L. Confinement-de, 78 3.2.1. Rappels sur le guidage optique??????????????????????.78 3.2.2. Modélisation de l'échange d'ions?????????????

. ?. Dimensionnement-du-convertisseur?????????????? and . ?????, 92 3.3.1. Caractéristiques souhaitées??????????????????..?????92 3.3.2. Confinement vertical??????????????????????

. Démonstrateur-fibré????????????????, ????.????????121 4.2.1. Choix et caractérisation des fibres de Bragg???, ???.????????..121 4.2.2. Caractérisation du verrouillage fibré???????...?????.?????...124

.. De-bragg and .. , 121 figure 4-2 : Transmission spectrale de la fibre optique à réseau, pp.4-5

F. De-bragg and .. , 129 figure 4-11 : Puissance en sortie de la fibre, pp.4-10

.. De-bragg, 144 figure 4-24 : Courbes de transmission et de réflexion du guide 145 figure 4-25 : Spectre de transmission normalisé du guide d'onde de Bragg obtenu avec une gravure de 12 min 147 figure 4-27 : Spectres d'émission obtenus en sortie d'un dispositif non stabilisé par la cavité pour trois courants d'alimentation différents 148 figure 4-28 : Spectres d'émission du dispositif et spectres d'émission de la diode laser à ruban large sans rétroaction. Les courbes ont été décalées dans la direction verticale pour plus de lisibilité, ) et du taux de suppression du mode secondaire (b) en fonction du, pp.4-23

). Réseau-de-bragg and .. , 20 tableau 1-3 : Exemples de réalisation de diodes laser de pompe monomodes stabilisées avec une fibre à : Paramètres utilisés pour la diode laser à ruban large et la cavité externe constituée, tableau 1-2 : Spécifications de l'injecteur planaire pour le projet NESLIE, p.71, 2006.

.. Le-réseau-de-bragg, -1 : Coefficients de couplage entre une fibre optique et le guide d'onde de sortie en fonction de la largeur de la fenêtre w-3 : Largeurs des profils d'intensité obtenues pour un échange sous champ masqué-4 : Comparaisons entre les pertes d'insertion d'un guide d'onde thermique et d'un guide d'onde sous champ sélectif, tableau 2-3 : Largeurs spectrales et réflectivités à imposer pour, pp.74-76

B. Houart, E. Petit, R. Agardograph, and R. Agardograph, Description d'une machine pour mesurer la vitesse des eaux courantes et le sillage des vaiseaux Dictionnaire illustré de l'aviation: SeghersOptical Air Flow Measurements in FlightAnémomètre laser, Mémoires de Mathématiques & de Physique de l'Académie Royale des Sciences, 1732Single-Particle LIDAR Anemometry Method and System," U.S. Patent, pp.363-378, 1964.

L. Bastard, J. E. Broquin, F. Gardillou, C. Cassagnettes, J. P. Schlotterbeck et al., Development of a ion-exchanged glass integrated optics DFB laser for a LIDAR application, Integrated Optics: Devices, Materials, and Technologies XIII, p.721817, 2009.
DOI : 10.1117/12.811881

URL : https://hal.archives-ouvertes.fr/hal-00602666

M. Paiam, C. Janz, R. Macdonald, and J. Broughton, Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference, IEEE Photonics Technology Letters, vol.7, issue.10, pp.1180-1182, 1995.
DOI : 10.1109/68.466583

E. Ghibaudo, J. E. Broquin, and P. Benech, Integrated optic broadband duplexer made by ion exchange, Applied Physics Letters, vol.82, issue.8, p.1161, 2003.
DOI : 10.1063/1.1556961

D. Bucci, J. Grelin, E. Ghibaudo, and J. E. Broquin, Realization of a 980-nm/1550-nm Pump-Signal (De)multiplexer Made by Ion-Exchange on Glass Using a Segmented Asymmetric Y-Junction, IEEE Photonics Technology Letters, vol.19, issue.9, pp.698-700, 2007.
DOI : 10.1109/LPT.2007.895059

L. Onestas, D. Bucci, E. Ghibaudo, and J. Broquin, Vertically Integrated Broadband Duplexer for Erbium-Doped Waveguide Amplifiers Made by Ion Exchange on Glass, IEEE Photonics Technology Letters, vol.23, issue.10, pp.648-650, 2011.
DOI : 10.1109/LPT.2011.2120603

URL : https://hal.archives-ouvertes.fr/hal-00987679

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne et al., On-chip optical isolation in monolithically integrated non-reciprocal optical resonators, Nature Photonics, vol.25, issue.12, pp.758-762, 2011.
DOI : 10.1038/nphoton.2011.270

H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy et al., layer coated on an ion-exchanged glass waveguide, Applied Physics Letters, vol.99, issue.25, pp.251108-251108, 2011.
DOI : 10.1063/1.3671180

URL : https://hal.archives-ouvertes.fr/ujm-00692054

M. Bettiati, V. Cargemel, P. Pagnod, C. Hervo, P. Garabedian et al., Reaching 1 watt reliable output power on single-mode 980 nm pump lasers, High-Power Diode Laser Technology and Applications VII, pp.71981-71982, 2009.
DOI : 10.1117/12.807921

M. Ludowise, W. Dietze, C. Lewis, M. Camras, N. Holonyak et al., Continuous 300???K laser operation of strained superlattices, Applied Physics Letters, vol.42, issue.6, pp.487-489, 1983.
DOI : 10.1063/1.93977

S. Blaize, Etude et réalisation d'un microlaser à contre-réaction répartie en optique intégrée sur verre, Thèse de Doctorat, 2001.

Y. Sidorin and D. Howe, Some characteristics of an extremely-short- external-cavity laser diode realized by butt coupling a Fabry???Perot laser diode to a single-mode optical fiber, Applied Optics, vol.37, issue.15, pp.3256-3263, 1998.
DOI : 10.1364/AO.37.003256

W. H. Cheng and S. M. Yeh, Conical-wedge-shaped lensed fiber and the method of making the same, pp.7515789-7515791, 2009.

H. Yoda and K. Shiraishi, A new scheme of a lensed fiber employing a wedge-shaped graded-index fiber tip for the coupling between high-power laser diodes and single-mode fibers, Journal of Lightwave Technology, vol.19, issue.12, 1910.
DOI : 10.1109/50.971684

C. Harder, Pump diode lasers Optical Fiber Telecommunications VA: Components and Subsystems, p.107, 2008.

H. Wenzel, F. Bugge, M. Dallmer, F. Dittmar, J. Fricke et al., Fundamental-Lateral Mode Stabilized High-Power Ridge-Waveguide Lasers With a Low Beam Divergence, IEEE Photonics Technology Letters, vol.20, issue.3, pp.214-216, 2008.
DOI : 10.1109/LPT.2007.913328

C. Giles, T. Erdogan, and V. Mizrahi, Simultaneous wavelength-stabilization of 980-nm pump lasers, IEEE Photonics Technology Letters, vol.6, issue.8, pp.907-909, 1994.
DOI : 10.1109/68.313048

B. Ventrudo, G. Rogers, G. Lick, D. Hargreaves, and T. Demayo, Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings, Electronics Letters, vol.30, issue.25, pp.2147-2149, 1994.
DOI : 10.1049/el:19941437

B. Ventrudo and G. Rogers, Fibre-grating-stabilized diode laser, p.481, 1996.

D. Lenstra, B. Verbeek, and A. D. Boef, Coherence collapse in single-mode semiconductor lasers due to optical feedback, IEEE Journal of Quantum Electronics, vol.21, issue.6, pp.674-679, 1985.
DOI : 10.1109/JQE.1985.1072725

S. Mohrdiek, T. Pliska, C. Harder, J. Ag, and S. Zurich, Coolerless operation of 980 nm pump modules, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171), 2001.
DOI : 10.1109/OFC.2001.928527

M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. Harder et al., L-I characteristics of fiber Bragg grating stabilized 980-nm pump lasers, IEEE Photonics Technology Letters, vol.13, issue.5, pp.415-417, 2001.
DOI : 10.1109/68.920735

F. Timofeev and R. Kashyap, High-power, ultra-stable, single-frequency operation of a long, doped-fiber external-cavity, grating-semiconductor laser, Optics Express, vol.11, issue.6, pp.515-520, 2003.
DOI : 10.1364/OE.11.000515

G. Yang, G. Smith, D. Davis, M. Loeber, C. Hu et al., Highly Reliable High-Power 980-nm Pump Laser, IEEE Photonics Technology Letters, vol.16, issue.11, pp.2403-2405, 2004.
DOI : 10.1109/LPT.2004.835188

T. Pliska, S. Arlt, R. Bättig, T. Kellner, I. Jung et al., Wavelength stabilized 980nm uncooled pump laser modules for erbium-doped fiber amplifiers, Optics and Lasers in Engineering, vol.43, issue.3-5, pp.271-289, 2005.
DOI : 10.1016/j.optlaseng.2004.02.004

M. Davis, G. Ghislotti, S. Balsamo, D. Loeber, G. Smith et al., Grating stabilization design for high-power 980-nm semiconductor pump lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.11, issue.5, pp.1197-1208, 2005.
DOI : 10.1109/JSTQE.2005.853850

M. Bettiati, C. Starck, F. Laruelle, V. Cargemel, P. Pagnod et al., Very high power operation of 980 nm single-mode InGaAs/AlGaAs pump lasers, High-Power Diode Laser Technology and Applications IV, pp.61040-61041, 2006.
DOI : 10.1117/12.643781

A. Moser, Thermodynamics of facet damage in cleaved AlGaAs lasers, Applied Physics Letters, vol.59, issue.5, pp.522-524, 1991.
DOI : 10.1063/1.105426

M. Gasser and E. E. Latta, Method for mirror passivation of semiconductor laser diodes, p.5063173, 1991.

C. Walker, A. Bryce, and J. Marsh, Improved catastrophic optical damage level from laser with nonabsorbing mirrors, IEEE Photonics Technology Letters, vol.14, issue.10, pp.1394-1396, 2002.
DOI : 10.1109/LPT.2002.802080

F. Houle, D. Neiman, W. Tang, and H. Rosen, Chemical changes accompanying facet degradation of AlGaAs quantum well lasers, Journal of Applied Physics, vol.72, issue.9, pp.3884-3896, 1992.
DOI : 10.1063/1.352363

E. Kintzer, J. Walpole, S. Chinn, C. Wang, and L. Missaggia, High-power, strained-layer amplifiers and lasers with tapered gain regions, IEEE Photonics Technology Letters, vol.5, issue.6, pp.605-608, 1993.
DOI : 10.1109/68.219683

M. Kelemen, J. Weber, G. Kaufel, G. Bihlmann, R. Moritz et al., Tapered diode lasers at 976???nm with 8???W nearly diffraction limited output power, Electronics Letters, vol.41, issue.18, pp.1011-1013, 2005.
DOI : 10.1049/el:20052504

R. Ostendorf, G. Kaufel, R. Moritz, M. Mikulla, O. Ambacher et al., 10 W high-efficiency high-brightness tapered diode lasers at 976 nm, High-Power Diode Laser Technology and Applications VI, pp.68760-68761, 2008.
DOI : 10.1117/12.761124

G. Lucas-leclin, D. Paboeuf, P. Georges, J. Holm, P. Andersen et al., Wavelength stabilization of extended-cavity tapered lasers with volume Bragg gratings, Applied Physics B, vol.24, issue.3-4, pp.493-498, 2008.
DOI : 10.1007/s00340-008-3034-2

URL : https://hal.archives-ouvertes.fr/hal-00128177

M. Ziari, S. O-'brien, M. Hagberg, R. Lang, and E. Vail, Fiber grating-stabilized, semiconductor pump source, S. Patent, vol.6525, pp.872-873, 2003.

M. T. Kelemen, F. Rinner, J. Rogg, N. Wiedmann, R. Kiefer et al., Highpower high-brightness ridge-waveguide tapered diode lasers at 940 nm, pp.75-81, 2002.

M. Peters, V. Rossin, and B. Acklin, High-efficiency high-reliability laser diodes at JDS Uniphase, High-Power Diode Laser Technology and Applications III, p.143, 2005.
DOI : 10.1117/12.611368

G. Erbert, G. Beister, F. Bugge, A. Knauer, R. Huelsewede et al., Performance of 3 W/100 µm stripe diode lasers at 950 nm and 810 nm, p.94, 2001.

B. Volodin, S. Dolgy, E. Melnik, E. Downs, J. Shaw et al., Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings, Optics Letters, vol.29, issue.16, pp.1891-1893, 2004.
DOI : 10.1364/OL.29.001891

D. Richardson, J. Nilsson, and W. Clarkson, High power fiber lasers: current status and future perspectives [Invited], Journal of the Optical Society of America B, vol.27, issue.11, pp.63-92, 2010.
DOI : 10.1364/JOSAB.27.000B63

P. Madasamy, S. Honkanen, D. Geraghty, and N. Peyghambarian, Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping, Applied Physics Letters, vol.82, issue.9, p.1332, 2003.
DOI : 10.1063/1.1557771

M. P. Bendett, Apparatus and method for integrated photonic devices having gain and wavelength selectivity, U.S. Patent, 2002.

M. P. Bendett, Apparatus and method for integrated photonic devices having high performance waveguides and multicompositonal substrates, U.S. Patent, 2005.

V. Donzella, V. Toccafondo, S. Faralli, F. Di-pasquale, C. Cassagnettes et al., Ion-exchanged Er^3+/Yb^3+ co-doped waveguide amplifiers longitudinally pumped by broad area lasers, Optics Express, vol.18, issue.12, pp.12690-12701, 2010.
DOI : 10.1364/OE.18.012690

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, Efficient power coupling from a 980-nm, broad-area laser to a single-mode fiber using a wedge-shaped fiber endface, Journal of Lightwave Technology, vol.8, issue.9, pp.1313-1318, 1990.
DOI : 10.1109/50.59158

R. Kazarinov, N. Stelmakh, and H. Temkin, Optical waveguide multimode to single mode transformer, S. Patent, vol.6580, pp.850-851, 2003.

M. Kolesnikov, J. Castillega, N. Bhandarkar, and N. Stelmakh, Spatially singlemode broad-area semiconductor laser with planar external cavity, Electronics Letters, vol.40, issue.13, pp.807-808, 2004.
DOI : 10.1049/el:20045010

G. Dixon, Technique for locking an external cavity large-area laser diode to a passive optical cavity, p.542, 1996.

V. Raab and R. Menzel, External resonator design for high-power laser diodes that yields 400 mW of TEM_00 power, Optics Letters, vol.27, issue.3, pp.167-169, 2002.
DOI : 10.1364/OL.27.000167

L. Lang, J. J. Lim, S. Sujecki, and E. Larkins, Improvement of the beam quality of a broad-area diode laser using asymmetric feedback from an external cavity, Optical and Quantum Electronics, vol.39, issue.3, pp.1097-1102, 2008.
DOI : 10.1007/s11082-009-9309-y

J. J. Lim, S. Sujecki, L. Lang, Z. Zhang, D. Paboeuf et al., Design and simulation of next-generation high-power, high-brightness laser diodes, Selected Topics in Quantum Electronics, pp.993-1008, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00528924

D. Anthon, Fiber grating feedback stabilization of broad area laser diode, S. Patent, vol.6125, p.222, 2000.

D. Kuksenkov, J. Minelly, and L. Zenteno, Semiconductor or solid-state laser having an external fiber cavity, S. Patent, vol.6625, pp.182-183, 2003.

K. Liou, Semiconductor laser having integrated waveguiding lens, p.517, 1996.

D. Barbier and P. Benech, Composant de couplage, réalisé en optique intégrée, apte à adapter une source lumineuse à un élément d'optique guidée et laser de puissance le comportant, p.166, 2001.

B. Saleh and M. Teich, Fundamentals of Photonics, p.664, 2007.

R. Braunstein, Radiative Transitions in Semiconductors, Physical Review, vol.99, issue.6, p.1892, 1955.
DOI : 10.1103/PhysRev.99.1892

H. Kroemer, A proposed class of hetero-junction injection lasers, Proceedings of the IEEE, pp.1782-1783, 1963.

R. A. Charmakadze, R. I. Chikovani, and Z. I. Alferov, Semiconductor light-emitting diode and method for producing same, p.3958265, 1976.

Z. I. Alferov, THE DOUBLE HETEROSTRUCTURE: CONCEPT AND ITS APPLICATIONS IN PHYSICS, ELECTRONICS AND TECHNOLOGY, International Journal of Modern Physics B, vol.16, issue.05, pp.413-441, 2000.
DOI : 10.1142/S0217979202010233

D. Guimard, J. Tatebayashi, and Y. Arakawa, Diodes laser pour les télécommunications optiques, 2006.

D. Rodriguez, I. Esquivias, S. Deubert, J. Reithmaier, A. Forchel et al., Gain, index variation, and linewidth-enhancement factor in 980-nm quantum-well and quantum-dot lasers, IEEE Journal of Quantum Electronics, vol.41, issue.2, pp.117-126, 2005.
DOI : 10.1109/JQE.2004.840083

R. Tkach and A. Chraplyvy, Regimes of feedback effects in 1.5-µm distributed feedback lasers, Journal of Lightwave Technology, vol.4, issue.11, pp.1655-1661, 1986.
DOI : 10.1109/JLT.1986.1074666

L. Goldberg, H. F. Taylor, A. Dandridge, J. Weller, and R. Miles, Spectral characteristics of semiconductor lasers with optical feedback Microwave Theory and Techniques, IEEE Transactions on, vol.30, pp.401-410, 1982.

R. Tkach and A. Chraplyvy, Linewidth broadening and mode splitting due to weak feedback in single-frequency 1.5 ??m lasers, Electronics Letters, vol.21, issue.23, pp.1081-1083, 1985.
DOI : 10.1049/el:19850768

N. Schunk and K. Petermann, Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback, IEEE Journal of Quantum Electronics, vol.24, issue.7, pp.1242-1247, 1988.
DOI : 10.1109/3.960

C. Henry and R. Kazarinov, Instability of semiconductor lasers due to optical feedback from distant reflectors, IEEE Journal of Quantum Electronics, vol.22, issue.2, pp.294-301, 1986.
DOI : 10.1109/JQE.1986.1072959

K. Petermann, External optical feedback phenomena in semiconductor lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.1, issue.2, p.480, 1995.
DOI : 10.1109/2944.401232

A. Fischer, M. Yousefi, D. Lenstra, M. W. Carter, and G. Vemuri, Experimental and Theoretical Study of Semiconductor Laser Dynamics Due to Filtered Optical Feedback, IEEE Journal of Selected Topics in Quantum Electronics, vol.10, issue.5, pp.944-954, 2004.
DOI : 10.1109/JSTQE.2004.835997

G. Van-tartwijk and G. Agrawal, Laser instabilities: a modern perspective, Progress in Quantum Electronics, pp.44-122, 1998.
DOI : 10.1016/S0079-6727(98)00008-1

G. Van-tartwijk and D. Lenstra, Semiconductor lasers with optical injection and feedback, Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, vol.7, issue.2, pp.87-143, 1995.
DOI : 10.1088/1355-5111/7/2/003

C. Henry, Theory of the linewidth of semiconductor lasers, IEEE Journal of Quantum Electronics, vol.18, issue.2, pp.259-264, 1982.
DOI : 10.1109/JQE.1982.1071522

J. Mork, B. Tromborg, and J. Mark, Chaos in Semiconductor Lasers with Optical Feedback, IEEE Journal of Quantum Electronics, vol.28, pp.93-108, 1992.
DOI : 10.1007/978-1-4899-1609-9_64

J. Sacher, W. Elsasser, and E. O. , Nonlinear dynamics of semiconductor laser emission under variable feedback conditions, IEEE Journal of Quantum Electronics, vol.27, issue.3, pp.373-379, 1991.
DOI : 10.1109/3.81334

K. Petermann, Laser Diode Modulation and Noise, p.61, 1991.
DOI : 10.1007/978-94-009-2907-4

R. Jäger, J. Heerlein, E. Deichsel, and P. Unger, 63% wallplug efficiency MBE grown InGaAs/AlGaAs broad-area laser diodes and arrays with carbon p-type doping using CBr< sub> 4</sub>, Journal of crystal growth, vol.201, pp.882-885, 1999.

Z. Xu, W. Guo, L. Cheng, A. Nelson, K. Luo et al., High-brightness, high-efficiency 940-980nm InGaAs/AlGaAs/GaAs broad waveguide diode lasers, Conference on Lasers and Electro-Optics, pp.420-422, 2005.

P. Crump, G. Blume, K. Paschke, R. Staske, A. Pietrzak et al., 20W continuous wave reliable operation of 980nm broad-area single emitter diode lasers with an aperture of 96µm, p.719814, 2009.

L. Asryan, N. Gun-'ko, A. Polkovnikov, G. Zegrya, R. Suris et al., Threshold characteristics of InGaAsP/InP multiple quantum well lasers, Semiconductor Science and Technology, vol.15, issue.12, p.1131, 2000.
DOI : 10.1088/0268-1242/15/12/306

A. Milton and W. Burns, Mode coupling in optical waveguide horns, IEEE Journal of Quantum Electronics, vol.13, issue.10, pp.828-835, 1977.
DOI : 10.1109/JQE.1977.1069240

A. Yariv and M. Nakamura, Periodic structures for integrated optics, IEEE Journal of Quantum Electronics, vol.13, issue.4, pp.233-253, 1977.
DOI : 10.1109/JQE.1977.1069323

URL : http://authors.library.caltech.edu/9797/1/YARieeejqe77a.pdf

G. R. Hadley and R. Smith, Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions, Journal of Lightwave Technology, vol.13, issue.3, pp.465-469, 1995.
DOI : 10.1109/50.372444

M. L. Huggins, K. H. Sun, and D. O. Davis, The Dispersion of Silicate Glasses as a Function of Composition II*, Journal of the Optical Society of America, vol.32, issue.11, pp.635-648, 1942.
DOI : 10.1364/JOSA.32.000635

J. Broquin, Glass integrated optics: state of the art and position toward other technologies, Integrated Optics: Devices, Materials, and Technologies XI, p.647507, 2007.
DOI : 10.1117/12.706785

E. Borsella, G. De-marchi, F. Caccavale, F. Gonella, G. Mattei et al., Silver cluster formation in ion-exchanged waveguides: processing technique and phenomenological model, Journal of Non-Crystalline Solids, vol.253, issue.1-3, pp.261-267, 1999.
DOI : 10.1016/S0022-3093(99)00358-0

D. Bucci, Mise au point d'un duplexeur pompe/signal à base de guides segmentés en optique intégrrée sur verre, Thèse de doctorat, 2006.

R. Terai and R. Hayami, Ionic diffusion in glasses, Journal of Non-Crystalline Solids, vol.18, issue.2, pp.217-264, 1975.
DOI : 10.1016/0022-3093(75)90022-8

J. Isard, The Haven ratio in glasses, Journal of Non-Crystalline Solids, vol.246, issue.1-2, pp.16-26, 1999.
DOI : 10.1016/S0022-3093(99)00036-8

A. Lupascu, A. Kevorkian, T. Boudet, F. Saint-andré, D. Persegol et al., Modeling ion exchange in glass with concentration???dependent diffusion coefficients and mobilities, Optical Engineering, vol.35, issue.6, p.1603, 1996.
DOI : 10.1117/1.600727

L. Onestas, Mise au point d'un duplexeur pompe/signal vertical en optique intégrée sur verre, Thèse de doctorat, IMEP, Insititut National Polytechnique de Grenoble, 2010.

F. Gardillou, L. Bastard, and J. E. Broquin, 4.25dB gain in a hybrid silicate/phosphate glasses optical amplifier made by wafer bonding and ion-exchange techniques, Applied Physics Letters, vol.85, issue.22, p.5176, 2004.
DOI : 10.1063/1.1829141

URL : https://hal.archives-ouvertes.fr/hal-00410914

A. Morand, C. Sanchez-perez, P. Benech, S. Tedjini, and D. Bose, Integrated optical waveguide polarizer on glass with a birefringent polymer overlay, IEEE Photonics Technology Letters, vol.10, issue.11, pp.1599-1601, 1998.
DOI : 10.1109/68.726762

V. Neuman, O. Parriaux, and L. Walpita, Double-alkali effect: influence on index profile of ion-exchanged waveguides, Electronics Letters, vol.15, issue.22, pp.704-706, 1979.
DOI : 10.1049/el:19790501

K. Petermann, Laser Diode Modulation and Noise, 1991.
DOI : 10.1007/978-94-009-2907-4

H. Casey, and active???layer thickness, Journal of Applied Physics, vol.49, issue.7, pp.3684-3692, 1978.
DOI : 10.1063/1.325421

R. Nahory and M. Pollack, Threshold dependence on active-layer thickness in InGaAsP/InP d.h. lasers, Electronics Letters, vol.14, issue.23, pp.727-729, 1978.
DOI : 10.1049/el:19780491

D. Mehuys, R. Lang, M. Mittelstein, J. Salzman, and A. Yariv, Self-stabilized nonlinear lateral modes of broad area lasers, IEEE Journal of Quantum Electronics, vol.23, issue.11, pp.1909-1920, 1987.
DOI : 10.1109/JQE.1987.1073261

R. J. Lang, A. G. Larsson, and J. G. Cody, Lateral modes of broad area semiconductor lasers: theory and experiment, IEEE Journal of Quantum Electronics, vol.27, issue.3, pp.312-320, 1991.
DOI : 10.1109/3.81329

O. Bertoldi, Etude et réalisation d'un multiplexeur à insertion-extraction de longueur d'ondes en optique intégrée sur verre, 2005.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix et al., Tapered singlemode fibres and devices. I. Adiabaticity criteria, pp.343-354, 1991.
DOI : 10.1049/ip-j.1991.0060

J. Albert and J. W. Lit, Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides, Applied Optics, vol.29, issue.18, pp.2798-2804, 1990.
DOI : 10.1364/AO.29.002798

I. Moerman, P. P. Van-daele, and P. M. Demeester, A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices, IEEE Journal of Selected Topics in Quantum Electronics, vol.3, issue.6, pp.1308-1320, 1998.
DOI : 10.1109/2944.658785

L. Bastard, Matrice de lasers à haute cohérence en optique intégrée sur verre, Thèse de doctorat, 2003.

D. Barbier, C. Cassagnettes, J. Philipsen, and S. Valette, Structure d'amplification optique réalisée en optique intégrée et boitier d'amplification intégrant une telle structure, 2002.

J. Broquin and R. Rimet, Integrated optic device with active and passive guide zones, p.623, 1999.

M. Casale, D. Bucci, L. Bastard, and J. E. Broquin, 1.55 ??m hybrid waveguide laser made by ion-exchange and wafer bonding, Integrated Optics: Devices, Materials, and Technologies XVI, pp.826409-826410, 2012.
DOI : 10.1117/12.909880

URL : https://hal.archives-ouvertes.fr/hal-00459135