Learning Image Classification and Retrieval Models

Résumé : Nous assistons actuellement à une explosion de la quantité des données visuelles. Par exemple, plusieurs millions de photos sont partagées quotidiennement sur les réseaux sociaux. Les méthodes d'interprétation d'images vise à faciliter l'accès à ces données visuelles, d'une manière sémantiquement compréhensible. Dans ce manuscrit, nous définissons certains buts détaillés qui sont intéressants pour les taches d'interprétation d'images, telles que la classification ou la recherche d'images, que nous considérons dans les trois chapitres principaux. Tout d'abord, nous visons l'exploitation de la nature multimodale de nombreuses bases de données, pour lesquelles les documents sont composés d'images et de descriptions textuelles. Dans ce but, nous définissons des similarités entre le contenu visuel d'un document, et la description textuelle d'un autre document. Ces similarités sont calculées en deux étapes, tout d'abord nous trouvons les voisins visuellement similaires dans la base multimodale, puis nous utilisons les descriptions textuelles de ces voisins afin de définir une similarité avec la description textuelle de n'importe quel document. Ensuite, nous présentons une série de modèles structurés pour la classification d'images, qui encodent explicitement les interactions binaires entre les étiquettes (ou labels). Ces modèles sont plus expressifs que des prédicateurs d'étiquette indépendants, et aboutissent à des prédictions plus fiables, en particulier dans un scenario de prédiction interactive, où les utilisateurs fournissent les valeurs de certaines des étiquettes d'images. Un scenario interactif comme celui-ci offre un compromis intéressant entre la précision, et l'effort d'annotation manuelle requis. Nous explorons les modèles structurés pour la classification multi-étiquette d'images, pour la classification d'image basée sur les attributs, et pour l'optimisation de certaines mesures de rang spécifiques. Enfin, nous explorons les classifieurs par k plus proches voisins, et les classifieurs par plus proche moyenne, pour la classification d'images à grande échelle. Nous proposons des méthodes d'apprentissage de métrique efficaces pour améliorer les performances de classification, et appliquons ces méthodes à une base de plus d'un million d'images d'apprentissage, et d'un millier de classes. Comme les deux méthodes de classification permettent d'incorporer des classes non vues pendant l'apprentissage à un coût presque nul, nous avons également étudié leur performance pour la généralisation. Nous montrons que la classification par plus proche moyenne généralise à partir d'un millier de classes, sur dix mille classes à un coût négligeable, et les performances obtenus sont comparables à l'état de l'art.
Type de document :
Thèse
Information Retrieval [cs.IR]. Université de Grenoble, 2012. English. < NNT : 2012GRENM113 >
Liste complète des métadonnées


https://tel.archives-ouvertes.fr/tel-00752022
Contributeur : Abes Star <>
Soumis le : mercredi 28 juin 2017 - 09:49:29
Dernière modification le : lundi 17 juillet 2017 - 14:57:33

Fichier

MENSINK_2012_diffusion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : tel-00752022, version 2

Collections

Citation

Thomas Mensink. Learning Image Classification and Retrieval Models. Information Retrieval [cs.IR]. Université de Grenoble, 2012. English. < NNT : 2012GRENM113 >. <tel-00752022v2>

Partager

Métriques

Consultations de
la notice

487

Téléchargements du document

46