Mechanism of chiral symmetry breaking for three flavours of light quarks and extrapolations of Lattice QCD results

Abstract : In this thesis, we focus on some aspects concerning hadronic phenomena at low energy, below 1 GeV, under which the spontaneous breaking of chiral symmetry takes place. Under this scale, the spectrum of Quantum Chromodynamics reduces to an octet of light pseudo-scalar mesons (π, K and η). But because of the confinement property, QCD under 1 GeV is highly non-perturbative, it is thus not possible to describe at low energy the dynamics of these mesons in terms of gluons and quarks (in that case the three light quarks u,d, and s). Two main alternatives exist to circumvent this major obstacle: Lattice QCD and Effective Field Theories. Lattice QCD is concerned with the numerical computations of various hadronic observables, while Effective Field Theories correspond to analytical frameworks adapted to a particular energy scale. In the case of QCD at low energy, this role is devoted to Chiral Perturbation Theory (ChiPT). This theory can be built either from two quark flavours (u and d), or three (u,d, and s). Using the numerical results from Lattice QCD, it is possible to obtain numerical values for the unknown parameters that ChPT contains. It was however observed that the series expansions of hadronic observables stemming from ChiPT calculations do not “behave well” numerically in the three-flavour case. Indeed, previous works shown that there could exists at the numerical level a competition between the Leading and the Next-to- Leading order (LO and NLO); i.e., instead of the usually expected hierarchy LO>>NLO, one would have LO~NLO. The main part of the thesis work consists in the description and the use of a modified version of ChiPT allowing this numerical competition in the chiral series that was called “Resummed ChiPT”. Within this “Resummed” framework, we proceed to fitting data from 2+1 lattice calculations to hadronic observables computed in ChiPT: decay constants and masses of π, K and η, and Kl3 form factors, and check the consistency of our claim about the numerical competition in ChiPT expansions. In the last part, we discuss topological quantities that are intrinsically tied to the very complex structure of the QCD vacuum, in the (resummed) ChiPT framework and in the light of 2+1 lattice data, in their analytical and numerical aspects.
Document type :
Other [cond-mat.other]. Université Paris Sud - Paris XI, 2012. English. <NNT : 2012PA112260>
Contributor : Abes Star <>
Submitted on : Tuesday, November 20, 2012 - 12:02:12 PM
Last modification on : Saturday, October 17, 2015 - 4:50:01 AM
Document(s) archivé(s) le : Thursday, February 21, 2013 - 12:10:32 PM


  • HAL Id : tel-00754994, version 1



Guillaume Toucas. Mechanism of chiral symmetry breaking for three flavours of light quarks and extrapolations of Lattice QCD results. Other [cond-mat.other]. Université Paris Sud - Paris XI, 2012. English. <NNT : 2012PA112260>. <tel-00754994>




Notice views


Document downloads