
HAL Id: tel-00755042
https://theses.hal.science/tel-00755042

Submitted on 20 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Motif representation and discovery
A.M. Carvalho

To cite this version:
A.M. Carvalho. Motif representation and discovery. Bioinformatics [q-bio.QM]. Universidade técnica
de Lisboa Instituto superior técnico, 2011. English. �NNT : �. �tel-00755042�

https://theses.hal.science/tel-00755042
https://hal.archives-ouvertes.fr

UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Motif representation and discovery

Alexandra Sofia Martins de Carvalho

Dissertação para obtenção do Grau de Doutor em

Engenharia Informática e de Computadores

Orientador: Doutor Arlindo Manuel Limede de Oliveira

Co-orientadora: Doutora Marie-France Sagot

Júri:

Presidente: Presidente do Conselho Cient́ıfico do IST

Vogais: Doutor Paulo Jorge dos Santos Gonçalves Ferreira

Doutor Arlindo Manuel Limede de Oliveira

Doutor Mário Alexandre Teles de Figueiredo

Doutora Marie-France Sagot

Doutor João Manuel Portela da Gama

Doutora Ana Teresa Correia de Freitas

Julho de 2011

Abstract

An important part of gene regulation is mediated by specific proteins, called transcription

factors, which influence the transcription of a particular gene by binding to specific sites on

DNA sequences, called transcription factor binding sites (TFBS) or, simply, motifs. Such

binding sites are relatively short segments of DNA, normally 5 to 25 nucleotides long, over-

represented in a set of co-regulated DNA sequences. There are two different problems in this

setup: motif representation, accounting for the model that describes the TFBS’s; and motif

discovery, focusing in unravelling TFBS’s from a set of co-regulated DNA sequences.

This thesis proposes a discriminative scoring criterion that culminates in a discriminative

mixture of Bayesian networks to distinguish TFBS’s from the background DNA. This new

probabilistic model supports further evidence in non-additivity among binding site positions,

providing a superior discriminative power in TFBS’s detection. On the other hand, extra

knowledge carefully selected from the literature was incorporated in TFBS discovery in order

to capture a variety of characteristics of the TFBS’s patterns. This extra knowledge was

combined during the process of motif discovery leading to results that are considerably more

accurate than those achieved by methods that rely in the DNA sequence alone.

Keywords: Motif representation, Discriminative learning, Bayesian network, Motif discov-

ery, Combinatorial algorithm, Position specific prior.

i

ii

Resumo

Uma parte importante da regulação genética é mediada por protéınas espećıficas, chamadas

factores de transcrição, que influenciam a transcrição de um gene através da ligação a locais

espećıficos das sequências de ADN, denominados locais de ligação dos factores de transcrição

(LLFT) ou, simplesmente, motivos. Estes locais de ligação são pequenos segmentos de ADN,

estendendo-se normalmente de 5 a 25 bases, que se encontram sobrerrepresentados num con-

junto de sequências de ADN co-reguladas. Consideram-se dois problemas: representação de

motivos, que descreve o modelo dos LLFT’s; e descoberta de motivos, que se foca na descoberta

de LLFT’s a partir de um conjunto de sequências de ADN co-reguladas.

Esta dissertação propõe uma função de custo discriminativa que culmina numa mistura de

redes de Bayes para distinguir os LLFT’s do restante ADN. Este novo modelo probabiĺıstico

evidência a existência de dependência nas posições dos locais de ligação, oferecendo um poder

superior de discriminação de LLFT’s. Por outro lado, informação adicional seleccionada da

literatura foi incorporada na descoberta de motivos por forma a capturar uma variedade de

caracteŕısticas dos padrões de LLFT’s. Esta informação extra promoveu uma detecção de

motivos consideravelmente mais correcta quando comparada com métodos que se baseiam

apenas na sequência de ADN.

Palavras chave: Representação de motivos, Aprendizagem discriminativa, Rede de Bayes,

Descoberta de motivos, Algoritmo combinatório, Prior para posição espećıfica.

iii

iv

To Duarte and Tomás,

vi

Acknowlegements

I am heartily thankful to my supervisors, Arlindo Oliveira and Marie-France Sagot, for useful

scientific discussions and their guidance during the elaboration of this thesis. I would like to

thank Arlindo for always having a slot in his heavy agenda to discuss my work, and for his

talent in giving me support while coping with my working peaks dictated by two maternities

and teaching as a teaching Assistant at IST. To Marie-France, I thank her hospitality during

my short visits to the BAOBAB research group and the opportunity she gave me to meet

excellent scientists, namely, Nadia Pisanti, Laurent Marsan and Richard Lavery.

It is an honor for me to thank to all researchers I work with during the course of this

thesis. In the first two years I was able to cooperate with Nadia and Laurent, jointly with

Marie-France, I owe them enthusiastic discussions about RISOTTO. I also would like to show

my gratitude to Teemu Roos and Petri Myllymäki, whom I have not met personally yet, for

their eagerness and commitment in leading to a good port the work about f̂CLL. I hope we

met personally someday.

Additionally, I offer my regards to Mário Figueiredo, for his availability in helping me

with concerns that appeared with respect to the f̂CLL work, and to Vı́ctor Rocha Vieira,

for his interest in cross-checking the analytical integrations presented in this work (I still

have the hand-made 6-page integral calculations). Finally, I would like to thank PRIORITY

researchers, namely, Raluca Gordân, and MEME researchers, namely, Timothy Bailey, for

making available data from their works, making possible the contribution of GRISOTTO.

I would like to thank the friendship and support that some of my colleagues at IST

demonstrated about the completion of this thesis: Lúıs Miguel Silveira, for his concern and

belief; Rui Gustavo Crespo, for asking for the “3 magic letters” so many times for so many

years; João Cunha Serra, for avidly helping me in so many doubts about academic career.

Last, but not least, I would like to thank Cristina and Amı́lcar Sernadas for our conversations

vii

viii

that, albeit indirectly, made me believe that this though journey was more or less normal.

I am profoundly grateful to the excellent working environment that I have in KDBIO

Group that houses me at INESC-ID. I owe a word of gratitude to all my colleagues, specially:

Ana Teresa Freitas, for always caring how things were, including me, and for supporting my

work when I was aboard; Susana Vinga, a great friend, for all her patience and uplifting

words about my work; and Sara Madeira, for all conversations about academic life and life

in general. During these years, I had outstanding office mates with whom I had several

discussions about work and life in general, including, Orlando Anunciação, Miguel Bugalho,

Alexandre Francisco, Joana Gonçalves, Lúıs Russo, Pedro Monteiro and Nuno Mendes. I

also offer my regards to Sara Silva, Paulo Fonseca, João Carriço and Cátia Vaz for our

conversations about gaming, kids, life in general, and academic career, to name a few.

Lastly, I offer my regards and blessings to my family and friends for all support and

patience in any respect during the completion of this thesis. Aos meus pais, Bernandina

e Francisco, por terem apostado em mim desde sempre, um grande xi-prata para vocês. À

Irene e ao Agostinho não poderia deixar de agradecer com um muito obrigado, sem a vossa

ajuda nunca teria conseguido. À minha irmã, Filipa, sempre com um fácil e lindo sorriso,

e ao Faustino, um muito obrigado por todo o apoio, eu e os meus filhos adoramos-vos. À

Ritinha, a mais nova da famı́lia, bem-vinda! Ao Pedro e à Sofia, e à Eva e ao Leonardo, um

muito obrigado pelos momentos descontráıdos que passámos juntos. À minha tia Almerinda

e Adelaide, um muito obrigado por várias vezes me terem ajudado com a criançada. To Sara,

a huge thanks for hosting me in your house in my less fortunate moments, it was great! To

Susana, for listening me all days, over and over, and for always having the right words to

cheer me up. Finally, to Paulo that has been a pillar of support I could rely on all times. He

inspired me, encouraged me, and sustained me. Most of all, he has always believed in me. E

aos nosso lindos filhotes, Duarte e Tomás, que são o sol da minha vida, um muito obrigado

pelos inúmeros e calorosos abraços que tanto gosto.

Contents

I Background 1

1 Introduction 3

1.1 Context . 3

1.2 Aims . 4

1.3 Claim of contributions . 4

1.4 Layout of the thesis . 7

2 State of the art 9

2.1 Problem description . 9

2.2 Motif representation . 12

2.2.1 Deterministic models . 12

2.2.2 Probabilistic models . 12

2.3 Motif discovery . 16

3 Related Work 21

3.1 Bayesian network models . 21

3.1.1 Bayesian networks . 21

3.1.2 Bayesian network classifiers . 33

3.2 Extraction of structured motifs . 37

3.2.1 Basic data structures . 38

3.2.2 Single motif extraction algorithm . 41

3.2.3 Structured motif extraction algorithm 45

ix

x CONTENTS

II Motif representation 53

4 f̂CLL: Factorized conditional log-likelihood 55

4.1 Notation . 59

4.2 Generative vs discriminative learning . 60

4.3 Developing a new scoring criterion . 62

4.3.1 Achieving a well-behaved approximation under OFE 72

4.3.2 Information-theoretical interpretation 78

4.3.3 Beyond binary classification . 81

4.4 Experimental results . 82

5 CκG: Learning consistent κ-graphs 93

5.1 Biological motivation for CκG Bayesian networks 93

5.2 Issues and trends in efficient learning of Bayesian networks 94

5.3 Consistent Bayesian networks . 96

5.3.1 CκG classifier: An extension to the TAN classifier 101

5.3.2 Expressiveness of CκG Bayesian networks 102

5.3.3 Discriminative learning of two-component mixtures of CκG Bayesian

networks . 103

5.4 Experimental results . 108

III Motif discovery 113

6 RISOTTO: Improving RISO with maximal extensibility 115

6.1 Single motif extraction . 116

6.1.1 Using maximal extensibility of factors 116

6.1.2 Complexity analysis . 120

6.2 Structured motif extraction . 124

6.2.1 Using maximal extensibility of factors 125

6.3 Implementation and experimental results . 126

6.3.1 Storing the extensibility information 127

6.3.2 Experimental results . 128

CONTENTS xi

7 GRISOTTO: Improving RISOTTO with prior knowledge 131

7.1 GRISOTTO algorithm . 132

7.2 Balanced information score . 135

7.3 Experimental results . 138

7.3.1 ChiP-chip data . 139

7.3.2 ChiP-seq data . 144

7.4 Discussion . 147

IV Conclusions and future work 151

V Appendixes 159

A Alternative justification for Assumption 1 161

B Feeding GRISOTTO with good initial starting points 163

B.1 RISOTTO input . 163

B.2 GRISOTTO subroutine calling RISOTTO . 164

C Inter-motif distance 167

C.1 Minimum scaled Euclidean distance . 168

C.2 PSSM representation of an IUPAC string . 168

C.3 Best alignment and cutoffs . 174

D Evaluating various positional priors 177

D.1 Parameter settings . 177

D.2 Running times . 179

D.3 Detailed results . 179

Bibliography 183

xii CONTENTS

List of Algorithms

3.1 Chow-Liu tree learning algorithm, LL score 32

3.2 Learning tree BN’s, decomposable and score equivalent φ–score 32

3.3 Learning tree BN’s, decomposable and non-score equivalent φ–score 33

3.4 Learning TAN BNC’s, LL score . 36

3.5 Learning TAN BNC’s, decomposable and score equivalent φ–score 37

3.6 Learning TAN BNC’s, decomposable and non-score equivalent φ–score 37

3.7 SPELLER, single motif extraction . 45

3.8 RISO, structured motif extraction using box-links 49

5.1 Learning CκG BN’s, decomposable φ-score 99

5.2 Learning CκG BNC’s, decomposable φ-score 101

5.3 Learning CκG mixture models for binary classification tasks 108

6.1 SPELLER, single motif extraction (simplified version) 116

6.2 RISOTTO, single motif extraction with maximal extensibility 121

6.3 RISO, structured motif extraction (simplified version) 125

6.4 RISOTTO, structured motif extraction with maximal extensibility 127

7.1 GRISOTTO, Greedy RISOTTO . 135

7.2 GGP, GRISOTTO greedy procedure . 136

B.1 RunRISOTTO, RISOTTO parameter tuning 165

C.1 ComputeDistance, minimum scaled Euclidean distance with cutoffs 175

xiii

xiv LIST OF ALGORITHMS

List of Figures

3.1 Suffix tree for string AGACAGGAGGC$. 39

3.2 Generalized suffix tree for strings TACTA$ and CACTCA$. 40

3.3 Generalized suffix tree with Colors for strings TACTA$ and CACTCA$. . . . 41

3.4 At most 5-deep factor tree for string AGACAGGAGGC$. 42

3.5 At most 3-deep factor tree for string AGACAGGAGGC$. 42

3.6 A general idea of box-links. 47

3.7 Extracting structured motifs following box-links. 49

4.1 Comparison between f (left) and f̂ (right). 68

4.2 Approximation error between f and f̂ . 68

4.3 Plot of g and ĝ. 77

4.4 Scatter plots of the accuracy of Bayesian network-based classifiers. 88

4.5 Scatter plot of the accuracy of proposed methods against state-of-the-art clas-

sifiers. 89

5.1 Figure relative to the Example 5.3.3. 98

5.2 Expressiveness of the network models discussed in this work. 102

5.3 Scatter plots of the accuracy of different multinet classifiers. 111

6.1 Example where the extension of m′ can be avoided. 118

6.2 Ratio between the expected number of extensions attempted by RISOTTO

and RISO. 124

6.3 Ratio between the number of extensions attempted by RISOTTO and RISO. 129

6.4 Ratio between performance of RISOTTO and RISO. 130

xv

xvi LIST OF FIGURES

List of Tables

2.1 The IUPAC nucleotide code with corresponding DNA bases. 14

4.1 Definition of terms used in Chapter 4. 61

4.2 Description of datasets used in the experiments. 83

4.3 Bayesian network-based classifiers used in the experiments. 84

4.4 Other state-of-the-art classifiers used in the experiments. 84

4.5 Accuracy of Bayesian network-based classifiers annotated with the standard

deviation. 86

4.6 Accuracy of other state-of-the-art classifiers annotated with the standard de-

viation. 87

4.7 Statistical significance of the results achieved by the Bayesian network-based

classifiers according to the Wilcoxon signed-rank test. 90

4.8 Statistical significance of the results achieved by the other state-of-the-art clas-

sifiers according to the Wilcoxon signed-rank test. 90

5.1 Definition of terms used in Chapter 5. 96

5.2 Definition of terms used in Section 5.3.3. 105

5.3 Statistical significance of the results according to the Wilcoxon signed-rank test.109

6.1 Definition of terms used in Chapter 6. 117

7.1 Definition of terms used in Chapter 7. 134

7.2 Comparison of GRISOTTO with state-of-the-art methods over ChiP-chip data. 141

7.3 Comparison of GRISOTTO-DC with Chen et al. and MEME-DC over ChiP-

seq data. 146

xvii

xviii LIST OF TABLES

C.1 Canonical distribution of the IUPAC symbols 169

C.2 Distribution of the IUPAC symbols with three types of errors. 171

C.3 Translation of IUPAC symbols whose distance is closer to the average distance. 172

C.4 Average distance between PSSM’s representing IUPAC symbols. 173

Part I

Background

1

Chapter 1

Introduction

1.1 Context

The core of the work presented in this thesis was developed at the Knowledge Discovery

and Bioinformatics Group (KDBIO Group) of INESC-ID, Lisboa. The Bioinformatics effort

in KDBIO Group aims at several goals. One of these goals is the focus of this thesis: the

development of efficient algorithms for motif representation and discovery.

Some techniques used throughout this thesis rely and are greatly influenced by previous

research works devised at the BAOBAB research group of INRIA Rhône-Alpes, leaded by

Marie-France Sagot. Actually, one of the contributions of this thesis appeared as a collab-

orative work with two post-graduate students of Marie-France, namely, Nadia Pisanti and

Laurent Marsan. There were other approaches that also influenced the work of this thesis,

mainly, those of Raluca Gordân, Timothy Bailey, Nir Friedman and Russell Greiner. The lat-

ter was actually an intermediary for another collaborative work with Teemu Roos and Petri

Myllymäki from the Helsinki Institute for Information Technology HIIT (U. Helsinki).

This work was partially supported by the PhD grant from FCT SFRH/BD/18660/2004,

and by the projects: DBYeast1 FCT Project POSC/EIA/57398/2004; ARN2 FCT Project

PTDC/EIA/67722/2006; Dyablo3 FCT Project PTDC/EIA/71587/2006; and, PneumoSyS4

1DBYeast: Infrastructures and algorithms for analysis and identification of gene regulatory networks.
2ARN: Algorithms for the identification of genetic regulatory networks.
3Dyablo: Models for the dynamic behavior of biological networks.
4PneumoSyS: A systems biology approach to the role of pneumococcal carbon metabolism in colonization

and invasive disease.

3

4 CHAPTER 1. INTRODUCTION

FCT Project PTDC/SAU-MII/100964/2008. This work was also supported by FCT (INESC-

ID multiannual funding) through the PIDDAC Program funds.

1.2 Aims

In this large-scale genome sequencing era the main bottleneck to progress in molecular biology

is data analysis. The prime objective of this thesis is the investigation of one kind of biological

information contained in sequenced data: the motif model and its discovery from a set of co-

regulated DNA sequences. A motif is roughly a mathematical representation underlying a

transcription factor binding site.

More precisely, the main goal of this thesis is the proposal of efficient and effective algo-

rithms for motif representation and discovery, capable of dealing with the enormous amount

of data coming from the Bioinformatics community. Such models and algorithms should be

able to look in and beyond the DNA sequence alone, preferably gathering information from

different sources. This grounds in the belief that such diverse information would increase

the discriminative power of current tools. To its possible extent, the improvements obtained

should be documented by complexity analysis, as well as by experimental results over biolog-

ically relevant sequence-sets.

1.3 Claim of contributions

Four main contributions were achieved within the scope of this thesis:

I. Motif representation

• A new efficient and parameter-free scoring criterion for learning augmented naive

Bayes classifiers was devised (Carvalho, Roos, Oliveira, and Myllymäki, 2011). The

new score, named factorized conditional log-likelihood (f̂CLL), consists in an unbi-

ased approximation to the conditional log-likelihood (CLL). The approximation was

devised in order to guarantee decomposability over the network structure, as well as

efficient estimation of the optimal parameters, achieving the same time and space

complexity of the traditional log-likelihood scoring criterion. With this approach

we achieved, although approximate, full discriminative learning of augmented naive

1.3. CLAIM OF CONTRIBUTIONS 5

Bayes classifiers very efficiently. Full discriminative learning of Bayesian network

classifiers is an open question in the Machine Learning community. Therefore,

results concerning the f̂CLL contribution were presented with benchmark datasets

specially devised by that community. Notwithstanding, discriminative learning

is extremely important in classification tasks, as the one of discriminating bind-

ing sites from background DNA sequences, and it was investigated in the course

of this thesis for this very purpose. Actually, an application of f̂CLL for motif

representation is reported in the next contribution.

• A new probabilistic motif model accounting for non-additivity along positions in

TFBS’s, called consistent κ-graph (CκG) Bayesian networks, was proposed to-

gether with the machinery to learn it (Carvalho, Oliveira, and Sagot, 2007; Car-

valho and Oliveira, 2007). Firstly, it was proposed a polynomial-time algorithm for

learning CκG Bayesian networks (Carvalho and Oliveira, 2007). Afterwards this re-

sult was further extended to deal with classification tasks (Carvalho, Oliveira, and

Sagot, 2007). In the course of this thesis we additionally exploited the aforemen-

tioned works by considering an extension of the discriminative scoring criterion,

f̂CLL, to two-component mixtures of CκG models, called mixture-based factorized

conditional log-likelihood (mf̂CLL). The rational for this approach is that there

are two separate regimes underlying motifs and correspondent background DNA

sequences, and mixtures allow discriminative learning of the motifs detached from

the generative learning of the background.

II. Motif discovery

• An extension to RISO (Carvalho, Freitas, Oliveira, and Sagot, 2006, 2005; Car-

valho, 2004) capable of dealing with long motifs was achieved with RISOTTO

(Pisanti, Carvalho, Marsan, and Sagot, 2006) by using maximal extensibility in-

formation. In 2005, Nadia Pisanti, Laurent Marsan, and Marie-France Sagot,

appeared with a proposal to improve the SPELLER motif extraction algorithm

(Sagot, 1998) with maximal extensibility information.5 At that time there were

5Despite the author of the thesis being listed as the second co-author of the paper, both the first and the

second author worked equally for the paper.

6 CHAPTER 1. INTRODUCTION

several open questions: (1) how to use maximal extensibility for motifs with spac-

ers, referred as structured motifs; (2) how to efficiently encode maximal extensibility

in memory; (3) theoretical study concerning the average case complexity analysis

of the maximal extensibility. The author of this thesis solved all these three issues,

implemented the solution, designed and performed the experiments, and wrote the

final paper together with Nadia.

• An extension to RISOTTO having the ability to take into consideration informa-

tion in and beyond the DNA sequence alone was proposed (Carvalho and Oliveira,

2011). This extra information can be taken from the literature, or computed

from the DNA sequences, and helps in characterizing motifs. The new algorithm,

called GRISOTTO, combines and incorporates this extra information in a new

theoretical-information scoring criterion, called balanced information score (BIS).

Three available priors from different sources, namely, orthologous conservation,

DNA duplex stability and nucleosome positioning, were combined into the BIS

score. The GRISOTTO with the just mentioned BIS scoring criterion has shown

to be the more accurate motif discoverer among twelve other state-of-the-art ap-

proaches for the same task.

Since this thesis started, the author has also made other contributions directly related

with the work of this thesis. These works have not been included in the contributions of the

thesis and are detailed below:

• Exposing RISO, developed by the author in her Master Thesis, internationally, in a top

journal (Carvalho, Freitas, Oliveira, and Sagot, 2006), and international conference of

the area (Carvalho, Freitas, Oliveira, and Sagot, 2005).

• Improving RISO with a double stranded feature which was included in the YEASTRACT-

DISCOVERER (Monteiro, Mendes, Teixeira, d’Orey, Tenreiro, Mira, Pais, Francisco,

Carvalho, Lourenço, Sá-Correia, Oliveira, and Freitas, 2008).

• Studying and comparing diverse scoring criteria for learning augmented naive Bayes

classifiers from complete data (Carvalho, 2009).

1.4. LAYOUT OF THE THESIS 7

Finally, the following software packages were developed and made available during the

development of this thesis:

• A Java package extending WEKA (Hall et al., 2009) with the local-based score f̂CLL

to learn Bayesian networks classifiers can be found at

http://kdbio.inesc-id.pt/∼asmc/software/fCLL.html

• A Mathematica package for learning CκG Bayesian networks and multinets for com-

monly used decomposable scores, including, f̂CLL and mf̂CLL, can be found at

http://kdbio.inesc-id.pt/∼asmc/software/CkG.html

• An ansi-C implementation of RISO motif discovery algorithm from where RISOTTO

was extended, can be found at

http://kdbio.inesc-id.pt/∼asmc/software/riso.html,
and also within the YEASTRACT-DISCOVERER at

http://www.yeastract.com/discoverer/riso.php.

• An ansi-C implementation of RISOTTO motif discovery algorithm to deal with long

motifs can be found at

http://kdbio.inesc-id.pt/∼asmc/software/risotto.html

• A Java package with GRISOTTO motif discovery algorithm that uses prior information

can be found at

http://kdbio.inesc-id.pt/∼asmc/software/grisotto.html

1.4 Layout of the thesis

In Part I of the thesis, comprising Chapter 2–3, we introduce the background. In Chapter 2

we describe the problem focused in this thesis as well as the state-of-the-art providing an

overview on motif representation and discovery. Some of the works mentioned in the state-

of-the-art that are more closely related to the topics of the thesis are then presented in detail

in Chapter 3. This chapter is divided in two main sections. First, Section 3.1 describes some

background on learning Bayesian networks classifiers which plays an important role to under-

stand Part II of the thesis that concerns motif representation. Second, Section 3.2 describes

8 CHAPTER 1. INTRODUCTION

algorithms for motif discovery, namely, RISO (Carvalho, Freitas, Oliveira, and Sagot, 2006;

Carvalho, 2004), which is used as background for Part III that addresses motif discovery.

The contributions of this thesis are described from Chapter 4 to Chapter 7. Part II refers

to motif representation and comprises Chapter 4–5. In Chapter 4 we propose a new scoring

criterion, called factorized conditional log-likelihood (f̂CLL), for learning Bayesian networks

devoted to classification tasks. In Chapter 5 we present a new motif model, called consistent

k-graphs (CκG), which relies on a Bayesian network to introduce dependencies among motif

sites. Part III of the thesis concentrates on motif discovery and includes Chapter 6–7. In

Chapter 6 we present a new exact combinatorial motif discovery algorithm, called RISOTTO,

to deal with long motifs. In Chapter 7 we present a new greedy approach, called GRISOTTO,

to improve RISOTTO motif discoverer with prior knowledge.

Finally, in Part IV we draw some conclusions and propose future work and in Part V we

provide four appendixes. Appendix A presents an alternative justification to an assumption

presented in Chapter 4, whereas Appendix B–D concerns to the evaluation methodology and

detailed results of the experimental results presented in Chapter 7.

Chapter 2

State of the art

This chapter starts by describing the problem focused in this thesis. Next, it provides the

state-of-the-art on motif representation and discovery.

2.1 Problem description

The identification of DNA as the genetic material revealed that genetic information is repre-

sented by a sequence of four bases (A, C, G and T), also known as nucleotides. In molecular

terms, a gene can be defined as a segment of DNA. Genes act by coding the structure of pro-

teins, which are responsible for directing cell metabolism through their activity as enzymes.

The central dogma of molecular biology assumes a pathway for the flow of genetic informa-

tion: DNA → RNA → protein. According to this principle, RNA molecules are synthesized

from DNA templates, a process called transcription, and proteins are synthesized from RNA

templates, a process called translation. RNA appears therefore as an intermediate to convey

information from DNA to the places of protein synthesis.

The complete genetic content, called genome, of most eukaryotes (cell or organism pro-

vided with a distinct nuclear envelop) is larger and more complex than the genetic content

of prokaryotes (cell or organism that lack a nuclear envelope, also called bacteria). In fact,

the genome of most eukaryotic organisms contains not only functional genes, but also large

amounts of DNA sequences that do not code for proteins. Some of these non-coding DNA

sequences lie between genes, in the so-called intergenic regions. However, large amounts of

non-coding DNA are also found within the genes. Actually, genes of eukaryotic organisms are

9

10 CHAPTER 2. STATE OF THE ART

composed of segments of coding sequences, called exons, separated by segments of non-coding

sequences, called introns.

An important part of gene regulation is mediated by specific proteins, called the tran-

scription factors (TF), which influence the transcription of a particular gene by binding to

specific sites on DNA sequences, called transcription factor binding sites (TFBS) or simply

binding sites. Such binding sites are relatively short stretches of DNA and are located in the

so-called promoter regions. These binding sites are short. The effective length may be just

4–6 nucleotides, although the region affected by the TF is longer, typically 10–25 nucleotides.

Most of these regions are located in the non-coding sequences upstream of genes, but some

are also found downstream, and even within the non-coding parts of a gene, the introns. In

prokaryotic organisms, the binding sites are located predominantly in the immediate vicinity

of the gene, which usually extends about 300 to 600 nucleotides upstream of the transcrip-

tion start site (TSS). However, in eukaryotic organisms the binding site sequences are often

shorter, and can be quite variable and distributed over very large distances. There is no

clear-cut defined boundary for promoter regions which may extend further upstream to more

than 2000 bases, as observed in some sea urchin promoters (Kirchhamer et al., 1996).

Promoter prediction necessarily needs a model of promoter organization and its conspicu-

ous features. In fact, strong and weak points of promoter prediction methods are determined

to a large extent by the accuracy of the underlying promoter model with respect to the bi-

ological organization. A possible way to describe a promoter views it as being composed of

three regions with different functions, each one having one or more TFBS’s. The first one,

the core promoter, is the region that suffices to determine the precise TSS. The second one,

the proximal promoter, is the region that is capable of initiating basal transcription. Finally,

the distal promoter, also called enhancer, is the transcription regulatory region that can be

located farther from the core promoter and has the main function of stimulating transcrip-

tion. A detailed explanation on possible models for prediction and recognition of eukaryotic

promoters was developed by Werner (1999).

The DNA sites involved in promoter function can be identified by searching for well con-

served regions in a set of non-coding DNA sequences. Such well conserved regions, also

known as consensus regions, are called motifs and can be found by comparison of non-coding

sequences of a given organism, or by comparison of non-coding sequences of related genes

2.1. PROBLEM DESCRIPTION 11

in different organisms. In the first approach, frequently occurring patterns are likely to

correspond to binding sites of a common TF. The second approach is called phylogenetic

footprinting (Duret and Bucher, 1997) and requires careful identification of the appropriate

genes to use. Only non-coding sequences of orthologous genes, which are genes evolutionarily

related that perform the same biological function, are appropriate for phylogenetic foot-

printing. This technique uses the functional/non-functional dichotomy to identify regulatory

elements by finding unusually well conserved regions in a set of orthologous non-coding DNA

sequences from multiple species (for example, the non-coding sequence upstream the insulin

gene in different species of vertebrates). Functional sequences tend to evolve much slower than

non-functional ones, as they are subject to selective pressure. Hence, it is a good conjecture

that unusually well conserved regions in such sequences have some regulatory function.

There are two central problems concerning motifs in sequences: localization and discovery

(Crochemore and Sagot, 2004). The goal of the motif localization problem is to find the

positions of the occurrences of a given motif in a DNA sequence (Policriti et al., 2004). The

motif discovery problem, also called motif extraction problem, aims at identifying de novo

binding site consensi from a set of non-coding DNA sequences. In both these problems, the

accuracy of the underlying motif model is of the utmost importance. Indeed, an inaccurate

model may lead to a high false positive rate in motif localization and discovery. This thesis

focus in the representation and discovery tasks. Despite the existence of several proposals in

the literature for motif discovery, the problem of detecting regulatory sites in DNA sequences

is far from being solved. Given the flexibility of regulatory mechanisms, it remains essential to

develop computer-assisted promoter recognition methods capable of detecting different kinds

of regulatory signals and adapting to different promoter models. The impact of this task in

the Bioinformatics community is enormous. Promoter regions can play an important role in

gene function and may offer some clues to the function of completely anonymous proteins.

Prediction of the functionality of a promoter may also yield initial indications for gene therapy

approaches, while analysis of the combinatorics of their elements is essential for understanding

cell development.

12 CHAPTER 2. STATE OF THE ART

2.2 Motif representation

Herein we focus our attention on how to represent a motif from a collection of binding site

sequences.

2.2.1 Deterministic models

There are two main kinds of deterministic models: regular expressions and consensus se-

quences. The regular expressions used in motif discovery denote a subset of regular languages

and are typically composed of exact symbols, ambiguous symbols, fixed gaps and/or flexible

gaps (Brazma et al., 1998a). A consensus sequence represents a collection (or neighborhood)

of binding site sequences that are at most at a certain Hamming distance1 of the underlying

consensus sequence. Each binding site sequence in this collection is called a motif occurrence

or consensus occurrence. The number of mismatches depends largely on the size of the motif.

There are a few variants to these two models. A first alternative imposes a restriction on the

location of mismatches along the consensus sequence (Pavesi et al., 2001). That is, a consen-

sus occurrence can present at most a certain number of mismatches in the first i nucleotides,

and so on. On the other hand, a second variant takes into account the sum of mismatches

between all consensus occurrences and the underlying consensus sequence (Li and Fu, 2005).

2.2.2 Probabilistic models

The main drawback of deterministic models is that they lose some information, as compared

with the collection of binding site sequences from where they are generated. For instance,

even if we know that a consensus sequence has at least 2 mismatches within the collection of

binding sites, we do not know if there are one or more bases which are specially well conserved,

nor, for those bases that are not so well conserved, what kind of mismatches they have. The

probabilistic models appeared to overcome such loss of information.

The position specific scoring matrix (PSSM), also known as probability weight matrix

(PWM), is, without doubt, one of the most widely used probabilistic models. This model

is represented by a matrix where each entry (i, b) is the probability of base b at the i-th

position in the collection of binding sites. The information summarized in a PSSM can also

1The Hamming distance between two string measures the minimum number of substitutions required to

change one string into the other.

2.2. MOTIF REPRESENTATION 13

be represented by a motif logo. The motif logos are based on the information content of the

collection of binding sites. The information content at a position i in a site is defined as

Ii = 2 +
T∑

b=A

fb,i log2 fb,i

where b refers to the DNA bases and fb,i is the frequency of base b at that i-th position in the

collection of binding sites. Ii is 0 for positions that are 25% of each base, and 2 for positions

completely conserved. Bases are stacked on top of each other in increasing order of their

frequencies and the size of each base printed in the logo is determined by multiplying the

frequency of that base by the total information at that position, that is, fb,iIi.

Another quite popular motif model that is, in point of fact, the most widely used motif

representation among biologists and TFBS’s databases (e.g. Wingender et al., 2001), are

IUPAC strings (IUPAC is a shorthand name for International Union of Pure and Applied

Chemistry). An IUPAC string is simply a string over an extended DNA alphabet of size 15.

A letter of an IUPAC string is called an IUPAC nucleotide code, or simply IUPAC code, and

corresponds to one or more bases of the DNA alphabet. The IUPAC code is presented in

Table 2.1 (page 14).

The previous representations of TFBS’s make a strong assumption that binding site po-

sitions are independent of each other. To overcome such an assumption, several extensions

have been proposed. First attempts extended the PSSM model to include pairs of correlated

positions (O’Flanagan et al., 2005; Zhou and Liu, 2004; Benos et al., 2002). Other extensions

appeared based on Markov chains. Here, a binding site is represented by a Markov chain

that gives the probability of each nucleotide occurring at a particular position depending on

the nucleotides at preceding positions. In this context, a n-th Markov chain was proposed to

model probabilistically a motif (Lim and Burge, 2001).

A first drawback of the n-th Markov chain models is that it is hard to find a good n. A high

n would give high number of parameters whereas a low n may miss out some dependencies of

interest. To overcome this problem, a variable-length Markov model (VLMM) was proposed

by Cawley (2000) to account for the variability on the relative importance of dependencies

within the motif. Moreover, a second drawback of Markov chain models is that although these

models allow dependencies among positions to be encoded in the state transition probabilities,

not all dependencies are treated equally. Indeed, dependence between two positions is directly

14 CHAPTER 2. STATE OF THE ART

IUPAC nucleotide code DNA base

A Adenine

C Cytosine

G Guanine

T (or U) Thymine (or Uracil)

R A or G

Y C or T

S G or C

W A or T

K G or T

M A or C

B C or G or T

D A or G or T

H A or C or T

V A or C or G

N any base

Table 2.1: The IUPAC nucleotide code with corresponding DNA bases.

represented in the Markov chain if the positions are adjacent, or within close proximity in the

case of a high order Markov chain. Otherwise it is only indirectly represented. Correlation

among non-adjacent positions could be especially important for TFBS’s since the biding

between a DNA molecule and a protein molecule is essentially a 3-dimensional geometrical

matching process that may involve cooperation between nucleotides at non-adjacent positions

of the primary DNA sequence. A way to circumvent this problem is to permute the positions

in the binding site to maximize inter-position dependence, as measured by χ2 values, and

then define a Markov chain ordered in such a way that most pairs, or groups, in the case

of high-order Markov chain, of significantly dependent positions are adjacent (Ellrott et al.,

2002). Furthermore, Zhao et al. (2004) proposed that the positions in the Markov chain may

also be permuted before a VLMM is applied leading to a permuted variable-length Markov

2.2. MOTIF REPRESENTATION 15

model (PVLMM).

An exhaustive work exploiting inter-position dependences of TFBS’s was done by Barash

et al. (2003) resulting from it four new motif representations: mixtures of PSSM’s, Bayesian

networks, tree Bayesian networks and mixture of trees. A mixture of PSSM’s is a simple way

to enrich a PSSM by combining it with a hidden mechanism. This leads to a natural extension

which takes into account that a TF can have several types of binding: slightly different physical

configurations of the protein at the binding site, each with somewhat different preferences.

Mixture of PSSM’s capture broad dependencies among all positions via the hidden variable.

On the other hand, using a Bayesian network it is possible to capture local dependencies

by considering how each position of the binding site depends on the other. In this Bayesian

network model a directed acyclic graph is used to represent such dependencies. Moreover, a

tree Bayesian network is a sub-class of Bayesian networks where each position has at most

one parent, generalizing in this way first-order Markov chains. An important advantage of

tree Bayesian networks is that there exist efficient algorithms for learning the best structure

(Friedman et al., 1997; Chow and Liu, 1968; Edmonds, 1967). Moreover, in contrast to first-

order Markov chains, tree Bayesian networks naturally capture non-adjacent dependencies

having no need to develop artificial mechanisms to capture dependencies spread out along

binding site positions. Finally, tree Bayesian networks were enriched in the same way as

mixtures of PSSM’s leading to mixtures of trees. The use of mixture of trees shows to be

a good compromise between the number of free parameters and the ability to model the

dependencies of interest.

On the other hand, instead on focusing on dependencies between specific nucleotides at

different positions, an alternative extension has been focusing on models where highly con-

served positions are partially contiguous rather than evenly spread out in the motif (Xing

et al., 2002). In this model there is an underlying Markov chain which favors transitions

between positions with similar degrees of conservation. Another work achieves similar prop-

erties by assigning conservation types (strong, moderate and low) to blocks of motif positions

(Kechris et al., 2004).

Finally, another interesting approach proposed to enrich probabilistic models with a plen-

tiful set of features that provide superior discriminative power for TFBS’s detection (Fu et al.,

2009). In this method, a PSSM provided a good baseline measure for the conditional ran-

16 CHAPTER 2. STATE OF THE ART

dom field method employed, and some extra features were heuristically calculated, based on

sequence data, or taken from external annotation. These features include architecture of

the regulatory region, presence of repeats, an evolutionary score-based feature, GC-content,

melting temperature, nucleosome occupancy, reverse complementarity and conservation sym-

metry. The advantage of this method is the fact that new features can be incorporated at

will.

2.3 Motif discovery

Identifying TFBS’s is notoriously difficult for both prokaryotic and eukaryotic organisms.

There are two major limitations in this task. First, there is a constraint of algorithmic

nature, meaning that in general the proposed methods can only be applied to sets of sequences

restricted in their length and number. Second, there is a weakness in the models employed

for TFBS’s, leading to poor TFBS predicting methods. Nevertheless, the subject has gained

a renewed interest in the last few years, with the sequencing of the genomes of vertebrates

such as man and mouse. The literature on the topic of DNA binding site sequence detection

is extensive, and there are several surveys on the subject (Sandve and Drablos, 2006; Tompa

et al., 2005; Pavesi et al., 2004a; Stormo, 2000; Vanet et al., 1999; Brazma et al., 1998a).

Herein, we concentrate on briefly surveying methods that try to extract conserved single

binding sites, or multiple ones, possibly located at constrained distances from one another in

a set of co-regulated DNA sequences.

Up to ten years ago, all methods for detecting DNA binding sites considered each such

site individually. These methods therefore looked for single motifs, that is, motifs composed

of a unique binding site. This includes pattern-based approaches which allowed for wildcards

or a limited number of spacers but not for mutations (Brazma et al., 1998b; Tompa, 1999;

van Helden et al., 1998). Apart from these, only an approach by Sagot (1998) based on a

suffix tree allowed for mutations. Another very popular single motif discoverer is the MEME

algorithm (Bailey and Elkan, 1994, 1995a,b), an Expectation Maximization (EM) procedure

that identifies motifs with high relative entropy. MEME deals with single and multiple motifs

by identifying significant sets of compatible motifs. It works by iteratively building such

multiple motifs from single ones ensuring that the occurrence positions of the multiple motifs

do not contradict the occurrence positions of the single motifs previously identified. In this

2.3. MOTIF DISCOVERY 17

case, the set of motifs reported must only satisfy compatibility. No constraint, and therefore

no statistical value, is put on the distances separating them.

At that time there were few exceptions to the single motif model. An exception was a

heuristic approach by Cardon and Stormo (1992) which looked for motifs composed of two

parts separated by a distance which was estimated by the algorithm. Like MEME, the method

is based on an EM procedure to identify sets of words with high relative entropy. Alterna-

tively, pattern-based approaches for motif discovery were considered. In these approaches the

pattern may be degenerated, that is, written on a physico-chemical alphabet, and allow for

mutations (Marsan and Sagot, 2000; Vanet et al., 1999, 2000). To reflect the fact that a pro-

moter is fragmented in several binding sites Marsan and Sagot (2000) introduced the concept

of structured motifs. A structured motif is described as an ordered collection of boxes, a max-

imum number of substitutions allowed for each box, and an interval of distance for each pair

of consecutive boxes. Meanwhile, other approaches improving the theoretical running-time of

Marsan and Sagot (2000) work appeared (Carvalho, Freitas, Oliveira, and Sagot, 2006, 2005,

2004; Carvalho, 2004). Finally, there was a Fasta-inspired method which allows for spacers

in general (Fraenkel et al., 1995), seeking for exact short motifs occurring in conserved order

along diverse DNA sequences.

More recently, other methods have emerged which try to address the combinatorics of

promoter regions. A number of algorithms have been developed that detect motifs composed

of two parts, which we henceforward call boxes, separated by a spacer, often of fixed length

(van Helden et al., 2000; Eskin and Pevzner, 2002; Eskin et al., 2003). Besides considering

more complex motifs of a limited type only, with two boxes at most, the algorithms for

discovering such motifs are in general naive: they either exhaustively enumerate all possible

motifs of two boxes separated by a distance (van Helden et al., 2000), or discover them by

crossing the lists of occurrences of single motifs detected in a previous step (Eskin and Pevzner,

2002; Eskin et al., 2003). In the first case, the method is severely limited in the length of

the motifs it can identify and in the distance between them, which is usually fixed. In the

second case, detecting motifs with two boxes by crossing the lists of single motifs takes time

at least quadratic in the number of such single motifs and their occurrences. To address this

problem, the lists for single motifs are trimmed by statistical significance before the crossing

operation. However, a motif with two boxes may be statistically significant even though none

18 CHAPTER 2. STATE OF THE ART

of the boxes taken individually are. Indeed, one of the main interests in seeking for complex

motifs directly lies in this fact.

After some years of intense research on motif discovery it become obvious that TFBS’s,

encoding complex regulatory signals, exhibit a high degree of degeneracy among binding sites.

Sandve and Drablos (2006) pointed out that such degeneracy was the reason why previous

pattern matching-based methods often suffered from impractically high false positive rates and

noisy PSSM’s charactering binding sites. This problem was addressed by incorporating some

extra knowledge, usually carefully selected from the literature, in motif discovery methods in

order to capture a variety of characteristics of the motif patterns.

Some interesting works in this line of research made use of the DNA structure for motif

discovery. These works take into consideration the bendability of a region, as well as the

nucleotide position in DNA loops, to determine sequence accessibility (Beiko and Charlebois,

2005; Pudimat et al., 2004; Ponomarenko et al., 1999). A quite different and particularly

interesting work was extensively devised by R. Lavery et al. (Deremble and Lavery, 2005;

O’Flanagan, Paillard, Lavery, and Sengupta, 2005; Paillard and Lavery, 2004; Paillard, Derem-

ble, and Lavery, 2004; Lafontaine and Lavery, 2001a,b, 2000). In one of these works (Deremble

and Lavery, 2005), the atomic structure of the protein, which specifically bounds to a frag-

ment of DNA, was used to calculate the binding energy needed for the full combinatorial

space of base sequences. Binding sites were selected considering an energy cutoff. The results

suggest that the crystallographic structure of a protein-DNA complex indeed contains enough

information to locate the binding sequences of a protein.

Recently, a general approach was proposed which allows for the incorporation of almost

any type of information into the class of motif discovery algorithms based on Gibbs sampling

(Narlikar et al., 2007). This extra information is incorporated in a position-specific prior

(PSP) and it amounts for the likelihood that a motif starts in a certain position of a specific

sequence from a set of co-regulated DNA sequences. A PSP is built in pre-processing time for

that particular sequence-set and is then used to bias the optimization procedure towards real

motifs. Prior information such as orthologous conservation, DNA duplex stability, nucleosome

positioning and transcription factor structural class have been shown to be very effective

when used with the Gibbs sampler-based PRIORITY algorithm (Narlikar et al., 2006, 2007;

Gordân et al., 2008; Gordân and Hartemink, 2008; Gordân et al., 2010). Meanwhile, MEME

2.3. MOTIF DISCOVERY 19

researchers also pointed out that PSP’s are beneficial when used within their EM procedure

(Bailey et al., 2010).

The development of new PSP’s is per se a hot research topic. A PSP introduces some

extra knowledge taken from the literature, or computed from the sequences, that helps in

discriminating real motifs from spurious ones. Whatever information it contains, computing

PSP’s is always a burdensome task. Indeed, the nucleosome-based PSP devised by PRIOR-

ITY researchers (Narlikar et al., 2007) assented in a discriminative view of a genome-wide

organization of nucleosomes given by the work of Segal et al. (2006). The same authors also

devised in a similar way another nucleosome-based PSP with the work of Lee et al. (2004).

These genome-wide works have been made available for a single organism, the yeast. There-

fore, a particular study, for a specific organism, usually leads to a single way of building a

PSP. Having this, the PSP is built for a particular sequence-set. Notwithstanding the implied

effort, nucleosome occupancy information has been shown to be of great effect on motif dis-

covery, supporting that eukaryotic genomes are packaged into nucleosomes along chromatin

affecting in this way sequence accessibility.

Additionally, the PRIORITY researchers devised another PSP prior including DNA du-

plex stability information (Gordân and Hartemink, 2008). This is supported by the fact that,

in general, the energy needed to destabilize the DNA double helix is higher at TFBS’s than at

random DNA sites. But, once again, the only eukaryotic organism whose helix destabilization

energy profile has been made available is yeast. Finally, orthologous conservation is the prior

more broadly applied in motif discovery (Wang and Stormo, 2003; Sinha et al., 2004; Bailey

and Elkan, 1995b; Harbison et al., 2009; Siddharthan et al., 2005; Kellis et al., 2003; Liu et al.,

2004; MacIsaac et al., 2006; Bailey et al., 2010; Gordân et al., 2010, 2008), as information

for higher organisms is now available. There are already PSP conservation-based priors for

yeast, fly, mouse and even human (Bailey et al., 2010; Gordân et al., 2010, 2008). These

priors have been devised by PRIORITY and MEME researchers and are based on the fact

that if a particular DNA site is more conserved across related organisms then is more likely

to be functional.

Meanwhile, chromatin immunoprecipitation (ChiP) followed by ultra-high-throughput se-

quencing, known as ChiP-seq, brought new challenges for motif discovery (Valouev et al.,

2008). As a result of direct sequencing of all DNA fragments from ChiP assays, ChiP-seq is

20 CHAPTER 2. STATE OF THE ART

able to unravel DNA sites, across the entire genome, where a specific protein binds. Regions

of high sequencing read density are referred to as peaks to capture the evidence of high base-

specific read coverage. Peaks are found by peak finding algorithms (Fejes et al., 2008), which

is called peak calling, yielding a set of DNA fragments of ChiP-enriched genomic regions.

Usually, DNA fragments of size ±100bp are extracted around top peaks and then a motif

discovery tool is used to find overrepresented sequences (Chen et al., 2008). Some authors

have further exploited the information provided by these binding peaks by devising priors

that use coverage profiles as motif positional preferences (Kulakovskiy et al., 2010; Hu et al.,

2010).

Chapter 3

Related Work

Herein we detail related work needed to make this thesis self-contained. We introduce notation

and present definitions, results and algorithms that the reader should be aware for a complete

understanding of the contributions of the thesis. We advise the intended reader to have a

brief tour throughout this chapter and using it only as a quick reference text.

3.1 Bayesian network models

Bayesian networks (Pearl, 1988) allow efficient and accurate representation of the joint prob-

ability distribution over a set of random variables. For this reason, they have been widely

used in several domains of application where uncertainty plays an important role, like medical

diagnosis and modeling DNA binding sites.

In this section we introduce some notation, while recalling relevant concepts and results

concerning Bayesian networks which are directly related with the contribution of this thesis.

3.1.1 Bayesian networks

Let X be a discrete random variable taking values in a countable set X ⊂ R. In all what fol-

lows, the domain X is finite. We denote an n-dimensional random vector by X = (X1, . . . ,Xn)

where each component Xi is a random variable over Xi. For each variable Xi, we denote the

elements of Xi by xi1, . . . , xiri where ri is the number of values Xi can take. We say that xik

is the k-th value of Xi, with k ∈ {1, . . . , ri}. The probability that X takes value x is denoted

by P (x), conditional probabilities P (x | z) being defined correspondingly. The random vec-

21

22 CHAPTER 3. RELATED WORK

tor X is said to be conditionally independent of random vector Y given random vector Z if

P (x | y, z) = P (x | z).

Definition 3.1.1 (Bayesian network) A Bayesian network (BN) is a triple B = (X, G,Θ)

where:

• X = (X1, . . . ,Xn) is a random vector where each random variable Xi ranges over by a

finite domain Xi.

• G = (X, E) is a directed acyclic graph (DAG) with nodes in X and edges E representing

direct dependencies between the variables.1

• Θ = {θijk}i∈{1...n}, j∈{1,...,qi}, k∈{1,...,ri} are the parameters encoding the local distributions

of the network via

PB(Xi = xik | ΠXi
= wij) = θijk,

where ΠXi
denotes the (possibly empty) set of parents of Xi in G. Moreover, for each

node Xi, the number of possible parent configurations (vectors of parent’s values) is

denoted by qi. The actual parent configurations are ordered (arbitrarily) and denoted

by wi1, . . . , wiqi and we say that wij is the j-th configuration of ΠXi
, with j ∈ {1, . . . , qi}.

A Bayesian network defines a unique joint probability distribution over X given by

PB(X1, . . . ,Xn) =
n∏

i=1

PB(Xi | ΠXi
). (3.1)

The conditional independence properties pertaining to the joint distribution are essentially

determined by the network structure. Specifically, Xi is conditionally independent of its

non-descendants given its parents ΠXi
in G (Pearl, 1988).

For convenience, we introduce a few additional notations that apply to Bayesian network

models intended to be learned from data T . Nijk is the number of instances in the data

T where the variable Xi takes its k-th value xik and the variables in ΠXi
take their j-th

configuration wij. Nij is the number of instances in the data T where the variables in ΠXi

take their j-th configuration wij , that is,

Nij =

ri∑

k=1

Nijk.

1For the sake of simplicity we do not distinguish the random vector X = (X1, . . . , Xn) from the set of

random variables {X1, . . . , Xn}.

3.1. BAYESIAN NETWORK MODELS 23

Moreover, the total number of instances in the data T is N . Finally, we denote the set of all

Bayesian networks with n variables by Bn.
The problem of learning a Bayesian network given data T consists in finding the Bayesian

network that best fits the data T . There are three approaches for learning Bayesian networks

(see Koller and Friedman, 2009), namely, constraint-based learning, score-based learning and

Bayesian model averaging. In this thesis we are particularly interested in score-based learn-

ing, where a scoring criterion φ is considered in order to quantify the fitting of a Bayesian

network. In this context, the problem of learning a Bayesian network can be paraphrased in

the following optimization problem.

Definition 3.1.2 (Learning a Bayesian network) Given a data T = {y1, . . . ,yN} and a

scoring criterion φ, the problem of learning a Bayesian network is to find a Bayesian network

B ∈ Bn that maximizes the value φ(B,T).

Contributions in this area of research are typically divided in two different problems:

scoring and searching. The scoring problem focus on devising new scoring criteria to measure

the goodness of a certain network structure given the data. On the other hand, the searching

problem concentrates on identifying one or more network structures that yield a high value

for the scoring criterion in mind. If the search is conducted with respect to a neighborhood

structure defined on the space of possible solutions then we are in the presence of local score-

based learning. Local score-based learning algorithms can be extremely efficient if the scoring

criterion employed is decomposable.

Definition 3.1.3 (Decomposable scoring criterion) A scoring criterion φ is decompos-

able if the score assigned to each network decomposes over the network structure in such a

way that it can be expressed as a sum of local scores φi that depends only on each node Xi

and its parents, that is, scores of the following form:

φ(B,T) =

n∑

i=1

φi(ΠXi
, T).

Well known decomposable scores are those based on information theory, such as log-

likelihood (LL), Akaike information criterion (AIC) (Akaike, 1974), Bayesian information

criterion (BIC), also called as minimum description length (MDL) (Lam and Bacchus, 1994;

Suzuki, 1993), factorized conditional log-likelihood (fNML) (Kontkanen and Myllymäki, 2007;

24 CHAPTER 3. RELATED WORK

Roos et al., 2008) and Bayesian scoring function such as K2 (Cooper and Herskovits, 1992),

Bayesian Dirichlet (BD) and its variants (BDe and BDeu) (Heckerman et al., 1995; Buntine,

1991) and mutual information tests (MIT) (de Campos, 2006).

Learning unrestricted Bayesian networks from data under typical scoring criteria is NP-

hard (Chickering et al., 2004). This result led the community to search for the largest subclass

of Bayesian networks for which there is an efficient learning algorithm. First attempts confined

the network to tree structures and used Edmonds (1967) and Chow and Liu (1968) optimal

branching algorithms to learn the network. More general classes of Bayesian networks have

eluded efforts to develop efficient learning algorithms. Indeed, Chickering (1996) showed that

learning the structure of a Bayesian network is NP-hard even for networks constrained to have

in-degree at most 2. Later, Dasgupta (1999) showed that even learning an optimal polytree –

that is, a DAG in which there are not two different paths from one node to another – where

each node has at most in-degree 2 is NP-hard. Moreover, Meek (2001) showed that identifying

the best path structure – that is, a total order over the nodes – is hard. Due to these hardness

results exact polynomial-time bounded approaches for learning Bayesian networks have been

restricted to tree structures.

Consequently, the standard methodology for addressing the problem of learning Bayesian

networks became heuristic search, based on scoring metrics optimization, conducted over

some search space. Many search algorithms have been proposed along these lines, varying

both on the formulation of the search space (network structures, equivalence classes of network

structures and orderings over the network variables), and on the algorithm to search the space

(greedy hill-climbing, simulated annealing, genetic algorithms, tabu search, etc). The most

common scoring criteria employed in Bayesian-network learning are reviewed in Carvalho

(2009) and Yang and Chang (2002). We refer the interested reader to newly developed scoring

criteria to the works of de Campos (2006) and Silander, Roos, Kontkanen, and Myllymäki

(2008). A review concerning Bayesian scores can also be found in Heckerman, Geiger, and

Chickering (1995).

Scoring criteria for learning Bayesian networks

Herein, we present the foundations of all the scoring criteria needed in this thesis from an

information-theoretic point of view. In this study we include scoring functions based on

3.1. BAYESIAN NETWORK MODELS 25

Rissanen’s stochastic complexity (Rissanen, 1986, 1987, 1989, 1995a,b, 1996) that were devel-

oped recently (Kontkanen and Myllymäki, 2007; Roos, Silander, Kontkanen, and Myllymäki,

2008; Silander, Roos, Kontkanen, and Myllymäki, 2008). We refer the reader interested in

Rissanen’s stochastic complexity to the review of Lanterman (2001).

Information-theoretic scoring functions are based on compression. In this context, the

score of a Bayesian network B is related to the compression that can be achieved over the

data T with an optimal code induced by B. The overall idea is to choose a representation

of the data which permits to express it with the shortest possible length. In theory, this can

be achieved with Kolmogorov complexity, that is, with the shortest computer program which

generates the data T . Unfortunately, this result is of little practical use since Kolmogorov

complexity is incomputable, that is, there is no algorithm which can find the shortest computer

program to generate a particular data, or even find the length of such a shortest program. To

avoid such an entanglement one may consider minimizing the description length over a set of

candidate hypothesis H (since finding the length of the absolutely shortest possible program

would be futile). We do not need to suppose that the data are the result of a realization of

one of the models. Indeed, as more models are developed they can be added to the set of

hypothesis.

Given data T and a set of probability distributions H that may be used to describe T , we

take the length of describing T with H to be the sum

L(T,H) = L(T | H) + L(H),

where L(T | H) is the length (in bits) of the description of T when encoded with H and L(H)

is the length of the description of H. Shannon’s theory tell us that for a given hypothesis

H, we can construct a code for T with length L(T | H) = −LL(H | T) = − logP (T | H)

where P (T | H) is the probability of sampling T with distribution H. Fortunately, it is not

necessary to construct such codes. We only need to know that it is possible and to have

expressions for its length. If the hypothesis H could somehow be transmitted cost-free then

it is enough to choose the hypothesis H that minimizes L(T | H), that is, the maximum

likelihood (ML) estimate. In this case, L(T,H) = L(T | H) = −LL(H | T) and we obtain the

log-likelihood scoring criterion. On the other hand, the minimum description length principle

imposes that the parameters of H need also to be transmitted. In general, different sets of

choices for L(H) will yield different expressions. Next, we describe the two main contributions

26 CHAPTER 3. RELATED WORK

to compute L(H) when H is a Bayesian network B.

The first approach assumes that only integers are used to encode the parameters of B. In

this case the optimal (universal) code for integer numbers (Rissanen, 1983, 1987) is such that

the length of an integer x would take

log∗(x) + log(c)

bits, with c ≈ 2.865064, and where log∗ is defined as

log∗(x) = log(x) + log log(x) + log log log(x) + . . .

If x is a nonnegative real number, like the parameters of a Bayesian network B, then the real

x should be represented by an integer x
δx

where δx is the precision of the representation. It

is shown that by approximating log∗ ≈ log it is possible to compute the optimal δx, say d.

Moreover, by taking the number of independent samples N →∞ we have that the length of

a real x would take

log∗
(x
d

)
+ log(c)→ 1

2
ln(N),

where log(.) is the binary logarithm and ln(.) is the natural logarithm. Thus, the number of

bits required to represent a Bayesian network B is

1

2
ln(N)|B|

where |B| is the total number of parameters of B. Observe that |B| decomposes over the

network structure since the parameters associated to a node Xi are θijk and they sum up

to (ri − 1) × qi. Indeed, for a node Xi there are qi multinomials ranging over by ri values,

and a multinomial over r values has only r − 1 degrees of freedom. This approach led to the

development of the minimum description length (MDL) scoring criterion defined as follows

MDL(B | T) = −LL(B | T) + 1

2
ln(N)|B|.

This scoring criterion coincides with the Bayesian information criterion (BIC), also known as

Schwarz Bayesian Criterion (SBC), developed by Schwarz (1978) from a Bayesian perspective

point of view.

Alternatively, to compute L(H) by representing parameters via a universal encoding of

the integers, Barron, Rissanen, and Yu (1998) proposed an approach based on Rissanen’s

3.1. BAYESIAN NETWORK MODELS 27

stochastic complexity (Rissanen, 1986, 1987, 1989, 1995a,b, 1996), which does not explicitly

encode the parameters. If data T of size N was encoded with an hypothesis H, then the

regret of H, relative to a set of hypothesis H over all data of fixed size N , is the number

of extra bits required to encode T using an optimal code in H. The idea is to find H ∈ H
that minimizes the worst-case regret over all data of fixed size N . Shtarkov (1997) showed

how to compute the solution to this minmax problem, and the resulting distribution was

called normalized maximum likelihood (NML). The length of the associated code is given

by −LL(H | T) + CT (H) where CT (H) is called the parametric complexity of H for data

T . Although it is hard to compute CT (H) in general, there are tractable formulas for a

handful of models (Grünwald, 2007). In the context of data of size Nij , generated by a

multinomial ranging over by ri values, as for the case of attribute Xi given its parents ΠXi
in

a Bayesian network, a recursive formula was found by Kontkanen and Myllymäki (2007). This

result allows to construct a decomposable penalization for Bayesian networks since each node

accounts for qi multinomials ranging over by ri values. Thus, the local penalty associated to

the node Xi is given by
qi∑

j=1

CriNij

where CriNij
is the parametric complexity associated to data of size Nij generated by a multino-

mial ranging over by ri values. This approach motivated the factorized normalized maximum

likelihood (fNML) scoring criterion (see Kontkanen and Myllymäki, 2007; Roos, Silander,

Kontkanen, and Myllymäki, 2008; Silander, Roos, Kontkanen, and Myllymäki, 2008) whose

expression is as follows

fNML(B | T) = −LL(B | T) +
n∑

i=1

qi∑

j=1

CriNij
.

We now give all details to compute Cri
Nij

for a general Bayesian network. By Kontkanen

and Myllymäki (2007), the parametric complexity Crm can be computed as follows. Let

M = {Nij : 1 ≤ i ≤ n, 1 ≤ j ≤ qi}

and R = maxi=1,...,n ri. For reasonable R and |M |, where |M | is the cardinality of the set

M , these values can be stored in a |M | × R table, called a C-table, which can be computed

once as a pre-processing step before structure learning. The computation of the C-table is as

28 CHAPTER 3. RELATED WORK

follows. For all m ∈M , C1m = 1. For all 1 ≤ r ≤ R, Cr0 = 1. Moreover, for r = 2,

C2m =
m∑

h=0

(
m

h

)(
h

m

)h(m− h

m

)m−h
,

and, for 2 < r ≤ R,

Crm = Cr−1m +
m

r − 2
Cr−2m . (3.2)

For very large |M |, computing columns C2m, for all m ∈M , may be prohibitive. For that case,

a very accurate Szpankowski approximation

C2m =
mπ

2
e

√
8

9mπ
+ 3π−16

36mπ

can be used (Kontkanen, Buntine, Myllymäki, Rissanen, and Tirri, 2003) making the compu-

tation more efficient. If the space for storing the C-table is critical, Silander, Roos, Kontkanen,

and Myllymäki (2008) propose to store only the 1000 first entries of the column C2
m, for all

m ∈M , use Szpankowski approximation for the rest of the column, and use formula (3.2) for

computing the values for 2 < r ≤ R.

Score equivalent scoring functions

Two Bayesian-network structures are said to be equivalent if the set of distributions that they

can represented is precisely the same. Many scoring criteria that are used to learn Bayesian-

network structures from data are score equivalent, that is, these scoring criteria assign the

same score to equivalent structures. Chickering (2002) argued that score equivalence is a

desirable property of a scoring criterion, unless extra semantics, such as causability, can

be attributed to the edges of a Bayesian network. Other authors (Yang and Chang, 2002;

de Campos, 2006), however, concluded that, in practice, non-score-equivalent scoring criteria

perform better than score-equivalent ones.

The formal definition of score-equivalent scoring criteria needs some background in graph

theory which is introduced next.

Two variables X and Y are adjacent if there is an edge between X and Y .

Definition 3.1.4 (v-structure) In a directed acyclic graph, a v-structure is a local depen-

dency X → Z ← Y such that X and Y are not adjacent.

Theorem 3.1.5 (Verma and Pearl (1990)) Two directed acyclic graphs are equivalent if

and only if they have the same skeleton and the same v-structures.

3.1. BAYESIAN NETWORK MODELS 29

By Theorem 3.1.5, all tree-network structures with the same skeleton are equivalent,

regardless of the direction of the edges.

Because DAG equivalence is reflexive, symmetric, and transitive, it defines a set of equiv-

alence classes over DAG’s. One way to represent the equivalence class of equivalent DAG’s is

by the means of a partially directed acyclic graph.

Definition 3.1.6 (Partially directed acyclic graph) A partially directed acyclic graph

(PDAG) is a graph which contains both directed and undirected edges, with no directed

cycle in its directed subgraph.

From Theorem 3.1.5, it follows that a PDAG containing a directed edge for every edge

participating in a v-structure, and an undirected edge for every other edge, uniquely identifies

an equivalence class of DAG’s. There may be many other PDAG’s, however, that correspond

to the same equivalence class. For example, any DAG interpreted as a PDAG can be used to

represent its own equivalence class.

Definition 3.1.7 (Compelled edge) A directed edge X → Y is compelled in a directed

acyclic graph G if for every directed acyclic graph G′ equivalent to G, X → Y exists in G′.

By Theorem 3.1.5, all edges participating in a v-structure are compelled. Not every

compelled edge, however, necessarily participates in a v-structure. For example, the edge

Z → W in the DAG with edges E = {X → Z,Z → W,Y → Z, Y → U} is compelled.

Moreover, for any edge e in G, if e is not compelled in G, then e is reversible in G. In that

case, there exists some DAG G′ equivalent to G in which e has opposite direction.

Definition 3.1.8 (Essential graph) An essential graph, denoting an equivalence class of

directed acyclic graphs, is the partially directed acyclic graph consisting of a directed edge

for every compelled edge in the equivalence class, and an undirected edge for every reversible

edge in the equivalence class.

Essential graphs are used to represent equivalent class of network structures during Bayesian

network learning. The essential graph of a tree-network structure is its skeleton.

Definition 3.1.9 (Score-equivalent scoring function) A scoring function φ is score equiv-

alent if it assigns the same score to all directed acyclic graphs that are represented by the

same essential graph.

30 CHAPTER 3. RELATED WORK

All interesting scoring criteria in the literature are decomposable, since it is unfeasible

to learn undecomposable scores. LL and MDL scoring criteria are decomposable and score

equivalent (Hastie et al., 2003), whereas the fNML scoring criterion is decomposable but not

score equivalent (Silander et al., 2008).

Chow-Liu tree learning algorithm

A tree Bayesian network is a Bayesian network where the underlying DAG is a directed tree.

Finding the tree Bayesian network that maximizes the LL score given data T can be done in

polynomial time by the Chow and Liu (1968) tree learning algorithm.

In order to understand how to solve the learning problem for tree Bayesian networks

we need to formulate the LL(B | T) using mutual information (Bouckaert, 1995). Start by

considering that T = {y1, . . . ,yN}, where the t-th instance of T is given by yt = (y1t , . . . , y
n
t).

Applying Equation (3.1), page 22, to the log-likelihood given by

LL(B | T) =
N∑

t=1

log(PB(y
1
t , . . . , y

n
t))

we obtain (see Heckerman et al., 1995) that

LL(B | T) =
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log(θijk). (3.3)

When the structure of the network is fixed in advance maximizing the likelihood of the data

T reduces to estimating the parameters θijk. In this case, the maximum likelihood (ML)

parameters that maximize LL are simply the observed frequency estimates (OFE) given by

θ̂ijk = P̂T (Xi = xik | ΠXi
= wij) =

Nijk

Nij
, (3.4)

Therefore, plugging these estimates back in the LL scoring criterion yields

L̂L(G | T) =
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log

(
Nijk

Nij

)
. (3.5)

The notation with G as the argument instead of B = (X, G,Θ) emphasizes that once the

OFE parameters are decided upon, the criterion is a function of the network structure, G,

only.

3.1. BAYESIAN NETWORK MODELS 31

Assuming that the parameters that maximize the LL fulfill Equation (3.4), the LL in

Equation (3.3) can be rewritten as follows:

L̂L(G | T) = −N
n∑

i=1

H
P̂T

(Xi | ΠXi
)

= N

n∑

i=1

I
P̂T

(Xi; ΠXi
)−N

n∑

i=1

H
P̂T

(Xi), (3.6)

where I
P̂T

is the mutual information2 and H
P̂T

is the entropy3 (for more details about these

quantities see Cover and Thomas, 2006). The subscript P̂T indicates that the information

theoretic quantities are evaluated under the joint distribution P̂T of X induced by the OFE

parameters. Observe that the right-hand side of (3.6) has two terms and only the first depends

on the network structure G, hence, maximizing L̂L(G | T) resumes to maximizing

n∑

i=1

I
P̂T

(Xi; ΠXi
) =

n∑

i=1
i 6=R

I
P̂T

(Xi;Xπ(i))

where R is the root of the tree Bayesian network B and π(i) is the index of the parent variable

of Xi, that is, ΠXi
= {Xπ(i)} for i 6= R. Recall that the mutual information of two random

vectors is given by

I(X;Y) =
∑

x,y

P (x,y) log
P (x,y)

P (x)P (y)
. (3.7)

The main idea of the algorithm to learn tree Bayesian networks is to consider a complete

weighted undirected graph, where each undirected edge between Xi and Xj is weighted with

the mutual information between Xi and Xj . Given this, the problem reduces to determining

a maximal weighted (undirected) spanning tree – a tree composed of all nodes and some of

the edges of the original (undirected) graph. After computing such spanning tree, a direction

has to be assigned to each edge of the tree. This is done by choosing an arbitrary node as

the tree root and then setting the direction of all edges to be outward from it. The detail of

the algorithm is depicted in Algorithm 3.1.

2The mutual information between Xi and ΠXi
, denoted by I(Xi; ΠXi

), measures the mutual dependence

between Xi and ΠXi
.

3The entropy of Xi, denoted by H(Xi), amounts for the expected value of its self-information, that is,

H(Xi) = I(Xi;Xi). The conditional entropy of Xi given its parents ΠXi
, denoted by H(Xi|ΠXi

), measures

the entropy of Xi when the value of the parent configuration ΠXi
is known.

32 CHAPTER 3. RELATED WORK

Algorithm 3.1 Chow-Liu tree learning algorithm, LL score

1. Compute the mutual information I
P̂T

(Xi;Xj) between each pair of attributes, with i 6= j and i, j ≤ n, given by

Equation (3.7).

2. Build a complete undirected graph with attributes X1, . . . ,Xn as nodes. Annotate the weight of the edge connecting

Xi to Xj by I
P̂T

(Xi;Xj).

3. Build a maximal weighted (undirected) spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root variable and setting the direction of all

edges to be outward from it and return the resulting tree.

The resulting directed tree is called Chow-Liu tree or optimal branching. Chow and Liu

(1968) showed that Algorithm 3.1 is linear on the size of the data T and quadratic on the

number of variables of the Bayesian network.

Theorem 3.1.10 (Chow and Liu (1968)) Let T be a collection of N instances of

X1, . . . ,Xn. Algorithm 3.1 constructs an optimal branching B that maximizes LL(B | T)
in O(n2N) time.

Extending Chow-Liu tree learning algorithm

The Chow-Liu tree learning algorithm was originally proposed for maximizing the LL score

but it can be easily adapted to deal with any scoring function that is decomposable and/or

score equivalent.

According to Heckerman et al. (1995), finding an optimal branching for decomposable and

score equivalent scoring functions reduces to weighting each undirected edge between Xi and

Xj by φj({Xi}, T) − φj(∅, T), which is equal to φi({Xj}, T) − φi(∅, T) by score equivalence

of φ, and to find a maximal weighted (undirected) spanning tree. The detailed algorithm for

learning tree Bayesian networks for decomposable and score-equivalent scoring functions is

presented in Algorithm 3.2.

Algorithm 3.2 Learning tree BN’s, decomposable and score equivalent φ–score

1. Compute φj({Xi}, T)− φj(∅, T) between each pair of attributes Xi and Xj , with i 6= j and i, j ≤ n.

2. Build a complete undirected graph with attributes X1, . . . ,Xn as nodes. Annotate the weight of the edge connecting

Xi to Xj by the value computed in the previous step.

3. Build a maximal weighted (undirected) spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root variable and setting the direction of all

edges to be outward from it and return the resulting tree.

3.1. BAYESIAN NETWORK MODELS 33

Learning an optimal branching for scoring functions that are only decomposable, but

not score equivalent, can also be done in polynomial time (Heckerman et al., 1995). In this

case, however, an edge between Xi and Xj may score differently depending on its direction,

and so a directed spanning tree must be found (instead of an undirected one). The idea is

to weight each directed edge from Xi to Xj with φj({Xi}, T) − φj(∅, T) and then find an

optimal directed spanning tree with Edmonds’ algorithm (Edmonds, 1967; Lawler, 1976).

The detailed algorithm for learning tree Bayesian networks for scoring functions that are only

decomposable, but not score-equivalent, is presented in Algorithm 3.3.

Algorithm 3.3 Learning tree BN’s, decomposable and non-score equivalent φ–score

1. Compute φj({Xi}, T)− φj(∅, T) for each edge from Xi to Xj , with i 6= j and i, j ≤ n.

2. Build a complete directed graph with attributes X1, . . . ,Xn as nodes. Annotate the weight of the edge from Xi to

Xj by the value computed in the previous step.

3. Build a maximal weighted directed spanning tree and return it.

3.1.2 Bayesian network classifiers

Bayesian networks have been widely used in the context of classification (Su and Zhang, 2006;

Grossman and Domingos, 2004; Friedman et al., 1997; Duda and Hart, 1973). Herein, we in-

troduce the concept of Bayesian network classifier and then present two classifiers particularly

interesting in the context of this thesis: augmented Naive Bayes and Tree Augmented Naive

Bayes classifiers.

Definition 3.1.11 (Bayesian network classifier) A Bayesian network classifier (BNC)

is a Bayesian network where X = (X1, . . . ,Xn, C). The variables X1, . . . ,Xn are called

attributes, or features, and C is called the class variable.

The Naive Bayes (NB) classifier (Duda and Hart, 1973) is one of the simplest BNC’s.

Definition 3.1.12 (Naive Bayes classifier) A naive Bayes (NB) classifier is a Bayesian

network classifier where each attribute has the class variable as its unique parent, that is,

ΠXi
= {C} for all 1 ≤ i ≤ n.

The NB classifier has shown to be very effective, in the sense that, in many cases, its

predictive performance is competitive with state-of-the-art classifiers (Domingos and Pazzani,

34 CHAPTER 3. RELATED WORK

1996a,b). In addition, the NB classifier is computationally undemanding as it has a fixed

graph structure, and so learning the network reduces to computing the OFE. However, the

independence assumption is too strict and relaxing this assumption may lead to more accurate

classifiers.

Augmented naive Bayes classifier

For efficiency purposes it is common to restrict the dependencies between the attributes and

the class variable, imposing all attributes to have the class variable as parent.

Definition 3.1.13 (Augmented Naive Bayes classifier) An augmented naive Bayes

classifier is a Bayesian network classifier where the graph structure G is such that the class

variable has no parents, that is, ΠC = ∅, and all attributes have at least the class variable as

parent, that is, C ∈ ΠXi
.

Loosely speaking, the problem of learning an augmented naive Bayes classifier can be

paraphrased as the problem of learning a Bayesian network where all attributes have the

class variable as parent. In this thesis we focus our attention only on augmented naive Bayes

network classifiers, referring abusively to them as Bayesian network classifiers.

Tree augmented naive Bayes classifier

The tree augmented naive (TAN) Bayes classifier was proposed by Friedman, Geiger, and

Goldszmidt (1997) to overcome the strong independence assumptions imposed by the NB

network. In fact, the TAN is an extension of NB which allows additional edges between the

attributes of the network in order to capture correlations among them. Such correlations are

however restricted to a tree structure.

Definition 3.1.14 (Tree augmented naive Bayes classifier) A tree augmented naive

Bayes classifier (TAN) is a Bayesian network classifier where there exists a root R ∈ {1, . . . , n}
such that ΠXR

= {C} and ΠXi
= {C,Xj} for all 1 ≤ i ≤ n with i 6= R.

For convenience, we introduce a few additional notations that apply to augmented naive

Bayes models. Recall that the parents of Xi are denoted by ΠXi
. The parents of Xi without

the class variable are denoted by Π∗Xi
= ΠXi

\ {C}.

3.1. BAYESIAN NETWORK MODELS 35

In order to understand how to solve the learning problem for TAN classifiers we need to

reformulate the L̂L(G | T) using mutual information as in Equation (3.6) at page 31. With

TAN models, however, we have to consider the class variable and so,

L̂L(G | T) = −N
n∑

i=1

H
P̂T

(Xi | Π∗Xi
, C)

= N

n∑

i=1

I
P̂T

(Xi; Π
∗
Xi
, C)−N(H

P̂T
(C) +

n∑

i=1

H
P̂T

(Xi)) (3.8)

Observe that the right-hand side of (3.8) has two terms and only the first depends on the

network structure G, hence, maximizing L̂L(G | T) resumes to maximizing

n∑

i=1

I
P̂T

(Xi; Π
∗
Xi
, C). (3.9)

We can simplify (3.9) using the chain law for mutual information,

I(X;Y,Z) = I(X;Z) + I(X;Y | Z),

and derive
n∑

i=1

I
P̂T

(Xi;C) +

n∑

i=1
i 6=R

I
P̂T

(Xi; Π
∗
Xi
| C). (3.10)

Finally, note that the first term of (3.10) does not depend on the choice of the parents Π∗Xi
,

therefore, maximizing LL(B | T) is equivalent to maximize

n∑

i=1
i 6=R

I
P̂T

(Xi; Π
∗
Xi
| C). (3.11)

Recall that the conditional mutual information is given by

I(X;Y | Z) =
∑

x,y,z

P (x,y, z) log
P (x,y | z)

P (x | z)P (y | z) . (3.12)

It is now easy to find the TAN that maximizes the LL score for some data T . The main

idea is to consider a complete weighted undirected graph, where each edge between Xi and

Xj is weighted with the conditional mutual information between Xi and Xj given the class

variable C. Given this, the problem reduces to determining a maximal weighted (undirected)

spanning tree. After computing such spanning tree, a direction has to be assigned to each

edge of the tree. This is done by choosing an arbitrary attribute as the tree root and then

36 CHAPTER 3. RELATED WORK

Algorithm 3.4 Learning TAN BNC’s, LL score

1. Compute I
P̂T

(Xi;Xj | C) between each pair of attributes, with i 6= j and i, j ≤ n, given by Equation (3.12).

2. Build a complete undirected graph with attributes X1, . . . ,Xn as nodes. Annotate the weight of the edge connecting

Xi to Xj by I
P̂T

(Xi;Xj | C).

3. Build a maximal weighted (undirected) spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root variable and setting the direction of all

edges to be outward from it.

5. Construct a TAN classifier by adding a node labeled by C and adding an arc from C to each Xi, i ≤ n.

setting the direction of all edges to be outward from it. The TAN classifier is then built by

adding a node labeled by C, and adding an arc from C to each tree node. The detail of the

algorithm is depicted in Algorithm 3.4.

The proof of soundness of Algorithm 3.4 follows from the derivation that led to Equa-

tion (3.11) and from the fact that we are computing a maximal weighted spanning tree. Since

the step that consumes asymptotically more time is weighting the edges, Algorithm 3.4 is

linear on the size of the data T and quadratic on the number of variables of the Bayesian

network.

Theorem 3.1.15 (Friedman, Geiger, and Goldszmidt (1997)) Let T be a collection

of N instances of X1, . . . ,Xn. Algorithm 3.4 constructs a TAN classifier B that maximizes

LL(B | T) in O(n2N) time.

Extending tree augmented naive Bayes classifier

The TAN learning algorithm was originally proposed for maximizing the LL score but it can

be easily adapted to deal with any scoring function that is decomposable and score equivalent.

Finding an optimal TAN classifier for decomposable and score equivalent scoring functions

reduces to weighting each undirected edge between Xi and Xj by φj({Xi, C}, T)−φj({C}, T),
which is equal to φi({Xj , C}, T)−φi({C}, T) by score equivalence of φ, and to find a maximal

weighted (undirected) spanning tree (Heckerman et al., 1995). The detailed algorithm for

learning TAN classifiers for decomposable and score-equivalent scoring functions is presented

in Algorithm 3.5.

Learning an optimal TAN classifier for scoring functions that are only decomposable, but

not score equivalent, can also be done in polynomial time (Heckerman et al., 1995). In this

3.2. EXTRACTION OF STRUCTURED MOTIFS 37

Algorithm 3.5 Learning TAN BNC’s, decomposable and score equivalent φ–score

1. Compute φj({Xi, C}, T)− φj({C}, T) between each pair of attributes Xi and Xj , with i 6= j and i, j ≤ n.

2. Build a complete undirected graph with attributes X1, . . . ,Xn as nodes. Annotate the weight of the edge connecting

Xi to Xj by the value computed in the previous step.

3. Build a maximal weighted (undirected) spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root variable and setting the direction of all

edges to be outward from it.

5. Construct a TAN classifier by adding a node labeled by C and adding an arc from C to each Xi, i ≤ n.

case, however, an edge between Xi and Xj may score differently depending on its direction,

and so a directed spanning tree must be found (instead of an undirected one). The idea

is to weight each directed edge from Xi to Xj with φj({Xi, C}, T) − φj({C}, T) and then

find an optimal directed spanning tree with Edmonds’ algorithm (Edmonds, 1967; Lawler,

1976). The detailed algorithm for learning TAN classifiers for scoring functions that are only

decomposable, but non-score equivalent, is presented in Algorithm 3.6.

Algorithm 3.6 Learning TAN BNC’s, decomposable and non-score equivalent φ–score

1. Compute φj({Xi, C}, T)− φj({C}, T) for each edge from Xi to Xj , with i 6= j and i, j ≤ n.

2. Build a complete directed graph with attributes X1, . . . ,Xn as nodes. Annotate the weight of the edge from Xi to

Xj by the value computed in the previous step.

3. Build a maximal weighted directed spanning tree.

4. Construct a TAN classifier by adding a node labeled by C and adding an arc from C to each Xi, i ≤ n.

3.2 Extraction of structured motifs

In this section, we provide some background on the approaches used to solve the structured

motif extraction problem. First, we present two relevant data structures: (i) suffix trees, which

are widely used in string processing problems; (ii) factor trees, which appeared as a more

compact version of suffix trees, that index only the sufficient data required by problems such

as motif discovery. Next, we outline an algorithm devised by Sagot (1998) for the extraction

of single motifs (SPELLER). Finally, we present an algorithm proposed by Carvalho, Freitas,

Oliveira, and Sagot (2006) for structured motif extraction (RISO).

38 CHAPTER 3. RELATED WORK

3.2.1 Basic data structures

Suffix tree

A suffix tree is a data structure built over all suffixes of a string. Such a data structure

exposes the internal structure of a string and is often used to solve many string problems.

The construction of a suffix tree in linear-time is a problem already addressed by Weiner

(1973), by McCreight (1976), and more recently by Ukkonen (1995).

We define a suffix tree for an arbitrary string S of length n over an alphabet Σ as presented

by Gusfield (1997). After that we generalize the suffix tree to handle a set of strings.

Definition 3.2.1 (Suffix tree) A suffix tree T of a n-character string S is a rooted directed

tree with exactly n leaves, numbered 1 to n. Each internal node, other than the root R, has

at least two children and each edge is labeled with a nonempty substring of S. No two edges

out of a node can have edge-labels beginning with the same character. The key feature of the

suffix tree is that for any leaf i, the label of the path from the root to the leaf i spells out

exactly the suffix of S that starts at position i.

The previous definition of a suffix tree does not guarantee the existence of a suffix tree for

any string S. The problem is that if a prefix of a suffix of S matches a suffix of S, the path

for the later suffix would not end at a leaf. To avoid this problem we place at the end of S a

special symbol that is not in the alphabet. Herein, we use the symbol $ for the termination

character. As an example, the suffix tree for string S =AGACAGGAGGC$, over the DNA

alphabet Σ={A,C,G,T}, is presented in Figure 3.1.

The suffix tree construction for a set of strings, called a generalized suffix tree, can be easily

achieved by consecutively building the suffix tree for each string of the set. The resulting suffix

tree is built in time proportional to the sum of all the string lengths. A way to distinguish the

different strings in the generalized suffix tree is to convert the leaf number of the single string

suffix tree to two numbers, one identifying the string and the other identifying the starting

position in that string. As an example, the generalized suffix tree for strings S1=TACTA$

and S2=CACTCA$, over the DNA alphabet Σ={A,C,G,T}, is presented in Figure 3.2.

Contrarily to the motif localization problem, in the motif extraction problem the starting

position of a suffix in a string is not relevant, only the identification of the string in the input

set is required. A usual way to distinguish the input strings, in a motif extraction problem, is

3.2. EXTRACTION OF STRUCTURED MOTIFS 39

A
C

A
G

G
A

G
G

C

G

A
G

G
C$ $

C
$

$
CA

G
G

C
$

G

CAGGAGGC$

C
A
G

$
C
G
G

G
A

A G

$

G C $

A
G

G
C

$

$

A
G
G
A
G
G
C
$

C

1011

4

2

7

6

9

12

3

1
5

8

Figure 3.1: Suffix tree for string AGACAGGAGGC$.

by storing at each tree node v a Boolean array, called the Colorsv array (Sagot, 1998), usually

implemented as a bit vector. Such array indicates the strings in the input set that contain

the suffix labelling the path from the root to the tree node v. As an example, the generalized

suffix tree with Colors for the same strings S1=TACTA$ and S2=CACTCA$, over the DNA

alphabet Σ={A,C,G,T}, is presented in Figure 3.3.

We are not going to present any of the algorithms for the construction of suffix trees.

However, it is worthwhile to notice that, by comparing all the linear-time construction algo-

rithms (Weiner, 1973; McCreight, 1976; Ukkonen, 1995), Ukkonen’s method (Ukkonen, 1995)

is one that uses less space in practice, therefore being the method of choice for most problems

requiring the construction of a suffix tree.

Factor tree

Factor trees are a new data structure to index strings, proposed by Allali and Sagot (2004),

very similar to suffix trees. This data structure, also called the at most k-deep factor tree or

k-factor tree, indexes the factors of a string whose length does not exceed k, and only those.

Indeed, a factor tree is nothing more than a suffix tree pruned at the labels of depth k. We are

not going to present the k-factor tree construction algorithm here. However, it is worthwhile

40 CHAPTER 3. RELATED WORK

A
$

C
T

C

2,1

2,5

$

C
T

A
$

$

C
A

2,2

1,2

1,5
2,6

$

$

C

A T

A

1,6

T 2,7

C
A

$

2,4

A

$

1,4

C
T
A
$

C
A

$

2,3

A
$

1,3

1,1

Figure 3.2: Generalized suffix tree for strings TACTA$ and CACTCA$.

to notice that it is based on Ukkonen’s method (Ukkonen, 1995). As an example, consider

the 5-deep factor tree for string S =AGACAGGAGGC$ presented in Figure 3.4. Note that

the 5-deep factor tree does not have any leaf with a collapsed start position, since there is

no common substring of size 5 in the string S =AGACAGGAGGC$. However, if we consider

k = 3, the substring AGG occurs twice in the string S, at positions 5 and 8, and we obtain a

3-deep factor tree with collapsed start positions, as depicted in Figure 3.5.

As for suffix trees, the time and space complexities for constructing factor trees are linear in

the length of the string (Allali and Sagot, 2004). However, applications such as the extraction

of single or structured motifs, where the length of the models to be searched in the suffix tree

is limited, can obtain a considerable gain in terms of space and time by the use of factor

trees. Compared with a suffix tree, the k-factor tree offers a substantial gain in terms of

space complexity for small values of k, as well as a gain in time when used for enumerating

all occurrences of a pattern in a text indexed by such a k-factor tree.

To implement the factor tree construction algorithm a new codification is used based on

an Improved Linked List Implementation, proposed by Kurtz (1999) for suffix trees, called the

illi coding. Fundamentally, the coding is changed so that it efficiently handles the fact that

a leaf in the factor tree may store more than one position. In the factor tree coding, the first

occurrence of a leaf added to the factor tree behaves exactly as a leaf added to the suffix tree.

However, when trying to insert an already added leaf to the factor tree, a code of the leaf is

3.2. EXTRACTION OF STRUCTURED MOTIFS 41

$

C

A T

A T

C
A

$

A

$C
T
A
$

C
A

$

A
$

C
T

A
$

$

C
A

$

A
$

C
T

C

$

[1,0]

[1,0]

[1,0]

[1,0]

[0,1]

[0,1]

[0,1] [0,1]

[0,1]

[1,1]
[1,1]

[1,1]

[0,1] [1,1]

[1,1] [1,1]

[1,0]

[1,1]
[1,1]

Figure 3.3: Generalized suffix tree with Colors for strings TACTA$ and CACTCA$.

also stored but now as a new occurrence of the first one. This new occurrence simply adds a

new position to the already existing leaf (c.f. positions 5 and 8 in Figure 3.5). Whenever a

new position is added to an already existing leaf we say that the leaf is being updated.

3.2.2 Single motif extraction algorithm

Algorithms for single motif extraction address the extraction of consensus sequences that

occur in a subset of the input sequences. In this section we present an algorithm, proposed

by Sagot (1998), to extract single motifs (SPELLER). A suffix tree is used to find such motifs

in a set of N input sequences over an alphabet Σ. We start by introducing some notation.

Definition 3.2.2 (Model) A model is a non-empty string over Σ, that is, it is an element

in Σ+.

A measure of the difference between two sequences of same length over Σ is given by the

Hamming distance, which is defined as the minimum number of substitutions to transform

one sequence into another.

Definition 3.2.3 (Occurence) A model m is said to have an e-occurrence, or simply an

occurrence, in the input sequences, if there is one word u in the input sequences such that

the Hamming distance between u and m is less than or equal to e.

42 CHAPTER 3. RELATED WORK

A
C

A G

A
G

C
$

$
CA

G
G

C

G

CAGG

C
A
G

A G

$

G C $

G
G

$

A
G
G
A

C

1

2

3

4

5

6

7

8

9

1011

12

A

Figure 3.4: At most 5-deep factor tree for string AGACAGGAGGC$.

A $
CA

G

G

CA

C

A G

$

G C

A$

A
G

C

11

12

3

1

G

(5,8) 4
2 7

10
6

9

Figure 3.5: At most 3-deep factor tree for string AGACAGGAGGC$.

Definition 3.2.4 (Valid model) A model is said to be a valid model if it has an occurrence

in at least q input sequences, where q is called the quorum.

A valid model is also called a motif. In the literature it is common to abuse of notation

by using model and motif interchangeably. In this thesis, motif is used when referring to a

valid model only.

Definition 3.2.5 (Node-occurence) A node-occurrence of a model m is represented by a

pair (v, ev) where v is a tree node and ev ≤ e is the Hamming distance between the label of

the path from the root to v and m.

3.2. EXTRACTION OF STRUCTURED MOTIFS 43

We are now able to describe the algorithm to extract single motifs (Sagot, 1998). At first

a suffix tree T is built for all input sequences. The suffix tree needs to be modified in order

to store at each tree node v the Colorsv Boolean array of size N . For the sake of exposition,

a suffix trie (data structure similar to a suffix tree but with the tree arcs labeled by a single

letter) is considered instead of a suffix tree. We shall refer to it as a suffix tree since adapting

the algorithm to deal with a compact tree is straightforward. Given a maximum number e

of substitutions allowed, it has been shown by Sagot (1998) that extracting all valid k-size

models can be done by simultaneously and recursively traversing, in a depth-first way, the

lexicographic trieM of all possible valid models and the suffix tree T of all input sequences.

Observe that, when substitutions are allowed, models that are not represented in the suffix

tree may be valid models. In this case, the models that need to be checked for validity are all

sequences with Hamming distance at most e from the suffixes of the tree T . Moreover, the

lexicographic trie M is the trie of all these models pruned at the nodes where the quorum

is no longer verified. In practice, M is never built but can be virtually traversed by a more

complex traversal over T . Moreover, if no substitutions are allowed and the quorum equals 1

thenM and T present the same models.

We present the pseudo-code of the algorithm to spell k-size motifs with up to e mismatches

in Algorithm 3.7, page 45. The algorithm makes use of the following variables and functions:

• The variable Extm, implemented as a bit vector, is a set of symbols by which the model

m may be extended at the next step of the algorithm.

• The variable Occm is a set of node-occurrences of the model m.

• The variable Colorsx is a Boolean array defined as

Colorsx[i] =





1 if at least one leaf in the subtree rooted at x

represents a suffix of the i-th input sequence Si

0 otherwise.

• The variable Colorsm, similarly to Colorsx, is a Boolean array defined as

Colorsm[i] =





1 if m occurs in Si

0 otherwise.

44 CHAPTER 3. RELATED WORK

• The variable CSSx, meaning the color set size of a node x (Hui, 1992), is the number

of different leaf colors in the subtree rooted at x, where a leaf is assigned a color i if it

represents a suffix of Si, that is, CSSx =
∑N

i=1Colorsx[i].

• The variable CSSm, similarly to CSSx, is defined as

CSSm =
N∑

i=1

Colorsm[i].

• The variable minseq indicates the minimum value of CSSx for all node-occurrences x

of the extended model.

• The variable maxseq indicates the sum of the values CSSx for all node-occurrences x

of the extended model.

• The function KeepMotif stores all information concerning valid models for printing

later.

The Algorithm 3.7 is called with (0, λ,Occλ = {(R, 0)}, Extλ), where λ is the empty

sequence, R is the suffix tree root and

Extλ =





Σ if e > 0

label of the branches leaving R otherwise.

Next, we present the time and space complexity for the Algorithm 3.7. Recall that, N is

the number of input sequences and n is the average length of an input sequence. Moreover,

nk is the number of tree nodes at depth k and ν(e, k) is the number of distinct words that

are at a Hamming distance at most e from a k-long word. It is easy to see that the following

upper bound for ν(e, k) holds:

ν(e, k) =

e∑

i=0


 k

i


 (|Σ| − 1)i ≤ ke|Σ|e.

Proposition 3.2.6 (Sagot (1998)) Algorithm 3.7 requiresO(Nnkν(e, k)) time andO(N2n)

space.

3.2. EXTRACTION OF STRUCTURED MOTIFS 45

Algorithm 3.7 SPELLER, single motif extraction

SPELLER(depth l, model m, occurrences Occm, extension Extm)

1. if l = k then KeepMotif(m)

2. else

3. for each symbol α in Extm do

4. maxseq := 0

5. minseq :=∞
6. Colorsmα :=

−→
0

7. Extmα := ∅
8. Occmα := ∅
9. for each pair (x, xerr) in Occm do

10. if there is a branch b leaving node x with a label starting with α then

11. let x′ be the node reached by following branch b from x

12. add to Occmα the pair (x′, xerr)

13. maxseq := maxseq + CSSx′

14. if CSSx′ < minseq then minseq := CSSx′

15. Colorsmα := Colorsmα + Colorsx

16. Extmα :=





Extmα ∪ labelb′ for b′ leaving x′ if xerr = e

Σ otherwise

17. if xerr < e then

18. for each branch b leaving x except for the one labeled with α do

19. let x′ be the node reached by following branch b from x

20. add to Occmα the pair (x′, xerr + 1)

21. maxseq := maxseq + CSSx′

22. if CSSx′ < minseq then minseq := CSSx′

23. Colorsmα := Colorsmα + Colorsx

24. Extmα :=





Extmα ∪ labelb′ for b′ leaving x′ if xerr = e− 1

Σ otherwise

25. if maxseq < q then return

26. else if minseq ≥ q or CSSmα ≥ q then SPELLER(l + 1, mα,Occmα, Extmα)

3.2.3 Structured motif extraction algorithm

Algorithms for structured motif extraction address the extraction of consensus motifs that

appear together in a well-ordered and regularly spaced manner. Structured motifs were first

introduced by Marsan and Sagot (2000). In this section we present a structured motif extrac-

tion algorithm (RISO) proposed by Carvalho, Freitas, Oliveira, and Sagot (2006). For that

purpose we first present a data structure, called box-link, which is responsible for an exponen-

tial time gain over previous structure motif extraction algorithms (Marsan and Sagot, 2000).

Its construction from the input sequences is straightforward and it will be omitted from this

46 CHAPTER 3. RELATED WORK

thesis (we refer the reader to the works of Carvalho, Freitas, Oliveira, and Sagot, 2006; Car-

valho, 2004, for further details). Then, we present the algorithm to extract structured motifs

using the box-link data structure. Finally, we introduce some extensions to the algorithm

and explain how the extracted models are trimmed by statistical significance in order to deal

with the enormous number of false positives.

To set up the algorithm to extract structured motifs, we have to introduce some notation.

A structured model can be described as an ordered collection of p boxes, a maximum number

e of substitutions allowed for each box, and an interval of distance for each pair of consecutive

boxes.

Definition 3.2.7 (Structured model) A structured model is a pair (m,d) where:

• m = (mi)1≤i≤p is a p-tuple of single models, denoting the p boxes;

• d = (dmini
, dmaxi

, δi)1≤i≤p−1 is a (p− 1)-tuple of triplets, denoting the p− 1 intervals of

distance.

The terms dmini
≤ dmaxi

represent a minimum and maximum allowed distance between

consecutive boxes and δi an allowed neighbourhood within that distance. The δi is omitted

when δi = (dmaxi
− dmini

+ 1)/2.

Definition 3.2.8 (Valid structured model) A structured model (m,d) is said to be a

valid structured model if for all 1 ≤ i ≤ p − 1 and for all occurrences ui of mi, there ex-

ist occurrences u1, . . . , ui−1, ui+1, . . . , up of the single motifs m1, . . . ,mi−1,mi+1, . . . ,mp such

that:

• u1, . . . , up belong to the same input sequence;

• there exists di, with dmini + δi ≤ di ≤ dmaxi − δi, such that the distance between the

end position of ui and the start position of ui+1 in the sequence is in [di − δi, di + δi];

• di is the same for p-tuples of occurrences present in at least q distinct sequences.

As for single motifs, a valid structured model is also called a structured motif.

3.2. EXTRACTION OF STRUCTURED MOTIFS 47

Box-link data structure

A box-link stores the information needed to jump from box to box in a structured model. Its

name comes from the fact that it links all p boxes of a possibly valid structured model. There

are two main advantages in the use of this data structure. First and foremost, the information

needed to jump from box to box when searching for structured models is memorized and can

be quickly accessed. Second, it capitalizes on the use of factor trees, since there is no need to

compute the suffix tree below the maximum size of the boxes of the structured models being

extracted.

Loosely speaking, a box-link is a tuple of tree nodes, corresponding to jumps on the factor

tree from box to box in a structured model. To illustrate the general idea behind box-links,

suppose we have the input sequence AAACCCCCGGGGGT and we are extracting structured

models with p = 3 boxes of the same size k = 3, and the same distance d = 2 between them.

Under these conditions, there are only two box-links for the given input sequence, since there

are at most two structured models. Box-links are illustrated in Figure 3.6. Note that only a

3-deep factor tree is needed to work out this problem.

A A A C C C C C G G G G G T

A A A C C C C C G G G G G T

C

C

C C G G

$

A
A

A

G

G

T

$
T

T $

Figure 3.6: A general idea of box-links.

For the sake of simplicity we assume that all p boxes of a structured model are of the

same size k with distances between them ranging over the interval [dmin, dmax]. Rigorously,

a box-link can be defined as follows:

Definition 3.2.9 (Box-link) Let Lk be the set of leaves at depth k of a k-factor tree T for

a string S and Li
k denote all possible i-tuples over Lk. A box-link of size i, with 1 ≤ i < p,

is a (i + 1)-tuple in Li+1 such that there is a substring S′ of S where: (i) the length of S′ is

48 CHAPTER 3. RELATED WORK

ik+(i− 1)d; (ii) the k-length substring of S′ ending at position jk+(j− 1)d, with 1 ≤ j ≤ i,

is the path in T spelled from the root to the j-th leaf of the box-link tuple.

To store the information relative to which input sequence the box-link refers to, box-links

are endowed with a Boolean array, similar to the one associated with tree nodes, defined as:

ColorsBl
[i] =





1 if Bl links boxes of the i-th input sequence

0 otherwise.

Jumping in the factor tree using box-links

In this section, we describe the algorithm to extract structured motifs, using box-links as a

fundamental data structure.

For clarity of exposition, we consider only structured motifs with two boxes. Moreover, we

assume that each box has the same size k, distanced by some value in the interval [dmin, dmax],

and the same maximum allowed error e per box. The RISO algorithm using box-links works as

follows. At first, a factor tree T is built, up to the level k, for all input sequences. The factor

tree is then modified to store at each node the Colors array, and box-links are added to the

leaves of the factor tree, also endowed with its Boolean array. After this pre-processing phase

the extraction begins. The structured motif extraction algorithm starts by extracting single

motifs of length k, one at a time, as described in Section 3.2.2. For each node-occurrence

v of a first box m1 (Figure 3.7a), a jump is made on the factor tree using the box-links at

v (Figure 3.7b). In this jump, the content of the Boolean Colors array of the box-links is

grabbed. At the target node, the grabbed information is used to temporarily and partially

modify the factor tree (Figure 3.7c). The extraction of the second box m2 of a potentially

valid structured model then proceeds in the same way (Figure 3.7d). Once the operation

of extracting all possible valid motifs 〈(m1,m2),(dmin, dmax)〉 has ended, the factor tree is

restored to its previous state. The construction of another single motif m1 follows, and the

whole process unwinds in a recursive way until all valid structured motifs are extracted.

Suppose we have all p boxes of the same size k with distances between them over the

interval [dmin, dmax]. The pseudo-code for the extraction is presented in Algorithm 3.8.

The RISO algorithm makes use of the following functions:

• The function UpdateTree updates the Boolean arrays from the nodes in NextEnds to

the root in the following way: if nodes z and ẑ have the same parent z, then Colorsz =

3.2. EXTRACTION OF STRUCTURED MOTIFS 49

size(m1) = k

ex
tr

ac
tio

n

(a)

k

box−links

(b)

up
da

tesize(m2)=k

(c)

ex
tr

ac
tio

n

k

(d)

Figure 3.7: Extracting structured motifs following box-links.

Algorithm 3.8 RISO, structured motif extraction using box-links

RISO(model m, box i)

1. for each node-occurrence v of m do

2. for each box-link Bl(v, z) do

3. put z in L(i)

4. if first time z is reached then

5. Colorsz :=
−→
0

6. put z in NextEnds

7. Colorsz := Colorsz + ColorsBl(v,z)

8. UpdateTree(T , NextEnds)

9. for each motif mi obtained by SPELLER traversing T do

10. if i < p then RISO(m = m1 . . . mi, i+ 1)

11. else KeepMotif(m = 〈(m1, . . . ,mp), (dmin, dmax)〉)
12. RestoreTree(T , L(i))

50 CHAPTER 3. RELATED WORK

Colorsz + Colorsẑ. Any arc from the root that does not have a node in NextEnds is

not part of the updated tree, nor are the subtrees rooted at its node in NextEnds.

• The function RestoreTree restores the Boolean arrays from the nodes in L(i) to the root

in the following way: if nodes z and ẑ have the same parent z, then Colorsz = Colorsz

+ Colorsẑ. Any arc from the root is part of the restored tree.

• The function KeepMotif stores all information concerning valid motifs.

Next, we present the time and space complexity of RISO for the case when dmax =

dmin = d. We take an upper bound for the total number of (p − 1)-size box-links defined by

bp(k, d) = min{np
k, npk+(p−1)d}.

Proposition 3.2.10 (Carvalho, Freitas, Oliveira, and Sagot (2006)) Algorithm 3.8 takes

O(Nsp(k, d)ν
p(e, k) +Nbp(k, d)ν

p−1(e, k)) time and O(Nbp(k, d) +Npnk) space.

Extending the algorithm

The RISO algorithm assumed that all single motifs mi of a structured motif (m,d) have a

unique fixed size k, the same substitution rate e and identical values for (dmin, dmax). The

original paper that established the algorithm (Carvalho et al., 2006; Carvalho, 2004) presents

extensions to handle boxes with variable length ki, variable substitution rate ei and variable

intervals of distance (dmini
, dmaxi

). It also shows how to deal with restricted intervals of

unknown limits (dmini
, dmaxi

, δi). Moreover, it emphasizes how local and global constraints

can be introduced. In particular, besides fixing a maximum substitution rate for each box

of a structured motif, it also establishes a maximum substitution rate eglobal for the whole

structured motif. Such a global rate allows to consider, in a limited way, possible correlations

between boxes. Another presented local (or global) constraint imposes the frequency of one

or more nucleotides in a box (or among all boxes) to be below or above a certain threshold.

Measuring statistical significance

Once all structured motifs have been extracted, they are classified according to their statistical

significance, in an attempt to give them some biological pertinence. There is not in the

literature a fully satisfactory method for evaluating such significance. Marsan and Sagot

3.2. EXTRACTION OF STRUCTURED MOTIFS 51

(2000) and Carvalho, Freitas, Oliveira, and Sagot (2006) used a data shuffling approach

(Karlin et al., 1989) to evaluate the significance of a structured model. In order to obtain

the statistical significance of the models found, a χ2 test, with one degree of freedom, is

performed on two contingency tables: one table expressing what was observed, and another

corresponding to what is expected under the null hypothesis (Press et al., 1993). To derive the

values in the contingency table for the null hypothesis several random shufflings are performed

preserving the k-mer frequency distribution of the input sequences (a k-mer is a substring of

length k). Both the number of shufflings and k are values given by the user (in general, 100

shufflings are considered conserving di- or tri- nucleotides). With this process, the probability

of getting the models observed under the null hypothesis is estimated. Another type of

statistics, based on a Z-score, was also tried by the authors (Carvalho, Freitas, Oliveira, and

Sagot, 2006; Carvalho, 2004; Marsan and Sagot, 2000).

Availability

The source code and binaries of the RISO algorithm are freely available in the author web

site.4 There is also an on-line version of RISO as a running component of the YEASTRACT-

DISCOVERER tool.5 For this tool RISO was augmented to consider reverse strands and the

statistical analysis was reshaped. For more details see the joint work of Monteiro, Mendes,

Teixeira, d’Orey, Tenreiro, Mira, Pais, Francisco, Carvalho, Lourenço, Sá-Correia, Oliveira,

and Freitas (2008).

4RISO source code and binaries are available at http://kdbio.inesc-id.pt/ asmc/software/riso.html.
5An on-line version of RISO is available at http://www.yeastract.com/discoverer/riso.php.

52 CHAPTER 3. RELATED WORK

Part II

Motif representation

53

Chapter 4

f̂CLL: Factorized conditional

log-likelihood

Bayesian networks have been widely used in the context of classification (Su and Zhang,

2006; Grossman and Domingos, 2004; Friedman et al., 1997). Seminal works in learning

Bayesian network classifiers attempted to optimize the log-likelihood (LL) of the entire data.

This has been pointed out to be the reason why some elaborate classifiers underperform the

much simpler naive Bayes classifier (Domingos and Pazzani, 1997; Friedman et al., 1997).

Indeed, the goal of classification is to maximize the conditional log-likelihood (CLL) of the

class variable given the attributes and so maximizing LL, or a score thereof, may result in

some suboptimal choice during the learning process.

At the light of the previous discussion two distinct learning methodologies appeared:

generative learning which optimizes the LL, or a penalized variant, of the entire data being

generated by the model, including the class variable; and, discriminative learning which

aims at maximizing the CLL, focusing on correctly discriminating between classes. The

latter approach has received considerable attention in recent years carrying a problem of

computational nature: CLL does not decompose over the network structure, and so there is

no closed-form equation for choosing the optimal parameters for the CLL scoring criterion.

This issue led Friedman et al. (1997) to bring up a new open question: are there heuristic

approaches that allow efficient discriminative learning of Bayesian network classifiers? During

the past years different approximations were proposed which decomposed the problem into

two simpler approaches: (i) search for the Bayesian-network structure that maximizes CLL;

55

56 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

(ii) considering a Bayesian-network structure fixed in advance, compute the parameters that

maximize CLL.

The first work along these lines was proposed by Greiner and Zhou (2002). They in-

troduced a discriminative parameter learning algorithm, called Extended Logistic Regression

(ELR) algorithm, that resorts to a gradient descent optimization method to find maximum-

CLL parameters. The ELR algorithm applies to an arbitrary Bayesian-network structure,

usually computed by a generative learning method, and then parameters are set by maximum-

CLL, using a gradient descent optimization method. The rationale for this approach is that

discriminatively-learned parameters would presumably be advantageous, when compared to

generatively-trained ones, in the presence of an incorrect Bayesian-network structure. Greiner

and Zhou (2002) have shown that such approach, although, computationally expensive, is

feasible and worthwhile. Based on these results, Su et al. (2008) tried to overcome the ELR

computational cost and proposed an alternative discriminative parameter learning algorithm,

called DFE algorithm, which exhibits the same accuracy as the ELR algorithm but that it is

considerably more efficient. Notwithstanding, despite current empirical evidence supporting

the effectiveness of the DFE algorithm, its theoretical nature remains unknown and a deeper

understanding of the employed technique is needed.

Full structure and parameter learning with the ELR algorithm is a burdensome task.

Indeed, employing Greiner and Zhou (2002) procedure to discriminative structure learning

would require a new gradient descent for each candidate network at each search step, turning

the method computationally unfeasible. Moreover, even in the context of discriminative

parameter learning, ELR is not guaranteed to find optimal-CLL parameters. Fortunately,

there are also some positive results that favor ELR. Discriminative parameter learning in a

naive Bayes network structure is known to be equivalent to a logistic regression problem.

Roos et al. (2005) showed that this equivalence still holds for network structures that satisfy

a certain graph-theoretic property. Such property holds for naive Bayes but also for more

complex structures such as tree augmented naive Bayes (TAN) networks, devised by Friedman

et al. (1997), and others. Their result implies that for such networks CLL cannot have

local maxima. As a consequence, the global maximum can be found by local optimization

methods, such as ELR. In fact, Greiner and Zhou (2002) verified this result empirically by

concluding that their ELR algorithm is beneficial when combined with generatively-trained

57

TAN classifiers.

In an opposite direction Grossman and Domingos (2004) proposed to choose network

structures by maximizing CLL while approximating parameters by their maximum-LL. The

algorithm employed by the authors, called BNC algorithm, is similar to the hill-climbing

algorithm of Heckerman et al. (1995), except that it uses CLL as the primary objective

function. The BNC algorithm starts from an empty network, and, at each step, considers

adding each possible new edge and deleting or reversing each current edge. Since CLL does

not decompose over the network structure, the full network is then scored using the CLL

scoring criterion, considering that the parameters have been set to their maximum-LL values.

The reasoning behind this approach is that computing maximum-LL parameter estimates is

extremely fast, and, for an optimal network structure, they are asymptotically equivalent to

the maximum-CLL ones. To a limited extent, full structure and parameter optimization for

CLL were also studied by the authors. However, experiments revealed that full optimization

did not produce better results than those obtained by the much simpler previous approach.

The methods proposed by Greiner and Zhou (2002), Su et al. (2008) and Grossman and

Domingos (2004) are a great step towards discriminative learning. Nevertheless, they leave

out full exploitation of both structure and parameter learning algorithms that maximize CLL,

in its possible extent, since CLL is not decomposable over the network structure. Our contri-

bution works in this line and is based on an approximation, for binary classification tasks, to

CLL, using the least squares’ method. Focusing on learning the structure of augmented naive

Bayes classifiers from complete data, we derived a decomposable scoring criterion, called ap-

proximated conditional log-likelihood (aCLL), that minimizes the expected squared error with

respect to CLL. The proposed score is the minimum variance unbiased (MVU) approximation

to CLL, which means that the expected value of the difference between CLL and aCLL is

zero and, among the unbiased approximations is the one with minimum variance. Unfortu-

nately, the parameters that maximize aCLL are unknown. A possibly effective solution, for

full discriminative learning, would be choosing Bayesian-network structures by maximizing

aCLL while setting optimal-CLL parameters by using the ELR algorithm. However, aCLL

was devised having in mind efficiency, reason why we proposed a decomposable approximation

to CLL, so the use of ELR ends clashing with our goal.

For the sake of computational efficiency, we considered aCLL with parameters set by the

58 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

observed frequency estimates (OFE) hoping that discriminatively-structured networks work

well even in the presence of non-optimal parameter setting. The resulting score, called âCLL,

brings up a problem, however. In fact, âCLL is not well-behaved under OFE as it might

be indeterminate for some datasets. Therefore, we devised a well-behaved approximation

to aCLL for which the parameters are maximized by OFE. The score obtained was called

factorized conditional log-likelihood (f̂CLL). Contrarily to âCLL, f̂CLL is score equivalent

and it corresponds to adding to the LL a summand that incorporates interaction information

between a node, its parents and the class variable. It seems clear that interaction information

is an interesting quantity for classification. It prefers choosing parents for a node that increase

the information about the node when joined with the class to parents that increase the

information about the node, but explain the behavior of the node without any contribution

of the class. Actually, since interaction information is not always positive, f̂CLL does not

prefer, in general, more complex structures to simpler ones. Interaction information has been

referred to as explaining away residual (EAR) by Bilmes (2000) and has been extensively

discussed in the machine learning community (Cover and Thomas, 2006; Pearl, 1988)). The

EAR metric has already been used by Pernkopf and Bilmes (2005) in the context of Bayesian

network classifiers for global discriminative learning. As far as we are concerned it is the first

time this measures appears in local discriminative learning.

To gauge the performance of the proposed criteria in classification tasks, we compare

them with several popular classifiers, namely, tree augmented naive Bayes (TAN), greedy

hill-climbing (GHC), C4.5, k-nearest neighbor (k-NN), support vector machine (SVM) and

logistic regression (LogR). On a large suite of benchmark datasets from the UCI repository,

f̂CLL-trained classifiers outperform, with high significance level, their generatively-trained

counterparts, as well as C4.5, k-NN and LogR classifiers. Moreover, f̂CLL-optimal classifiers

are comparable with ELR induced ones, as well as SVMs (with linear, polynomial and radial

basis function kernels). The advantage of f̂CLL with respect to these latter classifiers is that

it is computationally as efficient as the LL scoring criterion, and considerably more efficient

than ELR and SVMs.

This chapter is organized as follows. In Section 4.1 we update notation introduced in Sec-

tion 3.1.1, in page 21, to classification tasks. In Section 4.2 we provide background material

in Bayesian network classifiers along with generative and discriminative classification. In Sec-

4.1. NOTATION 59

tion 4.3 we present our scoring criteria followed by experimental results and their analysis in

Section 4.4. Finally, in Appendix A we provide further explanation about the work presented

herein.

4.1 Notation

In the context of augmented naive Bayes models the class variable is a special attribute. To

avoid misunderstandings, when devising new scoring criteria for classification tasks, the class

variable needs to be decoupled from the other parent attributes. Herein, we set up a notation

that takes this observation into account. We propose a notation as accordant as possible to

the well established notation presented in Section 3.1.1 (page 21), for defining scoring criteria

for learning Bayesian networks (see, for instance, de Campos (2006)).

We consider that the class variable C ranges over s values z1, . . . , zs. We recall that the

number of states of the finite random variable Xi is ri and that the parents of Xi are denoted

by ΠXi
. The parents of Xi without the class variable are denoted by Π∗Xi

= ΠXi
\ {C}. We

denote the number of possible configurations of the parent set Π∗Xi
by q∗i . Hence,

q∗i =
∏

Xj∈Π∗
Xi

rj .

The j-th configuration of Π∗Xi
is represented by w∗ij, with 1 ≤ j ≤ q∗i . Similarly to the general

case, local distributions are determined by the corresponding parameters

P (C = c) = θc,

P (Xi = xik | Π∗Xi
= w∗ij , C = zc) = θijck.

We denote by Nijck the number of instances in the data T where the attribute Xi takes its

k-th value xik, the attributes in Π∗Xi
take their j-th configuration w∗ij and the class variable C

takes its c-th value zc. Moreover, Nij∗k denotes the number of instances in the data T where

the attribute Xi takes its k-th value xik and the attributes in Π∗Xi
take their j-th configuration

w∗ij , disregarding the value of the class variable, that is,

Nij∗k =
s∑

c=1

Nijck.

60 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

In addition, Nijc is the number of instances in the data T where the attributes in Π∗Xi
take

their j-th configuration w∗ij and the class variable C takes its c-th value zc, that is,

Nijc =

ri∑

k=1

Nijck.

Furthermore, Nij∗ is the number of instances in the data T where the attributes in Π∗Xi
take

their j-th configuration w∗ij regardless of the class variable C, that is,

Nij∗ =
ri∑

k=1

s∑

c=1

Nijck.

Similarly, Nc is the number of instances in the data T where the class variable C takes its

c-th value zc, that is,

Nc =

ri∑

k=1

q∗i∑

j=1

Nijck,

for any 1 ≤ i ≤ n. Finally, recall that T = {y1, . . . ,yN}. In classification tasks the t-th

instance of T is given by yt = (y1t , . . . , y
n
t , ct), where ct corresponds to the value of the class

variable. Note that the total number of instances in the data T is N .

The Table 4.1 resumes the notation needed in this chapter.

4.2 Generative vs discriminative learning

Having in mind the notation above, we are ready to briefly discuss the two paradigms for

learning Bayesian network classifiers: generative and discriminative. Generative learning

reduces to maximizing the likelihood of the data, including the class variable. When the

structure of the network is fixed in advance this reduces to estimating the parameters θijck.

In this case, the ML estimates in Equation (3.4) at page 30 become now

θ̂c =
Nc

N
, and θ̂ijck =

Nijck

Nijc
. (4.1)

Therefore, plugging again these parameters into the log-likelihood (LL) scoring criterion we

obtain:

L̂L(G | T) =

N∑

t=1

log(PB(y
1
t , . . . , y

n
t , ct))

=

s∑

c=1




n∑

i=1

qi∑

j=1

s∑

c=1

ri∑

k=1

Nijck log

(
Nijck

Nijc

)
+Nc log

(
Nc

N

)
. (4.2)

4.2. GENERATIVE VS DISCRIMINATIVE LEARNING 61

Symbol Meaning

T training data, T = {y1, . . . ,yN}
yt t-th instance of T , yt = (y1t , . . . , y

n
t , ct)

N number of instances in T

B (augmented naive) Bayesian network classifier

X set of attributes X1, . . . ,Xn in B, excluding the class variable C

n number of attributes, excluding the class variable C

xik k-th value that the attribute Xi can take

ri number of values Xi can take

C class variable in B

zc c-th value that the class variable C can take

s number of values C can take

ΠXi
parents of Xi in B

Π∗Xi
parents of Xi in B without the class variable C

q∗i number of possible parent configurations of Π∗Xi

w∗ij j-th (parent) configuration of Π∗Xi

Nc number of of instances in T where C = zc

Nij∗ number of instances in T where Π∗Xi
= w∗ij

Nijc number of instances in T where Π∗Xi
= w∗ij and C = zc

Nij∗k number of instances in T where Xi = xik and Π∗Xi
= w∗ij

Nijck number of instances in T where Xi = xik, Π
∗
Xi

= w∗ij and C = zc

(y1t , . . . , y
n
t , 1− ct) dual of the t-th instance in T (may not occur in T)

Ut probability of the t-th instance in T

Vt probability of the dual of the t-th instance in T

PB joint distribution of (X, C) induced by B

P̂T joint distribution of (X, C) induced by the OFE parameters

Table 4.1: Definition of terms used in Chapter 4.

62 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

The L̂L scoring criterion tends to favor complex network structures with many edges

since adding an edge never decreases likelihood. This phenomenon leads to overfitting which

is usually avoided by adding a complexity penalty to the log-likelihood or by restricting the

network structure.

On the other hand, discriminative learning of Bayesian network classifiers maximizes the

conditional likelihood of the data. The reason why this is a form of discriminative learning

is that it focus on correctly discriminating between classes by maximizing the probability of

obtaining the correct classification. The conditional log-likelihood (CLL) scoring criterion can

be written as:

CLL(B | T) =
N∑

t=1

log(PB(ct | y1t , . . . , ynt)). (4.3)

Friedman et al. (1997) noticed that, in the context of classification learning problems, the

log-likelihood of T for B can be rewritten as:

LL(B | T) = CLL(B | T) +
N∑

t=1

log(PB(y
1
t , . . . , y

n
t)). (4.4)

Interestingly, the objective of generative learning is precisely to maximize the whole sum,

whereas the goal of discriminative learning consists on maximizing only the first term in (4.4).

Friedman et al. (1997) attributed the underperformance of learning methods based on LL to

the term CLL(B | T) being potentially much smaller than the second term in Equation (4.4).

Unfortunately, CLL does not decompose over the network structure, which seriously hinders

structure learning (see Bilmes, 2000; Grossman and Domingos, 2004). Furthermore, there is

no closed-form formula for optimal parameter estimates maximizing CLL, and computation-

ally more expensive techniques such as ELR are required (Greiner and Zhou, 2002; Su et al.,

2008).

4.3 Developing a new scoring criterion

The above shortcomings of earlier discriminative approaches to learning Bayesian network

classifiers, and the CLL criterion in particular, make it natural to explore good approximations

to the CLL that are more amenable to efficient optimization. More specifically, we now set

out to construct decomposable approximations to the CLL scoring criterion.

4.3. DEVELOPING A NEW SCORING CRITERION 63

For simplicity, assume that the class variable is binary, C = {0, 1}. The conditional

probability of the class variable can then be written as

PB(ct | y1t , . . . , ynt) =
PB(y

1
t , . . . , y

n
t , ct)

PB(y1t , . . . , y
n
t , ct) + PB(y1t , . . . , y

n
t , 1− ct)

. (4.5)

For convenience, we denote the two terms in the denominator as

Ut = PB(y
1
t , . . . , y

n
t , ct) and Vt = PB(y

1
t , . . . , y

n
t , 1 − ct), (4.6)

so that Equation (4.5) becomes simply

PB(ct | y1t , . . . , ynt) =
Ut

Ut + Vt
. (4.7)

We stress that both Ut and Vt depend on B, but for the sake of readability we omit B.

Moreover, observe that (y1t , . . . , y
n
t , 1 − ct) may not occur in the dataset T . We call the

sample (y1t , . . . , y
n
t , 1 − ct) the dual sample of (y1t , . . . , y

n
t , ct) and so, Vt is the probability of

observing the dual sample of the t-th instance in T .

For the case of binary classification the log-likelihood (LL), and the conditional log-

likelihood (CLL), of T for B has the following form:

LL(B | T) =
N∑

t=1

log(Ut) , and (4.8)

CLL(B | T) =

N∑

t=1

log

(
Ut

Ut + Vt

)
=

N∑

t=1

log(Ut)− log(Ut + Vt).

Recall that our goal is to derive a decomposable scoring criterion. Unfortunately, even though

log(Ut) decompose over the network structure, log(Ut + Vt) does not. In order to achieve

decomposability we need to determine which expressions involving the logarithm of Ut and

Vt would result in a decomposable scoring criterion with a closed-form expression. Despite

the overwhelming number of possibilities the properties of the logarithm highly constrain

the number of candidate expressions which would result in a decomposable score. To put it

another way, from the properties of the logarithm, the only expressions we found involving

Ut and Vt that denote a decomposable score are of the form

α log(Ut) + β log(Vt) + γ, (4.9)

where α, β and γ are real numbers. Therefore, let us consider approximating the log-ratio

f(Ut, Vt) = log

(
Ut

Ut + Vt

)
,

64 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

by functions of the form

f̂(Ut, Vt) = α log(Ut) + β log(Vt) + γ,

where α, β, and γ are real numbers to be chosen so as to minimize the approximation error.

Since the accuracy of the approximation obviously depends on the values of Ut and Vt as well

as the constants α, β, and γ, we need to make some assumptions about Ut and Vt in order to

determine suitable values of α, β and γ. We explain one possible set of assumptions, which

will be seen to lead to a good approximation for a very wide range of Ut and Vt. We emphasize

that the role of the assumptions is to aid in arriving at good choices of the constants α, β,

and γ, after which we can dispense with the assumptions — they need not, in particular, hold

true exactly.

Start by noticing that Rt = 1 − (Ut + Vt) is the probability of observing neither the t-

th sample nor its dual, and hence, the triplet (Ut, Vt, Rt) are the parameters of a trinomial

distribution. We assume, for the time being, that no knowledge about the values of the

parameters (Ut, Vt, Rt) is available. Therefore, it is natural to assume that (Ut, Vt, Rt) follows

the uniform Dirichlet distribution, Dirichlet(1, 1, 1), which implies that

(Ut, Vt) ∼ Uniform(∆2), (4.10)

where ∆2 = {(x, y) : x + y ≤ 1 and x, y ≥ 0} is the 2-simplex set. However, with a brief

reflection on the matter, we can see that such an assumption is actually rather unrealistic.

Firstly, by inspecting the total number of possible observed samples, we expect, Rt to be

relatively large (close to 1). In fact, Ut and Vt are expected to become exponentially small as

the number of attributes grows. Therefore, it is reasonable to assume that

Ut, Vt ≤ p <
1

2
< Rt (4.11)

for some positive value p. Combining this constraint with the uniformity assumption, Equa-

tion (4.10), yields the following assumption, which we will use as a basis for our further

analysis.

Assumption 1 There exists a small positive p < 1
2 such that

(Ut, Vt) ∼ Uniform(∆2)|Ut,Vt≤p< 1
2
= Uniform([0, p] × [0, p]). (4.12)

4.3. DEVELOPING A NEW SCORING CRITERION 65

Assumption 1 implies that Ut and Vt are uniform i.i.d. random variables ranging over

[0, p] for some (unknown) positive real number p < 1
2 . In Appendix A we give an alternative

justification for this assumption.

As we shall see later, we do not need to know the actual value of p. A relevant consequence

of this fact is that the envisaged approximation will be robust to the choice of p. Under

Assumption 1, we obtain analytically the best fitting that minimizes the average difference

between f and f̂ by the least squares’ method.

Theorem 4.3.1 Under Assumption 1, the values of α, β and γ that minimize the mean

square error (MSE) of f̂ w.r.t. f are given by

α =
π2 + 6

24
, (4.13)

β =
π2 − 18

24
, and (4.14)

γ =
π2

12 ln(2)
−
(
2 +

(π2 − 6) log(p)

12

)
, (4.15)

where log(·) is the binary logarithm and ln(·) is the natural logarithm.

Proof: We have that

Sp(α, β, γ) =

p∫

0

p∫

0

1

p2

(
log

(
x

x+ y

)
− (α log(x) + β log(y) + γ)

)2

dy dx

=
1

12 ln(2)2
(−π2(−1 + α+ β) +

6(2 + 4α2 + 4β2 − 4 ln(2)− 2γ ln(2) + 4 ln(2)2 + 8γ ln(2)2 + 2γ2 ln2(2)

+β(5− 4(2 + γ) ln(2)) + α(1 + 4β − 4(2 + γ) ln(2)))

−12(α + β)(1 + 2α+ 2β − 4 ln(2)− 2γ ln(2)) ln(p) + 12(α + β)2 ln2(p)).

Moreover, ∇.Sp = 0 iff

α =
π2 + 6

24
,

β =
π2 − 18

24
,

γ =
π2

12 ln(2)
−
(
2 +

(π2 − 6) log(p)

12

)
,

which coincides exactly with (4.13), (4.14) and (4.15), respectively. Now to show that (4.13),

66 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

(4.14) and (4.15) define a global minimum, take δ = (α log(p) + β log(p) + γ) and notice that

Sp(α, β, γ) =

p∫

0

p∫

0

1

p2

(
log

(
x

x+ y

)
− (α log(x) + β log(y) + γ)

)2

dy dx

=

1∫

0

1∫

0

1

p2

(
log

(
px

px+ py

)
− (α log(px) + β log(py) + γ)

)2

p2dy dx

=

1∫

0

1∫

0

(
log

(
x

x+ y

)
− (α log(x) + β log(y) + (α log(p) + β log(p) + γ))

)2

dy dx

=

1∫

0

1∫

0

(
log

(
x

x+ y

)
− (α log(x) + β log(y) + δ)

)2

dy dx

= S1(α, β, δ).

So, Sp has a minimum at (4.13), (4.14) and (4.15) iff S1 has a minimum at (4.13), (4.14) and

δ =
π2

12 ln(2)
− 2. (4.16)

The Hessian of S1 in α, β and δ given by (4.13), (4.14) and (4.16), is



4
ln2(2)

2
ln2(2)

− 2
ln(2)

2
ln2(2)

4
ln2(2)

− 2
ln(2)

− 2
ln(2) − 2

ln(2) 2




and its eigenvalues are

e1 =
3+ln2(2)+

√
9+2 ln2(2)+ln4(2)

ln2(2)
,

e2 = 2
ln2(2)

,

e3 =
3+ln2(2)−

√
9+2 ln2(2)+ln4(2)

ln2(2)
,

which are all positive. Thus, S1 has a local minimum in (α, β, δ) and, consequently, Sp has

a local minimum in (α, β, γ). Since ∇.Sp has only one zero, (α, β, γ) is a global minimum of

Sp. �

We then study two desirable properties of f̂ : unbiasedness and minimum variance approx-

imation. We show that the difference between the expected value of f̂ and f is zero, that is,

f̂ is an unbiased approximation of f . Moreover, we show that f̂ is the approximation with

the lowest variance among unbiased ones.

Theorem 4.3.2 The approximation f̂ with α, β, γ defined as in Theorem 4.3.1 is the mini-

mum variance unbiased (MVU) approximation of f .

4.3. DEVELOPING A NEW SCORING CRITERION 67

Proof: We have that

p∫

0

p∫

0

1

p2

(
log

(
x

x+ y

)
− (α log(x) + β log(y) + γ)

)
dy dx = 0

for α, β and γ defined as in (4.13), (4.14) and (4.15). Moreover, we have that for unbiased

approximations the MSE coincides with the variance. Therefore, the proposed approximation

is the one with minimum variance. �

Next, we derive the error of the approximation f̂ in the square [0, p] × [0, p], which,

curiously, does not depend on p. We consider

µ = E[f(Ut, Vt)] =
1

2 ln(2)
− 2 (4.17)

which is a negative value since f ranges over (−∞, 0].

Theorem 4.3.3 The approximation f̂ with α, β and γ defined as in Theorem 4.3.1 has

standard error given by

σ =

√
36 + 36π2 − π4

288 ln2(2)
− 2 ≈ 0.352114 (4.18)

and relative standard error
σ

|µ| ≈ 0.275379.

Proof: We have that
√√√√√

p∫

0

p∫

0

1

p2

(
log

(
x

x+ y

)
− (α log(x) + β log(y) + γ)

)2

dy dx =

√
36 + 36π2 − π4

288 ln2(2)
− 2

for α, β and γ defined as in (4.13), (4.14) and (4.15), which concludes the proof. �

Figure 4.1 illustrates the function f as well as its approximation f̂ for (Ut, Vt) ∈ [0, p]×[0, p]
with p = 0.05. Both functions diverge (to −∞) as Ut → 0. The latter diverges (to +∞) also

when Vt → 0. For the interpretation of different colors in Figure 4.1, see Figure 4.2 (page 68).

The approximation error, f − f̂ is shown in Figure 4.2. The approximation error represents

the difference between the exact value and the approximation given in Theorem 4.3.1. Notice

that the error is symmetric in the two arguments, and diverges as Ut → 0 or Vt → 0. For

points where neither argument is close to zero, the error is small (close to zero). While the

68 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

0.00
0.01

0.02
0.03

0.04
0.05

0.00
0.01

0.02
0.03

0.04
0.05

−6

−4

−2

0

2

UtVt 0.00
0.01

0.02
0.03

0.04
0.05

0.00
0.01

0.02
0.03

0.04
0.05

−6

−4

−2

0

2

UtVt

Figure 4.1: Comparison between f (left) and f̂ (right).

0.00

0.01
0.02

0.03
0.04

0.05

0.00
0.01

0.02
0.03

0.04
0.05

−6

−4

−2

0

2

UtVt −3

−2

−1

0

1

2

3

Figure 4.2: Approximation error between f and f̂ .

properties established in Theorem 4.3.1–4.3.3 are useful, we find it even more important that,

as seen in Figure 4.2, the error is close to zero except when either Ut or Vt approaches zero.

Moreover, we point out that the choice of p = 0.05 used in the figure is not important: having

chosen another value would have produced identical graphs except in the scale of the Ut and

Vt. In particular, the scale and numerical values on the vertical axis (i.e., in Figure 4.2, the

error) would have been precisely the same.

4.3. DEVELOPING A NEW SCORING CRITERION 69

By taking the approximation in Theorem 4.3.1, we have that

CLL(B | T) =
N∑

t=1

log

(
Ut

Ut + Vt

)
≈

N∑

t=1

α log(Ut) + β log(Vt) + γ

=
N∑

t=1

(α+ β) log(Ut)− β log

(
Ut

Vt

)
+ γ

= (α+ β)LL(B | T)− β

N∑

t=1

log

(
Ut

Vt

)
+Nγ,(4.19)

where constants α, β and γ are given by Equations (4.13), (4.14) and (4.15), respectively.

Since we want to maximize CLL(B | T) we can drop the constant Nγ in the approximation,

as maxima are invariant under monotonous transformations, and so we can just maximize

the following formula, which we call the approximate conditional log-likelihood (aCLL):

aCLL(B | T) = (α+ β)LL(B | T)− β

N∑

t=1

log

(
Ut

Vt

)

= (α+ β) LL(B | T)− β

n∑

i=1

q∗i∑

j=1

ri∑

k=1

1∑

c=0

Nijck log

(
θijck

θij(1−c)k

)

−β
1∑

c=0

Nc log

(
θc

θ(1−c)

)
. (4.20)

At this stage we are ready to understand why the approximation in Theorem 4.3.1 results

in a scoring criterion which is robust to the choice of p. Indeed, the fact that Nγ can be

removed from the maximization in (4.19) is most fortunate, as we eliminate the dependency

on p. An immediate consequence of this fact is that we do not need to know the actual value

of p for a given dataset T . Indeed, the approximation works for any positive p < 1
2 by just

changing the constant γ, which is irrelevant for maximizing.

Another significant concern that deserves some discussion is the analysis of the propagation

of the error found in Theorem 4.3.3 when we are summing approximations as in (4.19). In this

context it is interesting to notice that errors may cancel, namely, because we are summing

i.i.d. samples. Indeed, we have that Ut and Vt are i.i.d. for all 1 ≤ t ≤ N , since T is

a multinomial sample. Therefore, we conclude that the approximation given by (4.19) is

unbiased, its standard error is σ
√
N and its relative standard error is σ√

N |µ| , where σ and µ

are given by (4.18) and (4.17), respectively. To sum up, the relative standard error decreases

proportionally with the square root of N .

70 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

We are now in the position of having constructed a decomposable approximation of the

conditional log-likelihood score that was shown to be very accurate for a wide range of pa-

rameters Ut and Vt. Due to the dependency of these parameters on Θ, i.e., the parameters of

the Bayesian network B (recall Equation (4.6), page 63), the score still requires that a suit-

able set of parameters is chosen. Finding the parameters maximizing the approximation is,

however, difficult; apparently as difficult as finding parameters maximizing the CLL directly.

Therefore, whatever computational advantage is gained by decomposability, it would seem to

be dwarfed by the expensive parameter optimization phase.

Furthermore, trying to use the OFE parameters in aCLL may lead to problems since

the approximation is undefined at points where either Ut or Vt is zero. To better see why

this is the case, substitute the OFE parameters, Equation (4.1), into the aCLL criterion,

Equation (4.20), to obtain

âCLL(G | T) = (α+ β) L̂L(G | T)− β
n∑

i=1

q∗i∑

j=1

ri∑

k=1

1∑

c=0

Nijck log

(
NijckNij(1−c)
NijcNij(1−c)k

)

−β
1∑

c=0

Nc log

(
Nc

N1−c

)
. (4.21)

The problems are associated with the denominator in the second term. In LL and CLL

criteria, similar expressions where the denominator may be zero are always eliminated by the

OFE parameters since they are always multiplied by zero, see e.g., Equation (4.2), where

Nijc = 0 implies Nijck = 0. However, there is no guarantee that Nij(1−c)k is non-zero even if

the factors in the numerator are non-zero, and hence the division by zero may lead to actual

indeterminacies. This problem makes âCLL not well-behaved, since it has singularities that

are infinite discontinuities.1 Therefore, depending on the dataset, âCLL might behave well

or not. Unfortunately, this problem arises more often than one might expect. The reason

for this is that âCLL depends on local counting, determined by the network structure, made

over dual samples. Moreover, dual samples might never occur in the data, making the local

counting Nij(1−c)k and Nij(1−c) to be zero occasionally. In practice, we found many cases

where âCLL(B | T) score was not defined while learning from the UCI datasets. To address

this issue we considered the standard solution based on pseudo-counts in which we sum to

1By taking Nij(1−c)k to be a positive real number, which indeed we consider when using pseudo-counts, we

have that limNij(1−c)k→0 âCLL(B | T) = +∞ for some dataset T .

4.3. DEVELOPING A NEW SCORING CRITERION 71

each Nijck a fixed number of pseudo-counts. The other quantities Nijc, Nij∗k and Nij are

updated as expected taking into account this modification. However, it is not obvious which

are the values of the pseudo-counts that will give a meaningful smoothing to the score. If the

pseudo-counts are very small, the score explodes and behaves badly, and if the pseudo-counts

are very high, they smooth too much the data, leading to a poor classifier. A detailed study

to control the bad behavior of âCLL(B | T) is not straightforward.

The previous conclusions deserve an insightful discussion we provide next. Start by con-

sidering the very first expression of CLL(B | T) for binary classification tasks in (4.9), or

simply in (4.7). Somewhat unsurprisingly, CLL tries to discriminate between class labels by

examining which instances in the data simultaneously do not occur as dual samples (note that

the highest value of (4.7) is attained when Vt = 0). Although the lack of dual samples seems

extraordinary for classifying, eliciting a zero probability from that can lead to irrecoverable er-

rors. It is a common mistake to assign probability zero to an event that is extremely unlikely,

but not impossible (see e.g. Koller and Friedman (2009)). This is precisely the reason why

pseudo-counts are so widely used when learning Bayesian networks from data. Regrettably,

in our case, even using reasonable pseudo-counts a problem of order of magnitude persists as

the second summand in (4.21) dominates the first one in practical cases (find some examples

in the supplementary material webpage). This final consideration leads us, in fact, to make an

approximation to the second summand that corrects this problem, by ensuring that the first

summand and the approximation to the second summand have similar orders of magnitude.

Moreover, the relative values of both the approximation and the second summand should be

retained, that is, the highest value given by the envisaged approximation should be attained

when the second summand has its maximum value (or, more precisely, their derivative should

have the same sign).

We conclude this section by examining why aCLL under OFE (or, simply âCLL) is not

well-behaved even if by Assumption 1 the expected approximation error is zero. Actually, by

assuming discrete-valued attributes the number of all possible datasets is countable. There-

fore, the number of distributions that are obtained by OFE is also countable. When we focus

on a countable subset of values (in our case, given by the OFE) over a continuous domain

(in our case, given by the Uniform([0, p] × [0, p])) we lose much of the properties that char-

acterize this domain. Consequently, we have to make further assumptions to ensure that the

72 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

subset preserve the desirable characteristics of the continuos domain. One desideratum is

that the envisaged approximation should be well-defined, under OFE, with probability one

(or, similarly, the probability of having singularities should be zero). Clearly, âCLL does not

fulfill this property. This long discussion is just an introduction to the next section where we

set out to resolve these issues by presenting a well-behaving approximation that enables easy

optimization of both structure (via decomposability), as well as parameters.

4.3.1 Achieving a well-behaved approximation under OFE

In this section, we address the singularities of aCLL under OFE by constructing an approxi-

mation that is well-behaved.

Recall aCLL in Equation (4.20). Given a fixed network structure, the parameters that

maximize the first term, (α+β)LL(B | T), are given by OFE. However, as observed above, the

second term may actually be unbounded due to the appearance of θij(1−c)k in the denominator.

In order to obtain a well-behaved score, we must therefore make a further modification to

the second term. Our strategy is to ensure that the resulting score is uniformly bounded

and maximized by OFE parameters. The intuition behind this is that we can thus guarantee

not only that the score is well-behaved, but also that parameter learning is achieved in a

simple and efficient way by using the OFE parameters — solving both of the aforementioned

issues with the aCLL score. As it turns out, we can satisfy our goal while still retaining the

discriminative nature of the score.

The following result is of importance in what follows.

Theorem 4.3.4 Consider a Bayesian network B whose structure is given by a fixed directed

acyclic graph, G. Let f(B | T) be a score defined by

f(B | T) =
n∑

i=1

q∗i∑

j=1

ri∑

k=1

1∑

c=0

Nijck


λ log


 θijck

Nijc

Nij∗
θijck +

Nij(1−c)

Nij∗
θij(1−c)k




 , (4.22)

where λ is an arbitrary positive real value. Then, the parameters Θ that maximize f(B | T)
are given by the observed frequency estimates (OFE) obtained from G.

For the proof of Theorem 4.3.4 we need to recall Gibb’s inequality. This inequality states

that the entropy −∑x P (x) log(P (x)) of a probability distribution P (x) is less than or equal

to its cross entropy with any other probability distribution Q(x).

4.3. DEVELOPING A NEW SCORING CRITERION 73

Lemma 4.3.5 (Gibb’s inequality) Let P (x) and Q(x) be two probability distributions

over the same domain, then

∑

x

P (x) log(Q(x)) ≤
∑

x

P (x) log(P (x)).

Proof (Theorem 4.3.4): We now take advantage of Gibb’s inequality to show that the

parameters that maximize the f(B | D) are those given by the OFE. Observe that

f(B | D) = λ

n∑

i=1

q∗i∑

j=1

ri∑

k=1

1∑

c=0

Nijck log

(
Nijcθijck

Nijcθijck +Nij(1−c)θij(1−c)k

)
− log

(
Nijc

Nij∗

)

= K + λ
n∑

i=1

q∗i∑

j=1

ri∑

k=1

Nij∗k

1∑

c=0

Nijck

Nij∗k

log

(
Nijcθijck

Nijcθijck +Nij(1−c)θij(1−c)k

)
, (4.23)

where K is a constant that does not depend on the parameters θijck, and therefore, can be

ignored. Moreover, if we take the OFE for the parameters, we have

θ̂ijck =
Nijkc

Nijc
and θ̂ij(1−c)k =

Nijk(1−c)
Nij(1−c)

.

By plugging the OFE estimates in (4.23) we obtain

f̂(G | D) = K + λ

n∑

i=1

q∗i∑

j=1

ri∑

k=1

Nij∗c

1∑

c=0

Nijck

Nij∗k

log


 Nijc

Nijck

Nijc

Nijc
Nijck

Nijc
+Nij(1−c)

Nij(1−c)k

Nij(1−c)


 (4.24)

= K + λ

n∑

i=1

qi∑

j=1

ri∑

k=1

Nij∗k

1∑

c=0

Nijck

Nij∗k

log

(
Nijck

Nij∗k

)
.

According to Gibb’s inequality, this is the maximum value that f(B | D) can attain, and

therefore, the parameters that maximize f(B | D) are those given by the OFE. �

The Theorem 4.3.4 implies that by replacing the second term in (4.20) by (a non-negative

multiple of) f(B | T) in Equation (4.22), we get a criterion where the first and second terms

are maximized by the OFE parameters. We will now proceed to determine a suitable value

for the parameter λ appearing in Equation (4.22).

To clarify the analysis, we introduce the following short-hand notations:

A1 = Nijcθijck, A2 = Nijc,

B1 = Nij(1−c)θij(1−c)k, B2 = Nij(1−c).
(4.25)

74 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

With simple algebra, we can rewrite the logarithm in the second term of Equation (4.20)

using the above notations as

log

(
θijck

θij(1−c)k

)
= log

(
NijcNij(1−c)
NijcNij(1−c)

× θijck
θij(1−c)k

)

= log

(
Nij(1−c)
Nijc

× Nijcθijck
Nij(1−c)θij(1−c)k

)

= log

(
Nijcθijck

Nij(1−c)θij(1−c)k

)
− log

(
Nijc

Nij(1−c)

)

= log

(
A1

B1

)
− log

(
A2

B2

)
. (4.26)

Similarly, the logarithm in (4.22) becomes

λ log


 θijck

Nijc

Nij∗
θijck +

Nij(1−c)

Nij∗
θij(1−c)k




= λ log


NijcNij∗
NijcNij∗

× θijck
Nijc

Nij∗
θijck +

Nij(1−c)

Nij∗
θij(1−c)k


+ ρ− ρ

= λ log

(
Nij∗
Nijc

× Nijcθijck
Nijcθijck +Nij(1−c)θij(1−c)k

)
+ ρ− ρ

= λ log

(
Nijcθijck

Nijcθijck +Nij(1−c)θij(1−c)k

)
+ ρ− λ log

(
Nijc

Nij∗

)
− ρ

= λ log

(
Nijcθijck

Nijcθijck +Nij(1−c)θij(1−c)k

)
+ ρ− λ log

(
Nijc

Nijc +Nij(1−c)

)
− ρ

= λ log

(
A1

A1 +B1

)
+ ρ− λ log

(
A2

A2 +B2

)
− ρ, (4.27)

where we used Nij∗ = Nijc+Nij(1−c); we have introduced the constant ρ that was added and

subtracted without changing the value of the expression for a reason that will become clear

shortly. By comparing Equation (4.26) and Equation (4.27), it can be seen that the latter is

obtained from the former by replacing expressions of the form log(A
B
) by expressions of the

form λ log(A
A+B

) + ρ.

We can simplify the two-variable approximation to a single variable one by taking W =

A
A+B

. In this case we have that A
B

= W
1−W , and so we propose to apply once again the least

squares method to approximate the function

g(W) = log

(
W

1−W

)

by

ĝ(W) = λ log (W) + ρ.

4.3. DEVELOPING A NEW SCORING CRITERION 75

The role of the constant ρ is simply to translate the approximate function to better match

the target g(W).

As in the previous approximation, here too it is necessary to make assumptions about the

values of A and B (and thus W), in order to find suitable values for the parameters λ and

ρ. Again, we stress that the sole purpose of the assumption is to guide in the choice of the

parameters.

As both A1, A2, B1, and B2 in Equation (4.25) are all non-negative, the ratio Wi =
Ai

Ai+Bi

is always between zero and one, for both i ∈ {1, 2}, and hence it is natural to make the

straightforward assumption that W1 and W2 are uniformly distributed along the unit interval.

This gives us the following assumption.

Assumption 2 We assume that

Nijcθijck
Nijcθijck +Nij(1−c)θij(1−c)k

∼ Uniform(0, 1), and

Nijc

Nijc +Nij(1−c)
∼ Uniform(0, 1).

Herein, it is worthwhile noticing that although the previous assumption was meant to

hold for general parameters, in practice, we know in this case that OFE will be used. Hence,

Assumption 2 reduces to

Nijck

Nij∗k
∼ Uniform(0, 1), and

Nijc

Nij∗
∼ Uniform(0, 1).

Under this assumption, the mean square error of the approximation can be minimized

analytically, yielding the following solution.

Theorem 4.3.6 Under Assumption 2, the values of λ and ρ that minimize the mean square

error (MSE) of ĝ w.r.t. g are given by

λ =
π2

6
, and (4.28)

ρ =
π2

6 ln(2)
. (4.29)

Proof: We have that

S(λ, ρ) =

1∫

0

(
log

(
x

1− x

)
− (λ log (x) + ρ)

)2

dx

=
6λ2 + π2 + 3ρ2 ln2(2)− λ

(
π2 + 6ρ ln(2)

)

3 ln2(2)
.

76 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Moreover ∇.S = 0 iff

λ =
π2

6
,

ρ =
π2

6 ln(2)
,

which coincides with (4.28) and (4.29), respectively. The Hessian of S when ∇.S = 0 is



4
ln2(2)

− 2
ln(2) ,

− 2
ln(2) 2




with eigenvalues

2 + ln2(2) ±
√

4 + ln4(2)

ln2(2)

which are both positive. So, since there is only one zero, (λ, ρ) is a global minimum. �

Theorem 4.3.7 The approximation ĝ with λ and ρ defined as in Theorem 4.3.6 is the min-

imum variance unbiased (MVU) approximation of g.

Proof: We have that

1∫

0

(
log

(
x

1− x

)
− (λ log(x) + ρ)

)
dx = 0,

for λ and ρ defined as in (4.28) and (4.29). Moreover, we have that for unbiased approxima-

tions the MSE coincides with the variance. Therefore, the proposed approximation is the one

with minimum variance. �

In order to get an idea of the accuracy of the approximation ĝ, consider the graph of

log
(

w
1−w

)
and λ log (w)+ρ in Figure 4.3. It may appear problematic that the approximation

gets worse as w tends to one. However this is actually unavoidable since that is precisely

where âCLL diverges, and our goal is to obtain a criterion that is uniformly bounded.

To wrap up, we first rewrite the logarithm of the second term in Equation (4.20) using

formula (4.26), and then apply the above approximation to both terms to get

log

(
θijck

θij(1−c)k

)
≈ λ log

(
Nijcθijck

Nijcθijck +Nij(1−c)θij(1−c)k

)
+ ρ− λ log

(
Nijc

Nij∗

)
− ρ, (4.30)

where ρ cancels out. A similar analysis can be applied to rewrite the logarithm of the third

term in Equation (4.20) leading to

log

(
θc

θ(1−c)

)
= log

(
θc

1− θc

)
≈ λ log (θc) + ρ. (4.31)

4.3. DEVELOPING A NEW SCORING CRITERION 77

g(w)

g
`

(w)

0.2 0.4 0.6 0.8 1.0
w

-4

-3

-2

-1

0

1

2

3

Figure 4.3: Plot of g and ĝ.

Plugging the approximations of Equations (4.30) and (4.31) into Equation (4.20) gives us

finally the factorized conditional log-likelihood (fCLL) score:

fCLL(B | T) = (α+ β)LL(B | T)

− βλ
n∑

i=1

q∗i∑

j=1

ri∑

k=1

1∑

c=0

Nijck

(
log

(
Nijcθijck

Nijcθijck +Nij(1−c)θij(1−c)k

)
− log

(
Nijc

Nij∗

))

− βλ

1∑

c=0

Nc log(θc)− βNρ.

(4.32)

Observe that the third term of Equation (4.32) is such that

−βλ
1∑

c=0

Nc log(θc) = −βλN
1∑

c=0

Nc

N
log(θc), (4.33)

and, since β < 0, by Gibbs inequality (see Lemma 4.3.5 in Appendix A at page 73) the

parameters that maximize Equation (4.33) are given by the OFE, that is, θ̂c =
Nc

N
. Therefore,

by Theorem 4.3.4 (page 72), given a fixed structure, the maximizing parameters of fCLL are

easily obtained as OFE. Moreover, the fCLL score is clearly decomposable.

As a final step, we plug in the OFE parameters, Equation (4.1), into the fCLL criterion,

Equation (4.32), to obtain

f̂CLL(G | T) = (α+ β)L̂L(B | T)

− βλ

n∑

i=1

q∗i∑

j=1

ri∑

k=1

1∑

c=0

Nijck

(
log

(
Nijck

Nij∗k

)
− log

(
Nijc

Nij∗

))

−
1∑

c=0

Ncβλ log

(
Nc

N

)
− βNρ,

(4.34)

78 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

where we also use the OFE parameters in the log-likelihood L̂L. Observe that we can drop

the last two terms in Equation (4.34) as they become constants for a given dataset.

4.3.2 Information-theoretical interpretation

Before we present empirical results illustrating the behavior of the proposed scoring criteria,

we point out that the f̂CLL criterion has an interesting information-theoretic interpretation

based on interaction information. We will first rewrite LL in terms of conditional mutual

information, and then, similarly, rewrite the second term of f̂CLL in Equation (4.34) in terms

of interaction information.

As Friedman et al. (1997) point out, the local contribution of the i-th variable to LL(B | T)
(recall Equation (4.2)) is given by

N

q∗i∑

j=1

1∑

c=0

ri∑

k=1

Nijck

N
log

(
Nijck

Nijc

)
= −NH

P̂T
(Xi | Π∗Xi

, C)

= −NH
P̂T

(Xi | C) +NI
P̂T

(Xi ; Π
∗
Xi
| C), (4.35)

where H
P̂T

(Xi | . . .) denotes the conditional entropy, and I
P̂T

(Xi ; Π
∗
Xi
| C) denotes the

conditional mutual information, see Cover and Thomas (2006). The subscript P̂T indicates

that the information theoretic quantities are evaluated under the joint distribution P̂T of

(X, C) induced by the OFE parameters.

Since the first term on the right-hand side of (4.35) does not depend on Π∗Xi
, finding the

parents of Xi that maximize LL(B | T) is equivalent to choosing the parents that maximize

the second term, NI
P̂T

(Xi ; Π
∗
Xi
| C), which measures the information that Π∗Xi

provides

about Xi when the value of C is known.

Let us now turn to the second term of the f̂CLL score in Equation (4.34). The contribution

of the i-th variable in it can also be expressed in information theoretic terms as follows:

−βλN
(
H

P̂T
(C | Xi,Π

∗
Xi
)−H

P̂T
(C | Π∗Xi

)
)

= βλNI
P̂T

(C ; Xi | Π∗Xi
)

= βλN
(
I
P̂T

(C ; Xi ; Π
∗
Xi
) + I

P̂T
(C ; Xi))

)
, (4.36)

where I
P̂T

(C ; XI ; Π
∗
Xi
) denotes the interaction information (McGill, 1954), or the “co-

information” (Bell, 2003); for a review on the history and use of interaction information

in machine learning and statistics, see Jakulin (2005).

4.3. DEVELOPING A NEW SCORING CRITERION 79

Since I
P̂T

(Xi ; C) in Equation (4.36) does not depend on Π∗Xi
, finding the parents of Xi

that maximize the sum amounts to maximizing the interaction information. This is intuitive,

since the interaction information measures the increase — or the decrease, as it can also be

negative — of the mutual information between Xi and C when the parent set Π∗Xi
is included

in the model.

All said, the f̂CLL criterion can be written as

f̂CLL(G | T) =
n∑

i=1

(α+ β)NI
P̂T

(Xi ; Π
∗
Xi
| C)− βλNI

P̂T
(C ; Xi ; Π

∗
Xi
) + const, (4.37)

where const is a constant independent of the network structure and can thus be omitted. To

get a concrete idea of the trade-off between the first two terms, the numerical values of the

constants can be evaluated to obtain

f̂CLL(G | T) ≈
n∑

i=1

0.322NI
P̂T

(Xi ; Π
∗
Xi
| C) + 0.557N I

P̂T
(C ; Xi ; Π

∗
Xi
) + const. (4.38)

Normalizing the weights shows that the first term that determines the behavior of the LL

criterion, Equation (4.35), has proportional weight of approximately 36.7 percent, while the

second term that gives f̂CLL criterion its discriminative nature has the weight 63.3 percent.

The particular linear combination of the two terms in Equation (4.38) brings out the question

what would happen in only one of the terms was retained, or equivalently, if one of the weights

was set to zero. As mentioned above, the first term corresponds to the LL criterion, and

hence, setting the weight of the second term to zero would reduce the criterion to LL. We also

experimented with a criterion where only the second term is retained but this was observed

to yield poor results; for details, see the additional material at the fCLL web page.2

In addition to the insight provided by the information-theoretic interpretation of f̂CLL, it

also provides a practically most useful corollary: the f̂CLL criterion is score equivalent. Recall

that a scoring criterion is said to be score equivalent if it assigns the same score to all network

structures encoding the same independence assumptions, see Definition 3.1.9 (page 29) or

(Verma and Pearl, 1990; Chickering, 2002; Yang and Chang, 2002; de Campos, 2006).

Theorem 4.3.8 The f̂CLL criterion is score equivalent for augmented naive Bayes classifiers.

Proof: By Theorem 2 in Chickering (1995), it is enough to show that for graphs G1 and G2

differing only on reversing one covered edge, we have that f̂CLL(G1 | T) = f̂CLL(G2 | T).
2http://kdbio.inesc-id.pt/∼asmc/software/fCLL.html

80 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Assume that X → Y occurs in G1 and Y → X occurs in G2 and that X → Y is covered,

that is, ΠG1
Y = ΠG1

X ∪{X}. Since we are only dealing with augment naive Bayes classifiers, X

and Y are different from C and so we also have Π∗G1
Y = Π∗G1

X ∪ {X}. Moreover, take G0 to

be the graph G1 without the edge X → Y (which is the same as graph G2 without the edge

Y → X). Then, we have that

Π∗G0
X = Π∗G0

Y = Π∗G0

and, moreover, the following equalities hold:

Π∗G1
X = Π∗G0 ; Π∗G2

Y = Π∗G0 ;

Π∗G1
Y = Π∗G0 ∪ {X}; Π∗G2

X = Π∗G0 ∪ {Y }.

Since f̂CLL is a local scoring criterion, f̂CLL(G1 | T) can be computed from f̂CLL(G0 |
T) taking only into account the difference in the contribution of node Y . In this case, by

Equation (4.37), it follows that

f̂CLL(G1 | T) = f̂CLL(G0 | T)− ((α+ β)I
P̂T

(Y ; Π∗G0)− λβI
P̂T

(Y ; Π∗G0 ;C)) +

+((α+ β)I
P̂T

(Y ; Π∗G1

Y)− λβI
P̂T

(Y ; Π∗G1

Y ;C))

= f̂CLL(G0 | T) + (α+ β)(I
P̂T

(Y ; Π∗G0 ∪ {X})− I
P̂T

(Y ; Π∗G0)) +

−λβ(I
P̂T

(Y ; Π∗G0 ∪ {X};C))− I
P̂T

(Y ; Π∗G0 ;C))

and, similarly, we have that

f̂CLL(G2 | T) = f̂CLL(G0 | T) + (α+ β)(I
P̂T

(X ; Π∗G0 ∪ {Y })− I
P̂T

(X ; Π∗G0)) +

−λβ(I
P̂T

(X ; Π∗G0 ∪ {Y };C)− I
P̂T

(X ; Π∗G0 ;C)).

To show that f̂CLL(G1 | T) = f̂CLL(G2 | T) it suffices to prove that

I
P̂T

(Y ; Π∗G0 ∪ {X}) − I
P̂T

(Y ; Π∗G0) = I
P̂T

(X; Π∗G0 ∪ {Y })− I
P̂T

(X; Π∗G0) (4.39)

and that

I
P̂T

(Y ; Π∗G0∪{X};C)−I
P̂T

(Y ; Π∗G0 ;C) = I
P̂T

(X; Π∗G0∪{Y };C))−I
P̂T

(X; Π∗G0 ;C). (4.40)

We start by showing (4.39). In this case, by definition of mutual information, we have that

I
P̂T

(Y ; Π∗G0 ∪ {X})− I
P̂T

(Y ; Π∗G0) = H
P̂T

(Y) +H
P̂T

(Π∗G0 ∪ {X})−H
P̂T

(Π∗G0 ∪ {X,Y }) +

−H
P̂T

(Y)−H
P̂T

(Π∗G0) +H
P̂T

(Π∗G0 ∪ {Y })

= −H
P̂T

(Π∗G0) +H
P̂T

(Π∗G0 ∪ {X}) +H
P̂T

(Π∗G0 ∪ {Y }) +

−H
P̂T

(Π∗G0 ∪ {X,Y })

= I
P̂T

(X ; Π∗G0 ∪ {Y })− I
P̂T

(X ; Π∗G0).

4.3. DEVELOPING A NEW SCORING CRITERION 81

Finally, each addend in (4.40) is, by definition, given by

I
P̂T

(Y ; Π∗G0 ∪ {X};C) = I
P̂T

(Y ; Π∗G0 ∪ {X} | C)− I
P̂T

(Y ; Π∗G0 ∪ {X})
︸ ︷︷ ︸

A

I
P̂T

(Y ; Π∗G0 ;C) = I
P̂T

(Y ; Π∗G0 | C)− I
P̂T

(Y ; Π∗G0)
︸ ︷︷ ︸

B

I
P̂T

(X ; Π∗G0 ∪ {Y };C) = I
P̂T

(X ; Π∗G0 ∪ {Y } | C)− I
P̂T

(X ; Π∗G0 ∪ {Y })
︸ ︷︷ ︸

C

I
P̂T

(X ; Π∗G0 ;C) = I
P̂T

(X ; Π∗G0 | C)− I
P̂T

(X ; Π∗G0

︸ ︷︷ ︸
T

)

and since by (4.39) we know that A−B = C −D, for obtaining equality (4.40) it is enough

to prove that

I
P̂T

(Y ; Π∗G0 ∪ {X} | C)− I
P̂T

(Y ; Π∗G0 | C) = I
P̂T

(X; Π∗G0 ∪ {Y } | C)− I
P̂T

(X; Π∗G0 | C).

We conclude the proof by noticing that, by definition of conditional mutual information, we

have

I
P̂T

(Y ; Π∗G0 ∪ {X} | C) − I
P̂T

(Y ; Π∗G0 | C) =

= H
P̂T

(Y | C) +H
P̂T

(Π∗G0 ∪ {X} | C)−H
P̂T

(Π∗G0 ∪ {X,Y } | C) +

−H
P̂T

(Y | C)−H
P̂T

(Π∗G0 | C) +H
P̂T

(Π∗G0 ∪ {Y } | C)

= −H
P̂T

(Π∗G0 | C) +H
P̂T

(Π∗G0 ∪ {X} | C) +H
P̂T

(Π∗G0 ∪ {Y } | C) +

−H
P̂T

(Π∗G0 ∪ {X,Y } | C)

= I
P̂T

(X ; Π∗G0 ∪ {Y } | C)− I
P̂T

(X ; Π∗G0 | C). �

The practical utility of the above result is due to the fact that it enables the use of

powerful algorithms, such as the tree-learning method by Chow and Liu (1968), in learning

TAN classifiers.

4.3.3 Beyond binary classification

Although âCLL and f̂CLL scoring criteria were devised having in mind binary classification

tasks, their application in multi-classification problems is straightforward. For the case of

f̂CLL, the expression (4.34) does not even require any computation based on dual observations.

Hence, it can be trivially adapted for non-binary classification tasks. On the other hand,

the score âCLL described in (4.21) takes into account dual observations. So, for multi-

classification problems, we considered Nij(1−c)k = Nijc −Nijck and Nij(1−c) = Nij −Nijc.

82 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Finally, we point out that despite being derived under the augmented naive Bayes model,

the f̂CLL score can be readily applied to models where the class variable is not a parent of

some of the attributes. Hence, we can use it as a criterion for learning more general structures.

The empirical results below demonstrate that this indeed leads to good classifiers.

4.4 Experimental results

We implemented the f̂CLL scoring criterion on top of the WEKA java package (Hall et al.,

2009). Unfortunately, this open-source package does not provide an implementation of the

TAN classifier for non-score-equivalent scoring functions, such as the âCLL scoring criterion.

This kind of metrics requires Edmonds’ algorithm to build a maximal directed spanning tree

(see Edmonds, 1967; Lawler, 1976) instead of an undirected one as in Chow-Liu algorithm.

Edmonds’ algorithm had already been implemented by Carvalho et al. (2007) in Mathematica

7.0 on top of the Combinatorica package (Pemmaraju and Skiena, 2003). Hence, we decided

to do a preliminary implementation of âCLL in this Mathematica package. The source code,

jointly with the datasets used in the experiments, can be found at the fCLL web page.3

We evaluated the performance of âCLL and f̂CLL scoring criteria in classification tasks

comparing them with state-of-the-art classifiers. We performed our evaluation on the same 25

benchmark datasets used by Friedman et al. (1997). These include 23 datasets from the UCI

repository of Newman et al. (1998) and two artificial datasets, corral and mofn, designed by

Kohavi and John (1997), to evaluate methods for feature subset selection. A description of

the datasets is presented in Table 4.2. The continuous-valued attributes in the datasets were

discretized in a supervised manner using the entropy-based method suggested by Fayyad and

Irani (1993). For this task we used the WEKA package.4 Moreover, instances with missing

values were removed from the datasets.

The classifiers used in the experiments were:

• GHC2: Greedy hill climber classifier with up to 2 parents.

• TAN: Tree augmented naive Bayes classifier.

3http://kdbio.inesc-id.pt/∼asmc/software/fCLL.html
4Supervised discretization were performed via weka.filters.supervised.attribute.Discretize, with de-

fault parameters. This discretization improved the accuracy of all classifiers used in the experiments, including

those not requiring discretization (referred to as C4.5, k-NN, SVM’s and LogR).

4.4. EXPERIMENTAL RESULTS 83

Dataset Features Classes Train Test

1 australian 15 2 690 CV-5

2 breast 10 2 683 CV-5

3 chess 37 2 2130 1066

4 cleve 14 2 296 CV-5

5 corral 7 2 128 CV-5

6 crx 16 2 653 CV-5

7 diabetes 9 2 768 CV-5

8 flare 11 2 1066 CV-5

9 german 21 2 1000 CV-5

10 glass 10 7 214 CV-5

11 glass2 10 2 163 CV-5

12 heart 14 2 270 CV-5

13 hepatitis 20 2 80 CV-5

14 iris 5 3 150 CV-5

15 letter 17 26 15000 5000

16 lymphography 19 4 148 CV-5

17 mofn-3-7-10 11 2 300 1024

18 pima 9 2 768 CV-5

19 satimage 37 6 4435 2000

20 segment 20 7 1540 770

21 shuttle-small 10 7 3866 1934

22 soybean-large 36 19 562 CV-5

23 vehicle 19 4 846 CV-5

24 vote 17 2 435 CV-5

25 waveform-21 22 3 300 4700

Table 4.2: Description of datasets used in the experiments.

• C4.5: C4.5 classifier.

• k-NN: k-nearest neighbor classifier, with k = 1, 3, 5.

• SVM: Support vector machine with linear kernel.

• SVM2: Support vector machine with polynomial kernel of degree 2.

• SVMG: Support vector machine with Gaussian or radial basis function (RBF) kernel.

• LogR: Logistic regression.

Bayesian network-based classifiers (GHC2 and TAN) were evaluated in different flavors, de-

pending on the scoring criterion and the estimator used to learn the structure and the pa-

rameters. Each variant along with the implementation used in the experiments is described

in Table 4.3. Other state-of-the-art classifiers (C4.5, k-NN, SVMs and LogR) used in the

experiments are described along side with the respective implementations in Table 4.4. In

84 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

all implementations default parameters were used, except for those given parenthetically and

those described in the next 2 paragraphs.

Classifier Struct. Param. Implementation

GHC2 LL OFE HillClimber (P=2) implementation from WEKA

GHC2 f̂CLL OFE HillClimber (P=2) implementation from WEKA

TAN LL OFE TAN implementation from WEKA

TAN LL ELR TAN implementation from Greiner and Zhou (2002)

TAN âCLL OFE TAN implementation from Carvalho et al. (2007)

TAN f̂CLL OFE TAN implementation from WEKA

Table 4.3: Bayesian network-based classifiers used in the experiments.

Classifier Implementation

C4.5 J48 implementation from WEKA

1-NN IBk (K=1) implementation from WEKA

3-NN IBk (K=3) implementation from WEKA

5-NN IBk (K=5) implementation from WEKA

SVM SMO implementation from WEKA

SVM2 SMO with PolyKernel (E=2) implementation from WEKA

SVMG SMO with RBFKernel implementation from WEKA

LogR Logistic implementation from WEKA

Table 4.4: Other state-of-the-art classifiers used in the experiments.

Excluding TAN classifiers obtained with the ELR method, we improved the performance

of TAN, as well as of GHC2, classifiers using Dirichlet priors (see Heckerman et al. (1995)) to

smooth the network parameters. Friedman et al. (1997) found this procedure to be particu-

larly important in small datasets where the estimation of the conditional probabilities, given

the parent attributes plus the class variable, is unreliable. We achieve this purpose in WEKA

by setting the alpha parameter of the OFE to 0.5. In practice, this is the default value for

this parameter in WEKA, and the value for which we obtained the highest average accuracy

among all classifiers. The same methodology was carried out in the TAN implementation of

the Mathematica package. Moreover, for discriminative parameter learning with ELR, the

parameters are initialized to the values obtained by the OFE. The gradient descent parameter

optimization is terminated using cross tuning as suggested in Greiner et al. (2005).

4.4. EXPERIMENTAL RESULTS 85

Concerning SVM models, we used three different kernels: (i) a linear kernel of the form

K(xi,xj) = xT
i xj; (ii) a polynomial kernel of the form K(xi,xj) = (xT

i xj)
2; and (iii) a RBF

kernel of the form K(xi,xj) = exp(−γ||xi − xj ||2). Following the canon of the literature

(see Hsu et al., 2003), we used a grid-search on the penalty parameter C5 and the RBF

kernel parameter γ, using cross-validation. More rigorously, for the linear and polynomial

kernel we selected C from [10−1, 1, 10, 102] by using 5-fold cross-validation on the training set.

For the RBF kernel we selected C and γ from [10−1, 1, 10, 102] and [10−3, 10−2, 10−1, 1, 10],

respectively, by using 5-fold cross-validation on the training set.

The accuracy of each classifier is based on the percentage of successful predictions on the

test sets of each dataset. As suggested by Friedman et al. (1997), accuracy was measured via

the holdout method for larger training sets, and via stratified 5-fold cross-validation for smaller

ones, using the methods described by Kohavi (1995). Throughout the experiments, we used

exactly the same folds, hence, the same information was available for training and testing

all classifiers. To achieve this, data was previously discretized and shuffled and all evaluated

implementations were updated, including the ELR implementation, in order to construct

exactly the same folds for a given dataset. Results are presented in Table 4.5 and Table 4.6,

where the accuracy is annotated with the standard deviation. The standard deviation is

computed according to the binomial formula
√

acc× (1− acc)/m, where acc is the classifier

accuracy and, for the cross-validation tests, m is the size of the dataset. For the case of

holdout tests, m is the size of the test set. In addition, scatter plots of the accuracies of the

proposed methods against the others are depicted in Figure 4.4 and Figure 4.5. Points above

the diagonal line represent cases where the method shown in the vertical axis performs better

than the one on the horizontal axis. Crosses over the points depict the standard deviation.

We compared the performance of the classifiers using Wilcoxon signed-rank tests, using

the same procedure as Grossman and Domingos (2004). This test is applicable when paired

classification accuracy differences, along the datasets, are independent and non-normally dis-

tributed. Alternatively, a paired t-test could be used. However, given that some accuracies are

obtained with cross-validation, there is no reason to assume normally distributed classification

accuracy differences as the central limit theorem cannot be applied. Furthermore, Wilcoxon

5The penalty parameter C required by SVM models controls the trade off between allowing training errors

and forcing rigid margins, providing a soft margin that allows some misclassifications for non-separable cases.

86 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Classifier GHC2 GHC2 TAN TAN TAN TAN
Struct. Learning LL f̂CLL LL LL âCLL f̂CLL
Param. Learning OFE OFE OFE ELR OFE OFE

1 australian 85.22 85.51 84.93 84.35 85.51 85.36
±1.35 ±1.34 ±1.36 ±1.38 ±1.34 ±1.35

2 breast 96.19 97.36 96.19 96.19 97.66 97.66
±0.73 ±0.61 ±0.73 ±0.73 ±0.58 ±0.58

3 chess 91.72 92.92 92.36 97.09 91.84 93.01
±0.84 ±0.79 ±0.81 ±0.51 ±0.84 ±0.78

4 cleve 81.42 82.77 81.76 80.79 84.12 82.77
±2.26 ±2.19 ±2.24 ±2.29 ±2.12 ±2.19

5 corral 98.44 99.22 100.00 100.00 99.22 100.00
±1.10 ±0.78 ±0.00 ±0.00 ±0.78 ±0.00

6 crx 84.99 86.06 85.45 85.44 86.22 87.14
±1.40 ±1.36 ±1.38 ±1.38 ±1.35 ±1.31

7 diabetes 78.91 79.17 79.04 78.77 78.12 78.91
±1.47 ±1.47 ±1.47 ±1.48 ±1.49 ±1.47

8 flare 82.74 82.93 82.55 81.71 80.3 82.55
±1.16 ±1.15 ±1.16 ±1.18 ±1.22 ±1.16

9 german 73.30 73.90 73.30 73.90 75.80 74.20
±1.4 ±1.39 ±1.4 ±1.39 ±1.35 ±1.38

10 glass 77.10 78.97 76.64 75.27 73.83 78.97
±2.87 ±2.79 ±2.89 ±2.95 ±3.00 ±2.79

11 glass2 85.89 85.89 85.89 86.46 85.28 85.89
±2.73 ±2.73 ±2.73 ±2.68 ±2.78 ±2.73

12 heart 82.59 83.70 81.85 82.22 85.93 83.70
±2.31 ±2.25 ±2.35 ±2.33 ±2.12 ±2.25

13 hepatitis 86.25 88.75 86.25 88.75 85.00 90.00
±3.85 ±3.53 ±3.85 ±3.53 ±3.99 ±3.35

14 iris 93.33 94.67 93.33 93.33 94.00 94.00
±2.04 ±1.83 ±2.04 ±2.04 ±1.94 ±1.94

15 letter 86.14 86.44 86.06 88.96 86.14 86.40
±0.49 ±0.48 ±0.49 ±0.44 ±0.49 ±0.48

16 lymphography 81.76 85.14 83.11 86.46 83.78 83.11
±3.17 ±2.92 ±3.08 ±2.81 ±3.03 ±3.08

17 mofn 90.61 90.61 90.90 100.00 90.04 90.90
±1.68 ±1.68 ±1.66 ±0.00 ±1.73 ±1.66

18 pima 78.26 78.39 78.52 77.74 78.39 78.52
±1.49 ±1.49 ±1.48 ±1.50 ±1.49 ±1.48

19 satimage 88.54 88.25 87.86 87.60 88.20 88.20
±0.71 ±0.72 ±0.73 ±0.74 ±0.72 ±0.72

20 segment 95.29 92.49 95.29 95.58 91.17 92.24
±0.76 ±0.95 ±0.76 ±0.74 ±1.02 ±0.96

21 shuttle 99.85 100.00 99.85 99.84 100.00 100.00
±0.09 ±0.00 ±0.09 ±0.09 ±0.00 ±0.00

22 soybean 93.42 93.42 92.35 93.24 91.99 93.42
±1.05 ±1.05 ±1.12 ±1.06 ±1.14 ±1.05

23 vehicle 73.17 72.10 72.58 72.93 70.33 72.10
±1.52 ±1.54 ±1.53 ±1.53 ±1.57 ±1.54

24 vote 94.48 91.03 94.25 94.94 93.33 91.49
±1.09 ±1.37 ±1.12 ±1.05 ±1.20 ±1.34

25 waveform 75.28 78.19 75.3 75.34 78.26 77.72
±0.63 ±0.60 ±0.63 ±0.63 ±0.60 ±0.61

Table 4.5: Accuracy of Bayesian network-based classifiers annotated with the standard devi-

ation.

4.4. EXPERIMENTAL RESULTS 87

Classifier C4.5 1-NN 3-NN 5-NN SVM SVM2 SVMG LogR

1 australian 85.94 82.46 85.36 85.94 84.78 75.80 82.61 83.62
±1.32 ±1.45 ±1.35 ±1.32 ±1.37 ±1.63 ±1.44 ±1.41

2 breast 95.90 97.07 96.93 96.93 97.51 96.05 96.63 96.63
±0.76 ±0.65 ±0.66 ±0.66 ±0.60 ±0.75 ±0.69 ±0.69

3 chess 99.45 94.85 95.22 94.20 96.87 99.26 99.17 97.24
±0.23 ±0.68 ±0.65 ±0.72 ±0.53 ±0.26 ±0.28 ±0.50

4 cleve 76.69 78.38 80.41 82.77 82.09 72.97 78.38 81.42
±2.46 ±2.39 ±2.31 ±2.19 ±2.23 ±2.58 ±2.39 ±2.26

5 corral 92.19 92.19 92.19 92.19 89.06 100.00 100.00 88.28
±2.37 ±2.37 ±2.37 ±2.37 ±2.76 ±0.00 ±0.00 ±2.84

6 crx 85.91 82.70 85.15 86.22 86.98 79.94 82.54 86.37
±1.36 ±1.48 ±1.39 ±1.35 ±1.32 ±1.57 ±1.49 ±1.34

7 diabetes 77.6 78.12 77.86 77.73 77.47 76.56 77.86 78.65
±1.50 ±1.49 ±1.50 ±1.50 ±1.51 ±1.53 ±1.50 ±1.48

8 flare 82.27 80.11 81.24 82.65 82.46 82.27 80.49 82.55
±1.17 ±1.22 ±1.20 ±1.16 ±1.16 ±1.17 ±1.21 ±1.16

9 german 73.00 69.80 70.40 73.20 75.60 66.60 71.40 75.80
±1.40 ±1.45 ±1.44 ±1.40 ±1.36 ±1.49 ±1.43 ±1.35

10 glass 75.70 79.44 77.10 73.83 75.70 77.10 78.04 73.83
±2.93 ±2.76 ±2.87 ±3.00 ±2.93 ±2.87 ±2.83 ±3.00

11 glass2 82.82 86.50 83.44 80.37 86.50 87.73 88.34 86.50
±2.95 ±2.68 ±2.91 ±3.11 ±2.68 ±2.57 ±2.51 ±2.68

12 heart 82.96 83.33 82.59 83.70 84.81 78.52 83.70 84.81
±2.29 ±2.27 ±2.31 ±2.25 ±2.18 ±2.50 ±2.25 ±2.18

13 hepatitis 85.00 87.50 91.25 92.50 83.75 87.50 87.50 78.75
±3.99 ±3.70 ±3.16 ±2.94 ±4.12 ±3.70 ±3.70 ±4.57

14 iris 93.33 94.00 94.67 94.67 94.00 92.67 92.67 92.67
±2.04 ±1.94 ±1.83 ±1.83 ±1.94 ±2.13 ±2.13 ±2.13

15 letter 77.50 90.92 89.60 89.04 89.00 94.20 94.16 86.10
±0.59 ±0.41 ±0.43 ±0.44 ±0.44 ±0.33 ±0.33 ±0.49

16 lymphography 78.38 83.11 83.11 81.76 82.43 81.76 82.43 69.59
±3.38 ±3.08 ±3.08 ±3.17 ±3.13 ±3.17 ±3.13 ±3.78

17 mofn 85.58 89.06 86.35 85.48 100.00 99.90 100.00 100.00
±2.03 ±1.80 ±1.98 ±2.03 ±0.00 ±0.18 ±0.00 ±0.00

18 pima 77.21 76.95 76.82 76.69 78.91 76.95 77.08 78.26
±1.51 ±1.52 ±1.52 ±1.53 ±1.47 ±1.52 ±1.52 ±1.49

19 satimage 82.33 87.86 87.96 87.82 85.19 88.69 88.25 83.54
±0.85 ±0.73 ±0.73 ±0.73 ±0.79 ±0.71 ±0.72 ±0.83

20 segment 94.15 94.02 93.38 91.48 94.66 97.33 97.46 94.53
±0.85 ±0.85 ±0.9 ±1.01 ±0.81 ±0.58 ±0.57 ±0.82

21 shuttle 99.70 99.9 99.75 99.64 99.95 100.00 100.00 99.95
±0.13 ±0.07 ±0.11 ±0.14 ±0.05 ±0.00 ±0.00 ±0.05

22 soybean 91.28 90.21 89.86 89.32 91.46 91.46 91.99 89.15
±1.19 ±1.25 ±1.27 ±1.30 ±1.18 ±1.18 ±1.14 ±1.31

23 vehicle 67.73 71.04 71.16 71.39 71.75 74.00 64.54 70.80
±1.61 ±1.56 ±1.56 ±1.55 ±1.54 ±1.51 ±1.64 ±1.56

24 vote 95.17 92.87 93.56 93.33 93.33 94.02 95.17 92.64
±1.03 ±1.23 ±1.18 ±1.20 ±1.20 ±1.14 ±1.03 ±1.25

25 waveform 65.49 70.79 73.19 74.68 77.66 80.51 81.89 71.36
±0.69 ±0.66 ±0.65 ±0.63 ±0.61 ±0.58 ±0.56 ±0.66

Table 4.6: Accuracy of other state-of-the-art classifiers annotated with the standard deviation.

88 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Figure 4.4: Scatter plots of the accuracy of Bayesian network-based classifiers.

signed-rank tests are more conservative than paired t-tests, that is, Wilcoxon signed-rank

tests yield non-statistical significance in cases where paired t-tests do. Results are depicted in

Table 4.7 and Table 4.8. Each entry of Table 4.7 and Table 4.8 gives the Z-test and p-value of

the significance test for the corresponding pairs of classifiers. The arrow points to the superior

learning algorithm, in terms of classification rate. A double arrow is used if the difference is

significant with p-value smaller than 0.05.

Over all, TAN-̂fCLL-OFE and GHC-̂fCLL-OFE performed the best (Tables 4.7–4.8).

They outperformed C4.5, the nearest neighbor classifiers, and logistic regression, as well

as the generatively-trained counterparts, TAN-LL-OFE and GHC-LL-OFE, all differences

being statistically significant at the p < 0.05 level. On the other hand, TAN-âCLL-OFE

did not stand out compared to most of the other methods. Moreover, TAN-̂fCLL-OFE and

GHC-̂fCLL-OFE classifiers fared sightly better than TAN-LL-ELR and the SVM classifiers,

although the difference was not statistically significant. In these cases, the only practically

relevant factor is computational efficiency.

It is worthwhile noticing that the GHC2 implementation from WEKA is not restricted to

4.4. EXPERIMENTAL RESULTS 89

Figure 4.5: Scatter plot of the accuracy of proposed methods against state-of-the-art classi-

fiers.

90 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Classifier GHC2 TAN GHC2 TAN TAN
Struct. f̂CLL âCLL LL LL LL
Param. OFE OFE OFE OFE ELR

TAN 0.37 1.44 2.13 2.13 0.31
f̂CLL 0.36 0.07 0.02 0.02 0.38
OFE ← ← ⇐ ⇐ ←

GHC2 1.49 2.26 2.21 0.06
f̂CLL 0.07 0.01 0.01 0.48
OFE ← ⇐ ⇐ ←

TAN 0.04 -0.34 -1.31
âCLL 0.48 0.37 0.10
OFE ← ↑ ↑

Table 4.7: Statistical significance of the results achieved by the Bayesian network-based clas-

sifiers according to the Wilcoxon signed-rank test.

Classifier C4.5 1-NN 3-NN 5-NN SVM SVM2 SVMG LogR

TAN 3.00 2.25 2.16 2.07 0.43 0.61 0.21 1.80
f̂CLL <0.01 0.01 0.02 0.02 0.33 0.27 0.42 0.04
OFE ⇐ ⇐ ⇐ ⇐ ← ← ← ⇐

GHC2 3.00 2.35 2.20 2.19 0.39 0.74 0.11 1.65
f̂CLL <0.01 <0.01 0.01 0.01 0.35 0.23 0.45 0.05
OFE ⇐ ⇐ ⇐ ⇐ ← ← ← ⇐

TAN 2.26 1.34 1.17 1.31 -0.40 -0.29 -0.55 1.37
âCLL 0.01 0.09 0.12 0.09 0.35 0.38 0.29 0.09
OFE ⇐ ← ← ← ↑ ↑ ↑ ←

Table 4.8: Statistical significance of the results achieved by the other state-of-the-art classifiers

according to the Wilcoxon signed-rank test.

augmented naive Bayes network structures. Therefore, running GHC2 with f̂CLL accounts

for empirically verifying the quality of f̂CLL without augmented naive Bayes restrictions.

Actually, although the theoretical derivation of the score was intended for augmented naive

Bayes classifiers, the class variable does not need to be a parent of the node to compute the

score. This is clear from the criterion used to choose the parents for a certain node described

in the information-theoretical account of f̂CLL in Section 4.3.2. As a matter of fact, in our

experiments, GHC2-̂fCLL-OFE performed significantly better than TAN-LL-OFE, GHC2-

LL-OFE, C4.5, k-NN and LogR classifiers. Moreover, it also outperforms, although the

difference is not statistically significant, SVM’s and TAN-âCLL-OLE classifiers. TAN-̂fCLL-

OFE was the only classifier that showed to performed better that GHC2-̂fCLL-OFE, but the

difference was not statistical significant.

4.4. EXPERIMENTAL RESULTS 91

To roughly characterize the computational complexity of learning the various classifiers,

we measured the total time required by each classifier to process all the 25 datasets. Reporting

the total time instead of the individual times for each dataset will emphasize the significance

of the larger data sets. However, the individual times were in accordance with the general

conclusion drawn from the total time. Most of the methods only took a few seconds (∼ 1− 3

seconds), except for TAN-âCLL-OFE which took a few minutes (∼ 2−3 minutes), SVM with

linear kernel which took some minutes (∼ 17 − 18 minutes), TAN-LL-ELR and SVM with

polynomial kernel which took a few hours (∼ 1− 2 hours) and, finally, LogR and SVM with

RBF kernel which took several hours (∼ 18− 32 hours).

In the case of TAN-âCLL-OFE, the Mathematica package was used. Mathematica is a

symbolic language being per se computationally inefficient. Nevertheless, in theory, TAN-

âCLL-OFE classifiers should have the same computational cost as TAN-LL-OFE, or TAN-

f̂CLL-OFE, being both algorithms quadratic in the number of features and linear in the

number of instances. We attribute the computational cost of TAN-âCLL-OFE to the imple-

mentation on Mathematica, rather than to the method. In what concerns TAN-LL-ELR, the

ELR discriminative parameter learning is computationally more expensive than f̂CLL-based

discriminative learning. In our experiments, TAN-LL-ELR was 3 order of magnitude slower

than TAN-̂fCLL-OFE. Su and Zhang (2006) had already reported a difference of 6 orders of

magnitude, but different datasets were used in their experiments.

We also verified that selection of model parameters in SVMs is extremely time demand-

ing and, in our 25 experiments, the linear kernel was 1 order of magnitude faster than the

polynomial kernel and 2 orders of magnitude faster than the RBF kernel. However, the lin-

ear kernel is already 2 orders of magnitude slower than f̂CLL-based classifiers. The LogR

and SVM with RBF kernel classifiers were the most time demanding ones, being 4 orders

of magnitude slower than f̂CLL-based classifiers. Furthermore, in terms of memory, SVM’s

with polynomial and RBF kernels, as well as LogR, required 1GB of memory, whereas all

other classifiers cope with the standard 128MB. With this empirical analysis, we conclude

that f̂CLL scoring criterion was able to produce effective classifiers, at least comparable with

state-of-the-art ones as ELR, SVM’s and LogR, but did so with a factor of ∼ 500 − 52000

speedup with minimum memory requirements.

92 CHAPTER 4. F̂CLL: FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Chapter 5

CκG: Learning consistent κ-graphs

The contribution of this section consists in a new probabilistic model, based on Bayesian

networks, for TFBS representation which takes into account dependencies among binding

sites. We start by discussing in Section 5.1 the biological motivation for the usage of Bayesian

networks in this context. Next, in Section 5.2, we present some trends and issues related

to the efficient learning of Bayesian networks and propose, in Section 5.3, a new class of

Bayesian networks, exponentially larger than trees, which can still be learned in polynomial-

time. We called this class consistent κ-graph (CκG) Bayesian networks. In Section 5.3.1, we

induce a classifier from the CκG Bayesian network learning algorithm capable of classifying

TFBS’s from a collection of aligned sequences. In the subsequent Section 5.3.2, we provide

a full comparison of the expressiveness of the different Bayesian network models employed

to describe TFBS. We conclude this chapter by presenting in Section 5.3.3 an algorithm for

discriminative learning of two-component mixtures of CκG Bayesian networks, arising from

this effort a new scoring criterion called mixture-based factorized conditional log-likelihood

(mf̂CLL). Finally, we present experimental results in Section 5.4.

5.1 Biological motivation for CκG Bayesian networks

Probabilistic models of TFBS described in Section 2.2.2 can be represented as Bayesian net-

work classifiers. The simplest one is the PSSM that, as noticed by Barash et al. (2003),

together with a background model corresponds to a Naive Bayes classifier with a binary class

variable. The attributes of the classifier are the nucleotide positions within the motif, and

93

94 CHAPTER 5. CκG: LEARNING CONSISTENT κ-GRAPHS

given that the class variable takes value 1, the distribution over the attributes is given by the

PSSM. The background model is usually a uniform distribution, that is, given that the class

variable takes value 0, the distribution over the attributes is uniform.

The Markov chain models used to overcome the strong independence assumptions of

the PSSM model are also Bayesian network classifiers where the topology of the network

is restricted in some way. In the case first-order Markov chains, a total order between the

positions is assumed (the adjacency order), and one position depends only of the previous

one. For the case of n-th Markov chains, dependencies in the previous n positions are allowed

whereas for the case of VLMM’s the number of dependencies at each position may vary.

Finally, PVLMM’s just assume that the total order does not need to be the adjacency order.

We can conclude that finding probabilistic models of TFBS is closely connected to learning

Bayesian networks. This relationship was acknowledged by Barash et al. (2003), where TFBS

models are based on TAN classifiers.

A very important (and mandatory) feature that probabilistic models of TFBS must fulfill

is that learning them must be efficient. Therefore, taking into account the above discussion,

it seems that the best probabilistic TFBS model is the largest set of Bayesian networks that

can be learned in polynomial-time. Unfortunately, the results concerning efficient learning of

Bayesian networks are very restrictive, and tree structures seem to be the upper bound of

efficient Bayesian network learning. In the following, we discuss such hardness results and

then propose a new class of Bayesian networks, exponentially larger than trees, that can still

be learned in polynomial-time. We called this class CκG Bayesian networks and we will use

it afterwards to model TFBS.

5.2 Issues and trends in efficient learning of Bayesian networks

Learning unrestricted Bayesian networks from data under typical scoring criteria is NP-hard

(Chickering et al., 2004). Consequently, the standard methodology for addressing the problem

of learning Bayesian networks became heuristic search, based on scoring metrics optimization,

conducted over some search space. Many algorithms have been proposed along these lines,

varying both on the formulation of the search space (network structures, equivalence classes

of network structures and orderings over the network variables), and on the algorithm to

search the space (greedy hill-climbing, simulated annealing, genetic algorithms, tabu search,

5.2. ISSUES AND TRENDS IN EFFICIENT LEARNING OF BAYESIAN NETWORKS95

etc). Although searching in the space of network structures was commonly considered as

the standard choice, more recently it has been shown that searching the space of orderings

empirically outperforms the standard baseline of greedy hill-climbing, modified with a tabu

list and random restarts, over the space of network structures (Teyssier and Koller, 2005).

There are several reasons why orderings have recently been attracting so much attention

(Teyssier and Koller, 2005; Friedman and Koller, 2003). First, orderings provide a first clue

on the causality of the network variables, which can then be refined in subsequent processing.

By itself, this observation is of limited use, since determining an appropriate ordering is a

difficult problem. Nevertheless, if the search is conducted in the space of orderings, instead of

networks structures, there is a severe decrease in the search space, which simplifies the task.

Second, given an ordering on the network variables, finding an optimal bounded in-degree

network consistent with it is not NP-hard. Indeed, if the in-degree of a node is bounded to

κ, this task can be accomplished in O(nκ) time, where n is the number of variables in the

network. Finally, given a network consistent with some ordering on the variables, there is

no need to check for network cycles, since it is guaranteed that the network will always be

acyclic.

The contribution of the following sections consists in taking a topological sorting of the

optimal tree Bayesian network as a heuristic for a causality order between the network vari-

ables. An efficient candidate for the required topological sorting is the total order induced by

the breadth-first search over the optimal tree, although, any topological sorting can be used.

The main idea is to take a topological sorting over an optimal tree Bayesian network and

then search for an optimal bounded in-degree network consistent with it. The search space

of this procedure is a subclass of Bayesian networks which is more general than trees and

intersect, but is not contained in, polytrees (recall that a polytree is a DAG in which there

are not two different paths from one node to another). This search space consists of directed

acyclic graphs of in-degree at most κ that are consistent with the chosen topological sorting

of the optimal tree Bayesian network, henceforward called consistent κ-graphs (CκG).

The foremost benefit of this approach is that learning CκG Bayesian networks can be done

efficiently, that is, in polynomial time over the number of network variables. Moreover, the

class of networks consistent with a topological sorting is exponentially larger, in the number

of variables, when compared to tree Bayesian networks. The proposed algorithm copes with

96 CHAPTER 5. CκG: LEARNING CONSISTENT κ-GRAPHS

scoring functions that decompose over the network structure, as the f̂CLL score presented in

the previous chapter. We show that the score of the resulting network is always greater than

or equal to the score of an optimal tree Bayesian network.

5.3 Consistent Bayesian networks

A natural approach to efficiently learn structures more complex than trees is to compute the

optimal tree Bayesian network and then allow dependencies consistent with the topological

order induced by this tree. Since, in particular, the optimal tree Bayesian network is consistent

with its topological order, the resulting optimal Bayesian network will score always better

than or the same as the optimal tree. For presenting these results we need to introduce some

auxiliary concepts and notation (refer to Table 5.1).

Symbol Meaning

T training data, T = {y1, . . . ,yN}
N number of instances in T

X set of attributes/nodes, X = {X1, . . . ,Xn}
n number of attributes/nodes

κ in-degree of the considered network graphs

≺ parenthood relation

⊑ topological sorting

R tree Bayesian network

BκR set of all CκG’s w.r.t. the canonical topological sorting (X,⊑) of R
φi contribution of Xi to the decomposable score φ

ΠXi
parents of Xi in the considered network graphs

C class variable

Table 5.1: Definition of terms used in Chapter 5.

A κ-graph is a graph where each node has in-degree at most κ. Trees and forests are

1-graphs. A tree induces a partial order by taking the reflexive and transitive closure of the

parenthood relation ≺ where Xi ≺ Xj if and only if Xi is parent of Xj . We call this partial

order the topological order of the tree. A topological sorting ⊑ of a tree Bayesian network

R is a linear (also known as total) ordering ⊑ between the nodes in R such that it contains

5.3. CONSISTENT BAYESIAN NETWORKS 97

the topological order of R, that is, if Xi ≺ Xj then Xi ⊑ Xj . In general, a tree may induce

several topological sortings since the topological order may be linearized in several different

ways. Any of these possible linear orders (linearized from the induced topological order) are

considered a topological sorting of R. The order that nodes are visited in a breadth-first search

(BFS) of R induces a possible topological sorting. An acyclic graph G = (X, E) is said to be

consistent with a topological order (X,⊑) if Xi ⊑ Xj whenever there is an edge from Xi to

Xj in G.

Definition 5.3.1 (Consistent κ-graph) Given a tree Bayesian network R with a set of

attributes N and a topological sorting (X,⊑) of R, a graph G = (X, E) is said to be a

consistent κ-graph (CκG) w.r.t. (X,⊑) if it is a κ-graph and for any edge in E from Xi to

Xj we have that Xi ⊑ Xj .

From this point on we assume that from any tree we have a canonical way to induce its

topological sorting. As already pointed out, a linear way to do so is by considering the BFS

order. Assuming the BFS order the definition of consistency imposes that there can only exist

an edge from Xi to Xj in a consistent κ-graph G if Xi is less than or as deep as Xj in R. For

the sake of presentation, we assume that if i < j and Xi and Xj are at the same level, then

the BFS over R reaches Xi before Xj . However, there are better ways of ordering nodes at

the same level. A simple approach is to consider a random order. A better one is to compute

the optimal branching solely for tree nodes at the same level and order them with a BFS

over the resulting branching (eventually, applying this procedure recursively). An alternative

approach is to use heuristic methods based on inter-position dependence, as measured by χ2

values, and choose an order that maximizes this dependency. We do not discuss in detail

which is the best canonical topological sorting since, in practice, we verified that the results

were insensitive to that choice. Nevertheless, we assume that the topological sorting can be

computed in linear time. Henceforward, we denote by BκR the set of all CκG’s w.r.t. the

canonical topological (X,⊑) sorting of R.

Proposition 5.3.2 (CκG acyclicity) Any consistent κ-graph w.r.t. any topological sort-

ing of a tree Bayesian network is acyclic.

Proof: By absurd, assume that the consistent κ-graph has a non-trivial cycle. This means

98 CHAPTER 5. CκG: LEARNING CONSISTENT κ-GRAPHS

that Xi ⊑ Xj for all Xi and Xj in the cycle which contradicts the linearity of the topological

sorting of the tree. �

Example 5.3.3 Given the underlying graph for the attributes of a tree Bayesian network R

in Figure 5.1(a), its BFS order is represented by a dashed line in Figure 5.1(b). Three C2G

w.r.t. the BFS order of R are presented in Figure 5.1(c), (d) and (e). Observe that the graph

in Figure 5.1(c) is not a polytree. Indeed, there are two different paths from node 1 to 4:

1 → 2 → 4 and 1 → 3 → 4. On the other hand, the graph in Figure 5.1(d) is a C2G that is

also a polytree. Finally, both naive Bayes in Figure 5.1(e) and the tree Bayesian network in

Figure 5.1(a) are C2G w.r.t. the BFS order of R.

2

4

3

1

(a)

2 3

1

4

(b)

2

4

1

3

(c)

4

1

32

(d)

1

2

4

3

(e)

Figure 5.1: Figure relative to the Example 5.3.3.

The core idea of the CκG learning algorithm is to compute an optimal tree Bayesian

network R and improve it by adding/removing dependencies which were omitted/present

because of the tree structure restrictions. For efficiency purposes, the modified model must

be a consistent κ-graph w.r.t. the canonical topological sorting of R. In this context, the

canonical topological sorting of R might add dependencies from higher nodes to deeper nodes.

5.3. CONSISTENT BAYESIAN NETWORKS 99

In detail, the algorithm starts by computing an optimal tree Bayesian network (Algorithm 3.1,

3.2 or 3.3 depending on the score being considered) as described in Section 3.1.1. Then it

computes the canonical topological sorting over the optimal tree to construct a linear order.

Finally, it ranges over each variable Xi, generates the set αi of all variables less than Xi, and

takes as parents of Xi the set S ⊆ αi such that φi(S, T) is maximal over all subsets of αi with

at most κ variables. The pseudocode of the algorithm is presented in Algorithm 5.1.

Algorithm 5.1 Learning CκG BN’s, decomposable φ-score

1. run a (deterministic) algorithm that outputs an optimal tree Bayesian network R according to φ

2. compute the canonical topological sorting (X,⊑) of R

3. for each variable Xi in R do

(a) compute the set αi = {Xj ∈ R : Xi ⊑ Xj and Xi 6= Xj}

(b) for each subset S of αi with at most κ variables do

i. compute φi(S, T)

ii. if φi(S, T) is the maximal score for Xi then ΠXi
:= S

4. return the directed graph G such that the parents of a variable Xi are ΠXi

Theorem 5.3.4 (Soundness) Algorithm 5.1 constructs a CκG Bayesian network that max-

imizes the φ-score given data T .

Proof: Since all potential parents for each node are checked, the algorithm returns the κ-

graph consistent w.r.t. the canonical topological sorting (X,⊑) of R with the highest score.

Moreover, αi is defined in such a way that potential parents for Xi are those which are smaller

than Xi, according to (X,⊑), thus, by Proposition 5.3.2 the resulting graph is acyclic. �

Proposition 5.3.5 (Optimality) Algorithm 5.1 constructs a CκG Bayesian network whose

φ-score is always greater than, or equal to, the φ-score of the optimal tree Bayesian network.

Proof: Start by noticing that the soundness of Algorithm 5.1 assures that the resulting CκG

w.r.t. the canonical topological sorting of R, say B, is maximal among all CκG’s in BκR.
Moreover, observe that the underlying graph of the tree Bayesian network R is consistent

w.r.t. the canonical topological sorting of R, that is, R ∈ BκR for all k ≥ 1. Hence, the

soundness of Algorithm 5.1 guarantees that φ(B,T) ≥ φ(R,T). �

100 CHAPTER 5. CκG: LEARNING CONSISTENT κ-GRAPHS

Theorem 5.3.6 (Complexity) Algorithm 5.1 constructs an optimal CκG Bayesian network

in O(nκ+1γ(κ, T)) time where γ(κ, T) is an upper bound for computing φi(S, T).

Proof: Step 2 takes O(n) time. Step 3a) takes O(n) time, while Step 3b) takes O(nκγ(S, T))

time because it ranges over all subsets S with at most κ elements (which takes O(nκ) time)

and for each of this sets it computes φi(S, T) (which takes O(γ(S, T) time). Thus, the overall

time complexity of the algorithm is O(nκ+1γ(S, T)). �

The theorems above assert the soundness and polynomial-time bound of the CκG learning

algorithm. At this point it remains to show that, despite considering an optimal tree to confine

the search space, the number of graphs searched increases exponentially, in the number of

variables, when compared to trees.

Proposition 5.3.7 (Expressiveness) Let R be a tree with n variables, then the number

of non-trees in BκR is at least 2nκ−
κ2

2
−κ

2
−1 when n ≥ κ.

Proof: We denote by (X,⊑) the canonical topological sorting of R. Since, this order is total,

for any pair of nodes Xi and Xj in X, with i 6= j, we can say that a node Xi is lower than Xj

if and only if Xi ⊑ Xj . Given this, notice that the i-th node of R has precisely (i− 1) lower

nodes. We conclude that, when i > κ(≤ n), there are at least 2κ subsets of X with at most κ

lower nodes. Moreover, when (1 ≤)i ≤ κ, only 2i−1 subsets of X with at most κ lower nodes

exist. Thus,

|BκR| ≥
(

n∏

i=κ+1

2κ

)
×
(

κ∏

i=1

2i−1
)

= 2nκ−
κ2

2
−κ

2

give us a lower bound for the total number of possible CκG w.r.t. the canonical topological

sorting of R (recall that a C1G is also a C2G, both a C1G and a C2G are also a C3G, and

so on). Now, consider that Xi is the root, and Xj is the lowest child of the root in R. The

only two subsets of X with at most κ lower elements than Xj are ∅ and {Xi}. This choice

splits in two all CκG’s in BκR. Those for which the set of parents of Xj is ∅ cannot be trees

since Xi has no parents as well. Therefore, there are at least
|Bκ

R
|

2 ≥ 2nκ−
κ2

2
−κ

2
−1 in BκR that

are non-trees. �

Next we apply the above results to classification towards efficient modeling of TFBS.

5.3. CONSISTENT BAYESIAN NETWORKS 101

5.3.1 CκG classifier: An extension to the TAN classifier

Taking into account the CκG Bayesian network presented in the previous section, and the

usage of Bayesian networks in the context of classification, presented in Section 3.1.2, we in-

troduce the CκG Bayesian network classifier. As expected, a CκG Bayesian network classifier

is a Bayesian network classifier for which the underlying graph is confined to be consistent

with the BFS order of an optimal TAN and to have a bounded in-degree κ.

The algorithm to learn CκG Bayesian network classifiers, for any decomposable score,

is presented in Algorithm 5.2. Notice that there are two main differences between the clas-

sification algorithm (Algorithm 5.2) and the learning algorithm (Algorithm 5.1). First, in

Step 1 it is used one of the algorithms to learn an optimal TAN Bayesian network classifier

(Algorithm 3.4, Algorithm 3.5 or Algorithm 3.6, depending on the scoring function being

considered). Second, as explained in Section 3.1.2, a Bayesian network classifier has a special

attribute C, the class variable, that is parent of all other attributes. Thus, to devise an algo-

rithm to learn CκG Bayesian network classifiers we have to adapt the weights computed in

Algorithm 5.1 in such a way that all nodes have C as parent. This is done in Step 3b) where

we take as parents of Xi the set S ⊆ αi such that φi(S ∪ {C}, T) is maximal over all subsets

of αi with at most κ attributes.

Algorithm 5.2 Learning CκG BNC’s, decomposable φ-score

1. run a (deterministic) algorithm that outputs an optimal TAN Bayesian network classifier R according to φ

2. compute the canonical topological sorting (X,⊑) of R (ignoring the class variable)

3. for each attribute Xi in R do

(a) compute the set αi = {Xj ∈ R : Xi ⊑ Xj and Xi 6= Xj}

(b) for each subset S of αi with at most κ attributes do

i. compute φi(S ∪ {C}, T)

ii. if φi(S ∪ {C}, T) is the maximal score for Xi then ΠXi
:= S ∪ {C}

4. return the directed graph G such that the parents of an attribute Xi are ΠXi

The soundness and complexity of the algorithm is a simple corollary of Theorems 5.3.4

and 5.3.6, respectively.

Corollary 5.3.8 (Soundness) Algorithm 5.2 constructs a CκG Bayesian network classifier

that maximizes the φ-score given data T .

102 CHAPTER 5. CκG: LEARNING CONSISTENT κ-GRAPHS

Corollary 5.3.9 (Complexity) Algorithm 5.2 constructs a CκG Bayesian network classifier

in O(nκ+1γ(κ, T)) time where γ(κ, T) is an upper bound for computing φi(S ∪ {C}, T).

Moreover, observe that the NB acyclic graph (recall Definition 3.1.12 at page 33) is con-

sistent with any topological sorting. Moreover, since we consider the canonical topological

sorting induced by a tree generated by the TAN Bayesian network learning algorithm, the

TAN itself is consistent with this sorting. For this reason, the score of a CκG network is

always greater than or equal to the score of both NB and TAN networks.

Corollary 5.3.10 (Optimality) Algorithm 5.2 constructs a CκG Bayesian network classi-

fier whose φ-score is always greater than, or equal to, the φ-score of the optimal TAN and

NB Bayesian network classifiers.

5.3.2 Expressiveness of CκG Bayesian networks

Figure 5.2 presents the search space of the different Bayesian network learning algorithms

discussed before. Observe that the Algorithm 5.2 starts by finding the optimal TAN, and

then computes its canonical topological sorting (ignoring the class variable). When finding

the best CκG with respect to the scoring function φ, for some data T , the NB will be

checked (see Figure 5.1(e)), together with all polytrees that are consistent with the canonical

topological sorting (see Figure 5.1(d)), as well as all other consistent Bayesian networks (see

Figure 5.1(c)). It is worthwhile noticing that the search space of Algorithm 5.2 differs for each

scoring function φ and data T . However, this search space will always contain NB, TAN’s

and all polytrees that are consistent with the canonical topological sorting.

...

PolytreeTANNB

C1G

CkG

Figure 5.2: Expressiveness of the network models discussed in this work.

5.3. CONSISTENT BAYESIAN NETWORKS 103

Polytrees include both NB and TAN models, and intersect the search space of the algo-

rithm to learn CκG classifiers.

The next result shows that, the search space of Algorithm 5.2 covers Bayesian networks

that represent any joint probability distribution when κ = n− 1.

Theorem 5.3.11 (Completeness of C(n− 1)G) The search space of Algorithm 5.2 for

κ = n− 1 covers Bayesian networks that represent any n-dimensional joint probability distri-

bution.

Proof: Note that, for any topological sorting, there is a consistent (n − 1) graph that is

complete. Since complete graphs can represent any joint probability distribution, the result

follows straightforwardly. �

5.3.3 Discriminative learning of two-component mixtures of CκG Bayesian

networks

Herein, we enrich this chapter with mixtures of CκG Bayesian networks since, as we shall see

next, mixtures are considerably more natural to use when modeling TFBS’s.

Probabilistic mixtures of general graphical models were introduced by Geiger and Heck-

erman (1996) and since then they have been utterly applied in several domains (Meila and

Jordan, 2000; Friedman et al., 1997). Mixtures of arbitrary graphical models are also called

Bayesian multinets. The main advantage of Bayesian multinets is that they allow to rep-

resent context-specific independences. We found this context-specific independences when a

subset of variables exhibit certain conditional independences for some, but not all, values of

a conditional variable.

For convenience, we introduce a few additional notations that apply to Bayesian multinets

intended to be learned from data T = {y1, . . . ,yN}, where yt = (y1t , . . . , y
n
t , ct). Start by

recalling that the class variable C ranges over a finite set, say C = {z1, . . . , zs}. It is useful

to associate to each index of an instance of T the corresponding class value. More precisely,

consider the map

η : {1, . . . , N} → C, where η(t) = ct.

Moreover, we denote by y−t = (y1t , . . . , y
n
t),

Ic = η−1(zc) and Tc = {y−t : t ∈ Ic},

104 CHAPTER 5. CκG: LEARNING CONSISTENT κ-GRAPHS

for c ∈ {1, . . . , s}. Loosely speaking, Ic is the set of indexes of the instances in T where the

class variable takes the value zc and Tc is the set of instances, excluding the class variable,

with the indexes in Ic. Refer to Table 5.2 to a summary of the terms used in this section.

When Bayesian multinets are used for classification tasks, different Bayesian networks Bc

are found for each value zc of the class variable. The Bayesian network found for each value

zc is called the local Bayesian network for zc. The family of local Bayesian networks, endowed

with a mixing proportion over the class variable, λC = P (C), constitutes a Bayesian multinet.

Definition 5.3.12 (s-component Bayesian multinet) A s-component Bayesian multinet

is a tupleM = 〈{λc}c=1,...,s, B1, . . . , Bs〉 where λc = P (C = zc) and Bc is a Bayesian network

over X1, . . . ,Xn for all c = 1, . . . , s.

Bayesian multinets define a unique joint probability distribution given by:

PM(X1, . . . ,Xn, C) = λCPBC
(X1, . . . ,Xn).

The standard procedure to learn Bayesian multinets is to compute from data

λ̂c = P̂T (C = zc) =
Nc

N

given by the observed frequency estimates (OFE), and then learn each Bc independently

over the subset Tc. Predictions are made by choosing the class variable that maximizes the

posterior probability PM(C | X1, . . . ,Xn).

The focus of this thesis is on motif representation. There is no reason to think that a unique

CκGmodel is suitable to represent the promoter regions of co-regulated genes – the background

– and, at the same time, a motif within such promoter region – the foreground. Indeed, there

seems to be two separate underlying regimes, so instead we model the background and the

foreground with different CκG models. In this case, the resulting model is a two-component

mixture of CκG Bayesian network models. Mixtures of tree Bayesian networks are known

to perform well when generatively learned (Barash et al., 2003; Meila and Jordan, 2000;

Friedman et al., 1997) so we are expecting that mixtures of CκG Bayesian networks also do.

We now capitalize on the work presented in Chapter 4, and extend it to devise a new

scoring criterion to learn mixtures of CκG Bayesian networks for classification tasks. As in

the previous chapter, we focus our attention in binary classification, that is, we consider the

5.3. CONSISTENT BAYESIAN NETWORKS 105

Symbol Meaning

M Bayesian multinet (aka Bayesian network mixture)

λc mixing proportion for the c-th component ofM
Bc c-th component of the Bayesian network mixture ofM
C finite domain of the class variable C, C = {z1, . . . , zs}
zc c-th value that the class variable C can take

Nc number of instances in T where C = zc

PBc joint distribution of X induced by Bc

P̂T joint distribution of (X, C) induced by the OFE parameters

yt t-th instance of T , yt = (y1t , . . . , y
n
t , ct)

Ic set of indexes of the instances in T where C = zc

Tc set of instances, excluding the class variable, with the indexes in Ic

y−t t-th instance of T excluding the class variable, y−t = (y1t , . . . , y
n
t)

(y1t , . . . , y
n
t , 1− ct) dual of the t-th instance in T (may not occur in T)

Ut probability of the t-th instance in T

Vt probability of the dual of the t-th instance in T

xik k-th value that the attribute Xi can take

ri number of values Xi can take

Π1
Xi

parents of Xi in B1

w1
ij j-th (parent) configuration of Π1

Xi

q1i number of possible parent configurations of Π1
Xi

N1
ij1k number of instances in T where Xi = xik, Π

1
Xi

= w1
ij and C = 1

N1
ij0k number of instances in T where Xi = xik, Π

1
Xi

= w1
ij and C = 0

N1
ij1 number of instances in T where Π1

Xi
= w1

ij

G1 DAG underlying B1

Table 5.2: Definition of terms used in Section 5.3.3.

106 CHAPTER 5. CκG: LEARNING CONSISTENT κ-GRAPHS

two-component mixture of CκG models given by M = 〈λ0, B0, B1〉. We omit the λ1 from

the model M as λ1 = 1 − λ0. Moreover, we only address learning B1 discriminatively, and

assume that both the mixing proportion λ0 and the background model B0 are generatively

learned. The rationale for this approach is that learning the background can be accomplished

generatively, since usually the data for the background is very large. Moreover, learning the

foreground should be performed discriminatively since we want to distinguish it from the

background and, furthermore, the data is scarce.

It is convenient to extend the notation introduced in the previous chapter to cope with

the discriminative learning of B1 within a mixture M = 〈λ0, B0, B1〉. In what follows, the

usage of the superscript 1 means that we are considering only the Bayesian network B1 to

determine the dependencies between the attributes. We denote by Π1
Xi

the parents of Xi in

B1 and by q1i the number of parent configurations of Π1
Xi
. Moreover, we denote by N1

ij1k the

number of instances in the data T where the variable Xi takes its k-th value, the attributes

in Π1
Xi

take their j-th configuration w1
ij and the class variable C takes the value 1; N1

ij0k is

defined accordingly as the number of instances in the data T where the variable Xi takes its

k-th value, the attributes in Π1
Xi

take their j-th configuration w1
ij and the class variable C

takes the value 0. Similarly, N1
ij1 denotes the number of instances in the data T where the

attributes in Π1
Xi

take their j-th configuration w1
ij and the class variable takes value 1. In

this case, the maximum likelihood (ML) estimates in Equation (3.4) at page 30 become now

θ̂ij1k = P̂T1(Xi = xik | Π1
Xi

= w1
ij) =

N1
ij1k

N1
ij1

. (5.1)

For bi-classification tasks in the context of a Bayesian multinetM = 〈λ0, B0, B1〉 we have
that

PM(ct | y1t , . . . , ynt) =
λctPBct

(y1t , . . . , y
n
t)

λctPBct
(y1t , . . . , y

n
t) + λ(1−ct)PB(1−ct)

(y1t , . . . , y
n
t)

. (5.2)

To simplify notation, consider that

Ut = λctPBct
(y1t , . . . , y

n
t) and Vt = λ(1−ct)PB(1−ct)

(y1t , . . . , y
n
t),

hence, expression (5.2) can be rewritten as

PM(ct | y1t , . . . , ynt) =
Ut

Ut + Vt
.

5.3. CONSISTENT BAYESIAN NETWORKS 107

In this case, the conditional log-likelihood of T forM has the following form:

CLL(M | T) =
N∑

t=1

log

(
Ut

Ut + Vt

)
.

To efficiently discriminate between the foreground and the background we need to derive a

decomposable scoring criterion. Unfortunately, log(Ut + Vt) does not decompose over the

mixture components B0 and B1, but log(Ut) and log(Vt) do. Following the same reasoning as

in Section 4.3 (page 62), we propose a minimum variance unbiased (MVU) approximation

f̂(Ut, Vt) = α log(Ut) + β log(Vt) + γ,

of the original function

f(Ut, Vt) = log

(
Ut

Ut + Vt

)
,

when Ut and Vt are probabilities.

By taking the approximation given by Theorem 4.3.1 (page 65), we have that

CLL(M | T) =
N∑

t=1

log

(
Ut

Ut + Vt

)
≈

N∑

t=1

α log(Ut) + β log(Vt) + γ (5.3)

where constants α, β and γ are given by Equations (4.13), (4.14) and (4.15), respectively.

Assuming that both the mixing proportion λ0 and the background model B0 are fixed,

we only need to learn the foreground model B1. In this case, detaching the contribution

of each instance in T according to the value of its class variable, the right-hand side of the

approximation (5.3) can be simplified to
(∑

t∈I1

α log(λ1PB1(y
−

t)) + β log(λ0PB0(y
−

t)) + γ

)
+

(∑

t∈I0

α log(λ0PB0(y
−

t)) + β log(λ1PB1(y
−

t)) + γ

)

=

(∑

t∈I1

α log(PB1(y
−

t))

)
+

(∑

t∈I0

β log(PB1(y
−

t))

)
+Nγ +K,

where K accounts for the (fixed) contribution of B0, λ0 and λ1 to CLL(M | T). Observe that

|I0|+ |I1| = |T | = N . Then, we define the mixture-based factorized conditional log-likelihood

(mfCLL) scoring criterion as

mfCLL(M | T) =
n∑

i=1

q1i∑

j=1

ri∑

k=1

(αN1
ij1k + βN1

ij0k) log (θij1k) . (5.4)

By plugging in the OFE estimates in Equation (5.1) into the mfCLL criterion, we obtain

mf̂CLL(G1 | T) =
n∑

i=1

q1i∑

j=1

ri∑

k=1

(αN1
ij1k + βN1

ij0k) log

(
N1

ij1k

N1
ij1

)
, (5.5)

108 CHAPTER 5. CκG: LEARNING CONSISTENT κ-GRAPHS

where G1 is the DAG of the foreground mixture component B1. Observe that N1
ij1k might

be zero while N1
ij0k > 0 which leads to an indeterminacy in Equation (5.5). To avoid this

shortcoming pseudo-counts are commonly used. In practice, the use of pseudo-counts with the

mf̂CLL scoring criterion turned out to be good for classification tasks (in opposition to âCLL

presented in Section 4.3 at page 62). Intuitively, the reason for the good behavior of mf̂CLL

is presumably due the fact that even if N1
ij0k > 0 and N1

ij1k = 0 we also have that N1
ij1 ≈ 0

(because we have very few motif occurrences and they are moderately conserved), hence, by

using pseudo-counts we have that
N1

ij1k

N1
ij1
≈ 1
|Σ| =

1
4 . So, the logarithm in Equation (5.5) will

not explode.

A MDL penalized version of the mf̂CLL score, called mf̂CLL−MDL, can be straightfor-

wardly devised by subtracting the penalty

1

2
ln(N)|B1| =

n∑

i=1

1

2
ln(N)(ri − 1)q1i

to the mf̂CLL expression in Equation (5.5).

We are now able to introduce the algorithm that discriminatively learns the two-component

mixtureM = 〈λ0, B0, B1〉 that maximizes (i) LL(λ | T), the log-likelihood of the mixing pro-

portions λ = 〈λ0, λ1〉; (ii) MDL(B0 | T0), the minimum description length of the background

model B0; and (iii) mf̂CLL−MDL(B1 | T), the mf̂CLL score with a MDL penalty of the

foreground model B1. The learning procedure relies on Algorithm 5.1 introduced in Sec-

tion 5.3 (page 99) to compute each mixture component B0 and B1 and it is presented in

Algorithm 5.3. Observe that other structures besides CκG can be learned (e.g. TAN) for

each mixture component B0 and B1.

Algorithm 5.3 Learning CκG mixture models for binary classification tasks

1. Compute the mixing proportions λ0 = N0
N

and λ1 = 1− λ0.

2. Learn generatively from T0, using Algorithm 5.1 for the MDL score, the CκG Bayesian network B0.

3. Learn discriminatively from T , using Algorithm 5.1 for the mf̂CLL−MDL score, the CκG Bayesian network B1.

5.4 Experimental results

To evaluate the ability of representing TFBS’s with mixtures of C2G models we extracted 89

datasets of aligned binding sites from the TRANSFAC database (Wingender et al., 2001) for

5.4. EXPERIMENTAL RESULTS 109

which there were 20 or more sites. These sequence-sets were used to build a motif model B1.

As background model we used 1000 sequences taken from promoter regions of the organism

used to build B1, resulting in a corresponding model B0. In our experiments we used k = 2

which turned out to be a good tradeoff between efficiency and search space. Moreover,

in order to avoid overfitting, that arises naturally when complex structures are searched, we

endowed the intended scores with the MDL penalty. For each dataset we evaluated the ability

of some relevant two-component mixtures pairs B0 − B1, namely, TAN−TAN, TAN−C2G,

C2G−TAN and C2G−C2G, to describe the distribution underlying the promoter regions of

TFBS’s. These mixtures were tested with mf̂CLL, with and without MDL penalty. Moreover,

we also evaluate them with LL and MDL scoring criteria, as proposed by Barash et al. (2003).

We performed 5-fold cross-validation tests in each dataset and conclude that discriminative

mixtures of C2G models significantly outperformed the remaining mixtures learned both

generative and discriminatively. Results are depicted in Table 5.3. Each entry of the table

gives the Z-test and p-value of the significance test for the corresponding pairs of classifiers.

The arrow points to the superior learning algorithm, in terms of classification rate. A double

arrow is used if the difference is significant with p-value smaller than 0.05. In addition, scatter

plots of the accuracies of the proposed methods against the others are depicted in Figure 5.3

(page 111). Points above the diagonal line represent cases where the method shown in the

vertical axis performs better than the one on the horizontal axis.

Classifier TAN C2G TAN C2G C2G TAN TAN
Struct. C2G C2G C2G TAN TAN TAN TAN
Param. mf̂CLL−MDL mf̂CLL mf̂CLL mf̂CLL−MDL mf̂CLL MDL LL

C2G 1.94 8.16 5.12 2.74 6.05 6.05 7.71
C2G 0.03 ≪ 0.01 ≪ 0.01 < 0.01 ≪ 0.01 ≪ 0.01 ≪ 0.01

mf̂CLL−MDL ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐

TAN 8.01 4.31 2.07 5.73 5.73 7.55
C2G ≪ 0.01 ≪ 0.01 0.02 ≪ 0.01 ≪ 0.01 ≪ 0.01

mf̂CLL−MDL ⇐ ⇐ ⇐ ⇐ ⇐ ⇐

C2G −7.99 −7.99 −7.62 −7.62 −7.09
C2G ≪ 0.01 ≪ 0.01 ≪ 0.01 ≪ 0.01 ≪ 0.01

mf̂CLL ⇑ ⇑ ⇑ ⇑ ⇑

TAN −4.55 4.90 2.20 2.20
C2G ≪ 0.01 ≪ 0.01 0.01 0.01

mf̂CLL ⇑ ⇐ ⇐ ⇐

Table 5.3: Statistical significance of the results according to the Wilcoxon signed-rank test.

From Table 5.3 it is clear that C2G−C2G−mf̂CLL is overfitting. Moreover, the same is

110 CHAPTER 5. CκG: LEARNING CONSISTENT κ-GRAPHS

not true, at least at the same scale, with TAN−C2G−mf̂CLL. This points out that over-

fitting is mainly occurring in the background model B0. Moreover, despite the fact that

TAN−C2G−mf̂CLL performed better than C2G−C2G−mf̂CLL, Table 5.3 demonstrates that

higher accuracies are achieved with the similar two-component models but with penalized

versions of mf̂CLL. Actually, the combination of mf̂CLL−MDL scoring criterion with two-

component mixtures of C2G models (C2G−C2G−mf̂CLL−MDL in the fisrt line of Table 5.3)

performs better than all the other considered classifiers. We conclude that discriminative

learning of two-component mixtures of C2G Bayesian networks is beneficial, specially when

the richness of the structure is controlled using MDL to avoid overfitting.

We also directly compared TAN−TAN−LL with TAN−TAN−mf̂CLL classifiers, as well

as TAN−TAN−MDL with TAN−TAN−mf̂CLL − MDL, in order to understand the ben-

efit of using the mf̂CLL score without the noise introduced by the C2G model. Results

show that TAN−TAN−mf̂CLL significantly outperformed TAN−TAN−LL with a Z-score

of 4.60362 leading to a p-value < 0.00003. Moreover, TAN−TAN−mf̂CLL−MDL also per-

formed significantly better than TAN−TAN−MDL with a Z-score of 4.68904 leading to a

p-value < 0.00003. Furthermore, C2G−C2G−mf̂CLL −MDL outperformed with statistical

significance both TAN−TAN−mf̂CLL and TAN−TAN−mf̂CLL−MDL, both with a p-value

< 0.00003. We conclude that a discriminative scoring criterion such as mf̂CLL, with or

without MDL penalty, is advantageous, when compared to their generative versions (as LL

or MDL), in classification tasks. In addition, C2G−C2G−mf̂CLL −MDL was the multinet

classifier that performed the best.

5
.4
.

E
X
P
E
R
IM

E
N
T
A
L
R
E
S
U
L
T
S

111

Figure 5.3: Scatter plots of the accuracy of different multinet classifiers.

112 CHAPTER 5. CκG: LEARNING CONSISTENT κ-GRAPHS

Part III

Motif discovery

113

Chapter 6

RISOTTO: Improving RISO with

maximal extensibility

The best known exact algorithms for the extraction of single (Sagot, 1998) and structured

(Carvalho, Freitas, Oliveira, and Sagot, 2006) motifs perform well when searching for short

motifs. In this chapter, we propose an improvement to such algorithms in order to deal with

long motifs. The problem of extracting long motifs was first addressed by Pevzner and Sze

(2000). They considered a precise version of the motif discovery problem: find all single motifs

of length 15 with at most 4 mismatches in 20 sequences of size 600. In consequence several

algorithms appeared (Pevzner and Sze, 2000; Buhler and Tompa, 2002; Eskin and Pevzner,

2002; Satya and Mukherjee, 2004).

A general solution for this problem deserves attention from the algorithmic point of view

because its computational complexity is in the worst case exponential with respect to the

number e of mismatches allowed among different occurrences of the same motif. The reason

is that, to identify motifs of the required length, there can be an explosion in the number

of candidates of intermediate length whose extension has to be attempted. This imposes, in

practice, a limit to the length of the motifs, as in many applications the value of e depends on

this length. The improvement introduced in this chapter acts exactly in these cases, turning

possible the detection of relatively long motifs in practice.

The chapter is organized as follows. In Section 6.1 we present the single motif discov-

ery algorithm followed by the structured motif discovery one in Section 6.2. These sections

include the complexity analysis that compare the proposed algorithms with previously es-

115

116 CHAPTER 6. RISOTTO: IMPROVING RISO WITH MAXIMAL EXTENSIBILITY

tablished ones. In Section 6.3 we present experimental results as well as a discussion about

implementation issues.

6.1 Single motif extraction

The single motif extraction problem, presented in Section 3.2.2 (page 41), takes as input N

sequences, a quorum q ≤ N , a maximal number e of mismatches allowed, and a minimal and

maximal length for the motifs, kmin and kmax, respectively (refer to Table 6.1). The problem

consists in determining all motifs that e-occur in at least q of the N input sequences. Such

motifs are called valid models.

For clarity purposes we need to abstract the details presented in the SPELLER algorithm

(Algorithm 3.7, page 45). The simplified version is presented in Algorithm 6.1, where motif

m is the one whose extension is being tried.

Algorithm 6.1 SPELLER, single motif extraction (simplified version)

SPELLER(motif m)

1. for each symbol α in Σ do

2. if mα is valid then

3. if |mα| ≥ kmin then spell out the valid model

4. if |mα| < kmax then SPELLER(mα)

At the beginning SPELLER is called on the empty word. The algorithm recursively calls

itself for longer motifs built by adding letters (Step 4), and considers new ones (Step 1) when

the extension fails (Step 2). A valid motif is spelled out whenever a motif whose length lies

within the required minimal and maximal length is being considered (Step 3). The order in

which motifs are generated corresponds to a depth-first visit of a complete trieM of all words

of length kmax over the alphabet Σ. We refer toM as the motif tree. In fact, the algorithm

does not need to allocate the motif tree. The only memory requirement is for the suffix tree

T .

6.1.1 Using maximal extensibility of factors

The modification we suggest consists in storing information concerning maximal extensibility

in order to avoid trying to extend hopeless motifs. For instance, assume that in our depth-first

6.1. SINGLE MOTIF EXTRACTION 117

Symbol Meaning

Σ alphabet (usually DNA or IUPAC)

α symbol of the alphabet Σ

N number of input sequences

n average size of input sequences

e number of mismatches allowed in a single motif

kmin minimum motif size of a single motif

kmax maximum motif size of single motif

q quorum, i.e., number of sequences where the motif has to e-occur

m potential motif

M (virtual) motif trie

T suffix tree of T

MaxExt(m) maximal extensibility of m

|m| length of m

〈m|k prefix of length k of m

|m〉k suffix of length |m| − k + 1 of m

λ empty word

p number of boxes in structured motif extraction

ei number of mismatches allowed in the i-th box of a structured motif

kmini
minimum size of the i-th box of a structured motif

kmaxi
maximum size of the i-th box of a structured motif

dmini
minimum distance between the i-th and the (i+ 1)-box

dmaxi
maximum distance between the i-th and the (i+ 1)-box

Table 6.1: Definition of terms used in Chapter 6.

118 CHAPTER 6. RISOTTO: IMPROVING RISO WITH MAXIMAL EXTENSIBILITY

visit of the (virtual) motif treeM, we have found out that motif m can be further extended

without losing the quorum up to a length of MaxExt(m) only, the latter representing its

maximal extensibility. If later on, we are processing a motif m′ that has m as a suffix, then

the MaxExt(m) information could be useful, as it applies to m′ as well because m′ can also

be extended with at most MaxExt(m) symbols (and possibly less). In particular, we have

that if

|m′|+MaxExt(m) < kmin,

then we can avoid any further attempt to extend m′ because there is no hope to reach length

kmin for motifs that have m′ as prefix. Figure 6.1 illustrates exactly this example, that is,

the extension of m′ can be avoided, using MaxExt(m), where m is a suffix of m′, because

|m′|+MaxExt(m) < kmin.

mink

MaxExt(m)

Valid model

m m’

MaxExt(m)

Figure 6.1: Example where the extension of m′ can be avoided.

In order to understand how maximal extensibility is going to be used in motif extraction,

notice that, in Algorithm 6.1, motifs are considered in lexicographical order by a depth-first

visit of the (virtual) motif treeM. Every time we stop extending a motif, that is, when we

backtrack inM, it is either because we found a valid motif of the maximal length, or because

the quorum is no longer satisfied (mα does not satisfy the condition at Step 2, and we start

to consider the next one in lexicographical order). More rigorously, the analysis of the motif

m = σ1, . . . , σ|m| with σi ∈ Σ, for all i = 1, . . . , |m|, is abandoned either when m is valid and

|m| = kmax, or m does not satisfy the quorum.

In the first case, m is valid, as are all its prefixes, and |m| = kmax. No information on

the maximal extension of m nor of its prefixes can be of any use because all motifs having a

prefix of m as suffix can in general still be extended as much as necessary to reach at least the

length kmin. For this reason, we set MaxExt(m) = +∞, meaning that m can be extended

possibly more than we are computing.

In the second case, m does not satisfy the quorum while all its prefixes do. For reasons

6.1. SINGLE MOTIF EXTRACTION 119

that will be clearer later, we chose to only use the maximal extensibility information of

motifs of length up to kmin − 1, hence this case can be subdivided into two sub-cases. When

a motif m cannot be extended anymore and it has not reached the length kmin − 1, we

set MaxExt(m) = 0. If the motif has reached a length h between kmin − 1 and kmax,

we set MaxExt(〈mα|kmin−1) = h − (kmin − 1), where 〈mα|kmin−1 is the prefix of length

kmin − 1 of mα. Since it can be that MaxExt(〈mα|kmin−1) had already received some value

because a previous extension of 〈mα|kmin−1 was interrupted, then we change the value of

MaxExt(〈mα|kmin−1) only if we are increasing it, as maximal extensibility of a motif refers

to its longest extension. We assume that all maximal extensibility values are initially set to

−1, hence the first attribution to MaxExt(〈mα|kmin−1) will always increase its value.

In all aforementioned cases, the algorithm does not consider any further extension of

m, and backtracks. This backtracking consists in either replacing the last letter σ|m| of m

(Step 1), or considering a shorter motif which in general shares a prefix with m, if σ|m| was the

last letter of the alphabet Σ. In this latter case, the whole subtree rooted at the node spelling

σ1 . . . σ|m|−1 has been completely visited. Thus, we have all the information necessary to set

the value of MaxExt(σ1 . . . σ|m|−1) according to MaxExt(x) = 1+maxα∈Σ MaxExt(xα), for

all valid motifs x such that |x| < kmin − 1. If the letter σ|m|−1 was the last of the alphabet,

then the backtracking goes further. In that case, also the MaxExt information concerning

the word σ1 . . . σ|m|−2 can be filled in the same way, and so on as long as we climb up in the

tree.

As mentioned before, maximal extensibility information can be used for motifs whose ex-

tension is being considered and for which this information could actually prevent some useless

attempts. Namely, assume we are trying to extend the motif m = σ1, σ2 . . . , σ|m|. Since the

motifs are considered by means of a depth-first search on the virtual motif tree, we obviously

do not know the value of MaxExt(m) yet. Moreover, we know MaxExt(σ2, . . . , σ|m|) only if

it lexicographically precedes m, that is, it has already been visited in the motif tree. If this is

not the case, we check whether MaxExt(σ3, . . . , σ|m|) is already known, and so on, possibly

until the singleton σ|m|. If they are all lexicographically greater than m, then no maximal

extension information can be used for m, but if for any of them MaxExt is known and it

holds that the maximal possible extension is not enough to reach kmin, then the information

is useful as it guarantees that attempting to further extend m is useless.

120 CHAPTER 6. RISOTTO: IMPROVING RISO WITH MAXIMAL EXTENSIBILITY

Lemma 6.1.1 Let w ∈ Σ∗. We have MaxExt(w) ≤MaxExt(v) for each v which is a suffix

of w.

Proof: Let MaxExt(w) = k. There exists s ∈ Σk such that the motif ws is valid, that is,

it appears in at least q sequences, and no longer string in Σ∗ has the same property. Let us

now assume that there is a suffix v of w such that MaxExt(v) = j < k. Then there exists

t ∈ Σj with j < k, and no longer t, such that the motif vt is valid. However, we know that

there exists s ∈ Σk such that ws appears in at least q sequences. Since vs is a suffix of ws,

and since it satisfies the quorum, then the hypothesis is contradicted. �

A consequence of Lemma 6.1.1 is that longer suffixes ofm can give us more tight bounds on

the maximal extensibility information with respect to shorter ones. Therefore, since we start

by checking the longest one, as soon as we find a suffix of m that enables us to state that m is

not worth further extension attempts, then we can stop checking the other (shorter) suffixes.

That is, if we find a suffix |m〉j = σj , . . . , σ|m| ofm, with 1 < j ≤ |m|, such thatMaxExt(|m〉j)
is not enough for m to reach kmin because MaxExt(|m〉j) + |m| < kmin, then we can quit

attempting m and all its extensions, and we can consequently update MaxExt(m). On the

other hand, if no suffix |m〉j of m is such that MaxExt(|m〉j)+ |m| < kmin, then the maximal

extension does not disallow to reach kmin. In this case, we have to go on trying to extend m

even if it might be the case that it will never reach the minimal length.

The algorithm for single motif extraction using the maximal extensibility information,

called RISOTTO, is presented in Algorithm 6.2. For simplicity, we denote in the same way

a node x and the word spelled by the path from the root to x. Moreover, recall that we use

〈mα|kmin−1 to denote the prefix of mα of length kmin − 1, and |x〉|x|−1 to denote the suffix of

x of length |x| − 1. Finally, with regard to Step 3, recall that we assumed that all maximal

extensibility values are initially set to −1.

6.1.2 Complexity analysis

The time complexity of Algorithm 6.2 remains the same as for Algorithm 6.1 in the worst

case. Nevertheless, the proposed improvement has very positive effects on the average case.

Next, we show how to compute, in average, the ratio between the number of attempted

extensions by RISO and RISOTTO for single motif extraction and compute the limit from

which RISOTTO performs better than RISO.

6.1. SINGLE MOTIF EXTRACTION 121

Algorithm 6.2 RISOTTO, single motif extraction with maximal extensibility

RISOTTO(motif m)

1. for each symbol α in Σ do

2. x := mα

3. repeat x := |x〉|x|−1 until (x = root or MaxExt(x) 6= −1)
4. if x 6= root and MaxExt(x) + |mα| < kmin then

5. MaxExt(mα) := MaxExt(x)

6. stop spelling mα and continue

7. if mα is valid then

8. if |mα| ≥ kmin then spell out the valid model

9. if |mα| < kmax then RISOTTO(mα)

10. else MaxExt(〈mα|kmin−1) := +∞
11. else

12. if |mα| < kmin then MaxExt(mα) := 0

13. else if MaxExt(〈mα|kmin−1) < |mα| − (kmin − 1) then MaxExt(〈mα|kmin−1) := |mα| − (kmin − 1)

14. if |m| < (kmin − 1) then MaxExt(m) := 1 + maxα∈Σ MaxExt(mα)

Assume that the dataset has r planted random motifs of size t, where each motif can

be extracted with at most e mismatches, and that the remaining text is uniformly random.

This assumption captures the fact that we want to analyze the ratio between the number

of attempted extensions by RISO and RISOTTO in the context of a dataset with highly

correlated sequences (meeting the application requirements to biological datasets).

Let Mi be the random variable that gives the number of valid motifs of size i with at most

e mismatches for the assumed dataset, where 0 ≤ i ≤ t. Clearly, we have that P (M0 = 1) = 1

and P (Mt ≥ r) = 1. The number of attempted extensions by RISO at level i > 0 (when the

recursion step is at level i) is given by the random variable

Ei = Mi−1|Σ|,

and the total number of attempted extensions for the extraction of a single motif of size k is

given by

Rk =

k∑

i=1

Ei.

On the other hand, RISOTTO will only extend words at level i if they fulfill the maximum

extensibility requirement. Therefore the number of attempted extensions by RISOTTO at

level i is given by

E′i = Mi−1|Σ|(1− p(i)),

122 CHAPTER 6. RISOTTO: IMPROVING RISO WITH MAXIMAL EXTENSIBILITY

where p(i) is the (random variable denoting the) probability of a i-word having maximal

extensibility information to avoid its extension. Furthermore, the total number of attempted

extensions by RISOTTO for the extraction of a single motif of size k is given by

R′k =

k∑

i=1

E′i.

We conclude that to compute the ratio of the means of R′k and Rk, that is,

R′
k

Rk

we need to determine the means of the random variables Mi and p(i), for i = 1, . . . , k. We

proceed by computing the mean of Mi. Clearly, a planted motif of size t has t− i+1 segments

of size i (considering overlapping). Observe that the average number of mismatches of the

e-occurrences of an extracted motif of size t (recall ν(e, t) in page 44) is given by

e =

e∑

j=0

j


 t

j


 (|Σ| − 1)j

ν(e, t)
.

Hence, if we assume the mismatches to distribute uniformly over the segments, the average

number of mismatches of the segments of size i of the e-occurrences is

ei =
i

t
e.

Thus, the motifs extracted at level i due to the planted motifs are all the neighbors differing

at most (e − ei) letters from the segments of size i of the planted motifs. Since there are

r(t − i + 1) segments of size i, and assuming that these segments are different, the average

number of extracted motifs of size i with at most e mismatches due to the planted motifs is

T i = |Σ|i



r(t−i+1)−1∑

j=0

(
1− ν(e− ei, i)

|Σ|i
)j ν(e− ei, i)

|Σ|i


 .

Finally, to determine the mean of Mi, we need to take into account the motifs extracted from

the random part of the text, and so, we have

M i = T i + (|Σ|i − T i)(1− πi)

where πi is the probability of a random word of size i not being extracted with quorum q

from a set of N sequences. Given that the probability of an e-neighbor of a word of size i not

6.1. SINGLE MOTIF EXTRACTION 123

appearing in a random text of size n is

δ(i, e, n) =

(
1− 1

|Σ|i
)(n−i+1)ν(e,i)

≈
(
1− 1

|Σ|i
)nie|Σ|e

,

the value of πi can be computed by the following binomial

πi =

q−1∑

j=0


 N

j


δ(i, e, n)N−j(1− δ(i, e, n))j .

We finalize by computing the (expected value of) probability p(i). Since the probability

of a suffix of a random word being lexicographically smaller than the random word is 1
2 , we

have that

p(i) =
i−1∑

j=1

1

2j
γi−j

where γi−j is the probability of the suffix of size i − j to have information to avoid the

extension. Notice that γi−j is the probability of the suffix of size i− j not being extended to

a size greater than k − 1, and is given by

γi−j = πi−j + (1− πi−j)π
|Σ|
i−j+1 + (1− πi−j)(1 − π

|Σ|
i−j+1)π

|Σ|2
i−j+2 + ...

=

k−1−(i−j)∑

v=0

π
|Σ|v
i−j+v

v−1∏

ℓ=0

(1− π
|Σ|ℓ
i−j+ℓ) .

To understand when RISOTTO starts to provides a gain over RISO, it is important to

look to E′i and Ei. Note that if Mi−1 is larger than Mi, E
′
i will be much smaller than Ei if

p(i) is close to 1. Moreover, as soon as random motifs start to disappear, Mi−1 will be larger

than Mi, which happens when πi is close to 1. Both πi and p(i) depend tightly of δ(i, e, n),

that is, if δ(i, e, n) is close to 0, so are πi and p(i), and if δ(i, e, n) is close to 1, so are πi and

p(i). Since 1− δ(i, e, n) behaves like a Dirac cumulative function (in i) for large values of n,

that is, it jumps very fast from 0 to 1, we just need to solve the equation δ(i, e, n) = 1/2 for

the variable i to grasp when RISOTTO starts to be faster than RISO, which is just slightly

before the solution. The solution of that equation is the fixed point of the following function

f(x) = −
log
(
1− 2

− 1
|Σ|e xe n

)

log(Σ)
.

Given that f(x) is contractive, that is, its derivative function takes values in the interval

(−1, 1), the fixed point can be computed by iterating f over an initial value. Finally, notice

that the fixed point increases with the values of e, n and Σ.

124 CHAPTER 6. RISOTTO: IMPROVING RISO WITH MAXIMAL EXTENSIBILITY

With the previous analysis, we have all the machinery necessary for computing the ratio

between the expected number of attempted extensions between RISO and RISOTTO, as well

as, from which point RISOTTO performs better than RISO. As an example, the ratio between

the expected number of extensions attempted by RISOTTO and RISO for a dataset consisting

of N = 100 sequences of size n = 1000 where we planted r = 1 motif of size t = k = 5..20,

with up to e = 2 mismatches, and quorum q = 100, is given in Figure 6.2. For the dataset

considered, the fixed point for f(x) is x = 10.6616.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 6 8 10 12 14 16 18 20

P
er

ce
nt

ag
e

at
te

m
pt

s
of

 R
IS

O
T

T
O

 w
rt

 R
IS

O

Box size

Figure 6.2: Ratio between the expected number of extensions attempted by RISOTTO and

RISO.

6.2 Structured motif extraction

The structured motif extraction problem, presented in Section 3.2.3 (page 45), takes as param-

eters N input sequences, a quorum q ≤ N , p maximal error rates (ei)i≤1≤p (one for each of the

p boxes), p minimal and maximal lengths (kmini
)i≤1≤p and (kmaxi

)i≤1≤p (one for each of the p

boxes), and p− 1 intervals of distance (dmini
, dmaxi

)i≤1≤p−1 (one for each pair of consecutive

boxes). Given these parameters, the problem consists in searching for the contents of the

boxes, that is the motifs, that have the structure defined by the parameters above and that

satisfy the quorum.

For clarity purposes we need to abstract the details presented in RISO algorithm presented

in Algorithm 3.8 (page 49). The simplified version is presented in Algorithm 6.3, where motif

m is the one whose extension is being tried. Herein, we assume a structured motif composed

by two boxes only (p = 2). The modifications we suggest in this work can be extended to all

6.2. STRUCTURED MOTIF EXTRACTION 125

the more complex variants of the problem, as they do not depend on whether p equals 2 or is

bigger.

Algorithm 6.3 RISO, structured motif extraction (simplified version)

RISO(motif m, box i)

1. for each symbol α in Σ do

2. if mα is valid then

3. if |mα| ≥ kmini
then

4. if i = 2 then spell out the valid model

5. else follow box-links and update T to RISO(λ, 2)

6. if |mα| < kmaxi
then RISO(mα, i)

At the beginning RISO is called on the empty word and with i = 1. The algorithm recur-

sively calls itself for longer motifs built by adding letters (Step 6), until possibly considering

the second box (Step 5), and it considers new ones (Step 1) when the extension fails (Step 2).

A valid motif is spelled out whenever a second box, whose length lies within the required

minimal and maximal length, is being considered (Step 4). The update in T mentioned in

Step 5 basically consists in a jump following the box-links, from the nodes reached by the first

box, to reach potential end positions for the second boxes of the motif. The nodes reached in

the jump are then modified with the information stored in the box-links. This information

reflects the input sequences the jump concerns to and it is used to temporarily and partially

modify T . The extraction of the second box then proceeds in the same way over the modified

part of the tree. Once the operation of extracting all valid motifs 〈(m1,m2),(dmin, dmax)〉 has
ended, T is restored to its previous state. The construction of another motif m1 then follows

and the process continues until all valid structured motifs are extracted.

6.2.1 Using maximal extensibility of factors

In the case of structured motifs, the maximal extensibility information for the first box of a

motif should be updated as described in Section 6.1.1. However, any failure in attempting to

extend a motif during the search of a second box cannot update any value of MaxExt because

it refers only to parts of the text that follow a specific first box at a specific distance. In fact,

when a first box m1 of a structured motif is fixed at any given step, the maximal extensibility

information that concerns the whole sequence is in general an upper bound on the maximal

extensibility of fragments of the sequence that are at a given distance from the occurrences

126 CHAPTER 6. RISOTTO: IMPROVING RISO WITH MAXIMAL EXTENSIBILITY

of m1. Given this observation, a possibility is to use the maximal extensibility information

of the first box when searching and trying to extend a second box. Another possibility,

while attempting to find a motif for the second box, is to compute and store tighter maximal

extensibility information which we can use for the second box being attempted as long as the

first box is fixed. In the following, we only address the first alternative, that is, only the first

box stores extensibility information.

The conditions needed for our optimization to be applicable in the case of structured motifs

may hold even more frequently than in the case of single motifs. In fact, since the search for

a valid motif as second box is made after a valid motif for the first box is found, maximal

extensibility information may be known also for the whole motif whose extension is attempted

and not just for its prefixes. In other words, it may happen that when Algorithm 6.3 is called

with parameters m and 2, the value of MaxExt(m) is already known. Proper suffixes are

thus not the only candidates to give useful information when we are trying to find a motif

for the second box. The extensibility information can be used as for the case of single motifs

except that one has to deal with different error rates among boxes. Indeed, e2 must be less

than or equal to e1 in order for the extensibility information to be useful for the second

box. Otherwise, the maximal extensibility information stored for the first box may be too

restrictive, and if it is used, it may cancel the extension of valid motifs.

The algorithm for structured motif extraction using the maximal extensibility information

is presented in Algorithm 6.4. Similarly to the case of single motif extraction, the time

complexity of Algorithm 6.4 remains the same as for Algorithm 6.3 in the worst case, and

the improvement proposed accounts only for the average case, as we shall verify in the next

section.

6.3 Implementation and experimental results

In order to verify the improvement proposed over RISO, a C implementation of the maximal

extensibility algorithm, called RISOTTO,1 was made. The new implementation was tested

against a C implementation of the RISO algorithm presented in Carvalho, Freitas, Oliveira,

and Sagot (2005). The results of the experiments show a significant improvement for both

single and structured motif extraction when using maximal extensibility information. As it

1RISOTTO is available at http://kdbio.inesc-id.pt/∼asmc/software/risotto.html.

6.3. IMPLEMENTATION AND EXPERIMENTAL RESULTS 127

Algorithm 6.4 RISOTTO, structured motif extraction with maximal extensibility

RISOTTO(motif m, box i)

1. for each symbol α in Σ do

2. if i = 1 or e2 ≤ e1 then

3. x := mα

4. while (x 6= root or MaxExt(x) = −1) do x := |x〉|x|−1

5. if x 6= root and MaxExt(x) + |mα| < kmini
then

6. if i = 1 then MaxExt(mα) := MaxExt(x)

7. stop spelling mα and continue

8. if mα is valid then

9. if |mα| ≥ kmini
then

10. if i = 2 then spell out the valid model

11. else follow box-links and update T to RISOTTO(λ, 2)

12. if |mα| < kmaxi
then RISOTTO(mα, i)

13. else if i = 1 then MaxExt(〈mα|kmin1
−1) := +∞

14. else if i = 1 then

15. if |mα| < kmin1 then MaxExt(mα) := 0

16. else if MaxExt(〈mα|kmin1
−1) < |mα| − (kmin1 − 1) then

MaxExt(〈mα|kmin1
−1) := |mα| − (kmin1 − 1)

17. if i = 1 and |m| < (kmin1 − 1) then MaxExt(m) := 1 + maxα∈Σ MaxExt(mα)

turns out, maximal extensibility may cost some extra space, which is a delicate issue for

large datasets, but it can definitely save some hopeless visits, and in general it improves the

efficiency of the search.

6.3.1 Storing the extensibility information

We start with some considerations concerning the storage of extensibility information. As we

have seen in Section 6.1.1, due to the order in which motifs are considered, we have that only

certain sub-words of motifs can give useful information concerning maximal extensibility,

namely, those that are lexicographically smaller. Since no motif is smaller than itself, we

actually only use the MaxExt information of motifs that are shorter than the current one,

that is, they are proper suffixes. Therefore, since the condition to check is whether or not we

can hope to reach the kmin length, then we make use of the MaxExt data only for strings of

length at most kmin − 1. Hence, it is not necessary to store this information for motifs that

have length kmin or more for the purpose mentioned above.

Let us now discuss how much space is required to store the extensibility information until

128 CHAPTER 6. RISOTTO: IMPROVING RISO WITH MAXIMAL EXTENSIBILITY

level kmin−1. We say that a tree is uncompact complete if it is a trie where all possible nodes

are present. There is thus no arc whose label contains more than one letter. A previous result

from Allali (2000) makes use of some statistical analysis for stating that a suffix tree of a text

of length n is expected to be uncompact complete at the log|Σ|(n) top levels, where Σ is the

alphabet of the text. This fact suggests a model to store extensibility information: a static

data structure to keep the MaxExt values until level log|Σ|(n), and a dynamic structure for

deeper levels. Since we are interested in the DNA alphabet (composed of the four nucleotides

A,C,G, and T), then we have that our suffix tree is uncompact complete at the top log4(n)

levels where n is the size of the input sequence s. The function log4(n) reaches 10 for n ≈ 106,

it is greater than 11 for n = 107, it is more than 13 for n = 108, and nearly 15 for n = 109.

These values correspond to reasonable values for the minimal length kmin of the motif, and

they are reached for values n of the text size corresponding to quite big datasets.

In the RISOTTO implementation, we took all the aforementioned observations into con-

sideration. Since kmin has to be relatively small for our approach to be tractable space-wise,

we considered only 1 byte (a char in C) to store MaxExt values. In this case, extensibility

values must be less than 256, which is quite reasonable. To build a static data structure to

store such values until level z, we need z+1 1-byte arrays, where the j-th array has size |Σ|j

with 0 ≤ j ≤ z. Therefore, for the case of DNA, the total amount of memory required is

4z+1−1
3 bytes. This function gives us values of 1.3MB for z = 10, 5.3MB for z = 11, 85.3MB

for z = 13, and 1.3GB for z = 15.

In our experiments, we achieved an optimum trade-off between memory allocation versus

management and maximal extensibility gain when z = 10. Taking this observation into

account, we only allocate values for MaxExt until level z = min{10, kmin − 1}, even for large

values of kmin, and disregard deeper levels as well as the dynamic data structure mentioned

above. Nevertheless, we allowed this z level to be an implementation parameter. In the end,

considering z = min{10, kmin − 1}, RISOTTO requires at most 1.3MB more that RISO for

DNA databases, being more than twice as fast as we shall see next.

6.3.2 Experimental results

To test maximal extensibility performance we used several randomly generated (with a uni-

form distribution over the four letters of the DNA alphabet) synthetic datasets with planted

6.3. IMPLEMENTATION AND EXPERIMENTAL RESULTS 129

structured motifs. Each dataset consists of 100 sequences of size 1000 where we planted one

motif, possibly structured into several boxes, with 2 mismatches per box.

We ran both RISO and RISOTTO requiring a quorum q = 100 and at most 2 mismatches

per box so that the output contains at least the planted motif. For each dataset, we made

several runs for increasing lengths of the motifs. In particular, given the number of boxes of

the structured motifs (in our tests there are p boxes for p = 1, . . . , 4), we have increased the

size of the boxes ranging from 5 to 20. As a result, the total motifs size (without counting

the gaps) ranges from 5 to 80.

For each p (number of boxes), we have plotted in Figure 6.3, against the size of the motif

(x axis), the ratio between the number of extensions attempted by RISOTTO and those by

RISO (y axis). We refer the reader to Figure 6.2 at Section 6.1.2 (page 124) to compare

theoretical with experimental results in Figure 6.3 (top left) obtained in the same dataset.

Given than RISOTTO only saves useless attempts, this equals the percentage of saved calls

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16 18 20

P
er

ce
nt

ag
e

at
te

m
pt

s
of

 R
IS

O
T

T
O

 w
rt

 R
IS

O

Motif Size

One box

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 15 20 25 30 35 40

P
er

ce
nt

ag
e

at
te

m
pt

s
of

 R
IS

O
T

T
O

 w
rt

 R
IS

O

Motif Size

Two boxes

box 1/2
box 2/2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

15 20 25 30 35 40 45 50 55 60

P
er

ce
nt

ag
e

at
te

m
pt

s
of

 R
IS

O
T

T
O

 w
rt

 R
IS

O

Motif Size

Three boxes

box 1/3
box 2/3
box 3/3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 30 40 50 60 70 80

P
er

ce
nt

ag
e

at
te

m
pt

s
of

 R
IS

O
T

T
O

 w
rt

 R
IS

O

Motif Size

Four boxes

box 1/4
box 2/4
box 3/4
box 3/4

Figure 6.3: Ratio between the number of extensions attempted by RISOTTO and RISO.

of the recursive procedure. For one box (Figure 6.3 top left) we have depicted the results for

several runs, while for two, three and four boxes (Figure 6.3 top right and bottom) we show

130 CHAPTER 6. RISOTTO: IMPROVING RISO WITH MAXIMAL EXTENSIBILITY

only one curve for the inference of each box of the structured model.

As one would expect, the attempts saved are more when the length of the motif increases

and, in particular, the improvement starts when the length of the box is about 10 (this value

depends in general on the input sequence and the alphabet size). For one box (see Figure 6.3

top left), the number of attempted extension of RISOTTO decreases fast to 40% with respect

to RISO (for growing values of the length of the motifs). Even better results, getting as good

as attempting only 20% of the extensions of RISO, were achieved when extracting an i-th

box with 2 ≤ i ≤ p (see Figure 6.3 top right and bottom). Moreover, we present the ratio of

speed performance of the computation of RISOTTO with respect to that of RISO. This is

shown for all tests together in Figure 6.4 for all possible sizes of the boxes. One can see that

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

4 6 8 10 12 14 16 18 20

S
pe

ed
 p

er
fo

rm
an

ce
 o

f R
IS

O
T

T
O

 w
rt

 R
IS

O

Box Size

Speed performance

1 box
2 boxes
3 boxes
4 boxes

Figure 6.4: Ratio between performance of RISOTTO and RISO.

the best relative performance is achieved for the first boxes (that is where it is more needed

because the search space is very large and noisy), where RISOTTO is up to 2.4 faster than

RISO.

Finally, in Pevzner and Sze (2000) a challenging problem was launched that concerned

finding all single motifs of length 15 with at most 4 mismatches in 20 texts of size 600. We ran

both RISO and RISOTTO on such instances. We observe a speedup of 1.6 of RISOTTO over

RISO. We actually believe that a true challenge should involve texts of larger size. Therefore,

we ran tests with the same parameters (length 15 and at most 4 mismatches) on larger input

sequences. The results confirm the 1.6 speedup for sequences of length 700 and 800, 1.3

speedup for length 900, and then the speedup decreases, but the time required by RISOTTO

is always lower than for RISO.

Chapter 7

GRISOTTO: Improving RISOTTO

with prior knowledge

Herein, we extend the RISOTTO combinatorial algorithm (Pisanti, Carvalho, Marsan, and

Sagot, 2006), presented in the previous chapter, to take into account prior information. Since

methods based on the detection of overrepresentation of TFBS’s in co-regulated DNA se-

quences are known to face problems detecting weak motifs, we propose to post-process the

RISOTTO output by modifying top motifs in a greedy fashion, guided by the information

given by the prior. The rational for this approach is that the combinatorial algorithm exploits

the full space of possible motifs pointing out good candidates. Afterwards a greedy search is

performed over these initial guesses and good motifs are up-weighted by the prior. The reduc-

tion of the search space attained in the greedy search by using the output of a combinatorial

algorithm makes the proposed algorithm, called GRISOTTO, very efficient.

A great advantage of GRISOTTO is its ability to combine priors from different sources.

This is achieved by considering a convex combination of the information given by all priors

resulting in an information-theoretical scoring criterion called Balanced Information Score

(BIS). To unravel the benefits of using BIS with GRISOTTO we focus on discovering motifs in

156 benchmark datasets from ChIP-chip data from yeast. We considered three different priors

already used by PRIORITY, namely, orthologous conservation (Gordân et al., 2008, 2010),

DNA duplex stability (Gordân and Hartemink, 2008) and nucleosome positioning (Narlikar

et al., 2007). By combining the information of these three priors together in BIS we guided

the GRISOTTO greedy search and achieved considerably more accurate results than by using

131

132 CHAPTER 7. GRISOTTO: IMPROVING RISOTTO WITH PRIOR KNOWLEDGE

the priors separately. We further verified that GRISOTTO is at least as accurate as the

PRIORITY and MEME (Bailey et al., 2010) algorithms when using the same priors separately.

We also gauge GRISOTTO with 13 sequence-sets from mouse ChiP-seq data. In this

evaluation we used two different priors providing extra information from orthologous conser-

vation (Bailey et al., 2010) and coverage profiles given by ChiP-seq assays (Hu et al., 2010).

Results show that orthologous conservation was able to uncover motifs that resemble ones

already reported by previous works on the same data (Chen et al., 2008; Bailey et al., 2010).

However, the prior built from the ChiP-seq assays was not very beneficial to GRISOTTO, as

it reported exactly the same motifs as the uniform prior. We attributed this to the fact that

the information contained in this prior is already encoded in the BIS score. Indeed, coverage

profiles indicate overrepresentation, expressed via high sequencing read density, and the BIS

score is a weighted balance between overrepresentation and priors.

Besides effectiveness, GRISOTTO also showed to be very efficient, taking around 2 to

3 seconds per yeast sequence-set, that have around 200 sequences of 500bp, and 1 to 4

minutes per mouse sequence-set, that have from around 1000 to 40000 sequences of 200bp.

These computational times were obtained using one core of an Intel 2.4 GHz core 2 Duo

and include the generation of the initial starting points by RISOTTO. We conclude that

post-processing the output of combinatorial algorithms guided with the information given by

single or combined priors yields an efficient approach that shows great promise in extending

the power of motif discovery tools.

The chapter is organized as follows. In Section 7.1 we present the GRISOTTO algorithm

followed by the BIS scoring criterion in Section 7.2. In Section 7.3 we present results from

ChiP-chip data and ChiP-seq data. Detailed setup, evaluation methodology and detailed

results of GRISOTTO are presented in Appendixes B–D (page 163). Finally, we discuss in

Section 7.4 some issues brought up during the development of GRISOTTO.

7.1 GRISOTTO algorithm

In this section we present the GRISOTTO algorithm for motif discovery. The proposed

algorithm uses the RISOTTO (Pisanti, Carvalho, Marsan, and Sagot, 2006) output as starting

points of a greedy procedure that aims at maximizing a scoring criterion based on combined

prior information. Our approach diverges from EM (as in MEME) and Gibbs sampling (as

7.1. GRISOTTO ALGORITHM 133

in PRIORITY) as we do not consider latent variables and do not use a background model.

Moreover, instead of maximizing the likelihood, we propose a scoring criterion based on the

balanced information of observing the DNA sequences and the priors given a candidate motif.

We called this score Balanced Information Score (BIS). Finally, instead of reporting a PSSM,

GRISOTTO returns the IUPAC string that is best fitted, according to BIS, via a greedy

search procedure.

We next introduce some notation needed to describe the GRISOTTO algorithm (refer

to Table 7.1, page 134). Start by considering that we have a set of N co-regulated DNA

sequences henceforward denoted by f = (fi)i=1,...,N . The length of each sequence fi is ni,

that is, fi = (fij)j=1,...,ni
. Moreover, prior information is resumed as a position-specific prior

(PSP), where each position (i, j) in the prior amounts for the likelihood that a motif starts

in the base fij of the sequence fi from the set f of co-regulated DNA sequences. In that

case, consider that Sp contains some prior information in a PSP format about the domain

in study, with p = 1 . . . ℓ, where ℓ is the number of priors (eventually zero). We denote by

S = 〈S1, . . . , Sℓ〉 the list of all priors. The goal of GRISOTTO is to report a single motif of a

fixed size k, that is, an IUPAC string of size k. The IUPAC alphabet is henceforward denoted

by Σ.

The pseudocode of GRISOTTO is depicted in Algorithm 7.1. The algorithm starts by

running RISOTTO to extract, at least zmin, and at most zmax, motifs of size k (see details

in Appendix B, page 163). From the RISOTTO output, the top z motifs are collected in a

set called C (Step 2) and constitute the starting points of the GRISOTTO greedy procedure,

called GGP (Step 4). Briefly, GGP starts with a motif m ∈ C and returns the best fitted

motif, according to BIS, by updating each position in m with an IUPAC symbol until no

local improvements can be achieved. In Step 5-6 the variable r, that stores the output of the

algorithm, is updated whenever the GGP procedure returns a motif with a BIS score higher

than the current stored one. Note that in Step 2 the result variable r is initialized with the

empty motif ε. We consider that the empty motif ε has the minimum possible BIS value.

It remains to explain the GGP procedure given in Algorithm 7.2 (page 136). The general

idea of the algorithm is to process each position of the motif m, received as parameter, in a

greedy fashion. Variable i identifies the motif position being processed. It is initialized with

the value 0 (Step 1), the first position of m, and it is incremented in a circular way using

134 CHAPTER 7. GRISOTTO: IMPROVING RISOTTO WITH PRIOR KNOWLEDGE

Symbol Meaning

Σ IUPAC alphabet

f input sequences

fi i-th input sequence

fij j-th position of the i-th input sequence

N number of input sequences

ni length of fi

k motif size

Sp p-th prior (in PSP format)

ℓ number of priors (it can be zero)

S S = 〈S1, . . . , Sℓ〉 is the list of all priors

zmin minimum number of motifs expected to be returned by a RISOTTO run

zmax maximum number of motifs expected to be returned by a RISOTTO run

z number of top motifs post-processed from RISOTTO output

C the set with the z top motifs to be post-processed by GRISOTTO

m motif of size k

m〈i, α〉 motif m where the i-th position (starting with 0) is replaced by α ∈ Σ

ε empty motif (its BIS score is the minimum possible value: −∞)

Pm probability distribution given by the PSSM induced by m

fi[j . . . j + k − 1] k-long segment of the i-th input sequence that starts at position j

Sp[i, j] probability at the j-th position of fi given by the p-th prior

ji annotated position for fi with maximum BIS score for a motif m

αp the weight of the p-th prior

λ coefficient to balance priors and over-representation contribution

Table 7.1: Definition of terms used in Chapter 7.

7.2. BALANCED INFORMATION SCORE 135

Algorithm 7.1 GRISOTTO, Greedy RISOTTO

GRISOTTO(DNA sequences f , list of priors S = 〈S1, . . . , Sℓ〉)
1. run RISOTTO(k,zmin,zmax);

2. let r = ε and C be the list of the first z motifs returned in Step 1;

3. for each motif m in C
4. let m =GGP(m, f, S);

5. if (BIS(r,f ,S)<BIS(m,f ,S))

6. let r = m;

7. return r;

modular arithmetics (Step 9). GPP terminates when k consecutive positions of the motif m

being considered can not be improved, according to BIS, and so m remains unchanged for a

complete k-round. This information is stored in variable t that counts how many consecutive

positions of m have not been modified. Variable t is initialized with 0 (Step 1) and controls

the outer cycle (Step 2-9), which terminates when t = k. The Boolean flag changed is read

in the outer cycle (Step 7) to detect whether the i-th position of the motif has been modified

inside the body of the inner cycle (Step 6). It is initialized in each run of the outer cycle with

false (Step 3). The inner cycle (Step 4-6) tries to improve the BIS score of m by updating

its i-th position with each letter α ∈ Σ. We denote by m〈i, α〉 the motif m where the i-th

position of m was replaced by the letter α. Whenever the BIS score of m〈i, α〉 is greater than
the BIS score of m (Step 5) three variables are updated: (i) motif m is updated to m〈i, α〉;
(ii) variable t is reset to its initial value, forcing a complete k-round from that point on; and

(iii) flag changed is turned to true. After the inner cycle, in Step 7, we test whether the i-th

position of m was not modified by checking the value of the flag changed. If that is the case,

variable t is incremented (Step 8). Next, in Step 9, variable i is incremented so that the next

position of m can be inspected.

We note that the GGP procedure converges since the BIS score is upper-bounded. Next,

we derive and present in detail the BIS score.

7.2 Balanced information score

Start by noticing that a motif m of size k written in IUPAC can be easily translated into a

PSSM with dimension 4×k (for details see Appendix C). Moreover, observe that if we had to

136 CHAPTER 7. GRISOTTO: IMPROVING RISOTTO WITH PRIOR KNOWLEDGE

Algorithm 7.2 GGP, GRISOTTO greedy procedure

GGP(motif m, DNA sequences f , list of priors S = 〈S1, . . . , Sℓ〉)
1. let t = 0 and i = 0;

2. while (t < k)

3. let changed = false;

4. for each α in Σ

5. if (BIS(m〈i, α〉,f ,S)>BIS(m,f ,S))

6. let m = m〈i, α〉, t = 0 and changed = true;

7. if (not changed)

8. let t = t+ 1;

9. let i = (i+ 1) mod k;

10. return m;

guess in which position m occurs in sequence fi that would be the position ji that maximizes

Pm(fi[ji . . . ji + k − 1]) where Pm(w) is the probability of observing the DNA word w by the

PSSM induced by m and fi[ji . . . ji + k− 1] is the k-long segment of fi that starts at position

ji. In other words, such ji annotates the position in which we believe the motif m occurs in

fi. Henceforward consider that we annotate for each sequence fi the respective position ji

where m occurs with higher probability (refer to Table 7.1 at page 134).

Following Shannon, the self-information of a probabilistic event with probability p is given

by − log(p). If the event is very rare, the self-information is very high. On the other hand, if

the event has probability close to 1, observing such event gives us almost no information. So,

by assuming that m occurs independently in each sequence of f , the self-information that m

occurs in all sequences of f in the annotated positions is given by

N∑

i=1

− log(Pm(fi[ji . . . ji + k − 1])). (7.1)

Note that the above sum is zero (its minimal value) if the motif m occurs with probability 1

in all annotated positions and, moreover, the sum is not upper-bounded.

If the priors are in PSP format, their information can be easily computed from the anno-

tated sequences. Indeed, the self-information given by the prior Sp of observing the annotated

positions ji, for all 1 ≤ i ≤ N , is computed as

N∑

i=1

− log(Sp[i, ji]),

7.2. BALANCED INFORMATION SCORE 137

where Sp[i, j] is the prior probability stored at the j-th position of the i-th sequence in the

Sp PSP file. Having this, it remains to understand how the information from different priors

can be combined. Actually, priors come from different sources (Narlikar et al., 2006, 2007;

Gordân et al., 2008; Gordân and Hartemink, 2008; Gordân et al., 2010), and some of these

sources might have more quality or be more relevant for motif discovery than others. A

simple way to heuristically combine prior information is to multiply the contribution of each

prior by a constant αp that measures the belief in the quality/relevance of each prior Sp and

consider a balanced sum of all self-informations. In order to keep the resulting value with the

same magnitude of each component, we consider a convex combination, that is,
∑ℓ

p=1 αp = 1.

Thus, the combined self-information is computed as

ℓ∑

p=1

(
αp

N∑

i=1

− log(Sp[i, ji])

)
. (7.2)

Following a similar idea, we balance with a constant λ ∈ (0, 1] the self-information given

by the occurrence of the motif in (7.1) with the combined self-information given by the priors

in (7.2), obtaining in this way the following expression:

λ
N∑

i=1

− log(Pm(fi[ji . . . ji + k − 1])) + (1− λ)
ℓ∑

p=1

(
αp

N∑

i=1

− log(Sp[i, ji])

)
=

−
N∑

i=1


λ log(Pm(fi[ji . . . ji + k − 1])) + (1− λ)

ℓ∑

p=1

αp log(Sp[i, ji]))


 . (7.3)

The closer the above expression is to zero the less (balanced) self-information follows from

observing a candidate motif m in the annotated positions of both the DNA sequences and

the priors. Indeed, we expect motifs to occur in the annotated positions of both the DNA

sequences and the priors with high probability. Therefore, the goal is to find a motif m that

minimizes such information. Next, and for the sake of simplification, we drop the minus

sign in (7.3), that is, we consider the final scoring criterion, called balanced information score

(BIS), defined as

BIS(m, f, S) =

N∑

i=1


λ log(Pm(fi[ji . . . ji + k − 1])) + (1− λ)

ℓ∑

p=1

αp log(Sp[i, ji])


 , (7.4)

and restate our goal to finding a motif m that maximizes (7.4). Note that BIS(m, f, S) is

always non-positive and, therefore, is upper-bounded by 0.

138 CHAPTER 7. GRISOTTO: IMPROVING RISOTTO WITH PRIOR KNOWLEDGE

For the BIS score in Equation (7.4) to be well-defined it remains to determine the values

of the constants λ and αp for all 1 ≤ p ≤ ℓ. Whenever there is no knowledge about the quality

of the priors the values of such constants should be uniform, that is, λ = 1
2 and αp = 1

ℓ
for

all 1 ≤ p ≤ ℓ. Usually, it is possible to refine heuristically these constants by evaluating the

usefulness of each prior in well-know domains.

To conclude, we would like to point out that it is not obvious how to translate back

the combined information into a combined prior that could be used in an EM or Gibbs

sampler-based algorithm. These techniques need that such prior reflects the probability of

finding a motif in a certain position of the DNA sequences in order to correctly bias, in each

iteration step, the expected log-likelihood of the candidate motif occurring in the positions

given by the latent variable. On the other hand, GRISOTTO incorporates prior information

in BIS resulting in a theoretical-information scoring criterion that measures the information of

observing the candidate motif in the annotated positions of both the DNA sequences and the

priors. These annotated positions are computed only once, for each candidate motif, in such

a way that the balanced contribution to the BIS score of the DNA sequences and the priors in

those positions is maximal. The higher the value of the BIS score, the higher the probability

that a candidate motif occurs in the annotated positions of both the DNA sequences and the

priors. Therefore, GRISOTTO reports the motif, among all candidate ones, that maximizes

the BIS scoring criterion.

7.3 Experimental results

The GRISOTTO algorithm was implemented in Java. Source code and binaries are available

at the GRISOTTO webpage.1

We start the evaluation of the effectiveness of GRISOTTO by measuring the benefits of

using single and combined priors in finding motifs in yeast ChiP-chip data. This data is used

as a gold standard with several priors available, providing an unbiased experimental assay for

motif discovery tools. It contains a human-curated set of 156 motifs known to be present in

156 sequence-sets (one motif per sequence-set). Motif finder tools are asked to report a single

motif for each sequence-set, which is then compared with the human-curated one. Human-

curated motifs are called throughout this work as literature motifs, known motifs or even true

1http://kdbio.inesc-id.pt/∼asmc/software/grisotto.html

7.3. EXPERIMENTAL RESULTS 139

motifs. Details about the data, priors, evaluation methodology, and results can be found in

the following ChiP-chip data subsection.

We also provide an additional check on the value of using priors with GRISOTTO from

data with different characteristics (a higher eukaryote with sequence data derived from a

different technology) by evaluating the performance of GRISOTTO in 13 sequence-sets from

mouse ChiP-seq data. Details of this assessment can be found in the ChiP-seq data subsection.

7.3.1 ChiP-chip data

We gauge the performance of GRISOTTO by measuring the benefits of using BIS for finding

motifs in 156 sequence-sets experimentally verified to bind different TF’s in yeast. These

datasets were collected by PRIORITY researchers (Narlikar et al., 2007) and were compiled

from the work of Harbison et al. (2009). More precisely, Harbison et al. (2009) profiled the

intergenetic binding locations of 203 TF’s under various environmental conditions over 6140

yeast intergetecic regions. From these, only intergenetic sequences reported to be bounded

with a p-value ≤ 0.001 for some condition were considered by the PRIORITY researchers.

Moreover, only sequence-sets with at least size 10 bounded by TF’s with a known consensus

from the literature were considered, resulting in 156 sequence-sets. Presently, these datasets

are being used to benchmark several motif discovery tools (Wang and Stormo, 2003; Sinha

et al., 2004; Bailey and Elkan, 1995b; Harbison et al., 2009; Siddharthan et al., 2005; Kellis

et al., 2003; Liu et al., 2004; MacIsaac et al., 2006; Bailey et al., 2010; Gordân et al., 2010,

2008; Gordân and Hartemink, 2008; Narlikar et al., 2007) as they provide a reliable and fair

test on real data.

Three different PSP’s were incorporated in BIS to boost GRISOTTO motif discoverer,

namely, priors based on evolutionary conservation (Gordân et al., 2010, 2008), destabilization

energy (Gordân and Hartemink, 2008), and nucleosome occupancy (Narlikar et al., 2007).

All these priors were devised by PRIORITY researchers and were kindly made available by

the authors (personal communication). The popular MEME algorithm was also evaluated

with the evolutionary conservation-based prior (Bailey et al., 2010) devised by PRIORITY

researchers. Since the sequence-sets and priors used to evaluate GRISOTTO were exactly the

ones used in PRIORITY and MEME and, moreover, the criterion used to determine a correct

prediction by the algorithms was also the same, we were able to make direct comparisons

140 CHAPTER 7. GRISOTTO: IMPROVING RISOTTO WITH PRIOR KNOWLEDGE

with their published results. PRIORITY and MEME had already shown that the use of these

priors is advantageous when combined with Gibbs sampling and EM techniques. Herein we

aim at investigating if the same improvements are also achieved by GRISOTTO. Moreover,

we evaluate if combining priors is beneficial.

Following the approach of PRIORITY, we let GRISOTTO look for a single motif of size

8 in each of the 156 yeast sequence-sets, since priors were computed for 8-mers. The results

provided by MEME considered a modification of the priors, adapting them for k-mers of

different sizes. As a consequence, MEME was able to report accurately a large number of

long motifs. Although we acknowledge that MEME’s approach improves the capacity to

discover motifs, we keep the original priors used in PRIORITY. Moreover, to measure the

accuracy of GRISOTTO we used exactly the same metric as the one previously used by

the PRIORITY and MEME researches. This metric compares the single motif reported by

the discoverer, for each of the 156 yeast sequence-sets, to a literature motif by computing a

scaled version of the Euclidean distance between the true motif and the reported one. A more

complete explanation of this metric can be found in Appendix C (page 167).

The results of GRISOTTO, as well as those of state-of-the-art motif discoverers, are sum-

marized in Table 7.2 (page 141). The results of motif discoverers were taken from Gordân et al.

(2010) and Bailey et al. (2010). All priors used were devised by R. Gordân, A. J. Hartemink

and L. Narlikar (Gordân et al., 2008, 2010; Narlikar et al., 2007; Gordân and Hartemink,

2008). Detailed results of GRISOTTO, sequence-set by sequence-set, can be found in the

GRISOTTO webpage,2 while details about the evaluation methodology, including, parameter

settings and running times, can be found in Appendixes B–D (page 163). A brief explanation

about the priors is given in the following sections.

Evolutionary conservation-based priors

Diverse methods for motif discovery make use of orthologous conservation to assess wether a

particular DNA site is conserved across related organisms, and thus more likely to be func-

tional. A comprehensive work along this line was done by PRIORITY researchers (Gordân

et al., 2008, 2010), where an orthologous conservation-based prior was devised to improve

their Gibbs sampler-based motif discovery method. This prior was built in a discriminative

2http://kdbio.inesc-id.pt/∼asmc/software/grisotto.html

7.3. EXPERIMENTAL RESULTS 141

Algorithm Description Successes %

PhyloCon Local alignment of conserved regions 19 12%

PhyME Alignment-based with EM 21 13%

MEME:OOPS MEME with OOPS model 36 23%

MEME:ZOOPS MEME with ZOOPS model 39 25%

MEME c MEME without conserved bases masked 49 31%

PhyloGibbs Alignment-based with Gibbs Sampling 54 35%

Kellis et al. Alignment-based 56 36%

CompareProspector Alignment-based with Gibbs sampling 64 41%

Converge Alignment-based with EM 68 44%

MEME:OOPS-DC MEME with OOPS model and DC priors 73 47%

PRIORITY-DC Gibbs sampler with DC priors 77 49%

MEME:ZOOP-DC MEME with ZOOPS model and DC priors 81 52%

GRISOTTO-DC GRISOTTO with DC priors 83 53%

PRIORITY-DE Gibbs sampler with DE priors 70 45%

GRISOTTO-DE GRISOTTO with DE priors 80 51%

PRIORITY-DN Gibbs sampler with DN priors 70 45%

GRISOTTO-DN GRISOTTO with DN priors 77 49%

GRISOTTO-CDP GRISOTTO with combined priors 93 60%

Table 7.2: Comparison of GRISOTTO with state-of-the-art methods over ChiP-chip data.

142 CHAPTER 7. GRISOTTO: IMPROVING RISOTTO WITH PRIOR KNOWLEDGE

way by taking into account not only sequence-sets that were bounded by some profiled TF

(the positive set) but also sequence-sets that were not bounded by the same TF (the nega-

tive set). In this way the prior reflects not only the probability that a W -mer at a certain

position is conserved but of all the conserved occurrences of this W -mer what fraction occurs

in the bound sequence-set. Conserved occurrences are found by searching if a W -mer in a

reference sequence also occurs in most of its orthologous ones regardless of its orientation or

specific position. For this particular case, the evolutionary conservation-based prior was used

for each intergenetic region in S. cerevisiae and it used the orthologous sequences from six

related organisms, namely, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castelli

and S. kluyveri. The prior was named discriminative conservation-based prior (DC) and was

made available, in a PSP format, at the PRIORITY webpage.

Herein, we gauge the performance of GRISOTTO when this exact DC prior is incorpo-

rated into the BIS scoring criterion. Results comparing GRISOTTO-DC with PRIORITY-

DC (Gordân et al., 2010), MEME-DC (Bailey et al., 2010), and other state-of-the-art al-

gorithms, can be found in Table 7.2 (page 141). Results show that GRISOTTO-DC cor-

rectly predicted 83 motifs out of the 156 experiments, whereas PRIORITY-DC found 77 and

MEME:ZOOP-DC 81. We conclude that GRISOTTO performed at least as well as PRIOR-

ITY and MEME:ZOOP when the same DC PSP was used. A closer inspection of detailed

results of GRISOTTO, available at the GRISOTTO webpage, reveals that GRISOTTO-DC
found 15 motifs that PRIORITY-DC did not, while PRIORITY-DC found only 10 motifs that

GRISOTTO-DC did not.

Destabilization energy-based priors

Information about DNA double-helical stability has also been collected into a PSP to boost

the PRIORITY Gibbs sampler-based algorithm (Gordân and Hartemink, 2008). The rational

for the information contained in this prior is based in the fact that, in general, the energy

needed to destabilize the DNA double helix is higher at TFBS’s than at random DNA sites.

The PSP resulting from this effort was built in a discriminative way, just as for the DC prior,

and was named discriminative energy-based prior (DE).

We evaluated the DE prior within GRISOTTO. Results comparing GRISOTTO-DE with

PRIORITY-DE (Gordân and Hartemink, 2008), and other state-of-the-art algorithms, can

7.3. EXPERIMENTAL RESULTS 143

be found in Table 7.2 (page 141). This table shows that GRISOTTO-DE correctly predicted

80 motifs out of the 156 experiments, whereas PRIORITY-DE found only 70. We conclude

that GRISOTTO performed quite well when the DE prior was used, with an improvement

of 14% over correct predictions relatively to PRIORITY, raising the overall proportion of

successful predictions in 6% (from 45% to 51%). As before, we made a closer examination of

the detailed results included in an additional file at the GRISOTTO webpage which revealed

that GRISOTTO-DE found 19 motifs that PRIORITY-DE did not, whereas PRIORITY-DE
found only 9 motifs that GRISOTTO-DE did not.

Nucleosome occupancy-based priors

Nucleosome occupancy has also been used in motif discovery. The rationale for this ap-

proach is that Eukaryotic genomes are packaged into nucleosomes along chromatin affecting

sequence accessibility. There are three main works in the literature to predict genome-wide

organization of nucleosomes in Saccharomyces cerevisiae (Lee et al., 2004; Yuan et al., 2005;

Segal et al., 2006). Taking into account the work of Segal et al. (2006) the PRIORITY re-

searchers (Narlikar et al., 2007) devised an informative prior based on a discriminative view

of nucleosome occupancy. The prior was named discriminative nucleosome-based prior (DN).

GRISOTTO was evaluated with the DN prior incorporated in the BIS score. Results

comparing GRISOTTO-DN with PRIORITY-DN , and other state-of-the-art algorithms, can

be found in Table 7.2 (page 141). This table shows that GRISOTTO-DN correctly predicted

77 motifs out of the 156 experiments, while PRIORITY-DC found 70. We conclude that

GRISOTTO outperformed PRIORITY when DN prior was used, with an improvement of

10% over correct predictions. A closer investigation of detailed results in an additional file at

the GRISOTTO webpage unravels that GRISOTTO-DN found 13 motifs that PRIORITY-

DN did not, whereas PRIORITY-DN found 6 motifs that GRISOTTO-DN did not.

Combining priors

Despite considerable effort to date in developing new potential priors to boost motif discover-

ers, PSP’s from different sources have not yet been combined. Actually, although having some

degree of redundancy, because, for instance, the positioning of nucleosomes may be correlated

with DNA double helix stability, it is easy to conclude by a closer inspection of the detailed

144 CHAPTER 7. GRISOTTO: IMPROVING RISOTTO WITH PRIOR KNOWLEDGE

results in an additional file at the GRISOTTO webpage that different PSP’s still report a

considerable number of disjoint motifs (refer to Appendix D.3 for further details). As a matter

of fact, PRIORITY researchers have already noticed this fact (Gordân and Hartemink, 2008).

However, it is not a trivial task determining how to translate the BIS combined information

into a PSP that can be used in EM or Gibbs sampler-based algorithms.

In order to gauge the potential of combined priors, we incorporated in the BIS score

the three DC, DE and DN priors. We call the final prior combined discriminative prior

(CDP). Results show that GRISOTTO-CDP is the more accurate motif discoverer for the 156

sequence-sets being evaluated. It correctly predicted 93 motifs, while GRISOTTO-DC found

83, GRISOTTO-DE 80 and GRISOTTO-DN 77. In this way GRISOTTO-CDP accomplished

an improvement of at least 12% over correct predictions, when compared with GRISOTTO

variants considering the priors individually. This raises the overall proportion of successful

predictions in 7%, on top of the improvements already attained in the previous sections, over

these 156 yeast sequence-sets. Moreover, when comparing GRISOTTO-CDP with state-of-

the-art motif discoverers (refer to Table 7.2, page 141), the final proportion of successful

predictions was raised to 60%, while the best known previous value, to our knowledge, was

51% attained by MEME-DC (Bailey et al., 2010). This leads us to conclude that combining

priors from different sources is even more beneficial than considering them separately.

7.3.2 ChiP-seq data

Herein, we measure the accuracy of GRISOTTO in motif discovery on 13 mouse ChiP-seq

data. This data was gathered by Chen et al. (2008) where whole-genome binding sites of 13

sequence-specific TF’s (Nanog, Oct4, STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Essrb,

Tcfcp2l, E2f1, and CTCF) were profiled in mouse ES cells using the ChiP-seq approach.

Sequences of ±100bp size from the top 500 binding peaks were selected for each factor, repeats

were masked, and the Weeder (Pavesi et al., 2004b) tool was used to find overrepresented

sequences unravelling 12 of the 13 factors (excluding E2f1).

We assess the quality of GRISOTTO in discovering motifs from mouse ChiP-seq data with

two priors. First, an orthologous conservation-based PSP was used as information for higher

organisms is now available. Indeed, there are already such PSP’s for yeast, fly, mouse and even

human (Bailey et al., 2010; Gordân et al., 2010, 2008). Second, a binding peak-based PSP

7.3. EXPERIMENTAL RESULTS 145

was tried as ChiP-seq assays provide an intrinsic positional prior that can be computed from

base-specific coverage profiles. This prior has recently been employed in motif discoverers

(Kulakovskiy et al., 2010; Hu et al., 2010) with success.

As for ChiP-chip data, we let GRISOTTO find for a single motif of size 8, since priors were

computed for 8-mers. However, as human-curated motifs are not available for this ChiP-seq

data, we made only a resemblance, based on a 6-window match, between the motifs reported

by GRISOTTO with those outputted by Chen et al. (2008) and MEME (Bailey et al., 2010)

for the same data.

Evolutionary conservation-based priors

Orthologous conservation-based priors for mouse ChiP-seq data were obtained by MEME

researchers (Bailey et al., 2010) following a similar methodology as PRIORITY-DC for the

yeast ChiP-chip data ones. As before, this new mouse prior received the shorthand name

DC. We incorporated the DC prior into the BIS score and ran GRISOTTO. In Table 7.3

(page 146), motifs reported by Chen et al. and MEME-DC are shown along side motifs found

by GRISOTTO-DC for the 13 mouse sequence-sets. Recall that Chen et al. only reported

12 out of the 13 motifs, excluding the E2f1 motif, so in this case the TRANSFAC (Matys

et al., 2006) motif is shown instead. MEME-DC and GRISOTTO-DC were able to retrieve

all motifs. Moreover, the number of sequences of these sequence-sets vary from 1038 to 38238

and, due to efficiency issues, MEME-DC was only able to run over 100 sequences randomly

chosen from each sequence-set. GRISOTTO-DC was able to use all of them taking only 1-4

minutes, per sequence-set, to report a motif.

Because sequences-sets are very large, some of the reported motifs became highly degen-

erated. Actually, only 6 out of the 13 motifs seem to be highly conserved, namely, CTCF,

Esrrb, Klf4, n-Myc, Tcfc and c-Myc. For these, even allowing for IUPAC symbols during the

greedy search results in highly conserved motifs. Therefore, for this data, we searched for

IUPAC strings that allow only two positions to have degenerate IUPAC symbols.

By a closer inspection of Table 7.3 we conclude that motifs reported by GRISOTTO-DC
are strongly similar to the ones reported by Chen et al. and MEME-DC. Have in mind that

GRISOTTO outputs an IUPAC, and not a PSSM, but we used, in a 6-window size, the same

color scheme as PSSM’s to make the resemblance with reported motifs easier.

146 CHAPTER 7. GRISOTTO: IMPROVING RISOTTO WITH PRIOR KNOWLEDGE

TF Chen et al. motif MEME-DC motif GRISOTTO-DC motif

Nanog CCA
TTTGT

C
T

Oct4
G
C
A
TTATGCA

Sox2 CCA
TTTGTC

T

Smad1
A
TTGCA

CATT

Tcfcp2l1 AACCAGC
T
C
T

CTCF AGG
AGGGC

G
A

Zfx C
C
TAGGCCC

T

STAT3 TCCG
TGGA

CA

Klf43 GGGC
TGG

TGG

Esrrb
G
CAAGGTCA

c-Myc
G
ACACGC

TGG

n-Myc CACGTGG
C
C
T

TF TRANSFAC motif MEME-DC motif GRISOTTO-DC motif

E2f1 CTGCC
T
G
TCC

Table 7.3: Comparison of GRISOTTO-DC with Chen et al. and MEME-DC over ChiP-seq

data.

7.4. DISCUSSION 147

Binding peak-based priors

Hu et al. (2010) devised a prior using coverage profile information provided by the ChiP-seq

approach. This grounds in the belief that motifs are tightly packed near the peak summit –

the location inside each peak with the highest sequence coverage depth. As a result, prior

probabilities were set to be proportional to a discretized Student’s t-distribution with 3 degrees

of freedom and rescaled such that they form a step function with a fixed 25bp step-size.

The prior probabilities are symmetric and centered at the peak summits. As such prior is

intrinsically a positional one we built a PSP resuming the described probabilities for the 13

mouse ChiP-seq data and ran GRISOTTO.

Our results show that direct use of binding peak-based priors does not help GRISOTTO

much. Actually, the motifs reported by this prior were exactly the same as using the uniform

one for which any position in the DNA is likely to contain a motif. Moreover, when combined

with the DC prior GRISOTTO reported precisely the same motifs as DC prior alone. These

findings suggest that GRISOTTO is unable to retrieve any useful information from the binding

peak-based prior. We attributed this to the fact that part of the information contained in

the binding peak-based prior is already encoded in the BIS score. Indeed, peak summits

indicate an overrepresentation of a motif in a certain locus. Such overrepresentation is already

weighted in the BIS score (recall Equation (7.1) and (7.4) in page 136–137). Notwithstanding,

it seems reasonable that for short sequences of 200bp (namely, ±100bp around peak summits)

the coverage-based prior has no real impact on motif discovery. For longer sequences, the

effective resolution of the peak summits seems to provide useful information (see Hu et al.,

2010; Kulakovskiy et al., 2010).

7.4 Discussion

Wasserman and Sandelin (2004) noticed that the discovery of TFBS’s from a nucleotide se-

quence alone suffers from impractical high false positive rates. This was termed the futility

theorem as nearly every predicted TFBS has no function in vivo. This problem has been stud-

ied and addressed by taking into consideration information in and beyond the TFBS’s, such

as orthologous conservation (Gordân et al., 2010; Bailey et al., 2010), nucleosome positioning

(Narlikar et al., 2007; Daenen et al., 2008), DNA duplex stability (Gordân et al., 2008) and

148 CHAPTER 7. GRISOTTO: IMPROVING RISOTTO WITH PRIOR KNOWLEDGE

coverage profiles obtained from ChiP-seq assays (Kulakovskiy et al., 2010; Hu et al., 2010).

Following this line of research we have verified in the present study that post-processing

the output of RISOTTO with prior knowledge from different sources is beneficial for motif

discovery. RISOTTO is a consensus-based method that enumerates exhaustively all motifs

by collecting their occurrences, up to a fixed Hamming distance3, from input sequences. As

a result, a set of overrepresented motifs is reported and then ordered by their biological rel-

evance according to a statistical significance test (Marsan and Sagot, 2000; Carvalho et al.,

2006; Pisanti et al., 2006). This ordered list is retrieved in a classical way from the nucleotide

sequence alone and, as previously mentioned, it is of particular importance to introduce a

bias from available priors. Following this goal, we noticed that the top 10 motifs from the

RISOTTO ordered list could be greedily modified to have a good BIS score. The greedy proce-

dure would modify these motifs introducing some noise allowed by the prior and up-weighting

weak motifs that were masked during the combinatorial and/or statistical significance test.

Certainly, we would not expect RISOTTO, or any other combinatorial algorithm, to report

completely outlandish motifs, as motif discovery problem is indeed a combinatorial problem

that accounts for overrepresentation of a string in a set of DNA sequences. However, prior

information provides valuable guidance on how to describe a motif that goes beyond neighbor-

hoods (defined by the Hamming distance or any similar distance) of the consensus sequence.

GRISOTTO incorporates such information in the BIS score providing in this way a broader

definition of overrepresentation of a motif in the input sequences.

Currently, a significant point of discussion is related with the use of prior information as

a post-processing step of RISOTTO, and not within the RISOTTO procedure itself. For the

sake of simplicity, consider we are looking for motifs of a fixed size k. Combinatorial algo-

rithms take into consideration overrepresentation of motifs to extract them. This extraction

is exhaustive, by iteratively extending candidate strings of size 1 . . . k − 1, letter by letter of

the DNA alphabet, and checking in each step if the extended string is still overrepresented

in the sequence-set. Usually, complex data structures, such as suffix-trees, are employed to

extend the candidate string. Whenever an extension fails to be overrepresented in the input

sequences that extension is disregarded and another one is attempted. Only extensions that

3The Hamming distance between two string measures the minimum number of substitutions required to

change one string into the other.

7.4. DISCUSSION 149

reach the size k are reported.

Conversely, prior information only asserts if a sub-sequence of a fixed size W in a certain

position of the DNA sequences is likely to be a motif. It is not straightforward to use prior

information in combinatorial algorithms because they would need to know if a sub-string of

size 1 . . . k−1 is likely to be a motif. However, in one hand, it is space-wise unfeasible to have

priors for multiple values of W . On the other hand, priors for small or large values of W have

no information whatsoever, as either they are very common (occur in all input sequences)

or very rare (occur only once or never). Our work, as well as state-of-the-art ones (Gordân

et al., 2008, 2010; Narlikar et al., 2007; Gordân and Hartemink, 2008; Bailey et al., 2010),

have shown that an efficient and effective solution is to consider W = k = 8.

Besides this discussion, there are two obvious advantages of using prior information at

a post-processing step. First, the greedy-search procedure is independent from the starting

points provided by the combinatorial algorithm, allowing any method to be employed; for

instance, Weeder (Pavesi et al., 2004b), SMILE (Marsan and Sagot, 2000), RISO (Carvalho

et al., 2006), RISOTTO, etc. Another advantage is that while new priors are devised, we

do not need to re-compute previous starting points, being sufficient to run the greedy-search

procedure of the GRISOTTO algorithm.

In closing, we stress that the BIS score was used throughout the experiments with sequence-

sets known to be bound by a TF. Therefore, it was only used to discover the positions of each

sequence-set where the motif occurs. Another possible application of the BIS score would

be to detect the fraction of sequences that are likely to have site predictions. There are two

possible ways to adapt GRISOTTO to this new problem: (i) derive a threshold of the BIS

score contribution of a sequence above which the sequence is likely to have site predictions; (ii)

incorporate an input parameter in the GRISOTTO greedy procedure, usually called quorum,

that amounts for the fraction of sequences that have binding site predictions. None of these

approaches seems straightforward and are out of the scope of this work, hence they were left

as a future research topic.

150 CHAPTER 7. GRISOTTO: IMPROVING RISOTTO WITH PRIOR KNOWLEDGE

Part IV

Conclusions and future work

151

153

Conclusions

Herein we draw some conclusions concerning the topics of this thesis: motif representation

and discovery.

Motif representation

Motifs have been represented in a variety of ways (refer to Section 2.2, page 12). In this thesis

we used Bayesian networks and multinets to model transcription factor binding sites (TFBS)

and discriminate them from the background DNA sequences. Since distinguishing motifs

from the background is chiefly a classification task, we proposed a new discriminative scoring

criterion, called factorized conditional log-likelihood (f̂CLL), for learning augmented naive

Bayes networks, based on an approximation of conditional log-likelihood (CLL). The new

criterion is decomposable, score-equivalent, and allows efficient estimation of both structure

and parameters. In this way, we addressed an important problem concerning discriminative

learning of Bayesian networks classifiers (BNC) posed by Friedman et al. (1997) in a very

efficient way. Actually, the computational complexity of the proposed method is of the same

order as the traditional log-likelihood criterion.

The merits of the new scoring criterion were evaluated and compared to those of common

state-of-the-art classifiers, on a large suite of benchmark datasets from the UCI repository.

Optimal f̂CLL-scored tree augmented naive (TAN) Bayes classifiers (Friedman et al., 1997),

as well as somewhat more general structures, performed significantly better than generatively-

trained Bayesian network classifiers, as well as C4.5, nearest neighbor, and logistic regression

classifiers. Moreover, f̂CLL-optimal classifiers performed better, although the difference is not

statistically significant, than those where the Bayesian network parameters were optimized

using a gradient descent method to find maximum-CLL parameters, namely, extended logistic

regression (ELR) proposed by Greiner et al. (2005), as well as support vector machines (with

linear, polynomial and RBF kernels). In comparison to the latter methods, our f̂CLL-based

approach is considerably more efficient in terms of computational cost, being 2 to 3 orders of

magnitude faster, in 25 benchmark datasets from the UCI machine learning, with minimum

memory requirements.

Learning unrestricted BNC’s is known to be a NP-complete problem. For this reason,

BNC’s can only be learned efficiently for restricted structures such as TAN’s. However, TAN’s

154

are not able to capture important dependencies among binding site positions. To overcome

this limitation, we proposed a new heuristic that improves an optimal TAN classifier by

adding important dependencies and removing irrelevant ones. This process is guided by the

total order induced by the breath-first search (BFS) over the optimal TAN. Given that the

resulting BNC is consistent with the total order of the optimal TAN, it was called a consistent

κ-graph (CκG). The search space of the proposed heuristic is more general than trees and

intersect, but is not contained in, polytrees. Moreover, we show that an optimal CκG can be

found in polynomial time, while augmenting the search space exponentially, in the number

of nodes/attributes, relatively to trees. The CκG learning algorithm can be applied to any

decomposable score. We show that the score of the optimal CκG is always greater than or

equal to the score of the optimal TAN and naive Bayes classifiers.

Finally, since there is no reason to assume that a unique CκGmodel is suitable to represent

the promoter regions of co-regulated genes, the background, and at the same time, a motif

within such promoter region, the foreground, we proposed to use two-component mixtures

of CκG’s as promoter/motif models. Indeed, there seems to be two separate underlying

regimes, so instead we model the background with a CκG Bayesian network model and the

foreground with another CκG Bayesian network model. In this case, the resulting model is

a two-component mixture, also called a multinet, of CκG models. Taking this into account,

we extended the f̂CLL scoring criterion to mixtures of Bayesian networks. To access the

quality of the proposed model, we compared CκG multinets against other Bayesian network

models using 89 sequence-sets of TFBS’s retrieved from the TRANSFAC database (Wingender

et al., 2001). We concluded that our approach outperformed other methods with considerable

statistical significance.

Motif discovery

We proposed RISOTTO, a new algorithm for motif discovery, improving the performance of

RISO (Carvalho, Freitas, Oliveira, and Sagot, 2006). The improvement consists in storing

information concerning maximal extensibility of factors in order to avoid trying to extend

hopeless candidate motifs. Experimental results show that the improvement works for large

motifs, achieving an improvement of 40% over the computational time of RISO. In terms of

space, a trade off between memory allocation/management and maximal extensibility gain

155

was made, leading to at most 1.3MB of memory cost for storing the extensibility information,

which is negligible for the current computational power. We also performed an average case

analysis of the amount of saved extensions achieved by RISOTTO over RISO. This theoretical

analysis was confirmed experimentally.

Unfortunately, combinatorial methods, such as RISO or RISOTTO, tend to output a

large number of putative motifs, making hard to elicit which ones have function in vivo.

Moreover, they are know to face problems in detecting weak motifs. To overcome these issues

we introduced the GRISOTTO algorithm, that post-processes in a greedy-fashion the output

of RISOTTO taking into account prior information available about the domain. In practice,

this prior information introduces some extra knowledge taken from the literature, or computed

from the sequences, that will help in characterizing motifs. The algorithm is flexible enough

to combine several priors from different sources. Each prior is given a weight reflecting the

confidence on the information contained in it and its relevance for motif discovery. In this way,

priors can be introduced at will giving rise to a scoring criterion based on the convex closure

of the information given by each prior. We called this scoring criterion balanced information

score (BIS).

Prior information has previously been shown to be beneficial when used with EM and

Gibbs sampler-based motif discoverers. We have shown in this thesis that they can also be

of great benefit to boost combinatorial algorithms such as RISOTTO. We emphasize that

our goal is not to introduce new priors, but to show that priors can also be advantageous to

assist and improve the output of combinatorial algorithms such as RISOTTO. Moreover, we

have shown that combining priors is very promising in further extending the power of motif

discovery algorithms.

We gauge the effect of adding prior information to GRISOTTO over 156 well-studied

sequence-sets from yeast ChiP-chip experiments. For each sequence-set, motif discoverers

were asked to report a single position specific scoring matrix (PSSM) that was then compared

with the known PSSM for the transcription factor pulled down in the ChiP-chip experiment.

Prior information from different sources was used, including, orthologous conservation, nucle-

osome occupancy, and destabilization energy. The use of exactly the same priors in EM and

Gibbs sampler-based motif discoverers, namely, MEME (Bailey et al., 2010) and PRIORITY

(Narlikar et al., 2006, 2007; Gordân et al., 2008; Gordân and Hartemink, 2008; Gordân et al.,

156

2010), respectively, has been shown to dramatically improve their performance. In this thesis,

we show that this boost can be also achieved by GRISOTTO that performed at least as well

as PRIORITY and MEME when each prior was considered individually. The great advantage

of GRISOTTO was accomplished by the combination of priors. Indeed, when GRISOTTO

integrated the three mentioned priors in a convex combination of their information it achieved

an improvement of about 15% over correct predictions relatively to the best motif discoverer

(MEME-DC proposed by Bailey et al., 2010), at our present knowledge, for exactly the same

experiments. The final proportion of successful predictions is now at 60%, attained with 93

correct predictions from GRISOTTO-CDP (with only 81 correct predictions of MEME-DC)
out of the 156 experiments.

Finally, we also confirmed the benefit of using GRISOTTO with 13 sequence-sets from

a higher eukaryote ChiP-seq data, namely, the mouse. In this assessment two priors were

used, including, orthologous conservation and base coverage profiles obtained from the ChiP-

seq assays. We concluded that, as for ChiP-chip data, the orthologous conservation-based

prior was of great convenience, being able to unravel 13 motifs strongly similar to the ones

reported by other tools and found in the TRANSFAC database. In respect to the coverage-

based prior, their direct use as a positional prior was not favorable, having been comparable

to the uniform prior. We believe this is due to the fact that the BIS score already accounts for

overrepresentation in the input sequences which we suspect mimics the information contained

in this new prior, turning the prior redundant.

Future work

Discriminative learning of Bayesian networks and multinets

Directions for future work concerning aCLL and f̂CLL scoring criteria include studying in

detail the asymptotic behavior of f̂CLL for TAN and more general models, combining our

intermediate approximation, aCLL, with discriminative parameter estimation (ELR) and ex-

tending and studying aCLL and f̂CLL to mixture models. Finally, adapting the devised scores

to applications in data clustering should yield interesting results.

157

Studying other applications for the discriminative learning of multinets

Although discriminative learning of mixtures of CκG exhibit a great promise in modeling

TFBS’s its usage is not restricted to this single application. Actually, there are plenty of

applications where discriminative mixtures of CκG can be used providing good probabilistic

models for classification tasks. One of these tasks is medical diagnosis. As a matter of

fact, in an attempt to further exploit the value of mixtures of CκG we did a preliminary

evaluation over the UCI machine learning datasets, the same 25 datasets used to evaluate

f̂CLL in Section 4.4 (page 82). Results showed that Algorithm 5.3 (page 108) was very

effective when learning two-component mixtures of C2G Bayesian network models, specially

in diagnosis datasets (e.g., breast, diabetes and heart). These results are reasonable and

arguably related to the fact that CκG is a Bayesian network that allows v-structures and

these structures are known to be good in diagnosis, on top of the fact that such networks

are learned in a discriminative manner. Indeed, v-structures represent the so-called induced

dependencies where totally unrelated propositions became relevant to each other when new

facts are learned. In the case of diagnosis the new facts are the symptoms. This topic is,

however, far from the thesis subjects so we left it to follow-up work.

Devising new priors for motif discovery

Another promising application of discriminative learning of mixtures of CκG’s is in devising

new PSP’s for posterior use in motif discovery tools. This discriminative model enable us to

learn a set of relevant features that characterize TFBS’s, including, not only dependencies

among TFBS positions (as it was done in Chapter 5), but also some extra features that

may be heuristically calculated, based on sequence data, or taken from external annotation.

Such extra features may include, architecture of the regulatory region, presence of repeats, an

evolutionary score-based feature, GC-content, melting temperature, nucleosome occupancy,

reverse complementarity and conservation symmetry.

Additional follow-up work directly related with this topic includes studying the effect of

the size of the sub-sequence used to build the prior in motif discovery and understanding how

to devise better priors for motifs with spacers. Concerning the latter, we verified that existing

priors were not able to describe much more than half of the motifs with spacers present in

the sequence-sets.

158

Part V

Appendixes

159

Appendix A

Alternative justification for

Assumption 1

Observe that in the case at hand we have some information about Ut and Vt, namely, the

number of times, say NUt and NVt , respectively, that Ut and Vt occur in the dataset T .

Moreover, we also have the number of times, say NRt = N − (NUt +NVt), that Rt is found in

T . So, under this knowledge, we have that

(Ut, Vt) ∼ Dirichlet(NUt + 1, NVt + 1, NRt + 1). (A.1)

Furthermore, we know that NUt and NVt are, in general, a couple (or more) orders of magni-

tude smaller than NRt . Due to this fact, most of all probability mass of (A.1) is found in the

square [0, p]× [0, p] for some small p.

Take as an example the (typical) case where NUt = 1, NVt = 0, N = 500 and

p = E[Ut] +
√

V ar[Ut] ≈ E[Vt] +
√

V ar[Vt],

and compare the cumulative distribution of Uniform([0, p]× [0, p]) with the cumulative distri-

bution of Dirichlet(NUt+1, NVt+1, NRt+1) in the supplementary material webpage. Actually,

the cumulative distribution Dirichlet(NUt +1, NVt +1, NRt +1) when NRt is much larger than

NUt and NVt is close to the Uniform([0, p] × [0, p]) for some small p, and so Assumption 1

follows naturally.

Concerning independence, and by assuming that the distribution of (Ut, Vt) is given by

161

162 APPENDIX A. ALTERNATIVE JUSTIFICATION FOR ASSUMPTION 1

(A.1), it results from the neutrality property of the Dirichlet distribution that

Vt ⊥⊥
Ut

1− Vt
.

Since Vt is very small we have

Vt ⊥⊥
Ut

1− Vt
≈ Ut.

Therefore, it is reasonable to assume that Ut and Vt are independent.

Finally, note that (A.1) fails to give us information for establishing a reasonable distri-

bution over a general Ut and Vt, at least one distribution that is suitable for further analysis

(since it depends on the dataset T , and moreover, on its t-th instance). This is the reason

why we use an uniform distribution for (Ut, Vt) in Assumption 1 instead of (A.1).

Appendix B

Feeding GRISOTTO with good

initial starting points

Herein we describe the call to RISOTTO algorithm found in Step 1 of the Algorithm 7.1

(page 135). This call tries to tune the RISOTTO input, presented in Section B.1, in order

to obtain good initial starting points to be processed by GRISOTTO. In Section B.2, a

description of the core idea and the pseudocode of the tuning procedure is provided.

B.1 RISOTTO input

RISOTTO(Pisanti, Carvalho, Marsan, and Sagot, 2006) is a consensus-based combinatorial

algorithm that finds all motifs of size k by collecting their occurrences, at a given distance,

from a set of N co-regulated DNA promoter sequences. The motif occurrences should be at

Hamming distance at most e from the motif consensus string, where e is called the number

of mismatches. Moreover, the motifs need not to occur in every input sequence but in at

least q% of the N sequences, where q is called the quorum. Furthermore, the quorum q must

cover at least two input sequences. After reporting all consensus, RISOTTO orders them by

statistical significance using a program from the SMILE package (Marsan and Sagot, 2000).

To sum up, the inputs of RISOTTO algorithm are:

• set of DNA sequences f = (fi)i=1...N ;

• quorum percentage q ∈ {1, . . . , 100};

163

164 APPENDIX B. FEEDING GRISOTTO WITH GOOD INITIAL STARTING POINTS

• number of mismatches e;

• motif size k.

The source code and executables of RISOTTO are available in its webpage at

http://kdbio.inesc-id.pt/ asmc/software/riso.html.

B.2 GRISOTTO subroutine calling RISOTTO

GRISOTTO first step (refer to Step 1 of GRISOTTO algorithm in page 135) calls RISOTTO

in order to be provided with good starting points for the greedy procedure. Herein we discuss

how GRISOTTO tunes RISOTTO parameters to achieve this.

Given that GRISOTTO capitalizes in the PSP’s used and devised by PRIORITY re-

searches (Narlikar et al., 2006, 2007; Gordân et al., 2008; Gordân and Hartemink, 2008;

Gordân et al., 2010) and that those PSP’s were devised for 8-mers, the RISOTTO algorithm

will always be run with k = 8. Clearly, if different PSP’s are considered, different values

for k should be considered as well. Moreover, since the list of sequences f is fixed, the only

parameters that GRISOTTO needs to tune in RISOTTO runs are q and e. GRISOTTO uses

5 different variables to tune q and e:

• q-max, the maximum quorum acceptable, its default value is 100;

• q-min, the minimum quorum acceptable, its default value is 5;

• q-step, the decrement step-size to modify the RISOTTO quorum, its default value is 5;

• nb-max, the maximum number of motifs reported by RISOTTO, its default value is 80;

• nb-min, the minimum number of motifs reported by RISOTTO, its default value is 50.

The goal is to find the largest quorum q, with q-min ≤ q ≤ q-max, and minimal error

e such that the number of motifs reported by RISOTTO is between nb-min and nb-max.

Algorithm B.1 describes this procedure and prefers decrementing the quorum to augmenting

the error. Recall that RISOTTO needs four parameters and so it is formally called with

RISOTTO(DNA sequences f, quorum q, motif size k, mismatches e).

B.2. GRISOTTO SUBROUTINE CALLING RISOTTO 165

Algorithm B.1 RunRISOTTO, RISOTTO parameter tuning

RunRISOTTO(mismatches e)

1. for q :=q-max to q-min with step-size (−q-step) do// ranging q from q-max to q-min decrementing q-step

2. nb := length(RISOTTO(f,q,k,e)); // nb stores the number of motifs return by RISOTTO

3. if (nb>nb-max) then

4. if (q≥q-max) then return (q,e); // there is no way to reduce the number of motifs

5. else break; // get out of the for loop and refine at most 3 times the quorum q in Step 9

6. else if (nb≤nb-max && nb≥nb-min) then return (q,e); // found the correct values for q and e

7. else // the case when nb<nb-min

8. if (q≤q-min) then return RunRISOTTO (e+1); // recursive call, consider more mismatches to get more motifs

9. for i := 1 to 3 do// refine the quorum at most 3 times

10. if (nb>nb-max) then q + := q-step/2i;

11. else if (nb<nb-min)) then q − := q-step/2i ;

12. else return (q,e);

13. nb := length(RISOTTO(f,q,k,e));

14. return (q,e);

Algorithm B.1 is self-explanatory, we just note that RunRISOTTO is initially called with

zero number of mismatches, that is, the algorithm is called as RunRISOTTO(0). It returns the

pair (q,e) with largest quorum and minimum number of mismatches such that the number of

motifs reported by RISOTTO is between nb-min and nb-max. In general, this is not always

possible. Actually, there are two distinct situations where this can happen. First, when the

algorithm reaches the Step 5. Second, when Step 8 fails and q−q-step<q-min which makes the

guard of the for-loop in Step 1 also to fail. In these two cases there is a jump to Step 9 where

the quorum is refined, at most 3 times, in order to achieve the expected number of motifs

(Step 9-14). If with this refinement the number of motifs still remains larger than nb-max, or

smaller than nb-min, then the run that produced the number of outputs closer to the expected

ones is chosen. In practice, for the experiments considered, only a few sequence-sets (1 or 2

out of 156) failed to report a number of motifs between nb-min and nb-max.

Finally, we note that for the sequence-sets considered in this work this tuning was achieved

in much less than 1 second per sequence-set.

166 APPENDIX B. FEEDING GRISOTTO WITH GOOD INITIAL STARTING POINTS

Appendix C

Inter-motif distance

To assess the accuracy of GRISOTTO presented in Chapter 7 we used a scaled version of the

Euclidean distance between PSSM’s, exactly the same metric used in PRIORITY and MEME

works (Narlikar et al., 2007; Gordân et al., 2008; Gordân and Hartemink, 2008; Gordân et al.,

2010; Bailey et al., 2010). Since both literature motif and top scoring motif reported by

GRISOTTO are represented as IUPAC strings, and the scaled Euclidean distance compares

only PSSM’s, these IUPAC strings need to be converted into PSSM’s. However, there are

many ways to choose a PSSM to represent an IUPAC symbol and this choice affects the

Euclidean distance and, therefore, the final metric. For this reason we should not use an

ad hoc representation and, instead, should justify the representation with some theoretical

foundation.

Herein, we choose the PSSM representation of an IUPAC symbol such that the scaled

Euclidean distance between the PSSM representations of two IUPAC symbols, say α and

β, is the closest possible to the average scaled Euclidean distance between (any) PSSM’s

that represent α and β. The alluded distance is presented in Section C.1, while the PSSM

representation of an IUPAC string is presented in Section C.2. Upon defining this translation,

we consider precisely the same metric used in PRIORITY and MEME, which we describe in

Section C.3.

167

168 APPENDIX C. INTER-MOTIF DISTANCE

C.1 Minimum scaled Euclidean distance

Consider that both P and Q are PSSM’s, that is, P and Q are matrixes of dimension 4 × k

such that
∑4

i=1 Pij = 1, for all 1 ≤ j ≤ k, where each line represents a letter of the DNA

alphabet and each column represents a motif position. The metric used to compute the

distance between P and Q was proposed by the PRIORITY researchers (Narlikar et al.,

2007) and it is a scaled version of the Euclidean distance. The scaled Euclidean distance is

such that the maximum distance is 1, and the minimum distance is 0, leading to the following

expression:

sd(P,Q) =
1

k

k∑

j=1

√√√√
4∑

i=1

(Pij −Qij)2

2
. (C.1)

From (C.1) it is easy to understand that the contribution of the j-th column of P and Q is

given by

δ(Pj , Qj) =

√√√√
4∑

i=1

(Pij −Qij)2

2
. (C.2)

Observe that each column of a PSSM consists in a multinomial distribution over the DNA,

precisely the same type of information encoded by a IUPAC symbol. In the next subsection

we discuss how to convert an IUPAC symbol into a multinomial distribution over the DNA

in a meaningful way.

C.2 PSSM representation of an IUPAC string

Each symbol of an IUPAC string will be translated into a column of a PSSM matrix, that is,

into a multinomial distribution over the DNA alphabet. Note that each IUPAC symbol has a

canonical distribution over the DNA alphabet, which is presented in Table C.1 (page 169).

The canonical distribution of the IUPAC symbols is of little use in practice since it gives

zero probability of having mismatches (e.g., observing an A instead of an C in a string), which

can lead to irrecoverable errors. It is a common mistake to assign probability zero to a event

that is extremely unlikely, but not impossible. Therefore, it is usual to consider a small prob-

ability of having mismatches and replace each zero probability in the distributions by a small

value ε, denoting an error probability. Finding a meaningful error is not a straightforward

task. We devote the rest of this section to this endeavor.

C.2. PSSM REPRESENTATION OF AN IUPAC STRING 169

p pA pC pG pT

A 1 0 0 0

C 0 1 0 0

G 0 0 1 0

T 0 0 0 1

R 1
2 0 1

2 0

Y 0 1
2 0 1

2

M 1
2

1
2 0 0

K 0 0 1
2

1
2

W 1
2 0 0 1

2

S 0 1
2

1
2 0

B 0 1
3

1
3

1
3

D 1
3 0 1

3
1
3

H 1
3

1
3 0 1

3

V 1
3

1
3

1
3 0

N 1
4

1
4

1
4

1
4

Table C.1: Canonical distribution of the IUPAC symbols

Start by noticing that a multinomial distribution p = (pA, pC , pG, pG) can be translated

into an IUPAC symbol α. Indeed, α should be the symbol whose canonical distribution is

closer to p, that is, α should be the symbol that minimizes the distance

δ(p, qα) =

√√√√
4∑

i=1

(pi − qαi)
2

2
,

where qα is the canonical distribution of the IUPAC symbol α given in Table C.1. Observe that

there are distributions that distance the same from the canonical distributions of two different

IUPAC symbols (e.g., p = (34 , 0,
1
4 , 0) has the same distance to the canonical distributions of

A and R). However, these distributions have probability zero of occurring in practice, that

is, they form a measure-zero set. Therefore, they can be disregarded or assumed to be

deterministically translated to one of the possible IUPAC symbols. Recall that the set of all

170 APPENDIX C. INTER-MOTIF DISTANCE

multinomial distributions over the DNA alphabet constitutes exactly the standard 4-simplex

set ∆4, that is,

∆4 =

{
(x1, x2, x3, x4) ∈ R

4 :
4∑

i=1

xi = 1 ∧
4∧

i=1

xi ≥ 0

}
.

Thus, IUPAC symbols generate a partition {Pα}α∈Σ over ∆4 where

Pα = {p ∈ ∆4 : δ(p, qα) < δ(p, qβ) for all IUPAC symbols β 6= α}.

Now, by assuming that all PSSM’s that represent an IUPAC symbol may occur with

the same probability and that they occur independently, it is possible to define the distance

between two IUPAC symbols α and β as the average distance between a PSSM in Pα with a

PSSM in Pβ, that is:

d(α, β) =

∫

p∈Pα

∫

q∈Pβ

1

|Pα|
1

|Pβ |
δ(p, q) dp dq (C.3)

where |Pα| is the volume of Pα and |Pβ | is the volume of Pβ . We performed a Monte Carlo

approximation to the integral (C.3) for all possible values of p ∈ Pα and q ∈ Pβ by generating

10000 PSSM’s at random, and obtained in this way numerical approximations of the distances

between IUPAC symbols. The Monte Carlo simulation can be found at GRISOTTO webpage.

The results are presented in Table C.4 (page 173).

Now, our goal is to translate an IUPAC symbol into a PSSM column in a way that mimics

the average distances given in Table C.4. For this purpose, we choose a representative for

each set Pα such that the differences between representatives are (as close as possible to)

the average difference between the partition sets. The rationale for this approach is that

the distance between the representatives of Pα and Pβ should be as close as possible to the

average distance d(α, β) since any PSSM representing α or β may occur.

In order to obtain such translation we consider 3 degrees of freedom on the errors: (i)

εx, when a DNA symbol is considered; (ii) εy, when a degenerate mixture of two symbols

is considered; and (iii) εz, when a degenerate mixture of three symbols is considered. In

detail, we adopt the translation given in Table C.2. Clearly, these degrees of freedom ensure

a symmetric IUPAC translation that maps, say, A and C in a similar way, up to a permutation

of pA and pC . Moreover, the translation of A should be invariant under permutations of pC ,

pG and pT . A similar desideratum is taken into account for the translation of degenerate

C.2. PSSM REPRESENTATION OF AN IUPAC STRING 171

p pA pC pG pT

A 1− 3εx εx εx εx

C εx 1− 3εx εx εx

G εx εx 1− 3εx εx

T εx εx εx 1− 3εx

R 1
2 − εy εy

1
2 − εy εy

Y εy
1
2 − εy εy

1
2 − εy

M 1
2 − εy

1
2 − εy εy εy

K εy εy
1
2 − εy

1
2 − εy

W 1
2 − εy εy εy

1
2 − εy

S εy
1
2 − εy

1
2 − εy εy

B εz
1−εz
3

1−εz
3

1−εz
3

D 1−εz
3 εz

1−εz
3

1−εz
3

H 1−εz
3

1−εz
3 εz

1−εz
3

V 1−εz
3

1−εz
3

1−εz
3 εz

N 1
4

1
4

1
4

1
4

Table C.2: Distribution of the IUPAC symbols with three types of errors.

symbols. Now we apply the least squares’ method to obtain the values of εx, εy and εz that

minimize
∑

α,β∈Σ
(δ(qα(εx, εy, εz), q

β(εx, εy, εz))− d(α, β))2,

where qα(εx, εy, εz) is the distribution of the IUPAC symbol α given in Table C.2 and d(α, β)

is the distance given by Equation (C.3) computed according to the approximation presented

in Table C.4 (page 173). The solution obtained for this problem is

• εx = 0.0577185,

• εy = 0.03827495 and

• εz = 0.005683,

172 APPENDIX C. INTER-MOTIF DISTANCE

which leads to the final translation given in Table C.3. The detailed calculus of these values

by the least squares’ method can be found at GRISOTTO webpage.

p pA pC pG pT

A 0.826845 0.0577185 0.0577185 0.0577185

C 0.0577185 0.826845 0.0577185 0.0577185

G 0.0577185 0.0577185 0.826845 0.0577185

T 0.0577185 0.0577185 0.0577185 0.826845

R 0.461725 0.03827495 0.461725 0.03827495

Y 0.03827495 0.461725 0.03827495 0.461725

M 0.461725 0.461725 0.03827495 0.03827495

K 0.03827495 0.03827495 0.461725 0.461725

W 0.461725 0.03827495 0.03827495 0.461725

S 0.03827495 0.461725 0.461725 0.03827495

B 0.005683 0.331439 0.331439 0.331439

D 0.331439 0.005683 0.331439 0.331439

H 0.331439 0.331439 0.005683 0.331439

V 0.331439 0.331439 0.331439 0.005683

N 0.25 0.25 0.25 0.25

Table C.3: Translation of IUPAC symbols whose distance is closer to the average distance.

In the rest of this work, we assume that the PSSM column that represents an IUPAC

symbol is given by Table C.3. Moreover, such translation is used to convert the IUPAC string

representing the literature motif and the motif reported by GRISOTTO.

C
.2
.

P
S
S
M

R
E
P
R
E
S
E
N
T
A
T
IO

N
O
F
A
N

IU
P
A
C

S
T
R
IN

G
173

d(·, ·) A C G T R Y M K W S B D H V N

A 0.117773 0.78676 0.78676 0.78676 0.401808 0.693145 0.693145 0.401808 0.693145 0.401808 0.652724 0.467727 0.467727 0.467727 0.494578

C 0.78676 0.117773 0.78676 0.78676 0.693145 0.401808 0.693145 0.401808 0.401808 0.693145 0.467727 0.652724 0.467727 0.467727 0.494578

G 0.78676 0.78676 0.117773 0.78676 0.401808 0.693145 0.401808 0.693145 0.401808 0.693145 0.467727 0.467727 0.652724 0.467727 0.494578

T 0.78676 0.78676 0.78676 0.117773 0.467727 0.401808 0.401808 0.467727 0.467727 0.401808 0.467727 0.467727 0.467727 0.652724 0.494578

R 0.401808 0.693145 0.401808 0.467727 0.195582 0.585482 0.429646 0.429646 0.429646 0.429646 0.43141 0.294668 0.43141 0.294668 0.332181

Y 0.693145 0.401808 0.693145 0.401808 0.585482 0.195582 0.429646 0.429646 0.429646 0.429646 0.294668 0.43141 0.294668 0.43141 0.332181

M 0.693145 0.693145 0.401808 0.401808 0.429646 0.429646 0.195582 0.585482 0.429646 0.429646 0.294668 0.294668 0.43141 0.43141 0.332181

K 0.401808 0.401808 0.693145 0.467727 0.429646 0.429646 0.585482 0.195582 0.429646 0.429646 0.43141 0.43141 0.294668 0.294668 0.332181

W 0.693145 0.401808 0.401808 0.467727 0.429646 0.429646 0.429646 0.429646 0.195582 0.585482 0.294668 0.43141 0.43141 0.294668 0.332181

S 0.401808 0.693145 0.693145 0.401808 0.429646 0.429646 0.429646 0.429646 0.585482 0.195582 0.43141 0.294668 0.294668 0.43141 0.332181

B 0.652724 0.467727 0.467727 0.467727 0.43141 0.294668 0.294668 0.43141 0.294668 0.43141 0.196942 0.319852 0.319852 0.319852 0.244875

D 0.467727 0.652724 0.467727 0.467727 0.294668 0.43141 0.294668 0.43141 0.43141 0.294668 0.319852 0.196942 0.319852 0.319852 0.244875

H 0.467727 0.467727 0.652724 0.467727 0.43141 0.294668 0.43141 0.294668 0.43141 0.294668 0.319852 0.319852 0.196942 0.319852 0.244875

V 0.467727 0.467727 0.467727 0.652724 0.294668 0.43141 0.43141 0.294668 0.294668 0.43141 0.319852 0.319852 0.319852 0.196942 0.244875

N 0.494578 0.494578 0.494578 0.494578 0.332181 0.332181 0.332181 0.332181 0.332181 0.332181 0.244875 0.244875 0.244875 0.244875 0.181994

Table C.4: Average distance between PSSM’s representing IUPAC symbols.

174 APPENDIX C. INTER-MOTIF DISTANCE

C.3 Best alignment and cutoffs

Now that we have justified the translation of IUPAC strings into PSSM’s, we can assess the

accuracy of GRISOTTO by using exactly the same criterion as in PRIORITY (Narlikar et al.,

2007; Gordân et al., 2008; Gordân and Hartemink, 2008; Gordân et al., 2010) and MEME

(Bailey et al., 2010). In this section we discuss this criterion in detail.

As discussed in Section C.1, PRIORITY researchers considered the scaled Euclidean dis-

tance (as in Equation (C.1)) to measure the mismatch between the PSSM of the documented

motif, say P , and the reported one, say Q. However, the reported motif may be of different

size or in the opposite DNA strand relatively to the documented one. To address this issue the

distance between P and Q was considered to be the minimum scaled Euclidean distance for

all possible alignments, over an overlap window, of the reported motif (or its reverse comple-

ment) with the known motif. Overlap windows of size ranging from min(6,dim(P),dim(Q))

to min(dim(P),dim(Q)) are considered.

Following Narlikar et al. (2007); Gordân et al. (2008); Gordân and Hartemink (2008);

Gordân et al. (2010); Bailey et al. (2010), the top scoring motif correctly predicts the literature

one if this minimum scaled Euclidean distance for all alignments (considering also the reverse

complement) is smaller than 0.25, being enough to have a matching overlap window of size 6.

However, this distance is considered only if the average information content per position of

the reported motif is at least 1 bit and the distance between columns is at most 0.8, otherwise

the distance between motifs is 1. PRIORITY researchers called into attention that such

cutoffs (minimum distance 0.25, average entropy 1 and minimum column distance 0.8) are

probably imperfect but were chosen to automate the evaluation process and to reduce the

possibility of introducing a subjective bias into the results. Moreover, the authors argued that

relative results of all evaluated algorithms are generally insensitive to a range of reasonable

choices of these cutoffs. In order to make our results directly comparable with the results

from PRIORITY and MEME we used exactly the same metric.

The criterion discussed above was implemented and made available in a Perl script by

PRIORITY researchers (Gordân et al., 2008). We translated this Perl script to pseudocode

in Algorithm C.1 and incorporated it in the Java source of GRISOTTO. At the light of the

previous discussion the algorithm is self-explanatory.

C.3. BEST ALIGNMENT AND CUTOFFS 175

Algorithm C.1 ComputeDistance, minimum scaled Euclidean distance with cutoffs

ComputeDistance(PSSM P, PSSM Q)

1. reversed := false;

2. if (length(P) > length(Q)) then

3. (P,Q) := (Q, P);

4. reversed := true; // make P the matrix with less columns and mark if the reverse was made

5. R := DNA complement (P); // let R be the PSSM denoting the reverse DNA complement of P

6. overlap := min(6,length(P)); // this is the minimum overlap considered to compute the distance

7. dist := +∞;

8. for len := overlap to length(P) do // for all possible overlaps

9. for j1 := 1 to length(P)−len+1 do // for all possible starting positions of P

10. for j2 := 1 to length(Q)−len+1 do // for all possible starting positions of Q

11. (sumPQ,sumRQ) := (0,0); // initialize the variable that store the sums to 0

12. (cdPQ,cdRQ) := (0,0); // initialize the variable that control the columns distance to 0

13. Ent := 0; // initialize the variable that control the entropy of the reported motif to 0

14. for j := 0 to len−1 do // for each column of the current alignment

15. (sPQ,sRQ) := (0,0); // initialize the contribution of each column to the distance to 0

16. for i := 1 to 4 do // for each row ranging in the DNA alphabet

17. sPQ + := (Pi(j1+j) −Qi(j2+j))
2; // contribution of the current row and column

18. sRQ + := (Ri(j1+j) −Qi(j2+j))
2; // contribution in DNA complement of the current row and column

19. if (reversed) then val := Qi(j2+j); // if Q is the reported motif

20. else val := Pi(ji+j); // if P is the reported motif

21. if (val = 0) then val := 0.001; // avoid log 0 problems

22. Ent + := val× log2(val); // compute the entropy of the column

23. if (
√

(sPQ/2) >0.8) then cdPQ++; // distance of any column should not be greater than 0.8

24. if (
√

(sRQ/2) >0.8) then cdRQ++; // distance of any column should not be greater than 0.8

25. sumPQ + :=
√
sPQ; // distance contribution of the column

26. sumRQ + :=
√
sRQ; // distance contribution of the column

27. Ent := 2+Ent/len; // entropy update

28. if (cpPQ/len ≥ 1
6
or Ent ≤ 1) then dPQ := 1; // not enough information in P

29. else dPQ := sumPQ/(len×
√
2);

30. if (dPQ < dist) then dist := dPQ;

31. if (cpRQ/len ≥ 1
6
or Ent ≤ 1) then dRQ := 1; // not enough information in R

32. else dRQ := sumPQ/(len×
√
2);

33. if (dRQ < dist) then dist := dRQ;

34. return dist;

176 APPENDIX C. INTER-MOTIF DISTANCE

Appendix D

Evaluating various positional priors

This chapter makes the results presented in Section 7.3 (page 138) reproducible along with the

data and algorithms provided in the GRISOTTO webpage.1 We start by presenting pertinent

information about the evaluation methodology, including, parameter settings (Section D.1)

and running times (Section D.2). Finally, in Section D.3 we discuss in detail results obtained

in the experimental methodology and finish with follow-up work.

D.1 Parameter settings

In Table 7.2 (page 141), we compare the results of GRISOTTO with the results of twelve

state-of-the-art motif discoverers: PhyloCon (Wang and Stormo, 2003), PhyME (Sinha et al.,

2004), MEME (Bailey and Elkan, 1995b), MEME c (Harbison et al., 2009), PhyloGibbs

(Siddharthan et al., 2005), Kellis et al. (Kellis et al., 2003), CompareProspector (Liu et al.,

2004), Converge (MacIsaac et al., 2006), MEME-DC (Bailey et al., 2010), PRIORITY-DC
(Gordân et al., 2008, 2010), PRIORITY-DE (Gordân and Hartemink, 2008), PRIORITY-

DN (Narlikar et al., 2007). Of the twelve methods considered in our analysis we used the

results reported by Gordân et al. (2010) and Bailey et al. (2010). Parameter settings for these

methods can be found in the supplementary material of the original papers.

Next, we provide all parameters (empirically computed) that were used to run the 156

yeast ChiP-chip experiments, making in this way the results reproducible. RISOTTO was

tuned, as described in Section B, with default parameters, that is, q-step = 5, q-min = 5 and

1http://kdbio.inesc-id.pt/∼asmc/software/grisotto.html

177

178 APPENDIX D. EVALUATING VARIOUS POSITIONAL PRIORS

q-max = 100. GRISOTTO used z = zmin = 50 and zmax = 80, that is, GRISOTTO asked for

an output of RISOTTO between 50 and 80 motifs and post-processed only 50. As mentioned

in the Section 7.3 (page 138) k = 8 as priors were also devised for 8-mers. The output of

RISOTTO depends on one more parameter, one that is passed to SMILE shuffling-based

statistical significance procedure. This procedure needs the size of the shuffling-mer, we used

always 6. We notice that this shuffling procedure depends on a seed, that is, different seeds

may give rise to different outputs. Of course, if the same seed is not used in the experiments

negligible differences in the results may occur. In GRISOTTO webpage we provide the seed

used. Moreover, if one does not want to use RISOTTO, and SMILE statistical significance,

we also provide the exact output of RISOTTO used in the 156 experiments. In this way,

to reproduce the results, the user only needs to download and run GRISOTTO. Actually,

GRISOTTO only computes RISOTTO output one time for each sequence-set, reusing it in

the following runs until RISOTTO parameters change. If the output for the new parameters

are not available (each RISOTTO output is stored in a different folder whose name identifies

the parameters used) then RISOTTO is called, otherwise it is used the output from the

respective folder.

It remains to detail the parameters used to balance the priors. GRISOTTO-DC used

λ = 2
23 (as only one prior is considered, αDC = 1). This corresponds to giving 10.5 more

weight to the DC prior than to the over-representation of the motifs in the DNA sequences.

GRISOTTO-DE used λ = 2
15 , indicating that DE prior weights 6.5 times more than over-

representation. GRISOTTO-DN used λ = 1
7 , indicating that DN prior weights 6 times more

than over-representation. Finally, GRISOTTO-CDP used λ = 1
21 and αDC = 2

5 , αDE = 7
20

and αDN = 1
4 . This testify that DC prior weights 8, DE prior weights 7 and DN prior

weights 5 times more than over-representation of the motifs in the DNA promoter sequences,

respectively.

Concerning the 13 mouse ChiP-seq data, the RISOTTO was tuned as for the yeast data.

Moreover, GRISOTTO-DC used exactly the same λ as for the yeast data (as only one prior

is considered αDC = 1). For the coverage-based prior we used λ = 1
2 as we believe it contains

chiefly as many information as overrepresentation. When combining the coverage-based prior

with the DC prior, we tried several weights for λ and α’s, including the uniform weight between

priors, however the results were exactly the same as if we only consider the single DC prior.

D.2. RUNNING TIMES 179

D.2 Running times

When running the yeast ChiP-chip experiments we noticed that GRISOTTO rarely reported

IUPAC strings with degenerate symbols of the IUPAC code (that is, IUPAC except DNA).

This made us try to search for motifs using just the DNA alphabet. Indeed, results presented

in Table 7.2 (page 141) considered only the DNA alphabet and coincide with those using

the full IUPAC alphabet. This boosted significantly the time of the algorithm. Using DNA

alphabet, GRISOTTO was able to report all 156 top scoring motifs within 5-6 minutes using

a standard machine (one core of a Intel 2.4 GHz core 2 Duo), taking around 2-3 seconds per

sequence-set. This time includes running RISOTTO algorithm and computing the distance

of the reported motif to the documented one.

The average number of nucleotides on yeast ChiP-chip sequence-sets is around 100.000,

whereas for the mouse ChiP-seq data is around 4.000.000, therefore, for the mouse data

GRISOTTO took 1-4 minutes per sequence-set. In closing, we emphasize that GRISOTTO

was able to use all sequences in each of the 13 mouse sequence-sets. The same experiments

performed by MEME used only 100 randomly chosen sequences for each sequence-set, working

in this way with only around 200.000bp per sequence-set.

D.3 Detailed results

Herein, we further detail the results presented in Table 7.2 (page 141). The intended reader

should refer to Section 7.3 to find experimental methodology, including, sequence-sets and

PSP’s used in the experiments. A table comparing the results of GRISOTTO and PRIORITY

using various positional priors can be found at the GRISOTTO webpage. Therein, it can be

found details about which motif was correctly predicted, sequence-set by sequence-set, by

both algorithms. In the following we use this table to provide a closer inspection over the

results presented in Section 7.3.

The analysis of the aforementioned table was decisive to encourage us to combine priors

from different sources as we found that individual priors, although having some degree of

redundancy, still report many disjoint motifs. As an example, although DE and DN cor-

rectly predicted almost the same number of motifs out of the 156 experiments, in 29 of these

experiments, only one of the two succeeded (including sequence-sets 9, 17, 19, 20, 21, 23,

180 APPENDIX D. EVALUATING VARIOUS POSITIONAL PRIORS

26, 34, 35, 42, 53, 59, 61, 75, 77, 81, 89, 96, 101, 117, 119, 120, 121, 125, 129, 136, 137,

143, 156). Indeed, GRISOTTO-DE found 16 motifs that GRISOTTO-DN did not, whereas

GRISOTTO-DN found 13 motifs that GRISOTTO-DE did not. Moreover, if we conduct a

closer inspection over these 29 sequence-sets, we conclude that GRISOTTO-DC fails in 11 out

of these 29 (including sequence-sets 9, 20, 23, 35, 53, 75, 77, 81, 89, 101, 143). This suggests

that combining the priors has potential to improve motif discoverers, more likely, on those

11 sequence-sets (as other 18 already have two priors up-weighting the true motif). There

could be, however, other improvements as a motif might not be found by the priors, when

individually considered, but it might be unraveled from the convex closure of the information

given by them.

By analyzing the results of GRISOTTO-CDP we check that from those 29 sequence-sets,

where only one of GRISOTTO-DE and GRISOTTO-DN succeeded, GRISOTTO-CDP failed

in 11 (including sequence-sets 9, 20, 21, 23, 35, 42, 75, 81, 89, 101, 125). Moreover, from

these 11 sequence-sets, GRISOTTO-DC also failed to unravel 8 motifs (including sequence-

sets 9, 20, 23, 35, 75, 81, 89, 101). This means that GRISOTTO-CDP was not able to

find only 3 motifs that were being up-weighted by two priors (including sequence-sets 21, 42,

125). Finally, we mentioned above that there could be cases where priors, when individually

considered, may fail in giving extra information for motif discovery, but may succeed when

combined together. In practice, this was the case of 7 sequences-sets (including sequence-sets

2, 32, 87, 91, 116, 133, 146, 154) where only GRISOTTO-CDP succeeded. This was for sure

a great advantage of GRISOTTO-CDP relatively to GRISOTTO-DC, GRISOTTO-DE and

GRISOTTO-DN .

Next, we analyze the relative results of GRISOTTO when DC, DE and DN priors are

considered individually and when combined. Firstly, GRISOTTO-DC was able to discover 9

motifs that DE and DN were unable to characterize. Similarly, GRISOTTO-DE was able to

find 6 and GRISOTTO-DN 5, that the other two were not. Hence, the number of motifs

that are only characterized by one of the priors amount to 20. Moreover, 104 motifs were

correctly predicted by GRISOTTO with at least one of DC, DE and DN priors. Knowing that

GRISOTTO-CDP was able to correctly predict 93 motifs (refer to Table 1 in main text), and

that 7 of these motifs were not unraveled by any of the priors when individually considered

(refer to the previous paragraph), we deduce that GRISOTTO-CDP mislaid 18 motifs that

D.3. DETAILED RESULTS 181

were previously found by at least one of GRISOTTO-DC, GRISOTTO-DE and GRISOTTO-

CDP . This shows that although the combination of priors does not recover all the motifs

found by at least one of the combined priors, it also unravels some novel motifs that none of

the priors were able to find separately.

Moreover, we also evaluate the overall results obtained by GRISOTTO and PRIORITY

when all priors are considered. Having this in mind, it is worthwhile noticing that both

motif discoverers succeeded with all DC, DE, DN and CDP priors in 50 sequence-sets. That

is, DC, DE , DN and CDP priors were able to find 50 motifs from the 156 sequence-sets,

independently from the discoverer that was used (CDP was only tested within GRISOTTO).

If we count only motifs correctly predicted by both discoverers at least with one of these priors,

but not by all priors, the number of correct predictions is 31. Moreover, PRIORITY failed,

with all priors considered, whereas GRISOTTO succeeded with at least one of the priors in

31 sequences-sets. On the other hand, GRISOTTO failed, with all priors considered, while

PRIORITY succeeded with at least one of the priors in only 1 sequence-set (we acknowledge

that GRISOTTOwas evaluated with CDP while we do not have the means to do the same with

PRIORITY). Finally, both GRISOTTO and PRIORITY failed, with all priors considered,

in 43 sequences-sets. Therefore, GRISOTTO and PRIORITY together, by considering all

available priors, were able to unravel 113 motifs out of the 156 experiments (as they all fail

in 43). Moreover, GRISOTTO was able to recover 112 out of these 113 whereas PRIORITY

only discovered 82.

Although it is natural that different algorithms with different PSP’s unravel a disjoint set

of motifs from the 156 sequence-sets, it is interesting to notice that both algorithms failed to

discover 43 motifs. In the following we disclose which motifs are these. We classify these 43

sequence-sets in four different categories: (i) motifs with spacers, that is, motifs with at least

three consecutive N IUPAC symbols in the middle of the consensus string (failed in 7 out

of 11 sequence-sets, namely, sequence-sets 31, 33, 90, 122, 128, 139, 140); (ii) motifs longer

than, or equal to, 8 sites, excluding the ones with spacers (failed in 9 out of 70 sequence-sets,

namely, sequence-sets 7, 22, 41, 67, 70, 102, 103, 106, 109); (iii) motifs shorter than 8 sites

with no mismatches (failed in 17 out of 51 sequence-sets, namely, sequence-sets 8, 43, 44, 85,

86, 100, 110, 111, 112, 113, 114, 115, 131, 148, 149, 150, 151) and (iv) motifs shorter than

8 sites with mismatches (failed in 10 out of 24 sequence-sets, mainly, sequence-sets 3, 4, 71,

182 APPENDIX D. EVALUATING VARIOUS POSITIONAL PRIORS

72, 73, 76, 78, 79, 80, 135). We add that motifs with spacers listed in (i) have minimum

size of 10. We conclude that DC, DE , DN and CDP were not able to characterize 64% of

the motifs with spacers, and 42% of the motifs with degenerate symbols shorter than 8 sites.

This strongly suggests that priors considering 8-mers fail to characterize motifs shorter than

8 sites, specially when they are not highly conserved. Moreover, motifs with spacers are also

not suitably described by the considered priors.

Follow-up work should include: (i) studying the effect of prior-mers size in motif discovery;

(ii) understanding how to build better priors for motifs with spacers (priors were not able

to describe much more than half of the cases present in the sequence-sets) (iii) devising new

priors from different sources and combining them with existing ones into the BIS score.

Bibliography

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic

Control, 19:716–723, 1974.

J. Allali. Structures d’indexation: Les arbres des facteurs. Memoire de maitrise, University

of Marne-la-Vallée, 2000.

J. Allali and M.-F. Sagot. The at most k-deep factor tree. Technical Report 2004-03, Institut

Gaspard Monge, Université Marne la Vallée, 2004.

T. L. Bailey and C. Elkan. Fitting a mixture model by expectation maximization to discover

motifs in biopolymers. In Proc. ISMB’94, pages 28–36, 1994.

T. L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopolymers using

EM. Machine Learning, 21(1-2):51–80, 1995a.

T. L. Bailey and C. Elkan. The value of prior knowledge in discovering motifs with MEME.

In Proc. ISMB’95, pages 21–29, 1995b.

T. L. Bailey, M. Bodén, T. Whitington, and P. Machanick. The value of position-specific

priors in motif discovery using MEME. BMC Bioinformatics, 11:179, 2010.

Y. Barash, G. Elidan, N. Friedman, and T. Kaplan. Modeling dependencies in protein-DNA

binding sites. In Proc. RECOMB’03, pages 28–37, 2003.

A. R. Barron, J. Rissanen, and B. Yu. The minimum description length principle in coding

and modeling. IEEE Transactions on Information Theory, 44(6):2743–2760, 1998.

R. G. Beiko and R. L. Charlebois. GANN: Genetic algorithm neural networks for the detection

of conserved combinations of features in DNA. BMC Bioinformatics, 6:36, 2005.

183

184 BIBLIOGRAPHY

A. J. Bell. The co-information lattice. In Proc. ICA’03, pages 921–926, 2003.

P. V. Benos, M. L. Bulyk, and G. D. Stormo. Additivity in protein-DNA interactions: How

good an approximation is it? Nucleic Acids Research, 30(20):4442–4451, 2002.

J. Bilmes. Dynamic Bayesian multinets. In Proc. UAI’00, pages 38–45, 2000.

R. R. Bouckaert. Bayesian Belief Networks: From Construction to Inference. PhD thesis,

University of Utrecht, 1995.

A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to the automatic discovery

of patterns in biosequences. Journal of Computational Biology, 5(2):279–305, 1998a.

A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Predicting gene regulatory elements in

silico on a genomic scale. Genome Research, 8(11):1202–1215, 1998b.

J. Buhler and M. Tompa. Finding motifs using random projections. Journal of Computational

Biology, 9(2):225–242, 2002.

W. L. Buntine. Theory refinement on Bayesian networks. In Proc. UAI’91, pages 52–60,

1991.

L. R. Cardon and G. D. Stormo. Expectation maximization algorithm for identifying protein-

binding sites with variable length from unaligned DNA fragments. Journal of Molecular

Biology, 223(1):159–170, 1992.

A. M. Carvalho. Efficient algorithms for structured motif extraction in DNA sequences.

Master’s thesis, IST, UTL, 2004. Supervised by A. L. Oliveira and A. T. Freitas.

A. M. Carvalho. Scoring functions for learning Bayesian networks. Technical report, INESC-

ID Tec. Rep. 54/2009, 2009.

A. M. Carvalho and A. L. Oliveira. Learning Bayesian networks consistent with the optimal

branching. In Proc. ICMLA’07, pages 369–374, 2007.

A. M. Carvalho and A. L. Oliveira. GRISOTTO: A greedy approach to improve combinatorial

algorithms for motif discovery with prior knowledge. Algorithms for Molecular Biology, 6:

13, 2011.

BIBLIOGRAPHY 185

A. M. Carvalho, A. T. Freitas, A. L. Oliveira, and M.-F. Sagot. Efficient extraction of

structured motifs using box-links. In Alberto Apostolico and Massimo Melucci, editors,

Proc. SPIRE’04, volume 3246 of LNCS, pages 267–268. 2004.

A. M. Carvalho, A. T. Freitas, A. L. Oliveira, and M.-F. Sagot. A highly scalable algorithm

for the extraction of cis-regulatory regions. In Yi-Ping Phoebe Chen and Limsoon Wong,

editors, Proc. APBC’05, volume 1 of ABCB, pages 273–282. 2005.

A. M. Carvalho, A. T. Freitas, A. L. Oliveira, and M.-F. Sagot. An efficient algorithm for the

identification of structured motifs in DNA promoter sequences. IEEE/ACM Transactions

on Computational Biology and Bioinformatics, 3(2):126–140, 2006.

A. M. Carvalho, A. L. Oliveira, and M.-F. Sagot. Efficient learning of Bayesian network

classifiers: An extension to the TAN classifier. In M. A. Orgun and J. Thornton, editors,

Proc. IA’07, volume 4830 of LNCS, pages 16–25. 2007.

A. M. Carvalho, T. Roos, A. L. Oliveira, and P. Myllymäki. Discriminative learning of

Bayesian networks via factorized conditional log-likelihood. Journal of Machine Learning

Research, 12, 2011. In print.

S. Cawley. Statistical models for DNA sequencing and analysis. PhD thesis, Berkely, Univer-

sity of California, 2000.

X. Chen, H. Xu, F. Yuan, P. Fang, M. Huss, V. B. Vega, E. Wong, Y. L. Orlov, W. Zhang,

J. Jiang, Y.-H. Loh, H. C. Yeo, Z. X. Yeo, V. Narang, K. R. Govindarajan, B. Leong,

A. Shahab, Y. Ruan, G. Bourque, W.-K. Sung, N. D. Clarke, C.-L. Wei, and H.-H. Ng. In-

tegration of external signaling pathways with the core transcriptional network in embryonic

stem cells. Cell, 133(6):1106–1117, 2008.

D. M. Chickering. A transformational characterization of equivalent Bayesian network struc-

tures. In Proc. UAI’95, pages 87–98, 1995.

D. M. Chickering. Learning Bayesian networks is NP-Complete, pages 121–130. Learning

from data: AI and statistics V. Springer, 1996.

D. M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of

Machine Learning Research, 2:445–498, 2002.

186 BIBLIOGRAPHY

D. M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks

is NP-hard. Journal of Machine Learning Research, 5:1287–1330, 2004.

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence

trees. IEEE Transactions on Information Theory, 14(3):462–467, 1968.

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks

from data. Machine Learning, 9:309–347, 1992.

T. Cover and J. Thomas. Elements of information theory. John Wiley & Sons, 2006.

M. Crochemore and M.-F. Sagot. Motifs in sequences: Localization and extraction. In

Compact Handbook of Computational Biology, pages 47–97. CRC Press, 2004.

F. Daenen, F. van Roy, and P. J. De Bleser. Low nucleosome occupancy is encoded around

functional human transcription factor binding sites. BMC Genomics, 9(332), 2008.

S. Dasgupta. Learning polytrees. In Proc. UAI’99, pages 134–141, 1999.

L. M. de Campos. A scoring function for learning Bayesian networks based on mutual in-

formation and conditional independence tests. Journal of Machine Learning Research, 7:

2149–2187, 2006.

C. Deremble and R. Lavery. Macromolecular recognition. Current Opinion in Structural

Biology, 15:171–175, 2005.

P. Domingos and M. J. Pazzani. Simple Bayesian classifiers do not assume independence. In

Proc. AAAI/IAAI’96, Vol. 2, page 1386, 1996a.

P. Domingos and M. J. Pazzani. Beyond independence: Conditions for the optimality of the

simple Bayesian classifier. In Proc. ICML’96, pages 105–112, 1996b.

P. Domingos and M. J. Pazzani. On the optimality of the simple Bayesian classifier under

zero-one loss. Machine Learning, 29(2–3):103–130, 1997.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons,

1973.

BIBLIOGRAPHY 187

L. Duret and P. Bucher. Searching for regulatory elements in human noncoding sequences.

Current Opinions in Structural Biology, 7(3):399–406, 1997.

J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards,

71B:233–240, 1967.

K. Ellrott, C. Yang, F. M. Sladek, and T. Jiang. Identifying transcription factor binding sites

through Markov chain optimization. In Proc. ECCB’02, pages 100–109, 2002.

E. Eskin and P. A. Pevzner. Finding composite regulatory patterns in DNA sequences.

Bioinformatics, 18(1):354–363, 2002.

E. Eskin, U. Keich, M. S. Gelfand, and P. A. Pevzner. Genome-wide analysis of bacterial

promoter regions. In Proc. PSB’03, pages 29–40, 2003.

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes

for classification learning. In Proc. IJCAI’93, pages 1022–1029, 1993.

A. P. Fejes, G. Robertson, M. Bilenky, R. Varhol, M. Bainbridge, and S. J. M. Jones. Find-

Peaks 3.1: A tool for identifying areas of enrichment from massively parallel short-read

sequencing technology. Bioinformatics, 24(15):1729–1730, 2008.

Y. M. Fraenkel, Y. Mandel, D. Friedberg, and H. Margalit. Identification of common mo-

tifs in unaligned DNA sequences: Application to Escherichia coli Lrp regulon. Computer

Applications in Biosciences, 11(4):379–387, 1995.

N. Friedman and D. Koller. Being Bayesian about network structure: A Bayesian approach

to structure discovery in Bayesian networks. Machine Learning, 50(1-2):95–125, 2003.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning,

29(2-3):131–163, 1997.

W. Fu, P. Ray, and E. P. Xing. DISCOVER: A feature-based discriminative method for motif

search in complex genomes. Bioinformatics, 25(12), 2009.

D. Geiger and D. Heckerman. Knowledge representation and inference in similarity networks

and Bayesian multinets. Artificial Intelligence, 82(1-2):45–74, 1996.

188 BIBLIOGRAPHY

R. Gordân and A. J. Hartemink. Using DNA duplex stability information for transcription

factor binding site discovery. In Proc. PSB’08, pages 453–464, 2008.

R. Gordân, L. Narlikar, and A. J. Hartemink. A fast, alignment-free, conservation-based

method for transcription factor binding site discovery. In Proc. RECOMB’08, pages 98–

111, 2008.

R. Gordân, L. Narlikar, and A. J. Hartemink. Finding regulatory DNAmotifs using alignment-

free evolutionary conservation information. Nucleic Acids Research, 38(6):e90, 2010.

R. Greiner and W. Zhou. Structural extension to logistic regression: Discriminative parameter

learning of belief net classifiers. In Proc. AAAI/IAAI’02, pages 167–173, 2002.

R. Greiner, X. Su, B. Shen, and W. Zhou. Structural extension to logistic regression: Dis-

criminative parameter learning of belief net classifiers. Machine Learning, 59(3):297–322,

2005.

D. Grossman and P. Domingos. Learning Bayesian network classifiers by maximizing condi-

tional likelihood. In Proc. ICML’04, pages 46–53, 2004.

P. D. Grünwald. The Minimum Description Length Principle. MIT Press, 2007.

D. Gusfield. Algorithms on strings, trees, and sequences. Cambridge University Press, 1997.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA

data mining software: An update. SIGKDD Explorations, 11(1), 2009.

C. T. Harbison, D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac, T. W. Danford, N. M.

Hannett, J. B. Tagne, D. B. Reynolds, J. Yoo, E. G. Jennings, J. Zeitlinger, D. K. Pokholok,

M. Kellis, P. A. Rolfe, K. T. Takusagawa, E. S. Lander, D. K. Gifford, E. Fraenkel, and

R. A. Young. Transcriptional regulatory code of a eukaryotic genome. Nature, 431(7004):

99–104, 2009.

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning. Springer,

2003.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combi-

nation of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

BIBLIOGRAPHY 189

C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector classification.

Technical report, Department of Computer Science, National Taiwan University, 2003.

M. Hu, J. Yu, J. M. Taylor, A. M. Chinnaiyan, and Z. S. Qin. On the detection and refinement

of transcription factor binding sites using ChiP-seq data. Nucleic Acids Research, 38(7):

2154–2167, 2010.

L. C. K. Hui. Color set size problem with applications to string matching. In A. Apostolico,

M. Crochemore, Z. Galil, and U. Manber, editors, Proc. CPM’92, volume 644 of LNCS,

pages 230–243. 1992.

A. Jakulin. Machine Learning Based on Attribute Interactions. PhD thesis, 2005.

S. Karlin, F. Ost, and B. E. Blaisdell. Patterns in DNA and amino acid sequences and

their statistical significance. In M. S. Waterman, editor, Mathematical Methods for DNA

Sequences, pages 133–158. CRC Press, 1989.

K. J. Kechris, E. van Zwet, P. J. Bickel, and M. B. Eisen. Detecting DNA regulatory motifs

by incorporating positional trends in information content. Genome Biology, 5(7):R50, 2004.

M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E. S. Lander. Sequencing and comparison

of yeast species to identify genes and regulatory elements. Nature, 423:241–254, 2003.

C. Kirchhamer, C. Yuh, and E. Davidson. Modular cis-regulatory organization of develop-

mentally expressed genes: Two genes transcribed territorially in the sea urchin embryo, and

additional examples. In Proc. Natl. Acad. Sci. USA, volume 93, pages 9322–9328, 1996.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model

selection. In Proc. IJCAI’95, pages 1137–1145, 1995.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97

(1-2):273–324, 1997.

D. Koller and N. Friedman. Probabilistic Graphical models: Principles and techniques. MIT

Press, 2009.

P. Kontkanen and P. Myllymäki. A linear-time algorithm for computing the multinomial

stochastic complexity. Information Processing Letters, 103(6):227–233, 2007.

190 BIBLIOGRAPHY

P. Kontkanen, W. Buntine, P. Myllymäki, J. Rissanen, and H. Tirri. Efficient computation

of stochastic complexity. In Proc. AISTATS’03, pages 233–238, 2003.

I. V. Kulakovskiy, V. A. Boeva, A. V. Favorov, and V. J. Makeev. Deep and wide digging for

binding motifs in ChiP-seq data. Bioinformatics, 26(20):2622–2623, 2010.

S. Kurtz. Reducing the space requirement of suffix trees. Software: Practice and Experience,

29(13):1149–1171, 1999.

I. Lafontaine and R. Lavery. Optimization of nucleic acid sequences. Biophysical Journal, 79

(2):680–685, 2000.

I. Lafontaine and R. Lavery. ADAPT: A molecular mechanics approach for studying the

structural properties of long DNA sequences. Biopolymers (Nucleic Acid Science), 56:

292–310, 2001a.

I. Lafontaine and R. Lavery. High-speed molecular mechanics searches for optimal DNA

interaction sites. Combinatorial Chemistry & High Throughput Screen, 4(8):707–717, 2001b.

W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach based on the MDL

principle. Computational Intelligence, 10:269–294, 1994.

A. D. Lanterman. Schwarz, Wallace, and Rissanen: Intertwining themes in theories of model

selection. IEEE Transactions on Information Theory, 69(2):185–212, 2001.

E. Lawler. Combinatorial Optimization: Networks and Matroids. Dover, 1976.

C. Lee, Y. Shibata, B. Rao, B. Strahl, and J. Lieb. Evidence for nucleosome depletion at

active regulatory regions genome-wide. Nature Genetics, 36(8), 2004.

H.-L. Li and C.-J. Fu. A linear programming approach for identifying a consensus sequence

on DNA sequences. Bioinformatics, 21(9):1838–1845, 2005.

L. P. Lim and C. B. Burge. A computational analysis of sequence features involved in recog-

nition of short introns. Proc. Natl. Acad. Sci. USA, 98(20):11193–11198, September 2001.

Y. Liu, S. Liu, L. Wei, R. B. Altman, and S. Batzoglou. Eukaryotic regulatory element

conservation analysis and identification using comparative genomics. Genome Research,

14:451–458, 2004.

BIBLIOGRAPHY 191

K. D. MacIsaac, T. Wang, D. B. Gordon, D. K. Gifford, G. D. Stormo, and E. Fraenkel. An

improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinfor-

matics, 7:113, 2006.

L. Marsan and M.-F. Sagot. Algorithms for extracting structured motifs using a suffix tree

with an application to promoter and regulatory site consensus identification. Journal of

Computational Biology, 7(3–4):345–362, 2000.

V. Matys, O. V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-Dirrie, I. Reuter,

D. Chekmenev, M. Krull, K. Hornischer, N. Voss, P. Stegmaier, B. Lewicki-Potapov,

H. Saxel, A. E. Kel, and E. Wingender. TRANSFACompel: Transcriptional gene regu-

lation in eukaryotes. Nucleic Acids Research, 34(Database-Issue):108–110, 2006.

E. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM,

23(2):262–272, 1976.

W. J. McGill. Multivariate information transmission. Psychometrika, 19:97–116, 1954.

C. Meek. Finding a path is harder than finding a tree. Journal of Artificial Intelligence

Research, 15:383–389, 2001.

M. Meila and M. I. Jordan. Learning with mixtures of trees. Journal of Machine Learning

Research, 1:1–48, 2000.

P. T. Monteiro, N. D. Mendes, M. C. Teixeira, S. d’Orey, S. Tenreiro, N. P. Mira, H. Pais,

A. P. Francisco, A. M. Carvalho, A. B. Lourenço, I. Sá-Correia, A. L. Oliveira, and A. T.

Freitas. YEASTRACT-DISCOVERER: New tools to improve the analysis of transcriptional

regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Research, 36(Database-

Issue):132–136, 2008.

L. Narlikar, R. Gordân, U. Ohler, and A. J. Hartemink. Informative priors based on transcrip-

tion factor structural class improve de novo motif discovery. In Proc. ISMB’06 (Supplement

of Bioinformatics), pages 384–392, 2006.

L. Narlikar, R. Gordân, and A. J. Hartemink. Nucleosome occupancy information improves

de novo motif discovery. In Proc. RECOMB’07, pages 107–121, 2007.

192 BIBLIOGRAPHY

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning

databases, 1998. URL http://www.ics.uci.edu/∼mlearn/MLRepository.html.

R. A. O’Flanagan, G. Paillard, R. Lavery, and A. M. Sengupta. Non-additivity in protein-

DNA binding. Bioinformatics, 21(10):2254–2263, 2005.

G. Paillard and R. Lavery. Analyzing protein-DNA recognition mechanisms. Structure, 12:

113–122, 2004.

G. Paillard, C. Deremble, and R. Lavery. Looking into DNA recognition: Zinc finger binding

specificity. Nucleic Acids Research, 32(22):6673–6682, 2004.

G. Pavesi, G. Mauri, and G. Pesole. An algorithm for finding signals of unknown length in

DNA sequences. In Proc. ISMB’01 (Supplement of Bioinformatics), pages 207–214, 2001.

G. Pavesi, G. Mauri, and G. Pesole. In silico representation and discovery of transcription

factor binding sites. Briefings in Bioinformatics, 5(3):217–236, 2004a.

G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole. Weeder Web: Discovery of transcription

factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Research,

32(Web-Server-Issue):199–203, 2004b.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, 1988.

S. V. Pemmaraju and S. S. Skiena. Computational discrete mathematics: Combinatorics and

graph theory with Mathematica. Cambridge University Press, 2003.

F. Pernkopf and J. A. Bilmes. Discriminative versus generative parameter and structure

learning of Bayesian network classifiers. In Proc. ICML’05, pages 657–664, 2005.

P. A. Pevzner and S. H. Sze. Combinatorial algorithm for finding subtle signals in DNA

sequences. In Proc. ISMB’00, pages 269–278, 2000.

N. Pisanti, A. M. Carvalho, L. Marsan, and M.-F. Sagot. RISOTTO: Fast extraction of

motifs with mismatches. In A. Hevia J. R. Correa and M. Kiwi, editors, Proc. LATIN’06,

volume 3887 of LNCS, pages 757–768. 2006.

BIBLIOGRAPHY 193

A. Policriti, N. Vitacolonna, M. Morgante, and A. Zuccolo. Structured motifs search. In Proc.

RECOMB’04, pages 133–139, 2004.

J. V. Ponomarenko, M. P. Ponomarenko, A. S. Frolov, D. G. Vorobiev, G. C. Overton,

and N. A. Kolchanov. Conformational and physicochemical DNA features specific for

transcription factor binding sites. Bioinformatics, 15(7):654–668, 1999.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in C:

The art of scientific computing. Cambridge University Press, 1993.

R. Pudimat, E. G. Schukat-Talamazzini, and R. Backofen. Feature based representation and

detection of transcription factor binding sites. In Proc. German Conference on Bioinfor-

matics, pages 43–52, 2004.

J. Rissanen. A universal prior for integers and estimation by minimum description length.

The Annals of Statistics, 11(2):416–431, 1983.

J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14:1080–1100, 1986.

J. Rissanen. Stochastic complexity. Journal of the Royal Statistical Society, Series B, 49(3):

223–239, 1987.

J. Rissanen. Stochastic Complexity in Statistical Inquiry Theory. World Scientific, 1989.

J. Rissanen. Stochastic complexity and its applications. In Workshop on Model Uncertainty

and Model Robustness, 1995a. On-line proceeding only.

J. Rissanen. Stochastic complexity in learning. In Proc. EuroCOLT’95, pages 196–210, 1995b.

J. Rissanen. Fisher information and stochastic complexity. IEEE Transactions on Information

Theory, 42(1):40–47, 1996.

T. Roos, H. Wettig, P. Grünwald, P. Myllymäki, and H. Tirri. On discriminative Bayesian

network classifiers and logistic regression. Machine Learning, 59(3):267–296, 2005.

T. Roos, T. Silander, P. Kontkanen, and P. Myllymäki. Bayesian network structure learning

using factorized NML universal models. In Proc. ITA’08, pages 272–276, 2008.

194 BIBLIOGRAPHY

M.-F. Sagot. Spelling approximate repeated or common motifs using a suffix tree. In C. Luc-

chessi and A. Moura, editors, Proc. Latin’98, volume 1380 of LNCS, pages 111–127. 1998.

G. Sandve and F. Drablos. A survey of motif discovery methods in an integrated framework.

Biology Direct, 1(1):11, 2006.

R. V. Satya and A. Mukherjee. New algorithms for finding monad patterns in DNA sequences.

In Alberto Apostolico and Massimo Melucci, editors, Proc. SPIRE’04, volume 3246 of

LNCS, pages 273–285. 2004.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

E. Segal, Y. Fondufe-Mittendorf, L. Chen, A. Th̊aström, Y. Field, I. K. Moore, J.-P. Z. Wang,

and J. Widom. A genomic code for nucleosome positioning. Nature, 442(7104):772–778,

2006.

Y. M. Shtarkov. Universal sequential coding of single messages. (Translated from) Problems

of Information Transmission, 23(3):3–17, 1997.

R. Siddharthan, E. D. Siggia, and E. van Nimwegen. PhyloGibbs: A Gibbs sampling motif

finder that incorporates phylogeny. PLoS Computational Biology, 1(7):e67, 12 2005.

T. Silander, T. Roos, P. Kontkanen, and P. Myllymäki. Bayesian network structure learning

using factorized NML universal models. In Proc. PGM’08, pages 257–264, 2008.

S. Sinha, M. Blanchette, and M. Tompa. PhyME: A probabilistic algorithm for finding motifs

in sets of orthologous sequences. BMC Bioinformatics, 5:170, 2004.

G. D. Stormo. DNA binding sites: Representation and discovery. Bioinformatics, 16(1):

16–23, 2000.

J. Su and H. Zhang. Full Bayesian network classifiers. In Proc. ICML’06, pages 897–904,

2006.

J. Su, H. Zhang, C. X. Ling, and S. Matwin. Discriminative parameter learning for Bayesian

networks. In Proc ICML’08, pages 1016–1023, 2008.

J. Suzuki. A construction of Bayesian networks from databases based on an MDL principle.

In Proc. UAI’93, pages 266–273, 1993.

BIBLIOGRAPHY 195

M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for

learning Bayesian networks. In Proc. UAI’05, pages 584–591, 2005.

M. Tompa. An exact method for finding short motifs in sequences, with application to the

ribosome binding site problem. In Proc. ISMB’99, pages 262–271, 1999.

M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. De Moor, E. Eskin, A. V. Favorov, M. C.

Frith, Y. Fu, W. J. Kent, V. J. Makeev, A. A. Mironov, W. S. Noble, G. Pavesi, G. Pesole,

M. Regnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M. Vandenbogaert, Z. Weng,

C. Workman, C. Ye, and Z. Zhu. Assessing computational tools for the discovery of tran-

scription factor binding sites. Nature Biotechnology, 23(1):137–144, 2005.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

A. Valouev, D. S. Johnson, A. Sundquist, C. Medina, E. Anton, S. Batzoglo, R. M. Myers,

and A. Sidow. Genome-wide analysis of transcription factor binding sites based on ChiP-seq

data. Nature Methods, 5:829–834, 2008.

J. van Helden, B. André, and J. Collado-Vides. Extracting regulatory sites from the upstream

region of yeast genes by computational analysis of oligonucleotide frequencies. Journal of

Molecular Biology, 281(5):827–842, 1998.

J. van Helden, A. F. Rios, and J. Collado-Vides. Discovering regulatory elements in non-

coding sequences by analysis of spaced dyads. Nucleic Acids Research, 28(8):1808–1818,

2000.

A. Vanet, L. Marsan, and M.-F. Sagot. Promoter sequences and algorithmical methods for

identifying them. Research in Microbiology, 150(9–10):779–799, 1999.

A. Vanet, L. Marsan, A. Labigne, and M.-F. Sagot. Inferring regulatory elements from a

whole genome. An analysis of Helicobacter pylori sigma(80) family of promoter signals.

Journal of Molecular Biology, 297(2):335–353, 2000.

T. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proc. UAI’90, pages

255–270, 1990.

T. Wang and G. D. Stormo. Combining phylogenetic data with co-regulated genes to identify

regulatory motifs. Bioinformatics, 19(18):2369–2380, 2003.

196 BIBLIOGRAPHY

W. W. Wasserman and A. Sandelin. Applied bioinformatics for the identification of regulatory

elements. Nature reviews, 5(4):276–287, 2004.

P. Weiner. Linear pattern matching algorithms. In Proc. SWAT’73, pages 1–11, 1973.

T. Werner. Models for prediction and recognition of eukaryotic promoters. Mammalian

Genome, 10(2):168–175, 1999.

E. Wingender, X. Chen, E. Fricke, R. Geffers, R. Hehl, I. Liebich, M. Krull, V. Matys,

H. Michael, R. Ohnhäuser, M. Prüss, F. Schacherer, S. Thiele, and S. Urbach. The TRANS-

FAC system on gene expression regulation. Nucleic Acids Research, 29(1):281–283, 2001.

E. P. Xing, M. I. Jordan, R. M. Karp, and S. J. Russell. A hierarchical Bayesian Markovian

model for motifs in biopolymer sequences. In Proc. NIPS’02, pages 1489–1496, 2002.

S. Yang and K.-C. Chang. Comparison of score metrics for Bayesian network learning. IEEE

Transactions on Systems, Man, and Cybernetics, Part A, 32(3):419–428, 2002.

G. C. Yuan, Y. J. Liu, M. F. Dion, M. D. Slack, L. F. Wu, S. J. Altschuler, and O. J. Rando.

Genome-scale identification of nucleosome positions in S. cerevisiae. Science, 309(5734):

626–630, 2005.

X. Zhao, H. Huang, and T. P. Speed. Finding short DNA motifs using permuted Markov

models. In Proc. RECOMB’04, pages 68–75, 2004.

Q. Zhou and J. S. Liu. Modeling within-motif dependence for transcription factor binding

site predictions. Bioinformatics, 20(6):909–916, 2004.

