the mixture instead [YR04]. We had already designed in [24] a set of evaluation
metrics that were applicable to all algorithms and thereby overcame some of the limitations of
previous algorithm-specific metrics [STS99, YR04]. However, these metrics were not attached
to a specific task and left to the choice of the user instead.

It is when organizing one of the first evaluation campaigns in the field, namely the 2007
Stereo Audio Source Separation Evaluation Campaign (SASSEC) [35], that I proposed a refer-
ence methodology for the evaluation of source separation algorithms based on a set of standard
tasks, evaluation criteria and performance bounds. This methodology has later been expanded
in the series of Signal Separation Evaluation Campaigns (SiISEC) which I founded and then
co-organized [10, 30, 34]. I also specified the information to be mentioned about the test data
so that the results are reproducible [10]. This includes in particular the room reverberation time,
that is the time taken by the echoes of a sound impulse to decay by 60 decibels (dB).

The following notations are used in the rest of the document. Scalars are denoted by plain
letters, vectors by bold lowercase letters, and matrices by bold uppercase letters.

11



12 CHAPTER 1. PROBLEMS, EVALUATION, AND DIAGNOSTIC ASSESSMENT

1.1.1 Tasks

Audio mixtures result from the process of simultaneously recording several sound sources and/or
mixing multiple recordings using appropriate hardware or software. In any case, the mixing
process can be approximated as a linear, time-varying process. Denoting by J and I the number
of sources and mixture channels, the observed [ x 1 mixture signal x(¢) at time ¢ can be expressed
as

J
x(t) = ¢;(t) (1.1)
j=1

where c;(t) is the contribution of the j-th source to the mixture. We call c;(t) the spatial image
of the j-th source. This formulation, which was first proposed in the context of ICA [Car98], is
in fact very general and does not rely on any assumption about the sources. In particular, it is not
restricted to point sources emitting sound from a single point in space, but it is also applicable
to spatially diffuse sources.

Studies in the blind source separation community have mostly focused on point sources. In
this case, the spatial image of each source is the result of the convolution process

ci(t) = Zaj(t—T,T)sj(t—T) (1.2)

where s;(t) is the single-channel source signal emitted by the source and the entries of a;(t, 7)
are time-varying mixing filters. When the source is immobile, these filters become time-invariant
and are denoted as a;(7). Stacking all mixing filters into a matrix A(7) and all sources into a
vector s(t), this yields the classical formulation of convolutive source separation x(t) = Axs(t),
where x stands for multichannel convolution. This boils down to x(¢) = As(¢) in the simple case
when A(7) is an instantaneous mixing matrix A. Using the terminology of linear algebra, the
problem is then classically called over-determined, determined or under-determined depending
whether J < I, J = I or J < I, respectively [CJ10].

This brief analysis shows that the problem of source separation translates into two different
tasks at least depending on the nature of the sources and on the intended application: the estima-
tion of the single-channel source signals s;() or that of their multichannel spatial images c;(¢)
[10, 35].

1.1.2 Evaluation criteria

While the evaluation criteria defined in [24] turned out to be appropriate for the assessment of
source signal estimation, new criteria remained to be found for the assessment of source spatial
image estimation. I defined such criteria in [10, 35] assuming reference spatial image signals
cj/(t) to be available for all sources, 1 < j/ < J, and released them as version 3.0 of the BSS
Eval toolbox. Because source spatial image estimation does not suffer from any indeterminacy
[Car98], it has a unique ideal solution that is c;(t) itself. An estimated source spatial image
c;(t) can be decomposed as

€j(1) = cj(t) + &P (1) + e () + e (1) (1.3)
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where €**(t), e (¢) and e2"if(t) are distortion components representing spatial distor-
tion, interference, and artifacts also known as “musical noise”. Similarly to [24], ej-pat(t) and
eijnterf(t) can be expressed as filtered versions of the reference source images and computed
by time-invariant least-squares projection of the estimated source image onto the corresponding
signal subspaces. The amount of spatial distortion, interference and artifacts is then measured by
the image-to-spatial distortion ratio (ISR), the signal-to-interference ratio (SIR) and the signal-

to-artifacts ratio (SAR) expressed in dB

> llsi ()1
J

> s (1) + €7 (1)1

SIR; = 10logy, . J (1.5)
’ >, leintert (¢)]|2
S IS8 () + P (1) + elntert (1) |2

SAR; = 10log; : n : (1.6)

’ >y lledrtif(z)||2

while the total distortion is measured by the signal-to-distortion ratio (SDR)

s'M8(4)(12

SDR; = 10log;, 2ells; "l (1.7)

t inter rti '
i €57 (2) + elrtert(t) + et (2|2

Although these metrics were shown to correlate with perception reasonably well [FSPZ07],
the distortion components obtained by time-invariant least-squares projection are not always
perceptually relevant and energy ratios do not account for auditory phenomena such as loudness
perception and spectral masking. In order to complement these metrics, we proposed in [11]
a specific listening test protocol for the subjective evaluation of audio source separation. The
proposed protocol is inspired from the “multiple stimuli with hidden reference and anchor”
(MUSHRA) protocol [ITUO3] for the assessment of medium and large impairments, with the
difference that the original mixture signal is also made available for listening. Listeners are
asked to rate the global quality of the test sounds compared to the reference on a scale from 0
to 100, as well as their quality in terms of preservation of the target source, suppression of other
sources, and absence of additional artificial noise. As an essential feature of MUSHRA, we
developed a set of task-specific low-quality anchor sounds to be hidden among the test sounds in
order to avoid fluctuation of the scoring scale depending on the test sounds. Using this protocol,
we collected the subjective scores given by 20 listeners to 80 sounds, including the outputs of
actual source separation algorithms of the SISEC 2008 campaign.

Building upon these results, we defined four objective evaluation metrics aiming to predict
the results of the listening test for any estimated source spatial image signal and released them as
a software call PEASS [11]. These metrics exhibit two main differences compared to the SDR,
ISR, SIR and SAR. Firstly, we replaced the time-invariant decomposition of the estimation er-
ror in [24] by a computationally efficient auditory-motivated time-varying decomposition. The
estimated and the reference source spatial image signals are passed through a gammatone filter-
bank mimicking the frequency-dependent bandwidth of the ear and subsequently windowed into
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overlapping time frames whose duration is inversely proportional to the bandwidth. The distor-
tion components in (1.3) are then separately estimated in each subband and each time frame
by least-squares projection as above and the fullband distortion components are reconstructed
by overlap and add and filterbank inversion. Secondly, we proposed to assess the perceptual
salience of each distortion component via the PEMO-Q auditory model [HK06] and to combine
the resulting saliences via a neural network trained on the collected subjective scores.

We assessed the performance of the resulting overall perceptual score (OPS), target-related
perceptual score (TPS), interference-related perceptual score (IPS) and artifacts-related percep-
tual score (APS) in terms of linear correlation and rank correlation with the subjective scores in
a cross-validation experiment. The results displayed in Table 1.1 show that, except for the IPS
with respect to the SIR, the subjective relevance of the OPS, TPS and APS is greatly improved
with respect to the SDR, ISR and SAR. I further refined these criteria in [43] by optimizing the
parameters of PEMO-Q and proposing a different training procedure.

BSS Eval PEASS
SDR ISR SIR SAR | OPS TPS 1IPS APS
Linear correlation | 0.37 -0.14 0.72 0.31 | 0.61 046 060 0.43
Rank correlation 0.36 -0.07 0.67 031|055 044 059 043

Table 1.1: Linear and rank correlation between BSS Eval or PEASS metrics and the subjective
scores given to actual separation algorithms [11].

1.1.3 Performance bounds

The separation performance of a given algorithm depends on several factors: the intrinsic diffi-
culty of separation of the considered mixture, the choice of an underlying model, the constraints
on this model (window size, number of parameters, etc) and the choice of an algorithm to esti-
mate the parameters of the model. In order to assess the impact of the former three factors with
respect to the latter, I introduced in [22] the concept of oracle estimator, that is an estimator of the
best SDR possibly achievable by a class of algorithms on a given mixture signal. I designed ex-
plicit algorithms to compute oracle estimators for three particular classes of algorithms, namely
multichannel time-invariant filtering and single-channel or multichannel time-frequency mask-
ing. I then implemented them into a toolbox called BSS Oracle and evaluated their performance
on various data.

The results for multichannel time-frequency masking are particularly interesting to analyze.
This class of algorithms operates as follows [Gri03, YR04, AAGO7]. The signals are trans-
formed into the time-frequency domain via the short-time Fourier transform (STFT). In each
time-frequency bin (n, f), the convolutive mixing process can be approximated under a nar-
rowband assumption (see Chapter 2) as X(n, f) = A(f)s(n, f) where X(n, f) are s(n, f) are
the STFT coefficients of the mixture and the sources and A(f) is the Fourier transform of the
mixing filters. Due to the sparsity of audio sources in this domain, it can be assumed that only
J' < J sources are actually active in this bin. The SFTF coefficients of these sources are then
recovered by pseudo-inversion of the I x .J’ matrix consisting of the corresponding columns of
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;&( f), while the STFT coefficients of the other sources are set to zero. Time-domain signals are
finally obtained by the inverse STFT. Figure 1.1 shows the resulting oracle SDR for convolutive
two-channel three-source mixtures as a function of the STFT window length and the assumed
number of active sources J' per time-frequency bin. The results indicate that the performance
of popular binary masking algorithms [YRO04], which assume a single active source per time-
frequency bin, is limited to about 12 dB SDR and that it is well worth developing algorithms
allowing a greater number of active sources, as we shall present in the following.

0° 10! 10
STFTwindowlength(ms)

Figure 1.1: Performance of the multichannel time-frequency masking oracle on two-channel
convolutive mixtures of three audio sources as a function of the STFT window length and the
number of active sources J', assuming that A (f) is known [22].

In subsequent studies, we developed oracle estimators for other classes of algorithms, namely
time-frequency masking using adaptive time-frequency transforms [77, 79] and single-channel
source separation based on Gaussian mixture models (GMMs) of the source spectra [98].

1.1.4 Evaluation campaigns

The proposed tasks, evaluation metrics and oracle estimators have been exploited in the series
of SASSEC and SiSEC evaluation campaigns [10, 30], which I founded and then co-organized.
Each edition of these campaigns featured 1 to 6 different datasets and attracted on the order of
15 to 30 submissions. These campaigns have had a great impact on the audio source separa-
tion community, as they have made it easier to adopt common datasets, measure progress over
time, identify established solutions and focus on the remaining challenges. I provided a detailed
analysis of these trends in [10].

As an example, let us analyze the evolution of performance over the “Under-determined
speech and music mixtures” dataset. Due to the growing of the dataset over the years, we con-
sider the fixed subset of two-channel mixtures of four speech sources and two-channel mixtures
of three music sources of SISEC 2008 and similar mixtures for SASSEC. These mixtures were
either mixed instantaneously or recorded in a room with 250 ms reverberation time via a pair of
microphones spaced by 5 cm. For each campaign and each mixing condition, the performance
of the system leading to the best average SDR is reported in Table 1.2. It can be seen that the
separation of instantaneous mixtures is close to be solved, with an average SDR of 14 dB, while
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Performance SASSEC SiSEC SiSEC SiSEC Binary masking
2007 2008 2010 2011 oracle
Instantaneous mixtures
Method [80] [OF10] [8] [8] [22]
SDR (dB) 10.3 14.0 13.4 13.8 10.4
ISR (dB) 19.2 233 234 23.6 19.4
SIR (dB) 16.0 204 20.0 20.7 21.1
SAR (dB) 12.2 15.4 14.9 15.1 11.4
Microphone recordings
Method [SAM11] | [EPSGO08] | [SAM11] | [NO12]+[80] [22]
SDR (dB) 1.8 2.6 3.5 3.8 9.2
ISR (dB) 7.0 5.7 8.4 8.2 16.9
SIR (dB) 4.2 24 7.0 7.2 18.5
SAR (dB) 6.8 7.3 6.3 7.2 9.9

Table 1.2: Evolution of the average performance of the best source spatial image estimation
method on the “Under-determined speech and music mixtures” dataset of SISEC compared to
oracle binary masking.

that of reverberant recordings remains much more difficult, with an average SDR of 4 dB. For
instantaneous mixtures, a performance gain of 3 to 4 dB was achieved in 2008 when replac-
ing the sparse decomposition algorithm in [80] (see Section 2.2.1) by the algorithms in [OF10,
8] which exploit the spectral structure of the sources (see Section 3.4). All these algorithms
assume multiple active sources per time-frequency bin, which enables them to outperform the
binary masking oracle. For convolutive mixtures, steady progress has been made but the best
algorithm so far [NO12] still relies on the sparse decomposition algorithm in [80] and room is
left for further progress as shown by the oracle.

Table 1.3 presents the best results achieved over the other datasets of SiSEC 2011, which
reflect the current state of the art. For each dataset, the algorithm yielding the best average SDR
was selected among the algorithms that were able to separate all sources of all mixtures. With
an average SDR of 8 dB, the separation of a speech source mixed with real-world background
noise appears easier than that of the convolutive mixtures in Table 1.2. Indeed, although the
number of background noise sources may be large, the spectral diversity between the target and
the noise sources is greater so that time-frequency masking is easier. The separation of mixtures
of one immobile source and one moving source yields an SDR of 4 dB, which is significantly
smaller than that achieved for mixtures of two immobile sources [10]. Finally, the separation
of real-world music recordings appears most difficult, with an SDR of 3 dB only. This can be
attributed in particular to the fact that most musical instruments are mixed to the center of the
stereo space. The sources then lack spatial diversity and only their spectral structure can be
exploited to discriminate them, as achieved by the algorithm in [8] (see Section 3.4.2).

From these results, it can be concluded that lack of spatial diversity, reverberation, source
movements and background noise are the main remaining challenges to be addressed.



1.2. MUSIC STRUCTURE ESTIMATION 17

Dataset Number of channels Method SDR | ISR | SIR | SAR
and sources (dB) | (dB) | (dB) | (dB)

Mixed speech and real- r=2 [NM11] | 80 | 11.0 | 147 | 120

world domestic noise J unknown

Mixtures qf an immobile I1=2 [NO12] 43 55 128 | 70

and a moving source J=2

Professionally produced I1=2

music recordings J=2t010 8] 28 169 ) 57 | 40

Table 1.3: Average performance of the best source spatial image separation method on the other
datasets of SiISEC 2011.

1.2 Music structure estimation

On an entirely different topic, the processing of music signals also features a number of ill-
defined problems. The notions of music genre, rhythm or music structure are difficult to define
in a univocal manner, for instance. We have focused our methodological efforts on the notion of
music structure, which refers to the global temporal organization of a piece of music [PMK10].
Popular thinking associates music structure with the notions of chorus and verse. However, these
notions have a limited scope and they are more difficult to formalize than it would appear. In
the field of music theory, the structure of a piece derives instead from a number of composition
rules which have varied over the centuries and still vary today from one music style to another.
Finally, in the field of music information retrieval, it is typically considered as a subjective
concept depending on the listener [BMKO06]. This variety of viewpoints prevents the rigorous
comparison of different algorithms for automatic music structure estimation, as the existing
ground truth annotations differ from one annotator to another.

In [40, 47, 57], we proposed an operational definition of music structure called semiotic
structure based on axioms from the theory of linguistics known as structuralism [dS16]. This
definition is applicable to a variety of music genres and does not require any experience in music
theory from the annotator. We posit that conventional music pieces are formed by concatenation
of a number of structural blocks at a time scale on the order of 15 s, which exhibit three cate-
gories of properties: morphological properties relating to the internal temporal organization of
each block, paradigmatic properties relating to the repetition of certain blocks elsewhere in the
piece, and syntagmatic properties relating to the relationships between neighboring blocks in the
piece.

We proposed a system and contrast model [40] to characterize the morphology of the blocks,
by which a block is assumed to consist of a sequence of (typically) three elements forming a
logical carrier system completed by a fourth element contrasting with the first three. Paradig-
matic analysis is conducted by looking for blocks corresponding to the same carrier system and
grouping them into equivalence classes, while syntagmatic properties translate into structural
patterns, i.e., sequences of block classes being more likely than others. We proposed a practical
annotation procedure based on joint morphological, syntagmatic and paradigmatic analysis of
the piece and a set of annotation conventions. This approach was validated on a database of 20
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music pieces and resulted in a concordance of 91% among annotators about the block boundaries
[57].
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Building upon the definition of the source separation problem in Chapter 1, we now present
our contributions towards addressing this and other audio signal processing problems. Following
our categorization of source separation algorithms in [28], we divide these contributions into two
categories depending on the underlying signal modeling paradigm. The current chapter focuses
on linear modeling, while Chapter 3 focuses on variance modeling. We especially concentrate
on under-determined mixtures, whose number of channels I is strictly smaller than the number
of sources J.

The organization of both chapters is similar. After summarizing the general principle of
the considered modeling paradigm, we present a baseline model accounting for the local time-
frequency characteristics of the signals. We then introduce more advanced models accounting
respectively for their spatial and their spectral characteristics. For each model, we briefly de-
scribe the associated estimation algorithms.

2.1 General principle

Linear modeling is a general modeling paradigm which consists of representing the signals in a
(possibly undercomplete or overcomplete) basis of signals ® and of assuming a certain prior dis-
tribution or cost function over their coefficients in this basis [Mal98]. The basis ® may be fixed,
selected from a finite library of bases, learned from the signal itself, or defined as the output of a
nonlinear parametric function. In the latter case, the resulting model is often called generalized
linear model [DGI06]. The challenges associated with linear modeling include designing the
prior or the cost over the representation coefficients, computing the representation coefficients
for a given signal and selecting or learning an appropriate basis for a family of signals.

19
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2.2 Local sparse modeling

In the context of audio source separation, the chosen basis ® is typically an overcomplete STFT
basis with a fixed analysis window. In each time-frequency bin (n, f), the STFT coefficients
X(n, f) of the mixture signal in time frame n and frequency bin f satisfy

J
X(n, f) =Y €n, f) @.1)
j=1

where c;(n, f) are the STFT coefficients of spatial source images. Let us assume that all sources
are point sources whose spatial images can be expressed as in (1.2). Under a narrowband as-
sumption which is valid with low reverberation, ¢;(n, f) can be approximated as [MLS07]

cj(n, f) = 5j(n, f)a;(f) (2.2)

where a;(f) are steering vectors representing the frequency response of the mixing filters and
sj(n, f) are the STFT coefficients of the source signals. Stacking these quantities into a matrix
A(f) and a vector S(n, f), the mixture coefficients then satisfy the linear model X(n, f) =
A(f)3(n, f). In the case of an instantaneous mixture, a similar model may also alternatively be
obtained using a complete modified discrete cosine transform (MDCT) basis.

In the STFT or the MDCT domain, speech and music signals are sparse [YR04]: few coef-
ficients are large and most are close to zero, as can be seen in Figure 2.1. As a consequence, in
each time-frequency bin, the observed mixture X(n, f) is close to collinear to the steering vector
a;(f) of the dominant source j in that bin. Source separation algorithms for under-determined
mixtures generally involve two steps [MLS07, CJ10]: in the first step, the steering vectors a;( f)
are estimated by, e.g., clustering of X(n, f) and, in the second step, the source STFT coefficients
5j(n, f) are derived and transformed back to the time domain by inverse STFT or MDCT.

We have mostly focused on the second step, assuming a semi-blind scenario where the
mixing filters or the steering vectors are known. Because of under-determinacy, :41( f) is non-
invertible. The classical time-frequency masking approach assumes that only J’ < I sources are
active in each time-frequency bin and performs pseudo-inversion of the matrix made of the cor-
responding columns of A( f) [Gri03, YR04, AAGO7]. An alternative approach is to minimize
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Figure 2.1: Distribution of the magnitude STFT coefficients of a speech source.
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the /1 norm of the source STFT coefficients, which is typically justified as maximum likelihood
(ML) estimation of the source STFT coefficients under the assumption that they have a sparse
Laplacian distribution [ZPBK01, WKSMO07].

2.2.1 Complex-valued /, norm minimization

In [80], I studied the distribution of magnitude STFT coefficients of audio sources and showed
that they are sparser than Laplacian. This distribution can be well approximated by the general-
ized Gaussian distribution [CCA98]

51/17
PT(/p)

where the ML value of p is typically on the order of p ~ 0.4 as opposed to p = 1 for Lapla-
cian or p = 2 for Gaussian data, as illustrated in Figure 2.1. ML estimation of the source
STFT coefficients then translates into ¢, norm minimization of s(n, f) under the constraint that

PS5, F)) = P e "B 23

X(n, f) = A(f)S(n, f). This problem is more difficult than ¢; norm minimization since it is
nonconvex when p < 1. Also, the characterization of the solutions of £, norm minimization for
real-valued data does not apply to complex-valued data [WKSMO7].

I provided a mathematical characterization of the local minima of complex-valued £, norm
minimization when J = I + 1 [80]. These minima are either singular, in which case at least
one of the entries of s(n, f) is zero, or nonsingular, in which case s(n, f) belongs to a bounded
set. I then built upon this characterization to derive an algorithm for the estimation of the global
minimum and showed experimentally that, for small enough p, this minimum is almost surely
singular, i.e., it involves at most I nonzero coefficients. The solution can then be very quickly
estimated by selecting the singular local minimum with minimum ¢, norm out of J such minima.

Figure 2.3 shows the resulting source separation performance on two-channel mixtures of
three speech sources. It turns out that for convolutive mixtures the best separation is achieved
for the sparsest setting of p, that is p — 0. For instantaneous mixtures, this setting also pro-
vides a good tradeoff between separation performance and computational cost. The discrepancy

15

instantaneous
convolutive

SDR(dB)

Figure 2.2: Semi-blind separation performance of £, norm minimization on two-channel instan-
taneous or convolutive mixtures of three speech sources [80].



22 CHAPTER 2. LINEAR MODELING AND ASSOCIATED ALGORITHMS

between the value of p obtained by ML fitting of the source signals and that yielding the best
performance can be explained by the recent analysis in [GCD12] together with the fact that
the equality X(n, f) = A(f)3(n, f) does not hold exactly. The algorithm with p — 0 ranked
first for the separation of instantaneous mixtures in SISEC 2007 and was later reused as part of
the best approach for under-determined convolutive mixtures in SISEC 2011 [NO12] (see Table
1.2).

2.2.2 Time-frequency basis selection

Since both time-frequency masking and ¢, norm minimization with small p can separate at
most [ sources per time-frequency bin, the separation performance of these algorithms can be
improved by representing the signals in a different basis ® in which they are more disjoint.
Automatic selection of the best basis has been widely studied, e.g., in the field of audio coding
[ISO05]. However, the best basis for audio coding is not necessarily the one for source sep-
aration. In [79], I proposed an algorithm for the selection of the best basis within the dyadic
cosine packet library using a disjointness criterion tailored to source separation. Each basis in
this library is similar to the MDCT, except that the window length varies over time following a
dyadic partition of the time axis. We later proposed another algorithm in [26] by relaxing the
dyadic constraint and considering window lengths similar to those used for audio coding.

These algorithms offer an increase of separation performance on the order of 1 dB for instan-
taneous mixtures outweighed by a considerable increase of computation time. Limited further
improvements are to be expected from this direction for the fundamental reason illustrated in
Figure 2.3. Although £, norm minimization can improve upon binary masking by estimating the
I predominant sources in each time-frequency bin, these sources are most often incorrectly esti-
mated. In order to address this issue, it appears necessary to move from a local time-frequency
model to a more global model accounting for spatial or spectral dependencies between different
time-frequency bins.

2.3 Wideband modeling of the mixing filters

It is in that spirit that we pioneered in [16] a new approach to under-determined source separa-
tion by replacing the narrowband approximation (2.2) with the exact wideband mixing process
(1.2) for point sources. Indeed, time-domain filtering induces dependencies between the STFT
coefficients of the source spatial images in neighboring time frames (and to a lesser extent in
neighboring frequency bins), especially when the mixing filters are longer than the STFT win-
dow length. Wideband processing is common for determined mixtures [KBO03] but it had not yet
been considered for under-determined mixtures due to the difficulty of simultaneously handling
time-domain modeling of the mixing filters and STFT-domain modeling of the source signals.

2.3.1 Estimation of the source signals

When the model for the source STFT coefficients corresponds to a convex regularization term
such as the £, norm with p > 1, this difficulty may be addressed by replacing the equality (1.1)
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Figure 2.3: Semi-blind separation of a two-channel instantaneous mixture of three speech
sources by £, norm minimization with p — 0 [80].

by a /5 loss term and using convex optimization techniques such as the fast iterative thresholding
algorithm (FISTA) proposed in [BT09]. In the case of ¢; norm regularization, this results in the
following minimization problem [16]

1 ~ ~
min o D IIx(t) = AXISTETE) (B3 + A I5(n, - (2.4)
t n,f

The solution of #; norm minimization under the constraint (1.1) is attained in the limit when
A — 0. We also proposed a variant where the /1 norm is replaced by the squared /¢ » mixed
norm ), . s(n, f) |2. While the ¢; norm induces sparsity over the time-frequency plane, ¢1 2
norm regularization induces sparsity over the sources within each time-frequency bin only, in a
similar way to time-frequency masking [KTOS].

The application of FISTA to these two minimization problems is detailed in Algorithm 1.
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Algorithm 1: Wideband semi-blind source separation via FISTA. Parenthesized super-
scripts indicate the iteration number.
Initialization: 5(® € CV*B, 2(0) =50 7O =1,k = 1.
repeat
b*) = z(-=1) — LSTFT[A* % (x — A %iSTFT(5)*1)]
switch regularization term do

case /1
(k) _ k
L sk) = prox%”'ul(b( ))

case /1 o
S(k) (k

V1tar(-1)2
A(k) — 1+V144r

2
20 =50 4 TE D1 (gk) _ 5(k-1))

(k)
k=k+1
until convergence ;

In each iteration, the current estimate is first linearly updated using a combination of the STFT,
the iSTFT and filtering by A (7) and its adjoint A*(7) = A(—7)T. The result is then subject to
nonlinear shrinkage using the proximal operator proxp for the consider regularization P. This
operator defined as

1
proxp(z) = 5 argmin |z — ulf3 + P(u) 2.5)

amounts to entrywise soft thresholding with a fixed threshold for the #; norm and with a data-
dependent threshold for the squared ¢; 2 norm. The tradeoff parameter A\ was initially set to
107! and decreased over the iterations down to 1075.

Separation results are reported in Table 2.1 for two-channel convolutive mixtures of four
speech sources. Both wideband algorithms improve the SDR by as much as 4 dB compared to
narrowband binary masking and #; norm minimization. The SIR and SAR are also improved and
wideband ¢; norm minimization performs slightly better than wideband ¢; » norm minimization.
We also studied the robustness of these algorithms to inaccurate estimation of the mixing filters
A (7) by truncating them or perturbating them with exponentially decaying Gaussian noise [16].

Aleorithm narrowband wideband

& Binary \ ¢y min. | {12 min. \ /1 min.
SDR (dB) 3.4 2.8 7.2 7.6
SIR (dB) 10.0 6.4 13.9 14.0
SAR (dB) 5.1 6.5 8.5 9.1

Table 2.1: Semi-blind separation performance of wideband vs. narrowband algorithms on two-
channel convolutive mixtures of four speech sources [16].
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2.3.2 Estimation of the mixing filters

In order to move towards a blind scenario where the mixing filters are unknown, we recently
extended the wideband approach to the reverse problem of estimating the mixing filters when
the source signals are known [46]. While sparse regularization of time-domain filters had already
been used for deconvolution [LCKLO7, NBJ10], we extended this approach to multiple sources
and introduced new regularization terms accounting both for the sparsity and for the decreasing
temporal envelope of acoustic room impulse responses. This algorithm allowed us to propose
a competitive way of recording large sets of room impulse responses compared to traditional
recording techniques based on sine sweeps.

2.4 Harmonic sinusoidal modeling of the source signals

Independently of our work on wideband modeling, we also sought ways of better modeling the
source signals. A natural approach within the linear modeling paradigm is to learn a signal-
dependent basis from the time frames of the observed signal, which we applied to source sep-
aration in [18]. This approach is however not fully satisfactory, since it does not account for
translation invariance, i.e., the fact that all time-shifted versions of every atom of the basis
should also be part of the basis, and it is prone to overfitting for short signals.

In the context of my postdoctoral research assignment which was to estimate, compress and
manipulate parametric sound objects, I focused on harmonic sinusoidal modeling instead. In a
given time frame n, the single-source signal s(t) windowed by w,, (¢) can be expressed as a sum
of periodic sound objects indexed by p and an aperiodic residual e, (t)

M,
wn()5() = wn(£) D D tnpm cOS(2TM frpt + Gripm) + €n(t) (2.6)

p m=1

where f,, is the fundamental frequency of the p-th periodic object and (anpm, Pnpm) are the
amplitude and the phase of its m-th harmonic partial [Ros03, DGI06]. The parameters of this
model are typically estimated either by extracting sinusoidal tracks [MQ86] and subsequently
grouping them or by estimating the fundamental frequencies and deriving the amplitudes and
phases of their harmonics. A number of multiple pitch estimation techniques have been pro-
posed for the latter goal, ranging from spectral peak clustering [RG04, PI08] and harmonic sum
[K1a06] to neural networks [Mar04] and support vector machines [PEQ7].

2.4.1 Bayesian estimation

Motivated by the assigned parametric coding application, I pursued the Bayesian approach stud-
ied in [Ros03, DGIO6] instead, which can be seen as a form of analysis by synthesis. This
approach consists of setting probabilistic priors over the variables and estimating them in the
maximum a posteriori (MAP) sense. One difficulty is that of model selection: due to their
higher number of parameters, the joint MAP criterion peaks at submultiples of the fundamen-
tal frequencies instead of the actual fundamental frequencies, which results in so-called octave
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errors. This problem is aggravated by the choice of priors which do not penalize missing har-
monic partials. In [20], I suggested to estimate the MAP fundamental frequencies in a first
step by marginalizing over, i.e., integrating out, the amplitudes and phases of the partials and
to derive the MAP amplitudes and phases conditionally to the estimated fundamental frequen-
cies in a second step. I defined an auditory-weighted Gaussian prior for the aperiodic residual
and log-Gaussian priors for the fundamental frequencies and the harmonic amplitudes, so as
to penalize missing partials. I then proposed an efficient algorithm for the computation of the
high-dimensional marginalization integral based on automatic identification of those variables
which are independent a posteriori. Compared to conventional marginalization techniques, this
algorithm was shown to be more accurate than Laplace approximation [CH96] and faster than
Markov chain Monte Carlo (MCMC) [CROS5]. Also, it is not specific to harmonic models and
can be seen as a fundamental tool for marginalization in other contexts than audio.

Using this approach for harmonic sinusoidal modeling, I developed a parametric sound ob-
ject coder for music in [21]. I added a Markov prior over the fundamental frequencies so as
to extract continuous sequences of frequencies. I then developed a specific vector quantization
technique based on adaptive interpolation of the amplitudes of the harmonic partials over a set
of signal-dependent temporal and frequency breakpoints. Figure 2.4 depicts the resulting com-
pression performance. A huge bitrate reduction is achieved compared to conventional transform
or sinusoidal coders, with good quality down to 8 kbit/s and fair quality at 2 kbit/s. Application
to source separation [36] and manipulations of individual sound objects, such as pitch shifting,
time stretching or spectral envelope modification, were also investigated.
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Figure 2.4: Subjective comparison of the proposed sound object coder with baseline coders via
MUSHRA [ITU03]. Lame’was used for transform coding. The sinusoidal and hybrid coders
were implemented in a similar way as the MPEG-4 sinusoidal coding (SSC) and harmonic and
individual lines plus noise (HILN) standards [ISOO0S]. Bars indicate 95% confidence intervals
over 10 test items and 7 subjects [21].

2.4.2 Greedy estimation

In a different application context for which high resynthesis quality was not required, we ex-
plored the use of a much faster but less accurate greedy algorithm for harmonic sinusoidal mod-

Zhttp://lame.sourceforge.net/
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eling [19]. Inspired from the harmonic matching pursuit (MP) algorithm introduced in [GBO03],
our algorithm extracts harmonic sound atoms one by one. However, contrary to [GB03], the
amplitudes of the harmonic partials of each atom are not determined from the observed sig-
nal but trained on a separate set of isolated note signals of several musical instruments, which
reduces octave errors. In addition, constraints over the temporal structure are employed in or-
der to extract sequences of atoms with similar fundamental frequency corresponding to musical
notes. We applied this algorithm to multiple pitch estimation and polyphonic musical instrument
identification [19].
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algorithms

Supervision: Alexey Ozerov, Laurent Simon, Joachim Thiemann (postdocs), Ngoc Duong,
Nobutaka Ito (PhD students), Charles Blandin (MSc intern)

Main collaborations: Télécom ParisTech - LTCI (France), University of Tokyo, NTT Commu-
nication Science Labs (Japan)

While linear modeling of the mixture signal or the source signals appears suitable for point
sources and periodic sounds, respectively, it is not directly applicable to diffuse sources or ran-
dom sounds. Also, wideband modeling of the mixing filters or harmonic sinusoidal modeling
of the sources incur a large computational cost. The alternative paradigm of variance modeling
was designed to address these limitations.

This chapter follows a similar structure to the previous one. After summarizing the general
principle, we introduce a local variance model and proceed to more advanced spatial and spectral
models. Whenever possible, we compare the performance of the proposed models to their linear
counterparts.

3.1 General principle

Many speech or music processing techniques do not operate on time-domain signals but on
their short-term power spectra, discarding their phase [RJ93, KD06]. Such phase invariant
processing relies on the observation that the phase spectrum bears less information than the
power spectrum for certain applications and it is sometimes justified by the fact that the human
auditory system is phase invariant to a certain extent. The fit between the observed spectrum
and the model spectrum may be assessed in terms of Itakura-Saito (IS) divergence, Kullback-
Leibler (KL) divergence or other divergences. In statistical terms, this is equivalent to assuming
that the STFT coefficients of the observed signal have been drawn from a zero-mean phase-
invariant distribution whose variance is equal to the model spectrum. Similarly, in the field of
source separation, it has been shown that the samples of each source signal may be modeled
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as drawn either from identical sparse distributions or from a Gaussian distribution with sample-
dependent variance. Both models result in sparsely distributed samples and provide alternative
routes to source separation [CarO1]. The latter model has been exploited for under-determined
audio source separation in [FC05, OF10] in combination with narrowband approximation of the
mixing process.

I generalized this idea to non-point sources by proposing to model the multichannel source
spatial images c;(n, f) instead of the single-channel source signals by a zero-mean distribution
invariant to global phase rotation in each time-frequency bin [28]. The complex-valued Gaussian
distribution is particularly suitable since it results in a closed-form expression for the likelihood
of the mixture. The distribution of ¢;(n, f) is given by

¢ 1 & (/)RS (n,)8; (n. )
) _ s c ) ) 3 1
p(C](nvf)) det(ﬂ'ch (TL, f))e J ( )
where the covariance matrix R, (n, f) can be factored as the product of a scalar spectral vari-
ance v;(n, f) encoding its power spectrum and a spatial covariance matrix 3;( f):

Rc]'(n7 f) :’Uj(n, f)zj(f) (3.2)

Assuming that the sources are independent conditionally to their covariance matrices, the STFT
coefficients of the mixture X(n, f) also follow a zero-mean Gaussian distribution with covari-

ance matrix
J

Rx(n, f) =Y Re;(n, f). (3.3)

Jj=1

In addition, we proposed to exploit the local zero-mean empirical covariance matrix f{x(n, f)
of the mixture in the context of under-determined source separation. This matrix, which can be
computed by local averaging of X(n, f)X(n, ) over the time-frequency plane, can be seen as
a form of quadratic time-frequency representation. The parameters 8 = {v;(n, f), X;(f)}jns

may be fit to Ry (n, f) instead of X(n, f) via the log-likelihood

log p(Rx|0) = Y —log det(nRx(n, f)) — tr(Ry ' (n, /)Rx(n, f)) (3.4)
n,f

which accounts for the local correlation between the channels of the mixture [59, 75]. Figure 3.1
illustrates the benefit of this extra information for the discrimination of two possible solutions to
a source separation problem. Whereas the observation of the mixture STFT coefficients does not
suffice to discriminate these solutions without additional sparsity assumptions, the observation
of the mixture covariance matrix suffices. If the data have been generated by the “green” solution
in which one source predominates, then the two channels of the mixture are strongly correlated.
Conversely, if the data have been generated by the “red” solution in which two sources contribute
to a similar extent, then the two channels of the mixture are weakly correlated.

Once the model parameters have been estimated, the STFT coefficients of the source spatial
images are derived via multichannel Wiener filtering €j(n, f) = Wj(n, f)x(n, f) with

W;(n, f) = Re, (n, )R (n, f) (3.5)

and transformed back to the time domain via the inverse STFT.
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Linear model Variance model

Figure 3.1: Theoretical comparison of linear modeling and variance modeling for the separation
of a two-channel mixture of three sources in a given time-frequency bin under the narrowband
approximation. For the ease of representation, time-frequency indices are omitted and all quan-
tities are assumed to be real-valued.

3.2 Local Gaussian modeling

The simplest approach within the above Gaussian modeling paradigm is to assume that the spec-
tral variances v;(n, f) are independent between sources and between time-frequency bins. We
termed this approach local Gaussian modeling. Figure 3.2 shows the resulting separation perfor-
mance for the two-channel instantaneous mixture of three speech sources previously considered
in Figure 2.3, under the constraint that at most two sources are nonzero in each time-frequency
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Figure 3.2: Separation of the two-channel instantaneous mixture of three speech sources in
Figure 2.3 by local Gaussian modeling [75].



32 CHAPTER 3. VARIANCE MODELING AND ASSOCIATED ALGORITHMS

bin [75]. Although not perfect, local Gaussian modeling does not suffer from the limitation of
¢, norm minimization discussed in Section 2.2.2 and it is able to correctly estimate the predomi-
nant pair of sources in many time-frequency bins from the observation of the mixture covariance
matrix.

3.2.1 ML spatial covariance estimation

n [15], we introduced four possible parameterizations of 3;(f). The narrowband approxi-
mation (2.2) is here equivalent to assuming that the channels of the source spatial images are
perfectly correlated with each other and that X;(f) is a rank-1 matrix equal to a;(f)a;(f)".
For diffuse or reverberated sources, the channels of the source spatial images are more weakly
correlated and we proposed to model 33;(f) as an unconstrained full-rank covariance matrix
instead. The principal vector of 33;( f) then points to the apparent direction of sound, while the
ratio between its largest and smallest eigenvalues is related to the ratio of direct to reverberant
sound power. The parameters v;(n, f) and 3;(f) may be estimated in the ML sense by the
following iterative algorithm [15] based on Expectation-Maximization (EM) [MK97]: in the
E-step, the zero-mean covariance matrices of the estimated source images are computed as

Re,(n, f) = Wj(n, /)Rx(n, Y WH (0, f) + (T— W;(n, f))Re,(n, f)  (3.6)

and in the M-step, the parameters are updated as

1

vj(n. f) = S (S (R cj(n ) (3.7)
1 < Re
_ A 3.8
N; U](n 38)

where Re; (1, f), Rx(n, f) and W;(n, f) are defined in (3.2), (3.3) and (3.5) respectively, I is
the I x I identity matrix and N the number of time frames.

In semi-blind conditions when X;(f) is known, this algorithm increased the SDR on the
order of 2 dB compared to binary masking on the two-channel convolutive mixtures of three to
six sources in [16], that is 30% to 60% of the increase observed via wideband linear modeling.
This improvement compared to binary masking is significant, considering the fact that the model
involves only one additional parameter per frequency bin and that it operates locally in the time-
frequency plane, avoiding the computationally expensive convolution operations of wideband
modeling. It is in fact comparable to the improvement observed by wideband modeling when
truncating the length of the mixing filters to that of the STFT window [16], a comparison that
may be more relevant given the difficulty of blindly estimating long mixing filters.

Figure 3.3 displays the separation results in blind conditions. We used a hierarchical clus-
tering technique inspired from [WKSMO7] to initialize the spatial covariance matrices and the
technique in [SAMMO7] to permute the estimated source images to the same order across all
frequency bins. An SDR improvement on the order of 1 to 2 dB is still observed with respect
to binary masking and ¢; norm minimization for realistic reverberation times on the order of
130 ms or more. Compared to #; norm minimization, the SIR and the SAR are both improved
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Figure 3.3: Experimental comparison of full-rank local Gaussian modeling, rank-1 local Gaus-
sian modeling, binary masking and ¢;-norm minimization for the separation of two-channel
convolutive mixtures of three speech sources as a function of the reverberation time [15].

while, for binary masking, this translates into a large increase of the SAR and a smaller decrease
of the SIR.

The proposed local Gaussian model and EM algorithm have recently been adopted by other
authors for source separation [AN11] and for other applications such as acoustic echo reduction
[TH11] and dereverberation [TKT+12]. In [8], we also proposed a variant of this EM algorithm
that is able to handle spatial covariance matrices of any rank R by expressing them as 33;(f) =

:&j(f);;j(f)H and by updating :&j(f) instead of 33;( f), where A;(f) is an / x R matrix.

3.2.2 Alternative time-frequency representations

Similarly to local sparse modeling, the separation performance of local Gaussian modeling may
be improved by choosing the time-frequency representation such that the sources are maximally
disjoint. In [59], we achieved an SDR improvement of 0.5 dB while halving the computational
cost by using a fixed quadratic time-frequency representation on a nonlinear auditory-motivated
frequency scale, which would not have been possible in the case of linear modeling.

3.3 Modeling of the spatial covariance matrices

Although we have validated its benefit in blind conditions, ML estimation of the source spatial
covariance matrices is not fully satisfactory. Firstly, it is prone to overfitting in the frequency
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bins where the corresponding sources are inactive. Secondly, as other convolutive blind source
separation techniques based on a local model, it requires an additional permutation step in order
to align the order of the estimated source images across all frequency bins[MLSO07].

3.3.1 MAP spatial covariance estimation

In [2, 50], we studied these issues by investigating various possible probabilistic priors over the
source spatial covariance matrices and by estimating them in the MAP sense, assuming that the
sources directions of arrival (DOAs) are known. An SDR improvement on the order of 1 dB was
obtained compared to ML estimation using an inverse-Wishart prior [MKOO]. This prior has the
effect of modifying the M-step of the EM algorithm as

— 1 ) al ﬁcj n, f)
)= Sm T (’V‘I’ﬂfH;W) (3.9)
where .
m{f; = d;(f)d; ()" + 07e, QUS) (3.10)

is the mean of the prior, m its number of degrees of freedom, and -y a tradeoff parameter. The
expression (3.10) corresponds to a direct-plus-diffuse model, where d;( f) is the anechoic steer-
ing vector corresponding to the source DOA, o2, is the intensity of echoes and reverberation
and €2( f) is the spatial covariance matrix of a spherically diffuse sound field given by the theory
of room acoustics [GRTO03].

In order to move towards a blind setting where the source DOAs are unknown, we also con-
ducted in [7] a large-scale evaluation of existing algorithms for multiple source localization that
complements the one in [BOS08]. In this context, we proposed a frequency-weighted variant of
conventional beamforming-based localization algorithms [BWO1] that increases the localization

accuracy in the case of closely spaced microphones.

3.3.2 Subspace constraints

In parallel to this study on probabilistic priors, we designed a family of models specifically for
diffuse sources based on deterministic subspace constraints [92, 95]. The matrix 33;( f) is repre-
sented as the sparse combination of a number of basis matrices. In the case of a mixture of one
point source and one diffuse source, the combination coefficients may be estimated by convex
optimization algorithms for matrix completion [SJ03] or for trace norm minimization [TY10],
which is a matrix generalization of /; norm minimization. We modified these algorithms in or-
der to deal with complex-valued Hermitian positive-semidefinite data. We successfully applied
this approach to the denoising of speech signals and to the localization of multiple sources in
noisy environments.

3.4 Factorization-based modeling of the short-term power spectra

Moving on to the modeling of the source spectral characteristics, the phase invariance property
of variance modeling opens up many possibilities such as the handling of random noise sounds.
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It also enables the parameterization of the source spectra with a fixed, smaller number of param-
eters, which reduces the risk of overfitting and the need for model selection without completely
eliminating them though.

A popular model for single-channel data which I extended to multichannel data in my PhD
[23] relies on nonnegative matrix factorization (NMF) [LSO1, Vir06, OF10]. The spectral vari-
ance v;(n, f) of the sources is represented as the sum of K basis spectra wjj( f) multiplied by
time-varying activation coefficients h i (n)

K
vi(n, £) = wik(f)hjk(n). (3.11)
k=1

Different basis spectra may represent different phones in the case of speech or different notes in
the case of music. Codebook models, whereby the source spectrum is selected within a finite set
of spectra in each time frame, or scaled variants thereof have also been employed [BBGO06].

3.4.1 Harmonicity constraints

Although it improves upon the local Gaussian model, NMF lacks flexibility. The basis spectra
may be either fixed using training data, in which case they may badly fit the test data, or adapted
to the test data in the ML sense [OF10, 56], in which case a significant risk of overfitting remains.
Using an idea initially proposed outside of the context of NMF in [VKO02], I showed in [17, 78]
how to deterministically enforce harmonicity of the basis spectra by representing them as the
sum of a few narrowband harmonic spectra i, (f) associated with the same fundamental
frequency multiplied by spectral envelope coefficients e,

My,
wik(F) = Njkm (f)ejbm- (3.12)
m=1

The spectra 1, ( f) are fixed and distributed over a fixed fundamental frequency scale (several
possible definitions were investigated in [17]), while only the coefficients e, are adapted to the
test data, which greatly reduces the dimension of the model. This model is illustrated in Figure
3.4. The parameters hji(n) and ej,, can be estimated in the ML sense via a multiplicative
update algorithm similar to those in [LSO1], whose convergence we analyzed in [13].

I initially exploited this harmonic NMF algorithm for the task of multiple pitch estimation
in polyphonic music signals, using simple thresholding of the activation coefficients h;(n) to
detect the active notes in each time frame [17]. The performance of this and other algorithms
is reported in Table 3.1 for woodwind music. An estimated note is deemed to be correct if its
pitch is within one quarter-note of the ground truth and performance in assessed in terms of the
classical F-measure for information retrieval [vVR79]. On average, harmonic NMF increases the
F-measure by 3% absolute compared to unconstrained NMF and by 4% absolute compared to
the harmonic sum algorithm in [Kla06], but it performs 2% worse than the Bayesian harmonic
sinusoidal estimation algorithm introduced in Section 2.4.1. It must be however be reminded
that the latter algorithm requires training on isolated notes from each instrument, while harmonic
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Figure 3.4: Representation of a basis spectrum with a fundamental frequency of 220 Hz (bottom)
as the weighted sum of six narrowband harmonic spectra (top).

Algorithm I;Iumbeg of mSZrumentSs Average
Bayesian [20] 89.3 709 63.1 565 70.0
Harmonic NMF [17] 76.5 647 67.5 62.5 67.8
Unconstrained NMF 79.9 563 62.1 61.9 65.1
Harmonic sum [K1a06] 734 59.1 635 599 64.0
Spectral peak clustering [PIO8] | 27.8 24.7 33.5 34.0 30.0

Table 3.1: F-measure (%) achieved by the proposed Bayesian harmonic sinusoidal estimation
and harmonic NMF algorithms compared to other algorithms for multiple pitch estimation on
woodwind data [17, 20].

NMF is unsupervised and applicable to any instrument. Also, the computational load of NMF is
also several orders of magnitude lower than that of Bayesian estimation.

The proposed harmonic NMF algorithm ranked second after the entry of [RK05] on average
over all data for the note tracking subtask of the “Multiple fundamental frequency estimation &
tracking” task of the 2007 Music Information Retrieval Evaluation eXchange (MIREX) [78].
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3.4.2 Flexible spectral model

After addressing harmonicity constraints, we pursued the goal of constraining the parameters of
NME. We defined narrowband “noise” spectra to complement the harmonic spectra [12] and set
temporal smoothness priors over the activation coefficients [14]. Other authors merged harmonic
NMEF with the excitation-filter model of speech production for melody tracking and source sep-
aration instead [FCCO08, DRDF10]. In [8], we generalized these and other ideas into a multilevel
NMF model. The observed spectrum is assumed to be the product of an excitation spectrum
and a filter spectrum; the excitation and filter spectra are then separately expressed as the sum
of basis spectra multiplied by time-varying activation coefficients; finally, the basis spectra are
decomposed as the sum of narrowband (not necessarily harmonic) spectral patterns multiplied
by spectral envelope coefficients, while the series of activation coefficients are represented as
the sum of time-localized (not necessarily smooth) patterns multiplied by temporal envelope co-
efficients. Overall, this results in a product of eight nonnegative matrix variables in addition to
the spatial covariance matrices, which may be either fixed or jointly estimated in the ML sense
via an algorithm combining multiplicative updates and EM updates.

We systematically studied the source separation performance achieved by this algorithm over
speech and music mixtures by either fixing or adapting certain variables [8]. The results showed
that the best performance is often achieved when both the basis spectra and the activation coef-
ficients are constrained. Furthermore, this algorithm was one of the few algorithms submitted to
the “Professionally produced music recordings” task of SISEC 2011 which was able to separate
all sources and it performed best among those algorithms (see Table 1.3).

More generally speaking, this algorithm is quite flexible, in the sense that it encompasses
many existing algorithms as shown in [8] and that it allows quick development of new algorithms
by incorporating the prior knowledge available about the sources at hand. As a matter of fact, we
implemented it as a toolbox called FASST, which has become the basis for a majority of research
developments and industrial transfers in the field of source separation within the METISS team.
For instance, we recently used it in the context of online source separation [42].

3.5 Artifact reduction

As a complement to all the algorithms presented in this section and motivated by ongoing in-
dustrial transfers requiring high audio quality, we started investigating post-processing tech-
niques for the reduction of source separation artifacts. The reduction of artifacts is typically
achieved at the cost of increased interference. Many techniques have been studied in the con-
text of single-channel or multichannel denoising [EM84, Coh04, DM05, CBHD06, YMBO§],
which we adapted and tested in the context of under-determined source separation [67]. The
best tradeoff between SAR increase and SIR decrease was achieved by temporal smoothing of
the estimated source covariance matrices R, (n, f) before the derivation of the Wiener filter.
In another series of studies, we introduced a new method for the design of the Wiener filter
which accounts for the overcompleteness of the STFT, so as to favor smoother estimates of the
source STFT coefficients and to ensure that these estimates actually correspond to the STFT's of
time-domain signals [3, 63]. This method led to the filing of a patent [115].
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Chapter 4

Description of multisource and
multilayer contents
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Main collaborations: IRCAM - STMS (France), University of Tokyo (Japan)

Beyond the low-level or mid-level signal processing techniques for source separation and
multiple pitch estimation considered in the two previous chapters, we recently started investigat-
ing the application of these techniques to higher-level content description tasks in multisource
conditions. In the same vein, we began conducting research on symbolic multilayer “language”
models of music. The current chapter is devoted to these more exploratory studies.

4.1 Towards robust description of multisource contents

While the robustness of speech recognition systems has greatly increased in the last few years,
accurate speech recognition remains a challenging task in real-world nonstationary noise envi-
ronments [DAOS]. Errors in the transcription output may be problematical for certain applica-
tions, e.g., spoken language understanding for handheld personal assistants, and prohibitive for
others, e.g., dictation. The task of identifying the singer or the individual musical instruments
within a polyphonic music recording is conceptually similar [MV07, FGKO10]. These tasks are
typically addressed in two steps: in the first step, the input signal is transformed into a sequence
of feature vectors such as mel frequency cepstral coefficients (MFCCs), and in the second step
ML classification or decoding is performed based on acoustic models of the classes such as
GMMs or hidden Markov models (HMMs).

In addition to the design of more robust features, three categories of approaches have been
proposed to compensate for the effect of background noise or competing sound sources on a
given set of features [Den11]. Front-end approaches, which employ denoising or source separa-
tion as a pre-processing step, often yield limited improvement because the distortions introduced
over the features reduce or even outweigh the effect of noise reduction. Back-end approaches,

39
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which modify the parameters of the acoustic models by applying static linear transformations
or by training them from noisy data, perform better but they require significant computational
power or training data matching the noise conditions of the test data. Hybrid approaches cou-
pling front-end and back-end compensation appear most promising.

Within the last category, the emerging paradigm of uncertainty propagation offers a robust
way of integrating source separation, feature extraction and classification [AK11]. Its principle
is to estimate the uncertainty or equivalently the confidence about the separated source signals
and to propagate it through the subsequent processing steps. This uncertainty can be encoded via
the mean and covariance matrix of a multivariate Gaussian distribution representing the posterior
distribution of the signals or the features. Efficient techniques exist to propagate the uncertainty
from the source signals to the features [AK11] and to decode acoustic models from uncertain
features [DDAO5]. We hence focus on the remaining challenges of estimating the uncertainty
about the source signals and training acoustic models from uncertain features.

4.1.1 Bayesian uncertainty estimation

Regarding the initial estimation of the uncertainty about the source signals, a heuristic approach
is to assume that the uncertainty in a given time-frequency bin is proportional to the squared dif-
ference between the separated sources and the mixture [DNW09, KAHO10]. A more principled
approach is to consider the uncertainty stemming from the Wiener filter [AK11]

plelx) = [ ple;(n, )Ix(n, £),6) (4.1)
j7n7f

= [T N(ei(n, HIW;(n, £x(n, ), (T = Wj(n, [))Re,(n, f))  (42)
j7n7f

where ¢ and x denote the set of all STFT coefficients of the sources and the mixture, 0 the ML
value of the parameters of the chosen variance model and W ;(n, f) the associated Wiener filter
defined in (3.5). This approach remains nevertheless mathematically inaccurate since the model
parameters are fixed instead of being marginalized over.

In [1, 39], we defined the exact Bayesian estimator of uncertainty as

p(c|x) = /p(c,0|x) de. (4.3)

This integral has no closed form expression. Numerical integration via MCMC, which we ex-
perimented in [44], is also practically intractable due to the thousands of dimensions involved. If
a factored approximation of the joint posterior can be found, however, as the product of smaller
dimensional distributions over the source STFT coefficients c(n, f) in each time-frequency bin
and over subsets of parameters 6;

p(e. 81x) ~ a(c, 6) = [ ale(n, ) [] (69 (4.4
n,f i

then the marginal posterior is simply obtained as p(c|x) =[], ; q(c(n, f)).
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Such an approximation may be obtained via variational Bayesian (VB) inference [Bis06].
The principle of VB inference is to minimize the KL divergence between the approximation and
the true posterior. It can be shown that this is equivalent to maximizing the free energy

Z(q) Z/Q(Cﬁ) logm

In our setting, .Z(¢) is not maximizable in closed form, so we resort to further minorization
using auxiliary variables w. Considering an appropriate lower bound of the joint likelihood
f(x,c,0,w) < p(x,c,0), we have

dc de. 4.5)

f(x,c,0,w)
q(c,0)

This bound is iteratively maximized with respect to the auxiliary variables w and with respect to
the parameters of the approximating distributions ¢(c(n, f)) and ¢(8;) as

q(c(n, f)) < exp(Eqy f1y2(n, p)ill0g f(x, ¢, 0, w)]) 4.7)
q(0;) o< exp(E(,, 5y iri[log f(x, ¢, 0, w)]). (4.8)

Z(q) > B(q,w) = /q(c,B) log de d@. (4.6)

In practice, one iteration of the algorithm consists of computing the sufficient statistics of the
variables and updating the parameters of their distributions. This is an extension of the classi-
cal EM algorithm for ML or MAP inference where both the model parameters and the hidden
variables are now treated as random. VB inference is an emerging topic in audio signal process-
ing and it has been rarely used so far, with the notable exception of [CFGO07] for local sparse
modeling or [HBC10] for single-level NMF.

In [1], we derived a VB inference algorithm for our flexible variance model presented in
Section 3.4.2. This led to generalized inverse Gaussian distributions [Jor82] for the multilevel
NMF parameters and Gaussian approximating distributions for the spatial parameters A j(f)and
the source STFT coefficients c(n, f), which we propagated to the features via moment match-
ing [AK11]. The accuracy of the resulting feature means and covariances was assessed for a
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Figure 4.1: Speaker identification accuracy achieved on mixtures of speech and real-world back-
ground noise with or without source separation, as a function of the input SNR [1].
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GMM-based speaker recognition task on speech data corrupted by real-world background noise.
The results are displayed in Figure 4.1 as a function of the input signal-to-noise ratio (SNR). For
this particular data and source model, source separation decreases the recognition accuracy. The
proposed VB uncertainty estimator outperforms the ML uncertainty estimator (4.1) and it im-
proves the recognition accuracy by 9% absolute with respect to the baseline approach involving
no source separation.

4.1.2 Uncertainty training

Let us move up to the classification stage and denote by p¢(n) and 3¢(n) the mean and co-
variance of the feature vector f(n) in time frame n estimated by uncertainty propagation. The
established way of exploiting this uncertain data is called uncertainty decoding [DDAOS]. As-
suming a GMM acoustic model for simplicity and denoting by p,, 34, w, the mean, diagonal
covariance and weight of the ¢-th Gaussian mixture for a given speaker class C, the likelihood
of the data being produced by that class is given by integrating the likelihood of the GMM over
the distribution of the data, which yields

N

pae, ZelC) = TT D wa N (pe () g, Zq + e (n)). (4.9)

n=1 gq

In this equation, the covariance of the model and the uncertainty add up, which can be seen as a
form of dynamic model compensation. This modified likelihood boils down to the usual GMM
likelihood in the case when 3¢ (n) is zero.

In practice, the acoustic models used for decoding are often trained on clean data [DDAOS].
This strategy is unfortunately not applicable to singer identification because singer voices are not
available in isolation. Also, the estimated uncertainty never perfectly compensates the distortion
over the features, so the residual distortion must be compensated by training from noisy data.
The simplest strategy is to train the acoustic models in a conventional manner from separated
noisy data [DKN*11, KAAT11], but this accounts for the noise twice: the noise in the training
data is accounted for by the acoustic model parameters and the noise in the test data is accounted
for by uncertainty decoding. Obviously, only the latter should be accounted for at decoding time
and the acoustic models should be as invariant as possible to the training noise conditions.

In [6], we designed an EM algorithm for the training of GMMs or HMMs from noisy data.
This algorithm exploits the dynamic uncertainty about the training data by maximizing the mod-
ified likelihood (4.9) over the model parameters and it operates similarly to the algorithm pro-
posed earlier in [LGO7] for static model compensation. By analogy with uncertainty decoding,
we refer to this training objective as uncertainty training. The EM updates for GMMs are shown
in Algorithm 2. It can be seen that only the E-step differs from conventional EM-based GMM
training. In particular, the moments of the clean underlying features are estimated by Wiener fil-
tering and used in place of those of the noisy input features in the M-step. This algorithm is fairly
general and can be seen as a fundamental tool for GMM-based or HMM-based classification in
other fields than audio.

We evaluated this algorithm over the same speaker recognition task as above using a differ-
ent uncertainty propagation technique based on vector Taylor series [MRS96]. We reported an
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Algorithm 2: Uncertainty training for GMMs. Changes compared to conventional training
are shown in red. The diag operator zeroes non-diagonal elements out.

E-step: estimate the underlying clean feature moments by Wiener filtering
~ (n) — Wy N(uf(n)“‘l’q? Eq—’_zf(n))
= S oy N () g, S+ Se(n)
W (n) =32q(2q + Ef(”»il
fo(n) = g + Wy(n) (ne(n) — py)
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M-step: update the GMM parameters
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improvement of recognition accuracy on the order of 7 to 11% absolute compared to conven-
tional training on clean data and 3 to 4% absolute compared to conventional training on noisy
data [6]. Interestingly, this improvement was not only observed in matched training and test
noise conditions, but also with multi-condition or unmatched training data. More recently, we
applied the same approach to singer identification in polyphonic music recordings and achieved
a promising accuracy of 94% for 10 classes, compared to 64% without source separation [41].

4.1.3 Evaluation campaigns

Numerous evaluation campaigns have been held in the field of robust speech processing in the
last twenty years. The effect of reverberation, background noise or competing talkers has been
evaluated in [PHOO, CHR10] for instance. Real-world data have also been recorded and publicly
released, especially for meeting environments [JBET03, RHBO7]. In order to pursue this effort
and assess recent progress, I co-organized the /st CHiME Speech Separation and Recognition
Challenge in 2011. This challenge aimed to recognize spoken commands consisting of one letter
and one digit binaurally recorded in a real-world domestic noise environment with SNRs ranging
from -6 to +9 dB. We provided an analysis of the results in [5]. The best algorithm [DKNT11]
achieved an average keyword error rate of 12% at -6 dB SNR and 4% at 9 dB SNR. This is
much lower than the baseline but still twice as much as the error rate of a human listener, which
indicates that room is left for progress. A second edition of the challenge is currently being run,
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which considers more difficult situations involving moving sources or larger vocabulary.

4.2 Towards multilayer modeling of musical language

While natural language processing is a mature topic, few studies have attempted to model the
“language” of music in its full complexity. Most music information retrieval systems are de-
signed to estimate a single piece of information. For instance, polyphonic pitch transcription
and chord identification are typically performed independently of each other without accounting
for the strong dependencies between these two pieces of information. In addition, most systems
rely on general pattern recognition techniques applied onto unordered bags of features or on
first-order HMMs representing the short-term evolution of the considered variable. It is admit-
ted that the use of such low-level models bounds the accuracy of these systems to a glass ceiling
[APO4] and that a system integrating multiple layers and time scales of information would be
more versatile and accurate and enable more complex interaction with the data [DBCO09].

In [66], we attempted to lay down the scientific challenges raised by the development of such
a complete system and presented a tentative roadmap. Figure 4.2 illustrates the dependencies
between some of the variables underlying a music piece in the form of a graphical model. In
this graph, each node represents a variable or a temporal sequence of variables and the statistical
dependencies between these variables are indicated by arrows such that the conditional distri-
bution of a variable given its ancestors depends on its parents only. It is worth pointing that
there is no agreed-upon definition of variables such as structure or rhythm and that this figure
is provided merely to illustrate the complexity of the problem. This complexity can be seen in
particular in the fact that the “overall features” affect all other variables, while the “quantized
notes” depend on many other variables. Dependencies also arise between variables at multiple
time scales, ranging from beats, bars, or structural blocks to the whole piece.

Altogether, the curse of dimensionality resulting from these complex dependencies makes
it impossible to learn the joint distribution of all variables directly. Low-dimensional paramet-
ric approximations of this distribution and model smoothing techniques must be found to avoid
overfitting. The limited application range of musicological expertise and the existence of differ-
ent music cultures also raise the issues of unsupervised learning and model selection. Finally,
learning will require large annotated music corpora which may be acquired in the future only by
developing new semi-automatic annotation procedures exploiting the wealth of data available in
physical and online music archives.

4.2.1 Polyphonic pitch and chord modeling

In a preliminary study [74], we considered the modeling of medium-term dependencies in chord
sequences via probabilistic N-grams [MDH™'07]. A chord is an abstraction of a set of concurrent
pitches which encodes the musically relevant pitches within this set by a symbol, e.g., “C major”.
We explored model smoothing techniques introduced for the reduction of overfitting in spoken
language modeling [CG98] and demonstrated their applicability to this new context.

We then focused on the parameterization and learning of higher-dimensional distributions
over symbolic music variables, epitomized by the problem of polyphonic pitch modeling. As-
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Overall features

O Tags: set of tags in Vyags covering all or part of the piece, e.g. genre, mood, composer, performer, place and user
preference

Temporal organization features

T1 Structure: set of possibly overlapping/nested sections, each defined by its quantized duration in bars and by a
section symbol in Vsect

T2 Meter: sequence of bars, each defined by its reference beat and time signature in Vieter and by the associated
metrical accentuation level of each beat and beat subdivision

Ts Rhythm: sequence of events associated to one or more simultaneous note onsets, each defined by its quantized
duration in beats and by the associated number of onsets

Symbolic features

S1 Notated tempo: beat-synchronous sequence of tempo and tempo variation symbols in Viempo

So Notated loudness: beat-synchronous sequence of loudness and loudness variation symbols in Vioud

Sz Key/mode: beat-synchronous sequence of key/mode symbols in Viey

S4 Harmony: beat-synchronous sequence of chord symbols in Vehord

Ss Instrumentation: beat-synchronous sequence of sets of active voices, each defined by a voice symbol in Vinst
(including instruments, orchestra sections, singer identities, and sample IDs, with various playing or singing
styles)

Se Lyrics: event-synchronous sequence(s) of syllables in Vsy11

S7 Quantized notes: set of notes (including pitched/drum notes, voices or samples), each defined by quantized onset
and duration in beats, its articulation symbol in Vartic, its loudness and loudness variation symbol in Vioud, its
quantized pitch and pitch variation symbol in Vpitch, its voice symbol in Ving: and its syllable in Vsyn

Expressive performance features

E1 Expressive tempo: beat-synchronous sequence of actual tempo values in bpm

Eo Expressive loudness: beat-synchronous sequence of actual global loudness values in sones

Es Instrumental timbre: beat-synchronous sequence of vectors of parameters modeling the timbre space of each
voice

E4 Expressive notes: set of notes, each defined by its actual onset time and duration in s, its loudness curve in sones,
its pitch curve in Hz, and its trajectory in the timbre space

Es Rendering: time-synchronous sequence of vectors of parameters characterizing the recording setup (e.g.,
reverberation time, mic spacing) or the software mixing effects and the spatial position and spatial width of each
voice

Acoustic features

A1 Tracks: rendered acoustic signal of each voice

Ay Mix: overall acoustic signal

As Classical low-level features: MFCCs, chroma, etc

Figure 4.2: Draft model of a music piece, from [66]. Dependencies upon overall features are
shown in light gray for legibility. The alphabets Vicct, Vineters Viempos Vioud> Vehords Vinsts Vartic
Vpiteh may depend on the music culture or style, e.g., Western vs. Indian.
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suming a discrete pitch scale such as the semitone scale and denoting by N,,, the Boolean vari-
able indicating whether a note of pitch p is active in time frame n or not, the problem consists
of learning the prior distribution p(IN) of all pitches on all time frames. In [RK05], a “horizon-
tal” key-dependent model was proposed which represents the pitch durations and the intervals
between successive pitches in a given instrument line, but not those between concurrent pitches.
In [RSO03], a “vertical” model was proposed instead which accounts for the dependency of con-
current pitches on the underlying chord, but chromatic pitch classes were considered instead of
absolute pitches and temporal dependencies were only present between chords.

In [4, 65], we designed the first polyphonic pitch model to our knowledge that accounts both
for horizontal and vertical structure. This was achieved by training and smoothing a number of
low-dimensional submodels representing the probability of the current pitch NV, being active
conditionally to subsets of other variables, e.g., the previous pitch in the same line, the lower
pitches in the same time frame or the underlying chord. These submodels were then merged
via linear or log-linear interpolation [Kla98] and the interpolation weights were optimized on
development data. The joint model was compared to individual submodels and shown to slightly
improve the prediction of the test data as measured in terms of cross-entropy, that is a normalized
version of the log-likelihood. We also analyzed the prediction performance in different contexts,
e.g., note onsets or offsets, using a new cross-entropy measure designed for this purpose.

Note that the problem of joint horizontal and vertical modeling was separately tackled in
[MD10] in the context of chord sequences. The authors multiplied submodels without normal-
izing the resulting distribution [MD10, eq. 12], though, which is mathematically erroneous and
may lead to wrong estimation of the most probable chord sequence. This multiplication oper-
ation may also excessively sparsify the distribution and it lacks tunable factors to account for
the greater importance of certain submodels compared to others. The above interpolation tech-
niques address all these issues and we expect them to play an important role in music language
processing in the future beyond the problem of polyphonic pitch modeling alone.

4.2.2 Music structure estimation

On a complementary line, we leveraged our work on the formalization of the concept of music
structure (see Section 1.2) to build a family of algorithms for automatic structure estimation [53].
The input audio is first segmented into structural blocks via a Viterbi algorithm accounting for
the paradigmatic (repetition) and syntagmatic (rupture) properties of the blocks, as well as for
their duration. The estimated blocks are then grouped into equivalence classes and the optimal
number of classes is found via a data-adaptive model selection criterion. More recently, we also
showed how to exploit the morphological properties of the blocks for this task [103]. These
algorithms are too complex to be detailed here, but let us just say that the algorithm in [53]
ranked first for the “Audio Structural Segmentation” task of MIREX 2011 in terms of segment
boundary F-measure, both with 0.5 s and 3 s tolerance [104].



Chapter 5

Conclusion and perspectives

5.1 Achievements

To sum up, I have been targeting the long-term goal of addressing the challenges raised by the
multisource and multilayer structure of audio signals in the fields of signal processing and in-
formation retrieval. As a researcher, a supervisor or a collaborator, I have gradually sought to
cover the various areas relevant to this goal, from low-level signal processing tasks to higher-
level content description tasks. My contributions range from the formalization of the studied
problems and the design of models to the derivation of estimation algorithms and their exper-
imental evaluation. The heterogeneity of the data and information involved led me to rely on
multidisciplinary theoretical foundations from Bayesian inference and convex optimization to
acoustics and computational musicology. When needed, I also contributed to these foundations
by developing new theoretical tools which are applicable outside of the field of audio.

In the last eight years since the end of my PhD, audio source separation has become a mature
research topic. Commercial services and products have grown, especially for speech or music
remixing applications in which artifacts over the separated signals disappear to a great extent
in the remixed output signal. Most of my work on variance model-based source separation has
been or is currently being transferred to companies via research collaborations and patent filing.
Reverberant, dynamic, or noisy mixtures have remained nevertheless difficult to separate to the
level of quality required by other potential applications and further research is required.

As an ubiquitous application of speech processing, I have become interested in noise-robust
speech recognition. While a huge body of work has been published in this area, many current
systems rely on traditional beamforming or denoising techniques and on somewhat heuristic
integration with automatic speech recognition. The use of modern source separation techniques
and uncertainty propagation has just started and the proposed Bayesian uncertainty estimation
framework appears very promising in this context. Room is still left for progress towards human
performance and I expect that this work will especially benefit from my change of affiliation to
the PAROLE team of Inria Nancy - Grand Est on January 1, 2013.

In addition to the above problems, I have devoted some time to the computational modeling
of music. The potential applications are huge, but so are the challenges and we barely scratched
the surface so far.
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5.2 Directions

My research program aims to pursue these efforts and eventually come up with audio processing
systems able to model the complexity of the data and provide a unified approach to various
application needs from signal processing and information retrieval to content manipulation. The
theory of Bayesian inference offers a suitable framework, which makes it possible to integrate
individual model pieces in a principled fashion and to derive estimation algorithms which are
intrinsically modular and robust to missing or uncertain data.

Regarding the acoustic modeling of audio sources, the studies made up to now remain to
be merged into a unified modeling framework combining the advantages of linear modeling for
point sources or periodic sources with those of variance modeling for diffuse or noisy sources.
The modeling of the spectral envelope coefficients within the proposed multilevel NMF model
also appears necessary in order to allow two-way interaction between acoustic modeling on the
one hand and speech recognition on the other hand. Finally, computationally efficient modeling
of the source movements remains a relatively open issue. In order to obtain a complete system
in the longer term, I am also interested in developing Bayesian language models of speech and
music. The PhD of Alex Mesnil, which just started, will be focusing on this direction. Sparse
regularization is a promising way to overcome the overfitting issues limiting the performance of
conventional probabilistic language models and come closer to the performance of state-of-the-
art deep neural networks. Together, these studies will contribute to filling the library of models
which are necessary to represent audio contents.

Contrary to MAP estimation which is preferred for its simplicity today, full Bayesian esti-
mation is not only robust to missing data and noise but it also yields a confidence measure in
terms of the posterior distribution of the model parameters. The estimation of this posterior dis-
tribution is the main theoretical basis behind the robust integration of multiple processing blocks
such as source separation, feature extraction, speech recognition and machine translation. The
design of computationally scalable Bayesian inference algorithms is thus crucial. The theory
of VB inference provides a solid algorithmic foundation, but its implementation raises several
challenges in a context involving thousands or millions of dependent variables. One of these
issues is to automatically find an approximation of the target distribution which is at the same
time close enough and easy to optimize. This may be achieved by analyzing the posterior de-
pendencies between the variables and developing the use of complex approximations such as
structured mean field [WieOO] or mixture mean field [JJ98] which have not been used in audio
so far. The PhD of Tran Dung, which will start at the end of this year, will be dedicated to this
issue in the specific context of source separation and uncertainty propagation. Another issue is
to suitably initialize the variables so as to avoid convergence to bad local optima. The joint use
of multiple models estimated from different initial values [Die00] is an interesting direction that
will be considered. Finally, the issue of model selection has been very little explored in audio.

The above models and algorithms will mainly be applied to speech enhancement and recog-
nition in noisy environments and to derived applications such as noise-robust indexing of spoken
documents. Focused music applications will also be explored. The benefit of the Bayesian ap-
proach will be validated in terms of its robustness to the presence of several sources but also by
its ability to infer and exploit complex models from small amounts of data. The Inria Technolog-
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ical Development Action “FASST”, which will develop our flexible source separation toolbox
into efficient software, is expected to play a strong role in the dissemination of our source sepa-
ration technology towards companies or other areas of audio signal processing research.
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Appendix C

Résumé des contributions

Les données audio occupent une place centrale dans notre vie: communication parlée, vidéos
personnelles, radio-télévision, musique, cinéma, jeux, spectacle vivant. Cela engendre une mul-
titude de besoins applicatifs, allant du rehaussement du signal a la recherche d’information en
passant par la réditorialisation et la manipulation interactive des contenus. Ces données ont sou-
vent une structure complexe due a la présence simultanée de plusieurs sources sonores et/ou
niveaux d’information. Mes travaux concernent la conception de modeles et d’algorithmes pour
la séparation des signaux sources et 1’extraction d’information. Ces travaux reposent sur les
outils de modélisation et d’estimation bayésienne d’une part et de représentation parcimonieuse
et d’optimisation convexe d’autre part.

Ce document résume les travaux effectués depuis la fin de ma these et indépendamment de
celle-ci selon quatre axes: la formalisation et 1’évaluation diagnostique des problemes étudiés,
la modélisation linéaire des signaux audio et les algorithmes associés, la modélisation de la
variance des signaux audio et les algorithmes associés, et la description des contenus multi-
sources et multi-niveaux. J’ai choisi d’adopter un style peu conventionnel mélangeant le “je”
pour les travaux en tant que chercheur unique ou principal au “nous” pour les travaux en tant
qu’encadrant ou collaborateur.

C.1 Problemes, évaluation et diagnostic

Encadrement: Valentin Emiya (post-doctorant), Gabriel Sargent (doctorant)
Collaborations principales: Carl von Ossietzky Universitidt Oldenburg (Allemagne), NTT Com-
munication Science Labs (Japon), Queen Mary University of London (Royaume-Uni)

C.1.1 Séparation de sources

La séparation de sources audio consiste a extraire les signaux d’une ou plusieurs sources sonores
dans un enregistrement. Jusque récemment, la comparaison des résultats de différents algo-
rithmes de séparation restait difficile car les signaux de test et (parfois involontairement) la
définition du probléme variaient d’un auteur a ’autre. C’est en organisant une des premieres
campagnes d’évaluation sur ce probleme appelée Stereo Audio Source Separation Evaluation
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Campaign (SASSEC) [35] que j’ai proposé une méthodologie de référence pour 1’évaluation
basée sur un ensemble de taches a résoudre, de critéres d’évaluation et de bornes de perfor-
mance. Cette méthodologie a par la suite été reprise et complétée par la série des Signal Sepa-
ration Evaluation Campaigns (SISEC) que j’ai fondée puis co-organisée [10, 30].

En général, le signal multicanal de mélange x(t) peut toujours s’exprimer comme la somme
des images spatiales c;(t) des sources

J
x(t) = ¢;(t) (C.1)
j=1

oll ¢;(t) est la partie du signal de mélange engendrée par la source j. Dans le cas particulier
d’une source ponctuelle, cette image spatiale résulte du processus de convolution

Cj (t) =a;xS§; (t) (C.2)

ol s;(t) est le signal source monocanal correspondant et les coefficients de a;(7) sont appelés
filtres de mélange. Mais ce processus ne s’ applique pas aux sources spatialement diffuses qu’il
est impossible de représenter par un signal monocanal sans perte d’information. Le probleme de
séparation de sources se traduit donc par deux tiches différentes selon la nature ponctuelle ou
non des sources et selon I’application: I’estimation des signaux sources s;(¢) ou bien celle de
leurs images spatiales c; () [10, 35].

En m’inspirant des criteres définis pendant ma these pour 1’évaluation des signaux sources
[24], j’ai défini un ensemble de criteres d’évaluation de I’image spatiale estimée c;(¢) d’une
source par rapport a un signal de référence c;(t) supposé connu [10, 35]. Ces criteres ap-
pelés rapport signal-a-distorsion (RSD), rapport image-a-distorsion spatiale, rapport signal-a-
interférences et rapport signal-a-artefacts quantifient respectivement la distorsion totale ainsi
que trois types de distorsion: la présence de filtrage fréquentiel ou spatial de la référence, la
présence résiduelle d’autres sources et la présence d’artefacts de “bruit musical” introduits par
I’algorithme de séparation. Leur calcul fait appel a la décomposition du signal estimé en quatre
composantes correspondant a la référence et aux trois types de distorsion par projection orthog-
onale sur les sous-espaces engendrés par les références du signal cible et des autres sources.

Plus récemment, nous avons proposé un ensemble de critéres perceptuels d’évaluation [11,
43]. Pour cela, nous avons congu un protocole de test d’écoute dédié a la séparation de sources
et collecté les scores attribués par 20 auditeurs a 80 sons de la campagne SiSEC en terme de
qualité globale et de qualité associée a chaque type de distorsion. L’ image spatiale estimée d’une
source est décomposée en un ensemble de signaux localisés en temps et en fréquence avec une
résolution comparable a celle de I’oreille et chacun de ces signaux est a son tour décomposé en
quatre composantes comme précédemment. La saillance perceptuelle de chaque composante est
quantifiée a I’aide de la mesure de similarité perceptuelle PEMO-Q, puis les quatre valeurs ainsi
obtenues sont combinées par un réseau de neurones appris sur les scores subjectifs collectés. Les
nouveaux critéres ainsi obtenus accroissent la corrélation avec les scores subjectifs par rapport
aux anciens criteres.

La performance d’un algorithme de séparation dépend de plusieurs facteurs: la difficulté
intrinseque de séparation du signal traité, le choix d’un modele sous-jacent, les contraintes sur
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ce modele (taille de fenétre, nombre de parametres, efc) et enfin I’algorithme d’estimation des
parametres du modele. Afin de diagnostiquer I’importance des trois premiers facteurs par rap-
port au dernier, j’ai proposé un ensemble d’estimateurs oracles et d’algorithmes associés per-
mettant de calculer les bornes supérieures de performance de certaines classes d’algorithmes sur
un signal donné [22] puis nous avons étendu ces estimateurs a d’autres classes d’algorithmes
[98]. L utilisation de ces estimateurs a permis de montrer par exemple que le filtrage monocanal
adaptatif (ou masquage temps-fréquence) induit une borne de performance de séparation tres in-
férieure a celle du filtrage multicanal adaptatif et que, si la performance des algorithmes actuels
en est proche dans le cas de mélanges dits instantanés, des progres importants restent possibles
dans le cas de mélanges réverbérants.

C.1.2 Estimation de la structure musicale

Un autre probléme mal posé auquel nous nous sommes intéressés est I’estimation de la struc-
ture musicale. En musicologie, la structure d’un morceau découle d’un ensemble de regles de
composition variant d’un genre musical a ’autre. En music information retrieval, la structure
est au contraire considérée comme un concept purement subjectif variant d’un auditeur a I’ autre.
Cette multiplicité de points de vue empéche la comparaison entre algorithmes d’estimation re-
posant sur des points de vue différents. Nous avons proposé une définition opérationnelle du
concept de structure musicale basée sur des axiomes issus du structuralisme, qui permet une
annotation quasi-univoque de la structure pour un éventail de genres musicaux sans faire appel a
aucune expérience musicologique. Cette approche baptisée décomposition en blocs autonomes
et comparables [40, 47, 57] considére un morceau comme 1’agencement régi par un proces-
sus d’assemblage dit syntagmatique d’un ensemble de blocs structurels comparables entre eux
par des relations d’équivalence dites paradigmatiques. 1’ensemble forme un systeme au sens
structuraliste. Le morceau est une observation issue de ce systéme sous-jacent qu’il s’agit de
retrouver. Nous avons validé sur une base de 20 morceaux que cette approche mene a une
concordance entre annotateurs de 91% sur les frontieres temporelles des blocs.

C.2 Modeles linéaires des signaux audio et algorithmes associés

Encadrement: Alexis Benichoux (doctorant), Pascal Bado (stagiaire master 2)
Collaborations principales: Université Paris 6 - LAM, Supélec - L2S (France), Queen Mary
University of London (Royaume-Uni)

C.2.1 Principe général

Le paradigme classique de modélisation linéaire consiste a représenter les signaux dans une base
(parfois sur- ou sous-déterminée) de signaux ® et a spécifier une certaine distribution a priori
ou une certaine fonction de cofit sur leurs coefficients dans cette base. Lorsque ® est elle-méme
définie par un paramétrage non-linéaire, on parle de modélisation linéaire généralisée.
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C.2.2 Modélisation parcimonieuse locale

Dans le cadre de la séparation de sources, la base ® choisie est typiquement une Transformée de
Fourier a Court Terme (TFCT) avec une fenétre fixée. Sous une approximation de bande étroite
valable pour une source ponctuelle faiblement réverbérée, 1a TFCT c¢;(n, f) de I'image spatiale
d’une source est alors approximée par

Ej (n) f) = gj(nv f) 5](f) (C.3)

ou a;( f) estla transformée de Fourier des filtres de mélange et 5;(n, f) la TFCT du signal source
correspondant. Dans le cas d’un mélange instantané, une Transformée en Cosinus Discrete
Modifiée (TCDM) peut aussi étre utilisée.

Les algorithmes classiques de séparation exploitent la parcimonie des coefficients de TFCT
des sources en appliquant un masquage binaire ou en minimisant leur norme ¢; [25, 27]. J’ai
étendu cette approche a la minimisation de la norme ¢, des coefficients de TFCT des sources
pour p < 2 [80]. Il s’agit d’'un probléme de minimisation non-convexe pour lequel les résul-
tats théoriques préexistant pour des données a valeurs réelles ne s’appliquent pas aux données
complexes. J’ai caractérisé les minima locaux de la norme ¢, dans un cas particulier et dé-
duit un algorithme pour I’estimation du minimum global. Cet algorithme a obtenu la meilleure
performance sur les mélanges instantanés de la campagne d’évaluation SASSEC [35].

En parallele, j’ai proposé un algorithme de sélection de la meilleure base @ parmi une bib-
liotheéque de bases de paquets de cosinus dyadique [79]. Chaque base a une structure similaire a
la TCDM, mais ou la taille de fenétre varie au cours du temps en suivant une partition dyadique
de I’axe temporel. L algorithme proposé trouve la partition qui minimise un critere de recou-
vrement des sources, ce qui permet de mieux les séparer. Nous avons généralisé cette idée en
reldchant la contrainte de partition dyadique d’une part [26] et en apprenant une base de sig-
naux multicanaux pour la représentation parcimonieuse du signal de mélange d’autre part [18].
Ces algorithmes ont permis d’obtenir une amélioration modeste de la qualité de séparation, tout
en suggérant que la modélisation séparée du processus de mélange et des signaux sources est
nécessaire pour progresser plus avant.

C.2.3 Modélisation a large bande des filtres de mélange

En ce qui concerne la modélisation du processus de mélange, nous avons proposé de remplacer
I’approximation de bande étroite (C.3) par le modele exact a large bande (C.2) et I’égalité (C.1)
par un terme d’attache aux données quadratique. Nous avons cong¢u un algorithme de séparation
de sources basé sur ce modele par minimisation de la norme ¢ des coefficients de TFCT des
sources par seuillage itératif doux [16]. Cet algorithme alterne entre le calcul du gradient du
terme d’attache aux données dans le domaine temporel et le seuillage des sources dans le do-
maine temps-fréquence. Il a permis une amélioration du RSD de 3 a 4 décibels (dB) par rapport
a I’état de I’art sur des mélanges réverbérants de quatre sources de parole en supposant les fil-
tres de mélange connus. Afin d’évoluer vers un scénario aveugle ou les filtres de mélange sont
inconnus, nous avons récemment proposé d’ajouter divers termes de pénalité sur les filtres dans
le domaine temporel et évalué leur apport pour I’estimation des filtres de mélange en supposant
les signaux sources connus [46].
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C.2.4 Modélisation sinusoidale harmonique des signaux sources

Concernant la modélisation des signaux sources, je me suis focalisé sur la modélisation sinusoi-
dale harmonique des mélanges de signaux périodiques. Cette approche consiste a approximer le
signal au sein d’une trame temporelle par une somme de signaux périodiques, chacun constitué
de sinusoides a des fréquences harmoniques paramétrées par leur amplitude et leur phase et par
la fréquence fondamentale. Dans une série de travaux, j’ai adopté un point de vue bayésien en
proposant des distributions a priori adaptées pour ces parametres et en concevant un algorithme
efficace pour I’estimation de la probabilité a posteriori des fréquences fondamentales qui re-
quiert une intégration de grande dimension sur les parametres d’amplitude et de phase [20]. J’ai
appliqué ces travaux au codage des signaux musicaux sous forme d’objets sonores périodiques
et montré que ce codage permet a la fois la manipulation du signal (changement de hauteur, de
durée ou de timbre des notes par exemple) et un gain significatif de qualité par rapport au codage
MPEG-1 Layer 3 pour la compression a tres bas débit [21].

Dans une autre série de travaux, nous avons exploré I’utilisation de représentations parci-
monieuses. Le signal est représenté au sein de chaque trame par une combinaison linéaire
d’atomes harmoniques appris sur des notes isolées de divers instruments. Les atomes corre-
spondants au signal de test sont sélectionnés par I’algorithme de Matching Pursuit puis des con-
traintes de structure sont utilisées pour extraire des suites d’atomes de fréquence fondamentale
similaire. Ces travaux ont été appliqués a I’estimation de hauteurs multiples et a I’identification
des instruments dans des signaux musicaux [19].

C.3 Modeles de variance des signaux audio et algorithmes associés

Encadrement: Alexey Ozerov, Laurent Simon, Joachim Thiemann (post-doctorants), Ngoc Duong,
Nobutaka Ito (doctorants), Charles Blandin (stagiaire de master 2)

Collaborations: Télécom ParisTech - LTCI (France), University of Tokyo, NTT Communication
Science Labs (Japon)

Si la modélisation linéaire des signaux audio permet une représentation fidele des sources
périodiques et ponctuelles, elle nécessite un colit de calcul important et ne s’applique pas na-
turellement aux sources non périodiques et/ou diffuses.

C.3.1 Principe général

Une approche classique pour y remédier consiste a modéliser non plus les signaux sources
sj(t) eux-mémes mais leur spectre de puissance a court terme [5;(n, f)|?, tout en conservant
I’approximation de bande étroite (C.3). En termes statistiques, cela correspond a représenter les
coefficients de TFCT des signaux sources par une distribution invariante par rotation de phase et
a modéliser la variance de cette distribution. J’ai généralisé cette idée aux sources réverbérées ou
diffuses en proposant de modéliser non plus les signaux sources mais leurs images spatiales par
une telle distribution [28]. Sous I’hypothese d’une distribution gaussienne de moyenne nulle, la
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matrice de covariance Re; (n, f) de I'image spatiale de la source j peut se factoriser comme

Re,(n, f) = vj(n, f) Z;(f) (C.4)

ot v(n, f) est la variance spectrale de la source représentant son contenu spectral et X;( f) sa
matrice de covariance spatiale représentant sa position et son étendue spatiale. Les parametres
vj(n, f) et 3;(f) sont alors estimés a partir de la matrice de covariance empirique Ry (n, f) du
signal observé, permettant ainsi d’exploiter la corrélation entre ses canaux [59, 75].

C.3.2 Modélisation et estimation des matrices de covariance spatiale

En ce qui concerne les matrices de covariance spatiale X;(f), I’approximation classique de
bande étroite équivaut a supposer que les canaux des images spatiales des sources sont parfaite-
ment corrélés et que X;(f) est une matrice de rang 1 égale a a;(f)a;(f). Dans le cas de
sources diffuses ou réverbérées, cette approximation n’est pas valable car les canaux des images
spatiales sont partiellement ou totalement décorrélés. Dans une série de travaux, nous avons pro-
posé de considérer X;( f) comme une matrice de rang plein non contrainte [15]. Nous en avons
déduit un algorithme Espérance-Maximisation (EM) pour I’estimation de v;(n, f) et 3;(f) au
sens du Maximum de Vraisemblance (MV) et montré une amélioration du RSD de 1’ordre de
1 dB pour la séparation de mélanges réverbérants de trois sources de parole par rapport a des al-
gorithmes classiques basés sur 1’approximation de bande étroite. Nous avons ensuite étendu cet
algorithme a I’estimation au sens du Maximum A Posteriori (MAP) de 33;( f) avec une distribu-
tion a priori appropriée sachant la position spatiale des sources et obtenu une amélioration d’1
dB supplémentaire [2, 50]. En raison de la sensibilité de 1’algorithme EM a la position spatiale
initiale estimée des sources, nous avons aussi effectué une comparaison expérimentale a grande
échelle des algorithmes de localisation de sources multiples et proposé de nouveaux algorithmes
plus performants dans le cas de microphones faiblement espacés [7].

En parallele, nous avons congu une famille de modeles plus spécifique aux bruits diffus
représentant la matrice de covariance spatiale 33;( f) du bruit dans une base matricielle de faible
dimension. Dans le cas particulier de mélanges d’une source ponctuelle et de bruit diffus, les
coefficients de 33;(f) dans cette base peuvent s’estimer par des techniques de complétion de
matrice [95] ou de minimisation de la norme trace [92]. Cette approche a été appliquée au
débruitage de signaux de parole et a la localisation de sources multiples dans un environnement
bruité.

C.3.3 Modélisation par factorisation des spectres de puissance a court terme

En ce qui concerne la variance spectrale vj(n, f) des sources, une approche classique adoptée
entre autres durant ma these [23] consiste a la représenter comme la somme de spectres de base
pondérés par des coefficients d’activation variant dans le temps. Ce modele dit de factorisation
matricielle positive manque de flexibilité, dans la mesure ot les spectres de base sont soit appris
sur des signaux d’apprentissage séparés, avec le risque que les caractéristiques de ces signaux
correspondent mal a celles du signal de test, soit adaptés au signal de test sans aucune contrainte,
avec un risque de sur-apprentissage. J’ai montré comment intégrer une contrainte d’harmonicité
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et de régularité des spectres en les factorisant comme la somme de spectres harmoniques a
bande étroite fixés pondérés par des coefficients représentant I’enveloppe spectrale estimés sur le
signal de test [17]. Ce modele a débouché sur un algorithme d’estimation de hauteurs multiples
classé deuxieme pour une sous-tache de la campagne d’évaluation Music Information Retrieval
Evaluation eXchange (MIREX) 2007 [78] et complété par la suite par un a priori de régularité
sur les coefficients d’activation temporelle [14].

Nous avons ensuite généralisé cette idée a la factorisation de spectres non harmoniques [12]
puis a la factorisation flexible de la variance spectrale en un produit de huit variables représen-
tant la structure fine spectrale, I’enveloppe spectrale, 1’enveloppe temporelle et la structure fine
temporelle du signal d’excitation et de la résonance [8]. Ce modele englobe un certain nombre
de modeles existants et permet de concevoir de nouveaux modeles incorporant les informations
a priori disponibles sur les sources. L’estimation de ses parametres au sens du MV repose sur
des regles de mise a jour multiplicatives, dont nous avons analysé la convergence dans [13].
Nous avons aussi commencé a revisiter ces regles de mise a jour pour 1’estimation en ligne des
parametres dans le cadre d’une application a la séparation de sources en temps réel [42].

C.3.4 Réduction des artefacts

Une fois les parametres du modele gaussien (C.4) estimés, la séparation de sources est effectuée
au sens du MV par filtrage de Wiener multicanal adaptatif. Afin de réduire les artefacts générés
par ce filtrage, nous avons étudié I’usage d’un lissage temporel préalable de la variance spectrale
des sources [67] et proposé une méthode de prise en compte de la redondance de la TFCT dans
le calcul du filtre [3, 63] qui a donné lieu au dép6t d’un brevet [115].

C.4 Description des contenus multi-sources et multi-niveaux

Encadrement: Kamil Adiloglu, Stanistaw Raczynski (post-doctorants), Gabriel Sargent (doctor-
ant), Christopher Sutton, Antoine Movschin, Ricardo Scholz, Christophe Hauser (stagiaires de
master 2)

Collaboration principale: IRCAM - STMS (France), University of Tokyo (Japon)

Au-dela des taches de bas ou de moyen niveau comme la séparation de sources et I’estimation
de hauteurs multiples, j’ai débuté un axe de recherche sur la description de plus haut niveau des
contenus audio en tenant compte de la présence simultanée de plusieurs sources sonores et/ou
niveaux d’information.

C.4.1 Vers une description robuste des contenus multi-sources

La robustesse a la présence de plusieurs sources sonores est indispensable par exemple pour
la reconnaissance de la parole dans un environnement bruité ou celle du chanteur dans un en-
registrement musical polyphonique. Si I'usage de la séparation de sources en tant que pré-
traitement peut améliorer la reconnaissance [51], cette approche n’est pas robuste aux distor-
sions des sources estimées. Une meilleure approche consiste a estimer I’incertitude sur les sig-
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naux sources, représentée par leur distribution a posteriori, et a la propager aux descripteurs
puis au classifieur. Dans ce cadre existant, nous avons formalisé 1’estimateur bayésien exact de
I’incertitude et concu un algorithme pratique d’estimation pour le modele de sources [8] basé
sur une approximation variationnelle bayésienne [1, 39]. Nous avons aussi montré comment
exploiter I’incertitude pour I’apprentissage des classifieurs directement sur des signaux multi-
sources et montré son impact pour des taches de reconnaissance du locuteur dans un environ-
nement domestique bruité [6] ou de reconnaissance du chanteur dans la musique polyphonique
[41]. Afin de promouvoir les travaux sur ce sujet, j’ai par ailleurs co-organisé le PASCAL CHIME
Speech Separation and Recognition Challenge [5].

C.4.2 Vers une modélisation multi-niveaux du langage musical

Alors que la modélisation du langage parlé est aujourd’hui un domaine mr, la modélisation du
langage sous-jacent a la musique a été tres peu étudiée. Plusieurs défis s’ajoutent, en particulier
I’existence de dépendances entre informations a plusieurs échelles temporelles (temps, mesure,
bloc structurel, morceau complet) et a plusieurs niveaux (signal, notes, accords, style musical) et
le manque de corpus de taille significative regroupant des informations a plusieurs niveaux [66].
Apres un travail préalable illustrant 1’applicabilité a la musique des techniques de lissage de
modeles issues du traitement de la parole [74], nous avons exploré la combinaison de modeles
multiples par interpolation entre les probabilités correspondantes [4, 65]. Ce travail a permis
d’obtenir le premier modele de musique polyphonique a notre connaissance rendant compte a la
fois de la structure “horizontale” et “verticale” de la musique.

Nous avons enfin mis a profit nos travaux sur la formalisation du concept de structure mu-
sicale pour construire une famille d’algorithmes d’estimation de la structure musicale [53]. La
segmentation en blocs est effectué par un algorithme de Viterbi prenant en compte différents ob-
jectifs (répétition des blocs, rupture entre blocs, événements isolés entre blocs, structure interne
des blocs) ainsi qu’une contrainte de régularité temporelle. L’étiquetage des blocs est ensuite
réalisé en estimant le meilleur systéme sous-jacent au morceau par une technique de sélection
de modele. Cette approche a obtenu de bons résultats a la campagne MIREX 2011.

C.5 Conclusion et perspectives

C.5.1 Réalisations

En résumé, mes travaux portent sur la résolution des défis posés par la structure multi-sources
et multi-niveaux des données audio. Les problémes couverts portent a la fois sur le traitement
du signal et sur la description des contenus et ils reposent sur des fondements théoriques inter-
disciplinaires. Lorsque nécessaire, j’ai aussi contribué a ces fondements en proposant des outils
théoriques applicables en dehors de I’audio. La séparation de sources est maintenant un domaine
de recherche mir et la plupart de mes travaux sur la modélisation de variance ont été tranférés
ou sont en cours de transfert vers des entreprises par le biais de collaborations ou de brevets.
La séparation de mélanges réverbérants, dynamiques, ou bruités requiert cependant toujours des
recherches. En tant qu’application phare du traitement de la parole, je me suis intéressé a la
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reconnaissance robuste de la parole. La plupart des techniques actuelles reposent sur des heuris-
tiques et, dans ce contexte, le cadre proposé d’estimation bayésienne de I’incertitude apparait
comme prometteur. La modélisation multi-niveaux de la musique reste quant a elle un probleme
difficile dont nous n’avons pour I’instant abordé que la surface.

C.5.2 Directions

Mon programme de recherche vise a poursuivre les efforts dans ces directions afin de proposer
une approche unifiée a ces différents besoins applicatifs intégrant traitement du signal et descrip-
tion du contenu. Le formalisme bayésien offre un cadre théorique particulierement approprié,
permettant de combiner des sous-modeles de fagon rigoureuse et d’obtenir des algorithmes na-
turellement modulaires et robustes aux données manquantes ou incertaines.

En ce qui concerne la modélisation acoustique des sources, les travaux effectués en par-
allele jusqu’a présent restent a rassembler en un modele unifié combinant les avantages des
modeles linéaires pour les sources périodiques ou ponctuelles a ceux des modeles de variance
pour les sources non périodiques ou diffuses. L’intégration de modeles de I’enveloppe spectrale
des sources apparait aussi nécessaire afin de permettre une interaction a double sens entre mod-
élisation acoustique d’un cdté et reconnaissance du locuteur et de la parole de I’autre. Enfin,
la modélisation des mouvements des sources reste une question relativement ouverte. En vue
d’une intégration totale a terme, je souhaite développer progressivement mes travaux sur la mod-
élisation bayésienne du langage. L’ utilisation d’a priori de parcimonie est une piste prometteuse
pour atteindre la performance des modeles de 1’état de 1’art par réseaux de neurones.

Contrairement a I’estimation au sens du MAP préférée aujourd’hui pour sa simplicité, I’ esti-
mation bayésienne fournit une mesure d’incertitude sur les résultats par le biais de la distribution
a posteriori des variables considérées. La conception d’algorithmes d’estimation bayésienne
passant a I’échelle est donc essentielle. La théorie de I’approximation variationnelle bayésienne
constitue un socle algorithmique solide, mais sa mise en ceuvre pose plusieurs difficultés. Une
premiere difficulté consiste a trouver une approximation de la distribution visée a la fois bonne
et facile a estimer. L'utilisation d’approximations complexes de type structured mean field ou
mixture mean field est une piste. Une deuxieme difficulté concerne ’initialisation des variables
pour éviter les maxima locaux. L’utilisation conjointe de plusieurs modeles estimés a partir
d’initialisations aléatoires différentes sera explorée. Enfin, le probleme de la sélection de modele
a été tres peu étudié pour 1’audio.

Les travaux ci-dessus seront appliqués principalement au rehaussement et a la reconnais-
sance robuste de la parole dans les enregistrements et les flux audiovisuels. L’ apport de I’approche
bayésienne sera validé en terme de robustesse a la présence de plusieurs sources et au choix de
la dimension du modele, mais aussi par sa capacité a inférer et exploiter des modeles complexes
a partir d’une faible quantité de données.
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