B. Archer and A. Saltelli, Sensitivity measures,anova-like Techniques and the use of bootstrap, Journal of Statistical Computation and Simulation, vol.2, issue.2, pp.99-120, 1997.
DOI : 10.1142/S0129183195000204

N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society, vol.68, issue.3, 1951.
DOI : 10.1090/S0002-9947-1950-0051437-7

I. Babuska, The Finite Element Method with Penalty, Mathematics of Computation, vol.27, issue.122, pp.221-228, 1973.
DOI : 10.2307/2005611

P. Barbillon, Méthodes d'interpolation à noyaux pour l'approximation de fonctions type boîte noire coûteuses, 2010.

J. W. Barrett and C. M. Elliott, Finite element approximation of the Dirichlet problem using the boundary penalty method, Numerische Mathematik, vol.20, issue.4, pp.343-366, 1986.
DOI : 10.1007/BF01389536

G. Blatman, Chaos polynomial creux et adaptatif pour la propagation d'incertitudes et l'analyse de sensibilité, 2009.

E. Borgonovo, A new uncertainty importance measure, Reliability Engineering & System Safety, vol.92, issue.6, pp.771-784, 2007.
DOI : 10.1016/j.ress.2006.04.015

E. Borgonovo, W. Castaings, S. Tarantola, G. E. Box, and N. R. Draper, Moment Independent Importance Measures: New Results and Analytical Test Cases, Risk Analysis, vol.33, issue.3, pp.404-428, 1987.
DOI : 10.1111/j.1539-6924.2010.01519.x

URL : https://hal.archives-ouvertes.fr/halsde-00683555

S. Boyaval, C. Le-bris, Y. Maday, N. C. Nguyen, and A. T. Patera, A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.41-44, pp.41-443187, 2009.
DOI : 10.1016/j.cma.2009.05.019

URL : https://hal.archives-ouvertes.fr/inria-00311463

A. Buffa, Y. Maday, A. T. Patera, C. Prud-'homme, and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. Mathematical Modelling and Numerical Analysis, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00659314

T. Bui-thanh, K. Willcox, O. Ghattas, and B. Van-bloemen-waanders, Goal-oriented, model-constrained optimization for reduction of large-scale systems, Journal of Computational Physics, vol.224, issue.2, pp.880-896, 2007.
DOI : 10.1016/j.jcp.2006.10.026

G. T. Buzzard and D. Xiu, Abstract, Communications in Computational Physics, vol.1, issue.03, 2008.
DOI : 10.1137/060659831

D. G. Cacuci, Sensitivity and Uncertainty Analysis, Theory, 2003.
DOI : 10.1201/9780203498798

R. Cameron and W. Martin, The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals, The Annals of Mathematics, vol.48, issue.2, pp.385-392, 1947.
DOI : 10.2307/1969178

A. Chatterjee, An introduction to the proper orthogonal decomposition, Current Science, vol.78, issue.7, pp.808-817, 2000.

Y. Chen, J. S. Hesthaven, Y. Maday, and J. Rodríguez, Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2d maxwell's problem, ESAIM : Mathematical Modelling and Numerical Analysis, issue.06, pp.431099-1116, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00976057

P. G. Ciarlet, The finite element method for elliptic problems, Society for Industrial Mathematics, 2002.

T. Crestaux, Polynomial chaos expansion for sensitivity analysis. Reliability engineering & System Safety, pp.1161-1172, 2009.

R. Cukier, K. E. Cm-fortuin, A. Shuler, J. Petschek, and . Schaibly, Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory, The Journal of Chemical Physics, vol.59, issue.8, p.593873, 1973.
DOI : 10.1063/1.1680571

R. Cukier, K. Levine, and . Shuler, Nonlinear sensitivity analysis of multiparameter model systems, Journal of Computational Physics, vol.26, issue.1, pp.1-42, 1978.
DOI : 10.1016/0021-9991(78)90097-9

R. Cukier, K. E. Schaibly, and . Shuler, Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations, The Journal of Chemical Physics, vol.63, issue.3, p.1140, 1975.
DOI : 10.1063/1.431440

S. , D. Veiga, and F. Gamboa, Efficient estimation of nonlinear conditional functionals of a density, 2008.

S. , D. Veiga, and A. Marrel, Gaussian process modeling with inequality constraints

M. Garrett and . Dancik, mlegp : Maximum Likelihood Estimates of Gaussian Processes, 2011.

E. De-rocquigny, N. Devictor, and S. Tarantola, Uncertainty in industrial practice, 2008.
DOI : 10.1002/9780470770733

M. K. Deb, I. M. Babuka, and J. T. Oden, Solution of stochastic partial differential equations using Galerkin finite element techniques, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.48, pp.6359-6372, 2001.
DOI : 10.1016/S0045-7825(01)00237-7

N. Durrande, D. Ginsbourger, O. Roustant, and L. Carraro, ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis, Journal of Multivariate Analysis, vol.115, 2011.
DOI : 10.1016/j.jmva.2012.08.016

URL : https://hal.archives-ouvertes.fr/hal-00601472

B. Efron, B. Efron, and R. Tibshirani, Nonparametric standard errors and confidence intervals, Canadian Journal of Statistics, vol.9, issue.2, pp.139-15854, 1981.
DOI : 10.2307/3314608

B. Efron and R. J. Tibshirani, An introduction to the bootstrap, 1993.
DOI : 10.1007/978-1-4899-4541-9

M. Emsermann and B. Simon, IMPROVING SIMULATION EFFICIENCY WITH QUASI CONTROL VARIATES, Stochastic Models, vol.13, issue.3, 2002.
DOI : 10.1029/WR025i002p00215

K. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments. Computer science and data analysis series, 2006.

J. C. Fort, T. Klein, A. Lagnoux, and B. Laurent, Estimation of the Sobol indices in a linear functional multidimensional model, Journal of Statistical Planning and Inference, vol.143, issue.9, 2012.
DOI : 10.1016/j.jspi.2013.04.007

URL : https://hal.archives-ouvertes.fr/hal-00685998

K. Frank and S. Heinrich, Computing Discrepancies of Smolyak Quadrature Rules, Journal of Complexity, vol.12, issue.4, pp.287-314, 1996.
DOI : 10.1006/jcom.1996.0020

R. G. Ghanem and P. D. Spanos, Stochastic finite elements : a spectral approach, 2003.
DOI : 10.1007/978-1-4612-3094-6

M. B. Giles and B. J. Waterhouse, Multilevel quasi-monte carlo path simulation Advanced Financial Modelling, Radon Series on Computational and Applied Mathematics, pp.165-181, 2009.

V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, 1986.
DOI : 10.1007/978-3-642-61623-5

G. Gnu-linear-programming and . Kit, http://www.gnu.org/software/glpk/. [42] GOMP : An OpenMP implementation for GCC

M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.41, issue.3, pp.575-605, 2007.
DOI : 10.1051/m2an:2007031

URL : https://hal.archives-ouvertes.fr/hal-00112154

M. A. Grepl and A. T. Patera, error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.1, pp.157-181, 2005.
DOI : 10.1051/m2an:2005006

B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.2
DOI : 10.1051/m2an:2008001

T. Hayfield and J. S. Racine, Nonparametric econometrics : The np package, Journal of Statistical Software, vol.27, issue.5, 2008.

J. C. Helton, J. D. Johnson, C. J. Sallaberry, and C. B. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis, Reliability Engineering & System Safety, vol.91, issue.10-11, pp.10-111175, 2006.
DOI : 10.1016/j.ress.2005.11.017

T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety, vol.52, issue.1, pp.1-17, 1996.
DOI : 10.1016/0951-8320(96)00002-6

E. Hopf, The partial differential equation ut + uux = ??xx, Communications on Pure and Applied Mathematics, vol.3, issue.3, pp.201-230, 1950.
DOI : 10.1002/cpa.3160030302

D. B. Huynh, G. Rozza, S. Sen, and A. T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf???sup stability constants, Comptes Rendus Mathematique, vol.345, issue.8, pp.345473-478, 2007.
DOI : 10.1016/j.crma.2007.09.019

M. Ilak and C. W. Rowley, Modeling of transitional channel flow using balanced proper orthogonal decomposition, Physics of Fluids, vol.20, issue.3, p.34103, 2008.
DOI : 10.1063/1.2840197

T. Ishigami and T. Homma, An importance quantification technique in uncertainty analysis for computer models, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis, pp.398-403, 1990.
DOI : 10.1109/ISUMA.1990.151285

J. Breton, Processus gaussiens, 2006.

A. Janon, M. Nodet, and C. Prieur, Certified reducedbasis solutions of viscous Burgers equations parametrized by initial and boundary values, 2010.

A. Janon, M. Nodet, and C. Prieur, UNCERTAINTIES ASSESSMENT IN GLOBAL SENSITIVITY INDICES ESTIMATION FROM METAMODELS, International Journal for Uncertainty Quantification, vol.4, issue.1, 2011.
DOI : 10.1615/Int.J.UncertaintyQuantification.2012004291

URL : https://hal.archives-ouvertes.fr/inria-00567977

N. Jung, B. Haasdonk, and D. Kroner, Reduced Basis Method for quadratically nonlinear transport equations, International Journal of Computing Science and Mathematics, vol.2, issue.4, pp.334-353, 2009.
DOI : 10.1504/IJCSM.2009.030912

J. P. Kleijnen, Design and analysis of simulation experiments, 2007.
DOI : 10.1007/978-3-319-18087-8

D. J. Knezevic, N. C. Nguyen, and A. T. Patera, ERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS, Mathematical Models and Methods in Applied Sciences, 2010.
DOI : 10.1142/S0218202511005441

D. J. Knezevic and A. T. Patera, A Certified Reduced Basis Method for the Fokker???Planck Equation of Dilute Polymeric Fluids: FENE Dumbbells in Extensional Flow, SIAM Journal on Scientific Computing, vol.32, issue.2, pp.793-817, 2010.
DOI : 10.1137/090759239

M. Lamboni, B. Iooss, A. L. Popelin, and F. Gamboa, Derivativebased global sensitivity measures : general links with sobol'indices and numerical tests, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00666473

B. Laurent, Efficient estimation of integral functionals of a density. The Annals of Statistics, pp.659-681, 1996.

W. Madych and S. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, Journal of Approximation Theory, vol.70, issue.1, pp.94-114, 1992.
DOI : 10.1016/0021-9045(92)90058-V

A. Marrel, B. Iooss, B. Laurent, and O. Roustant, Calculations of Sobol indices for the Gaussian process metamodel, Reliability Engineering & System Safety, vol.94, issue.3, pp.742-751, 2009.
DOI : 10.1016/j.ress.2008.07.008

URL : https://hal.archives-ouvertes.fr/hal-00239494

G. Matheron, Les variables régionalisées et leur estimation, 1965.

H. Monod, C. Naud, and D. Makowski, Uncertainty and sensitivity analysis for crop models, Working with Dynamic Crop Models : Evaluation, Analysis, Parameterization, and Applications, pp.55-99, 2006.

I. Vlad, . Morariu, . Balaji-vasan-srinivasan, C. Vikas, R. Raykar et al., Automatic online tuning for fast gaussian summation, Advances in Neural Information Processing Systems (NIPS), 2008.

T. Muehlenstaedt, O. Roustant, L. Carraro, and S. Kuhnt, Data-driven Kriging models based on FANOVAdecomposition, 2010.
URL : https://hal.archives-ouvertes.fr/emse-00699673

N. C. Nguyen, G. Rozza, and A. T. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers' equation. Calcolo, pp.157-185, 2009.

N. C. Nguyen, K. Veroy, and A. T. Patera, Certified real-time solution of parametrized partial differential equations, Handbook of Materials [73] J. Nocedal and S.J. Wright. Numerical optimization, 1999.

A. Nouy, Generalized spectral decomposition for stochastic nonlinear problems, Journal of Computational Physics, vol.228, issue.1, pp.202-235, 2009.
DOI : 10.1016/j.jcp.2008.09.010

J. E. Oakley and A. O. Hagan, Probabilistic sensitivity analysis of complex models: a Bayesian approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.34, issue.3, pp.751-769, 2004.
DOI : 10.1214/ss/1009213004

N. A. Pierce and M. B. Giles, Adjoint Recovery of Superconvergent Functionals from PDE Approximations, SIAM Review, vol.42, issue.2, pp.247-264, 2000.
DOI : 10.1137/S0036144598349423

G. Pujol, B. Iooss, and A. Janon, sensitivity : Sensitivity Analysis, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00936929

A. Quarteroni, G. Rozza, and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications, Journal of Mathematics in Industry, vol.1, issue.1, 2011.
DOI : 10.1137/090780122

A. Quarteroni, G. Rozza, and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications, Journal of Mathematics in Industry, vol.1, issue.1, p.3, 2011.
DOI : 10.1137/090780122

A. M. Quarteroni and A. Valli, Numerical approximation of partial differential equations, 2008.

R. Team, R : A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, 2012.

R. Development and C. Team, R : A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2011.

J. Racine, An efficient cross-validation algorithm for window width selection for nonparametric kernel regression, Communications in Statistics - Simulation and Computation, vol.26, issue.4, pp.1107-1107, 1993.
DOI : 10.1137/1110024

D. V. Rovas, L. Machiels, and Y. Maday, Reduced-basis output bound methods for parabolic problems, IMA Journal of Numerical Analysis, vol.26, issue.3, p.423, 2006.
DOI : 10.1093/imanum/dri044

URL : https://hal.archives-ouvertes.fr/hal-00112600

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communications, vol.145, issue.2, pp.280-297, 2002.
DOI : 10.1016/S0010-4655(02)00280-1

A. Saltelli, Sensitivity analysis : an introduction (tutorial), 2004.

A. Saltelli, K. Chan, and E. M. Scott, Sensitivity analysis, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00386559

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni et al., Global sensitivity analysis : the primer, 2008.
DOI : 10.1002/9780470725184

A. Saltelli, S. Tarantola, and K. P. Chan, A quantitative modelindependent method for global sensitivity analysis of model output, Technometrics, pp.39-56, 1999.

A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in practice : a guide to assessing scientific models, 2004.
DOI : 10.1002/0470870958

T. J. Santner, B. Williams, and W. Notz, The Design and Analysis of Computer Experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

T. J. Santner, B. J. Williams, and W. Notz, The design and analysis of computer experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

R. Schaback, Mathematical results concerning kernel techniques, Prep. 13th IFAC Symposium on System Identification, pp.1814-1819, 2003.

M. Scheuerer, R. Schaback, and M. Schlather, Interpolation of spatial data ? a stochastic or a deterministic problem ? Preprint

L. Sirovich, Turbulence and the dynamics of coherent structures. part i-ii [97] I. M. Sobol. Sensitivity estimates for nonlinear mathematical models, Quarterly of applied mathematics Math. Modeling Comput. Experiment, vol.45, issue.14, pp.561-590407, 1987.

I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, vol.55, issue.1-3, pp.271-280, 2001.
DOI : 10.1016/S0378-4754(00)00270-6

I. Sobol and S. Kucherenko, Derivative based global sensitivity measures and their link with global sensitivity indices, Mathematics and Computers in Simulation, vol.79, issue.10, pp.3009-3017, 2009.
DOI : 10.1016/j.matcom.2009.01.023

C. B. Storlie, L. P. Swiler, J. C. Helton, and C. J. Sallaberry, Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models, Reliability Engineering & System Safety, vol.94, issue.11, pp.941735-1763, 2009.
DOI : 10.1016/j.ress.2009.05.007

J. C. Strikwerda, Finite difference schemes and partial differential equations, Society for Industrial Mathematics, 2004.

B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System Safety, vol.93, issue.7, pp.964-979, 2008.
DOI : 10.1016/j.ress.2007.04.002

URL : https://hal.archives-ouvertes.fr/hal-01432217

S. Tarantola, D. Gatelli, and T. Mara, Random balance designs for the estimation of first order global sensitivity indices, Reliability Engineering & System Safety, vol.91, issue.6, pp.717-727, 2006.
DOI : 10.1016/j.ress.2005.06.003

URL : https://hal.archives-ouvertes.fr/hal-01065897

J. Y. Tissot, Sur la décomposition ANOVA et l'estimation des indices de Sobol'. Application à un modèle d'écosystème marin, 2012.

J. Y. Tissot and C. Prieur, A bias correction method for the estimation of sensitivity indices based on random balance designs. Reliability engineering and systems safety, 2010.

J. Y. Tissot and C. Prieur, Variance-based sensitivity analysis using harmonic analysis, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00680725

A. Toselli and O. B. Widlund, Domain decomposition methods? algorithms and theory, 2005.
DOI : 10.1007/b137868

K. Urban and A. T. Patera, A new error bound for reduced basis approximation of parabolic partial differential equations, Comptes Rendus Mathematique, vol.350, issue.3-4
DOI : 10.1016/j.crma.2012.01.026

A. W. Van and . Vaart, Asymptotic statistics, 2000.

K. Veroy and A. T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basisa posteriori error bounds, International Journal for Numerical Methods in Fluids, vol.42, issue.8-9, pp.8-9773, 2005.
DOI : 10.1002/fld.867

K. Veroy, C. Prud-'homme, and A. T. Patera, Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds, Comptes Rendus Mathematique, vol.337, issue.9, pp.619-624, 2003.
DOI : 10.1016/j.crma.2003.09.023

URL : https://hal.archives-ouvertes.fr/hal-01219048

S. Volkwein, Proper orthogonal decomposition and singular value decomposition, 1999.

R. and V. Mises, Mathematical theory of probability and statistics. Mathematical Theory of Probability and Statistics, 1964.

K. Willcox and J. Peraire, Balanced Model Reduction via the Proper Orthogonal Decomposition, AIAA Journal, vol.40, issue.11, pp.2323-2330, 2002.
DOI : 10.2514/2.1570

C. Xu and G. Z. Gertner, Reliability of global sensitivity indices, Journal of Statistical Computation and Simulation, vol.81, issue.12, pp.1939-1969, 2011.
DOI : 10.1007/b98855

C. Zhu, R. H. Bryd, J. Nocedal, and L. , FORTRAN routines for large scale bound constrained optimization, Algorithm, vol.778, 1997.