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Résumé

La these est consacrée au développement de nouvelles méthodes de modélisations mathé-
matiques en biologie et en médecine, du type “off-lattice” modéles hybrides discret-continus,
et de leurs applications a I’hématopoiése et aux maladies sanguines telles la leucémie et
I’anémie. Dans cette approche, les cellules biologiques sont considérées comme des objets
discrets alors que les réseaux intracellulaire et extracellulaire sont décrits avec des modéles
continus régis par des équations aux dérivées partielles et des équations différentielles ordi-
naires. Les cellules interagissent mécaniquement et biochimiquement entre elles et avec le
milieu environnant. Elles peuvent se diviser, mourir par apoptose ou se différencier. Le com-
portement des cellules est déterminé par le réseau de régulation intracellulaire et influencé
par le controle local des cellules voisines ou par la régulation globale d’autres organes.

Dans la premiére partie de la thése, les modeéles hybrides du type “off-lattice” dynamiques
sont introduits. Des exemples de modéles, spécifiques aux processus biologiques, qui décrivent
au sein de chaque cellule la concurrence entre la prolifération et I’apoptose, la prolifération et
la différenciation et entre le cycle cellulaire et de I’état de repos sont étudiés. L’émergence des
structures biologiques est étudiée avec les modéles hybrides. L’application a la modélisation
des filamente de bactéries est illustrée.

Dans le chapitre suivant, les modéle hybrides sont appliqués afin de modéliser 1’érythro-
poiése ou production de globules rouges dans la moelle osseuse. Le modeéle inclut des cellules
sanguines immatures appelées progéniteurs érythroides, qui peuvent s’auto-renouveler, se
différencier ou mourir par apoptose, des cellules plus matures appelées les réticulocytes, qui
influent les progéniteurs érythroides par le facteur de croissance Fas-ligand, et des macro-
phages, qui sont présents dans les ilots érythroblastiques in vivo. Les régulations intracel-
lulaire et extracellulaire par les protéines et les facteurs de croissance sont précisées et les
rétrocontroles par les hormones érythropoiétine et glucocorticoides sont pris en compte. Le
role des macrophages pour stabiliser les ilots érythroblastiques est montré. La comparaison
des résultats de modélisation avec les expériences sur 'anémie chez les souris est effectuée.

Le quatriéme chapitre est consacré a la modélisation et au traitement de la leucémie.
L’érythroleucémie, un sous-type de leucémie myéloblastique aigiie (LAM), se développe a
cause de la différenciation insuffisante des progéniteurs érythroides et de leur auto-renou-
vellement excessif. Un modéle de type “Physiologically Based Pharmacokinetics-Pharmaco-
dynamic” du traitement de la leucémie par AraC et un modéle de traitement chronothé-
rapeutique de la leucémie sont examinés. La comparaison avec les données cliniques sur le
nombre de blast dans le sang est effectuée.

Le dernier chapitre traite du passage d’un modele hybride & un modéle continu dans le
cas 1D. Un théoréeme de convergence est prouvé. Les simulations numériques confirment un
bon accord entre ces deux approches.

Mots-clés : modéles hybrides discret-continus, “off-lattice” dynamiques des cellules, réseau
de régulation intracellulaire et extracellulaire, équations aux dérivées partielles, équations
différentielles ordinaires, érythropoiese, modeéle de type PBPKPD du treatement de leucémie.



Abstract

This dissertation is devoted to the development of new methods of mathematical mo-
delling in biology and medicine, off-lattice discrete-continuous hybrid models, and their ap-
plications to modelling of hematopoiesis and blood disorders, such as leukemia and anemia.
In this approach, biological cells are considered as discrete objects while intracellular and
extracellular networks are described with continuous models, ordinary or partial differential
equations. Cells interact mechanically and biochemically between each other and with the
surrounding medium. They can divide, die by apoptosis or differentiate. Their fate is deter-
mined by intracellular regulation and influenced by local control from the surrounding cells
or by global regulation from other organs.

In the first part of the thesis, hybrid models with off-lattice cell dynamics are introduced.
Model examples specific for biological processes and describing competition between cell
proliferation and apoptosis, proliferation and differentiation and between cell cycling and
quiescent state are investigated. Biological pattern formation with hybrid models is discussed.
Application to bacteria filament is illustrated.

In the next chapter, hybrid model are applied in order to model erythropoiesis, red blood
cell production in the bone marrow. The model includes immature blood cells, erythroid
progenitors, which can self-renew, differentiate or die by apoptosis, more mature cells, reti-
culocytes, which influence erythroid progenitors by means of growth factor Fas-ligand, and
macrophages, which are present in erythroblastic islands in vivo. Intracellular and extracellu-
lar regulation by proteins and growth factors are specified and the feedback by the hormones
erythropoietin and glucocorticoids is taken into account. The role of macrophages to stabi-
lize erythroblastic islands is shown. Comparison of modelling with experiments on anemia
in mice is carried out.

The following chapter is devoted to leukemia modelling and treatment. Erythroleukemia,
a subtype of Acute Myeloblastic Leukemia (AML), develops due to insufficient differen-
tiation of erythroid progenitors and their excessive slef-renewal. A Physiologically Based
Pharmacokinetics-Pharmacodynamics (PBPKPD) model of leukemia treatment with AraC
drug and chronotherapeutic treatments of leukemia are examined. Comparison with clinical
data on blast count in blood is carried out.

The last chapter deals with the passage from a hybrid model to a continuous model in the
1D case. A convergence theorem is proved. Numerical simulations confirm a good agreement
between these approaches.

Keywords : discrete-continuous hybrid models, off-lattice cell dynamics, intracellular and
extracellular regulatory networks, ordinary and partial differential equations, erytropoiesis,
PBPKPD modelling of leukemia treatment.
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Chapitre 1

Introduction

1.1 Hybrid models in biology

In recent years, mathematical models that exploit the advantages of both continuous
and discrete models have emerged. Hybrid discrete-continuous models are widely used in
investigation of the dynamics of cell populations in biological tissues and organisms that
involve processes at different scales. This approach receives more and more attention in
modelling cellular systems due to the availability of “individual cell data” such as metabolic,
genetic and proteomic.

In hybrid methods cells are considered as discrete objects described either by cellular auto-
mata or by various lattice or off-lattice models while intracellular and extracellular concentra-
tions are described with continuous models, ordinary or partial differential equations. Hybrid
methods can be divided into three main groups : (i) cellular Potts models ( [6, 105]) that can
be thought of as a generalized cellular automaton (CA) models (|4, 5, 7, 8, 34, 40, 72, 113]),
(ii) off-lattice cell models (|32, 33, 39, 53, 91, 116|) and (iii) viscoelastic cell models [38, 57, 94].
In off-lattice models cell shape can be explicitly modeled and cell interactions with neigh-
bouring cells and surrounding medium can be investigated. The viscoelastic cell models are
also lattice free, besides this approach takes into account cell elasticity. That allows cell
deformation simultaneously preserving cell volume.

There are several types of cellular automaton model where each individual cell can be
represented as a single site of lattice, as several connected lattice sites or the lattice site can
be larger than an individual cell. In each particular CA model the state of rules determines
the motion of cells. It can be influenced by the interaction of cells with the elements of their
immediate surrounding and by processes that involve cellular response to external signals like
chemotaxis. The numerous models with gradient fields of chemical concentrations that govern
motility of cells have been suggested. Cellular automaton have been used extensively to
model a wide range of problems. The numerous models analyse the different stages of tumor
development from initial avascular phase to invasion and metastasis through angiogenesis.

Cellular automata are applied to model tumor invasion in |7, 8] where tumor is conside-
red as a collection of many individual cancer cells that interact and modify the environment
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through which they grow and migrate. The movement probability of each single cell is ba-
sed on coefficients of a discretization system of partial differential equations that control
the chemical extracellular matrix dynamics. By means of hybrid model it was shown that
evolution of cell phenotypes/genotypes arises in tumors growing in different oxygen concen-
trations. Other cellular automaton modele, studied by Dormann and Deutsch [40], focuses on
avascular tumor growth in vitro by means of multicellular spheroids. The model reproduces
experimental results of growth saturation observed in multicellular spheroids due to the in-
troduction into the model of not only movement of the cell population towards nutrients
coming from outside the tumor but also of a chemotactic migration of tumor cells into the
direction of the necrotic signal gradient that means towards the center. That explains why
an initial exponential growth phase of spheroid is significantly slowed down with appearance
of necrotic cells even if further nutrient is supplied. Diffusion of chemicals (nutrient and
necrotic signal) is modeled with the continuous diffusion equations. Tumor-induced angio-
genesis has been modeled using a cellular automaton approach in Anderson and Chaplain
[5]. In this work the growth of the vascular network outside the solid tumor in response to
tumor angiogenic factors (TAF) is described by both continuous and discrete mathemati-
cal models. In the continuum approach by means of a system of coupled nonlinear partial
differential equations, chemotactic response of the endothelial cells is modeled. Using the
resulting coefficients of discretized form with Euler finite difference approximation of these
governing partial differential equations provides the migration of each individual cell. In the
discrete approach the ability of cells to proliferate is incorporated. Based partially on the
work of Anderson and Chaplain other mathematical models of angiogenic networks this time
in connection with chemotherapeutic strategies were developed [72, 113|. In McDougall et
al. |72] blood flow is incorporated by adapting computational techniques used in petroleum
engineering industry to model flow through porous media. The blood is assumed to be a
Newtonian fluid and no kinetics reactions are included in drug functions. The flow through
vascular network with different architecture was examined and applied for the study of deli-
very of chemotherapeutic drugs to the tumor. Later this model was extended in Stéphanou
et al. [113] to the 3D case. Other mathematical model of flow in capillary networks has
been considered by Alarcon et al. [4] in order to investigate the influence of red blood cell
heterogeneity on normal and cancerous cell growth.

A generalized cellular automaton approach is presented by the cellular Potts models
(CPM). The CPM is a more sophisticated cellular automaton that describes individual cells
as extended objects of variable shapes. This model suggests the consideration of differential
surface energies between cells and their surrounding extracellular medium. The CPM effec-
tive energy can control cell behaviors including cell adhesion, signalling, volume and surface
area or even chemotaxis, elongation and haptotaxis [6]. In [105] M. Scianna and co-workers
applied the cellular Potts model to study the scattering process in colonies of two cell lines,
thyroid carcinoma-derived cells (ARO) and mouse liver progenitor cells (MLP-29) induced
by hepatocyte growth factor (HGF) which influences the cell-cell adhesion energy and the
system motility. In the case of ARO cells the effective energy determines adhesion and target
area deviation while for a culture of MLP-29 cells it was necessary to add a term related to
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cell polarization and persistence in conjunction with a chemotactic response. In [47] CPM,
combining with continuum methods, is used to reproduce transmesothelial migration assays
of ovarian cancer cells, isolated or aggregated in multicellular spheroids. This process is re-
gulated by the activity of matrix metalloproteinases (MMPs) and by the interaction of the
cells with the extracellular matrix and with other cells. Effective energy is responsible for
cell-cell adhesion, cell shape and the response of a cell to chemotactic and haptotactic gra-
dients. Concentration of chemical substances, released by mesothelial cells and molecules of
extracellular matrix, and MMPs, released from tumor cells, are described by partial diffe-
rential equations. They determine cancer cell’s motility. Results of simulations are in good
agreement with experimental evidences.

Lattice-free models are important to those biological situations in which the shape of
individual cells can influence the dynamics or geometry of the whole population of cells. In
these models, shape of cells can be explicitly modeled and response to local mechanical forces,
interaction with neighboring cells and environment can be investigated. Indeed, all models of
this type have the freedom to move each cell in any direction and they can be distinguished
into several main types : (i) spherical cell-centered models [32, 33, 53, 91], (ii) ellipsoidal cell-
centered models [57], (iii) viscoelastic cell models 38, 57, 94| that allows to include elastic or
viscoelastic properties of individual cells. To use this modeling approach special algorithms
to handle efficiently cell-cell interaction should be designed. Some interpolation techniques
need to be applied to couple the cellular off-lattice individuals with the chemical fields.

The method is ideal to understand macroscopic behaviour of discrete systems interacting
with continuum systems. J. C. Dallon [32] models with such a method distyostelium discoi-
deum where individual amoebae are treated as discrete entities. Each cell is thought of as a
point mass. They move and communicate with each other through a extracellular diffusible
chemical which is determined by a partial differential equation. Each individual cell modify
the continuum variable which in turn modify the behavior of the cells. This communica-
tion is carried out by interpolation the information from the cell locations to the lattice of
discretized domain of partial differential equation. Intracellular dynamics of various chemi-
cal complexes, one of them determines cell movement, is modeled with ordinary differential
equations defined in the previous works of Tang&Othmer [116] and Dallon&Othmer [33].
The cells move in the direction of the gradient of the chemoattractant. The second model in
[32] describes scar tissue formation with the same basic framework.

Hybrid lattice-off models, not limited in possible directions of cell motion, are widely
applied to the modeling of tumor growth and invasion where cell migration is thought to
be central. For example, in the recent work of J. Jeon and co-workers [53] an off-lattice
hybrid discrete-continuum model of tumor growth and invasion is proposed. The cells are
represented as the spherical discrete objects while the extracellular concentrations represent
continuum part. All cells interact with each other and with extracellular matrix. Cell migra-
tion is described with the Langevin equation. In [91] multiscale modeling approach is used to
determine regulation of cell adhesion by interactions between E-cadherin and (-catenin and
its implications for cell migration and cancer invasion. Each cell in isolation has a spherical
shape. The (-catenin kinetics is governed by a system of differential equations in each indivi-
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dual cell. The concentration of J-catenin control the decision of a cell to migrate. In J. Kim
et al. [57] the model of tumor spheroidal growth consists of both continuum and cell-level
description. All cells are deformable and have ellipsoidal shape in the absence of external
forces. Extracellular concentrations of oxygen and glucose are governed by reaction-diffusion
equations. Cells which are at the periphery of the tumor proliferate.

Fluid-based elastic cell modeling is applied to early tumor development in an article of K.
A. Rejniak [94]. The cell membranes and cell nuclei are treated as neutrally buoyant bodies
which are moved by the fluid inside and outside the cell. The fluid inside the cells represents
the cell cytoplasm and the fluid outside the cells represents the extracellular matrix. The
motion of the fluid is described by the Navier-Stokes equations. The cell nuclei inside the
cell is modeled as the source of fluid and cell bounders as the collection of springs that apply
the force to the fluid. All cells have the ability to proliferate and to exchange mechanical and
chemical signals with their immediate neighbors. The growth of early tumor under different
conditions of its initiation and progression is presented. Other model with the fluid-elastic
structure of the cells was considered in by R. Dillon et al. in [38|. Extracellular chemicals,
required for cell growth, are described by a system of reaction-diffusion-advection equations.
The model is applied to solid tumor growth and ductal carcinoma.

1.2 Mathematical modelling of hematopoiesis

1.2.1 Biological background

Haematopoiesis is the process by which immature cells proliferate and differentiate into
mature blood cells. It starts with very few primitive haematopoietic stem cells and ends up
with a huge number of mature erythrocytes (red blood cells), leukocytes (white blood cells)
and platelets. We are concerned, in this work, with the red blood cell lineage, through the
process of production and regulation of red blood cells, called erythropoiesis.

The whole process of erythropoiesis happens in the bone marrow where erythroid proge-
nitors, immature blood cells with abilities to proliferate and differentiate, divide to produce
erythroblasts (mature progenitors), then reticulocytes (precursor cells), which are almost
differentiated red blood cells. Reticulocytes eject their nuclei, enter the bloodstream and
finish their differentiation process to become erythrocytes (mature red blood cells). At every
step of this differentiation process, erythroid cells can die by apoptosis (programmed cell
death), and erythroid progenitors have been shown to be able to self-renew under stress
conditions [14, 45, 46, 84|. Moreover, cell fate is partially controlled by external feedback
controls. For instance, death by apoptosis has been proved to be mainly negatively regu-
lated by erythropoietin (Epo), a growth factor released by the kidneys when the organism
lacks red blood cells [60]. Self-renewal is induced by glucocorticoids [14, 45, 46, 84|, but also
by Epo [99, 112] and some intracellular autocrine loops [46, 104]. Global feedback control
mediated by the population of mature red blood cells (through erythropoietin release) is
supposed to influence erythroid progenitor proliferation [99, 112] and inhibit their death by
apoptosis [60]. Local feedback control, mediated by reticulocytes and based upon Fas-ligand
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activity, is supposed to induce both differentiation and death by apoptosis [79]. Global and
local feedback controls modify the activity of intracellular proteins. A set of two proteins,
previously considered by the authors [29|, Erk and Fas, are thought to be determinant for
the regulation of self-renewal, differentiation and apoptosis. It has been shown [99], that
Erk and Fas are involved in an antagonist loop where Erk, from the MAPK family, inhibits
Fas (a TNF family member) and self-activates, high levels of Erk inducing cell proliferation
depending on Epo levels, whereas Fas inhibits Erk and induces apoptosis and differentiation.
Competition between these two proteins sets a relevant frame to observe, within a single cell,
all three possible cell fates depending on the level of each protein.

In addition to intracellular regulation of cell fate and feedback induced either by mature
red blood cells or reticulocytes on erythroid progenitors, an important aspect of erythro-
poiesis lays in the structure of bone marrow. Erythroid progenitors are indeed produced
in specific micro-environments, called niches [115], where erythroblastic islands develop. An
erythroblastic island consists in a central macrophage surrounded by erythroid progenitors
[27]. The macrophage appears to act on surrounding cells, by affecting their proliferation and
differentiation programs. For years, however, erythropoiesis has been studied under the in-
fluence of erythropoietin, which may induce differentiation and proliferation in vitro without
the presence of the macrophage. Hence, the roles of the macrophage and the erythroblastic
island have been more or less neglected. Consequently, spatial aspects of erythropoiesis (and
hematopoiesis, in general) have usually not been considered when modelling cell population
evolution or hematological diseases appearance and treatment.

1.2.2 Continuous models

Hematopoiesis has been the topic of modelling works for decades. Dynamics of hemato-
poietic stem cells have been described by Mackey’s early works [69, 70]. The author developed
hypothesis that aplastic anaemia (lower counts of all three blood cell types) and periodic
haematopoiesis in humans are probably due to irreversible cellular loss from the prolifera-
ting pluripotential stem cell population. A model for pluripotential stem cell population is
described by delay equations. In the later developed model a population dynamics of cells
capable of both proliferation and maturation was analysed [71]. This model is described by
the first order differential equations. Further development of mathematical model devoted to
periodic diseases of blood production was proposed to explain the origin of oscillations of cir-
culating blood neutrophil number in Bernard et al. [15]. They demonstrated that an increase
in the rate of stem cell apoptosis can lead to long period oscillations in the neutrophil count.
By coupling the previous models in [26] Colijn and Mackey applied mathematical model,
through systems of delay differential equations, to explain coupled oscillations of leukocytes,
platelets and erythrocytes in cyclical neutropenia and determined necessary parameters to
fit data during its treatment. Another work on haematopoiesis modeling was proposed by
Roeder|96].

The platelet production process (thrombopoiesis) attracted less attention through years
[41, 119]. Cyclical platelet disease was a subject of mathematical modeling in Santillan et al.
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[103] and was enriched in Apostu et al. [11].

The red blood cell production process (erythropoiesis) has recently been the focus of
modelling in hematopoiesis. Pioneering mathematical model which describes the regulation
of erythropoiesis in mice and rats has been developed by Wichmann, Loeffler and co-workers
[121]. In the following paper proposed model was validated by comparing with experimental
data during stress erythropoiesis as hypoxia and different forms of induced anaemia [120].
Analysis of the regulating mechanisms in erythropoiesis was enriched in [125|. In 1995, Bélair
et al. proposed age-structured model of erythropoiesis where erythropoietin (EPO) causes
differentiation, without taking into account erythropoietin control of apoptosis found out in
1990 by Koury and Bondurant in [60]. In 1998 Mahaffy et al. [67] expanded this model by in-
cluding the apoptosis possibility. Age-stuctured model is detailed in [1] with assumption that
decay rate of erythropoietin depends on the number of precursor cells. In [28] Crauste et al.
included in the model the influence of EPO upon progenitors apoptosis and showed the im-
portance of erythroid progenitor self-renewing by confronting their model with experimental
data on anaemia in mice. Multiscale approaches include both cell population kinetics [18, 19|
or erythroid progenitor dynamics [28, 29| and intracellular regulatory networks dynamics in
the models, in order to give insight in the mechanisms involved in erythropoiesis.

A model of all hematopoietic cell lineages has been proposed by Colijn and Mackey
[25, 26], including dynamics of hematopoietic stem cells, white cell lineage, red blood cell
lineage and platelet lineage.

All the previously mentioned approaches did not consider spatial aspects of hematopoie-
sis. Models describe cell population kinetics, either in the bone marrow or the spleen (where
cell production and maturation occur) or in the bloodstream (where differentiated and ma-
ture cells ultimately end up). Consequently, cellular regulation by cell-cell interaction was
neither considered in these models.

In this thesis we propose a new multiscale model for cell proliferation [18, 19|, applied
to erythropoiesis in the bone marrow, based on hybrid modelling. This approach, taking
into account both interactions at the cell population level and regulation at the intracellular
level, allows studying cell proliferation at different scales. Moreover, the “hybrid” modelling
consists in considering a continuous model at the intracellular scale (that is, deterministic
or stochastic differential equations), where protein competition occurs, and a discrete model
to describe cell evolution (every cell is a single object evolving individually and interacting
with surrounding cells and the medium).

1.2.3 Leukemia modeling and treatment

Leukemia. Leukaemia is a malignant disease characterized by abnormal proliferation of
immature blood cells or haematopoietic stem cells within the bonne marrow. These cells
finally enter and invade bloodstream. There are four types of leukemia : myelogenous and
lymphocytic (according to the haematopoietic lineage involved in the disease), each of which
being acute (rapid increase of immature blood cells) or chronic (excessive production of
relatively mature blood cells). We focus our attention on the acute myeloid leukemia (AML).
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According to the French-American-British (FAB) classification, AML has eight different
subtypes. In this work we concentrate ourselves on erythroleukemia, designated by M6 in
the FAB classification (see Figure 1.1). Erythroleukemia was first described by Di Guglielmo
in the early twentieth century [68], it is characterized by a proliferation of erythroid and
myeloid (white cells) progenitors, and sometimes a pure erythroid proliferation is observed
[59]. The origin of erythroleukemia lies in a destabilization of erythropoiesis at the immature
level, that is at the erythroid progenitor level. A dysfunction of the Epo-mediated apoptosis
regulation has been stressed to be a causative agent of erythroleukemia. Evidences for self-
activation of Epo-receptors at the surface of erythroid progenitors [36] could explain the
sudden proliferation of immature erythroid cells. Yet, experiments conducted by Madan et
al. [66] indicated that autocrine stimulation by erythropoietin in mice could result in intense
proliferation of erythroid progenitors but never triggered erythroleukemia. Self-activation of
Epo-receptors could not then explain appearance of erythroleukemia without considering
other signaling pathways (for instance, including Erk or Fas) destabilization.
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F1G. 1.1 — Myeloid cell differentiation - Schematic figure of myeloid differentiation including
the corresponding leukaemia and non-Hodgkin lymphomas as well as cell markers involved
in each stage, adapted from [89].

Leukemia treatment. During past decade the first line therapy for AML patients was
daunorubicin or idarubicin in combination with cytosine arabinoside (Ara-C), yet nowa-
days new investigational options exist [42]. In the thesis we consider the chemotherapeutic
treatment based on Ara-C. This drug is characterized by a short half-life and targets cells
during DNA synthesis (S-phase of the cell cycle). After intravenous administration, the drug
is rapidly metabolized, by deamination in the liver and kidney, to its inactive form uracil



16

arabinoside (Ara-U). When in the bone marrow, it penetrates proliferating cells membrane
and it can be transformed into its active form arabinoside triphosphate (Ara-CTP), which
participates in the DNA duplication, replacing natural nucleotides. When the proportion of
Ara-CTP in the DNA becomes sufficiently high, the cell dies by apoptosis.

It is not always clear what dose of Ara-C should be administrated to each concrete
patient to achieve the best efficacy. However, some standard protocol is usually applied. The
desired therapeutic effect is to bring the disease into remission that means reappearance
of normal haemapoiesis with less than 5% blast cells in bone marrow. From 1980th the
pharmacokinetics of high-dose Ara-C was studied [108]. Further clinical studies was needed to
determine the correct balance between efficacy an toxicity. Some trials were recently carried
out where authors showed [56] that the high-dose of Ara-C improve long-term disease control,
but no differences between high-dose and standard-dose were found with regard to complete
remission rates.

Ara-C acts on all proliferating cells whether they are leukemic or normal. Therefore,
the aim in optimizing drug administration schedule is to increase cytotoxicity for leukemic
cells and tolerance for normal cells. One possible approaches to this problem is based on
chronotherapy, which takes into account the small differences in the temporal organisation
of the cell cycle between normal and leukemic cells.

Chronotherapy. Chronotherapy signifies drug delivery synchronized with biological rhythms
in order to optimize the therapeutic outcomes. Cell physiology is regulated along the 24-h
time [93]. The suprachiasmatic nucleus, a hypothalamic pacemaker clock and at least 12
circadian genes act to generate and coordinate biological rhythms. The aim of anti-cancer
chronomodulated treatment is to decrease toxicity and improve efficacy of the treatment. The
same temporal pattern of phase-specific drug administration should have minimum cytotoxi-
city toward population of normal cells and at the same time should show high cytotoxicity
toward cancer cells. It was shown that the survival rate of children with acute lymphoblastic
leukemia (ALL) is greater for the evening schedule than for the morning one [92|. The cli-
nical relevance of the chronotherapy principle was tested in large population of patient with
metastatic colorectal cancer [63, 64, 77|. Significant improvements in tolerability and anti-
cancer efficacy were demonstrated in men, since women still displayed significantly toxicities.
It means that the response of patients to chronotherapy can be heterogeneous and protocol
should be personalized to each patient or to subgroups of patients. Mathematical modeling
is a good additional utility for that kind of research [9, 10].

Leukemia modeling. Mathematical modelling of leukemia has attracted much attention
since the beginning of the 1970’s. In 1976, Rubinow and al. [97] proposed mathematical
model of acute myeloid leukemia where population of normal neutrophilic cells and leukemic
myeloblasts was considered as distinct but interacting populations. Dynamics of the number
of cells in each population was described by ordinary differential-difference equations taking
into account the age or maturity of cells. Cells of both population can be in the phase Gy.
Including the phase G was important to control the proliferation rate which depended on
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total number of cells. In the presence of leukemic cells, normal cells were destabilized and
production of normal cells began to turn off. As a result, total population entirely consisted
of leukemic cells and there were no normal cells. Mathematical models of chronic myeloid
leukemia and cancer stem cells was proposed by F. Michor in [73, 74, 75|. Basing on [97]
model Rubinow et al. [98] proposed a mathematical model of chemotherapeutic treatment of
acute myeloid leukemia. In order to model drug-treatment regime all cells, whether normal
or leukemic, which are not in the resting phase GGy, were subdivided into three compartments
G+, S, Go+M according to their phase. It was assumed that 90 % of all cells in the phase S
in the moment of drug administration were killed. It was shown that even small changes in
protocol can have significant effects on the results of treatment. An optimal protocol of drug
administration was proposed. Another mathematical model of acute myeloid leukemia was
suggested in [3]. Populations of normal and leukemic cells were considered in the model. Two
cell population dynamics followed a process of Gompertzian growth. Leukemic cells exhibited
inhibiting effect on the growth of the normal cells. The kinetic equations and steady-state
properties of the model were described. A treatment model was proposed and numerically
simulated. It was shown that aggressive treatment of the disease with heavy doses of drugs
is plausible. Very detailed description of PK/PD model of AML treatment with AraC was
proposed by P. F. Morrison and collaborators in |65, 78|. They introduced the model of drug
distribution and metabolism of AraC in the different parts of the organism and estimated
the pharmacokinetic parameters for L1210 cell line (lymphocytic leukemia cells derived from
mice). In the [65] authors carried out computer simulations of the treatment. A PK/PD
model presented in this thesis is based on these works.

PK/PD modeling. With the development of mathematical modeling of cancer, pharmaco-
kinetic-pharmacodynamic (PK/PD) models have received wide application. Pharmacodyna-
mics is often summarized as the study of what a drug does to the diseased organs and whole
body, whereas pharmacokinetics is the study of what the body does to a drug and provides
a metabolism scheme of drug transformation of its active form. PK/PD approach answers
such important questions as (i) if the right drug has been selected and (ii) if the optimal
dosage regimen has been established.

PK/PD modeling approach developed by Veng-Pedersen and co-workers [30, 117| deals
with stress erythropoiesis. Such approaches are usually centered on parameter estimation
and model fitting to data (statistical approaches). S. Chapel et al. investigated the reticu-
locyte response resulting from phlebotomy-induced erythropoietin (EPO) in adult sheep by
means of PK/PD modeling [30]. This study was extended in the subsequent article [117]
by considering the hemoglobin data to identify the relevant parameters of the cellular ki-
netics of erythropoiesis in acute anemia and showed a good agreement with the observed
data. PK/PD model of the erythropoietic responses to single i.v. and s.c. (subcutaneous)
administration of recombinant human erythropoietin (rHuEPO) in rats was studied in [123].
A two-compartment pharmacokinetic model of rHUEPO involving linear first-order elimina-
tion and Michaelis-Menten saturable kinetics after i.v. administration was used. In order to
describe s.c. administration the absorbtion kinetics is assumed. Proposed pharmacodynamic
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model was based on combination of cell production and loss model and of indirect response
model. Several types of cells were considered among them earliest progenitor cells, which,
in turn, converted to erythroblasts, reticulocytes and red blood cells. Indirect response mo-
del was considered trough stimulation of responses by rHuEPO. In another article of S.
Woo [124], a physiology-based PD model was developed in order to describe progression of
anemia caused by carboplatin in rats. A three-compartment PK model with plasma concen-
tration and amounts of carboplatin in peripheral tissue was presented. The PD model for
carboplatin-induced anemia that include erythroid progenitors, erythroblasts, reticulocytes
and mature red blood cells with taking into account stimulation through EPO concentration
was considered. Such models could give an assess to optimization of erythropoietic treatment
of anemia.

1.3 Summary of the results

This dissertation is devoted to the development of hybrid models of cell population dyna-
mics. It is applied to study hematopoiesis and blood disorders, such as anemia and leukemia.

The thesis contains four chapters. In the first chapter we present the description of the
method developed in this work and model examples of particle dynamics. In the second
chapter, a hybrid model of erythropoiesis is suggested and studied. The third chapter is
devoted to PK/PD modeling of leukemia treatment with AraC. In the last chapter the
passage from a hybrid model to a continuous model in the 1D case is investigated.

1.3.1 Hybrid Method

Cell populations represent complex multi-level systems where different levels (intracellu-
lar, cellular, tissue, organism) interact with each other providing normal functioning of the
whole system. We introduce and study a hybrid model with off-lattice cell dynamics which
describe biological processes different levels.

Cells are considered as discrete objects. They can interact with each other and with the
surrounding medium mechanically and biochemically, they can divide, differentiate and die
due to apoptosis. Cell behavior is determined by intracellular regulatory networks described
by ordinary differential equations and by extracellular bio-chemical substances described by
partial differential equations. Each cell has ability of growing, moving, dividing and exchan-
ging biochemical substances with surrounding medium. We describe motion of each cell by
the displacement of its center by Newton’s second law.

For each particular application intracellular and extracellular regulation should be spe-
cified for each cell type as well as how cell fate (proliferation, differentiation and apoptosis)
depends on regulatory networks. In this thesis the approach discussed above is applied to
multi-scale modelling of normal and leukaemic erythropoiesis.

1D hybrid models. We consider a hybrid model for multi-scale modelling of cells popu-
lation. We start with the 1D case and study three model problems. In the first one, each cell
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can self-renew or die by apoptosis. In the second model, the case where cells self-renew or
differentiate into another type of cells is studied. In the last model, we investigate the case
where cells can divide or be in a quiescent state. Finally, we illustrate application of these
models to bacteria filament.

The fate of each cell in considered models is determined by intracellular and extracellular
regulation. In the first (second) model we suppose that cell division and death (differentia-
tion) are determined by some bio-chemical substances produced by the cells themselves. We
consider the case where there are two such substances, u and v, which influence cell division
and death. We come to the following system of equations :

du

02
= 153 +bic— quu,

(1.1)
2
Ccll—lt) = dgng + bQC — (2.
These equations describe the evolution of the extracellular concentrations u and v with
their diffusion, production terms proportional to the concentration of cells ¢ and with the
degradation term. We consider the no-flux boundary conditions.

Intracellular concentrations u; and v; in the ¢-th cell are described by the equations :

ddqu S k%l)u(x, t) — kél)ui(t) + H;,

(1.2)

% = k?)v(x,t) — kéQ)vi(t) + Ho.

The first term in the right-hand side of the first equation shows that the intracellular concen-
tration u; grows proportionally to the value of the extracellular concentration u(z,t) at the
space point x; where the cell is located. In the first and second studied models the intra-
cellular concentration of u; controls cell division while the concentration of v; controls cell
death (first model) and differentiation (second model).

In the third model we suppose that cells can be either in quiescent state or in cell cycle.
When a cell enters cell cycle, it grows and then divides into two identical to itself cells.
Extracellular regulation is described by system of partial differential equations. Intracellular
regulatory networks is described by system of ordinary differential equations.

For each model pattern formation due to different values of parameters is studied and
discussed. Extension of the first model where cells can either divide or die to 2D case was
carried out.

Bacteria filament growth. The filamentous cyanobacterium Anabaena sp. PCC 7120
represents a chain of cells connected to each other and is a good model to study cell dif-
ferentiation and pattern formation. Due to nitrogen starvation 5-10% of cells differentiate
into heterocytes, cells that fix nitrogen. This process is regulated by different internal and
external signals. The intracellular regulation which determines cell differentiation is shown
in Figure 1.2, [101]. Cell division is initiated by protein FtsZ, cell differentiation starts with
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accumulation of 2-oxoglutorate. DNA-binding protein, HetR, and a diffusible inhibitor pro-
duce by differentiated cells, PatS, play a central role in the decision of cell to differentiate.
We describe this regulation by system of ordinary differential equations :

( du; __
dt Hu

dGi:H

dt g

(1.3)
dhs — MG 4+ RSTR2(E) — kS pi (8 ha(t)

| & = d(pioy — pi) + d(piy1 — pi) + kP hi(t) — B pi(1)

where u; denotes the intracellular concentration of the cell division protein, FtsZ, in the
i-th cell, G; is the concentration of 2-oxoglutarate, h; is the self-enhancing differentiation
regulatory protein HetR, p; is the inhibitor encoded by the gene PatS, which is dependent
on HetR for production. PatS is synthesized in the developing heterocyst and diffuses to the
neighboring vegetative cells. We carry out computer simulation to test the model. Obtained
results qualitatively represent heterocyst development observed in vitro.
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A

F1G. 1.2 — Intracellular regulation of heterocyst differentiation in anabaena.

1.3.2 Erythropoiesis

Erythropoiesis is the process of production and regulation of red blood cells, which oc-
curs in the bone marrow. Different cell populations involved in their production (from the
very immature ones to differentiated ones) are usually kept in a steady state through va-
rious and complex negative feedback controls. Inside the bone marrow, immature red blood
cells proliferate and differentiate within particular structures, called erythroblastic islands.
Erythroblastic island consists of macrophage (white cell) in the center of island, surrounded
by erythroid cells of different maturation stage with more mature cells on the periphery of
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the island, ready to leave the bone marrow and enter the bloodstream. The role of the ma-
crophage as well as the different feedback mechanisms involved in red blood cell production
(erythropoiesis) are not completely understood. Our results bring new information on the
role of the macrophage and the erythroblastic island in the production and regulation of red
blood cells, the macrophage being shown to play a key role in the stability and robustness
of the production process, and will improve our understanding of in vivo erythropoiesis.

A hybrid model of red blood cell production, proposed in this work, considers both me-
chanisms at the intracellular scale (protein regulation, cell fate decision) and at the cell
population scale (cell-cell interactions, influence of feedback controls), and allows to inves-
tigate the role of the central macrophage in normal erythropoiesis. There are number of
intracellular proteins and growth factors that lead the erythroid cell to either proliferation,
differentiation, or death by apoptosis. The regulation scheme can be found in Figure 1.4.
Two intracellular two proteins, Erk and Fas, are supposed to be determinant in this regu-
lation. Erk favors self-renewal, while Fas control differentiation and apoptosis. Competition
between these proteins, considered as the main regulatory network for erythroid progenitor
fate is then described by the following system,

% — (a(Epo,GF) + BEY)(1 — E) — aE — bEF, (1.4)
% = ~(Fp)(1—F)— cEF —dF, (1.5)

where F and F' are Erk and Fas concentrations, functions «(Fpo, GF') and ~v(F}) describe
feedback controls trough considering of extracellular scale [29]. Reticulocytes express Fas-
ligand (F7) on their surfaces, Fas-ligand does not diffuse (at least in the bone marrow). Yet
the expression of Fas-ligand is modeled by short-diffusion and described with the following
reaction-diffusion equations :

oF
a—tL == DFLAFL—f—WFL—O'FLFL, (16)
(1.7)

with a source term depending on the number of reticulocytes W, .

The spatial aspects of erythropoiesis are taken into account. To analyze the role of macro-
phage, two models with different structure of erythroblastic island with and without macro-
phage were investigated (Figure 1.3). In the second model macrophage releases pro-survival
cytokine which diffuse into extracellular matrix,

OGF
ot
with a constant source term Wgp for growth factor concentration. A strong effect of the
central macrophage on the stability of an erythroblastic island is shown while in the ab-
sence of macrophages, erythroblastic islands lose their stability. Investigation of the stress

= DGFAGF + WGF - O’GFGF, (18)
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erythropoiesis model concludes that stability does not decrease responsiveness of the model.
Comparison of modelling with experiments on anemia in mice is carried out.

F1G. 1.3 — Erythroblastic island with and without macrophage. The green cell is a macro-
phage, yellow cells are immature cells (erythroblasts) and blue cells are differentiated cells
(reticulocytes). The green substance is secreted by the macrophage (growth factors) and
the red substance by reticulocytes (Fas-ligand). In each cell, the black area represents the
incompressible part of the cell.

1.3.3 Leukemia

In the fourth chapter we apply developed method to the modeling of Acute Myeloid Leu-
kemia (AML) and its treatment with Ara-C. A pharmacodynamic/pharmacokinetic model of
Ara-C is proposed and used to simulate the treatment. We describe metabolism of Ara-C af-
ter its intravenous introduction in the organism. Inside cells, part of Ara-C is phosphorylated
into its active form, Ara-CTP, which arrests DNA synthesis and induces cell apoptosis. Ara-
C is deaminated into its inactive form Ara-U. Ara-CTP, in turn, can be dephosphorylated
back to Ara-C. We take into account these three reactions in order to model the intracellular
kinetics of Ara-C and Ara-CTP (see Figure 1.5). We describe them by Michaelis-Menten
mechanisms. The phosphorylation rate of Ara-C is described with following equation,

Ty Kaka

Ara-CTP dephosphorylation rate is given by
Vap

alKg,’

a
w;

Tdp =
SRRt
Finally, deamination of Ara-C follows similar kinetics,
o Vda
1 4 Kaa?

w;

Tda
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F1G. 1.4 — Summary of intracellular protein interactions that determine erythroid progenitor
fate, partially adapted from Rubiolo et al. [99].

The kinetics of intracellular Ara-C concentration in the i-th cell is then described by the
following equation,

at Fa(w —wi(t)) = kawi(t) = (1 = Tap + 7aa), (1.9)

where w is the extracellular concentration of Ara-C in the bone marrow, supposed to be
uniformly distributed in the bone marrow.
The balance equation for the intracellular concentration of Ara-CTP is
dwy
o= ko(rp — Tap). (1.10)
Ara-CTP exerts a cytotoxic effect on all dividing cells, arresting DNA synthesis and
inducing apoptosis. Evolution of the quantity of Ara-CTP in DNA is described with the
following equation,

dpi
dt
Above equations and parameters for Ara-C metabolism are derived from Morrison et al. [78].
In order to study pharmacodynamics two populations of cells were considered, normal
cells and leukemic cells. Normal cells are supposed to have a circadian rhythm, that in-
fluences their cell cycle durations, whereas leukemic cells, appart from being characterized
by excessive proliferation and insufficient differentiation and apoptosis, are supposed to es-
cape circadian rhythms. We consider a treatment based on periodic administration of Ara-C,
an anti-cancer agent targeting cells in DNA synthesis. The influence of the period of treat-
ment and of the delivery time on the outcome of the treatment are investigated and stress
the relevance of considering chronotherapeutic treatments to cure leukemia.
Next, we consider a simplified model, which consists of cell dynamics and pharmaco-
kinetics, to reproduce with numerical simulations the number of blasts in blood due to
chemotherapy of acute leukemia.

= kguw?, (1.11)
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F1G. 1.5 — Metabolism of Ara-C, adapted from [78|.

1.3.4 From hybrid to continuous models

Hybrid models are well adapted for numerical simulations of variable biological problems.
However, it is difficult or even impossible to study them analytically. This is why it may be
useful to investigate a possible transition from hybrid models to continuum models.

In the second and fifth chapter we carry out detailed comparison between particle dy-
namics and the corresponding equations of continuum mechanics. In the second chapter we
consider particle flow in 1D case where particles are represented as discrete objects. Their
motion is described by the equation

mi; + pmi; — »  f(hij) =0, (1.12)
J#i

where z; is the coordinate of the i-th particle. Introducing particle velocity v; = &; we obtain
m%—l—umvi—l—Vp:O. (1.13)
Here p is the pressure determined by the force f;; acting between the particles. From this
equation it is clear that particle motion is related to Darcy’s law of fluid motion in porous
medium. We confront particle dynamics model with continuous approach for two different

models : particle flow model and a problem with a point source of particles.

The fifth chapter presents asymptotic analysis of the diffusion-discrete absorption (DDA)
equation. This differential-difference equation describes the steady state diffusion with the
pointwise absorption. Such a model corresponds to a chain of cells (points) absorbing some
substance, between the cells a steady diffusion process takes place. Equation (1.12) with y =0
describes displacement of particles and can be considered as a discrete elasticity equation.
We continualise DDA equation where the small parameter is the distance h between two
neighboring cells (in the equilibrium state). The comparison of the exact solution of the DDA
equation and the solution of the homogenized differential equation shows a good accuracy
of the asymptotic approximation.
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Chapitre 2

Hybrid method and model examples

2.1 Method description

In this thesis we introduce and study a hybrid model with off-lattice cell dynamics. Cells
can interact with each other and with the surrounding medium mechanically and bioche-
mically, they can divide, differentiate and die due to apoptosis. Cell behavior is determined
by intracellular regulatory networks described by ordinary differential equations and by ex-
tracellular bio-chemical substances described by partial differential equations. Each cell has
ability of growing, moving, dividing and exchanging biochemical substances with surrounding
medium.

In order to describe mechanical interaction between cells, we restrict ourselves here to the
simplest model where cells are represented as elastic balls. Consider two elastic balls with
the centers at the points x; and x5 and with the radii, respectively, r; and r5. If the distance
h1o between the centers is less then the sum of the radii, vy 4+ r9, then there is a repulsive
force between them fj» which depends on the distance hio (Figure 2.2 (left)). If a particle
with the center at x; is surrounded by several other particles with the centers at the points
xj, j = 1,...,k, then we consider the pairwise forces f;; assuming that they are independent
of each other. This assumption corresponds to small deformation of the particles. Hence, we
find the total force F; acting on the i-th particle from all other particles, F; = ki fij- The
motion of the particles can now be described as the motion of their centers by Newton’s
second law

mii; + pmi — Y _ f(hi;) =0, (2.1)
J#
where m is the mass of the particle, the second term in the left-hand side describes the
friction by the surrounding medium, the third term is the potential force between cells. We
consider the force between particles in the following form

hij—(ho—h1)’

f--— KM ho—h1<hij<h0 (22)
Y 0, hij = ho ‘
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where h;; is the distance between the particles ¢ and j, ho is the sum of cell radii, K is a
positive parameter, and h; accounts for the compressible part of each cell. This means that
the internal part of the cell is incompressible. It allows us to control compressibility of the
medium. The force between the particles tends to infinity when h;; decreases to hg — 2hy
(Figure 2.1). The force presented by equation (2.2) is considered in this form in the all
applications of the thesis, except for Section 2.2.5 where cells do not have incompressible
part.

-

0 h 2R
X

Fi1G. 2.1 — Force between the cells.

Intracellular regulatory networks for the i-th cell are described by a system of ordinary
differential equations

dt

where wu; is a vector of intracellular concentrations of cell 7, u is a vector of extracellular
concentrations, F' is the vector of reaction rates which should be specified for each particular
application. Intracellular concentrations wu; are supposed to be uniformly distributed inside
the i-th cell. Therefore these functions depend on time ¢ and they are independent of the
space variable x. Values of intracellular concentrations can be different in different cells.
At the same time, they can be influenced by extracellular concentrations u(z;t) taken at
r = x;. As we saw above cell motion is reduced to motion of cell centers. The value of the
extracellular concentration in the right-hand side of equation (2.3) is taken at the center z; of
the i-th cell (see also Figure 2.2). We solve the system of equations (2.3) with finite difference
explicit method or mixed explicit-implicit method. The concentrations of the species in the
extracellular matrix are described by reaction-diffusion equations

= F(u;(t),u(z;,t)), (2.3)

— =D Au+ G(u,c), (24)

where ¢ is the local cell density, G is the rate of consumption or production of different
species by cells, which will be specified for each particular application, D is the extracellular
diffusion rate. Numerical resolution of this equation is based on conventional implicit finite-
difference methods. In 1D case we solve equation (2.4) with Thomas method and in 2D case
with alternative direction method.
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SOORS= =R &

F1G. 2.2 — Schematic representation of the hybrid model. The square grid shows the numerical
mesh to solve reaction-diffusion equations (2.4). Cell centers move according to equations
(2.1). The force f(h;;) between two cells depends on the distance between their centers (left).
Intracellular concentrations u;(t) inside the i-th cell are described by equations (2.3). They
can be influenced by the extracellular concentrations wu(x,t) shown schematically as a blue
field (center). If a cell dies by apoptosis, it is removed from the computational domain. If it
divides, it increases its area. It can remain a circle with a greater (time dependent) radius
or change its shape preserving area after division (right).

We calculate cell concentration ¢ = hg/h;; in one dimensional case as the number of cells
in the interval of the length hg. In the 2D case, a local cell concentration c¢ is computed as
total cell area inside each square of the grid. For simplicity of calculation of cell concentration
we make an assumption that cell is square (see Figure 2.4). If one square grid of numerical
scheme is completely inside of the cell, then concentration is equal

dxdy 1
2
o = 4R

 dady T 4R?

Otherwise, cell concentration is
ITmYm

4R?
2= dxdy
Next, we distribute the concentration between the nodes dividing ¢; and ¢y by 4. Then we
compute the values of the concentration at the nodes of the numerical grid corresponding to
equation (2.4). The value of the concentration at the cell center z = z; is found as a result
of linear interpolation with respect to the surrounding grid nodes (Figure 2.4).

©o-@- %

F1G. 2.3 — Cell division. In each cell, the black area represents the incompressible part of the
cell.

Cells can divide, die by apoptosis or differentiate. Their fate is determined by intracellular
concentrations. In particular, if a concentration of an intracellular protein exceeds some
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critical value, the cell divides, if a concentration of another protein reaches its critical value,
the cell differentiates. These assumptions are simplified but still realistic from the biological
point of view. In the numerical model, if a cell dies by apoptosis, it is removed from the
computational domain. Before a cell divides, it increases its area. It can preserve a circular
shape during its growth or, if we need to compute more precisely the forces acting between the
cells, it can take an oo-shape (Figure 2.2 (right)) specific for cells in the process of division.
In this model we prescribe that cells preserve a circular shape during growth. Mother cell
increases twice the radii before its division and gives birth to two cells side by side with
initial radius. The direction of division could be chosen in different ways depending on the
application of the hybrid model. In this thesis we choose the direction of division randomly
(Figure 2.3), except 1D case.

dx

F1G. 2.4 — The square grid shows the numerical mesh used to solve reaction-diffusion equa-
tions. Concentration at all grid nodes is computed and then the values at the nodes are
interpolated to the cell center # = z; of equation (2.3).

The approach described here represents general framework. For each particular applica-
tion intracellular and extracellular regulation should be specified for each cell type as well as
how cell fate (proliferation, differentiation and apoptosis) depends on regulatory networks.

2.2 Particle dynamics and continuum mechanics

Dissipative particles dynamics is developed as a method of simulation of complex media
[54]. We apply it in order to study biological cell populations taking into account possible
cell division, differentiation and death [20].
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2.2.1 From cells to particle dynamics

Consider two elastic balls with the centers at the points x; and x5 and with the radii,
respectively, 1 and r9. If the distance his between the centers is less than the sum of the
radii, r{ + 19, then there is a repulsive force between them fi, which depends on the distance
his.

If a particle with the center at z; is surrounded by several other particles with the centers
at the points z;, 7 = 1,...,k, then we consider the pairwise forces f;; assuming that they
are independent of each other. This assumption corresponds to small deformation of the
particles. Hence, we find the total force F; acting on the i-th particle from all other particles,

Fi=> fi
J#i
The motion of the particles can now be described as the motion of their centers.

2.2.2 Particles and discrete equations

Consider a system of NV particles in the plane. Denote their coordinates by x4, ..., x,,. Here
x; is a two-component vector. Suppose that all particles have the same mass m and consider
the equation of motion of the i-th particles in the form

# + pmd; + »_ fiy = 0. (2.5)
J#i
The dot denotes the derivative with respect to time, z; is the particle acceleration, x; is its
speed. The second term in the left-hand side of this equation describes dissipation due to
friction, the last term is the sum of forces acting on this particle from all other particles.

The force f;; acting between the particles ¢ and j can be expressed through the potential :
fij = —mVo(|lx — xj|)y=s,. Then

¢i+mi+v<2¢(|x—xj|)> =0, 1,..,N. (2.6)

J#i r=1x;

Consider a square grid with the mesh points Z; and the step dz. Denote by s; the square
with the side 2 dz and the center at the point Z;. Let x;1,...,z; € s;. Let us introduce
velocity and density at the grid points :

k
1 . k
U, = Lijy Pi = 77,
PR

il

where |s;| = 4(6z)? is the area of s;. Then

S 6lle =23 & 3 6l = Tul)pmlsnl ~ Ula),



30

where

Ua) = [ o - pta')da

Taking a sum of equations (2.6) with respect to the points inside s;, we obtain the discrete
equation

d’UZ‘

pi—y T hpivi + pi(VU); =0, (2.7)

where we use the approximation + Zle O(|xj—Tm|) = ¢(|Z; — T |). Averaged equation (2.7)
may not be equivalent to (2.6). Two particles z;, x), € s; with opposite velocities cancel in
(2.7) but not in (2.6). They result in the momentum transfer and can be taken into account
in (2.7) by additional dissipative terms. In numerical simulations, the equivalence of these
equations can be provided if we take an average velocity with respect to some ensembles of
particles.

2.2.3 Continuous model

Consider the continuous analogue of discrete equation (2.7)

dv
P

This equation of motion should be completed by the equation of mass conservation :

+ ppv + p(VU) = 0. (2.8)

dp
% + V.(pv) = 0. (2.9)

We can write equation (2.8) in the form

ov
p(a +0v.Vv) 4+ ppv + Vp —UVp = 0, (2.10)
where p is the pressure, p = pU. This equation is nonlocal because the potential U contain
the integral. Using the Taylor expansion of the density p(z’) around the point x and keeping

the terms up to the second order, we obtain

p(% +v.Vv) + ppv + Vp — KApVp = 0. (2.11)
The pressure in this equation is different in comparison with the previous one but we keep
for it the same notation. This equation does not contain the potential anymore. Therefore,
we cannot express the pressure through it, and we need to complete system (2.9), (2.11) by
an equation of state, p = p(p). In the case p = 0 and K = 0, (2.11) is the Euleur equation
and system (2.9), (2.11) becomes the classical model of gas dynamics.
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2.2.4 Energy

Denote the left hand-side of equation (2.8) by J(z,t). We take a scalar product of this
vector with v and integrate over R? :

1 olv|?
/Jvdx / g;l dx + 2/(pv,V|v|2)dx—i—,u/p|v|2dx+/(pv,VU)dx:

1 d
5 7 (p|v|2+pU)dx+u/plvl2dx~

We use here formal integration by parts, equation (2.9) and the equality

dp d
/—de §£//¢|x—x p(z, t)p(2! t)dedx' = 5% pUdz.

From (2.8) we obtain

dFE
o / plofdz, (2.12)

where F is the sum of the kinetic and potential energy of the system :

1 1
E== 20 + - .
2/,0|’U| da:+2/,0de

It follows from (2.12) that the total energy of the system decreases, its kinetic energy tends
to zero while the potential energy to some constant. Total energy can also be introduced for
the system of particles. Similar to the continuous case, it decreases with time.

2.2.5 1D model of particle flow

In the 1D case, the last term in the left-hand side of the equation (2.11) has the form
Kp'p"” and can be included in the pressure. In the stationary case, neglecting the inertial
terms, we obtain from (2.9), (2.11) :

ppv+p =0, pv=gq, (2.13)
where ¢ is some constant. The force between two spherical particles is considered in the form
ho/h—1
f(h) _ k2 ho/h hO/Q < h <ho, , (2.14)
0 , h > hg

where h is the distance between their centers, k and hq are positive parameters. The force
between the particles tends to infinity when h decreases to hg/2. On the other hand, this
force equals zero if h > hy. Hence, every given particles interacts with at most one other
particle from the left of it and another one from the right.
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FiG. 2.5 — Particle flow in 1D model problem.
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F1G. 2.6 — Particle dynamics (red) and analytical solution (black) for 1D particle flow,
concentration (left) and velocity (right) of particles.

If ¢ = ho/h is the number of particles in the interval of the length hg, ¢ = hgp, then we
obtain from the previous formula the equation of state, p(c) = k(c —1)/(2 — ¢). Together
with (2.13) it allows us to find the function ¢(x). Figure 2.5 shows an example of particle
dynamics simulations, and Figure 2.6 the comparison of numerical simulations of particle
dynamics with the analytical solution. The numerical and analytical curves exactly coincide.

2.2.6 Model problem with a point source of particles
2.2.6.1 1D case

We will study in this section the test case where a 1D interval is filled by cells of two
types, A and B. Cells of the type A divide and after each division produce one cell A and
one cell B. The cells of the type B do not divide. If initially there is a unique cell of the
type A, then it will remain unique and the interval will be filled by cells of the type B. In
the continuous analogue of this model, the cell A is a point source. We will compare the
numerical solution of the cell problem with an analytical solution of the continuous problem.

In the 1D case, the last term in the left-hand side of the equation (2.11) has the form
Kp'p" and can be included in the pressure. Consider the equation

dv
Pt
This equation of motion should be completed by the equation of mass conservation :
d d(pv
dp  O(pv)
dt ox

where J the source of new particles (dividing cell). Let us consider the stationary case. Then
we obtain

+ ppv +p' = 0. (2.15)

= J, (2.16)

pu(pv) +p" =0, (2.17)



2.2. PARTICLE DYNAMICS AND CONTINUUM MECHANICS 33

p'=—nd. (2.18)

Cell division results in the mechanical interactions and the consequence their motion. This
motion changes the position of the dividing cells. Thus, we come to the problem about the
motion of point sources. Consider a 1D example where an analytical solution can be easily
found :

p'=—ad(x —&(t)),0 <z < L,p(0) =p(L) =0 (2.19)

where () is a position of the point source. Let us introduce the function

_ 2(1‘—6)—|—1,1‘<£
po(x)‘{ Se—2)+ 10> ¢

and put p = pg + p1. Then p/ = 0 and

{ p1(0) = —po(0) =—1+%7
pi(L) = —po(L) = =1+ 5(L = ).

(2.20)

We find c
al(f _¢) — %«
piz) = d f) 2o+ (C;_g -1
From (2.15) we obtain,
P&t
1P
Consider when p = 1. The analytical solution of this equation is
L. = L
£(t) = (&(to) — §)€E(t_t0) +3-

F1G. 2.7 — Example of particle dynamics simulation. Dividing cell (type A) is blue (big), not
dividing cells (type B) are red (small).

We carry out the 1D simulation where cells can move along the interval of a fixed length
L. We note that only two nearest particles can interact. We consider the equation of motion
(2.5). The force between two particles is considered in the form

hij—(ho—h1)’

(2.21)
0, hi > ho

KM ho — hq <hij <h07j:i:|:1
Jij =
Here h;; is the distance between the particles ¢ and j, hg is a diameter, hg —2h; is incompres-
sible part of each particle. This means that the distance between the centers of the particles
can not be less than hg — 2h;.
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F1G. 2.8 — Pressure distribution at two consecutive moments of time found analytically (black
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thin line) and numerically (red thick line); = 10 000, hy=0.01, h;= 0.005.
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F1G. 2.9 — Pressure distribution at two consecutive moments of time found analytically (black

thin line) and numerically (red thick line) ; = 20 000, hy=0.01, h;= 0.005.
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We put the dividing particle in the middle of the interval (Figure 2.7A). In the beginning
we keep it fixed. It divides and fills the whole interval by the particles of the type B which
do not divide. Then we detach the dividing particle. It starts moving to the boundary due
to the pressure gradient (Figure 2.7B). Figure 2.8 shows the pressure distribution found
numerically in particle dynamics and analytically. When the value of coefficient K is sufficient
large (Figure 2.8,a,b), that is the medium is weakly compressible, then the numerical and
analytical results are in a good agreement. If the value of coefficient K is smaller then the
difference between numerical and analytical results is more more essential (Figure 2.8,g.h).
With increasing the coefficient of friction p the medium becomes highly compressible and

results of comparison numerical and analytical solution are not in a good agreement (Figure
2.9).

x10°

(a) K=300, a=0.304, ¢(to)=2-10"%, (b) K=200, a=0.476, ¢&'(to)=2-1075,
£(t0)=0.604 £(t0)=0.607

x10°

(c) K=100, a=08, &(to)=2-10"%, (d) K=50, a=1.19, &(ty)=2-1075,
£(t0)—0.606 £(t0)=0.607

F1G. 2.10 — Coordinate of the growing particle as a function of time ; numerical simulations
(upper curve), the analytical solution (lower curve), pu= 20 000, ho=0.01, h;= 0.005.
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In spite of the good agreement for the pressure distribution, there is a big difference in
the speed of the dividing cell found analytically and numerically (Figure 2.22). A possible
explanation can be related to the fact that the analytical solution is found under the quasi-
stationary approximation. It may not be well applicable for particle dynamics because of the
periodic oscillations caused by cell division.

2.2.6.2 2D case

In the 2D model example we consider a square domain with a fixed dividing particle
in its center. This particle produces other spherical particles with a given frequency. The
direction of division, that is the angle of newly born particles with respect to the original
particle is random. Thus we have a point source of particles from the center of the domain.
The corresponding continuous model in the stationary case can be derived from equations

(2.8), (2.9) :

Ap=J(x), z€, p=0, x €I (2.22)

Here J(x) is a Dirac d-function, in the case of a point source, or its approximation.
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F1G. 2.11 — Left : concentration distribution for the discrete (dotted line) and continuous
(smooth line) models along the diagonal of the square computational domain (upper right
corner). Right : the modulus of Vp along the z-direction.

This problem allows us to determine the pressure distribution. We need an equation of
state to find the concentration. If the particles are locally uniformly distributed and form a
square grid, then ¢ = (ho/h)?. Simple computations allow us to find the expression for the
pressure from the expression for the force between two neighboring particles (2.14) :

Ve—1
c) = ky/c .
ple) = kve 5— 7
A similar formula, though quantitatively different, holds if the packing of particles is different.
In particular, it can be hexagonal.

Thus, we can determine the concentration distribution from particle dynamics and from
the equations of continuum mechanics. Their comparison is shown in Figure 2.11.
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2.2.7 Motion of dividing cells

Biological cells can divide and create a cell population around them. Appearance of new
cells creates cell pressure and, as a consequence, their motion. This motion changes the
position of the dividing cells. Thus, we come to the problem about the motion of dividing
cells. From the biological point of view this is related to the distribution of stem cells, which
possess the capacity to self-renew. Figure 2.12 shows the motion of a single dividing cell in
a square filled by non-dividing cells. The dividing cell feels the shortest way to the wall and
moves in this direction.

I {
E 04 J;:M “w"j w"'ﬁh i [
"
s/
02 ww“v"i |
. Mwmyka;j time

F1G. 2.12 — Motion of a dividing particle, distance from the center of the domain (left) and
its trajectory (right). Two curves correspond to two different simulations.

The corresponding continuous problem writes

Ap =45z —&(t), 2€Q, p=0, z €I, §l(t):%pds,

where £(t) is a position of the point source. It is a 2D vector. The integral is taken over a
contour around the point £. Solution of this problem can be sought as p(z,t) = po(z,t) +
aln(b/|z —&(t)]), where py is a regular harmonic function with non-homogeneous boundary
conditions. Then &'(t) = Vpo(£(t),t). Numerical solution of this problem shows the same
qualitative behavior as for particle dynamics. The point source moves to the boundary by
the shortest way. Its speed increases when it approaches the wall.

2.3 1D hybrid models

2.3.1 Cell differentiation and apoptosis

In this section we consider the complete model (2.1)-(2.4). We begin with the 1D model
example where cells can move along the real line. Each cell can divide and die by apoptosis.
After division cell gives two cells identical to itself. We suppose that cell division and death are
determined by some bio-chemical substances produced by the cells themselves. We consider
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the case where there are two such substances, u and v, which influence cell division and
death. We come to the following system of equations :

du

02
o = di5g +bic— quu,

(2.23)

dv
dt

== dg% + bQC — (20.

These equations describe the evolution of the extracellular concentrations u and v with
their diffusion, production terms proportional to the concentration of cells ¢ and with the
degradation term. The equations above are completed by the no-flux boundary conditions.

Intracellular concentrations u; and v; in the i-th cell are described by the equations :

dCZj S kil)u(x, t) — kél)ui(t) + H;,

(2.24)

Do — EPv(a,t) — kPvi(t) + Ho.

The first term in the right-hand side of the first equation shows that the intracellular concen-
tration u; grows proportionally to the value of the extracellular concentration u(x,t) at the
space point x; where the cell is located. These equations contain the degradation terms and
constant production terms, H; and Hs. When a new cell appears, we put the concentrations
u; and v; equal zero.

If the concentration wu; attains some critical value u,, then the cell divides. If v; becomes
equal v,, the cell dies. Consider first the case where k%l) = k?) = k;l) = k;l) = 0. Then u;
and v; are linear functions of time which reach their critical values at some moments of times
t =1, and t = 7,, respectively. If 7, < 7,, then all cells will divide with a given frequency, if
the inequality is opposite, then all cells will die. We notice that if k§2) equals zero, then the
extracellular concentration v does not influence the evolution of v;.

Next, consider the case where k%l) is different from zero. If it is positive, then cells
stimulate proliferation of the surrounding cells, if it is negative, they suppress it. Both cases
can be observed experimentally. We restrict ourselves here by the example of negative kil).
All other coefficients remain zero. Therefore, cells have a fixed life time. If they do not divide
during this time, they die.

We carry out the 1D simulation where cells can move along the real line. Initially, there
are two cells in the middle of the interval. Figure 2.13 shows the evolution of this population
in time. Each blue dot shows one cell. For each moment of time (vertical axis) we observe
the distribution of cell population in space (horizontal axis).

The distribution of u in the extracellular matrix is shown in Figure 2.14. It corresponds to
the simulation shown in Figure 2.13 (e). This cell population spreads in space. The evolution
of u in time corresponds to this propagation.

Dynamics of the cell population in Figure 2.13 (a) can be characterized by two main
properties. First of all, it expands to the left and to the right with approximately constant
speed. Second, the total population consists of relatively small sub-populations. Each of them
starts from a small number of cells. Usually, these are two most right and left cells from the
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F1G. 2.14 — Distribution of u at different moments of time for the values of parameters v, =
1.01, dy = 0.0001, do = 1, by = 0.2, by = 0.1, ¢ = 0.02, g» = 0.0001, k{" = &2 = £{? =0,
kY =107%, H, — 0.1, Hy = 0.01.

previous sub-population. During some time, the sub-population grows, reaches certain size
and disappears giving birth to new sub-populations.

This behavior can be explained as follows. The characteristic time of cell division is less
than of cell death. When the cell sub-population is small, the quantity of u is also small, and
its influence on cell division is not significant. When the sub-population becomes larger, it
slows down cell division because of growth of u. As a result the sub-population disappears.
The outer cells can survive because the level of u there is less.

The geometrical pattern of cell distribution for these values of parameters reminds Ser-
pinsky carpet (Figure 2.13, b), an example of fractal sets. It is obtained from an equilateral
triangle by consecutive removing some of its parts. At the first step, the central triangle is
removed. At the second step, the central part of each remaining triangle is removed and so
on. In the case of cellular pattern, the minimal triangle is determined by the cell size. Since
this patterns grows with time, we can scale it to a triangle of a constant size. In this case,
we obtain a decreasing sequence of removed (white) triangles, as it is the case for Serpinsky
carpet.

The pattern of cell distribution depends on the parameters. Other examples are shown
in Figure 2.13. The cell population in Figure 2.13 (c¢,d) remains bounded, and the pattern is
time periodic. In the simulation shown in Figure 2.13 (a,e,f) the cell population grows with
approximately constant speed.
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2.3.2 Cell division and differentiation

In this model we describe extracellular and intracellular concentrations by equations
(2.23) and (2.24). When v; becomes equal to v, cells differentiate into another type of cells.
The new type of cells do not have the ability to grow and divide. Figure 2.15 presents the
evolution of the cell population depending on the critical value of v.. We begin the simulation
with two cells in the middle of the interval. The cell population starts growing. When it is
small, the quantity of v produced by cells is also small, and its influence on cell division is
not significant. When the population becomes larger, there is more u in the extracellular
matrix. It slows down cell division. As a result, the concentration v; attains the critical value
v, faster than u; reaches u.. Then the cells start to differentiate. When the critical value v,
is small (Figure 2.15, a) all cells finally differentiate into another cell type. If we increase the
critical value v, (Figure 2.15, b), then there is a stationary group of differentiated cells in
the middle of interval. Other differentiated cells periodically appear from the right and from
the left, they move towards the borders of the interval and leave it. In Figure 2.15 (c), the
population of differentiated cells in the middle of the interval becomes larger than before.
There are also other differentiated cells which move to the borders of interval. This regime
is not periodic anymore. Finally, for v, sufficiently large differentiated cells appear only in
the middle of interval. The number of both types of cells is shown in Figure 2.16.

2.3.3 Quiescent state of cells

In this model we suppose that cells can be either in quiescent state (type Q) or in cell
cycle (type A). When a cell enters cell cycle, it grows and then divides into two identical
to itself cells. We specify the model (2.1)-(2.4) in the following way. The equations which
describe the evolution of the concentrations v and v in the extracellular matrix take the
form :

d 9? 1 2
% = digr +bia +bies — quu,

(2.25)

@ = dz% + by + biey — qov.
Here ¢; is the concentration of cells in cell cycle. We suppose that cells in quiescent state do
not produce u and v. Therefore, b¥ = b2 = 0. As before, we consider the no-flux boundary
conditions.

Intracellular regulatory networks for the i-th cell in a cell cycle are described by system
(2.26) of ordinary differential equations

dui — k(e ) — ks u(t) + H,

(2.26)

CZ? — k%v)v(x, t) — kév)vi(t) + H,.

When the value of v; overcomes v,., the cell leaves cell cycle and becomes quiescent. It
changes its type from A to Q. The intracellular concentrations for the i-th cell in a quiescent
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F1G. 2.15 — Evolution of cell population in the case of self-renewal and differentiation. Dif-
ferentiated cells are shown in red; d; = 0.0001, ds = 1, by = 0.2, by = 0.1, ¢ = 0.02,
¢ = 0.0001, &V = —3.1073, kY = kP = kP =0, H; = 0.1, H, = 0.01.
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F1G. 2.16 — Number of cells. Summarized number of differentiated cells and cells in division
are shown in red (dash-dot curve) and blue (dash curve), respectively. Blue solid curve
represents the total number of cells; d; = 0.0001, dy = 1, by = 0.2, by = 0.1, ¢; = 0.02,
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state is described by the equation :

dp;

dt
When p; reaches the critical value p., the cell enters again cell cycle. Figure 2.17 presents
three examples of this simulation. We observe that cells periodically enter and leave cell
cycle. With decreasing the value of k§p ) there are less cells in quiescent state.

= kP u(x, t) — kP pi(t) + H,,. (2.27)

2.4 2D modelling.

2.4.1 Cell differentiation and apoptosis.

We illustrate 2D simulation with one of the models considered in the previous section
where cells can either self-renew or die. Evolution of extracellular and intracellular concentra-
tions is described by systems (2.23)-(2.24) where 1D diffusion is replaced by the 2D Laplace
operator.

We start simulation with a single cell at the center of a square domain. Cells grow, divide
and die resulting in the emergence of various patterns which can be radially symmetric,
asymmetric or even chaotic depending on the value of parameters. Four examples are shown
in Figure 2.18.

2.4.2 Modelling of tumor growth

In this section we consider the complete model (2.1)-(2.4) assuming that w is a scalar
variable. It describes the concentration of nutrients which diffuse from the boundary of the
domain and which are consumed by cells inside the domain. We consider the equation

ou
5= D Au — kcu, (2.28)

where c is cell concentration and k is a positive parameter. The rate of nutrient consumption
is proportional to the product of the concentrations. The form of the domain and of the
boundary conditions will be specified below.

Next, we consider the scalar intracellular variable u; where the subscript ¢ corresponds
to the cell number. It is described by the equation

dui
dt

The first term in the right-hand side of this equation shows that the intracellular concen-
tration u; grows proportionally to the value of the extracellular concentration u(z,t) at the
space point x; where the cell is located. The second term describes consumption or destruc-
tion of w; inside the cell. We suppose that the cell radius r; grows proportionally to the
increase of u; :
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F1G. 2.18 — 2D simulations in the case of cell self-renewal and apoptosis; snapshots of cell
populations. Hy = 0.1, Hy = 0.01, b; = 0.2, by = 0.1, k¥ = k! = 0, d; = 0.0001.
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F1G. 2.19 — Consecutive moments of tumor growth. It starts with a single cell at the center
of the circle. Living cells are shown in red, dead cells in black. 2D grey surface shows the
level of nutrients.

% = max (%, O) . (2.30)

The initial value of the radius for each new cell is ry, the maximal radius r,,. When it is
reached, the cell divides. If the cell does not divide before its maximal age, then it dies. The
maximal cell age is a parameter of the problem.

Consider a circular domain 2 and complete equation (2.28) by the boundary condition
u = 1 at the boundary 0€2. We put a single cell in the center of the domain and begin nume-
rical solution of system (2.28)-(2.30). The results of the simulations are shown in Figure 2.19
for several consecutive moments of time. The grey 2D surface shows the spatial distribution
of the concentration w(z,t). In the beginning it equals 1 everywhere in the domain. The
constants ky and ko, k1 > ko are chosen in such a way that the intracellular concentration wu;
growth. Consequently, the radius of the cell also grows and after some time the cell divides.
The new cells also consume nutrients, grow and divide. The part of the domain filled by cells
forms a disk while the concentration u(x,t) decreases in the center of the domain (second
figure in the upper row). Hence, the right-hand side of equation (2.30) also decreases, the
intracellular concentration stops growing or even decreases, and cells cannot divide before
their maximal age 7. As a result, they die and form the black region in the center. Living
cells shown in red form a narrow external layer. The region filled by cells grows in time and
finally approaches to the boundary of the domain.

Dynamics of the cell population can be more complex if we decrease the maximal life
time 7. Cells now have less time to accumulate enough nutrients for division. In this case,
even a small decrease in nutrient concentration can become crucial from the point of view
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F1G. 2.20 — Consecutive moments of tumor growth. If the life time of cells is short, they
become more sensitive to the lack of nutrient. The region filled by cells loses its radial
symmetry.
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Fia. 2.21 — Living cells are shown in red. Dead cells are removed from the computational
domain. The narrow region filled by cells is less stable and propagates with a smaller speed
than in the presence of dead cells inside.
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of the choice between proliferation and apoptosis. In the beginning cells form, as before,
a circular region with living cells outside and the core formed by dead cells. The layer of
living cells is narrower than in the previous example. Rather rapidly the layer of living cells
becomes disconnected (Figure 2.20, third in the upper row). After that the domain loses its
radial symmetry which can be related to an instability with a certain wavenumber. Further
growth of the region filled by cells makes the outgrowing parts more pronounced and this
region less regular. Finally it reaches the boundary of the domain.

If dead cells are removed from the computational domain, then living cells can form a
growing annulus or, when this regime becomes unstable, some narrow region filled by living
cells and propagating from the center to the boundary of the domain (Figure 2.21).

2.5 Modelling of Pattern Formation in Bacteria Filament

Filament of bacteria represents a chain of cells connected to each other. They can divide
producing identical cells. When the cells in the filament lack nitrogen, some of them diffe-
rentiate, some other remain in their original form. Differentiated cells do not divide. They
are located periodically in the filament being separated by a given number of undifferen-
tiated cells. In the case of anabaena filament, the intracellular regulation which determines
cell differentiation is shown in Figure 2.22, [101]. One of the earliest steps of heterocyst
differentiation is the accumulation of 2-oxoglutarate (2-OG), which constitutes a signal of
nitrogen starvation. It initiates production of the protein HetR which plays a key role in
this regulation. First of all, its amplifies its own production. Next, it initiates production
of the protein PatS. Finally, when the concentration of HetR becomes sufficiently high, the
cell differentiates into heterocyst. On the other hand, PatS suppresses HetR and, as a conse-
quence, cell differentiation. Moreover, PatS can diffuse between the neighboring cells. This
competition between HetR and PatS is supposed to determine the pattern of differentiated
cells. We emphasize that if a cell differentiates, then PatS prevents differentiation of the
neighboring cells but not of the cell itself. So the proposed mechanism should capture this
property of the system.

The intracellular concentrations are described by the following system of equations :

( du; __
dt Hu
dG;
dt Hg

, , . (2.31)
dhs — MG () + kP R2(E) — kP ps()ha(t)

| L= d(piy — pi) + d(pi1 — pi) + B () — K pi(t)

where u; denotes the intracellular concentration of the cell division protein, FtsZ, in the
i-th cell, G; is the concentration of 2-oxoglutarate, h; is the self-enhancing differentiation
regulatory protein HetR, p; is the inhibitor encoded by the gene PatS, which is dependent
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F1G. 2.22 — Intracellular regulation of heterocyst differentiation in anabaena.

on HetR for production. PatS is synthesized in the developing heterocyst and diffuses to the
neighboring vegetative cells.

Since the right-hand side in the equation for wu; is constant, then w; = H,t. If this
concentration reaches a critical value wu,, the cell divides. The time of cell proliferation is
7, = u./H,. During this time, cell grows linearly and becomes twice bigger when its age
equals 7,. The daughter cells are twice as small as the mother cell.

. . time = 55.4

time = 92.8

time = 104.8
time = 122.2
time = 136

time = 148.8

time = 156.3

F1aG. 2.23 — Anabaena growth. Differentiated cells are red, undifferentiated yellow. The black
circle inside cells shows their incompressible part.

Cell differentiation occurs if the concentration of h; equals some critical value h.. The-
refore, the choice between cell division and differentiation depends on what critical value
is reached first. The rate of production of h; depends on Gj;, on h; itself with quadratic
self-acceleration and on p; which downregulates it. The right-hand side of the equation for
p; contains the flux terms from the surrounding cells which are similar to the discretized
diffusion equation, the production term proportional to h; and the degradation term. After
differentiation, the cell does not grow anymore, it cannot divide and it keeps a constant level
of p;.

We need to specify the initial values of the concentrations in a new cell. When a cell
divides, the initial conditions in the daughter cells are as follows :
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F1G. 2.24 — Concentrations of HetR (left) and of PatS (right) along the filament. Minima of
HetR and maxima of PatS correspond to differentiated cells.

m

wilte) = 0, Gi(te) = Go, hi(te) = 0, pilto) = %‘ (2.32)

where p" quantity of PatS in the mother cell. Hence the initial concentrations of FtsZ
and HetR are zero, 2-OG takes on some constant given value, and PatS equals half of
the concentration in the mother cell. The latter is important for the pattern of heterocyst
differentiation. Indeed, if a cell is located sufficiently close to a differentiated cell, then the
concentration of PatS in it is sufficiently high. When it divides, the concentration of PatS in
the daughter cell, though two times less, can be sufficient to keep the level of HetR less than
the critical level. If the mother cell is located far from differentiated cells, then the initial
concentration of PatS in the daughter cell is close to zero, and it cannot prevent growth of
HetR up to the critical value which determines differentiation.

An example of numerical simulations is shown in Figure 2.23. We begin with 5 cells,
one differentiated cell in the center and two undifferentiated cells from each side. It is also
possible to begin with all undifferentiated cells. In this case we need to introduce random
perturbations in the production terms for HetR in order to give an advantage to one of
the cells to differentiate. Otherwise, if all cells are initially identical, then they will remain
identical. Hence, we need to introduce some asymmetry either in initial conditions or in the
equations.

Undifferentiated cells begin to grow, then they divide. For t = 92.8, the most left and
the most right cells differentiate. Undifferentiated cells in between divide once again and
after some time a cell at the center of the subpopulation of undifferentiated cells becomes
differentiated. The process of growth, division and differentiation continues in the same
manner. The number of undifferentiated cells between two nearest differentiated cells is not
exactly constant because of the parity due to division. Let us explain this in more detail.
At t = 92.8 there are 7 undifferentiated cells from each side. After division, there are 14 of
them. A new differentiated cell splits them into two groups of 7 and 6 cells. After the next
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division, there are 14 and 12 cells. The next differentiation will produce the groups of 7, 6,
6, and 5 cells. Hence, after each cycle, there is a group of undifferentiated cells smaller than
previously. At some point, there will be a group small enough such that it will not give a
differentiated cell. Then the cells in this group will divide producing a group of cells twice
larger.

Figure 2.24 shows the concentrations of HetR and PatS along the filament at t = 104.8 (cf.
Figure 2.23). The minima of HetR and the maxima of PatS correspond to the differentiated
cells. Cells differentiate if the value of HetR is sufficiently high. The values of HetR at the
boundary cells is still high because these cells have just differentiated.
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Chapitre 3

Hybrid modeling of erythropoiesis

In this part of the work we use a hybrid model to take into account both intracellular and
extracellular regulation of erythropoiesis, but also mainly to study the importance of spatial
structure of erythroblastic islands in the regulation of erythropoiesis. To our knowledge, this
is the first attempt to model erythropoiesis by taking these aspects into account. We focus in
particular on the role of the macrophage, by analyzing different situations, with and without
macrophage at the center of the island, and actions of the feedback controls, especially
regarding the feedback of the macrophage on erythroid cell proliferation and differentiation.
The ‘classical’ structure of the erythroblastic island, with the macrophage at the center and
immature erythroid cells surrounding it, will be shown to make the hybrid model stable (so
the island can be sustained for an unlimited number of cell cycles) and robust to perturbations
due to global and local feedback controls. Following the perturbation, such as an induced
anemia, the return to a healthy organism as soon as in experimental data in mice is observed.
The hybrid model displays interesting properties to reproduce erythropoiesis in normal and
stress situations, considering spatial aspects of this process.

To present multiscale hybrid model, first, we focus on the intracellular scale, detailing
regulatory networks considered in this thesis, described by nonlinear ordinary differential
equations, and investigating their properties, in particular regarding the existence and sta-
bility of steady states associated to cell self-renewal, differentiation and death by apoptosis.
Second, we concentrate on the extracellular scale, which consists in erythroid cell popula-
tions, possibly a macrophage, bone marrow medium, and is described by a computational
model. Interactions between cells and with the surrounding medium are presented. Finally,
we justify the coupling of both scales, through global and local feedback controls, and we
discuss parameters of the model. In Section 3.2 we present the analysis of the hybrid model.
This analysis consists of two parts : first, we consider an erythroblastic island without a
macrophage in its center, and investigate the stability of the island and the roles of feed-
back controls in the stability. Next we study an island consisting of immature erythroid cells
surrounding a macrophage, and the roles of feedback controls in its stability. This analysis
concludes to the central role of the macrophage in the stability of the erythroblastic island,
and consequently of the relevance of considering spatial aspects when modeling erythropoie-
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sis. Finally, we confront the results of modelling with experiments on anemia in mice.

3.1 Model

We introduce, in this section, the hybrid model for erythropoiesis used later for in silico
experiments. It consists in the coupling of two models, with different space and time scales.
The first model describes intracellular dynamics, represented by regulatory networks based
on specific protein competition. This intracellular dynamical level can be easily modeled
with a continuous approach, namely ordinary differential equations (ODEs) and/or partial
differential equations (PDEs). The second model is at cell population level, where discrete
cells and events are computed, so that stochasticity due to random events (cell cycle duration,
orientation of the mitotic spindle at division) and small population effects plays an important
role. Extracellular regulation by growth factors is partially due to continuous models (PDEs).
Such discrete-continuous models are usually called hybrid models [19, 51, 83, 88, 90, 102, 111].
We hereafter present how the model is defined at each scale and how the different levels
interact.

3.1.1 Intracellular Scale : Mathematical Model

The intracellular scale describes how each erythroid progenitor cell chooses between self-
renewal, differentiation and apoptosis. This choice depends on the level of expression of some
proteins, involved in a regulatory network.

Ordinary differential equations are used to describe a simplified regulatory network, based
on two competing proteins, Erk and Fas. Concentrations of the proteins evolve according to
protein-related mechanisms as well as extracellular factor concentrations. A brief analysis of
the dynamics of the system (3.1)—(3.2) is performed in order to identify key factors in cell
fate choice.

3.1.1.1 ODE System

Precise intracellular regulatory mechanisms involved in erythroid progenitor cell fate
are largely unknown. Based on the current knowledge, we decided to focus on a simplified
regulatory network based on two proteins, Erk and Fas, responsible respectively for cell
self-renewal and proliferation and cell differentiation and apoptosis (28, 37, 79, 99]. These
proteins are antagonists : they inhibit each other’s expression. They are also subject to
external regulation, through feedback loops.

One of these feedback loops is based upon the population of reticulocytes (differentiated
erythroid cells). They produce Fas-ligand which is fixed to their exterior cell membrane.
Fas-ligand activates Fas, a transmembrane protein, and influences progenitor differentiation
and apoptosis. Another feedback control is related to erythrocytes in bloodstream. Their
quantity determines the release of erythropoietin and other hormones, called growth fac-
tors. Erythropoietin is known to inhibit erythroid progenitor apoptosis [60] and to stimulate
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immature erythroid progenitor self-renewal [99, 112]. Other hormones, like glucocorticoids
[14, 45, 46, 84], also increase erythroid progenitor self-renewal by activating Erk.

The simplified system of Erk-Fas interactions considered as the main regulatory network
for erythroid progenitor fate is then [29]

dE;

T (a(Epo, GF) + BEF)(1 — E;) — aFE; — bE; F}, (3.1)
dF,
= W(FL)(1— F) — ¢EF, — dF, (3.2)

where F; and F; denote intracellular normalized levels of Erk and Fas, respectively, in the
i-th cell (numbering of cells is related to the discrete off-lattice model). Intracellular concen-
tration FE; and F; are supposed to be uniform inside the i-th cell. They depend on time
and independent of space. Their values can be different in different cells. Equation (3.1)
describes how Erk level evolves toward maximal value 1 by activation through hormones
(function « of erythropoeitin, denoted by Epo, and other growth factors, denoted by GF')
and self-activation (parameters 3 and k). In the meantime, Erk is linearly degraded with a
rate a and is inhibited by Fas with a rate bF'. Erythropoietin concentration depends only on
time.

Equation (3.2) is very similar, only there is no proof for Fas self-activation. Fas is however
activitated by Fas-ligand extracellular concentration, denoted by Fp, through the function
Y(FL), it is degraded with a rate d and inhibited by Erk with a rate cE. Fas-ligand concen-
tration depends on time and space.

This model simply describes a competition between two proteins (Erk and Fas) through
cross-inhibition, self-activation (only for Erk), and activation by extracellular proteins.

In order to explore the parameter space efficiently and observe the possible behaviors of
the cell, it is relevant to study the mathematical interpretation of parameters.

3.1.1.2 Brief Analysis : Existence and Stability of Steady States

For fixed values of Epo, GF and FJ, (3.1)-(3.2) is a closed system of ordinary differential
equations. In order to analyze the impact of each parameter on the system’s behavior, we
can derive analytical forms of the zero-lines associated with each equation. The zero-line f
associated with equation (3.1) is

1
J(B) =5 (5= BE 1= B) - (a+0a)). (3.3)
The zero-line g associated with equation (3.2) is
7
d
e E
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The shape of the zero-lines depends only on 4 and 2 parameters respectively (a/b, (/b,
k and a/b for f, v/c and d/c for g), the 2 remaining parameters (b and ¢, related to cross-
inhibition) only affecting the absolute and relative speeds of the dynamics along each dimen-
sion. The existence of steady states, defined as intersections of the two zero-lines, thus only
depends on the former 6 parameters.

Let us stress out that a represents the influence of external factors (erythropoietin, growth
factors) on Erk activation, [ is related to Erk self-activation, and v describes the influence
of Fas-ligand on Fas activation.

By considering that f can be separated in 3 components, the impact of each parameter
can easily be observed. The same can be done for g. Figure 3.1 shows that the variations of
the zero-lines are quite constrained, with a central role of o and [ for f and v for g. This
will be studied in further detail in the following.
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F1G. 3.1 — Zero-lines f and g defined in (3.3) and (3.4). Left panel : the f zero-line (straight
red line) and the impact of parameters of equation (3.1). Right panel : the g zero-line (straight
green line) and the impact of parameters of equation (3.2).

One may note that the effect of k£ is not shown here, since £ = 2 in all experiments. It is
however noticeable that increasing k simply decreases the maximum value of the polynomial
part of f toward 0 while increasing the value for which it is reached toward 1.

Simple considerations show that the zero-lines can only cross in the [0, 1] x [0, 1] domain.
Furthermore, they intersect at least once, so there is at least one steady state, and there can
be only up to three steady states. When there is only one steady state, it is stable. When
there are three steady states, the central point is unstable and the two surrounding points
are stable [29]. The case with two steady states is singular so it is not really relevant.

Hence, the system exists in two configurations that we will call monostable (one stable
state) and bistable (two stable states). The next step is to determine how the system can
go from one state to the other one. Thanks to Figure 3.2, two kind of bifurcations can be
imagined to achieve this goal.

Let first start with the case where [ is large compared to «, this means Erk self-activation
rate is stronger than external activators (Epo for instance). In this case, f has two local
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F1G. 3.2 — Three possible and characteristic configurations of the system (3.3)—(3.4). The
red line represents the f zero-line, the green line the g zero-line. Arrows indicate directions
of the solutions of system (3.1)—(3.2) in the (Erk,Fas) phase plane. A : Low value of «, low
value of 7. B : Low value of «, medium value of v (the black curve is the separatrix). C :
High value of a compared to (3.



60

extrema (Figure 3.2.A). If 7, which is associated with Fas-ligand, varies then a double saddle-
point bifurcation (or fold bifurcation) occurs. For low and high values of Fas-ligand (that
is low and high values of v, respectively), there is only one stable steady state, whereas for
medium values of Fas ligand two stable points coexist, a separatrix determining the attractive
domain of each point (Figure 3.2.B).

Now consider the case where « is large compared to 3. Then f becomes strictly decreasing
and, if « is sufficiently large, there will be only one steady state for every value of 7. The
system is thus strictly monostable (Figure 3.2.C).

Finally, the system (3.3)—(3.4) exists in two different cases : when « is low it is locally
bistable, depending on the value of v, and when « is high, it is strictly monostable. A kind of
fork bifurcation occurs when « increases (approximately around a = [3/27, but exact value
depends on other parameters and is quite difficult to obtain).

3.1.1.3 Dynamics of the ODE System

Let us focus on the possible dynamics of the system (3.1)—(3.2). This system must be
able to divide the erythroid progenitor cell population into 3 different types : self-renewing,
apoptotic and differentiating cells. Differentiation corresponds to low values of Fas and Erk
at the end of the cycle, apoptosis to high values of Fas and self-renewal to high values of Erk
and reasonable values of Fas.

A simple idea to achieve such a behavior is to introduce two threshold values. The first
one, F,., induces apoptosis when reached. The second one, E,,, determines the choice between
self-renewal and differentiation for cells reaching the end of their cycle. So the phase plane
of system (3.1)-(3.2) can be divided in three parts : cells having low Erk and Fas values
differentiate at the end of their cycle, cells having Erk values greater than FE.. self-renew
at the end of their cycle and cells reaching Fas values greater than F,.,. die immediately by
apoptosis.

In order to get three robust cell subpopulations, it is necessary to determine how to cor-
rectly place these thresholds. Therefore, cases where the system is either strictly monostable
or locally bistable have to be considered.

Let us recall that the position of the f zero-line strongly depends on parameters o and f3,
whereas the position of the g zero-line strongly depends on the parameter ~. Since  denotes
the self-activation rate of Erk and « represents a feedback control by global factors (this
will be developed later in Section 3.2), then all erythroid progenitor cells will obey the same
evolution rule for Erk. On the contrary, v represents a feedback control by a local factor
(Fas-ligand emitted by reticulocytes and acting at short-range, see Section 3.1.2) so all cell
positions on the phase-plane will depend on their own exposition to Fas-ligand.

If the system is strictly monostable, then, independently from its starting position in the
(E, F)-plane, a cell will converge toward a unique stable state, located on the f zero-line
and defined only by its exposition to Fas-ligand (the value of 7). So, at steady-state, if cells
are exposed to a continuum of Fas-ligand values, they will be continuously located along
the f zero-line, and their level of Erk will not change : there is no real subpopulation. It is
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thus quite inefficient to work at steady-state (lack of robustness) to get three subpopulations
corresponding to the three possible cell fates.

On the contrary, if the system is locally bistable, cells will still be asymptotically located
along the f zero-line, yet a part of it is unstable (roughly speaking the ascending part, see
Figure 3.1) so cells will be separated into two subpopulations. In this case, the starting point
is important : depending on where it is compared to the separatrix in the bistable domain,
a cell will converge either toward the upper or the lower stable branch of f.

Based on these observations, we considered two different initial conditions and dynamics
to get the three subpopulations.

The first idea is that, if working at steady-state does not allow to obtain distinct subpo-
pulations, then working out of steady-state may be relevant. Consequently, in a first scenario
called the ‘out of equilibrium case’, all cells are arbitrarily put at the origin (that is £ =0
and F' = 0) at the beginning of their cycle (see Figure 3.3, left) and, before they have reached
steady-state, they are forced to take a decision based on Erk and Fas levels.

OO 80
-0 ®-0

"Out of equilibrium’ "Hysteresis cycle'
scenario scenario

F1G. 3.3 — Schematic representation of the two scenarii considered for distribution of Erk
and Fas quantities at cell division. The left panel illustrates the ‘out of equilibrium’ case,
the right panel the ‘hysteresis cycle’ case. In the ‘out of equilibrium’ scenario a cell with a
level X = (B, F) of Erk and Fas at mitosis gives birth to two daughter cells with no Erk
and no Fas ((E, F) = (0,0)). These cells will in turn reach different levels of Erk and Fas
at the end of their own cell cycles (provided that they do not die), denoted by Y and Z. In
the ‘hysteresis cycle’ scenario, a cell with a level X = (F, F') of Erk and Fas produces two
daughter cells with levels X/2 = (F/2, F'/2) which will reach a priori different levels of Erk
and Fas at the end of their own cell cycle, due to stochasticity and response to signaling.

In the case where the system is strictly monostable, this solution is nevertheless not satis-
factory (no subpopulation appears because cells remain very close to each other). However,
when the system is locally bistable, cells will converge either toward the lower stable branch
or the upper stable branch of the f zero-line. For a given value of Fas-ligand, the separatrix
will cut the origin, so there is a clear threshold between the two states. Even if there is still



62

a continuum of cells on the phase plane for continuous values of exposition to Fas-ligand,
two denser groups appear. In fact, cells exposed to high Fas-ligand values quickly converge
toward the top, cells exposed to low Fas-ligand values toward the bottom-right and those
exposed to medium values remain trapped near the origin in a ‘slow’ zone around the sepa-
ratrix. The latter cells keep low Erk and Fas values, so by introducing the thresholds, three
subpopulations are easily obtained (Figure 3.4).
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F1G. 3.4 — Hlustration of the ‘out of equilibrium’ hypothesis. All daughter cells are initially
placed at the origin of the (Erk,Fas) plane and, depending on the external Fas-ligand va-
lue, try to escape the default differentiation zone (bottom left area) into apoptosis (above
the dashed F,, line) or self-renewal zone (bottom right area) before the end of their cycle.
Trajectories from the origin are illustrated by the straight blue curve. A : Low exposure to
Fas-ligand leads to self-renewal. B : Medium exposure to Fas-ligand leads to differentiation.
C : High exposure to Fas-ligand leads to apoptosis.

The second idea is that working at steady-state is more robust. When the system is lo-
cally bistable, one notices that cells on the lower stable branch are those which will self-renew
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(high values of Erk, reasonable values of Fas). If quantities of Erk and Fas are equally divided
between the two daughter cells at birth, those exposed to medium values of Fas-ligand will ap-
pear near the separatrix and be divided between the upper branch (differentiation/apoptosis)
and the lower branch (self-renewal). We thus have a system where cells rapidly take the de-
cision between self-renewal or differentiation/apoptosis. Once the decision is made, cells are
trapped on a hysteresis cycle controlled by Fas-ligand, so the decision is hardly reversible.
Fas values have to become very high in order to get from the lower branch to the upper
branch and conversely, very low in the opposite direction (Figure 3.5).
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F1a. 3.5 — The ‘hysteresis cycle’ scenario. Daughter cells initially inherit half of their mother’s
protein level, ‘choose’ one of the stable branches depending on their exposition to Fas-ligand,
and then move on these branches which form an hysteresis cycle, making the decision hardly
reversible. Shown with yellow circles are the two possible positions for newborn cells exposed
to exactly the same value of Fas-ligand on the hysteresis cycle. One can see how the initial
choice is important : cells whose mother had low Fas values will be located on the lower
branch, those whose mother had sufficiently high Fas values will switch to the upper branch.

For this solution, called ‘hysteresis cycle case’, introducing thresholds in order to deter-
mine cell fate is quite simple. The Erk threshold can be situated anywhere between the two
branches and the Fas threshold somewhere on the upper branch, cutting into two the cells
on this branch and so easily controlling the differentiation/apoptosis ratio.

The ‘out of equilibrium’ and the ‘hysteresis cycle’ scenarii are schematically described in
Figure 3.3.

3.1.1.4 Feedback Control Role

A key point in system (3.1)—(3.2) is how it reacts to feedback controls. The analysis
performed in the previous subsections dealt with the influence of each parameter on the
system dynamics, mainly parameters related to feedback controls (o and ). Let now study
how parameters are affected by feedback controls. Erythropoietin (through function «) is
expected to decrease apoptosis and enhance self-renewal /differentiation. We also know that,
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at a smaller space scale, Fas-ligand induces apoptosis (through function 7) and other growth
factors, on the opposite, stimulate self-renewal (through the function «).

In order to validate possible dynamics, the effect of each factor must be checked in both
cases, the ‘out of equilibrium’ and the ‘hysteresis cycle’ scenarii.

The control exerted by Fas-ligand, which increases the value of Fas reached at steady-
state, has already been largely discussed. Simply by existence of the threshold F,,, Fas-ligand
plays the expected role. Fas-ligand is linked to the parameter ~, which is actually a function
of FL.

Epo is known to have a direct action on apoptosis [60], independent of Erk pathway
[30, 80, 114|. Therefore, a simple idea is to increase F,, with the level of Epo. This clearly
reduces apoptosis in favor of differentiation and self-renewal. However, it is also known
that Epo, and other growth factors, activate Erk. So erythropoietin and growth factors are
supposed to influence the variations of «. It is noticeable that at a local scale, many growth
factors are supposed to have similar mechanisms, so «a should in fact be a function of many
global and local growth factors.

The value of a controls the monostable/bistable bifurcation (Figure 3.1). When the sys-
tem is locally bistable, a mainly controls the value of the local minimum of the f zero-line.
In the case where we work out of equilibrium, « changes the position of the separatrix and
of the upper steady states, so when « is increased the separatrix cuts the origin for a higher
value of v(Fy) and cells tend to be displaced toward steady-states with lower values of Fas
and higher values of Erk. In the case where the hysteresis cycle is used, increasing the local
minimum of f reduces the size of the cycle. Cells located on the upper stable branch instantly
‘fall” on the lower stable branch, so self-renewal is immediately enhanced and differentiation
reduced.

The effect of a is not the same in both dynamics, but finally it is clearly possible to
decrease apoptosis in favor of self-renewal /differentiation and the trends for each protein is
roughly what is expected biologically. However, it is still necessary to study whether the
feedback is as efficient as observed experimentally, when the intracellular scale is coupled to
the extracellular one (see Section 3.2).

3.1.2 Extracellular Scale

In the previous section, we focused on the intracellular scale of the hybrid model, based on
a system of ordinary differential equations describing competition between two key proteins,
Erk and Fas. Concentrations of Erk and Fas induce either cell self-renewal, or differentiation,
or death by apoptosis. We now focus on an other layer of the hybrid model, the discrete part,
which describes how cells interact and how they influence intracellular parameters which
depend on extracellular molecules.

In order to describe the evolution of an erythroid cell population, we chose to use an
individual-based model. All cells and their interactions are then numerically computed. The
objective being to represent erythroblastic islands, which have a limited size, such an ap-
proach takes automatically into account small population effects as well as random effects
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(direction of division, cell cycle length).

A population of cells is numerically simulated in a 2D computational domain which is
a rectangle. Each cell is a discrete object, an elastic ball, considered to be circular and
composed of two parts : a compressible part at the border and a hardly compressible part at
the center. All newborn cells have the same radius ry and linearly increase in size until the
end of their cycle, when they reach twice the initial radius. When a cell divides, it gives birth
to two small cells side by side, the direction of division being randomly chosen. The cell cycle
duration is itself variable. From a biological point of view, cell cycle proceeds through Gy /G,
S, G5 and M phases. Duration of the first Go/G; phase and transitions between phases are
controlled by various intracellular and extracellular mechanisms, inducing stochasticity in
cell cycle durations [49, 100]. We assumed the duration of G/G; phase is a random variable
with a uniform distribution in some given interval, other phase durations were supposed to
be constant.

Under the assumption of small deformations, the force acting between cells can be ex-
pressed as a function of the distance between their centers. The force between two particles
with centers at x; and z; is given by a function D(d;;) of the distance d;; between the centers.
This function is zero if the distance is greater than the sum of their radii. To describe the
motion of a particle, one should determine the forces acting on it from all other particles
and possibly from the surrounding medium. The motion of each cell is then described by the
displacement of its center by Newton’s second law :

mi + pmi — > D(di;) =0, (3.5)
J#i
where m is the mass of the particle, the second term in left-hand side describes the friction

by the surrounding medium, the third term is the potential force between cells. The force
between two spherical particles is considered in the form

, dl <d ,
D(dy)={  diy—do+2H 7 (3.6)

0, d;j > dy,

where dj is the sum of cell radii, K is a positive parameter, and H; accounts for the compres-
sible part of each cell. The force between the particles tends to infinity when d;; decreases
to dy — 2H,. On the other hand, this force equals zero if d;; > dp.

Three cell types are computed. First, erythroblasts, which are immature erythroid cells,
also known as erythroid progenitors. They follow the growth rules explained above and their
fate is determined as described in Section 3.1.1. They either self-renew and give two cells
of the same type, or differentiate and give two differentiated cells (reticulocytes), or die by
apoptosis, depending on their exposition to growth factors and Fas-ligand. It is noticeable
that no asymmetric division is considered in this model.

Second, reticulocytes. From a biological point of view, reticulocytes are almost mature red
blood cells that leave the bone marrow and enter the bloodstream after ejecting their nuclei.
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In this individual-based model, they are differentiated cells which stay in the bone marrow
a little while after being produced, and leave the bone marrow (computational domain)
after a time equal to one cell cycle duration. Contrary to erythroblasts, reticulocytes do not
have a choice to make, they only express Fas-ligand, thus influencing the development of
surrounding erythroblasts.

Third, macrophages. They are big white blood cells located at the center of erythroblastic
islands. They very probably have an active role in the development of blood cells surroun-
ding them. In this model, they express growth factors, driving nearby erythroblasts toward
differentiation and self-renewal.

Macrophages express growth factors that are supposed to diffuse in their neighborhood.
Reticulocytes express Fas-ligand on their surfaces which does not diffuse in a real bone mar-
row, yet the expression of Fas-ligand is modeled by short-diffusion. This allows considering
several phenomena that are not taken into account in the hybrid model : first, cell motion in
the bone marrow is actually more important than computed and, second, there are normally
several maturing erythroid subpopulations which increasingly express Fas-ligand, creating a
gradient of exposition. Moreover, cells are not circular in reality and this short-range diffu-
sion compensates their inexact representation. Both Fas-ligand (F7,) and growth factor (GF)
concentration evolutions are described with the following reaction-diffusion equations,

oFy,

W = DFLAFL—f—WFL—O'FLFL, (37)

0GF

W DGFAGF + WGF — O'GFGF, (38)
where Wg, = kp, C,et is a source term depending on the number of reticulocytes (Che

denotes the relative volume of reticulocytes in the computational domain) and Wgp is a
constant source term for growth factor (released by the macrophage) concentration, op, and
ogr are degradation rates, and Dy, and Dgp are diffusion rates. If the diffusion coefficient
Dy, is sufficiently small, then Fas-ligand is concentrated in a small vicinity of reticulocytes.
In this case, Fas-ligand influences erythroid progenitors when they are sufficiently close to
reticulocytes. This is the short-diffusion illustrated in this work.

Figure 3.6 shows an example of erythroblastic island in the hybrid model. The big green
cell in the center is a macrophage, the green substance surrounding it is the above mentio-
ned growth factors released by the macrophage. At the border, blue cells are reticulocytes
emitting Fas-ligand (whose concentration is represented in red). Between them are the ery-
throblasts, growing in size until they die or divide into two new cells, depending on how they
were influenced by the two diffusing proteins.

A fourth cell type, erythrocytes, is considered in this model. Biologically, erythrocytes
are mature reticulocytes, circulating in blood and transporting oxygen to the organs. In
the model, erythrocytes are reticulocytes that have spent a time equal to one cell cycle in
the computational domain and then left it. Hence, erythrocytes are only counted as cells
outside the domain (they are not represented on the computational domain) which act,
through feedback loops, on the fate of immature cells within the domain. We will assimilate



3.1. MODEL 67

F1G. 3.6 — Screenshots of the software program with and without macrophage. The green cell
is a macrophage, yellow cells are immature cells (erythroblasts) and blue cells are differentia-
ted cells (reticulocytes). The green substance is secreted by the macrophage (growth factors)
and the red substance by reticulocytes (Fas-ligand). In each cell, the black area represents
the incompressible part of the cell.

erythrocytes and red blood cells (RBC) in the following, by considering that RBCs are only
erythrocytes (in reality, some reticulocytes usually manage to leave the bone marrow and
enter the bloodstream where they end their maturation, so they are also red blood cells).
Erythrocytes will be supposed to survive (arbitrarily) during a time corresponding to 3 cell
cycle durations (although RBCs do not cycle). This is short, since in mice RBCs have a
lifespan of 40 days, yet it allows performing a first feedback test and it can be changed when
comparing the model to experimental data.

3.1.3 Coupling Both Scales

Now that both modeling scales have been described and a general picture of the model
is accessible, it becomes necessary to detail how the two scales can be linked together.
At the highest level, there is a small erythroblastic island formed with two populations of
developping red blood cells and, optionally, a central macrophage. The island has a particular
topology : the macrophage is at the center, differentiated cells (reticulocytes) at the border
and immature cells in between. Both macrophage and differentiated cells emit growth factors
continuously controlling intracellular protein concentrations : immature cells at the center
are rather exposed to growth factors produced by the macrophage whereas those at the
border are rather exposed to Fas-ligand. In addition, immature cells are subject to a feedback
control mediated by mature red blood cells circulating in the bloodstream, representing the
action of erythropoietin. Concentration of Epo in the computational domain is supposed to
be uniform, so all cells are similarly influenced by Epo. This assumption holds true for all
external substances acting on cells at a global scale, yet other more sophisticated choices are
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possible.

Erythroid progenitors are then exposed to a continuum of erythropoietin Epo, growth
factors GF' and Fas-ligand F7. Regarding the intracellular scale, this means that o and
v take continuous values (see (3.1)—(3.2)). Let us remind that high « drives erythroblasts
to self-renewal, high v to death, and intermediate values to differentiation. Hence, the cell
population scale influences the intracellular scale through Epo, growth factors and Fas-
ligand concentrations, that is through functions a and v and the critical value F,,. of Fas
concentration (Epo increases F,,. in order to inhibit cell apoptosis).

One can notice that when there is no macrophage, there is only one value of « for all
erythroblasts (this value depends on the concentration of Epo which is related to the number
of erythrocytes, and is supposed to be the same for all immature cells), so cells are simply
situated along a unique f zero-line. It is then convenient to investigate how the value of ~
will determine a cell’s choice (see Section 3.1.1.4).

As just mentioned, Epo-mediated feedback control simply corrects the critical value for
apoptosis F,,. and values of o uniformly, so its impact can be easily understood individually
by referring to the analysis in Section 3.1.1.4. However, in order to compute this feedback
control, the number of erythrocytes in blood circulation must be estimated. This is performed
from the reticulocyte population as mentioned at the end of the previous section.

3.2 Results : Stability of Erythroblastic Island and Func-
tion of Central Macrophage

In the previous section, the hybrid model has been presented in details. The applicability
of such a modeling will be investigated in this part. To do so, we focus on finding conditions
(parameter values, that are partially discussed in Appendix 3.3) for the system leading
to stable erythroblastic islands (this means the number of cells in the island stays almost
constant for a certain time when not facing a perturbation), reacting sensibly to global
feedback variables (for example in the case of anemia) and proving to be robust to parameter
values variations.

We begin by investigating the case of one erythroblastic island without macrophage in its
center. The case of the island with a macrophage is then considered to see how the stability
of the island is affected. For these analyses, simple numerical stability and feedback tests
were performed to check the validity of hypotheses.

3.2.1 Erythroblastic Island without Macrophage

Consider an island initially composed of 98 erythroid progenitors and 64 reticulocytes
surrounding them. Parameters are carefully chosen to optimize stability and response to
feedback (see Appendix 3.3).
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3.2.1.1 Stability Analysis

Erythroblastic islands are likely to be stable. Indeed, one can expect that, in order to be
biologically responsive, an island survives for several cell cycles. It is relevant to determine
whether it is mathematically possible to achieve long-lasting stability with the hybrid model
or not.

A wide range of parameters has been tested for the two possible dynamics, that is either
out of equilibrium or with the hysteresis cycle. At first, the best results look like quite similar
(Figure 3.7). In both cases, the island remains approximately stable during some cycles but,
due to stochastic variations (cell cycle duration, orientation of the mitotic spindle at division,
small size populations), it suddenly dies out or excessively proliferates (it must be noticed
that saturation is only due to space limitations). Two questions arise from this fact : why
does the system behave this way and is it still biologically relevant ?
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F1G. 3.7 — Illustration of the fate of the most stable erythroblastic islands in the absence of
macrophage. Results were obtained out of equilibrium (left) and using the hysteresis cycle
(right). Green lines represent the number of erythroblasts, blue lines reticulocytes, red lines
estimation of circulating red blood cells produced by the island (thick lines are medians, thin
lines quartiles over 40 simulations). Observed saturation is only due to space limitation.

Let’s focus first on the mechanisms leading to an island’s stability. In the simulations,
during each cycle there is a turnover of reticulocytes, in order to replace those which entered
bloodstream. These reticulocytes then induce apoptosis and differentiation in the erythro-
blast population. Within this population, in order to remain stable, the proportion of self-
renewing erythroblasts has to be constant. From a geometrical point of view, self-renewing
erythroblasts are located at the center of the erythroblastic island, differentiating and dying
erythroblasts at the border (Figure 3.6). When a random variation occurs in the size of the
island, the amount of the differentiating and dying cells varies like the perimeter of the circle
(occupied by reticulocytes which act at constant range), while the amount of self-renewing
cells varies like the area of the circle. As a result, the ratio ‘differentiating and dying cells’
over ‘self-renewing cells” does not remain constant. When it derives too far from the initial
value, one subpopulation rapidly overgrows the other.
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It appears then that it is impossible to find parameter values for which an island would
remain at steady-state on a long term. However, this does not imply that results are bio-
logically irrelevant. The fact that islands die in this model is not really surprising since,
biologically, there might be a turnover of these structures and erythroid progenitors perma-
nently arise from the differentiation of hematopoietic stem cells, which has been neglected
here. Also, proliferation is not as dramatic as it might seem. First, it is possible to turn
it down by varying parameters (but sacrificing instead the average lifetime of an island)
and also proliferation may not be that simple in a realistic environment. Indeed, there is no
obstacle in the computational domain and some particular geometries could clearly reduce
variations in the proportion of self-renewing cells. Another point is that when several islands
are side-by-side, proliferating islands will collide and be in contact with more reticulocytes
than before, which may block their growth (data not shown). Nevertheless, unstable islands
revealed hard to control and stability of islands should be expected, as previously mentioned.

Regarding the two possible dynamics, either out of equilibrium or hysteresis cycle, sta-
bility of the system at equilibrium (hysteresis cycle) is slightly better (Figure 3.7 right).
Moreover, a significant fact arose during experiments when distribution of cell cycle lengths
was varied : the dynamics at equilibrium is very robust in this case, whereas the other dy-
namics becomes clearly biased. Indeed, when cells are placed at the origin at the beginning
of their cycle, they start in the differentiating area. When their cell cycle length is short,
they do not have enough time to escape this area and differentiate. When cell cycle duration
is long, they cannot differentiate. Consequently, some cell fates are only decided because of
cell cycle length, independently of the position in the erythroblastic island, and the island
structure is quickly lost. In conclusion, since cell cycle length variation may be large [49, 100],
it was decided to abandon this ‘out of equilibrium’ dynamics and to perform further tests
with the dynamics using the hysteresis cycle (Figure 3.3, right panel).

3.2.1.2 Feedback Relevance and Relation to Stability

The above-described hybrid system should be clearly influenced by feedback control loops,
as expected biologically, and, besides, feedback loops may play a role in the stabilization of
erythroblastic islands.

As mentioned in Section 3.1.1, different feedback controls are considered in this model : a
local control through Fas-ligand, activating Fas and influencing erythroblast differentiation
and death by apoptosis; two global feedback controls by erythropoietin, one activating Erk
through the function «, the second one varying the critical value of Fas, namely F.,, inducing
apoptosis. We focus here on the global feedback control mediated by Epo.

It is known that increasing Epo levels in the bloodstream, and consequently in the bone
marrow, increases Erk activity and decreases erythroblast apoptosis rate. Hence, an increase
of Epo levels induces an increase in the values of both a and F,... The exact influence of Epo
on these two quantities is however not known. Therefore, we began by simply monitoring the
behaviour of one island under constant values of these two parameters around the default
value (Figure 3.8).
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F1G. 3.8 — Effect of feedback controls on progenitor subpopulations in the absence of macro-
phage in the island. Each curve represents the percentage (means + standard deviation) of
self-renewing (green), differentiating (blue) or apoptotic (red) erythroblasts during the first
five cell cycles, as function of F,, (left panel) and « (right panel).

By comparing the proportions of different erythroblast subpopulations (self-renewing,
differentiating and apoptotic populations) during the first 5 cycles, it appeared that an
increase of F,, (that is, an increase of Epo levels) decreases apoptosis and self-renewal in
favor of differentiation. For low values of F,,., there is no differentiation (erythroblasts at the
center of the island survive, others die), so the island proliferates by absence of death factors.
For higher values, effect on self-renewal can be tuned by modifying parameters controlling the
hysteresis cycle. At some point the self-renewing population is not affected anymore and there
is simply a transfer from the apoptotic subpopulation to the differentiating subpopulation
(the differentiation part of the differentiation/apoptosis branch increases).

Increasing «, on the contrary, mainly acts on the self-renewing population. An increase
of a sends all cells on the self-renewing branch of the hysteresis cycle and differentia-
tion /apoptosis disappears. Reducing « increases the size of the apoptosis/differentiation
branch. For a constant value of F,., only the differentiation part of this branch is increased.
One thus observes a transfer from the self-renewing branch to the differentiation part of the
other branch.

In conclusion, the system’s response is qualitatively what is expected. Epo mainly de-
creases apoptosis in favor of differentiation and stimulates self-renewal. However, the sta-
tistics computed above only indicate trends and it is important to see how islands actually
react to this feedback.

The next step is then to explicitly include feedback loops in the system’s equations to see
whether the response is quantitatively correct or not, and if it is possible, through feedback
controls, to achieve a better stability than before. Therefore, we assumed a linear variation
of both o and F,, with deficiency of red blood cells (RBC), hence implicitly describing the
dependency on Epo. Denoting by Ngge the number of circulating red blood cells, and since
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a decrease of RBC count induces an increase in Epo levels, one gets
o = O4(]\]’1%36') = o+ ka(Ntarget - NRBC)) (39)

Fcr = FCT(NRBC) - FO + kF(Ntarget - NRBC)' (310>

We remind that Nppc is estimated by the number of reticulocytes which have left bone
marrow and are supposed to survive during a time equivalent to 3 cell cycles. Nygrqer is the
number of RBCs in circulation during a typical run before proliferation/extinction of the
island. Parameters ag and Fy are ‘typical’” values of o and F,,. (as given in Appendix 3.3).
Parameters k, and kr are to be estimated.

It must be mentioned that these two feedback controls are not exact from a biological
point of view, since one would expect the functions to saturate for low and high values of
Ngpc, yet they are good approximations when the number of red blood cells is not too far
away from the target (for instance, in normal erythropoiesis).

Functions o and F,. in (3.9) and (3.10) were used together with the previous initial
conditions (hysteresis cycle case), and it was impossible to achieve better stability than
previously mentioned when varying the values of k, and kr (data not shown). To be more
precise, it was possible with strong feedback controls to stop proliferation, instead the island
systematically died out. Other tests, based on simulations of a constant number of red blood
cells (Ngrpc), showed that the effect of feedback controls was not fast enough to deal with
the quick proliferation and extinction of erythroblastic islands. The island still lived around
10-15 cycles and, when it began to expand or die out, feedback response came too late or was
too strong to bring it back to its ideal size. Therefore, what was observed was only the usual
destabilization of the island, feedback being only able to turn proliferation into extinction
after some cycles.

As a result, it is very difficult to test feedback reliably on unstable islands. However, the
study showed that global feedback loops are inefficient when it comes to controlling local
structures, since proliferation or extinction events occur quickly in the model.

In the next section, we consider the addition of a macrophage in the center of the island
on the stability of the island and the relevance of feedback controls.

3.2.2 Island with macrophage

In this case, an erythroblastic island is initially composed of one macrophage, 80 erythroid
progenitors and 64 reticulocytes (see Figure 3.6, right). As done in the previous section,
stability of the island and influences of feedback controls are investigated.

In addition to feedback controls exerted, in the previous section, on erythroblast dynamics
by Epo and Fas-ligand, the macrophage in the center of the island is supposed to release
growth factors, whose concentration is denoted by GF', which positively act on Erk activation.
A number of proteins associated with the proliferation of erythroid progenitors and that could
fulfill such a function have been described. This includes Stem Cell factor (SCF), the c-kit
ligand, Ephrin-2, the EphB4 ligand, and BMP4, a member of the TGFS family ([95] and
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references therein). All those growth factors are assumed to diffuse around the macrophage as
developed in Section 3.1.2 (Equation (3.8)). They trigger erythroblast self-renewal through
the function « : the more growth factors, the higher «. Function v now becomes

Q= a(NRBC, GF) = + k’a(Nnget — NRBC) + k?GFGF (3.11)

Meaning of parameters ag, ko and Nygge: is identical to the ones defined for (3.9). Values
are also the same, except for aq that had to be decreased to compensate the addition of the
term kgpGF. Parameter kqp was set accordingly (influence of these parameters are discussed
below). Default values are ag = 0 h~! and kgr = 3 b~ .molecule™".

3.2.2.1 Stability Analysis

Stability of the hybrid system is first investigated without considering global feedback
controls (that is, k, = 0 in (3.11) and kr = 0 in (3.10)). Results are illustrated in Figure 3.9.

0 ' ' ' ' 14 S ' '28
t (cycles)

F1G. 3.9 — Number of erythroid cells in the presence of a macrophage in the center of the
island. Results were obtained using the hysteresis cycle. Green lines represent the number
of erythroblasts, blue lines reticulocytes, red lines estimation of circulating red blood cells
produced by the island (thick lines are medians, thin lines quartiles over 40 simulations). After
addition of a macrophage, islands automatically stabilize for previously chosen parameters.

For a large range of parameter values, the system quickly converges toward a steady-
state. The number of self-renewing and differentiating cells (and thus circulating RBC) can
be precisely controled by parameter values, as will be detailed in the next subsection. There
is a first phase where the size of subpopulations oscillates (because of lack or abundance of
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death factors) yet steady-state is always quickly reached (within a few cycles), even though
inherent stochastic oscillations are always present.

The macrophage completely controls the island. If «q is sufficiently low, a cell will not
be able to self-renew without external growth factors. Therefore, the default behaviour of an
isolated cell is differentiation. On the other hand, a cell in contact with the macrophage will
be exposed to a very high concentration of growth factors and will always self-renew, since
it is generally not exposed to death factors. In the vicinity of the macrophage, there is a
competition between growth factors and death factors, which will eventually determine the
size of the island. If agy or kgpr gets higher, growth factors will reach further erythroblasts,
thus the size of the final island will increase.

3.2.2.2 Feedback Relevance and Relation to Stability

Now that erythroblastic islands are stable, due to the presence of the macrophage, it is
not necessary to be limited to a period of 5 cycles to compare the subpopulations of the
island, as was done in the previous case (Section 3.2.1.2). Rather, it becomes relevant to see
how the size of the island and the production of RBC could evolve on a long term.

Similarly to what has been done in the previous case, we once again simulated the expec-
ted consequences (in terms of steady state value) of feedback control by running simulations
under constant values of a and F,,.. Results are shown in Figure 3.10.
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F1G. 3.10 — Impact of feedback controls on steady-state values when the erythroblastic island
contains a macrophage. Left panel : Influence of F, variations; Right panel : Influence of «
variations. Green dash lines represent erythroblast counts, blue solid lines reticulocyte counts
and red dash-dot lines RBC counts.

When F,, increases, both the number of reticulocytes and RBC increases, as the differen-
tiation part of the differentiation/apoptosis branch increases. For high values of F,,, there is
no apoptosis anymore. The number of erythroid progenitors seems to be rather independent
of the value of F,.

When « increases, which can be seen as an increase of the ground level of global ‘surviving
factors’ (here Epo and macrophage-emitted growth factors), the size of the island increases
mainly due to the increase of the self-renewing population. As a result, reticulocytes, situated
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all around the island, also increase in number, as does the amount of RBC. However, for
very high values of «, surviving signals are so strong that almost all erythroblasts self-renew
(the macrophage has no effect anymore) and the island is made only of proliferating cells,
reticulocyte and RBC counts vanish. Such high values of @ may only be reached in extreme
stress situations and mainly create a pool of cells which may afterwards differentiate and
substantially increase the number of RBC at once (but this implies that another mechanism
has to lower the value of o at some point). In any case, these values of & may else be avoided
by adding a saturation effect on the feedback loop.

In each case, a substantial increase of RBC production (about 3-fold and 4-fold respec-
tively) is observed. As the two mechanisms are largely independent, they can be combined
and thus the overall production rate can be greatly increased, in magnitudes comparable
to what can be observed biologically [27, 95, 107]. This seems to indicate that the reaction
of the system with macrophage to feedback controls is more efficient, relevant and easy to
observe compared to the case without macrophage, again in good agreement with biological
evidences [95].

3.3 Parameter Estimation

We discuss here the parameter values used when investigating stability of the hybrid
model in Section 3.2. Some parameters are clearly related to the discrete macroscopic model
while some others are related to intracellular dynamics.

Choosing individual-based modelling creates many implicit parameters. Most of them
can be chosen quite easily (cell radius, parameters of motion, etc.) and are not essential in
the results of simulations. However, other parameters clearly change the overall cell behavior
and have to be set carefully.

Let first consider parameters associated with extracellular dynamics (mainly growth fac-
tor release and action). Exact quantities of Fas-ligand, Epo and growth factors released by
the macrophage are not fundamental, because their effect will be normalized at the intra-
cellular scale (intracellular parameters controlling the sensitivity to these molecules). More
important are the diffusion coefficients, for both Fas-ligand and growth factors released by
the macrophage. These parameters are chosen in order to describe a short range action
of Fas-ligand, and to locate growth factors around the macrophage. It is important that
the range of diffusion is set according to the size of the cells in order to have a realistic
short-diffusion for instance. The distribution of cell cycle lengths is also really important :
it changes how the island expands, how cell cycles are locally correlated and plays a role in
the fate of immature cells when we work out of equilibrium. Parameter values are shown in
Table 3.1.

Intracellular parameters are chosen in order to optimize robustness of the system. It is
noticeable that no experimental data is available to set values of these parameters, only the
expected behavior is accessible. Parameters b and ¢ of system (3.1)—(3.2) control the relative
and absolute speeds of the reactions. They are set first. The magnitude of the hysteresis
cycle can then be tuned by choosing carefully «/b and 3/b (these ratios control its height,
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Parameter Value Unit
Cell cycle length 24 h
Cell cycle variations | 4/3 h
ro 0.01 L
m 1 M
1 3.10° ht
K 9.10° M.h=2
Dp, 3.1074 L?.h1
kr, 3.107* | molecules.cell*.n ™"
OFy 0.6 h=t
Dgr 3.1073 L?.h~!
Wear 3.1072 | molecules.L=2.h!
OGF 0.3 h1

TAB. 3.1 — Extracellular parameters (M is an arbitrary mass unit, L an arbitrary length
unit)

Parameter | Value Unit

« 0.01 h=t

16} 1.5 h=t.NU—?
k 2 -

a 0.12 ht

b 0.414 h=L.NU!
k., 0.009 | AL . NU~'.molecule™!
c 0.0828 h=L.NU!
d 0.006 h=!
E., 0.31 NU
. 0.3 NU

TAB. 3.2 — Internal parameters when cells begin at the origin (‘out of equilibrium’ case). NU
is a normalized quantity unit for the intracellular molecules (maximum possible quantity is

).
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Parameter | Value Unit

o 1.62 h=!

I6] 60 h=t.NU!
k 2 -

a 15.9 h1

b 1.8 h~L.NU!
k., 0.9 | AL .NU%.molecule™!
c 3 h~L.NU!
d 1.5 h=t
E,, 0.3 NU
. 0.6 NU

TAB. 3.3 — Internal parameters when cells are on the hysteresis cycle. NU is a normalized
quantity unit for the intracellular molecules (maximum possible quantity is 1).

their absolute values its width). Parameter a controls the offset of the cycle and is set such
that it is located in the [0,1] x [0, 1] domain. Parameter d mainly controls how a cell goes
from a stable branch of the cycle to the other : the higher the value of d, the higher the
change in Fas quantity.

In equation (3.2), the function 7 explicitly describes the influence of Fas-ligand. This
function has been taken as v = k. Iy, where k, is the sensitivity of progenitors to Fas-ligand.
This linear dependency is chosen for simplicity, in order to avoid introduction of additional
parameters. It is a good approximation if the variation of Fas-ligand is small.

Finally, o and F, also depend on extracellular molecules. However, in what follows we will
first consider the case when feedback loops are not included, so a and F,,. will be constants
first.

When Erk and Fas levels are supposed to be zero when the cell starts its cycle, the speeds
of reactions are very important : some cells have to remain trapped near the origin at the
end of their cycle in order to observe differentiation. The values of b and ¢ are thus very
constrained. The others simply define a large hysteresis cycle which aims at separating the
different cell subpopulations as far as possible from each other. See Table 3.2 for values.

When Erk and Fas values are initially on the hysteresis cycle, then b and ¢ are allowed to
vary more largely. It has been decided to put quicker dynamics than in the first case in order
to get rapid variations along the cycle. The width of the hysteresis cycle was also reduced,
so values for o and 3 are higher. See Table 3.3 for values.

Finally, an initial size for the island has to be set and the number of islands that will
be simulated must be chosen. An initial size of 144 cells with central macrophage or 162
cells without macrophage was chosen, and parameters were adjusted to keep the size of
the island roughly constant. Therefore, we only simulated one island at the beginning, but
once reasonable parameters are found, it is possible to put several islands side-by-side and
see how they interact. Preliminary experiments have been performed in this direction (not
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shown here), see the end of Section 3.2.1.1.

3.4 Responsiveness of the system to stress situations

We now investigate a response of erythroblastic island to different feedback mechanisms
in the case of anemia. Anemia is one of the more common blood disorders, characterized
by low levels of healthy red blood cells (RBCs) in the body or less than normal quantity of
hemoglobin in the blood. Anemia can be caused either by blood loss, by excessive destruction
of RBCs or by decreased or faulty red blood cell production. It can also be either due to a
disease or induced.

The nature of induced anemia can be very different, according to the method used to
urge it. In the experiment, done by M. Koury !, the mice were bled 15 microliters of blood
per gram of body weight for three consecutive days. After the bleeding on day 3, the mice
were allowed to recover. Then 20 microliter samples were taken each day on days 4 to 16
that were tested for hematocrit percentages. Three mice were used in this experiment.

RBCs count is determinant for the release of various growth factors. Erythropoietin
production is increased in response to anemia. We consider both erythropoietin influence
on erythroid progenitor self-renewal capacity through function a(Ngpc), and on apoptosis
protection through function F..(Ngpc). The functions F..(Ngpc) and a( Ngpe) are supposed
to be linear (see (3.10)-(3.11)). Parameters kqpn, and kg are chosen to obtain the qualitative
correct response to anemia.

To model an anemia we take the erythrocyte count at day 0 that is lower than its
equilibrium value. First, we run the test simulations to find out erythropoietin feedback
sensitivity of the system to anemia through the function a(Ngpc) and F..(Ngpc) separately.
We assume that the lifespan of erythrocyte is 2 days, cell cycle length of progenitors and
reticulocytes is assumed to be 16 4= 3 hours. Feedback control parameters are given in Table
3.4. Extracellular and internal parameters are given in Tables 3.5 and 3.6. At the beginning
of the numerical computations the hematocrit is 23% of its equilibrium. For the normal
mouse the value of hematocrit is 46 %. We present here the results of system response
through the function a(Ngpe) (Figure 3.11). The return to the equilibrium state on day 4
is observed in Figure 3.11a. With excessive growth of kr feedback becomes too strong with
strong oscillations and results in the disappearance of the cell population (Figure 3.11b,c).

Next, to compare the results of the simulations with existing experimental data on mice,
according to the average lifespan in mice, we increase erythrocyte lifespan to 40 days. The
lifespan of progenitors is assumed 2446 hours. In normal conditions in mice, maturation
age of reticulocytes is about 2—4 days. It was shown that residence time of reticulocytes in
bone marrow decreases in stress situations in mammalians [44, 50]. [t was demonstrated that
reticulocytes in mice are released early from bone marrow in phlebotomy-induced anaemia
[52]. We carried out the simulations under assumption that lifespan of reticulocytes equal
to 2446 hours or equal to 1246 hours. The count of erythrocytes in blood was decreased to

!Private communication, work in progress
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Parameter | Value Unit
e 0.6 h1
ko 0 h~! / reticulocyte
kar 6 h~' / GF molecules
Niarget 70 reticulocyte
Ny 42 reticulocyte
Iy 0.6 NU

TAB. 3.4 — Feedback control parameters. NU is a normalized quantity unit for the intracel-
lular molecules (maximum possible quantity is 1).

Parameter Value Unit
Cell cycle length 12 h
Cell cycle variations 3 h
To 0.01 L
m 1 M
u 6.10° ht
K 3.6.10° M.h=2
Dr, 6.107 L7 h?
kp, 6.1073 | Fy, molecules / reticulocyte / h
OFy 1.2 h1
Dor 6.107 2T
War 6.1072 GF molecules / L? / h
oGFr 0.6 h—!

TAB. 3.5 — Extracellular parameters : M is an arbitrary mass unit, L an arbitrary length
unit

Parameter | Value Unit
15} 120 h=t.NU!
k 2 -
a 31.8 h1
b 3.6 h=t.NU!
k., 1.8 | hL.NU? / F;, molecule
c 6 h=tL.NU!
d 3 h1
E., 0.3 NU
F., 0.4 NU

TAB. 3.6 — Internal parameters when cells are on the hysteresis cycle. NU is a normalized
quantity unit for the intracellular molecules (maximum possible quantity is 1).
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Fia. 3.11 — Feedback by Epo. Cell cycle length is 16 + 3 hours. Anemia conditions were
created by suddenly lowering the number of cells in blood to 23%. Red dash-dot curve
corresponds to the number of RBCs in the blood, green dash curve represents the number
of progenitors and the blue solid one is the number of reticulocytes.

23% of its equilibrium level. To improve the overall production of RBCs we combine both
feedback mechanisms, erythropoietin promotes self-renewal and downregulates apoptosis.
Parameters of function kgpn, and kp are chosen to obtain the correct response to anemia
(Table 3.7). Other model parameters are presented in Tables 3.1, 3.3. The first measurement
in the experiments is made before the first bleeding, and the second measurement is made
one day after the bleeding. We compare numerical simulations with the experimental data
beginning from the moment when the system starts to respond to anemia increasing the
number of erythrocytes. The model in this work provide only erythrocyte count and not
hematocrit. The hematocrit is defined by

UNRB(j(t)
H(t) = 3.12
®) vNgpe(t) + PlasmaVolume’ (3.12)

where vNgpe represents the volume of erythrocytes in the blood. As in [28] we assume
that the plasma volume is not modified during experiments in comparison with normal
hematocrit. Considering normal hematocrit H* (assumed to equal 46%) and erythrocyte
count Njp- we obtain

N*
H = Y RBC , (3.13)
VN g + PlasmaVolume
which provides
1—-H*
PlasmaVolume = TUNRBC. (3.14)
Consequently, hematocrit can be deduced from the erythrocyte count,
N t
H(t) rpc(t) (3.15)

B szch + H*(NRBC(t) - NITBBC)'
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Following the anemia, erythrocytes count quickly increases and reaches the equilibrium
value after 6 days as fast as observed in the experiments (Figure 3.12). Simulation results
and experimental data are in the best agreement under the assumption that the residence
time of reticulocytes in bone marrow is decreased to 1243 hours (Figure 3.12b).

Parameter | Value Unit
ap 0.3 ht
ko 3.3.107* | A~ / reticulocyte
kar 3 h~! / GF molecules
Ntarget 4250 reticulocyte
Ny 1490 reticulocyte
kr 0.0029 | NU / reticulocyte
£y 0.6 NU

TAB. 3.7 — Feedback control parameters. NU is a normalized quantity unit for the intracel-
lular molecules (maximum possible quantity is 1).
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(b) Lifespan of progenitors is 2446 hours.
cytes is 2446 hours; k,=3.9.10~%.

Lifespan of reticulocytes is 1243 hours;
koa=3.3.10"%.

F1G. 3.12 — Evolution of hematocrit. Red curve corresponds to experimental results on mice
with standard deviation lines on either side of the mean. Blue curve corresponds to the

simulation results (thick line is mean values, thin line is the standard deviation over 20
simulations).

3.5 Discussion

We proposed a new model for erythropoiesis modeling based on the coupling of two rele-
vant scales, the intracellular scale consisting of protein regulatory networks and the extracel-
lular scale focusing on cell movement and interactions as well as growth factor distribution
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in the medium. Description of the competition between two proteins within erythroid proge-
nitors has been performed with continuous models (ordinary differential equations) whereas
cells have been studied as discrete objects on an off-lattice model, so the whole system can
be named ‘hybrid model’, for it consists in the coupling of continuous and discrete systems.
Applied to normal erythropoiesis in the bone marrow, in particular to the regulation of ery-
throblastic islands, the model suggests an important role of macrophages in the stability of
islands. In the absence of macrophages, erythroblastic islands very quickly lose their stabi-
lity, meaning they either die out or abnormally proliferate (with overproduction of erythroid
progenitors). They survive only for the equivalent of about ten cell cycles. On the contrary,
when the erythroblastic island is built around a central macrophage, assumed to release
growth factors sustaining erythroid progenitor survival and proliferation (like SCF, Ephrin-2
or BMP-4 [95]), then the island is a very robust structure, able to produce continuously ery-
throcytes while keeping a steady structure (that is an almost constant ratio of reticulocytes
over progenitors).

This control of the production of differentiated red blood cells by the macrophage at the
level of the erythroblastic island may first appear in contradiction with usual knowledge of
erythropoiesis. It is indeed well known that during a response to a stress, erythropoiesis is
a very intense process, large amounts of cells being produced in a short time, so the whole
process is expected to possess the ability to overcome its usual production, in particular the
ratio of reticulocytes over progenitors should not stay constant. The hypothesis we propose
is that the macrophage, inside the erythroblastic island, controls the explosiveness of ery-
thropoiesis and that, contrary to other hematopoietic lineages (white cells, platelets), this
control is necessary because stress erythropoiesis must deal with very large amounts of cells
and otherwise the stability of the process could be lost. It is moreover noticeable that getting
more stability with the central macrophage does not decrease responsiveness of the model.
For instance, the island reacts to perturbations simulating anemia (sudden loss of mature
red blood cells), returning quickly to ‘normal’ values of the different erythroid populations,
progenitors, reticulocytes and erythrocytes (not shown here). Hence the gain of stability
is not compensated by a loss in the system’s reactivity. Simulation of stress erythropoiesis
(anemia) confirm that the macrophage plays a relevant role in the stability of erythropoiesis.

Some comments may however be made on the behavior of an island without macrophage
in its center. Although it is clear that this system cannot lead to a stable island (this can be
explained by considering that fluctuations automatically lead to proliferation or extinction),
it is nevertheless possible to imagine a system working with such islands. For instance, if
islands are put side-by-side, proliferation is made difficult (islands cannot expand due to
confinement) and extinction can be compensated by the birth of new islands. Moreover,
other assumptions, based on a better knowledge of erythroblastic islands, could lead to more
stability (geometry of bone marrow and islands,...), even though all scenarii cannot and
were not tested. However, the lack of stability makes it hard to have a clear view on how
feedback controls act on one single island, and as far as we know of, studying erythropoiesis
models (or hematopoiesis models, in a wide sense) without considering feedback controls
does not make sense. Hence, searching for island stability appeared relevant in this study. At



3.5. DISCUSSION 83

a global scale, it is still possible that island stability is not necessary and can be compensated
between proliferation and extinction. When looking at one single island however, the fact
that feedback controls do not work correctly on an unstable island is somewhat compelling.

Stability of the erythroblastic island including a central macrophage was obtained by
considering two scenarii (see Figure 3.3) for the distribution of Erk and Fas quantities in
daughter cells, following mitosis and mother cell’s division. In the first one, initial values of
Erk and Fas in newborn cells were set to zero, and cell fate was decided depending on the
evolution of concentrations through the cell cycle duration (this is the ‘out of equilibrium’
assumption). This scenario was shown to lead to results strongly dependent on the length of
cell cycle. The second scenario, called the ‘hysteresis cycle case’, which is more biologically
relevant, consisted in dividing values of Erk and Fas of the mother cell at mitosis into two, so
both daughter cells are located on a hysteresis cycle in the Erk-Fas plane at birth. Combining
the hysteresis cycle scenario with a structure including a local feedback on the island (the
macrophage) gave relevant results and appears very promising. Parameter values which were
obtained through mathematical analysis appear to be very robust and the system exhibits
qualitatively the same behavior for a wide range of parameters. The stability of the island
allows a better control of its size and its subpopulations and, as a result, gives much more
satisfying results on feedback tests.

Regarding parameter values used to study the model and check different scenarii (with or
without macrophage in the center of the island, distribution of initial quantities of Erk and
Fas), one must note that most of these values are mainly not accessible through experiments.
Some others, such as for instance the time of survival of RBC, are however rather quite
arbitrary and not necessarily in agreement with usual knowledge on erythropoiesis. Yet,
results show that the behaviour may be satisfying from a biological point of view. Since a
wide range of parameters is allowed, this system can fit experimental data and numerically
reproduce certain stress behavior.
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Chapitre 4

Pharmacokinetics-Pharmacodynamics
model of leukemia treatment

In this chapter we use the hybrid model to study normal and leukemic red blood cell pro-
duction, and treatment of leukemia. Normal cells are supposed to have a circadian rhythm,
that influences their cell cycle durations, whereas leukemic cells, appart from being cha-
racterized by excessive proliferation and insufficient differentiation and apoptosis, are sup-
posed to escape circadian rhythms. We consider a treatment based on periodic adminis-
tration of Ara-C, an anti-cancer agent targeting cells in DNA synthesis. A pharmacodyna-
mic/pharmacokinetic model of Ara-C is then proposed, and used to simulate the treatment.
Influences of the period of the treatment and the day delivery time on the outcome of the
treatment are investigated and stress the relevance of considering chronotherapeutic treat-
ments to cure leukemia.

4.1 Mathematical model

4.1.1 Intracellular and extracellular regulation of normal erythro-
poiesis

In this chapter, in order to focus ourself on leukemia treatment we consider two types
of cells, erythroid progenitors and reticulocytes. Reticulocytes produce Fas-ligand which
diffuses into extracellular matrix and influences erythroid progenitors. Erythroid progenitors
are also influenced by the hormone erythropoietin. Its production depends on the number
of erythrocytes in blood. Finally, we will introduce pharmacokinetics of Ara-C, a drug used
for chemotherapy of acute myeloblastic leukemia.

Intracellular regulation We focus our attention on two key intracellular proteins, Erk
and Fas, which are involved in cell fate decision (high levels of Erk induce cell self-renewal,
whereas high levels of Fas induce either cell differentiation or apoptosis). Evolution of the
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concentrations of these proteins inside an erythroid progenitor is described by a system of
two ordinary differential equations [29],

E.

ddtZ = (a(Epo) + BEF)(1 — E;) — aE; — bE,F;,

dat (4.1)
dtl = ~(FasL)(1 — F;) — cE;F; — dF;,

where FE; and F; are the concentrations of Erk and Fas, respectively, in the i-th cell.

Here, we do not consider the feedback by erythropoietin. The concentration of Epo is
assumed to be constant, so the function « in (4.1) will be considered as a positive para-
meter. For this study, we focus only on the feedback control exerted on progenitor cells by
reticulocytes through Fas-ligand (see the next paragraph Extracellular regulation).

As we already discussed above, this system of equations can have between one and three
stationary points [29], depending on parameter values. The choice of parameters is an im-
portant issue when describing intracellular regulatory networks. In most cases, there are no
experimental data on the reaction rates of involved proteins. So the criterion when choosing
parameter values is to describe the normal behavior of the whole system with approximately
correct proportion between self-renewing, differentiating and apoptotic cells and the correct
response of the system to stimulation by the hormones. The set of parameters satisfying
these conditions may not be unique. A detailed discussion of the choice of parameters is
presented in previous chapter. Here, parameter values are chosen in such a way that the
system has three steady states, and values are given in Table 4.1. In this case, the system
exhibits bistability, with one unstable steady state, and two stable ones.

Let us recall that the intracellular regulation scheme described above concerns erythroid
progenitors but not reticulocytes. Indeed, reticulocytes are differentiated cells. Similar to
mature red blood cells, they do not proliferate. However, reticulocytes produce Fas-ligand,
which influences intracellular regulation of erythroid progenitors (the second equation in
system (4.1) depends on Fas-ligand). For large values of Fas-ligand, trajectories of the system
move towards greater values of F; and to smaller values of E;. If during the cell cycle, the
value of Erk becomes greater than a given critical value E., then the cell will self-renew : at
the end of the cell cycle, it will divide and give rise to two daughter cells that are identical to
the mother cell. During the same cell cycle, if the value of Fas becomes greater than a given
critical value, F,, then the cell immediately dies by apoptosis. If none of these conditions are
satisfied, then the cell will differentiate : when the cell cycle is finished, the cell divides and
gives birth to two more mature cells, that are reticulocytes.

Once produced, a reticulocyte remains in the computational domain during a time equal
to one cell cycle, during which it produces Fas-ligand, and then becomes a mature ery-
throcyte. At the end of their development, reticulocytes leave the bone marrow and enter
the bloodstream as red blood cells. In the framework of our model, reticulocytes that have
performed one cell cycle are removed from the computational domain.

We note finally that the duration of cell cycle for each cell is considered as a random
variable with the uniform distribution in the interval [T, — 7, T, + 7|, where T, is the mean
cell cycle time and 7 < T, is a parameter accounting for variability of the cell cycle duration.
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Extracellular regulation Reticulocytes interact with erythroid progenitors by direct cell-
cell contact. As previously mentioned, reticulocytes produce Fas-ligand, which binds to the
Fas receptors located on the surface of erythroid progenitors, and stimulates apoptosis and
differentiation. For convenience, Fas-ligand distribution in space is modelled with a reaction-
diffusion equation (3.7),

OFasL
ot

= DAFasL +W — oFasL,

where W is a source term proportional to the concentration of reticulocytes. If the diffusion
coefficient is sufficiently small, Fas-ligand is concentrated in a small vicinity of reticulocytes.
[31]. In this case, Fas-ligand influences erythroid progenitors when they are sufficiently close
to reticulocytes. This is the situation illustrated in this work.
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Fi1G. 4.1 — Erythroblastic island : yellow cells in the center are erythroid progenitors, blue
cells at the border are reticulocytes producing Fas-ligand (in red). The initial cell distribution
is on the left panel, the typical configuration of the island after several cell cycles on the
right panel.

Let us recall that the source term W in equation (3.7) is distributed in space since cells
have a finite size. In numerical simulations, local concentration of reticulocytes is computed
as the total cell area in each box of the numerical grid (see Section 2.1). The concentration
of Fas-ligand depends both on space and time. It enters the second equation in (4.1) with
the value FasL(x;,t), where x; is the center of the i-th cell.

Figure 4.1 shows the evolution of an erythroblastic island, by considering only the in-
fluence of Fas-ligand (Epo concentration is fixed). The left panel represents the initial cell
configuration with immature progenitors inside and more mature reticulocytes outside. The
right panel shows the typical structure of the island several cell cycles later. Extracellular Fas-
ligand concentration (shown in red color) is higher near reticulocytes. Fas-ligand stimulates
intracellular production of Fas in erythroid progenitors : if an erythroid progenitor is close
to a reticulocyte, then the extracellular concentration of Fas-ligand and, as a consequence,
the intracellular concentration of Fas in the progenitor can be sufficiently high to induce its
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apoptosis. Progenitors located at some distance from reticulocytes can have an intermediate
value of intracellular Fas. Such cells will preferentially differentiate into reticulocytes. Finally,
progenitors located far from reticulocytes mostly self-renew.

4.1.2 Ara-C kinetics

One of the most common and effective chemotherapeutic agents against acute myeloge-
nous leukemia is cytosine arabinoside, also known as Ara-C. Our aim is to apply a treatment
with Ara-C to a population of erythroid cells formed with normal and leukemic cells, using
the hybrid model described in the previous paragraphs. We describe hereafter the pharma-
cokinetics and pharmacodynamics of Ara-C.

Once introduced intravenously in the organism, Ara-C penetrates cell membranes by a
mechanism based essentially on the human equivibrative nucleoside transporter-1 (hENT1),
which can be considered as facilitated diffusion. This process does not need energy and
goes in accordance with the gradient of concentration up to the equilibrium between the
intracellular and extracellular concentrations of Ara-C.
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F1G. 4.2 — Metabolism of Ara-C (adapted from [78]). Schematical representation of Ara-
C pharmacokinetics : Ara-C crosses cell membrane, it is phosphorylated becoming Ara-
CTP. Ara-CTP is used for DNA replication instead of nucleotide C. Besides, Ara-C can be
transformed in Ara-U.

Inside cells, part of Ara-C is phosphorylated into its active form, Ara-CTP, which arrests
DNA synthesis and induces cell apoptosis. The rest, about 70%, of Ara-C is deaminated
into its inactive form Ara-U. Ara-CTP, in turn, can be dephosphorylated back to Ara-C.
We take into account these three reactions in order to model the intracellular kinetics of
Ara-C and Ara-CTP (see Figure 4.2). We describe them by Michaelis-Menten mechanisms.
The phosphorylation rate of Ara-C, denoted by 7, is given by

Vi

r, = ———————
p KnKq '’
L+ ==

where w; is the Ara-C concentration inside the i-th cell, K, is the Michaelis-Menten constant,
K, accounts for additional effects and V), is the kinase activity.
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Denote by w{ the Ara-CTP concentration in the i-th cell. Ara-CTP dephosphorylation
rate, 74p, is given by
Ty = _ Va
R

K3

with V, the enzyme activity, o' accounts for additional effects, K, is the Michaelis-Menten
constant.
Finally, deamination of Ara-C follows similar kinetics, with r4, the rate of deamination,

Via

- Ko’
14 o

Tda

and V, is the enzyme activity and Ky, the Michaelis-Menten constant.
The kinetics of intracellular Ara-C concentration in the i-th cell is then described by the
following equation,

dwi
dt

= ki (w — w;(t)) — kow;(t) — (rp — Tap + T'da)s (4.2)

where w is the extracellular concentration of Ara-C in the bone marrow, supposed to be
uniformly distributed in the bone marrow, yet varying with time (w = w(t)); In fact, cells
are infused in Ara-C for two hours, then Ara-C is removed (or washed out). The constant k;
is related to the rate of membrane penetration, ks accounts for degradation of Ara-C. There
is no extracellular degradation of Ara-C.

The balance equation for the intracellular concentration of Ara-CTP is

dw}
dt

= ko(rp — Tap)- (4.3)

Ara-CTP exerts a cytotoxic effect on all dividing cells, arresting DNA synthesis and
inducing apoptosis. Evolution of the quantity p; of Ara-CTP in DNA is described with the
following equation,

— bt 4.4
o = hew (4.4)

with kg the rate of conversion of Ara-CTP. When p; overcomes a critical value p,,, then it is
assumed the cell dies by apoptosis. Above equations and parameters (Table 4.1) for Ara-C
metabolism are derived from Morrison et al. [78].

4.1.3 Organization and duration of cell cycle

Generally speaking, cell cycle proceeds through G1, S, G5 and M phases, and cells can
also enter a quiescent state, named G phase. Duration of this resting phase and transition
to cell cycle are controlled by various intracellular and extracellular mechanisms. Erythroid
progenitors are believed to be basically in the cell cycle with a short or inexisting Gy phase.
Taking this into account, we consider a single Go/G; phase, whose duration varies randomly
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TAB. 4.1 — Parameter values (N.U. means “no unit”, min is for “minute”)

Parameter Value Unit
Force between two cells
H, Cell compressible part 1.75 pm
K Positive parameter 1000
Intracellular requlation
« Epo-dependent Erk activation rate 0.0003472 min~!
k Erk self-activation power 2 N.U.
I6] Erk self-activation rate 0.05 min~!
a Erk degradation rate 0.004 min~!
b Erk inhibition constant 0.0138 min~!
k., Fas-ligand-dependent Fas activation rate 0.0002 min !
c Fas inhibition rate 0.00138 min~!
d Fas degradation rate 0.0001 min~!
E. Erk critical level 0.4 N.U.
F, Fas critical level 0.2 N.U.
Extracellular requlation
D Fas-ligand diffusion coefficient le™® pm?min~!
o Fas-ligand degradation rate 0.02 min !
w Source term 0.0001 min~!
Metabolism of AraC
k1 Membrane penetration rate 0.0116 min !
ks Ara-C degradation rate 0 min~!
Vi Kinase activity 1.28  pM.min™?
K, Michaelis-Menten constant 27.0 uM
K, Additional effects constant 16 N.U.
Viap Enzyme activity 300  puM.min~!
Ky Michaelis-Menten constant 900 M
al Additional effects constant 44 .4 N.U.
Via Enzyme activity 16.45 pM.min™!
Ky, Michaelis-Menten constant 1011.7 uM
ke, Metabolism constant 0.8 N.U.
ks Ara-CTP conversion rate 1 N.U.
Der Critical value of Ara-CTP in DNA 40 uM
Circadian rhythm
Cx Constant characterizing the circadian clock e [0,1] N.U.
0 Phase shift 5) hours
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in some given interval. Denote by Gy/G1,,,,, and Go/G1,,,, the minimal and maximal values,
respectively, of the Gy /G phase and assume that duration of this phase is a random variable
with a uniform distribution between them.

This assumption corresponds to biological observations [100]. From the modelling point of
view, variation in the G/G; phase duration, and consequently in cell cycle duration, allows
cells to desynchronize. This is essential for correct modelling of Ara-C pharmacodynamics
and treatment of leukemia. Figure 4.3 shows two simulations of the complete model with
Go/Gh,,;, = 0 and different values of Go/G1,,,,. In the case Gy/G4,,,, = 7 hours, after
approximately 7 cell cycles the proportion of cells in the S phase becomes almost constant.
For shorter cell cycle durations, Gy/Gh,,,, = 3 hours, the proportion of cells in S phase is
strongly oscillating, even after several cell cycles, so cells are mainly not desynchronized.
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F1G. 4.3 — Proportion of cells in phase S, with G/G1,,,, = 0.

4.1.4 Circadian rhythm in the cell cycle

Circadian rhythms can influence proportion of cells in the S phase [110]. Their ratio
with the total number of cells is not constant during the day. Therefore efficiency of drug
administration can also depend on time [10]. In order to describe circadian rhythms, we
introduce a variable x that describes the concentration of cyclin-D1, a circadian clock control
protein, whose activity is required for cell cycle G1/S transition. Let us assume that this
value z is in the interval [0, Z,,4.], Where 2,4, is a threshold value at which the cell enters
S phase. At the time of cell division (cell birth) ¢, we prescribe z(ty) = x¢, where the initial
concentration of the protein z is a random variable uniformly distributed in [0, Z,,4.].

Since the corresponding gene is controlled by the circadian rhythm, the cyclin-D1 protein
concentration is determined by the time of the day. This is reflected in the following equation
for the concentration of the protein,

dx .
i 1+ ¢, sin(f(t—0)), (4.5)

where f = 3—1, ¢, € [0,1] and @ is a phase shift chosen to reproduce circadian timing of cell



92

division in humans. Solution to (4.5) is given by the formula :
#{t) =+ (¢ = to) + F cos(f(tg = 0)) = cos(f(t ), (46)
Assume that 7 =t — to, where 7 is the time spent in phase G/G1. Then we have
x(to+7) =20+ 7+ %zcos(f(to —6)) — %cos(f(to +7—10)), (4.7)

If 2(to + T) = Zmae, the concentration of the protein attains the G1/S transition threshold
value, and the cell enters the S phase. That way, Go/G1 phase duration 7 is a random variable
distributed in [0, Tjnes], and 7 is also modulated by the circadian clock. The maximal value
of T, Tz, corresponds to the threshold x,,4,.

4.2 Results

In this section, we numerically simulate the hybrid model presented in Section 4.1 and
the action of Ara-C on cell populations, considering a population formed with normal or
leukemic erythroid progenitors, and reticulocytes. Each progenitor cell is characterized by
proteins concentrations evolving according to the properties presented in Section 4.1.1. In
particular, cell fate of the i-th cell depends on the values of Erk and Fas concentrations,
E; and F; : during a cell cycle, if Erk concentration reaches the critical value E. then the
cell will self-renew at the end of its cycle, if Fas concentration reaches its critical value F,
then the cell will die by apoptosis immediately, in the other case the cell will differentiate
in reticulocytes. These latter cells play an active role in progenitor fate, by releasing Fas-
ligand, which induces Fas concentration increase. Since the feedback control by Fas-ligand is
the only one considered for the simulations of this model, cell fate depends exclusively on the
distance between progenitors and reticulocytes (Fas-ligand diffuses in the domain, according
to equation (3.7)).

We recall that Ara-C acts both on normal and leukemic proliferative cells. Hence, optimi-
zation of chemotherapy implies killing all leukemic cells and preserving maximum of normal
cells. In this section we study action of Ara-C on normal cells and on leukemic cells.

First, we focus on the effect of treatment on proliferation and survival of normal cells
(Section 4.2.1). We investigate the respective influences of the period of treatment and the
starting hour of treatment with respect to the cell cycle duration. We show that relation bet-
ween cell cycle duration and periodicity of treatment can drastically influence cell population
dynamics.

Second, we simulate the effect of a chronomodulated treatment with Ara-C (Section
4.2.2), in the situation where normal cells are subject to circadian rhythm (¢, = 0.5 in
(4.7)) whereas leukemic cells do not exhibit circadian rhythm dependency (¢, = 0). We
will see that population dynamics of normal cells depends on the time of the day when
Ara-C is administered according to the proportion of cells in the S-phase. This allows us to
make a difference between normal and leukemic cells in the treatment by Ara-C. We have
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deliberately chosen to consider normal and leukemic cells with the same properties except
for circadian rhythms. In this case we obtain a more precise response about the influence of
circadian rhythms on the results of chemotherapy.

In both cases, the cell population is first simulated from an initial state until it reaches
a satisfactory state, in which the erythroblastic island is large enough and cells are well
mixed (see Figure 4.1, right panel). Then numerical experiments start with Ara-C treatment.
Consequently, time ¢ = 0 in every picture must be understood as the time of the beginning
of the numerical experiments and not as the beginning of erythroblastic island simulations.

4.2.1 Treatment protocol depending on cell cycle duration

We first consider a population of erythroid cells, composed with two types of cells :
immature progenitors and reticulocytes, and using the hybrid model previously presented
we perform a simulation of treatment by Ara-C injections (all cells in the domain are in
contact with Ara-C, which does not degrade in the extracellular medium and is uniformly
distributed in the domain, for 2 consecutive hours, then Ara-C is removed). We investigate
the relevance of taking cell cycle durations into account when treating with Ara-C.

Because the cytotoxic effect of Ara-C is related to DNA synthesis, time periodic drug
administration killing cells in the S phase will influence consecutive cell generations. This can
result in so-called resonance effect, first discussed in [35]. If the periodicity of treatments is
close to the duration of the cell cycle or to its multiples, then cells that are not in the S phase
during one administration will be unlikely to be in S phase at subsequent administrations.
These cells will divide resulting in growth of cell population.

Numerical simulations of erythroid cell populations with an average duration of cell cycle
equal to 31 hours and with different protocols of drug administration are shown in Figure
4.4. For the same total amount of injected Ara-C, the cell population can either disappear
(Figure 4.4a) or grow (Figure 4.4b,c) if the period of drug injections is far or close to multiples
of cell cycle duration.
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FiG. 4.4 — Evolution of erythroid cell population under treatment with Ara-C. Number of
progenitors in cell population.



94

Cell population growth or decay is approximately exponential with periodic modulations
due to the action of the treatment. Considering that cell population evolves proportionally to
e where ) is the growth exponent (either positive or negative), Figure 4.5 shows the value
A as a function of the period of treatment 7" for two different values of cell cycle duration. In
the first case, the duration of the Go/G; phase is random and uniformly distributed between
Go/Gh,,;,, = 5 hours and Gy/Gh,,,, = 31 hours, the duration of the S phase is 10 hours and
of Go/M phases is 3 hours. Hence the average cell cycle duration T, is 31 hours, and the
variation £ 13 hours. In the second case, T, is 33.5 hours and the variation is & 15,5 hours.
The function A(7") in the left panel has a peak at approximately 33 hours close to the average
cell cycle duration. The second maximum is much wider but corresponds to approximately
twice the duration of cell cycle. Similar results are presented in the right picture for another
value of cell cycle duration. The first peak is at 38 hours, close to the average cell cycle.

population growth rate ()
population growth rate ()

20 24 28 32 36 40 44 48 52 56 60 64 68 72 20 24 28 32 36 40 44 48 52 56 60 64 68 72

period of treatment (hours) period of treatment (hours)
(a) GO/Glma$:31 hr (b) GO/GlmaxZSG hr

F1G. 4.5 — Growth exponent A as a function of the treatment period T

These first results of numerical simulations with hybrid models confirm that the search
for an optimal treatment period is relevant within the context of erythroid cell populations.
Depending on the period of the treatment with Ara-C, compared to the average cell cycle
duration, the progenitor population can either grow or decay.

4.2.2 Optimal administration of Ara-C related to circadian rhythm

Most cytotoxic drugs used in chemotherapy are not specific to malignant cells. They
affect both normal and leukemic cells. However, in leukemia, downregulation of circadian
clock genes is often observed [118]|. Malignant cells can even escape circadian control. Thus,
treatment protocol should take into account this difference in normal and leukemic cells in
order to reduce undesirable effects of chemotherapy and to increase its efficacy.

Let us consider two different populations of cells. The first one consists of erythroid pro-
genitors that follow circadian rhythms with a certain synchronization in their DNA synthesis
activity [109]. This population is characterized by a coefficient ¢, = 0.5 in equation (4.7).
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The second population consists of leukemic cells that do not obey the circadian control.
Consequently, this population is characterized by a coefficient ¢, = 0 in (4.7).

We first simulate cell population dynamics, considering a duration of S/Gy/M phases
equal to 13 hours and a duration of G/G; phase varying according to circadian rhythms
between Go/G1,,,,, = 5 and Gy/G1,,,, = 31 hours. The fraction of erythroid progenitors in
the S phase is then maximal around 1 p.m. and minimal between midnight and 1 a.m. (see
Figure 4.6), in agreement with clinical observations [110].
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F1G. 4.6 — Fraction of cells in the S phase.

Second, we simulate the chronomodulated administration protocol of Ara-C with intervals
ranging from 8 hours to 65 hours. The total dose of Ara-C administered is conserved, and
day time delivery ¢, of the treatment is taken every hour, between 1 :00 and 24 :00 (Figure
4.7a). Outcomes of the model, chosen here to be measurements of the growth rate A, are
then functions of only the period of treatment and the initial time t,.

As expected, the most important variations of growth rate as a function of ¢y together
with the best values of the growth rate are observed for periods of treatment equal to 24
hours (Figure 4.7b, zoom in of Figure 4.7a) and 48 hours (Figure 4.7c, zoom in of Figure
4.7a). Apart from these periods, the delivery time does not appear to modify the outcome
of the simulations (Figure 4.7a). Low values (black) indicate bad treatment outcomes and
high values (white) indicate good treatment. It is noticeable, however, that if period of
treatment is slightly larger (or less, resp.) than 24 hours or 48 hours, then the time of first
delivery ¢y should be advanced (or delayed, resp.) to produce an equivalent outcome. This
dependence is more brightly expressed at 48 hours (Figure 4.7c) [16]. It should be noticed
that the white area between 30 and 40 hours (Figure 4.7a) corresponds to periodicity of
the drug administration close to the average duration of the cell cycle and the reason of its
appearance is the same as for the first peak in Figure 4.5a, discussed in the Section 4.2.1.

The timing of a 24-periodic treatment (Figure 4.8a) and 48-periodic treatment (Figure
4.8b) affects the treatment toxicity. If Ara-C is administered at 1 a.m., when the lowest
fraction of cells are in the S-phase (see Figure 4.6), the total cell number decreases slowly
(upper curve). If Ara-C is introduced at 1 p.m., when more cells are in the S-phase (Figure
4.6), then the cell population decreases faster (lower curve). With the periodicity of treatment
48 hours and the time of first delivery 1 a.m., the population of cells decreases more slowly
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than with periodicity of treatment 24 hours and the same time of first delivery (Figure 4.7).
As mentioned above, it is the population of normal cells that do obey the circadian control.
So, it can be deduced, that a treatment with 48 hours period administered at the better time
to gives less toxicity, than the same administration with a 24-periodic treatment. Moreover,

the worst treatment is at 1 p.m. with a 48-periodic treatment, and the best time to treat is
at 1 a.m.
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F1G. 4.7 — Treatment outcomes. The gray scale shows the value of A as a function of the first
day delivery time ¢y and the period T" between two consecutive drug administrations. Panel
(a) represents the growth exponent A for ¢y ranging from 1 a.m. to midnight, and T ranging
between 8 and 65 hours. Panel (b) and (c) show a specific region around period T=24 hours
and T=48 hours, respectively. All three panels correspond to the same numerical simulations.

Next, we compare the response to treatment of normal cells, which follow circadian
rhythm, and of leukemic cells, which escape it. Populations of normal (green line) and leuke-
mic cells (red line), subjected to 48 h interval treatment at different times ¢q, are presented in
Figure 4.9. The population of normal cells remains approximately constant while the popu-
lation of leukemic cells dies when ¢y is 1 a.m. (Figure 4.9a). On the contrary, the population
of normal cells dies even faster than the population of leukemic cells if first time delivery is
at 1 p.m. when the toxicity of the drug is extremely large (Figure 4.9b).



4.3. COMPARISON WITH CLINICAL DATA OF LEUKEMIA TREATMENT 97

10
'
1 'I
AVAY \!
Vel
2 1 l‘|
® » 107t Mo
= [} sy,
° ° L
° ° te ‘| 1,7
[} o] o
Qo Qo - 1
g g 1 Lo
2 €10} Yo
= 1
- 1
.-
L] I
1. !
1
10° : ‘ : : 10° : : : : ;
0 100 200 300 400 500 0 100 200 300 400 500
time(hours) time(hours)
(a) (b)
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F1G. 4.9 — Evolution in time of the total number of normal cells (green line) and leukemic
cells (red line) with Ara-C administered every 48 hours at 1 a.m. (left) and at 1 p.m. (right).

4.3 Comparison with clinical data of leukemia treatment

The complete model described in the previous section includes cell dynamics, intracellu-
lar and extracellular regulations, pharmacokinetics of Ara-C and circadian rhythms. In this
section, we will use a simplified model, which consists of cell dynamics and pharmacokinetics,
in order to describe clinical data on leukemia treatment. We will not consider here intracel-
lular and extracellular regulations but we will have to describe leukemic hematopoiesis, that
is different types of leukemic cells.

We will reproduce here with numerical simulations the number of blasts in blood due to
chemotherapy of acute leukemia [76]. The protocol applied in [76] was tested on a patient
with acute myeloblastic leukemia who was unresponsive to conventional chemotherapy. Ara-
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C was given as two hours continuous i.v. infusion for 5 times over a total duration of 34 hr
with 6-hr interval between infusions. The reason why the current mode of administration
was chosen is as follows. Since Ara-C produces its cytotoxic effects during two hours, the
duration of each infusion should not be more than 2 hours in order to avoid overaccumulation
and undesired toxic effects. As the duration of phase S (7) of human leukemic cells is about
10 hours, so the interval of administrations should be less than 10 hours. It is also known
that it takes leukemic cells from about 6 to 8 hours to recover their capacity to synthesize
DNA. The level of Ara-C in plasma was 10 to 20 pum. After application of this protocol 99%
reduction in the leukemic blast cells in the blood was observed.

Action of AraC

Mature
LSC Proliferative leukemic
pool cells

Bone marrow Blood

F1G. 4.10 — Leukemic hematopoiesis starts with leukemic stem cells. After several divisions
with differentiation, mature leukemic cells leave the bone marrow to blood.

In order to describe the clinical data, we have tested different schemes of leukemic he-
matopoiesis. The minimal model includes leukemic stem cells (LSC), proliferative leukemic
cells and mature leukemic cells (MLC) in blood (Figure 4.10). Apoptotic rate of LSCs is
assumed to be zero. With probability 0.5 leukemic stem cell after its division gives a birth to
two cells with higher degree of maturity or one LSC and one differentiated cell. These more
mature cells, named here proliferative leukemic cells, represent the second type of cells in
the model. Proliferative leukemic cells at different stages of maturation are also located in
bone marrow. Similar LSCs, these cells do not die by apoptosis without medical treatment.
After their division, they give two daughter cells with higher maturity. We assume here seven
stages of their maturity. The cells of eighth stage of maturation form the third type of cells,
so called post mitotic almost mature leukemic cells (MLC), which are released from the bone
marrow into the blood (see Figure 4.10). These assumptions are consistent with biological
and clinical observations.

It was chosen to start simulation with 162 leukemic stem cells initially. Then, first of all
we run the simulation without application of treatment. After eight days of computing we
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have the population of about 7.10% leukemic cells of different maturity [48, 58], Figure 4.11.
Then, the protocol described above is applied.

F1G. 4.11 — Three types of cells in the simulation : leukemic stem cells (yellow), leukemic
proliferative cells (green), mature leukemic cells (magenta).

Duration of each cell phase of leukemic stem cells is as follows. Duration of phase T¢, is
a random variable with a uniform distribution between 5 hours and 31 hours, T is 10 hours
and T/q, 1s 3 hours. So, T, + Ty + Ti, of leukemic stem cells is equivalent to or less than
34 hours and the maximal 7. is 44 hours. This corresponds to estimates from [76] which is
similar to some of the T, values reported for human leukemic cells. We make the assumption
that T, of proliferative leukemic cells is reduced and varies between 5 hours and 12 hours,
Ts is 10 hours and Ths ¢, is 3 hours. From the experimental data in [76] we can conclude
that the survival half-life of post mitotic mature leukemic cells in blood is about 12 hours.
It was implemented into the model by forcing post mitotic MLC to take a decision every 12
hours to die or to survive with probability 0.5.

Over the last years, the evidence that AML is initiated and propagated by leukemic stem
cells, a very small population when compared with mature cancer cells, has grown. Concei-
vably, these most immature leukemia cells are more resistant to therapy and subsequently
initiate relapse. Even a small proportion of the leukemic stem cells (~1/10°%) in acute myeloid
leukemia can seed tumor growth [55]. Therefore, the number of leukemic stem cells which
considered in the model before application of treatment should be less than number of ma-
ture leukemic cells. The proportion 1 to 60 was assumed. Ara-C targets all cells during DNA
synthesis (S-phase of the cell cycle), so it does not act on post mitotic leukemic cells. Result
of Ara-C therapy on the number of myeloblastic leukemic cells in blood is shown in Figure
4.12.

We note that extracellular regulation is not considered in the model. There are no ex-
tracellular signaling molecules (like Fas-ligand for erythroid progenitors) which influence cell
fate. The concentration of Ara-C is supposed to be everywhere the same. This means that
the space variable is not explicitly present in the model. On one hand, this simplifies the
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leukemic cells

4 5 6

o 1 2

3
time(days)

F1G. 4.12 — Effect of araC therapy on the number of leukemic cells in the blood. Magenta
curve represents simulation results. Blue points correspond to the clinical data. 10 pym of
araC was given as a 2-hr continuous i.v. infusion for 5 times over a total duration 34 hr with
6-hr interval between the 2-hr of Ara-C infusions.

modelling since we do not have to remove mature leukemic cells from the computational
domain and to introduce two different compartments, one for bone marrow and another one
for blood. On the other hand, we should explain why the space distribution is not impor-
tant here. Indeed, since leukemic cells are not sensitive to normal regulatory mechanisms,
we assume that they make their choice between self-renewal and differentiation according to
their internal properties and independently of the surrounding cells. If this is the case, then
the question is why to introduce a relatively complex hybrid model and not to work with a
simpler model, for example ordinary differential equations. First of all, we need to note that
this should be a cell population structured with respect to intracellular drug concentrations.
Therefore, it should be transport equations with time dependent coefficient and not ordi-
nary differential equations. Second, since we introduce stochasticity in the problem, then we
would have to study stochastic transport systems of equations which are not simpler than
hybrid models. They do not admit analytical solution and should be solved numerically. Let
us finally note that in a more complete model we need to take into account both normal and
leukemic cells which compete for space. In this case, introduction of space distributions can
have a crucial importance.

4.4 Discussion

In this chapter, we applied this approach to study treatment of acute myeloblastic leu-
kemia (AML) with Ara-C, one of the main chemotherapeutic drugs used for AML patients.
Since Ara-C kills both normal and leukemic cells, one of the main questions in chemothe-
rapy is to choose optimal patient adapted treatment protocol which allows elimination of
all leukemic cells and preservation of maximum of normal cells. Our results indicate that
chronotherapy, which takes into account circadian rhythms of normal cells, can improve the
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result of treatment.

It can be noted that leukemic cells are practically irresponsive to intracellular and ex-
tracellular regulation. From the modelling point of view developed in this work, this means
that the regulation described in Section 4.1.1 does not influence leukemic cells. Hence the
analysis of pharmacokinetics and pharmacodynamics of leukemic cells, which was one of the
main objectives of this work, is applicable not only for erythroleukemia but also for all types
of acute leukemia. On the other hand however, when analyzing the influence of chemotherapy
on normal cells, we need to take into account their regulation.

Regarding the chronomudulated treatment, it should be noted that resonance is observed
in the simplified model while the real in vivo situation can be much more complex. First
of all, cell lineages with different durations of cell cycle can coexist. Moreover, treatment
itself can change duration of cell cycle, delaying the process of DNA duplication |78]. To our
knowledge, resonance effect has not yet been observed in vivo.

One would have noticed that, in order to use hybrid models and methods in cancer
modelling and treatment, development of several submodels are required. First, rather so-
phisticated computational tools or frameworks must be developed, including : a) cells as
individual objects that can divide, move, change their type (differentiation), die (disappear
from the computational domain), interact with each other and with the surrounding medium
mechanically and chemically ; b) intracellular regulatory networks described, for instance, by
ordinary differential equations; ¢) extracellular bio-chemical species, whose evolution can be
described by partial differential equations. Second, detailed knowledge of intracellular and
extracellular regulations are needed. Extracellular regulation can include local regulation due
to cell communication in the tissue or global feedback through hormones or other signaling
molecules produced in other organs. Intracellular and extracellular regulations can influence
each other in a complex way. Third, pharmacokinetics of medical treatment, treatment pro-
tocol, some particular biological or medical aspects of the problem under consideration, like
for instance resonance and chronotherapy in this work, must be modeled.

There are two major obstacles in the development of this approach : values of parameters
and availability of clinical data. Some values of parameters can be found in the literature. In
many cases, however, reaction rates in intracellular protein cascades are completely unknown.
Moreover, a “complete” reaction scheme can contain hundreds of interacting proteins, genes,
and other factors. So we need to simplify the model preserving its most essential features. The
values of parameters should be adjusted in order to obtain biologically realistic functioning
of the system : correct proportion of each cell type, correct response to various control
parameters, and so on. The uncertainty of the choice of parameters will nevertheless often
remain. Pharmacokinetical parameters are taken from [78§].

Beyond the question of access to the existing clinical data, which is not straightforward,
the main difficulty when trying to compare simulations to existing data, and possibly suggest
an improved treatment protocol, is related to the extreme complexity of in vivo processes.
Intra-specific variation, which has a crucial importance from the evolutionary point of view,
complicates even more treatment optimization for individual patients.

In spite of these difficulties, we can expect that hybrid models will be used in biological
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experiments and clinical practice. These models allow one to take simultaneously into account
spatial effects, intracellular and extracellular regulation, stochasticity, mechanical properties
of cells and of the surrounding medium. Conventional continuous models based on ordinary
and partial differential equations either cannot describe ensemble of these effects at all or
can do it in an empiric way hardly possible to justify rigorously. Moreover, they can become
excessively complex even for numerical simulations.
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Chapitre 5

From hybrid to continuous models

The present chapter deals with asymptotic analysis of the diffusion-discrete absorption
(DDA) equation. This differential-difference equation describes the steady state diffusion
with the pointwise absorption. Such a model corresponds, for example, to a chain of cells
(points) absorbing some substance ; between the cells a steady diffusion process takes place.
The discrete sorption corresponds to the term that is a sum of large number of d-functions
multiplied by the unknown function (concentration). The main result of of this part of thesis
is the homogenization (continualisation) of this equation when the small parameter is the
distance h between two neighboring cells (in the equilibrium state). This homogenization
leads to a purely differential equation describing the macroscopic field. The error estimates
are proved for the difference of the exact solution of the DDA equation and the solution of
the homogenized differential equation.

Up to our knowledge the existence and uniqueness of solution of the DDA equation was
not studied earlier. That is why we prove the existence of solution of the DDA equation. The
theoretical results are confronted to the numerical study. This comparison confirms a good
accuracy of the asymptotic approximation.

The present chapter continues a set of works devoted to an asymptotic analysis of the
discrete models, in particular, in the atomistic mechanics. Some first results in this direction
can be found in the book [23]. The idea of an asymptotic derivation of the continuous
mechanics from the atomistic description has been revisited in a vast literature [62]. This
approach is close in some sense to the justification of difference schemes for the partial
differential equations, when the difference scheme plays part of the initial model and the
corresponding PDE is the limit model. That is why the homogenization of difference schemes
could be also considered in the frame of the passage from discrete to continuous models
[13, 61, 82, 87|. The discrete homogenization has been developed in [24]. Finally, the hybrid
partially discrete and partially continuous models has been considered in [17, 21, 22, 43, 85,
86.
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5.1 Formulation of the problem.

Let R be a positive number, f; € C([0,1]), fo € C([—R, R]), y be a monotone (increa-
sing) function [0, 1] — [a, b], such that
y”(l’) = fl(x)vx € (07 1)
y(0) = a, (5.1)
y(l) = b.

—R < a<b< R;denote by y~! the inverse function to y,

1, x € la,bl,
Xla,b] (.l’) = .
0, otherwise.
Consider the problem
( k
W) = hY_ab(e —y(jh)ulz) = fulz), =€ (R, R),
=0 (5.2)

u'(—R) = 0,
u(R) = 0.

where a, h > 0, « is the absorption coefficient, hk = 1 and k is integer.
Let us introduce the Sobolev space : Hip = {¢ € H'(—R, R)| ¢(R) = 0} . Define a
solution of (5.2) as a function u € Hjg, such that Vo € Hp,

_(/_R u'(x)¢ da:—l—zghu (7h))e / fa(x (5.3)

R

Theorem 5.1.1 Problem (5.3) admits a unique solution.
Proof

Consider a linear functional : ® : H] — R, such that ®(¢) = — f_RR fdx. This functional

® is continuous in Ly : | — ffR fodz |< || fllzll¢llz, and ® is also continuous in the norm
|€ ||, due to the Poincaré-Friedrichs inequality. Let us introduce a new scalar product :

(u, v) =/ wo'de+ahy uly;)ely;)

R =0

and, respectively, the norm
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k
lull® = [lu'[|7, + ah Y u?(yy). (5.4)
=0
We have
R
uly) = [ (o)
Yj
SO
lu(y;)| < V2R[[W||L,,
and

lul* < (1 + 2aR) |17,

because hk = 1. So, the norm (5.4) is equivalent to the norm Hgp.
Due to the Riesz theorem, there exists a unique solution u € Hj, such that Yy € Hjp

R k
O(p) = /_ u'v'dx + othu(yj)@(yj)

Here and below, y; = y(jh). Then, there exists a unique u € Hj, such that Vo € Hyp,

R k R
—< / Wgdr + ah' S uy(ih))e(y(ih)) = / s

R =0
The theorem is proved.

U

The goal of this work is to justify the closeness of problem (5.1)-(5.2) and the macroscopic
differential equation :

@'(z) — at(z)(y " (2)) xea(2) = fol2),2 € (-, R)
w(—-R) = 0, (5.5)
u(R) = 0.

The existence and uniqueness of its solution is well known.

5.2 Comparison of the discrete and continuous models.

Let us prove that the solution of problems (5.1)-(5.2) and (5.5) satisfy the estimate with
a constant ¢ independent of h. To this end, compare the integral

L = /;hZaU(2)5(2 —y(jh))d=
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and
[2:/ ati(z)(y 1 (2)) dz
-R
We have
' y~(z)
h=h 3 auyh)=h Y aum)= [ au(u(6)ds -+
jiy(jh)<e jiih<y=1(x) 0
where
jh+h (jo+1)h
m= [ alatoth) -~ [ auty(e).
.yl jh y~1(z)
Jii<
where 71( )
, x
]oz[y n ]

Applying the Lagrange theorem, we get

[y (jh)) —a(y(0))| < sup [u/(y(0)]|0 —jh| < sup [W/(z)| sup |y/(0)|h

0€[0,1] z€[—R,R] 0€[0,1]

(Jo+1)h
[ antyo)ds <ol sup o)l
Y

~1(z) 2€[~R,R)
Hence,
|7”h| S Mh,
where
M =af sup [uv/(z)] sup |y/(0)|+ sup [u(z)]) (5.6)
z€[—R,R] 0€[0,1] z€[—R,R]

Making change, t = y(6), in the integral foy_l(m) at(y(0))do, we get

y~1(z) z
/0 oty (6))d6 = / oal(t) (y~ (1)) dt

Integrating equations (5.5) and (5.2), we get

z k

() — / B> aul®)3(6 — y(h) s = / R f2(6)d6.

u(R) = 0.

(5.7)
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ﬂ'(ﬂf)—/_;aﬂw)(y H(0) Xa( d9—/ f2(6 (5.8)
) =0.

Denote w = u — u. Then, subtracting (5.7) from (5.8), we get

T k T

wie) = [ By aw @ - o)+ 1 [ amo)y 0 v (6)ds =0

=0 i

On the other hand,

Therefore,

w'(m)—/ hZaw(Qﬁ(@—y(jh))d@—i—rh = 0,

w(R) = 0.

(5.9)

Multiply (5.9) by ¢’ where ¢ € Hiz(—R, R), and integrate, we get

/ w'¢'dr — / / hZaw 6(0 — y(jh))doy' (x )da:—l—/ rn(z)¢ (x)dx =0

R k R
/ wgde + 1S aw(y(h)e(y(ih) = — / (@) (2)da

Setting ¢ = w, we have
w17, + B aw?(y(ih) < [[ralles]lw']| .,

lw'llz, < ll7allz

Applying the Poincaré-Friedrichs inequality, we get

lwllar < V2R + 1lra| .,

Let us estimate constant M (see (5.6)). We have
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y(x)z/ox/otfl(e)dé’dtnLa—x/ol /Otfl(é’)dedt—i—(b—a)x
/f1 )do + (b — a) //f1 )dfdt

max ||y (z)[| < [b—al + 2| fill:

0<z<1

therefore,

then,

For u we get

R R
122 + o / (@) (y~ (2))da = — / s

R
hence,
1@z < || fell 2RVE
o= = | / ()it 1= < VIRIT| 2 < 2R3 s
Let
Ky = mln/ f1(6)d0 + (b — a) //f1 )dodt > 0
xe(0,1
Then,
o[ oy [ pd
-R -R
therefore,

1
7|z < ol p=~2R max (y~' (1)) + || foll, < 4aRE—||fallz2 + || foll 2
tefab) Ko
And so, finally,

5 1 3
M = @<<4@3570Hf2um 1 fall) (b — al + 20| fill o) + 2R3 || fal 2,)

Theorem 5.2.1 The estimate holds :
|lu—al|m < V2R?+ 1V2RMh

This theorem justifies the homogenized continuous models (5.5).

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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5.3 Numerical experiments

Below we compare the solution of problems (5.1),(5.2) and (5.5), solved numerically. To
this end we consider a one-dimensional lattice of points x; = R + ihy, © = 0,..., N7, where
the mesh-step hy = 2R/Ny, hy < h is a small positive parameter (N; >> 1). Discretized
form of equation (5.2) corresponds the following finite-difference equation :

Uit1 — Uy

A —ha Z (QJUZ(])+(1—QJ)UZ(J)+1)) == / fg(dfi), 1= ]_7 ceny N1—17 Uy = Up, Un, = 0,
1 —R

Jy(ih)<z;

(5.17)
where for any j ;(;), Z;(j)+1 are the neighboring nodes of y(jh). and 6; is defined from relation
y(jh) = 0z + (1 — 0;)xi(j)+1. We solve (5.17) with shooting method [12].

To compute a numerical approximation for the solution of equation (5.5) we apply the
second order difference scheme :

Ui — 2u; + Uy
2
hi

—aul-((yfl)’(xi)))x{mb] = folzy), i=1,....,N1—1, uy = ug, uy, =0, (5.18)

and we solve this equation with the "balayage" method (known also as the "Thomas algo-
rithm" ) [12].

3.1. We consider the following data : a=1, b=5, fo = 1, a = 0.2. Let us consider the
function y satisfying y” = 0, i.e. y =4z + 1, (y~!) = 1/4.
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(a) h=0.01, hy =0.001 (b) h =0.01, hy =0.001

(¢c) h =0.01, hy = 0.0001 (d) h=0.01, hy = 0.0001
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(e) h=0.1, hy = 0.001 (f) h=0.1, hy = 0.001

F1G. 5.1 — Left : red (solid) and green (dash) curves correspond to the numerical solution of
(5.2) and (5.5), respectively. Right : blue curve is the difference between these two solutions.

. . . . "o . —1\/ __ 2
3.2. Now let us consider the function y satisfying ¢y =1, i.e. (y~') = Jhires
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(a) h = 0.01, hy = 0.001 (b) h =0.01, hy = 0.001

(¢) h =0.01, hy = 0.0001 (d) h=0.01, hy = 0.0001

(e) h =0.1, hy = 0.001 (f) h = 0.1, by = 0.001

F1G. 5.2 — Left : red (solid) and green (dash) curves correspond to numerical solution of (5.2)
and (5.5), respectively. Right : blue curve is the difference between two solutions.
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Conclusions and Perspectives

Conclusions.  This thesis is devoted to off-lattice discrete-continuous hybrid modeling
applied to hematopoiesis and blood diseases, such as leukemia and anemia. The main results
of the dissertation are as follows :

Hybrid models with off-lattice cell dynamics were introduced and studied. Cells are
considered as individual object. Intracellular regulation determine cell fate, that is
their self-renewal, differentiation and apoptosis. Therefore, we do not impose the cor-
responding rates as parameters but obtain them as a result of modeling. This is one of
the main achievements of this work.

Model examples of hybrid models which describe biological processes such as the com-

petition between cell proliferation and apoptosis, between proliferation and differen-

tiation and between cell cycling and quiescent state were presented.

Biological pattern formation with hybrid models and its application to bacteria filament

is discussed.

A new model of red blood cell production considering the intracellular scale (protein re-

gulation, cell fate decision) and the cell population scale (cell-cell interactions, influence

of feedback controls) was proposed.

The numerical simulation of an erythroblastic island were carried out. Our results

brought new information on the role of the macrophage and the erythroblastic island

in the production and regulation of red blood cells, the macrophage was shown to play

a key role in the stability and robustness of the production process.

Using experimental data on anemia in mice, we investigate the roles of different feed-

back mechanisms in response to stress situations.

Hybrid models was applied to leukemia modeling and its treatment. A Physiologically

Based Pharmacokinetics-Pharmacodynamics (PBPKPD) model of leukemia treatment

with AraC drug and the relevance of considering chronotherapeutic treatments to

control leukemia was examined.

The passage from a hybrid model to a continuous model in the 1D case was carried

out :

— Comparison between particle dynamics flow and the corresponding equations of
continuum mechanics was done. Numerical simulations confirm a good agreement
between these approaches

— Comparison of diffusion-discrete absorption equation that describes the steady state
diffusion with the pointwise absorption equation and its homogenized form that
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leads to continuous differential equation shows a good accuracy of the asymptotic
approximation.

Perspectives. We propose and study the model of normal and leukemic erythropoiesis
which give some insight in the way how erythroid cell proliferation and differentiation can
be controlled, in vitro and in vivo. Nevertheless, further developments could be considered :

— The regulatory network can be completed by introduction of additional proteins, for
example, such as GATA-1, which involved in erythroid progenitor differentiation |2,
107].

— Influx of BFU-E and CFU-E from HSC can be considered in the further work.

— Both erythropoietin’s influence on erythroid progenitor self-renewal capacity and on
apoptosis protection were taken as linear functions of the number of circulating red
blood cells. Saturation effects should be envisaged when confronting the model to
strong perturbations (for instance, a severe anemia), in order to be closer to the reality
where responses of the organism to a loss of red blood cells have shown to be nonlinear
[28, 29].

— In this work focus was made on the behavior of one single erythroblastic island and
on feedback controls at global and local scales. However, particular geometries, with
obstacles or describing the porous aspect of the bone marrow can be investigated.

— The hybrid model was numerically simulated in two dimensions. The case of simulations
in three dimensions has not been developed. Qualitatively, such a change is not expected
to modify the results, it should nevertheless be tested.

— Moreover, in this work, we focus our attention on red blood cell lineage. Study of
haematopoiesis should be improved by taking into account development of different
blood cells lineages, lymphopoiesis and myelopoiesis.

— In the modeling of leukemic erythropoiesis and its treatment, in order to predict the
outcome of treatment in a more realistic situation, we need to introduce :

— different proliferation rates for normal and leukemic cells
— different lineages of leukemic cells
— resistance to treatment

— Next important step in the modeling of leukemia treatment will be directed to optimi-
zation of the AML treatment by taking into account individual variability of patients.
To achieve this goal the malignant cells from individual patients should be analyzed in
order to determine pharmacokinetics-pharmacodynamics parameters.

We intend to study these questions in the subsequent works.
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Annexe A

Addition to chapter 3 and 4

A.1 Computational algorithm

Programming is done in C++-. The algorithm is shown schematically in Figure (A.1). We
present here its short description.

1.

. Find the total force F; acting on the i-th cell from all other cells, F; = >

Generate an initial configuration of cells. Each cell of the list is parameterized by
cell’s coordinate, speed, radius, age, duration of cell’s phases, its type and intracellular
concentrations. Initial intracellular concentration in the cells are prescribed to be zero.

Update boxes. To economize computational time space domain was devised into square
boxes with size 4r x 4r where r is the radius of cell. Force between two cells is zero
is zero if the distance is greater than the sum of their radii. Therefore, each cell can

communicate only with cells from the same and neighboring boxes.
i fZ], in the
same and the neighboring cells.

4. Compute cell movement due to Newton’s second law.

5. Calculate cell growth with respect that cell should reach twice of its initial radius at

the end of the cell cycle.

Interpolate extracellular values from the grid to the cell position and update the intra-
cellular variables by an explicit scheme.

Check for

I progenitors :

(a) if Erk concentration reaches the critical value E. then the cell self-renews at the
end of its cycle.

(b) if Fas concentration reaches its critical value F, then the cell dies by apoptosis
immediately.

(c) otherwise, cell differentiates in reticulocytes.

IT reticulocytes :
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1. Cenerate initial
configuration of cells

v

2. Update boxes

v

3. Find forces

v

4. Compute cell
movement

v

5. Calculate cell
growth

!

it (reticulocyte

continue

y

if (progenitor)

yes¢

6. Update the
intracellular variables

7.<age of cell> <
<time of cell cycle>

ce

continue ‘ ‘

cell dies ‘

, v

v

if (reticulocyte)>

delete from

if (progenitor)

cell division continue

v

8. Update cell list

v

9. Compute cell
division

!

[10. Calculate concentration|
of reticulocytes

v

11. Compute extracellular
concentration

}

12. Calculate erythrocytes
number

v

13. Compute feedback

F1a. A.1 — Schematic representation of the computational algorithm.
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(a) if reticulocyte age is more than one cycle we assume that it become erythrocyte
and we delete reticulocyte from computational domain.

8. Update cell list.

9. Compute cell division, by replacing mother cell with two daughter cells. Orientation of
the mitotic spindle at division is chosen randomly.

10. Calculate concentration of reticulocytes in each square grid of space to transfer the
secreted Fas-ligand to the grid.

11. Solve equations of extracellular concentrations of Fas-ligand, produced by reticulocytes,
and growth factors (in case with macrophage) on a regular grid, using an alternating
direction implicit method for the partial differential equations.

12. Calculate the number of circulating erythrocytes. They are counted as cells outside the
domain which live during a time corresponding to certain cycle durations.

13. Compute feedback from erythrocytes, which act through feedback loops, on the fate of
immature cells within the domain.

14. Continue with step (2).

In computational algorithm of leukemia treatment we also calculate pharmacokinetics of
AraC in each cell in step 6. Next, in step 7 we check if intracellular concentration of AraCTP
in DNA reached its critical value. In this case cell dies by apoptosis and is deleted from the
cell list.

Alternating direction implicit method. Consider the diffusion equation in two dimen-
sions :

ot
ot 0x2  oy?’
u(z,y,0) =v(x,y), 0<z,y<1

U(IL’, Y, t) |D: G

0<a,y<l, 0<t<T

—_

(A1)

in the square domain 0 < z,y < 1 with the boundary D. We chose the grid (z;,y;,t,) =
(th, jh,pt),i=1,2,..., Ny and hy = 1/N,, j =1,2,..., N, and hy = 1/N,. The problem (A.1)
can be written in the following form :
Ou_1 P Pu 10 o
ot 2°0x2 Oy’ 2022 oy T~
u(z,y,0) =9(z,y), 0<zy<l1
u(z,y,t) |p=G
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Next, we split the first equation of (A.2) in two sub-steps and chose the following finite
difference scheme :

p+1/2 p p+1/2 p+1/2 p+1/2 p P p
i Wy Wiy — 20 U n Uij—1 — 2Ui 5+ U
At/2 h? h? ’
A.3)
p+1 p+1/2 p+1/2 p+1/2 p+1/2 p+l1 p+l1 p+1 (A.
Ui — Uiy Wimay T2 Uy Uty — 25+ Ui
At/2 h? h? ’

To calculate uP*! using the scheme above, first of all for each fixed j we should solve the
first equation of (A.3) for u?*'/2. Next, we should solve the second equation relative u?*'.
Let us start with the first equation :

p+1/2 p p+1/2 p+1/2 p+1/2 p P p
Uij Ui Uisy — 25+ Ui L Wi T 2uy 5 + Ui i
AL/2 B 2 :
p P o P P
1 sty (_z B L)u’.’fl/z Loz My Vi 2uf  +up
h2 L h2z  At/20 B2 L At /2 h2 ’
—~— N —~ . ~~—~ N ~- v
@i bij Cij fij

Therefore, the first equation of the system can be written in the following form :

p+1/2
i—1,7

p+1/2 p+1/2 _ pp
—i—bzu —l—ci]-uHLj = Jij»

it Wi 5

for each fixed j, j = 1,2, ..., N, — 1 we solve the equation :

al? VP bl e = P =1, N, — 1 A4
i—1 7 i+1 70 ) ;

with the boundary conditions u}_y = g1, ul_y_ = ga.
We can solve equation (A.4) using the Thomas algorithm. For that we can write equation
u?_, = g1 in the following form :

uy = Lipu + Ky,
where L;/; = 0 and Ky/3 = g;. From equation
arug + biuy + crug = fi,
that correspond to equation (A.4) with ¢ = 1, represent u; :
uy = Lzjpus + K30, (A.5)
where we denote by Lz = 52, Ky = %. From equation

asuy + bous + cous = fo,
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that correspond to equation (A.4) with ¢ = 2, using (A.5) we represent us :
ug = Lsjousz + Ks)a.

We continue this process for i = 3,4, ...
Substitute
i1 = Li_q1pou; + Ki_1)2
into equation
a;ui—1 + biu; + ciuip 1 = fi,

we have F K

—C; i Aid\i_1/2

U= ———Ujs ] + —
bi + a;iLi—1/2 i bi + a;Li—1)2

or

i = Lip1ouipr + Kig1)2 (A.6)

We see that the coefficients L;y1/o and K./, obtained due to the method described above
can be calculated with following recurrent formulas

L; =— A7
e bi + a;Li_1 /9 (A1)
fi— aiKz‘—l/Q
K; =1 A8
e bi + a;ili—1/2 (4-8)
For : = N — 1 we obtain
un—1 = Ln_10un + Kn_1/2.
As uy = go, we can calculate
un—1= Ln_1/292 + Kn_1/2.
After that we can obtain the values of uy_o, uy_3, ..., uy by formula (A.6). Therefore,

the Thomas algorithm consists of the forward sweep with calculating L;1 /2 and K,/ with
recurrent formulas (A.7)-(A.8). The solution is obtained by the backward sweep with formula
(A.6).

Thereby, we found u?*t1/2. Analogically, we find u?*! from the second equation of system

(A.3).
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