. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.
DOI : 10.1109/TAC.1974.1100705

J. Allali, Structures d'indexation: Les arbres des facteurs, 2000.

J. Allali and M. Sagot, The at most k-deep factor tree, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00627813

T. L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proc. ISMB'94, pp.28-36, 1994.

T. L. Bailey and C. Elkan, Unsupervised learning of multiple motifs in biopolymers using EM, Machine Learning, pp.51-80, 1995.

T. L. Bailey and C. Elkan, The value of prior knowledge in discovering motifs with MEME, Proc. ISMB'95, pp.21-29, 1995.

T. L. Bailey, M. Bodén, T. Whitington, and P. Machanick, The value of position-specific priors in motif discovery using MEME, BMC Bioinformatics, vol.11, issue.1, p.179, 2010.
DOI : 10.1186/1471-2105-11-179

Y. Barash, G. Elidan, N. Friedman, and T. Kaplan, Modeling dependencies in protein-DNA binding sites, Proceedings of the seventh annual international conference on Computational molecular biology , RECOMB '03, pp.28-37, 2003.
DOI : 10.1145/640075.640079

A. R. Barron, J. Rissanen, and B. Yu, The minimum description length principle in coding and modeling, IEEE Transactions on Information Theory, vol.44, issue.6, pp.2743-2760, 1998.
DOI : 10.1109/18.720554

R. G. Beiko, R. L. Charlebois, . A. Bibliography, and . Bell, GANN: Genetic algorithm neural networks for the detection of conserved combinations of features in DNA The co-information lattice, Proc. ICA'03, pp.36-921, 2003.
DOI : 10.1186/1471-2105-6-36

P. V. Benos, M. L. Bulyk, and G. D. Stormo, Additivity in protein-DNA interactions: how good an approximation is it?, Nucleic Acids Research, vol.30, issue.20, pp.4442-4451, 2002.
DOI : 10.1093/nar/gkf578

J. Bilmes, Dynamic Bayesian multinets, Proc. UAI'00, pp.38-45, 2000.

R. R. Bouckaert, Bayesian Belief Networks: From Construction to Inference, 1995.

A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert, Approaches to the Automatic Discovery of Patterns in Biosequences, Journal of Computational Biology, vol.5, issue.2, pp.279-305, 1998.
DOI : 10.1089/cmb.1998.5.279

A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen, Predicting gene regulatory elements in silico on a genomic scale, Genome Research, vol.8, issue.11, pp.1202-1215, 1998.

J. Buhler and M. Tompa, Finding Motifs Using Random Projections, Journal of Computational Biology, vol.9, issue.2, pp.225-242, 2002.
DOI : 10.1089/10665270252935430

W. L. Buntine, Theory Refinement on Bayesian Networks, Proc. UAI'91, pp.52-60, 1991.
DOI : 10.1016/B978-1-55860-203-8.50010-3

L. R. Cardon and G. D. Stormo, Expectation maximization algorithm for identifying protein-binding sites with variable lengths from unaligned DNA fragments, Journal of Molecular Biology, vol.223, issue.1, pp.159-170, 1992.
DOI : 10.1016/0022-2836(92)90723-W

A. M. Carvalho, Efficient algorithms for structured motif extraction in DNA sequences Master's thesis, 2004.

A. M. Carvalho, Scoring functions for learning Bayesian networks, 2009.

A. M. Carvalho and A. L. Oliveira, Learning bayesian networks consistent with the optimal branching, Sixth International Conference on Machine Learning and Applications (ICMLA 2007), pp.369-374, 2007.
DOI : 10.1109/ICMLA.2007.74

A. M. Carvalho and A. L. Oliveira, GRISOTTO: A greedy approach to improve combinatorial algorithms for motif discovery with prior knowledge, Algorithms for Molecular Biology, vol.6, issue.1, p.13, 2011.
DOI : 10.1038/nrg1315

A. M. Carvalho, A. T. Freitas, A. L. Oliveira, and M. Sagot, Efficient Extraction of Structured Motifs Using Box-Links, Proc. SPIRE'04, pp.267-268, 2004.
DOI : 10.1007/978-3-540-30213-1_37

URL : https://hal.archives-ouvertes.fr/hal-00427510

A. M. Carvalho, A. T. Freitas, A. L. Oliveira, and M. Sagot, A HIGHLY SCALABLE ALGORITHM FOR THE EXTRACTION OF CIS-REGULATORY REGIONS, Proceedings of the 3rd Asia-Pacific Bioinformatics Conference, pp.273-282, 2005.
DOI : 10.1142/9781860947322_0027

URL : https://hal.archives-ouvertes.fr/hal-00427723

A. M. Carvalho, A. T. Freitas, A. L. Oliveira, and M. Sagot, An Efficient Algorithm for the Identification of Structured Motifs in DNA Promoter Sequences, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.3, issue.2, pp.126-140, 2006.
DOI : 10.1109/TCBB.2006.16

URL : https://hal.archives-ouvertes.fr/hal-00427913

A. M. Carvalho, A. L. Oliveira, and M. Sagot, Efficient Learning of Bayesian Network Classifiers, Proc. IA'07, pp.16-25, 2007.
DOI : 10.1007/978-3-540-76928-6_4

URL : https://hal.archives-ouvertes.fr/hal-00434717

A. M. Carvalho, T. Roos, A. L. Oliveira, and P. Myllymäki, Discriminative learning of Bayesian networks via factorized conditional log-likelihood, Journal of Machine Learning Research, vol.12, 2011.

S. Cawley, Statistical models for DNA sequencing and analysis, 2000.

D. M. Chickering, A transformational characterization of equivalent Bayesian network structures, Proc. UAI'95, pp.87-98, 1995.

D. M. Chickering, Learning Bayesian networks is NP-Complete Learning from data: AI and statistics V, pp.121-130, 1996.

D. M. Chickering, Learning equivalence classes of Bayesian-network structures, Journal of Machine Learning Research, vol.2, pp.445-498, 2002.

D. M. Chickering, D. Heckerman, and C. Meek, Large-sample learning of Bayesian networks is NP-hard, Journal of Machine Learning Research, vol.5, pp.1287-1330, 2004.

C. K. Chow and C. N. Liu, Approximating discrete probability distributions with dependence trees, IEEE Transactions on Information Theory, vol.14, issue.3, pp.462-467, 1968.
DOI : 10.1109/TIT.1968.1054142

G. F. Cooper and E. Herskovits, A Bayesian method for the induction of probabilistic networks from data, Machine Learning, pp.309-347, 1992.
DOI : 10.1007/BF00994110

T. Cover and J. Thomas, Elements of information theory, 2006.

M. Crochemore and M. Sagot, Motifs in sequences: Localization and extraction, Compact Handbook of Computational Biology, pp.47-97, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00620799

F. Daenen, F. Van-roy, and P. J. De-bleser, Low nucleosome occupancy is encoded around functional human transcription factor binding sites, BMC Genomics, vol.9, issue.1, 2008.
DOI : 10.1186/1471-2164-9-332

URL : http://doi.org/10.1186/1471-2164-9-332

S. Dasgupta, Learning polytrees, Proc. UAI'99, pp.134-141, 1999.

L. M. De-campos, A scoring function for learning Bayesian networks based on mutual information and conditional independence tests, Journal of Machine Learning Research, vol.7, pp.2149-2187, 2006.

C. Deremble and R. Lavery, Macromolecular recognition, Current Opinion in Structural Biology, vol.15, issue.2, pp.171-175, 2005.
DOI : 10.1016/j.sbi.2005.01.018

URL : https://hal.archives-ouvertes.fr/hal-00313394

P. Domingos and M. J. Pazzani, Simple Bayesian classifiers do not assume independence, Proc. AAAI/IAAI'96, p.1386, 1996.

P. Domingos and M. J. Pazzani, Beyond independence: Conditions for the optimality of the simple Bayesian classifier, Proc. ICML'96, pp.105-112, 1996.

P. Domingos and M. J. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning, vol.29, pp.2-3, 1997.

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, 1973.

L. Duret and P. Bucher, Searching for regulatory elements in human noncoding sequences, Current Opinion in Structural Biology, vol.7, issue.3, pp.399-406, 1997.
DOI : 10.1016/S0959-440X(97)80058-9

URL : https://hal.archives-ouvertes.fr/hal-00434977

J. Edmonds, Optimum branchings, Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics, vol.71, issue.4, pp.233-240, 1967.
DOI : 10.6028/jres.071B.032

K. Ellrott, C. Yang, F. M. Sladek, and T. Jiang, Identifying transcription factor binding sites through Markov chain optimization, Proc. ECCB'02, pp.100-109, 2002.
DOI : 10.1093/bioinformatics/18.suppl_2.S100

E. Eskin and P. A. Pevzner, Finding composite regulatory patterns in DNA sequences, Bioinformatics, vol.18, issue.Suppl 1, pp.354-363, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.S354

E. Eskin, U. Keich, M. S. Gelfand, and P. A. Pevzner, GENOME-WIDE ANALYSIS OF BACTERIAL PROMOTER REGIONS, Biocomputing 2003, pp.29-40, 2003.
DOI : 10.1142/9789812776303_0004

U. M. Fayyad and K. B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, Proc. IJCAI'93, pp.1022-1029, 1993.

A. P. Fejes, G. Robertson, M. Bilenky, R. Varhol, M. Bainbridge et al., Find- Peaks 3.1: A tool for identifying areas of enrichment from massively parallel short-read sequencing technology, Bioinformatics, issue.15, pp.241729-1730, 2008.

Y. M. Fraenkel, Y. Mandel, D. Friedberg, and H. Margalit, Identification of common motifs in unaligned DNA sequences: application to Escherichia coli Lrp regulon, Bioinformatics, vol.11, issue.4, pp.379-387, 1995.
DOI : 10.1093/bioinformatics/11.4.379

N. Friedman and D. Koller, Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks, Machine Learning, pp.95-125, 2003.

N. Friedman, D. Geiger, and M. Goldszmidt, Bayesian network classifiers, Machine Learning, vol.29, issue.2/3, pp.131-163, 1997.
DOI : 10.1023/A:1007465528199

W. Fu, P. Ray, and E. P. Xing, DISCOVER: a feature-based discriminative method for motif search in complex genomes, Bioinformatics, vol.25, issue.12, p.25, 2009.
DOI : 10.1093/bioinformatics/btp230

D. Geiger and D. Heckerman, Knowledge representation and inference in similarity networks and Bayesian multinets, Artificial Intelligence, vol.82, issue.1-2, pp.45-74, 1996.
DOI : 10.1016/0004-3702(95)00014-3

DOI : 10.1142/9789812776136_0044

R. Gordân, L. Narlikar, and A. J. Hartemink, A Fast, Alignment-Free, Conservation-Based Method for Transcription Factor Binding Site Discovery, Proc. RECOMB'08, pp.98-111, 2008.
DOI : 10.1007/978-3-540-78839-3_9

R. Gordân, L. Narlikar, and A. J. Hartemink, Finding regulatory DNA motifs using alignment-free evolutionary conservation information, Nucleic Acids Research, vol.38, issue.6, p.90, 2010.
DOI : 10.1093/nar/gkp1166

R. Greiner and W. Zhou, Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers, Proc. AAAI/IAAI'02, pp.167-173, 2002.
DOI : 10.1007/s10994-005-0469-0

R. Greiner, X. Su, B. Shen, and W. Zhou, Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers, Machine Learning, pp.297-322, 2005.
DOI : 10.1007/s10994-005-0469-0

D. Grossman and P. Domingos, Learning Bayesian network classifiers by maximizing conditional likelihood, Twenty-first international conference on Machine learning , ICML '04, pp.46-53, 2004.
DOI : 10.1145/1015330.1015339

P. D. Grünwald, The Minimum Description Length Principle, 2007.

D. Gusfield, Algorithms on strings, trees, and sequences, 1997.
DOI : 10.1017/CBO9780511574931

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, 2009.
DOI : 10.1145/1656274.1656278

J. B. Hannett, D. B. Tagne, J. Reynolds, E. G. Yoo, J. Jennings et al., Transcriptional regulatory code of a eukaryotic genome, Nature, issue.7004, pp.431-99, 2009.

T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning, 2003.

D. Heckerman, D. Geiger, and D. M. Chickering, Learning Bayesian networks: The combination of knowledge and statistical data, Machine Learning, pp.197-243, 1995.

C. Hsu, C. Chang, and C. Lin, A practical guide to support vector classification, 2003.

M. Hu, J. Yu, J. M. Taylor, A. M. Chinnaiyan, and Z. S. Qin, On the detection and refinement of transcription factor binding sites using ChIP-Seq data, Nucleic Acids Research, vol.38, issue.7, pp.2154-2167, 2010.
DOI : 10.1093/nar/gkp1180

L. C. Hui, Color set size problem with applications to string matching, Proc. CPM'92, pp.230-243, 1992.

A. Jakulin, Machine Learning Based on Attribute Interactions, 2005.

S. Karlin, F. Ost, and B. E. Blaisdell, Patterns in DNA and amino acid sequences and their statistical significance, Mathematical Methods for DNA Sequences, pp.133-158, 1989.

K. J. Kechris, E. Van-zwet, P. J. Bickel, and M. B. Eisen, Detecting DNA regulatory motifs by incorporating positional trends in information content, Genome Biology, vol.5, issue.7, p.50, 2004.
DOI : 10.1186/gb-2004-5-7-r50

M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E. S. Lander, Sequencing and comparison of yeast species to identify genes and regulatory elements, Nature, vol.113, issue.6937, pp.241-254, 2003.
DOI : 10.1128/MCB.20.15.5766-5776.2000

C. Kirchhamer, C. Yuh, and E. Davidson, Modular cis-regulatory organization of developmentally expressed genes: two genes transcribed territorially in the sea urchin embryo, and additional examples., Proc. Natl. Acad. Sci. USA, pp.9322-9328, 1996.
DOI : 10.1073/pnas.93.18.9322

R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, Proc. IJCAI'95, pp.1137-1145, 1995.

R. Kohavi and G. H. John, Wrappers for feature subset selection, Artificial Intelligence, vol.97, issue.1-2, pp.273-324, 1997.
DOI : 10.1016/S0004-3702(97)00043-X

D. Koller and N. Friedman, Probabilistic Graphical models: Principles and techniques, 2009.

P. Kontkanen and P. Myllymäki, A linear-time algorithm for computing the multinomial stochastic complexity, Information Processing Letters, vol.103, issue.6, pp.227-233, 2007.
DOI : 10.1016/j.ipl.2007.04.003

P. Kontkanen, W. Buntine, P. Myllymäki, J. Rissanen, and H. Tirri, Efficient computation of stochastic complexity, Proc. AISTATS'03, pp.233-238, 2003.

I. V. Kulakovskiy, V. A. Boeva, A. V. Favorov, and V. J. Makeev, Deep and wide digging for binding motifs in ChIP-Seq data, Bioinformatics, vol.26, issue.20, pp.262622-2623, 2010.
DOI : 10.1093/bioinformatics/btq488

S. Kurtz, Reducing the space requirement of suffix trees. Software: Practice and Experience, pp.1149-1171, 1999.

I. Lafontaine and R. Lavery, Optimization of Nucleic Acid Sequences, Biophysical Journal, vol.79, issue.2, pp.680-685, 2000.
DOI : 10.1016/S0006-3495(00)76326-0

URL : https://hal.archives-ouvertes.fr/hal-00313409

I. Lafontaine and R. Lavery, ADAPT: A molecular mechanics approach for studying the structural properties of long DNA sequences, Biopolymers, vol.233, issue.4, pp.292-310, 2001.
DOI : 10.1002/1097-0282(2000)56:4<292::AID-BIP10028>3.0.CO;2-9

URL : https://hal.archives-ouvertes.fr/hal-00313407

I. Lafontaine and R. Lavery, High-speed Molecular Mechanics Searches for Optimal DNA Interaction Sites, Combinatorial Chemistry & High Throughput Screening, vol.4, issue.8, pp.707-717, 2001.
DOI : 10.2174/1386207013330698

URL : https://hal.archives-ouvertes.fr/hal-00313406

W. Lam and F. Bacchus, LEARNING BAYESIAN BELIEF NETWORKS: AN APPROACH BASED ON THE MDL PRINCIPLE, Computational Intelligence, vol.17, issue.3, pp.269-294, 1994.
DOI : 10.1016/0005-1098(78)90005-5

A. D. Lanterman, . Schwarz, and R. Wallace, Intertwining themes in theories of model selection, IEEE Transactions on Information Theory, vol.69, issue.2, pp.185-212, 2001.

E. Lawler, Combinatorial Optimization: Networks and Matroids, 1976.

C. Lee, Y. Shibata, B. Rao, B. Strahl, and J. Lieb, Evidence for nucleosome depletion at active regulatory regions genome-wide, Nature Genetics, vol.12, issue.8, p.36, 2004.
DOI : 10.1093/nar/30.4.e15

H. Li and C. Fu, A linear programming approach for identifying a consensus sequence on DNA sequences, Bioinformatics, vol.21, issue.9, pp.1838-1845, 2005.
DOI : 10.1093/bioinformatics/bti286

L. P. Lim and C. B. Burge, A computational analysis of sequence features involved in recognition of short introns, Proc. Natl. Acad. Sci. USA, pp.9811193-11198, 2001.
DOI : 10.1073/pnas.201407298

Y. Liu, S. Liu, L. Wei, R. B. Altman, and S. Batzoglou, Eukaryotic Regulatory Element Conservation Analysis and Identification Using Comparative Genomics, Genome Research, vol.14, issue.3, pp.451-458, 2004.
DOI : 10.1101/gr.1327604

K. D. Macisaac, T. Wang, D. B. Gordon, D. K. Gifford, G. D. Stormo et al., An improved map of conserved regulatory sites for Saccharomyces cerevisiae, BMC Bioinformatics, vol.7, issue.1, p.113, 2006.
DOI : 10.1186/1471-2105-7-113

L. Marsan and M. Sagot, Algorithms for Extracting Structured Motifs Using a Suffix Tree with an Application to Promoter and Regulatory Site Consensus Identification, Journal of Computational Biology, vol.7, issue.3-4, pp.3-4345, 2000.
DOI : 10.1089/106652700750050826

V. Matys, O. V. Kel-margoulis, E. Fricke, I. Liebich, S. Land et al., TRANSFAC(R) and its module TRANSCompel(R): transcriptional gene regulation in eukaryotes, Nucleic Acids Research, vol.34, issue.90001, pp.108-110, 2006.
DOI : 10.1093/nar/gkj143

E. Mccreight, A Space-Economical Suffix Tree Construction Algorithm, Journal of the ACM, vol.23, issue.2, pp.262-272, 1976.
DOI : 10.1145/321941.321946

W. J. Mcgill, Multivariate information transmission, Psychometrika, vol.24, issue.2, pp.97-116, 1954.
DOI : 10.1007/BF02289159

C. Meek, Finding a path is harder than finding a tree, Journal of Artificial Intelligence Research, vol.15, pp.383-389, 2001.

M. Meila and M. I. Jordan, Learning with mixtures of trees, Journal of Machine Learning Research, vol.1, pp.1-48, 2000.

. Freitas and . Yeastract-discoverer, New tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae, Nucleic Acids Research, vol.36, pp.132-136, 2008.

L. Narlikar, R. Gordân, U. Ohler, and A. J. Hartemink, Informative priors based on transcription factor structural class improve de novo motif discovery, Proc. ISMB'06, pp.384-392, 2006.
DOI : 10.1093/bioinformatics/btl251

L. Narlikar, R. Gordân, and A. J. Hartemink, Nucleosome Occupancy Information Improves de novo Motif Discovery, Proc. RECOMB'07, pp.107-121, 2007.
DOI : 10.1007/978-3-540-71681-5_8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz, UCI repository of machine learning databases, 1998.

R. A. O-'flanagan, G. Paillard, R. Lavery, and A. M. Sengupta, Non-additivity in protein-DNA binding, Bioinformatics, vol.21, issue.10, pp.2254-2263, 2005.
DOI : 10.1093/bioinformatics/bti361

URL : https://hal.archives-ouvertes.fr/hal-00313395

G. Paillard and R. Lavery, Analyzing Protein-DNA Recognition Mechanisms, Structure, vol.12, issue.1, pp.113-122, 2004.
DOI : 10.1016/j.str.2003.11.022

URL : https://hal.archives-ouvertes.fr/hal-00313400

G. Paillard, C. Deremble, and R. Lavery, Looking into DNA recognition: zinc finger binding specificity, Nucleic Acids Research, vol.32, issue.22, pp.6673-6682, 2004.
DOI : 10.1093/nar/gkh1003

URL : https://hal.archives-ouvertes.fr/hal-00313396

G. Pavesi, G. Mauri, and G. Pesole, An algorithm for finding signals of unknown length in DNA sequences, Proc. ISMB'01, pp.207-214, 2001.
DOI : 10.1093/bioinformatics/17.suppl_1.S207

G. Pavesi, G. Mauri, and G. Pesole, In silico representation and discovery of transcription factor binding sites, Briefings in Bioinformatics, vol.5, issue.3, pp.217-236, 2004.
DOI : 10.1093/bib/5.3.217

G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole, Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes, Nucleic Acids Research, vol.32, issue.Web Server, pp.199-203, 2004.
DOI : 10.1093/nar/gkh465

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 1988.

S. V. Pemmaraju and S. S. Skiena, Computational discrete mathematics: Combinatorics and graph theory with Mathematica, 2003.
DOI : 10.1017/CBO9781139164849

F. Pernkopf and J. A. Bilmes, Discriminative versus generative parameter and structure learning of Bayesian network classifiers, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.657-664, 2005.
DOI : 10.1145/1102351.1102434

P. A. Pevzner and S. H. Sze, Combinatorial algorithm for finding subtle signals in DNA sequences, Proc. ISMB'00, pp.269-278, 2000.

N. Pisanti, A. M. Carvalho, L. Marsan, and M. Sagot, RISOTTO: Fast Extraction of Motifs with Mismatches, Proc. LATIN'06, pp.757-768, 2006.
DOI : 10.1007/11682462_69

URL : https://hal.archives-ouvertes.fr/hal-00428023

A. Policriti, N. Vitacolonna, M. Morgante, and A. Zuccolo, Structured motifs search, Proceedings of the eighth annual international conference on Computational molecular biology , RECOMB '04, pp.133-139, 2004.
DOI : 10.1145/974614.974632

J. V. Ponomarenko, M. P. Ponomarenko, A. S. Frolov, D. G. Vorobiev, G. C. Overton et al., Conformational and physicochemical DNA features specific for transcription factor binding sites, Bioinformatics, vol.15, issue.7, pp.15654-668, 1999.
DOI : 10.1093/bioinformatics/15.7.654

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C: The art of scientific computing, 1993.

R. Pudimat, E. G. Schukat-talamazzini, and R. Backofen, Feature based representation and detection of transcription factor binding sites, Proc. German Conference on Bioinformatics, pp.43-52, 2004.

J. Rissanen, A Universal Prior for Integers and Estimation by Minimum Description Length, The Annals of Statistics, vol.11, issue.2, pp.416-431, 1983.
DOI : 10.1214/aos/1176346150

J. Rissanen, Stochastic Complexity and Modeling, The Annals of Statistics, vol.14, issue.3, pp.1080-1100, 1986.
DOI : 10.1214/aos/1176350051

J. Rissanen, Stochastic complexity, Journal of the Royal Statistical Society, Series B, vol.49, issue.3, pp.223-239, 1987.
DOI : 10.1002/0471667196.ess3099

J. Rissanen, Stochastic Complexity in Statistical Inquiry Theory, World Scientific, 1989.

J. Rissanen, Stochastic complexity and its applications On-line proceeding only, Workshop on Model Uncertainty and Model Robustness, 1995.

J. Rissanen, Stochastic complexity in learning, Proc. EuroCOLT'95, pp.196-210, 1995.
DOI : 10.1007/3-540-59119-2_178

URL : http://dx.doi.org/10.1006/jcss.1997.1501

J. Rissanen, Fisher information and stochastic complexity, IEEE Transactions on Information Theory, vol.42, issue.1, pp.40-47, 1996.
DOI : 10.1109/18.481776

T. Roos, H. Wettig, P. Grünwald, P. Myllymäki, and H. Tirri, On Discriminative Bayesian Network Classifiers and Logistic Regression, Machine Learning, pp.267-296, 2005.
DOI : 10.1007/s10994-005-0471-6

T. Roos, T. Silander, P. Kontkanen, and P. Myllymäki, Bayesian network structure learning using factorized NML universal models, 2008 Information Theory and Applications Workshop, pp.272-276, 2008.
DOI : 10.1109/ITA.2008.4601061

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Sagot, Spelling approximate repeated or common motifs using a suffix tree, Proc. Latin'98, pp.111-127, 1998.
DOI : 10.1007/BFb0054337

URL : https://hal.archives-ouvertes.fr/hal-00428511

G. Sandve and F. Drablos, A survey of motif discovery methods in an integrated framework, Biology Direct, vol.1, issue.1, p.11, 2006.
DOI : 10.1186/1745-6150-1-11

R. V. Satya and A. Mukherjee, New Algorithms for Finding Monad Patterns in DNA Sequences
DOI : 10.1007/978-3-540-30213-1_40

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

E. Segal, Y. Fondufe-mittendorf, L. Chen, A. Thåström, Y. Field et al., A genomic code for nucleosome positioning, Nature, vol.11, issue.7104, pp.442772-778, 2006.
DOI : 10.1016/j.jmb.2004.03.032

Y. M. Shtarkov, Universal sequential coding of single messages. (Translated from) Problems of Information Transmission, pp.3-17, 1997.

R. Siddharthan, E. D. Siggia, and E. Van-nimwegen, PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny, PLoS Computational Biology, vol.425, issue.7, p.67, 2005.
DOI : 10.1371/journal.pcbi.0010067.st001

T. Silander, T. Roos, P. Kontkanen, and P. Myllymäki, Bayesian network structure learning using factorized NML universal models, Proc. PGM'08, pp.257-264, 2008.

S. Sinha, M. Blanchette, and M. Tompa, PhyME, BMC Bioinformatics, vol.5, p.170, 2004.
DOI : 10.1007/978-1-59745-514-5_19

G. D. Stormo, DNA binding sites: representation and discovery, Bioinformatics, vol.16, issue.1, pp.16-23, 2000.
DOI : 10.1093/bioinformatics/16.1.16

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/16/1/16

J. Su and H. Zhang, Full Bayesian network classifiers, Proceedings of the 23rd international conference on Machine learning , ICML '06, pp.897-904, 2006.
DOI : 10.1145/1143844.1143957

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Su, H. Zhang, C. X. Ling, and S. Matwin, Discriminative parameter learning for Bayesian networks, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.1016-1023, 2008.
DOI : 10.1145/1390156.1390284

J. Suzuki, A Construction of Bayesian Networks from Databases Based on an MDL Principle, Proc. UAI'93, pp.266-273, 1993.
DOI : 10.1016/B978-1-4832-1451-1.50037-8

M. Teyssier and D. Koller, Ordering-based search: A simple and effective algorithm for learning Bayesian networks, Proc. UAI'05, pp.584-591, 2005.

M. Tompa, An exact method for finding short motifs in sequences, with application to the ribosome binding site problem, Proc. ISMB'99, pp.262-271, 1999.

Y. Frith, W. J. Fu, V. J. Kent, A. A. Makeev, W. S. Mironov et al., Assessing computational tools for the discovery of transcription factor binding sites, Nature Biotechnology, vol.23, issue.1, pp.137-144, 2005.

E. Ukkonen, On-line construction of suffix trees, Algorithmica, vol.10, issue.3, pp.249-260, 1995.
DOI : 10.1007/BF01206331

A. Valouev, D. S. Johnson, A. Sundquist, C. Medina, E. Anton et al., Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data, Nature Methods, vol.14, issue.9, pp.829-834, 2008.
DOI : 10.1038/nmeth.1246

J. Van-helden, B. André, and J. Collado-vides, Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies 1 1Edited by G. von Heijne, Journal of Molecular Biology, vol.281, issue.5, pp.827-842, 1998.
DOI : 10.1006/jmbi.1998.1947

J. Van-helden, A. F. Rios, and J. Collado-vides, Discovering regulatory elements in non-coding sequences by analysis of spaced dyads, Nucleic Acids Research, vol.28, issue.8, pp.1808-1818, 2000.
DOI : 10.1093/nar/28.8.1808

A. Vanet, L. Marsan, and M. Sagot, Promoter sequences and algorithmical methods for identifying them, Research in Microbiology, vol.150, issue.9-10, pp.9-10779, 1999.
DOI : 10.1016/S0923-2508(99)00115-1

URL : https://hal.archives-ouvertes.fr/hal-00428461

A. Vanet, L. Marsan, A. Labigne, and M. Sagot, Inferring regulatory elements from a whole genome. an analysis of Helicobacter pylori??80 family of promoter signals, Journal of Molecular Biology, vol.297, issue.2, pp.335-353, 2000.
DOI : 10.1006/jmbi.2000.3576

URL : https://hal.archives-ouvertes.fr/hal-00427110

T. Verma and J. Pearl, Equivalence and synthesis of causal models, Proc. UAI'90, pp.255-270, 1990.

T. Wang and G. D. Stormo, Combining phylogenetic data with co-regulated genes to identify regulatory motifs, Bioinformatics, vol.19, issue.18, pp.2369-2380, 2003.
DOI : 10.1093/bioinformatics/btg329

W. W. Wasserman and A. Sandelin, Applied bioinformatics for the identification of regulatory elements, Nature Reviews Genetics, vol.14, issue.4, pp.276-287, 2004.
DOI : 10.1093/bioinformatics/18.9.1272

P. Weiner, Linear pattern matching algorithms, 14th Annual Symposium on Switching and Automata Theory (swat 1973), pp.1-11, 1973.
DOI : 10.1109/SWAT.1973.13

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Werner, Models for prediction and recognition of eukaryotic promoters, Mammalian Genome, vol.10, issue.2, pp.168-175, 1999.
DOI : 10.1007/s003359900963

E. Wingender, X. Chen, E. Fricke, R. Geffers, R. Hehl et al., The TRANSFAC system on gene expression regulation, Nucleic Acids Research, vol.29, issue.1, pp.281-283, 2001.
DOI : 10.1093/nar/29.1.281

E. P. Xing, M. I. Jordan, R. M. Karp, and S. J. Russell, A hierarchical Bayesian Markovian model for motifs in biopolymer sequences, Proc. NIPS'02, pp.1489-1496, 2002.

S. Yang and K. Chang, Comparison of score metrics for Bayesian network learning, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929), pp.419-428, 2002.
DOI : 10.1109/ICSMC.1996.565479

X. Zhao, H. Huang, and T. P. Speed, Finding short DNA motifs using permuted Markov models, Proc. RECOMB'04, pp.68-75, 2004.
DOI : 10.1089/cmb.2005.12.894

Q. Zhou and J. S. Liu, Modeling within-motif dependence for transcription factor binding site predictions, Bioinformatics, vol.20, issue.6, pp.909-916, 2004.
DOI : 10.1093/bioinformatics/bth006