T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, Articles in peer-reviewed journals ? Large scale metric learning for distance-based image classification

M. Guillaumin, T. Mensink, J. Verbeek, C. Schmid, T. Mensink et al., International peer-reviewed conferences ? Metric learning for large scale image classification: Generalizing to new classes at near-zero cost, European Conference on Computer Vision (ECCV), p.2012, 2012.

T. Mensink, J. Verbeek, and G. Csurka, ? Learning structured prediction models for interactive image labeling, IEEE Conference on Computer Vision & Pattern Recognition (CVPR), 2011.
DOI : 10.1109/cvpr.2011.5995380

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.658.8786

X. Publications, Improving the Fisher kernel for large-scale image classification, F. Perronnin, European Conference on Computer Vision (ECCV), 2010.

T. Mensink, J. Verbeek, and G. Csurka, ? Transmedia relevance feedback for image auto-annotation, British Machine Vision Conference, 2010.

@. Tagprop, M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, Discriminative metric learning in nearest neighbor models for image auto-annotation, IEEE International Conference on Computer Vision (ICCV), 2009.

T. Mensink and J. Verbeek, ? Improving people search using query expansions: How friends help to find people, European Conference on Computer Vision (ECCV), 2008.
DOI : 10.1007/978-3-540-88688-4_7

M. Guillaumin, T. Mensink, and J. Verbeek, ? Automatic face naming with caption-based supervision, IEEE Conference on Computer Vision & Pattern Recognition (CPRV), 2008.
DOI : 10.1109/cvpr.2008.4587603

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.877

@. Distributed, E. Tracking, T. Mensink, W. Zajdel, B. Kröse et al., National peer-reviewed conferences ? Apprentissage de distance pour l'annotation d'images par plus proches voisins, IEEE/ACM International Conference on Distributed Smart Cameras (ICDSC) Mensink, Reconnaissance des Formes et Intelligence Artificielle (RFIA), 2007.

T. Mensink, J. Verbeek, and G. Csurka, PUBLICATIONS XIII Other publications ? Weighted transmedia relevance feedback for image retrieval and auto-annotation, p.415, 2011.

M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, ? Face recognition from caption-based supervision, p.392, 2010.
DOI : 10.1007/s11263-011-0447-x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.173.2388

@. Lear, T. Mensink, G. Csurka, F. Perronnin, J. Sánchez et al., XRCE's participation to Visual Concept Detection Task -ImageCLEF, Workshop Cross Language Image Retrieval, 2010.

@. Inria-m, M. Douze, T. Guillaumin, C. Mensink, J. Schmid et al., Working Notes for the CLEF, 2009.

J. Ah-pine, C. Cifarelli, S. Clinchant, G. Csurka, and J. Renders, XRCE's participation to ImageCLEF, Working Notes of the CLEF Workshop. CLEF Campaign, 2008.

J. Ah-pine, S. Clinchant, G. Csurka, F. Perronnin, and J. Renders, Leveraging Image, Text and Cross?media Similarities for Diversity?focused Multimedia Retrieval, ImageCLEF -Experimental Evaluation in Visual Information Retrieval, 2010.
DOI : 10.1007/978-3-642-15181-1_17

URL : https://hal.archives-ouvertes.fr/hal-01504565

N. Ailon, A Simple Linear Ranking Algorithm Using Query Dependent Intercept Variables, European Conference on Information Retrieval, 2009.
DOI : 10.1049/cp:19991091

URL : http://arxiv.org/abs/0810.2764

T. Arni, P. Clough, M. Sanderson, and M. Grubinger, Overview of the ImageCLEFphoto 2008 Photographic Retrieval Task, Working Notes of the CLEF Workshop. CLEF Campaign, 2008.
DOI : 10.1145/860435.860440

B. Bai, J. Weston, D. Grangier, R. Collobert, Y. Qi et al., Learning to rank with (a lot of) word features, Information Retrieval, vol.22, issue.1, pp.291-314, 2010.
DOI : 10.1007/978-1-4615-5661-9

K. Barnard, P. Duygulu, D. Forsyth, N. De-freitas, D. Blei et al., Matching words and pictures, Journal of Machine Learning Research, vol.3, pp.1107-1135, 2003.

H. Bay, A. Ess, T. Tuytelaars, and L. V. , Speeded-Up Robust Features (SURF), Computer Vision and Image Understanding, vol.110, issue.3, pp.346-359, 2008.
DOI : 10.1016/j.cviu.2007.09.014

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.738

S. Bengio, J. Weston, and D. Grangier, Label embedding trees for large multi-class tasks, Advances in Neural Information Processing Systems, 2011.

A. Berg, J. Deng, and F. Li, The ImageNet large scale visual recognition challenge, 2010.

T. Berg, A. Berg, J. Edwards, M. Maire, R. White et al., Names and faces in the news, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2004.
DOI : 10.1109/CVPR.2004.1315253

H. Bilen, V. P. Namboodiri, and V. P. Van-gool, Object and Action Classification with Latent Variables, Procedings of the British Machine Vision Conference 2011, 2011.
DOI : 10.5244/C.25.17

X. C. Bibliography and . Bishop, Pattern recognition and machine learning, 2006.

M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan, Time bounds for selection, Journal of Computer and System Sciences, vol.7, issue.4, 1973.
DOI : 10.1016/S0022-0000(73)80033-9

URL : http://doi.org/10.1016/s0022-0000(73)80033-9

O. Boiman, E. Shechtman, and M. Irani, In defense of Nearest-Neighbor based image classification, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587598

L. Bottou, Large-scale machine learning with stochastic gradient descent, International Conference on Computational Statistics (COMPSTAT), 2010.
DOI : 10.1201/b11429-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.419.462

J. Bradley and C. Guestrin, Learning tree conditional random fields, Proceedings of the International Conference on Machine Learning, 2010.

S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder et al., Visual Recognition with Humans in the Loop, Proceedings of the European Conference on Computer Vision, 2010.
DOI : 10.1007/978-3-642-15561-1_32

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds et al., Learning to rank using gradient descent, Proceedings of the 22nd international conference on Machine learning , ICML '05, 2005.
DOI : 10.1145/1102351.1102363

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.9057

T. E. De-campos, G. Csurka, and F. Perronnin, Images as sets of locally weighted features, Computer Vision and Image Understanding, vol.116, issue.1, 2012.
DOI : 10.1016/j.cviu.2011.07.011

J. Chai, H. Liua, B. Chenb, and Z. Baoa, Large margin nearest local mean classifier, Signal Processing, vol.90, issue.1, pp.236-248, 2010.
DOI : 10.1016/j.sigpro.2009.06.015

Y. Chang and H. Chen, Approaches of Using a Word-Image Ontology and an Annotated Image Corpus as Intermedia for Cross-Language Image Retrieval, Working Notes of the CLEF Workshop, 2006.
DOI : 10.1007/978-3-540-74999-8_76

K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, The devil is in the details: an evaluation of recent feature encoding methods, Procedings of the British Machine Vision Conference 2011, 2011.
DOI : 10.5244/C.25.76

G. Checkik, V. Sharma, U. Shalit, and S. Bengio, Large Scale Online Learning of Image Similarity through Ranking, Journal of Machine Learning Research, vol.11, pp.1109-1135, 2010.
DOI : 10.1007/978-3-642-02172-5_2

M. Choi, J. Lim, A. Torralba, and A. Willsky, Exploiting hierarchical context on a large database of object categories, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5540221

C. Chow and C. Liu, Approximating discrete probability distributions with dependence trees, IEEE Transactions on Information Theory, vol.14, issue.3, pp.462-467, 1968.
DOI : 10.1109/TIT.1968.1054142

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.133.9772

O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval, 2007 IEEE 11th International Conference on Computer Vision, 2007.
DOI : 10.1109/ICCV.2007.4408891

R. Cinbis, J. Verbeek, and C. Schmid, Image categorization using Fisher kernels of non-iid image models, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6247926

URL : https://hal.archives-ouvertes.fr/hal-00685943

S. Clinchant, J. Renders, and G. Csurka, XRCE's participation to ImageCLEFphoto, Working Notes of the CLEF Workshop, 2007.

T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.
DOI : 10.1109/TIT.1967.1053964

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.2616

K. Crammer and Y. Singer, On the algorithmic implementation of multiclass kernel-based vector machines, Journal of Machine Learning Research, 2001.

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, Visual categorization with bags of keypoints, ECCV International Workshop on Statistical Learning in Computer Vision, 2004.

C. Cusano, G. Ciocca, and R. Schettini, Image annotation using SVM, Proceedings of the SPIE Conference on Internet imaging, 2004.
DOI : 10.1117/12.526746

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.3235

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

R. Datta, D. Joshi, J. Li, and J. Wang, Image retrieval, ACM Computing Surveys, vol.40, issue.2, p.5, 2008.
DOI : 10.1145/1348246.1348248

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., ImageNet: A large-scale hierarchical image database, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009.

J. Deng, A. Berg, K. Li, and L. Fei-fei, What Does Classifying More Than 10,000 Image Categories Tell Us?, Proceedings of the European Conference on Computer Vision, 2010.
DOI : 10.1007/978-3-642-15555-0_6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.173.3680

A. Depeursinge and H. Müller, Fusion Techniques for Combining Textual and Visual Information Retrieval, Image- CLEF -Experimental Evaluation in Visual Information Retrieval, 2010.
DOI : 10.1007/978-3-642-15181-1_6

C. Desai, D. Ramanan, and C. Fowlkes, Discriminative models for multi-class object layout, Proceedings of the International Conference on Computer Vision, 2009.
DOI : 10.1109/iccv.2009.5459256

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.8585

I. Dimitrovski, D. Kocev, S. Loskovska, and S. D?eroski, Detection of Visual Concepts and Annotation of Images Using Predictive Clustering Trees, 2010.

P. Duygulu, K. Barnard, N. De-freitas, and D. Forsyth, Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary, Proceedings of the European Conference on Computer Vision, 2002.
DOI : 10.1007/3-540-47979-1_7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.2014

N. M. Elfiky, F. S. Khan, J. Van-de-weijer, and J. Gonzalez, Discriminative compact pyramids for object and scene recognition, Pattern Recognition, vol.45, issue.4, pp.1627-1636, 2012.
DOI : 10.1016/j.patcog.2011.09.020

G. Erdogan, Quadratic assignment problem: linearizations and polynomial time solvable cases, 2006.

M. Everingham, L. Van-gool, C. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, vol.73, issue.2, 2007.
DOI : 10.1371/journal.pcbi.0040027

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.6629

M. Everingham, L. Van-gool, C. K. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, vol.73, issue.2, 2008.
DOI : 10.1371/journal.pcbi.0040027

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.6629

M. Everingham, L. Van-gool, C. K. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, vol.73, issue.2, 2009.
DOI : 10.1371/journal.pcbi.0040027

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.6629

M. Everingham, L. Van-gool, C. K. Williams, J. Winn, and A. Zisserman, The PASCAL Visual Object Classes Challenge 2010 Results, 2010.

M. Everingham, L. Van-gool, C. K. Williams, J. Winn, and A. Zisserman, The PASCAL Visual Object Classes Challenge 2011 Results, 2011.
DOI : 10.1007/11736790_8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.6521

J. Farquhar, S. Szedmak, H. Meng, and J. Shawe-taylor, Improving "bag-of-keypoints" image categorisation: Generative models and pdf-kernels, 2005.

L. Fei-fei, R. Fergus, and P. Perona, One-shot learning of object categories, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.4, pp.594-611, 2006.
DOI : 10.1109/TPAMI.2006.79

A. Frome, J. Malik, and Y. Singer, Image retrieval and classification using local distance functions, Advances in Neural Information Processing Systems, pp.417-424, 2007.

T. Gao and D. Koller, Discriminative learning of relaxed hierarchy for large-scale visual recognition Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains, Proceedings of the International Conference on Computer Vision IEEE Transactions on Speech and Audio Processing, pp.291-298, 1994.

J. Van-gemert, J. Geusebroek, C. J. Veenman, and A. W. Smeulders, Kernel Codebooks for Scene Categorization, Proceedings of the European Conference on Computer Vision, 2008.
DOI : 10.1007/978-3-540-88690-7_52

J. Van-gemert, C. Snoek, C. Veenman, S. Smeulders, and J. Geusebroek, Comparing compact codebooks for visual categorization, Computer Vision and Image Understanding, vol.114, issue.4, pp.450-462, 2010.
DOI : 10.1016/j.cviu.2009.08.004

A. Gordo, J. Rodríguez, F. Perronnin, and E. Valveny, Leveraging category-level labels for instance-level image retrieval, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6248035

D. Grangier and S. Bengio, A Discriminative Kernel-Based Approach to Rank Images from Text Queries, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.8, pp.1371-1384, 2008.
DOI : 10.1109/TPAMI.2007.70791

R. Gray, D. Neuhoff, and . Quantization, Quantization, IEEE Transactions on Information Theory, vol.44, issue.6, pp.2325-2383, 1998.
DOI : 10.1109/18.720541

G. Griffin, A. Holub, and P. Perona, Caltech-256 object category dataset, 2007.

M. Grubinger, P. Clough, H. Müller, and T. Deselaers, The IAPR benchmark: A new evaluation resource for visual information systems, International Conference on Language Resources and Evaluation, 2006.

M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, TagProp: Discriminative metric learning in nearest neighbor models for image auto-annotation, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459266

URL : https://hal.archives-ouvertes.fr/inria-00439276

M. Guillaumin, J. Verbeek, and C. Schmid, Is that you? Metric learning approaches for face identification, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459197

URL : https://hal.archives-ouvertes.fr/inria-00439290

M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, Face Recognition from Caption-Based Supervision, International Journal of Computer Vision, vol.57, issue.2, pp.64-82, 2012.
DOI : 10.1145/1027527.1027689

URL : https://hal.archives-ouvertes.fr/inria-00522185

M. Guillaumin, Exploiting Multimodal Data for Image Understanding, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00541354

C. Harris and M. Stephens, A Combined Corner and Edge Detector, Procedings of the Alvey Vision Conference 1988, 1988.
DOI : 10.5244/C.2.23

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.231.1604

T. Hertz, A. Bar-hillel, and D. Weinshall, Learning distance functions for image retrieval, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2004.
DOI : 10.1109/CVPR.2004.1315215

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.5883

M. Huiskes and M. Lew, The MIR flickr retrieval evaluation, Proceeding of the 1st ACM international conference on Multimedia information retrieval, MIR '08, 2008.
DOI : 10.1145/1460096.1460104

T. Jaakkola and D. Haussler, Exploiting generative models in discriminative classifiers, Advances in Neural Information Processing Systems, 1999.

H. Jégou, M. Douze, and C. Schmid, Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search, Proceedings of the European Conference on Computer Vision, 2008.
DOI : 10.1007/978-3-540-88682-2_24

H. Jégou, M. Douze, and C. Schmid, On the burstiness of visual elements, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206609

H. Jégou, M. Douze, and C. Schmid, Product Quantization for Nearest Neighbor Search, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.1, pp.117-128, 2011.
DOI : 10.1109/TPAMI.2010.57

H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez et al., Aggregating Local Image Descriptors into Compact Codes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.9, 2012.
DOI : 10.1109/TPAMI.2011.235

H. Jégou, M. Douze, and C. Schmid, Improving Bag-of-Features for Large Scale Image Search, International Journal of Computer Vision, vol.42, issue.3, pp.316-336, 2010.
DOI : 10.1007/s11263-009-0285-2

H. Jégou, M. Douze, C. Schmid, and P. Pérez, Aggregating local descriptors into a compact image representation, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.3304-3311, 2010.
DOI : 10.1109/CVPR.2010.5540039

T. Joachims, Text categorization with Support Vector Machines: Learning with many relevant features, Proceedings of the European Conference on Machine Learning, 1998.
DOI : 10.1007/BFb0026683

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.6124

T. Joachims, Optimizing search engines using clickthrough data, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, 2002.
DOI : 10.1145/775047.775067

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.3161

T. Joachims, A support vector method for multivariate performance measures, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.377-384, 2005.
DOI : 10.1145/1102351.1102399

F. Jurie and B. Triggs, Creating efficient codebooks for visual recognition, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005.
DOI : 10.1109/ICCV.2005.66

URL : https://hal.archives-ouvertes.fr/inria-00548511

F. S. Khan, J. Van-de-weijer, and M. Vanrell, Top-down color attention for object recognition, Proceedings of the International Conference on Computer Vision, 2009.

J. Kludas, S. Marchand-maillet, and E. Bruno, Information Fusion in Multimedia Information Retrieval, Workshop on Adaptive Multimedia Retrieval, 2007.
DOI : 10.1007/978-3-540-79860-6_12

T. Koopmans and M. Beckmann, Assignment Problems and the Location of Economic Activities, Econometrica, vol.25, issue.1, 1957.
DOI : 10.2307/1907742

J. Krapac, M. Allan, J. Verbeek, and F. Jurie, Improving web image search results using query-relative classifiers, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5540092

URL : https://hal.archives-ouvertes.fr/inria-00548636

J. Krapac, J. Verbeek, and F. Jurie, Learning tree-structured descriptor quantizers for image categorization, Proceedings of the British Machine Vision Conference, 2011.
DOI : 10.5244/c.25.47

URL : https://hal.archives-ouvertes.fr/inria-00613118

J. Krapac, J. Verbeek, and F. Jurie, Modeling spatial layout with fisher vectors for image categorization, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126406

URL : https://hal.archives-ouvertes.fr/inria-00612277

C. Lampert, H. Nickisch, and S. Harmeling, Learning to detect unseen object classes by between-class attribute transfer, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206594

I. Laptev, M. Marsza?ek, C. Schmid, and B. Rozenfeld, Learning realistic human actions from movies, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587756

URL : https://hal.archives-ouvertes.fr/inria-00548659

H. Larochelle, D. Erhan, and Y. Bengio, Zero-data learning of new tasks, AAAI Conference on Artificial Intelligence, 2008.

S. Lazebnik, C. Schmid, and J. Ponce, Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), 2006.
DOI : 10.1109/CVPR.2006.68

URL : https://hal.archives-ouvertes.fr/inria-00548585

Q. Le, A. Smola, O. Chapelle, and C. H. Teo, Optimization of ranking measures, Journal of Machine Learning Research, vol.1, pp.1-48, 2010.

Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen et al., Building high-level features using large scale unsupervised learning, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2012.
DOI : 10.1109/ICASSP.2013.6639343

URL : http://arxiv.org/abs/1112.6209

D. Lewis, Applying support vector machines to the TREC-2001 batch filtering and routing tasks, Proceedings of Text REtrieval Conference (TREC), 2001.

D. Lewis, Naive (Bayes) at forty: The independence assumption in information retrieval, Proceedings of the European Conference on Machine Learning, 1998.
DOI : 10.1007/BFb0026666

H. Li, Learning to Rank for Information Retrieval and Natural Language Processing, Synthesis Lectures on Human Language Technologies, vol.4, issue.1, 2011.
DOI : 10.2200/S00348ED1V01Y201104HLT012

X. Lian, Z. Li, B. Lu, and L. Zhang, Max-Margin Dictionary Learning for Multiclass Image Categorization, Proceedings of the European Conference on Computer Vision, 2010.
DOI : 10.1007/978-3-642-15561-1_12

URL : http://bcmi.sjtu.edu.cn/%7Elianxiaochen/papers/eccv2010.pdf

Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour et al., Large-scale image classification: Fast feature extraction and SVM training, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995477

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.225.3736

T. Lindeberg, Feature detection with automatic scale selection, International Journal of Computer Vision, vol.30, issue.2, pp.79-116, 1998.
DOI : 10.1023/A:1008045108935

J. Liu, M. Li, Q. Liu, H. Lu, and S. Ma, Image annotation via graph learning, Pattern Recognition, vol.42, issue.2, pp.218-228, 2009.
DOI : 10.1016/j.patcog.2008.04.012

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.4931

N. Maillot, J. Chevallet, V. Valea, and J. Lim, IPAL inter-media pseudo-relevance feedback approach to ImageCLEF, Working Notes of the CLEF Workshop, 2006.
DOI : 10.1007/978-3-540-74999-8_92

URL : https://hal.archives-ouvertes.fr/hal-00954108

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Supervised dictionary learning, Advances in Neural Information Processing Systems, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00322431

J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce, Discriminative Sparse Image Models for Class-Specific Edge Detection and Image Interpretation, Proceedings of the European Conference on Computer Vision, 2008.
DOI : 10.1007/978-3-540-88690-7_4

S. Maji and A. Berg, Max-margin additive models for detection, Proceedings of the International Conference on Computer Vision, 2009.
DOI : 10.1109/iccv.2009.5459203

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.153.4717

S. Maji, A. C. Berg, and J. Malik, Classification using intersection kernel support vector machines is efficient, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587630

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.3974

A. Makadia, V. Pavlovic, and S. Kumar, A New Baseline for Image Annotation, Proceedings of the European Conference on Computer Vision, 2008.
DOI : 10.1007/978-3-540-88690-7_24

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.3054

C. Manning, P. Raghavan, and H. Schütze, Introduction to information retrieval, 2008.
DOI : 10.1017/CBO9780511809071

E. Mbanya, C. Hentschel, S. Gerke, M. Liu, A. Nürnberger et al., Augmenting Bag-of-Words -Category Specific Features and Concept Reasoning, 2010.

T. Mensink, J. Verbeek, and T. Caetano, Learning to rank and quadratic assignment, NIPS Workshop on Discrete Optimization in Machine Learning, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00645623

T. Mensink, J. Verbeek, and G. Csurka, Tree-Structured CRF Models for Interactive Image Labeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.2, 2012.
DOI : 10.1109/TPAMI.2012.100

URL : https://hal.archives-ouvertes.fr/hal-00688143

K. Mikolajczyk and C. Schmid, Scale & Affine Invariant Interest Point Detectors, International Journal of Computer Vision, vol.60, issue.1, pp.63-86, 2004.
DOI : 10.1023/B:VISI.0000027790.02288.f2

URL : https://hal.archives-ouvertes.fr/inria-00548554

K. Mikolajczyk and C. Schmid, A performance evaluation of local descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.10, pp.1615-1630, 2005.
DOI : 10.1109/TPAMI.2005.188

URL : https://hal.archives-ouvertes.fr/inria-00548227

R. Motohashi, T. Izawa, and . Takagi, Meiji University at ImageCLEF2010 Visual Concept Detection and Annotation Task, 2010.

H. Müller, P. Clough, T. Deselaers, and B. Caputo, ImageCLEF -Experimental Evaluation in Visual Information Retrieval, 2010.

S. Navarro, M. García, F. Llopis, M. Díaz, R. Muñoz et al., Text-mess in the ImageCLEFphoto08 task, Working Notes of the CLEF Workshop, 2008.

D. Nistér and H. Stewénius, Scalable Recognition with a Vocabulary Tree, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), 2006.
DOI : 10.1109/CVPR.2006.264

E. Nowak and F. Jurie, Learning Visual Similarity Measures for Comparing Never Seen Objects, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.382969

URL : https://hal.archives-ouvertes.fr/hal-00203958

E. Nowak, F. Jurie, and B. Triggs, Sampling Strategies for Bag-of-Features Image Classification, Proceedings of the European Conference on Computer Vision, 2006.
DOI : 10.1007/11744085_38

URL : https://hal.archives-ouvertes.fr/hal-00203752

S. Nowak and M. Huiskes, New strategies for image annotation: Overview of the photo annotation task at ImageCLEF 2010, Working Notes of CLEF, 2010.

S. Nowozin and C. Lampert, Structured learning and prediction in computer vision. Foundations and Trends in Computer Graphics and Vision, pp.185-365, 2011.

S. Nowozin, P. Gehler, and C. Lampert, On Parameter Learning in CRF-Based Approaches to Object Class Image Segmentation, Proceedings of the European Conference on Computer Vision, 2010.
DOI : 10.1007/978-3-642-15567-3_8

A. Oliva and A. Torralba, Modeling the shape of the scene: a holistic representation of the spatial envelope, International Journal of Computer Vision, vol.42, issue.3, pp.145-175, 2001.
DOI : 10.1023/A:1011139631724

V. Ordonez, G. Kulkarni, and T. L. Berg, Im2text: Describing images using 1 million captioned photographs, Advances in Neural Information Processing Systems, 2011.

J. Pan, H. Yang, C. Faloutsos, and P. Duygulu, Automatic multimedia cross-modal correlation discovery, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, 2004.
DOI : 10.1145/1014052.1014135

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.3860

F. Perronnin and C. Dance, Fisher Kernels on Visual Vocabularies for Image Categorization, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383266

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.7388

F. Perronnin, C. Dance, G. Csurka, and M. Bressan, Adapted Vocabularies for Generic Visual Categorization, Proceedings of the European Conference on Computer Vision, 2006.
DOI : 10.1007/11744085_36

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.8075

F. Perronnin, Y. Liu, and J. Renders, A family of contextual measures of similarity between distributions with application to image retrieval, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206505

URL : https://hal.archives-ouvertes.fr/hal-01437742

F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier, Large-scale image retrieval with compressed Fisher vectors, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5540009

F. Perronnin, J. Sánchez, and T. Mensink, Improving the Fisher Kernel for Large-Scale Image Classification, Proceedings of the European Conference on Computer Vision, 2010.
DOI : 10.1007/978-3-642-15561-1_11

URL : https://hal.archives-ouvertes.fr/inria-00548630

F. Perronnin, Z. Akata, Z. Harchaoui, and C. Schmid, Towards good practice in large-scale learning for image classification, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6248090

URL : https://hal.archives-ouvertes.fr/hal-00690014

J. Petterson and T. Caetano, Submodular multi-label learning, Advances in Neural Information Processing Systems, 2011.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Lost in quantization: Improving particular object retrieval in large scale image databases, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587635

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.156.9621

J. Platt, Probabilities for SV machines, Advances in Large Margin Classifiers, 2000.

J. Platt, Fast training of support vector machines using sequential minimal optimization, Advances in kernel methods, pp.185-208, 1999.

P. Pletscher, C. Ong, and J. Buhmann, Spanning tree approximations for conditional random fields, Proceedings of the International Workshop on Artificial Intelligenceand Statistics, 2009.

J. Ponte and W. Croft, A language modelling approach to information retrieval, Proceedings of the International ACM Conference on Research and Development in Information Retrieval (SIGIR), 1998.
DOI : 10.1145/290941.291008

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.6410

T. Qin, T. Liu, J. Xu, and H. Li, LETOR: A benchmark collection for research on learning to rank for information retrieval, Information Retrieval, vol.44, issue.2, pp.346-374, 2010.
DOI : 10.1007/s10791-009-9123-y

A. Rabinovich, A. Vedaldi, C. Galleguillos, and E. W. Belongie, Objects in Context, 2007 IEEE 11th International Conference on Computer Vision, 2007.
DOI : 10.1109/ICCV.2007.4408986

M. Rohrbach, M. Stark, and B. Schiele, Evaluating knowledge transfer and zero-shot learning in a large-scale setting, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995627

G. Salton, A. Wong, and C. S. Yang, A vector space model for automatic indexing, Communications of the ACM, vol.18, issue.11, pp.613-620, 1975.
DOI : 10.1145/361219.361220

G. Salton, Automatic text processing: the transformation, analysis, and retrieval of information by computer, 1989.

G. Salton and C. Buckley, Improving retrieval performance by relevance feedback, Journal of the American Society for Information Science, vol.41, issue.4, 1990.
DOI : 10.1002/(SICI)1097-4571(199006)41:4<288::AID-ASI8>3.0.CO;2-H

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.3553

J. Sánchez and F. Perronnin, High-dimensional signature compression for large-scale image classification, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995504

K. Van-de-sande, T. Gevers, and C. G. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, pp.1582-1596, 2010.
DOI : 10.1109/TPAMI.2009.154

B. Schölkopf and A. Smola, Learning with Kernels, 2002.

F. Schroff, A. Criminisi, and A. Zisserman, Harvesting image databases from the web, Proceedings of the International Conference on Computer Vision, 2007.
DOI : 10.1109/iccv.2007.4409099

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.4040

B. Settles, Active learning literature survey, 2009.

G. Sharma and F. Jurie, Learning discriminative spatial representation for image classification, Procedings of the British Machine Vision Conference 2011, 2011.
DOI : 10.5244/C.25.6

URL : https://hal.archives-ouvertes.fr/hal-00722820

E. Shechtman and M. Irani, Matching Local Self-Similarities across Images and Videos, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383198

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.1297

J. Sivic and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, 2003.
DOI : 10.1109/ICCV.2003.1238663

A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, Content-based image retrieval at the end of the early years, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.12, pp.1349-1380, 2000.
DOI : 10.1109/34.895972

C. Snoek, M. Worring, and A. Smeulders, Early versus late fusion in semantic video analysis, Proceedings of the 13th annual ACM international conference on Multimedia , MULTIMEDIA '05, 2005.
DOI : 10.1145/1101149.1101236

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.5928

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, Large scale multiple kernel learning, Journal of Machine Learning Research, vol.7, pp.1531-1565, 2006.

R. Szeliski, Computer Vision: Algorithms and Applications, 2011.
DOI : 10.1007/978-1-84882-935-0

B. Taskar, C. Guestrin, and D. Koller, Max-margin markov networks, Advances in Neural Information Processing Systems, 2003.

B. T. Xxvii, B. Tommasi, and . Caputo, The more you know, the less you learn: from knowledge transfer to one-shot learning of object categories, Proceedings of the British Machine Vision Conference, 2009.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, Large margin methods for structured and interdependent output variables, Journal of Machine Learning Research, vol.6, pp.1453-1484, 2005.

K. Van-de-sande and T. Gevers, The University of Amsterdam's Concept Detection System at ImageCLEF 2010, 2010.

V. Vapnik, The Nature of Statistical Learning Theory, 1995.

A. Vedaldi and A. Zisserman, Efficient additive kernels via explicit feature maps, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.3, 2011.
DOI : 10.1109/cvpr.2010.5539949

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.7024

C. Veenman and D. Tax, LESS: a model-based classifier for sparse subspaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.9, pp.1496-1500, 2005.
DOI : 10.1109/TPAMI.2005.182

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.3238

J. Verbeek, M. Guillaumin, T. Mensink, and C. Schmid, Image annotation with tagprop on the MIRFLICKR set, Proceedings of the international conference on Multimedia information retrieval, MIR '10, 2010.
DOI : 10.1145/1743384.1743476

URL : https://hal.archives-ouvertes.fr/inria-00548628

S. Vijayanarasimhan and K. Grauman, Multi-level active prediction of useful image annotations for recognition, Advances in Neural Information Processing Systems, 2009.

J. Wang, J. Yang, K. Yu, F. Lv, T. Huang et al., Locality-constrained Linear Coding for image classification, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5540018

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.175.2312

A. Webb, Statistical pattern recognition, 2002.
DOI : 10.1002/9781119952954

J. Van-de-weijer and C. Schmid, Coloring Local Feature Extraction, Proceedings of the European Conference on Computer Vision, 2006.
DOI : 10.1002/col.10049

URL : https://hal.archives-ouvertes.fr/inria-00548576

K. Weinberger and L. Saul, Distance metric learning for large margin nearest neighbor classification, Journal of Machine Learning Research, vol.10, pp.207-244, 2009.

K. Weinberger, J. Blitzer, and L. Saul, Distance metric learning for large margin nearest neighbor classification, Advances in Neural Information Processing Systems, 2006.

J. Weston and C. Watkins, Support vector machines for multi-class pattern recognition, Proceedings of the European Symposium on Artificial Neural Networks, 1999.

J. Weston, S. Bengio, and N. Usunier, Large scale image annotation: learning?to?rank with?joint word-image embeddings, Proceedings of the European Conference on Machine Learning, 2010.
DOI : 10.1007/s10994-010-5198-3

J. Weston, S. Bengio, and N. Usunier, WSABIE: Scaling up to large vocabulary image annotation, International Joint Conference on Artificial Intelligence, 2011.

J. Winn, A. Criminisi, and T. Minka, Object categorization by learned universal visual dictionary, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.1800-1807, 2005.
DOI : 10.1109/ICCV.2005.171

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.8714

J. Yang, K. Yu, Y. Gong, and T. Huang, Linear spatial pyramid matching using sparse coding for image classification, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009.

Y. Yue, T. Finley, F. Radlinski, and T. Joachims, A support vector method for optimizing average precision, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '07, 2007.
DOI : 10.1145/1277741.1277790

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.535.8300

H. Zhang, A. Berg, M. Maire, and J. Malik, SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), pp.2126-2136, 2006.
DOI : 10.1109/CVPR.2006.301

J. Zhang, M. Marsza?ek, S. Lazebnik, and C. Schmid, Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study, International Journal of Computer Vision, vol.36, issue.1, pp.213-238, 2007.
DOI : 10.1007/s11263-006-9794-4

URL : https://hal.archives-ouvertes.fr/inria-00548574

X. Zhang, Z. Li, L. Zhang, W. Ma, and H. Shum, Efficient indexing for large scale visual search, Proceedings of the International Conference on Computer Vision, 2009.

Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen et al., A general boosting method and its application to learning ranking functions for web search, Advances in Neural Information Processing Systems, 2008.

X. Zhou, X. Zhang, Z. Yan, S. Chang, M. Hasegawa-johnson et al., SIFT-Bag kernel for video event analysis, Proceeding of the 16th ACM international conference on Multimedia, MM '08, 2008.
DOI : 10.1145/1459359.1459391

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.3496

X. Zhou, K. Yu, T. Zhang, and T. Huang, Image Classification Using Super-Vector Coding of Local Image Descriptors, Proceedings of the European Conference on Computer Vision, 2010.
DOI : 10.1007/978-3-642-15555-0_11