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Abstract

The overall goal of this thesis is to develop novel methods for the acquisition and the

processing of diffusion magnetic resonance images (MRI), to provide new insights

into the structure and anatomy of the brain white matter in vivo. Diffusion MRI is

a non-invasive technique that measures locally the diffusion of water molecules. The

latter are hindered by tissue structure, and therefore the characterization of water

molecules displacement gives information on the nature, orientation, microstruc-

ture of the underlying tissue. Because of the strong anisotropy observed in white

matter fiber tracts, this tool is most popular for the analysis of brain connectiv-

ity. One of the modality of acquisition and reconstruction, called diffusion tensor

imaging, is now an established tool in research and clinical applications, for the

detection of neural diseases and for pre-operative planning. Being model-based, the

diffusion tensor cannot describe complex intra-voxel configurations, with multiple

populations of fibers crossing. Since then, for a finer description of water molecules

displacement, model-free approaches have recently been proposed, aiming at over-

come the limitations of the diffusion tensor. Most of these techniques are still

extremely demanding in acquisition time, and involve challenging reconstruction

problems.

The first part of this thesis proceeds from a description of the tissue microstruc-

ture, and a physical explanation of the origin of acquired diffusion signal. We give

a review of the reconstruction methods and corresponding acquisition techniques in

diffusion MRI. Several reconstruction methods are presented, and are categorized

into model-based and model-free techniques. The first contribution of this thesis

is related to the parametric reconstruction of the diffusion signal in a continuous

basis of functions. We develop on a previous proposed method called Spherical

Polar Fourier basis, and propose a continuous basis with a significant reduction of

the dimension for the same power of description. We also derive the expression of

the Laplace regularization operator in this basis, for a better robustness to noise.

The second contribution is also related to the reconstruction of the diffusion signal,

and the orientation distribution function, with a special focus on clinical setting.

We propose a real-time reconstruction algorithm based on the Kalman filter to re-

construct the ODF in constant solid angle. We develop on top of the Kalman filter

a motion detection algorithm, based on a monitoring and statistical analysis of the

Kalman filter residuals. We are able to give a precise and sensitive motion detec-

tion, at no additional cost on the on-line acquisition system, as compared to systems

based on camera and computer vision. The two last contributions are related to the

acquisition methods in diffusion MRI, in particular for single and multiple q-shell

experiments. We first describe a geometric approach to generate angular uniform
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schemes, that offer optimal angular coverage per shell and as a whole. Then we

investigate on the link between the choice of a parametric basis of functions, and

the design of sampling protocols. We give explicit methods to generate sampling

schemes with minimal condition number, for the reconstruction in spherical har-

monics (in q-ball imaging) and the reconstruction in the modified spherical polar

Fourier basis, proposed in this thesis. The conclusion of this approach is that the

sampling method should be driven by the physical constraints of the scanner, and

at the same time by the choice of a specific basis to represent the diffusion signal,

and with an overall uniform coverage of the space of sampling directions, for a good

rotational invariance. The new sampling schemes generated with this technique are

available for download from my web page.

Keywords diffusion MRI; acquisition sequence; q-space sampling; q-ball imaging;

regularized reconstruction; Laplace regularization; Kalman filtering; motion

detection.



Résumé (en français)

Le but général de cette thèse est de proposer de nouvelles méthodes d’acquisition et

de traitement du signal en imagerie par résonance magnétique (IRM) de diffusion,

dans le but d’ouvrir de nouvelles perspectives dans la reconstruction de la structure

de la matière blanche in vivo. L’IRM de diffusion est une technique d’imagerie non

invasive qui mesure localement, en chaque voxel, la diffusion des molécules d’eau.

Le déplacement de ces dernières étant contraint par la présence de tissus, le fait

de pouvoir caractériser la diffusion des molécules d’eau apporte des informations

sur la nature, l’orientation, la microstructure des tissus biologiques sous-jacents.

La forte anisotropie observée dans la matière blanche fait de l’IRM de diffusion

un outil privilégié pour l’étude de la connectivité cérébrale. Une des premières

techniques d’acquisition et de reconstruction, appelée IRM du tenseur de diffusion,

est maintenant utilisée de manière routinière en clinique, pour le diagnostique de

certaines maladies neurologiques, ou encore en planification préopératoire. L’IRM

du tenseur de diffusion repose sur un modèle de diffusion gaussien cependant, qui est

limité quand il s’agit de décrire des configurations de tissus complexes à l’intérieur

d’un voxel, par exemple quand plusieurs faisceaux de fibres se croisent. Dès lors,

on a cherché ces dernières années à développer des techniques qui ne reposent pas

sur un modèle a priori, afin de décrire de manière plus précise le déplacement des

molécules d’eau, et dépasser les limitations du modèle tensoriel. La plupart de ces

techniques, dites à haute résolution angulaire, sollicitent un temps d’acquisition

généralement long, et mettent en jeu des problèmes de reconstruction non triviaux.

Dans la première partie de cette thèse, nous décrivons la structure microscopique

des tissus de la matière blanche du cerveau, et présentons la physique de formation

des images en IRM de diffusion. Nous faisons un état de l’art des méthodes de recon-

struction, et des techniques d’acquisition proposées à ce jour. En ce qui concerne les

méthodes de reconstruction, nous faisons la distinction suivant qu’elles soient basées

sur un modèle ou non. La première contribution de cette thèse est liée à la recon-

struction paramétrique du signal de diffusion dans une base de fonctions continues.

Cette contribution fait suite à une méthode proposée récemment, appelée trans-

formée de Fourier sphérique, et y apporte une modification pour une reconstruction

continue. Nous réduisons de façon significative la dimension de la base, tout en

décrivant aussi bien le signal de diffusion. Nous donnons également l’expression de

l’opérateur de régularisation de Laplace en fonction des coefficients dans cette base,

afin de limiter l’impact du bruit sur la reconstruction. La seconde contribution est

également liée à la reconstruction du signal de diffusion, et à la fonction de dis-

tribution d’orientation, dans un contexte d’application clinique. Nous proposons

une méthode de reconstruction en temps réel basée sur le filtre de Kalman pour la
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probabilité marginale de diffusion angulaire. Nous développons un algorithme pour

détecter les mouvements du patient, de façon précise et avec une grande sensibilité,

et ce sans surcoût, comparé aux systèmes utilisant une camera et des algorithmes

de vision robotique. Les deux dernières contributions présentées dans cette thèse

sont liées aux techniques d’acquisition en IRM de diffusion, en particulier pour

l’élaboration de schémas d’acquisition sur une ou plusieurs sphères dans l’espace de

Fourier. Nous présentons d’abord une méthode géométrique pour placer des points

dans l’espace de Fourier sur plusieurs sphères, en optimisant la couverture angulaire

sur chacune des sphères, mais également de façon globale. Puis nous cherchons à

établir un lien entre le schéma d’acquisition et la base de fonctions utilisée pour

la reconstruction, et nous proposons en particulier une méthode pour élaborer un

protocole d’acquisition qui permette de minimiser le nombre de conditionnement,

pour la reconstruction dans la base des harmoniques sphériques, et dans la base de

Fourier sphérique modifiée, proposée dans cette thèse. En conclusion de cette étude

sur l’acquisition, nous pensons que l’élaboration du schéma d’échantillonnage doit

être motivée à la fois pour répondre aux contraintes physiques du scanner, et par

le choix de la base dans laquelle le signal sera reconstruit. Ces nouveaux schémas

d’échantillonnage sont disponibles au téléchargement sur mon site internet.

Keywords IRM de diffusion; séquence d’acquisition; échantillonnage dans l’espace

de Fourier; acquisition sphérique; reconstruction sous contrainte de régularité;

régularisation de Laplace; filtre de Kalman; détection de mouvement.



Contents

I Introduction 13

1 Introduction 15

2 Introduction (en français) 21
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16 CHAPTER 1. INTRODUCTION

Diffusion magnetic resonance imaging (diffusion MRI) was proposed in the mid

80’s [Le Bihan and Breton, 1985, Merboldt et al., 1985, Taylor and Bushell, 1985],

for the early diagnosis of certain neurological disorders. During the last thirty

years, diffusion MRI has gained maturity from methodological research contri-

butions and technical advance, and is now an established tool to character-

ize fine tissue structure, especially useful in the analysis of brain white matter

[Johansen-Berg and Behrens, 2009, Jones, 2010b]. At the same time, the quantity

of data collected during a diffusion MR acquisition for a fine description of water

diffusion, the nature of the signal, render the design of diffusion MR sequence and

the reconstruction of diffusion characteristics extremely challenging, to cope with

practical limitations in a clinical environment.

Technically, diffusion MRI is based on a physical property of the MR signal to

be sensitive to the translational motion of water molecules. More precisely, a pair of

pulsed magnetic field gradients applied during the acquisition sequence attenuates

the spin echo signal [Stejskal and Tanner, 1965]. By acquiring several attenuated,

diffusion images weighted by different gradient orientations and strengths, one has

access to a fine characterization of water molecules motion. The rational behind this

study of water molecules motion, is that the displacement of particles is constrained

by the obstacles in their way. Thus characterizing the diffusion of water molecules

give valuable information on the tissue microstructure, at a much finer resolution

than conventional MRI.

The diffusion can be described by the probability of water molecules displace-

ment during a given observation time. In a free medium, a glass of water for in-

stance, this probability has an isotropic Gaussian distribution. One of the modality

of acquisition and reconstruction in diffusion MRI, called diffusion tensor imaging

(DTI) [Basser et al., 1994a,b], is based on an extension to this physical model of

diffusion in a free medium. It is indeed a multivariate Gaussian model, and the

diffusion tensor is proportional to the covariance matrix of this distribution. DTI

is now an established tool in research and clinical applications, for the detection of

neural diseases and for pre-operative planning. Describing the anisotropic diffusion

by a covariance matrix however, the diffusion tensor model cannot describe com-

plex intra-voxel configurations, with multiple populations of fibers crossing. This

has limited the application of fiber tractography, these algorithms that trace the

structural connectivity in brain white matter using the information from diffusion

MRI.

Since then, for a finer description of water molecules displacement, model-free

approaches have been proposed [Tuch et al., 2002, Tuch, 2004a], to overcome the

limitations of the diffusion tensor. These high angular resolution diffusion imag-

ing (HARDI) techniques can describe and discriminate several populations of fibers
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Figure 1.1: The general pipeline in diffusion MRI, from acquisition design to the

reconstruction of local diffusion information. The corresponding chapters are indi-

cated; chapters in green present a review or state-of-the-art, while chapters in blue

present contributions.
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Figure 1.2: Sketch of the chapters in this thesis.

within a voxel, and have provided a great tool to further develop fiber tractogra-

phy [Fillard et al., 2011]. Nonetheless, HARDI techniques restrict the information

gathered from diffusion MRI to the sole angular structure of diffusion. Naturally,

some research groups have investigated the interest of reconstructing the complete

probability of water molecules displacement, to exploit both radial and angular in-

formation [Wedeen et al., 2005, Assaf et al., 2008]. Most of these techniques are

still extremely demanding in acquisition time however, and involve complex re-

construction problems. This thesis addresses the challenges in both acquisition and

reconstruction raised by these new trends in the diffusion MRI community. We pro-

ceed to give the outline of this thesis, providing a brief summary of each chapter.

The general pipeline of acquisition and local diffusion model estimation is sketched

on Fig. 1.1, on which we refer to the Chapters focusing on on part or another in

the pipeline. We give a sketch of the progression to guide the reader through the

chapters on Fig. 1.2.

Chapter 3 introduces the main object of study in diffusion MRI. We give a brief

description of brain anatomy, with a special focus on brain white matter. Based on

an example of restricting geometric that mimics a pack of axonal fibers, we show on

a simulation how the motion of water molecules is affected by the impermeable walls

of the structure. This introduces the relation between water diffusion and tissue

microstructure, at the heart of diffusion MRI motivations in neurology. We also

introduce the main mathematical objects to describe the diffusion process, namely

the ensemble average propagator (EAP), and the orientation distribution function

(ODF).
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Chapter 4 presents the physics underlying the formation of diffusion weighted

images, and provides a state-of-the-art tour of reconstruction techniques. In par-

ticular, the pulse-gradient spin echo (PGSE) sequence is introduced, as well as the

related concept of q-space. The reconstruction techniques from the signal to the

diffusion characteristics are categorized into model-based techniques, and methods

independent of a model. Within the latter family, we present the spherical polar

Fourier transform, for which we propose an important modification in Chapter 6.

Chapter 5 presents different approaches to the design of acquisition sequences

in q-space, for the reconstruction of the diffusion tensor, the EAP or the ODF. We

distinguish acquisitions restricted on a sphere, called q-ball imaging, from other

approaches such as Cartesian sampling, called diffusion spectrum imaging, or in-

termediate sampling on few separate spheres, called multiple q-shell imaging. We

show how the different methods on sampling design are either purely geometrical,

either purely driven by the needs of a specific reconstruction algorithm.

Chapter 6 describes the first contribution of this thesis, on the parametric esti-

mation of the diffusion signal in q-space. We exhibit a major pitfall in the spherical

polar Fourier (SPF) basis originally introduced in Assemlal et al. [2009b], about the

continuity of the estimated signal. We show that the space of continuous functions

reconstructed in the SPF basis has a substantially reduced dimension, and we give

a basis for this subspace. In order to increase robustness to noise, we also derive a

Laplace regularization operator, expressed as a quadratic form in the coefficients of

the modified SPF basis. This results in a robust and fast parametric reconstruction

method of the signal in the q-space.

Chapter 7 is also dealing with signal reconstruction, with a particular focus in

clinical applications. We derive a real-time algorithm based on Kalman filter for the

estimation of the ODF calculated in constant solid angle. On top of the Kalman

filter, we design a motion detection algorithm, based on the monitoring of Kalman

filter residuals. We show on real and synthetic data that this method give a sensitive

and selective motion detection technique at no additional cost, when compared to

hardware device based on in-scanner camera and computer vision algorithms.

Chapter 8 presents a method to design angular uniform point sets on several

spheres in the q-space. By extending the electrostatic repulsion energy, originally

proposed to construct antipodally symmetric, uniform point sets on the sphere

[Jones et al., 1999a, Jansons and Alexander, 2003], we are able to construct point

sets that have optimal angular coverage when considered as a whole. At the same

time, the point sets also have optimal angular coverage on each sphere. We show

on Monte-Carlo simulation that the use of these point sets as sampling protocols
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in q-space significantly increases the angular resolution to reconstruct single fiber

orientation, and fiber crossing angle.

Chapter 9 answers the question of the optimal design of experiments in q-space

imaging, for the parametric reconstruction of the signal. We present a general

method to find sampling schemes leading to minimal condition number, and pos-

sibly to exact estimation and reconstruction methods. This is applied to the re-

construction in the spherical harmonic basis in q-ball imaging, as well as in the

modified SPF basis, in multiple q-shell imaging. As the sole constraint of minimal

condition number leads to possibly many optimal configurations, we also impose

that the sampling scheme have optimal angular coverage, based on the findings of

Chapter 8.

Chapter 10 gives a general conclusion of this thesis, and put the contributions

presented in this manuscript related to signal acquisition and reconstruction into

perspective. We also present the kind of future work we consider, from applications

of our contributions to a better understanding of tissue microstructure, to clinical

research and clinical applications.
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L’imagerie par résonance magnétique de diffusion (IRM de diffusion) est une tech-

nique inventée dans les années 1980 [Le Bihan and Breton, 1985, Merboldt et al.,

1985, Taylor and Bushell, 1985], qui a rapidement montré un grand potentiel

pour la détection précoce de certaines neuropathologies. Au cours des trente

dernières années, une communauté grandissante de chercheurs s’est formée au-

tour de cette modalité, en proposant de nombreuses innovations méthodologiques

et technologiques. L’IRM de diffusion est maintenant un outil largement utilisé

en clinique et en recherche pour caractériser de manière très fine la structure

des tissus biologiques, et en particulier pour l’étude de la matière blanche du

cerveau [Johansen-Berg and Behrens, 2009, Jones, 2010b]. Pour autant, la quantité

d’information collectée à l’occasion d’une acquisition en IRM de diffusion est à la

mesure de la complexité des tissus biologiques dans la matière blanche que l’on

souhaite caractériser. Lorsqu’il s’agit de mesurer finement la structure des tissus,

la préparation des protocoles d’acquisition et la reconstruction des caractéristiques

propres à la diffusion posent des problèmes non triviaux, si l’on tient compte des

limitations en pratique, dans un environnement clinique.

Le principe de l’IRM de diffusion repose sur une propriété physique du signal de

résonance magnétique d’être modifié lorsque les particules sont en mouvement. Plus

précisément, lorsque des gradients de champ magnétiques sont appliqués pendant de

courts instants, et à un moment précis de la séquence d’acquisition, le signal d’écho

mesuré est atténué [Stejskal and Tanner, 1965]. En répétant ce type d’acquisition,

pour plusieurs gradients dans différentes directions et de différentes amplitudes, on

acquière des images dites pondérées en diffusion, à partir desquelles on peut décrire

très précisément le mouvement des molécules d’eau. La motivation principale de

l’étude de la diffusion moléculaire, est que le déplacement des molécules d’eau a sein

des tissus biologiques est contraint par les obstacles rencontrés. Ainsi, une analyse

quantitative de la diffusion des molécules d’eau renseigne sur la microstructure des

tissus sous-jacents, et ce à une résolution bien plus fine que ce que l’on observe en

IRM conventionnelle.

On peut décrire la diffusion grâce à la densité de probabilité de déplacement des

molécules d’eau, pendant une durée d’observation donnée. Dans un milieu libre, un

verre d’eau par exemple, cette probabilité a une densité gaussienne, isotrope. Une

des méthodes d’acquisition et de reconstruction en IRM de diffusion, que l’on appelle

l’IRM du tenseur de diffusion [Basser et al., 1994a,b], se base sur une généralisation

de ce modèle de diffusion gaussien dans un milieu libre. Le modèle probabiliste est

un modèle gaussien multivarié, et le tenseur de diffusion est proportionnel à la

matrice de covariance de cette distribution. L’IRM du tenseur de diffusion s’est

imposée comme une technique incontournable, aussi bien en recherche que pour

les applications cliniques, pour la détection de maladies neurologiques et pour la
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Figure 2.1: Schéma des différentes étapes en IRM de diffusion, depuis la préparation

de la séquence d’acquisition à la reconstruction des informations locales de diffusion.

Les chapitres qui traitent plus particulièrement chacune de ces étapes sont indiqués ;

en vert, les chapitres d’état de l’art, et en bleu, les contributions.

planification pré-opératoire en neurochirurgie. Cependant, le fait de représenter

l’anisotropie de la diffusion par une matrice de covariance empêche de décrire des

configurations complexes, où plusieurs populations de fibres se croisent à l’intérieur

d’un voxel. Cela a longtemps limité l’application à la trajectographie des fibres de

la matière blanche, cette famille de méthodes qui reconstruit la connectivité struc-

turelle dans la matière blanche du cerveau, à l’aide des informations de diffusion

locales.

Étant donné ces limitations, plusieurs approches non basées sur un model on

été proposées [Tuch et al., 2002, Tuch, 2004a], afin de décrire plus précisément le

déplacement des molécules d’eau. Les méthodes dites à haute résolution angulaire

permettent de décrire la diffusion et de discriminer plusieurs populations de fibres

nerveuses au sein d’un même voxel. Elle ont permis d’améliorer considérablement la

qualité des trajectographies de la matière blanche [Fillard et al., 2011]. Et pourtant,

ces méthodes se limitent à une information strictement angulaire sur le phénomène

de diffusion, et donc en quelque sorte sous-exploitent l’information donnée par les

mesures pondérées en diffusion. C’est donc naturellement que plusieurs groupes de
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Figure 2.2: Schéma de lecture de la thèse.

recherche se sont penchés sur la reconstruction de la probabilité de déplacement

des molécules d’eau, afin d’exploiter à la fois l’information radiale et l’information

angulaire [Wedeen et al., 2005, Assaf et al., 2008]. Malheureusement, la plupart

de ces techniques sont très couteuses en temps d’acquisition, et impliquent des

schémas de reconstruction complexes. Cette thèse s’intéresse aux problèmes posés

à la fois par l’acquisition et la reconstruction, soulevés par cette nouvelle tendance

dans la communauté de l’IRM de diffusion. Nous poursuivons cette introduction

en détaillant le plan suivi dans le manuscrit. Les étapes dans le processus classique

d’acquisition sont représentées sur la Fig. 2.1, où l’on a fait référence aux chapitres

correspondants dans cette thèse. Nous présentons également un schéma de lecture

des différents chapitres sur la Fig. 2.2.

Chapitre 3 présente l’objet d’étude en IRM de diffusion : nous présentons

brièvement l’anatomie du cerveau, et tout particulièrement la matière blanche.

Puis, à partir d’un exemple virtuel de géométrie de fibres, qui modélise un faisceau

de fibres dans la matière blanche, nous montrons grâce à une simulation comment

le mouvement des molécules d’eau est affecté par les obstacles que représentent

ces fibres. Cela montre la relation étroite entre la microstructure des tissus, et la

diffusion des molécules d’eau, qui est au cœur de la motivation de l’IRM de diffu-

sion en neurologie. Enfin nous présentons les outils mathématiques pour décrire le

processus de diffusion, à savoir le propagateur moyen, et la fonction de distribution

d’orientation.
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Chapitre 4 présente les principe physiques qui expliquent la formation des im-

ages de diffusion, et donne un état de l’art des méthodes de reconstruction. En

particulier, on présente la séquence à écho de spin et impulsion de gradients, ainsi

que la notion d’espace de Fourier en IRM de diffusion (q-space). Les méthodes

de reconstruction sont présentées et classées en deux catégories, suivant qu’elles

se basent sur un modèle ou non. Parmi les méthodes qui ne dépendent pas d’un

modèle particulier, nous présentons la transformation de Fourier sphérique, pour

laquelle nous proposons une modification importante dans le Chapitre 6.

Chapitre 5 présente différentes approches pour l’élaboration de séquences d’acquisition

dans l’espace de Fourier, pour reconstruire le tenseur de diffusion, le propagateur

moyen ou la fonction de distribution d’orientation. Nous faisons la distinction en-

tre acquisition sur une sphère (q-ball), des autres approches telles que l’acquisition

sur une grille cartésienne (diffusion spectrum imaging), ou encore une approche

intermédiaire, où l’échantillonnage se fait sur quelques sphères concentriques (mul-

tiple q-shell). Ces méthodes permettant de générer des schémas d’acquisition sont

soit purement géométrique, soit liées à un algorithme de reconstruction particulier.

Chapitre 6 présente la première contribution de cette thèse, sur l’estimation

paramétrique du signal dans l’espace de Fourier. Une base de fonctions a récemment

été proposée [Assemlal et al., 2009b], permettant de modéliser le signal dans l’espace

R
3 entier. Cependant, nous montrons que les fonctions de cette base ne sont pas

continues en zéro. Plus précisément, le sous-espace de fonctions représentées dans

cette base qui sont continues a une dimension significativement inférieure à l’espace

de départ. Nous proposons de caractériser ce sous-espace, et en proposons une base.

De plus, pour améliorer le comportement de l’estimation en présence de bruit, nous

proposons un opérateur de régularisation de Laplace. L’expression de cet opérateur

est calculée, et on montre qu’il s’écrit comme une forme quadratique des coefficients

dans la nouvelle base. Le problème d’estimation sous contrainte de régularité a donc

une solution analytique, ce qui rend la méthode rapide et efficace.

Chapitre 7 est également une contribution sur la reconstruction, avec un point

de vue plus orienté vers l’application clinique. Nous présentons un algorithme en

temps réel basé sur le filtre de Kalman, pour l’estimation de la densité marginale

de distribution d’orientation. Basé sur le filtre de Kalman, nous développons un

algorithme de détection de mouvement, qui repose sur une analyse des résidus du

filtre de Kalman. Nous montrons dans une partie expérimentale, sur des données

réelles et des données synthétiques, que cette méthode donne une technique de

détection du mouvement à la fois sensible et sélective, sans surcoût, comparé aux

méthodes basées sur une caméra et des algorithmes de vision par ordinateur.
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Chapitre 8 présente une méthode pour générer des ensembles de points sur

plusieurs sphères, pour l’acquisition dans l’espace de Fourier. En proposant

une extension de l’analogie électrostatique utilisée en q-ball [Jones et al., 1999a,

Jansons and Alexander, 2003], nous proposons une énergie faisant en sorte de

privilégier des configurations uniformes sur chacune des sphères, mais également

offrant une couverture angulaire optimale, globalement. Grâce à des simulations de

Monte-Carlo, nous montrons que cette approche de l’échantillonnage dans l’espace

de Fourier permet de bien améliorer la résolution angulaire, qu’il s’agisse de recon-

struire une fibre ou plusieurs fibres dans un voxel.

Chapitre 9 s’intéresse à la question de l’échantillonnage optimal dans l’espace de

Fourier, pour l’estimation paramétrique du signal. Nous présentons une méthode

générale pour trouver des schémas d’échantillonnage qui ont un nombre de con-

ditionnement minimal, et qui permettent un reconstruction exacte dans une base

donnée. On applique cela à la base des harmoniques sphériques en q-ball, ainsi

que dans la base Fourier sphérique nouvellement proposée pour l’élaboration de

protocoles sur plusieurs sphères. Étant donné qu’il existe généralement une in-

finités de protocoles d’acquisition ayant un nombre de conditionnement minimal, on

s’intéresse à celui qui a en plus la couverture angulaire optimale, grâce à l’approche

présentée dans le Chapitre 8.

Chapitre 11 présente une conclusion générale de la thèse, et replace les con-

tributions liées à l’acquisition et à la reconstruction en perspective. Nous

présentons également les thèmes de recherche futurs que nous aimerions aborder, de

l’application de nos contributions à une meilleure compréhension de la microstruc-

ture des tissus, aux applications en clinique et en recherche clinique.
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Overview

What kind of information does diffusion MRI bring for the discovery of brain white

matter structures? How does the observation of water molecules displacement pro-

vide information on tissue microstructure, at a microscopic scale, several orders of

magnitude beyond conventional MRI resolution? What are the mathematical tools

developed to describe the diffusion process?

This introductory section first provides a quick overview of the anatomy of the

central nervous system, with a special focus on brain white matter, the gold applica-

tion of diffusion MRI. Then we present the close relation between microstructure and

water diffusion. In particular, we show on an illustrating example how the obser-

vation of a population of water molecules displacement within a restricted medium

informs on the configuration of the underlying geometry. Finally, we present the

mathematical and computational tools for a quantitative description and analysis

of the diffusion process.

Keywords brain anatomy; water diffusion; ensemble average propagator; orienta-

tion distribution function.

3.1 Introduction

At a temperature above the absolute zero, water molecules undergo a random mo-

tion due to thermal energy. Using special acquisition sequence, it is possible to get

information from this microscopic motion in MRI. The technique, known as Diffu-

sion MRI, originates in the mid 80’s [Le Bihan and Breton, 1985, Merboldt et al.,

1985, Taylor and Bushell, 1985]. Before describing the physical aspects of diffu-

sion MRI in the next chapter, we introduce here the close relation between water

molecules displacement and tissue microstructure.

We first briefly present some notions of brain anatomy, with a special focus

on white matter. Then we show how tissue geometry constrains the water diffu-

sion, and we present a synthetic example of fiber bundle. We introduce the main

mathematical concepts to quantify the diffusion process in diffusion MRI, namely

the Ensemble Average Propagator (EAP), the Orientation Distribution Function

(ODF) and some derived characteristics. Finally, we show some applications in the

study of brain structural connectivity mapping.

3.2 Anatomy of the central nervous system

The central nervous system (CNS) is constituted of the brain, protected by the

skull, and the spinal cord, protected by the vertebral column (see Fig. 3.1).
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Figure 3.1: The central nervous system.

The brain is divided into two hemispheres. The superficial part of the brain is

called the cortex, and has several grooves on its surface called the sulci. The most

important sulci are the fissure of Rolando, the fissure of Sylvius and the parieto-

occipital sulcus. They divide each hemisphere into the frontal lobe, the parietal

lobe, the occipital lobe and the temporal lobe (see Fig. 3.2).

At a microscopic scale, the brain is made of hundreds of billions of cells called the

neurons. The bodies of neuronal cells form the grey matter. The myelinated axons,

which are connecting neurons together (see Fig. 3.3), are grouped into bundles, and

form the white matter. As visible on Fig. 3.4, the white matter occupies most of

the subcortical volume, and therefore plays an essential role in the brain function.

The function of white matter tracts is to route the messages from one population

of neurons to another. Therefore, being able to map the structure of brain white

matter has long been a key issue in the development of neurology. The first de-

tailed study of white matter was carried out in the nineteenth century [Golgi et al.,

2001, Ramon y Cajal, 1892]. It was made possible by the technological advance in

microscopy and staining. For a detailed history of brain anatomy, the interested

reader might take a look at the excellent related chapter in Wassermann [2010].

Since then, the development of diffusion tensor MRI [Basser et al., 1994a,b] and

recent developments in diffusion MRI have provided a unique tool for the non-

invasive, in vivo analysis of brain connectivity. Making the magnetic resonance

signal sensitive to the translational motion of water molecules, diffusion tensor MRI

infers the underlying tissue structure. In the next section, we show how the study

of water molecules displacement is related to the microstructure, and how it can be

characterized quantitatively to finally map the connections in the brain.
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Figure 3.2: The lobes and main sulci of the brain cortex. Adapted from Gray [1918]

Figure 3.3: Some important commissural fiber tracts, sagittal section. Reproduced

from Gray [1918]

Figure 3.4: (left) Coronal section and (right) sagittal section of a human brain, with

cell stain. Due to the cell stain, grey matter (cortex and basal ganglia) appears dark,

while the white matter appears clear. Reproduced from Welker et al..
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Figure 3.5: (left) Free Brownian motion of a water molecules. (right) A bundle of

white matter fibers, and water molecules trajectory within. We simulated here a

bundle of 19 fibers, each fiber has a 5 µm radius, and we observe the trajectory of

100 water molecules, over 60 ms.

3.3 Structure and restricted diffusion

As seen in the previous section, the structure of white matter is essentially fibrous.

Due to the myeline sheath around the axons, the displacement of water molecules is

hindered by the fibers. Diffusion MRI is based on the hope that the study of water

molecules motion within the tissue could provide insights into the organization of

the fibers.

3.3.1 Free diffusion and restricted diffusion

In a free medium, the molecules undergo a Brownian motion, first described quan-

titatively in Einstein [1956]. In particular, the average square displacement during

the time interval τ is related to the diffusion coefficient D0

R2 = 6D0τ. (3.1)

An example of Brownian motion in a free and a constrained medium is shown on

Fig. 3.5.

3.3.2 An example of geometry

In diffusion MRI, we observe a population of water molecules rather than a single

molecule. To show this, we consider again the example of extra-axonal diffusion,

on the synthetic fiber bundle presented on Fig. 3.5. We generated a population of

100000 water molecules, and simulated their Brownian motion within the sample.

The collision with fibers wall is considered. For a comparison, we also generated

the same population of particles, diffusing in an unconstrained medium. Results of

the simulation are depicted on Fig. 3.6.
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Figure 3.6: Displacement of 10000 water molecules over the diffusion time t = 60 ms.

(left) unrestricted medium, and (right) within the population of fibers presented on

Fig. 3.5. The fibers axis is parallel to the x-axis.
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This model is not intended to be realistic, and beyond this model used for illus-

tration, we can cite here more realistic simulators [Yeh, 2011, Wang et al., 2012], and

in the context of diffusion MRI, the well-known Camino Toolkit Cook et al. [2006].

Anyway this experience reveals remarkable differences between the probability of

water molecules displacement in a constrained and an unconstrained medium (see

Fig. 3.6).

Slower diffusion We first notice that the molecules diffuse faster in an uncon-

strained medium than within a bundle of fibers. By quantifying the diffu-

sivity, we could be able to characterize the density of the underlying tissue

structure.

Anisotropic diffusion Besides, the diffusion of water molecules is preferred in the

direction of the fibers. Then by analyzing the anisotropy of water molecules,

and the principal directions of diffusion, it should be possible to infer the main

directions of the underlying structure in case of a fiber bundle.

Structure Last, in the plane perpendicular to the fibers, we clearly observe a

pattern, which could be related to the geometry of the fiber packing, and

then to the diameter of the fibers and the dimension of the extra-axonal

space [Assaf et al., 2008].

This simple experience illustrates the great potential of diffusion water molecules

reconstruction in the characterization of tissue microstructure. In the next section,

we present mathematical tools to quantify and analyse these observations.

3.4 Quantitative description of diffusion characteristics

In this section, statistical tools are presented to describe the diffusion characteris-

tics, at the scale of a voxel.

3.4.1 Ensemble Average Propagator

In diffusion NMR and diffusion MRI, we measure the diffusion of a whole popula-

tion of water molecules within a sample or within a voxel, respectively. Formally,

the diffusion is a random process, and is characterized by the so-called Ensemble

Average Propagator (EAP), denoted by P throughout this manuscript. It is defined

as

P (r; τ) =

∫

V
p(r0 + r; r0, τ)dr0, (3.2)

where p(r0 +r; r0, τ) is the probability that a molecule initially at r0 moves to r0 +r

over the diffusion time τ , and V is the volume of the voxel (or the volume of the
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sample in NRM). In a free medium, the EAP is simple and is given by the Gaussian

probability density function [Einstein, 1956, Callaghan, 1991b]

P (r; τ) = (4πD0τ)
−3/2 exp

(

− ||r||
2

4D0τ

)

. (3.3)

The self-diffusion coefficient of water D0 is approximately 2.2 · 10−3 mm2 s−1 under

normal conditions of temperature and pressure.

When the diffusion is hindered by an underlying structure, the diffusion is more

complex, as shown on the example Fig. 3.6. The EAP is then closely related to the

structure. In the remaining of this thesis, the diffusion time τ is omitted for the

sake of clarity, and the notation P (r) is retained.

The Gaussian assumption

The EAP in a free medium is an isotropic multivariate Gaussian, with covariance

given by Eq. 3.1. A natural generalization when one wants to capture anisotropy is

to extend this to anisotropic multivariate Gaussian. This is the model underlying

the Diffusion Tensor imaging [Basser et al., 1994a,b]. The diffusion EAP is given

by

P (r) =
1

√

(4πτ)3|D|
exp

(

−rTD−1r

4τ

)

. (3.4)

The 3× 3 positive matrix D is the so-called diffusion tensor.

Visualization

The EAP is a function from R
3 to R

+, and therefore cannot be represented on the

2D surface of this manuscript. Depending on the application, we shall represent

2D slices of this function as grey-scale images. Alternatively, the angular profile

P (r ·u) for a given radius r can be rendered as a 3D surface. An example of both

visualizations is shown on Fig. 3.7, for the anisotropic Gaussian EAP.

In the case of diffusion tensor imaging, the diffusion tensor can be represented as

an ellipsoid, whose major axes correspond to the principal eigenvectors of the tensor.

An example of the image obtained from diffusion tensor imaging is reproduced on

Fig. 3.8.

3.4.2 Orientation Distribution Function

In the study of brain white matter connectivity, the angular aspect of the diffusion

probability is of utmost importance, as it reveals the directions of the underlying

bundles of axon. This information is captured by a spherical function, known as

the Orientation Distribution Function (ODF). This angular function was initially
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Figure 3.7: Gaussian EAP visualization, major axis is x-axis. (left) 2D slices, on

(top left) yz-plane and (bottom left) xy-plane. (right) angular profile, r0 = 15 µm.

Figure 3.8: Diffusion tensors represented as ellipsoids, axial slice. The color codes

the fractional anisotropy (red: low anisotropy, blue: high anisotropy). Courtesy of

Lenglet [2006].



38CHAPTER 3. FROM WATER DIFFUSION TO TISSUE MICROSTRUCTURE

Figure 3.9: Illustration of the radial integration leading to (a) the ODF calculated in

constant solid angle [Tristán-Vega et al., 2009, Aganj et al., 2010a], and to (b) the

original ODF, ψT, defined in Tuch [2004a], Reproduced from Aganj et al. [2010a].

defined [Tuch, 2004a] as the radial integration of the EAP, as

ψT(u) =
1

Z

∫ ∞

0
P (r ·u)dr. (3.5)

Z is a normalization constant, so that ψT integrates to 1 on the unit sphere. More

recently, the definition of the ODF was corrected to match the marginal angular

probability of diffusion [Tristán-Vega et al., 2009, Aganj et al., 2010a]. The defini-

tion of this ODF, ψ, is

ψ(u) =

∫ ∞

0
P (r ·u)r2dr. (3.6)

ψ is also referred to as the ODF calculated in constant solid angle, as the factor r2

in the integration accounts for the Jacobian of the parameterization r = r ·u. This

is illustrated on Fig. 3.9. In this thesis, unless explicitly stated, we use preferentially

the latter ODF, as it is a probability density function and needs not be normalized.

Moreover, it has intrinsically sharper peaks, which is important to detect the fiber

directions in brain white matter.

3.4.3 Scalar measurements

In order to present an information as concise as possible, it is important to de-

velop scalar measurements from the EAP and the ODF. This is an active field of

research, directed towards the search of new biomarkers, for the early detection of

neurological diseases. We present here three model-free quantities: the Mean Square

Displacement (MSD), the return-to-origin probability (RTO), and the Generalized

Fractional Anisotropy (GFA). We also present two popular scalar measurements in

the context of Gaussian diffusion assumption: the Fractional Anisotropy and Mean

Diffusivity.
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Figure 3.10: Diffusion tensors, represented as ellipsoids, for FA ranging from 0.0 to

0.6. The Mean Diffusivity is constant across the tensors.

Mean Square Displacement This is the mean square value of the ensemble av-

erage propagator. It is defined by

MSD =

∫

R3

P (r)||r||2dr. (3.7)

Return-to-Origin probability The Return-to-Origin (RTO) probability [Hürlimann et al.,

1995, Mitra et al., 1995] is the probability for a molecule to come back to its

starting position, once the diffusion time τ is elapsed. It is defined as

RTO(τ) = P (0; τ). (3.8)

The RTO is to be compared to the same quantity in free diffusion, which is

RTO0 = (4πD0τ)
−3/2. The RTO quantifies, in general, how restricted the

molecules are in their motion.

Generalized Fractional Anisotropy The Generalized Fractional Anisotropy (GFA)

is defined as the normalized standard deviation of the orientation distribution

function [Tuch, 2004a]:

GFA =









∫

S2

(ψ(u) − 1)2dΩ
∫

S2

ψ(u)2dΩ









1/2

. (3.9)

This index lies in the interval [0, 1], and measures how different the ODF is

from a uniform, isotropic diffusion (constant ODF on the sphere).

In the case of Gaussian diffusion assumption, the diffusion tensor can be written

as

D = RT









λ1 0 0

0 λ2 0

0 0 λ3









R, (3.10)

where R is a rotation matrix, and λi are the eigenvalues of the diffusion tensor. From

this decomposition, several rotational-invariant quantities of interest are defined

[Westin et al., 2002].



40CHAPTER 3. FROM WATER DIFFUSION TO TISSUE MICROSTRUCTURE

Figure 3.11: (left) description of streamline tractography algorithm: from the prin-

cipal eigenvector of the diffusion tensor, we reconstruct the trajectory of white mat-

ter fibers. Reproduced from Poupon [1999]. (right) An example of fiber tracking

on the whole brain. Courtesy of Lenglet [2006].

Mean Diffusivity The Mean Diffusivity (MD) is defined as the average of the

eigenvalues of the diffusion tensor D:

MD =
1

3

3
∑

i=1

λi. (3.11)

The MD is linearly related to the MSD, through the generalization of Eq. 3.1

to isotropic Gaussian diffusion: MSD = 2 MD τ .

Fractional Anisotropy The Fractional Anisotropy (FA) is another useful quan-

tity defined as the normalized standard deviation of the eigenvalues of the

diffusion tensor [Pierpaoli and Basser, 1999]. Formally,

FA =















3

3
∑

i=1

(λi −MD)2

2

3
∑

i=1

λ2
i















1/2

. (3.12)

The FA ranges from 0 to 1, and characterized the anisotropy of the diffusion

tensor. The value 1.0 corresponds to a degenerate tensor, with at least one

vanishing eigenvalue. Various tensors, represented as ellipsoids, are depicted

on Fig. 3.10, for FA ranging from 0.0 to 0.6.

3.4.4 Application to the study of brain connectivity

Diffusion MRI maps the local anisotropy of water molecules diffusion. By inte-

grating the principal directions of diffusion over the whole white matter, one can
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Figure 3.12: Clustering of the cortico-spinal tract, using the Gaussian framework

in Wassermann et al. [2010]. Courtesy of D. Wassermann.

tract the connecting paths from one region of the brain to another. This process is

known as fiber tractography [Poupon, 1999, Mori et al., 1999, Basser et al., 2000].

A sketch of the streamline tractography method [Mori et al., 1999] and a result of

tractography are shown on Fig. 3.11.

Studying the results of fiber tractography requires appropriate treatment how-

ever. As shown on Fig. 3.11, the tractography algorithms on the whole brain usually

return a large population of fibers. Among this population, some fibers are more

relevant than others on an anatomical point of view. Since then, statistical tools

for the analysis of these large populations have been developed. An active field

of research is dedicated to the clustering of fibers on bundles, to recover the main

tracts in the brain white matter O’Donnell and Westin [2007], Wassermann et al.

[2010].

3.5 Conclusion

In this chapter, we have presented the main motivations for the observation of water

diffusion for its application to the study of brain anatomical connectivity. We have

seen how the presence of tissue boundary affects the motion of water. By observing

the motion of a population of water molecules within a tissue, it is possible to infer

the structure of the underlying structure.

In the next chapter, we present the physics of diffusion MRI. We show how

the MR signal is affected in the presence of spin motion. We introduce the main

challenges in acquisition, signal processing and reconstruction from the MR signal

measurement to the estimation of diffusion characteristics (EAP, ODF, and derived

quantitites) from the measurement of the MR signal.
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Overview

What are the main principles of nuclear magnetic resonance measurements, and

magnetic resonance images reconstruction? How can we measure water diffusion

through MRI? In this chapter, we present the basic principles of NMR, MRI and

diffusion MRI. Then we introduce state-of-the-art methods for the reconstruction

of diffusion characteristics presented in the previous chapter, from diffusion signal

measurements.

Keywords pulse gradient spin echo; diffusion gradient; orthogonal bases; q-ball

imaging; q-space sampling.

4.1 Physics of NMR, MRI and diffusion MRI

We first briefly present the physics underlying nuclear magnetic resonance (NMR)

and the construction of images in MRI. Then we introduce the pulsed-gradient

spin echo sequence (PGSE), and the resulting signal attenuation in presence of spin

displacement.

4.1.1 Magnetic spin and Larmor frequency

Figure 4.1: Magnetic spin: (left) random orientation, (right) precession around the

magnetic field B0 at the Larmor frequency ω0.

The principles of NRM were originally described in Bloch [1946], Purcell et al.

[1946], who both received the Nobel prize in 1952 for their major discovery. NMR

uses the property of magnetic spins immersed in a strong magnetic field B0 to align

their moment with the magnetic field. More precisely, the spins rotate about this

field at a speed called the Larmor frequency, ω0, proportional to the strength of

the magnetic field ω0 = γ||B0|| (see Fig. 4.1), where γ is the gyromagnetic ratio.

The protons in water molecules do have a magnetic spin, and precisely, 80 percent

of the human body is made up of water. This explains why NMR principles has

been applied to the study of biological shortly after its discovery. The associated
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gyromagnetic ratio is 42.6 MHz ·T−1, and therefore for a clinical 3 T scanner, the

Larmor frequency is 127.6 MHz.

(a) At rest (b) Under a RF excitation

Figure 4.2: Net magnetization in presence of a strong magnetic field.

At resting state, the spins do not rotate in phase, and the transverse contribu-

tions of spins tends to cancel each other. The resulting magnetization, also known

as the net magnetization, M, is aligned with the magnetic field B0 (see Fig. 4.2).

However, when excited by a radio signal tuned at the Larmor frequency, material-

ized by a transverse magnetic field B1, they begin to rotate in phase. As a result,

the net magnetization rotates at the same frequency, and begins to precess away

from the B0 axis (see Fig. 4.2). The angle of rotation θ is known as the flip angle,

and depends on the duration and the shape of the radio frequency pulse.

4.1.2 From NMR to MRI

As already stated, the Larmor frequency ω0 depends on the strength of the magnetic

field. Hence by applying a magnetic field gradient, it is possible to encode the spatial

position of spins. Therefore, the position of the excited tissue from which the signal

originated can be deduced from the frequency. By changing the orientation of the

gradient, as in the simplified acquisition sequence sketched on Fig. 4.3, it is possible

to reconstruct a 3D image of the brain. This technique was first proposed in 1950

for one dimensional MRI [Carr, 2004], and has been extended later on to produce

3D images Lauterbur [1973].

4.1.3 Signal attenuation in presence of spin motion

As seen in Chapter 3, water molecules undergo a spontaneous motion due to thermal

energy. It is possible to quantify the spin motion using magnetic field gradients.

The first acquisition sequence dedicated to the measurement of spin motion is due

to Stejskal and Tanner [1965], sketched on Fig. 4.4.

The application of a magnetic field gradient before the 180◦ RF pulse introduces

a phase shift to the spins. If the spins had remained still during the time interval ∆,
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Figure 4.3: A simplified MRI acquisition sequence. Gx, Gy and Gz denote the linear

magnetic field gradients applied to encode spatial position of spins.

therefore the application of the exact same gradient after the 180◦ RF pulse would

cancel the phase shift. However, due to diffusion, the spins that have moved in

the same direction as the gradient to not come exactly in phase, and the resulting

measured echo signal is attenuated.

In the general case, this attenuation depends on the shape and the duration of

the diffusion gradient pulse, and is difficult to express [Callaghan, 1991a]. Indeed,

water molecules also diffuse during the time interval δ, corresponding to the ap-

plication of the diffusion gradient. However it is generally possible to use a first

assumption about the gradient pulse, called the narrow-pulse assumption:

δ ≪ ∆. (4.1)

Under this assumption, we introduce the wavevector q:

q =
γ

2π

∫ δ

0
g(t)dt, (4.2)

where g(t) is the time-dependent magnetic field gradient applied during the time

interval δ. When the gradient pulse has a rectangular profile, the gradient g is

constant during the pulse, and this rewrites simply as q = (2π)−1γδg.
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Figure 4.4: The Stejskal and Tanner acquisition sequence in MRI. Diffusion-specific

elements are depicted in blue. In particular, note the pair of so-called diffusion

gradient pulses, before and after the 180◦ RF pulse, separated by the diffusion time

∆.
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The signal attenuation E(q), defined as the ratio S(q)/S(0), is related to the

ensemble average propagator (EAP) through a Fourier transform

E(q) =

∫

R3

P (r;∆)e−2ıπq · rdq. (4.3)

The wavevector q defines the reciprocal space, referred to as the q-space. By re-

peating the acquisition sketched on Fig. 4.4, for different direction and strength of

the diffusion gradient g, and possibly different gradient pulse duration δ, we acquire

different 3D images of the same object. Such images are called diffusion weighted

images. From a series of diffusion weighted images, which correspond to samples in

the q-space, we can reconstruct the ensemble average propagator, and its derived

characteristics introduced in Chapter 3. The next two sections give an overview of

reconstruction and acquisition methods, from q-space to water diffusion.

4.2 From MR signal attenuation to water diffusion

In this section, we show several methods exploiting the relation between the diffu-

sion signal attenuation and the ensemble average propagator (EAP) to reconstruct

diffusion characteristics. We present the discrete Fourier sampling and reconstruc-

tion (known as diffusion spectrum imaging), several model-based reconstruction

methods (in particular diffusion tensor imaging). Finally, we present some contin-

uous representations in orthonormal bases, in q-ball imaging and q-space imaging.

4.2.1 Diffusion Spectrum Imaging

Water diffusion and MR signal attenuation are linked through a Fourier trans-

form (see Eq. 4.3). The technique known as diffusion spectrum imaging (DSI)

[Wedeen et al., 2005] implements the reconstruction of the EAP from a dense sam-

pling of the q-space on a regular lattice, and discrete inverse Fourier transform (see

Fig. 4.5). The propagator P is therefore reconstructed on a discrete dual grid,

and can be interpolated to evaluate characteristics such as the orientation distribu-

tion function (ODF), the mean square displacement (MSD) or the return to origin

probability (RTO) (see Section 3.4). This method was applied successfully in brain

imaging, for the reconstruction of complex configurations of fibers, including fiber

crossing [Wedeen et al., 2005].

Under the apparent simplicity of the DSI technique, several drawbacks restrict

its application in a clinical context. First, in order to satisfy the Shannon-Nyquist

conditions, the sampling volume in q-space must be sufficiently large. More pre-

cisely, to reconstruct the propagator on a grid of spacing ∆r0, the maximum vector

length, q0, in reciprocal space should be proportional to 2/∆r0. The resolution of

reconstructed EAP is therefore directly limited by hardware, as the limiting param-

eter for q is the magnitude of the magnetic field gradient. Typical values in clinical
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Figure 4.5: q-space sampling in diffusion spectrum imaging (DSI), on a regular

8× 8× 8 Cartesian lattice.

Figure 4.6: Diffusion MRI is a 6D imaging modality. (top) Coordinate of the

wavevector in the q-space, (bottom) corresponding diffusion weighted image.

scanners are of the order of 100 mT ·m−1. An other (straightforward) limitation

is time: even with fast echo-planar imaging techniques, the acquisition of several

hundreds of diffusion weighted images (see Fig. 4.6), necessary in DSI, can take up

to one hour, which is not compatible with clinical use. Finally, the acquisition and

reconstruction on a Cartesian lattice has some computational advantages, but when

one wants to compute the orientation distribution function (ODF), only numerical

methods apply, and it is necessary to interpolate the EAP to compute the radial

integrations.

4.2.2 Model-based reconstruction

To overcome limitations of DSI, which is a model-free, direct reconstruction tech-

nique, several assumptions on the nature of the diffusion EAP have been made to
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simplify the problem. We present in this section the most popular approach, called

diffusion tensor imaging (DTI) [Basser et al., 1994a,b], as well as other related ap-

proaches.

Diffusion Tensor Imaging

The DTI technique assumes that the water molecules displacement has a multi-

variate Gaussian probability (see Section 3.4.1). Within this framework, the EAP

is fully described by the so-called diffusion tensor, D, which is a 3 × 3 symmetric,

positive matrix. The Fourier transform relating the signal attenuation to the propa-

gator (Eq. 4.3) reduces to the simple Stejskal-Tanner equation [Stejskal and Tanner,

1965],

E(q) = exp(−qTDq). (4.4)

Mathematically, the diffusion tensor is parameterized by its 6 independent co-

efficients. Given measurements of the diffusion signal attenuation in at least 6

independent positions in the q-space, the diffusion tensor can be estimated. Several

techniques have been proposed in the literature for the estimation of the diffu-

sion tensor. We describe below the first method originally proposed [Basser et al.,

1994a], based on linear least squares.

Linear Least Squares The Eq. 4.4 can be linearized, and rewrites

− log(E(q)) = qTDq. (4.5)

Put in matrix form, given K measurements yk = − log(E(qk)), this is a classical

linear system

y = Hd, (4.6)

where H is the corresponding observation matrix, and d is the vector of coefficients

d = [DxxDyyDzzDxyDxzDyz]
T.

Since then, the 6 parameters of the diffusion tensor can be reconstructed by

linear least squares [Basser et al., 1994a],

d̂ = (HTΣ−1H)−1HTΣ−1y, (4.7)

where Σ is the diagonal matrix with entries Σk,k = σ2
k/S(qk)2. It accounts for

the non-linear transform of Eq. 4.5, through first-order noise propagation. Under

this model of additive, Gaussian noise, this estimator is the unbiased estimator of

minimum variance [Kay, 1993].
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Figure 4.7: Rice distribution probability density function, for several values of the

SNR. At low SNR, the Rice distribution is not symmetric, and the noise adds a

positive shift to the signal. Estimation not taking into account this shift would

result into inevitable bias.

Noise model and non-linear estimation Beyond the simple linear least

squares, we could directly solve the non-linear least-squares version of Eq. 4.4.

The rational behind this method is that the least-squares solution is the maximum-

likelihood estimator, under the assumption that the measurements are corrupted by

Gaussian noise. For sufficiently large signal-to noise ratio (SNR), this assumption

is valid. However, when the SNR falls below 3 or 4, a more adapted noise model is

the Rician noise distribution (see Fig. 4.7) [Sijbers et al., 1998, Sijbers, 1998].

Several methods were proposed to cope with this noise model. Some methods

[Fillard et al., 2007, Basu et al., 2006, Landman et al., 2007] directly estimate the

diffusion tensor, with a data fit term corresponding to the likelihood of the Rician

distribution. Other methods propose to filter the diffusion weighted images prior to

estimation, either to remove Rician noise [Descoteaux et al., 2008] or to transform

the noise into a Gaussian, additive noise [Koay et al., 2009b]. These methods are

more general are they do not rely on the tensor model for the diffusion signal. This

is an active an important topic of research in diffusion MRI, as diffusion weighted

images have very low SNR and must be processed carefully.

Positivity constraint In diffusion tensor MRI, the object of interest is the dif-

fusion tensor. As it is proportional to the covariance matrix of the EAP, the es-

timated tensor should be positive-definite. Several methods were proposed to this

end, such as the log-Euclidean metrics [Fillard et al., 2007], the Riemannian frame-

work [Lenglet, 2006], or specific parameterizations [Landman et al., 2007].
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Extensions to the Gaussian model

The Gaussian diffusion model is limited to describe the diffusion for a single pre-

ferred orientation, and cannot accurately describe configurations with several pop-

ulations of fibers in a same voxel. Several groups have proposed to extend the

diffusion tensor model to better describe these configurations. Alexander et al.

[2002] propose a multi-tensor model, which is estimated in place of the diffu-

sion tensor whenever a significant distance to the Gaussian model is detected.

Other groups proposed to use higher order tensors to represent the diffusivity

[Özarslan and Mareci, 2003], leading to a generalization of DTI. Jian et al. [2007]

propose to model the diffusion as a mixture of Wishart distributions.

Beyond these extensions to the diffusion tensor model, several studies have been

carried out to represent the diffusion signal, independently of a physical model of

diffusion. A tour of these methods is presented in the next section.

4.2.3 Model-free reconstruction methods

Several methods reconstruct the diffusion signal in a model-independent fashion,

and use the fundamental Fourier relation of Eq. 4.3 to reconstruct either the orien-

tation distribution function, or the full ensemble average propagator. We present

the methods that require samples on a shell (or q-ball) in the q-space, and methods

that do not rely on a specific acquisition scheme.

q-ball imaging

q-ball imaging is a technique proposed in Tuch [2004a] to reconstruct the orien-

tation distribution function ψT. We recall (see Section 3.4.2) that the orientation

distribution function is defined as

ψT(u) =
1

Z

∫ ∞

0
P (r ·u)dr. (4.8)

The work in Tuch [2004a] shows that the ODF ψT can be approximated by the

Funk-Radon transform of the diffusion signal E restricted to a sphere of radius q0.

Formally,

ψT(u) ≈ 1

Z

∫

E(q)δ(qTu)δ(||q|| − q0)dq, (4.9)

where Z is a normalization constant.

Summary of advantages and limitations q-ball method

+ Reconstructs the ODF ψT from samples on a q-shell, instead of complete

q-space (as in DSI),

+ Model-free method,
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Figure 4.8: The spherical harmonic basis functions. Each line corresponds to orders

ℓ = 0, 2, 4. The parameter m ranges from −ℓ to ℓ.

− Discrete method, requires inefficient numerical Funk-Radon transform,

− Reconstructs the ODF ψT, not the marginal ODF ψ.

Analytical q-ball imaging The q-ball imaging technique [Tuch, 2004a] has been

improved, with the use of spherical harmonics functions to represent the signal

[Anderson, 2005, Hess et al., 2006, Descoteaux et al., 2007b]. The computation of

the Funk-Radon transform in Eq. 4.9 in the spherical harmonic basis is analytical,

therefore the computational cost in computing the ODF is reduced. Besides, this

also provides a convenient way to regularize the signal on the sphere through the

Laplace-Beltrami operator [Descoteaux et al., 2007b]. This regularization, minimiz-

ing the penalization
∫

S2(∇bE)2, acts as a low-pass filter and removes oscillations

due to noise.

The signal E(q0 ·u) is approximated by the spherical harmonics basis, truncated

to order L,

∀u ∈ S2, E(q0 ·u) =

L
∑

ℓ=0

ℓ
∑

m=−ℓ

cℓ,mYℓ,m(u). (4.10)

The diffusion signal, E, is antipodally symmetric, and real as we generally mea-

sure the signal amplitude. Usually, we use a modified spherical harmonic basis,

adapted to real, symmetric functions [Descoteaux et al., 2007b]. These functions

are depicted on Fig. 4.8, for a truncation degree L = 4.
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Figure 4.9: Effect of Laplace-Beltrami regularization for the estimation of a q-ball

signal, in the spherical harmonic basis (single fiber, b = 3000 s ·mm−1, SNR = 20,

K = 30 measurements). (top) top view, (bottom) side view. From left to right: λ

weighting parameter increasing, from 0.0 to 0.01.

The mathematical expression of the spherical harmonics function is

Yℓ,m(ϑ,ϕ) =











































√

2(2ℓ + 1)(ℓ −m)!

(ℓ+m)!
Pm

ℓ (cos ϑ) cos(mϕ) for m < 0

√

(2ℓ+ 1)Pm
ℓ (cos ϑ) for m = 0

√

2(2ℓ + 1)(ℓ −m)!

(ℓ+m)!
Pm

ℓ (cos ϑ) sin(mϕ) for m > 0

When truncated up to order L, this SH basis has dimension R = (L+1) · (L+2)/2.

To ease matrix representation, we introduce a single index j to designate the spher-

ical harmonic function Yj = Yℓ,m [Descoteaux et al., 2006]. The correspondence is

given by j = 1, 2, . . . , R when (ℓ,m) = (0, 0), (2,−2), (2,−1), . . . , (2, 2), . . . , (L,−L), . . . , (L,L)

respectively.

The coefficients cj of the signal in spherical harmonic basis are estimated from

a series of measurements at points q0 ·uk, minimizing

U(c) = ||y −Bc||2 + λcTLc, (4.11)

where B is the spherical harmonics design matrix (Bk,j = Yj(uk)), y is the vector of

observations (yk = E(q0 ·uk)) and c is the vector of spherical harmonic coefficients.

The matrix L is the Laplace-Beltrami operator in the spherical harmonic basis, and

is diagonal, since the spherical harmonics are eigenfunctions of ∇b. The entries of

this matrix are Lj,j = ℓ2 · (ℓ+ 1)2. The effect of Laplace-Beltrami regularization is

visible on Fig. 4.9. In particular, the choice of the weighting parameter λ is critical,

and should be adapted on a per-voxel basis, as studied in Descoteaux et al. [2010].

From the coefficients c, describing the signal, the coefficients that represent the

ODF ψT are c′ = Pc, where P is the Funk-Radon operator in the spherical harmon-

ics basis. P is a diagonal matrix, with entries 2πPℓ(0), the Legendre polynomial of

degree ℓ evaluated at 0.
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The ODF (as well as the EAP) are probability density functions, so they are

positive-valued. By analogy to the tools developed to constrain the tensor esti-

mation on the Riemannian manifold of positive matrices, some work have been

proposed recently to propose a similar framework for the ODF and the EAP

[Cheng et al., 2009, Goh et al., 2011].

Summary of advantages and limitations analytical ODF in q-ball

method

+ Fast estimation of the q-ball signal and ODF ψT,

+ Laplace-Beltrami improves robustness to noise,

− Reconstructs the ODF ψT, not the marginal ODF ψ.

Real-time ODF computation The acquisition in high angular resolution diffu-

sion imaging is quite demanding, and the scan time can become an issue. It might

be interesting to get an online feedback on the quality of the reconstruction, to

take decision accordingly in case of patient discomfort or patient motion. In that

sense, an incremental reconstruction of the ODF has been proposed [Poupon et al.,

2008b, Deriche et al., 2009]. The solution is based on a Kalman filter, and exploits

the analytical joint estimation and regularization of the ODF [Descoteaux et al.,

2006], which involves only linear operations.

The reconstruction method in Deriche et al. [2009] implements an incremental

minimization of the energy in Eq. 4.11. The resulting Kalman filter is given by the

following system of equations,

Initialization















c[0] = E[c]

P̃[0] = E[(c− c[0])(c − c[0])T]

P[0] = (P̃[0]−1 + λL)−1

Update



































V [k] = B[k]P[k − 1]B[k]T + σ2[k]

g[k] = P[k − 1]B[k]TV [k]−1

P[k] = (I− g[k]B[k]) P[k − 1]

γ[k] = y[k]−B[k]c[k − 1]

c[k] = c[k − 1] + g[k]γ[k]

(4.12)

As it is usually the case in discrete-time systems, the time index k is in square

brackets rather than subscript, which would have made the notations confusing.

The matrix P[k] is the estimate covariance, while the vector c[k] is the current

estimate. The vector g[k] is usually referred to as the Kalman gain, while γ[k] is

the residual, or prediction error.
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Summary of advantages and limitations of real-time ODF method

+ Fast estimation of the q-ball signal compatible with real-time processing,

+ Incremental solution matches the exact, off-line, reconstruction,

− Reconstructs the ODF ψT, not the marginal ODF ψ.

Marginal ODF in q-ball imaging As explained in Section 3.4.2, there are

two concurrent definitions of the orientation distribution function. While Tuch

originally proposed a solution to reconstruct the ODF ψT in q-ball imaging [Tuch,

2004a], it was recently shown that the marginal ODF, also known as the ODF in

constant solid angle, could be reconstructed in q-ball imaging [Tristán-Vega et al.,

2009, Aganj et al., 2010b].

Under the assumption of a mono-exponential decay of the diffusion signal E,

the relation between E(q), and the ODF ψ is given by:

ψ(u) =
1

4π
+

1

16π2
FRT

{

∇2
b ln(− lnE)

}

(u), (4.13)

where FRT denotes the Funk-Radon Transform, and ∇2
b the Laplace-Beltrami op-

erator Aganj et al. [2010b].

The work in Aganj et al. [2010b] also proposes to extend the reconstruction to

acquisition on several concentric spheres in the q-space. This kind of acquisition is

sometimes referred to as multiple q-shell imaging. This introduces the next section,

in which we present general methods to reconstruct the signal, independently of a

given acquisition protocol.

Summary of advantages and limitations of marginal ODF in q-ball

imaging

+ Analytical reconstruction of the signal, and the ODF,

− Assumes a mono-exponential (single shell) or multi-exponential decay,

− Multi-shell sampling requires same number and sampling directions on each

shell.

Continuous q-space imaging

We denote by continuous q-space imaging the techniques working with a continu-

ous representation of the signal E, and implement a continuous Fourier transform

to compute the EAP. We retain in this section only the model-free methods. The

advantage of these methods is their generality as they assume no underlying phys-

ical model of diffusion. Besides, these methods usually do not rely on a specific

acquisition strategy in the q-space. Several bases have been proposed to this end,

together with methods to reconstruct the EAP and the ODF.
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Diffusion propagator imaging An extension of the spherical harmonic basis

to the 3D space is the Laplace equation by part, as proposed in Descoteaux et al.

[2011]. The signal is decomposed as follows,

E(q ·u) =
∑

ℓ,m

[

cℓ,m
qℓ+1

+ dℓ,mq
ℓ

]

Yℓ,m(u), (4.14)

where Yl,m is the real, spherical harmonic function introduced above. From this

decomposition, the authors in Descoteaux et al. [2011] provide analytical formulae

for the EAP, the ODF and the return-to-origin probability. Yet, the choice of the

representation in Eq. 4.14 suffers from several drawbacks.

First, the signal reconstructed in this basis cannot be represented about zero,

due to the denominator qℓ+1. Besides, the behaviour for large q also is incompatible

with what is observed generally (E → 0 when q →∞). Therefore, the approxima-

tion is valid only in the range [qmin, qmax], which is the volume comprised within

the innermost and outermost shells. In particular, there is no chance to extrapolate

the signal on the whole q-space. The Fourier transform in turn must be computed

on the same cropped volume, and this can introduce inaccuracies in the estima-

tion of the EAP. Other bases have been proposed, with a different radial profile,

compatible with signal extrapolation.

Summary of advantages and limitations of DPI

+ Model-free method,

+ Analytical reconstruction of the signal, the EAP and the ODF

− No regularization provided,

− Basis functions not adapted to extrapolate the signal to the whole q-space.

Simple harmonic oscillator The simple harmonic oscillator-based estimation

and reconstruction (SHORE) has originally been proposed for the reconstruction of

one dimensional q-space diffusion signal [Ozarslan et al., 2008]. Given a direction

u0 in the q-space, the signal is decomposed in a basis of polynomial functions,

weighted by a Gaussian kernel. Formally, we have E(q ·u0) =
∑

n anΦn(q), with

the basis function

Φn(q) = κn(u) exp(−2π2q2u2)L−1/2
n (4π2q2u2), (4.15)

where u is a characteristic length, L
−1/2
n the generalized Laguerre polynomial of

degree n chosen for orthogonality, and κn(u) a normalization constant,

κn(u) =

√

4πun!

Γ(n+ 1/2)
. (4.16)
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Figure 4.10: SHORE 1D basis functions, for n = 0, 1, 2, 5. The characteristic length

is set to u = 15 µm.

We plot several basis functions on Fig. 4.10. In particular, these functions behave

well when q →∞. Besides, this basis was designed to capture non-monotonic radial

decay, as it is the case in most restricted geometries [Özarslan et al., 2011].

This radial profile was further extended to represent the 3D signal [Ozarslan et al.,

2009], by using the spherical harmonics to capture angular information. The basis

functions in 3D are therefore

Φn,ℓ,m(q ·u) = κn,ℓ(u) exp(−2π2q2u2)qℓL
ℓ+1/2
n−1 (2π2q2u2)Yℓ,m(u). (4.17)

The original method did not explicitly provide analytical formulations for the

EAP and the ODF. They are however derived in Cheng et al. [2011].

Summary of advantages and limitations of SHORE

+ Model-free,

+ Analytical reconstruction of the signal,

− No regularization provided,

− No method to take into account E(0) = 1.

Spherical Polar Fourier basis In parallel to the work of Ozarslan et al., a

related basis has been proposed, called the spherical polar Fourier basis (SPF)

[Assemlal et al., 2009b]. This is an orthonormal basis, whose functions are defined

as the product of a radial and an angular function. The signal is decomposed as a

sum of functions: E(q) =
∑

n,ℓ,m an,ℓ,mBn,l,m(q), where

Bn,l,m(q ·u) = Rn(q)Yℓ,m(u), and Rn(q) = κn(ζ)e−q2/2ζL1/2
n

(

q2

ζ

)

. (4.18)
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Figure 4.11: SPF functions Bn,2,−2, n = 0, 1, 2 (from left to right), plotted on the

plane z = 0. Strong discontinuities about the origin are visible.

The work has been further extended to provide a dual SPF basis (dSPF) to rep-

resent the EAP with the same coefficients [Cheng et al., 2010b], as well as close-form

formulae for the computation of the ODF ψT and the marginal ODF ψ [Cheng et al.,

2010a]. The SHORE basis we previously reviewed and the SPF basis are familiar,

yet show some differences. In particular, for the same radial truncation order N ,

the SHORE basis will span a subspace of that spanned by the SPF basis.

We point out a drawback of SPF basis functions: as reported on Fig. 4.11, the

functions Bn,ℓ,m are discontinuous about 0. While both the Laguerre polynomial

and the spherical harmonics are continuous functions on their respective domains,

the problem comes from the parameterization q = q ·u. Indeed, the unit vector

u is not uniquely defined about the origin, and care must be taken when this

parameterization is used.

The SPF reconstruction method was proposed together with a regularization,

to increase the stability of the reconstruction in presence of noise [Assemlal et al.,

2009b]. The regularization acts directly on the coefficients, and the problem solved

is a penalized least squares,

U(a) = ||y −Ha||2 + λLaTLa + λNaTNa, (4.19)

where y = [E(q1), . . . , E(qK)] is the vector of measurements, H the matrix of ob-

servation in the SPF basis and a the vector of coefficients an,ℓ,m. The regularization

matrices L and N are diagonal matrices, with weights ℓ2(ℓ + 1)2 and n2(n + 1)2,

which are supposed to act as angular and radial low-pass filters, respectively.

Summary of advantages and limitations of SPF method

+ Model-free method,

+ Analytical reconstruction of the signal (least squares estimate),

+ Analytical computation of EAP and ODF,

− Discontinuity about the origin,
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− No method to take into account E(0) = 1,

− Low-pass filters L and N defined empirically.

4.3 Summary of the chapter

We have presented a tour of reconstruction method in diffusion MRI, from the dif-

fusion signal in q-space to the reconstruction of diffusion characteristics. Several

challenges were presented throughout the chapter, in particular the practical limi-

tations in clinical settings, where the subjects are likely to move and can sometimes

difficulty remain still in the scanner for dozens of minutes. The works on incremen-

tal reconstruction [Poupon et al., 2008b, Deriche et al., 2009] provide an answer by

giving a real-time feedback on the reconstruction accuracy. We present in Chap-

ter 7 of this thesis an extension to this work for the reconstruction of the ODF in

constant solid angle, and the application to motion detection.

Besides, there is a growing interest for the development of techniques that permit

the reconstruction of the full ensemble average propagator. In this domain, the SPF

basis is a promising tool for the reconstruction of the signal in the whole q-space,

and the subsequent estimation of EAP and ODF. However, we have highlighted

some mathematical problems in the SPF basis, related to the continuity at the

origin, and the regularization proposed in Assemlal et al. [2009b]. We present in

Chapter 6 of this thesis a method for the reconstruction of a continuous signal, with

a classical Laplace regularization.
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Overview

Given the opportunity to acquire K samples in the q-space, how to arrange the

points for an accurate reconstruction? What is the best strategy in q-ball imaging?

We introduce the main methods and strategies for the acquisition of diffusion signal.

Throughout this chapter, we also introduce some important open questions and

challenges, some of which we address in this thesis.

Keywords pulse gradient spin echo; diffusion gradient; orthogonal bases; q-ball

imaging; q-space sampling.

5.1 Introduction

We have presented in the last chapter a guided tour of model-free reconstruction

methods in q-ball and q-space imaging. For all these methods, a constant is the

estimation of the signal, from discrete samples. The sampling strategy is critical

in diffusion MRI and applications, as the number of acquisitions is limited by the

scan time. Indeed, the acquisition one sample in the q-space corresponds to the

acquisition and reconstruction of the whole volume to be imaged, as illustrated on

Fig. 4.6. In this section, we present a list of the state-of-the-art sampling strategies

developed in diffusion MRI. We first present sampling on the sphere in diffusion

MRI, referred to as q-ball imaging. Then we study the extensions to multiple shells

and beyond.

5.2 Acquisition in q-ball imaging

To introduce this section on acquisition on the sphere, we state three fundamental

requirements for the sampling in q-ball imaging. These are basic principles which

are helpful to compare state-of-the-art methods.

Antipodal symmetry Although the diffusion propagator P is not necessarily

symmetric, the diffusion attenuation signal measured in q-space is symmetric.

Therefore it is equivalent to measure E(q) and E(−q), and this symmetry

needs consideration to elaborate the sampling protocol.

As isotropic as possible Usually, there is no prior in the underlying tissue con-

sideration, and it is important to sample each direction equivalently. This is

to avoid any bias, introduced by a sampling with non isotropic density.

Information gathering and noise performance The signal is reconstructed

from discrete samples, in order to finally estimate the diffusion tensor, the
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Figure 5.1: Spherical caps packing, (left) for K = 12 the Fejes-Tóth bound is

achieved: the centers of the spherical caps are the vertices of an inscribed icosa-

hedron; (right) for K = 40, suboptimal configuration provided by the electrostatic

energy minimization, as in Jones et al. [1999a].

EAP or the ODF. For a given number of measurements, the sampling strat-

egy should maximize the amount of information collected to reconstruct the

quantity of interest with best accuracy.

5.2.1 Geometrical constructions

The two above-mentioned properties have motivated the construction of sampling

scheme on a purely geometrical basis. We give a review of such in q-ball imaging.

Spherical caps packing

The problem of finding an arrangement of points ”evenly” distributed on the surface

of a sphere has a long history. One of the parameter of interest is the distance

between any two points, and in particular the minimum distance between any two

points.

Definition 1. Given a set of points uk, k = 1 . . . K on the sphere, we call the radius

of this sequence the minimum distance d between any two points

d = min
i6=j
||ui − uj||. (5.1)

Maximizing the radius d can be equivalently seen as looking for a packing of

non-overlapping spherical caps of maximal radius on the sphere. In 1943, the math-

ematician Fejes-Tóth showed that an upper bound exists for the radius [Fejes-Tóth,

1943]

d ≤
√

4− csc2
πK

6(K − 2)
. (5.2)
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Figure 5.2: Sphere tessellation from an icosahedron. From left to right: regular

icosahedron (12 vertices), two-fold tessellated icosahedron (42 vertices), 4-fold tes-

sellated icosahedron (162 vertices) and 8-fold tessellated icosahedron (642 vertices).

For instance for K = 12, this bound is sharp and the corresponding set is the

inscribed icosahedron, as in Fig. 5.1. However, the general case has not been solved

however.

Lines packing

The problem of spherical caps packing is to arrange points evenly on the surface

of the sphere. But in diffusion MRI, the measured signal E(q) has antipodal sym-

metry. Therefore, the problem of uniformly arrange the sampling directions also

should take into account this central symmetry. This problem has been extensively

studied too, and is known as lines packing in R
3 [Conway et al., 1996]. Surprisingly,

and to the best of our knowledge, the results in Conway et al. [1996] have never

been used for the design of acquisition schemes in q-ball imaging. We acknowledge

the library of such designs at the authors’ website.

Sphere tessellation

The tessellation of the sphere from an icosahedron is a geometric construction

of a triangular mesh of the sphere. It is useful in numerous applications such

as numerical analysis on the sphere [Sadourny et al., 1968], or computer graphics

[Snyder and Barr, 1987]. The construction, sketched on Fig. 5.3, consists in starting

from a regular polyhedron, usually the icosahedron, and subdivide each triangular

face into smaller faces. The new vertices are then projected onto the surface of the

sphere. By increasing the number of edge subdivisions d, it is possible to gener-

ate large collection of vertices (see Fig. 5.2), spread out on the surface of the unit

sphere. The set of vertices of the constructed tessellation is antipodally symmetric,

and therefore we can use the half of the points in diffusion MRI acquisition. In q-

ball imaging, a five-fold icosahedron has been used [Tuch, 2004a, Descoteaux et al.,

2007b] for the acquisition of diffusion attenuated signal.

There are two major drawbacks in this construction: first, it does not allow

point set construction of an arbitrary size. Indeed, if the edge of each triangle is

http://www2.research.att.com/~njas/grass/index.html
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Figure 5.3: Construction of the sphere tessellation, by four-fold subdivision of the

edges of a regular icosahedron. (left) The triangular face of the icosahedron is

divided into equilateral sub-triangles, (right) the created vertices are back-projected

onto the surface of the unit sphere.

Number of segments Number of vertices

d K(d)

1 12

2 42

3 92

4 162

5 252

6 362

7 492

8 642

Table 5.1: Number of vertices of a d-fold tessellated icosahedron.

subdivided into d segments, the number of triangles is multiplied by d2, and the

number of resulting vertices K(d) is given in Table 5.1. We can show K(d) =

12 + 10 · (d2 − 1).

The second drawback is related to the optimality, in terms of distance between

two adjacent points. The icosahedron is made of equilateral triangles, and as stated

above, it is an optimal configuration for the spherical caps packing problem, that

achieves the Fejes-Tóth bound (see Fig. 5.1, left). When it is subdivided (see

Fig. 5.3, on the left), the sub-triangles are also equilateral triangles, all with the

same dimensions; but when the new vertices are projected back onto the surface of

the sphere, the triangles are deformed, and are no-longer equilateral.

Summary of advantages and limitations of sphere tessellation

+ Geometric construction, with rapid computation of vertex positions,

+ Antipodal symmetry,
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Figure 5.4: The colatitude angle, ϑ, and the longitude angle, ϕ.

− No means to create such arrangement for an arbitrary number of points,

− No evidence of uniformity.

Circles of latitude

The author in Koay [2011] provide a sampling scheme with nearly uniform density

on the sphere. The unit sphere is usually parameterized by colatitude ϑ ∈ [0, π]

and longitude angles ϕ ∈ [0, 2π]. Given a point u on the unit sphere, its Carte-

sian coordinates are [cos(ϕ) sin(ϑ) sin(ϕ) sin(ϑ) cos(ϑ)], as illustrated on Fig. 5.4. A

strategy consisting in creating a sampling scheme from a regular grid in the space

of parameters ϑ,ϕ would provide a poor scheme, with a strong concentration of

points about the poles, and a sparse density about the equator. Yet it is possible

to arrange the points on circles of latitude (ϑ constant), with a clever choice of the

number of discretization steps, and the number of points on each line parallel to

the equator (see Fig. 5.5).

The construction in Koay [2011] arranges the points on circles parallel to the

equator, determined by a finite number of colatitude angles ϑi, i = 1 . . . n. On a

given line i, the points are given by their longitudes ϕi,j, j = 1 . . . ki. The number

of discretization steps n for ϑ is chosen so that the angular distance between two

consecutive latitude, ∆ϑ, equals the distance between two consecutive points on the

same latitude. Thus up to the choice of rounding functions, the number of latitude

circles, n, and the number of points on circle i, ki, are determined by the equations

n =
K

2
sin
( π

4n

)

(5.3)

ki = 2 sin(ϑi) sin
( π

4n

)

(5.4)
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Figure 5.5: Point sets generated following the geometrical construction in Koay

[2011]. (from left to right) K = 25, 75, 125. The alignment of points on circles of

latitude is visible on these pictures.

The method is simple and fast, thus appreciated to generate efficiently sampling

protocols with a large number of points (up to K = 105 reported in the paper).

Yet this method does not optimize directly the angular distance between adjacent

points in general. Only the angular distance between points on a same latitude

line, and the angular distance between the supporting lines are considered, and this

might result in a suboptimal configuration. As reported by the author, this method

is best suited to large number of points and was designed with a primary focus on

computational efficiency.

Summary of advantages and limitations of sampling on circles of lat-

itude

+ Analytical geometric construction, with rapid computation of vertex positions,

+ Antipodal symmetry,

+ Construction for any number of points K,

+ Implemented in a free software, downloaded from the author’s website,

− Not best suited for small sample size K < 50,

− No evidence of uniformity.

Electrostatic repulsion

To construct a collection of K points evenly distributed on a sphere, one method

is to consider the points as electrostatic charges, repulsing each other, and to find

the configuration of minimal energy. This problem is called the Thomson problem,

after the physicist who originally studied this problem in his atom model [Thomson,

1904]. As the original formulation does not take into account the antipodal sym-

metry of diffusion attenuation signal, a slightly modified version of the energy was

proposed in Jones et al. [1999a], Jansons and Alexander [2003] for use in diffusion

MRI.

http://sites.google.com/site/cgkoay/pr
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Specifically, a set of K points uk is optimal if it minimizes the energy

∑

i6=j

1

||ui − uj||2
+

1

||ui + uj ||2
. (5.5)

Minimum-energy configurations are available in the distribution of the Camino

toolkit [Cook et al., 2006], up to K = 256 (see Fig. 5.6). One of the drawback

is that for a given K, there is no evidence that the minimum energy configuration

has maximum radius, as shown on Fig. 5.1.

Figure 5.6: Point sets minimizing the electrostatic repulsion energy [Jones et al.,

1999a, Jansons and Alexander, 2003]. (from left to right) K = 25, 75, 125.

Summary of advantages and limitations of electrostatic repulsion

+ Antipodal symmetry,

+ Construction for any number of points K,

+ Minimal energy configurations in the open-source Camino toolkit [Cook et al.,

2006] for K ≤ 256,

− The energy minimization can take some time for large K,

− No evidence on uniformity.

Power-law repulsion

As a generalization of the electrostatic physical analogy, the power law of the

repulsion energy can be increased from r−2 to r−n, and to the limit n → ∞
[Papadakis et al., 2000]. Minimal configurations for this energy are supposedly

more uniform, as this problem for n→ ∞ is equivalent to the Fejes-Tóth problem

introduced above, which consists in finding K non-overlapping spherical caps of

maximum radius on a sphere [Tammes, 1930]. The minimization of this energy as

n increases becomes harder however, as a little change in the points configuration

results in a big change in the energy.



5.2. ACQUISITION IN Q-BALL IMAGING 69

Figure 5.7: (blue) Point sets minimizing the power-law r−n repulsion, and (green)

minimizer of the electrostatic energy, used as initialization for the minimization of

power-law repulsion. K = 25 points, convergence obtained for n = 28.

We implemented this method, minimizin the cost function

Un =





∑

i6=j

1

||ui − uj ||n
+

1

||ui + uj ||n





1/n

. (5.6)

As suggested in Papadakis et al. [2000], the minimizer of Un is taken as original

guess for Un+1, and n is increased until no significant change is reported. Solutions

for K = 25 and K = 75 are plotted on Fig. 5.7.

Summary of advantages and limitations of power-law repulsion

+ When n→∞, equivalent to the spherical caps packing problem,

+ Antipodal symmetry,

+ Construction for any number of points K,

− Minimization numerically unstable as n increases,

− Cost function takes some time to minimize as K increases.

Comparison of geometrical methods

All the geometrical methods we have presented so far are designed with the objective

to uniformly arrange points on the sphere, with central symmetry. We implemented

these techniques, or downloaded optimal point sets for each method. We computed

the minimum distance between any two points, which is a good index of the uni-

formity of the scheme. Intuitively, the further away we can place any two points

on a sphere, the better the uniformity of the sampling scheme. Results for sample

size K from 6 to 100 are reported on Fig. 5.8. The method that gives best results

is the lines packing method [Conway et al., 1996]. We do not report the results of

Papadakis et al. [2000], as we were unable to properly minimize the energy they

propose.
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Figure 5.8: Comparison of the minimum distance between any two points for several

geometric methods. The method that give results closest to the Fejes-Tóth bound

is the lines packing method [Conway et al., 1996].

5.2.2 Incremental acquisition

As seen several times in this thesis, the acquisition time can become long in diffusion

MRI. In a clinical scenario, the subject may feel uncomfortable, and request to

abort the scan before completion. If the diffusion encoding gradient sequence is

not properly arranged, the scanner operator might be unable to recover accurate

diffusion characteristics (diffusion tensor, ODF or EAP) from the aborted scan.

This issue has been addressed by several groups in research, for the design of q-ball

imaging sequence.

Optimal orientation of partial subsets

The method proposed in Dubois et al. [2005] minimizes the sum of energy interac-

tion, Ei,j, between any two points i and j, weighted by a factor αi,j . The weights

are designed so that the repulsion of orientations corresponding to acquisitions ad-

jacent in time is higher than the repulsion energy of two acquisitions separated in

time. They propose in particular to design the weights αi,j so that some subsets of

a given number of acquisition (6 and 15 in their examples) are created. The authors

provide two scenarios, with different formulae for the weights.

We believe that the difference between the extremal values of αi,j will reflect

how different from the isotropic case the created orientation set will be. However,

this trade-off between general uniformity and the uniformity of each subset is not

investigated. Besides, choosing the size of the subsets might depend on the ap-

plication. This work brings a new method to the community, but at the end of

the article, the reader is left with several unknowns, which makes it difficult to

reproduce.
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Summary of advantages and limitations of partial uniform subsets

method

+ Compatible with corrupted data to some extent,

+ A generalization of electrostatic repulsion,

+ Construction for any number of points K,

+ Construction for subsets with any size S,

− No general method to design the weights αi,j,

− Trade-off between uniformity of partial sets and uniformity of the sequence

as a whole to be investigated.

Optimal ordering of diffusion-weighted measurements

In a different approach, Cook et al. [2007] propose a method to find the best order-

ing of a sequence of acquisition gradient directions, so that any truncated version

of this sequence offers a quasi-optimal, uniform coverage of the sphere. Given a set

of acquisition directions uk, k = 1 . . . K, this method seeks the best arrangement of

indices ki, i = 1 . . . K, so that the following energy is minimized

ECook(k1, . . . kK) =
K
∑

P=6

E(uk1
, . . . ,ukP

)/P 2. (5.7)

The above energy is the sum of electrostatic energy of all the partial subsets of P

points, for 6 ≤ P ≤ K, weighted by 1/P 2.

This method was reported to give similar results, compared to Dubois et al.

[2005]. The discrete minimization problem associated to this method is hard to

solve however, and has a complexity growing with K!. Hence Cook et al. [2007] use

the simulated annealing minimization method to solve their problem.

Summary of advantages and limitations of partial uniform subsets

method

+ Acquisition ordering compatible with corrupted data,

+ If the scan is completed, no difference with optimal acquisition,

+ Optimization implemented in the Camino open-source toolkit [Cook et al.,

2006],

− Problem hard to minimize,

− The total number of acquisitions must be known in advance.
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Incremental construction of acquisition sequence

The method in Deriche et al. [2009] is dedicated to the construction of acquisition

sequence, suited to the reconstruction using Kalman filter. The general algorithm

is incremental: given a set of K measurements, it gives a method to find the next,

K + 1-th measurement, and so forth. Formally, the construction of the point set

{uk, k = 1 . . . K} is implemented as in Algorithm 1.

Algorithm 1 Incremental construction of uniform point set, compatible with cor-

rupted acquisition and incremental reconstruction.

1: u1 ← [0, 0, 1]T

2: for k ∈ {2 . . . K} do

3: uk ← arg min
u∈S2

∑

j<k

(

1

||u− uj ||2
+

1

||u + uj ||2
)

4: end for

Summary of advantages and limitations of incremental point set con-

struction

+ Acquisition ordering compatible with corrupted data,

+ Simple and efficient scheme for minimization,

+ The total number of measurements K must not be known in advance,

− The construction is slightly suboptimal, even when the scan is complete.

5.2.3 Experimental design for diffusion tensor reconstruction

In place of optimizing the experimental design based on purely geometrical con-

siderations and motivations, several groups have considered the optimization of

experimental design for diffusion tensor reconstruction (see Section 4.2.2 for a re-

view of the estimation methods). We present in this section a review of optimization

methods for acquisition scheme, taking into account the diffusion tensor estimation.

Acquisition design for minimum variance

The noise performance of the acquisition scheme is studied in Papadakis et al.

[1999], through the measure of total variance. This index of noise performance

is used to evaluate several schemes, which were designed on the sole basis of 6

non-collinear directions. This index is also used to to generate a new scheme by

minimization of this index. The total variance in this work is that of the linear

estimate of the diffusion tensor, as in Eq. 4.7. The total variance TV is defined as

TV(u1, . . . ,uk) = tr(HTH)−1, (5.8)
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where H is the observation matrix. It is indeed a measure of the sum of the variances

of each tensor element estimate.

This work is important as it is one of the first approach beyond the common

non-collinearity requirement, and other geometrical approaches. However, as stated

by the authors themselves in Papadakis et al. [1999, 2000], the minimization of

this criterion leads to possibly infinitely many solutions, even when congruence by

rotation is considered. Therefore, this index can not be used as a unique criterion

to generate acquisition point sets.

Summary of advantages and limitations of the total tensor variance

criterion

+ A criterion which takes into account the reconstruction,

− This criterion is not suited to optimization to provide new sampling schemes.

Condition number in diffusion tensor estimation

Another measure of interest to evaluate the noise performance of an acquisition

scheme is the condition number of the associated observation matrix H. The condi-

tion number κ is an upper bound for the ratio of the relative error on the measure-

ments, to the relative error on the tensor estimate. This index has been considered

in Skare et al. [2000], in this work the authors directly minimize the condition num-

ber associated to a set of gradient orientations uk, k = 1 . . . K, using the downhill

simplex method.

This method provides new insights for the design of acquisition schemes, and

the approach is validated through Monte-Carlo experiments in Skare et al. [2000].

This study of mostly empirical however, in particular no study of existence and

uniqueness of the solution was carried out. However, as K increases, it is likely that

several different configurations (beyond trivial congruence by rotation, permutation,

symmetries, etc.) will lead to the same condition number.

Summary of advantages and limitations of the condition number min-

imization

+ A criterion which takes into account the reconstruction,

+ Provides acquisition schemes with lower condition number than conventional

schemes,

− No mathematical proof of uniqueness of the solution.
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Bayesian experimental design in diffusion tensor imaging

Generally, there is no assumption in experimental design for diffusion tensor imag-

ing. This is the reason why most studies on experimental design use uniform sam-

pling on the sphere, or general approaches on noise performance. Some groups

have proposed [Peng and Arfanakis, 2007, Yanasak et al., 2008, Gao et al., 2009]

to possibly incorporate a prior on the tensor characteristic, in the design of adapted

acquisition sequence. This is most relevant when imaging highly structured regions

of interest in the brain, or the spinal cord for instance.

The method in Peng and Arfanakis [2007] seeks a set of orientations to minimize

the variance of the estimated tensor fractional anisotropy (FA). The general algo-

rithm for optimization is the downhill simplex, and for each step the variance of the

estimated FA is estimated through Monte-Carlo simulations. It is shown that the

generated scheme (6 directions in their experiments) leads to a better reconstruc-

tion accuracy around the selected, preferred orientation. This is at the cost of a

loss of performance to reconstruct diffusion tensors oriented perpendicularly to this

selected orientation. It is however not clear that selecting only the FA is relevant for

the other quantities of interest in diffusion tensor imaging. In particular, they do

not show how the orientation estimation is improved or degraded using this adapted

scheme. Another drawback is the cost function, which requires Monte-Carlo to be

evaluated. The computational time might become very large, and therefore restrict

applications to a larger number of acquisitions K > 6.

Figure 5.9: Non-uniform gradient directions, adapted to the measurement of a

diffusion signal corresponding to a fiber direction along the z axis, as constructed

in Yanasak et al. [2008]. (from left to right) dispersion angle ∆ϑ = 10◦, 25◦and 40◦.

The method in [Yanasak et al., 2008] seeks a set of gradient directions that

maximizes the angular precision in principal tensor orientation estimate. Specifi-

cally, given a preferred orientation from the tissue structure of interest, they seek

a method that deforms a uniform set of gradient directions, trying to give more

importance to the acquisitions ”far away” from the preferred direction. More pre-

cisely, and without loss of generality, if the preferred orientation is along the z

axis, then they arrange gradient directions between two circles of latitude, centered

around ϑ0, and of width ∆ϑ (see Fig. 5.9). The intuition it that in this region of the

q-ball, the signal has maximum curvature, and also reasonable signal-to-noise ratio.
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Therefore the measurements from this portion of the q-ball are supposed to be most

informative. They optimize the two parameters ϑ0 and ∆ϑ through Monte-Carlo

simulations, to find the best reconstruction accuracy of the tensor orientations. The

results show improved angular precision in principal orientation estimation. This

method is mainly empirical, and by imposing a specific geometry for the solution,

they restrict the set of potentially optimal configurations. Besides, no method is

given to uniformly arrange these points within this spherical ring of interest.

The authors in Gao et al. [2009] minimize the trace of the covariance matrix

of the tensor parameters estimate, from a linear least squares minimization. They

consider a prior as a collection of tensors of interest; in their study only synthetic

tensor collections are provided, within a cone of angle 20◦ or several such cones,

and for a maximum of 100 tensors. This criterion is used to optimize both the

gradient directions, and other imaging parameters (such as pulse time δ, diffusion

time ∆, etc.). We would like to point out an important weakness in their approach:

everything is based on the covariance of the non-weighted least squares estimate

d̂ = (HTH)−1TTy, with the same notations as in Section 4.2.2. This is different

from the commonly used weighted least squares, as in Eq. 4.7, which accounts for

the log-transform of the signal, and indeed is the most commonly used linear method

for tensor estimation [Salvador et al., 2005, Basser et al., 1994a], because it is the

minimum-variance unbiased estimator [Kay, 1993]. In short, they use a suboptimal

estimator with respect to their noise model, and try to find the sampling strategy to

optimize the performance of this estimator. The results of their study are therefore

hardly reusable.

Summary of advantages and limitations of the Bayesian experimental

design in DTI

+ Construction of acquisition scheme adapted to region of interest,

+ Possibility to reduce the number of acquisitions for the same target recon-

struction accuracy,

− The scenario of use is not well defined,

− The distribution of tensors of interest is modelled by a set of tensors, which

makes the methods computationally inefficient,

− The methods use either empirical constructions, either minimization schemes

not compatible with large K, and therefore poorly reproducible.

5.2.4 Harmonic analysis and experimental design

We present in this section so-called sampling theorems on the sphere. Beyond the

diffusion tensor imaging technique, the spherical harmonic basis has proved useful
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Figure 5.10: Sampling on equiangular grids, for exact reconstruction of band-limited

functions at order L = 4. (left) the equiangular grid of K = (2L−1)2 samples as in

citetdriscoll-healy:94, and (right) the equiangular grid of K = 2L2−3L+2 samples,

as in McEwen and Wiaux [2011].

in the study of high angular resolution diffusion imaging, for the reconstruction

of the diffusion signal and the ODF. This is the reason why many groups have

converged to the use of the spherical harmonic basis in q-ball imaging [Anderson,

2005, Hess et al., 2006, Descoteaux et al., 2006, 2007a], and in many other appli-

cations that handle functions and signals on the sphere. The dimension of the

modified, real SH basis for functions with antipodal symmetry, truncated to order

L is R = (L + 1) · (L + 2)/2. On an algebraic point of view, we need at least R

measurements to estimate the spherical harmonic coefficients of a function. A ques-

tion of interest is that of the minimum number of acquisitions required for an exact

reconstruction of a band-limited function in the SH basis.

The SH basis can be seen as the equivalent to Fourier analysis on the sphere.

Recent studies [Shukowsky, 1986, Driscoll and Healy, 1994, McEwen and Wiaux,

2011] have emerged, providing sampling theorem on the sphere, similarly to the

well-known Shannon-Nyquist theorem on R
n. Therefore, for a band limited

function at order L, an exact reconstruction is possible with (2L − 1)2 samples

[Driscoll and Healy, 1994]. The samples are simply the nodes of an equiangular grid

(also called longitude-latitude sampling), as shown on Fig. 5.10. This construction

was recently improved, and it is shown in McEwen and Wiaux [2011] that exact

reconstruction is feasible with only 2L2 − 3L+ 2. The use of this scheme has been

investigated for the application to diffusion signal measurements [Daducci et al.,

2011], for multiple-shell sampling protocols.

These equiangular grids for sampling provide theoretical background on the ex-

act reconstruction of band-limited signal. In addition, these equiangular sampling

schemes can be associated with fast Fourier transform algorithms, which is most

appreciated in applications where the truncation order L becomes large (several

thousands in McEwen and Wiaux [2011]). However, it is clear that these sampling

schemes are not uniform on the sphere, and therefore the reconstruction accuracy

might not be rotational invariant. Besides, there is no proof that the number of

samples given by these sampling theorems consists in a minimum for exact recon-
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struction. As the cost in diffusion MRI is clearly on acquisition time, rather than

on computational complexity, the price to pay for potentially many measurements

is to be investigated more closely.

Summary of advantages and limitations of the equiangular grid sam-

pling and theorem on the sphere

+ Construction of acquisition scheme leading to exact reconstruction for band-

limited signals,

+ Extremely simple computation of the sampling nodes (equiangular grid),

+ Well adapted to the reconstruction in SH basis, in q-ball imaging,

− The repartition of points on the sphere is not uniform,

− The number of measurements for the same result could be decreased if the

constraint of equiangular grid is relaxed.

5.3 Multiple q-shell acquisition

While the study of sampling on the sphere in diffusion MRI has received much

attention, it is only very recently that multiple q-shell acquisition and reconstruc-

tion techniques have been considered by several groups [Khachaturian et al., 2007,

Wu and Alexander, 2007, Assemlal et al., 2009b, Aganj et al., 2010a, Ye et al.,

2012]. The acquisition on several shells brings new challenges, and new questions

with respect to the placement of points. For a given number of acquisitions, how

many shells should be selected? How many points per shell should be selected? How

the points should be placed from one shell to another? In this section, we select

and present the studies that bring specific methods for multiple q-shell acquisition

design.

5.3.1 Geometrical method

In Ye et al. [2012], a geometric construction on concentric spheres is described.

Each sphere is associated with an inscribed polyhedron, whose vertices correspond

to the sampling points in q-space. In order to separate measurements directions

from one shell to another, the construction in this work is based on the concept

of dual polyhedra (see Fig. 5.11). From sample measurements on these interlaced

concentric spheres of the diffusion signal E in the q-space, the authors in Ye et al.

[2012] reconstruct the signal on a regular grid using interpolation, and then estimate

the EAP through discrete Fourier transform. The sampling method is shown to
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Figure 5.11: (left) icosidodecahedron and (right) its dual polyhedron, the rhombic

triacontahedron. The vertices of the dual polyhedron are at the centers of faces

of the original polyhedron (see blue, dashed lines). This geometric construction is

used to design multiple shell interlaced sampling in Ye et al. [2012]

improve the angular resolution with respect to radial sampling, where sample points

are aligned from one shell to another.

This sampling method however has several drawbacks. First, except for the

icosahedron (K = 12), the vertices of regular polyhedra are in general not uni-

formly spread on the surface of the sphere. Besides, the construction of a regular

polyhedron with an arbitrary number of vertices is not possible. Moreover, the

number of points per shell is also fixed by the number of vertices of the consid-

ered polyhedra, and cannot be tuned. This is a severe drawback, as it was shown

in Assemlal et al. [2009b] that this is an important parameter for the quality of

the reconstruction. Finally, the use of a pair of dual polyhedra provides a natural

construction for an experiment design on 2 shells. For a larger number of shells,

the authors propose to alternatively use one polyhedron and its dual. At the end,

shells number 1, 3, . . . share the same sampling directions, and shells number 2, 4, . . .

a different set of directions. This is no much different from radial sampling.

Summary of advantages and limitations of the interlaced sampling

construction based on dual polyhedra.

+ The sampling directions covers the sphere more densely than radial sampling,

+ The angular resolution is improved,

− Construction not possible for an arbitrary sample size,

− Provides only two separate sets of directions, to share among possibly many

spheres,

− The number of points per shell cannot be finely tuned with respect to the

radius of each shell.
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5.3.2 Noise performance for parametric reconstruction

The acquisition design for multiple q-shell acquisition and parametric reconstruc-

tion has been recently studied in Assemlal et al. [2009a]. This study tries to find

the sampling strategy that minimizes the condition number of the regularized ob-

servation matrix, for the problem of parametric reconstruction of the signal. The

basis of interest is the spherical polar Fourier basis (SPF), that we reviewed in the

last chapter (see in particular Section 4.2.3). In Assemlal et al. [2009a], the authors

consider several possible strategies on how to chose the number of shells in q-space,

and the number of points per shell, given a total of K measurements. To reduce the

dimension of the configurations to explore, they impose the shell radii to be linearly

distributed between qmin and qmax. The number of points per shell is considered as

a function of the shell radius, and is proportional to qα. Possible values for alpha

in their study was {−2,−1, 0, 1, 2}.
This is an interesting approach, as it is known that the condition number pro-

vides a good index of stability of the reconstruction. However the method to min-

imize the condition number is somehow disappointing: only a few predefined sam-

pling strategies are tested, with the hope that one of these strategies would provide

an optimal configuration. Besides, the angular aspect is omitted, and no particular

care is addressed to make the sampling directions different from one shell to another,

similarly as in Ye et al. [2012]. Finally, the authors chose to minimize the condition

number of the regularized matrix, that is the matrix HTH + λLL+ λNN, where L

and N are angular and radial filters, respectively. Therefore the optimum strategy

would depend on the regularization weights, which is counter-intuitive. Similarly,

no study on the dependence on the choice of the scale factor ζ of the SPF basis is

provided.

Summary of advantages and limitations of the optimal acquisition

strategy in parametric q-space imaging.

+ The sampling strategy is adapted to the reconstruction problem,

+ The condition number is reduced, as compared to naive approach,

− Angular coverage of the acquisition scheme is not investigated,

− No systematic method to minimize the condition number is provided,

− Effect of qmax not investigated.

5.4 Summary of the chapter

In this chapter, we have presented a review of state-of-the-art acquisition methods

and strategies developed in diffusion MRI. In the literature, different groups seem
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working on q-ball imaging seem to converge to the use of electrostatic-like repulsion

Jones et al. [1999a], Jansons and Alexander [2003], as it is the most flexible tool to

generate uniform point sets on the sphere, with antipodal symmetry. For multiple

shell acquisition, such a method has not been proposed yet, and we present in

Chapter 9 a general and flexible method for the construction of uniform point sets

on multiple shell.

Moreover, both for q-ball and q-space imaging, the approaches are either purely

geometrical, either purely driven to the best possible reconstruction of interest.

However we have seen for instance that the minimization of the condition number

[Skare et al., 2000] or the total variance [Papadakis et al., 1999] in diffusion tensor

imaging leads to non unique solution. In Chapter 9, we present a unifying frame-

work, that takes into account both the reconstruction problem, and the question of

angular uniformity.
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Optimal Regularization

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Continuity in ΩN,L . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2 Link with the SPF basis . . . . . . . . . . . . . . . . . . . 89

6.2.3 Laplace regularization in the mSPF basis . . . . . . . . . 90

6.3 Material and methods . . . . . . . . . . . . . . . . . . . . . 92

6.3.1 Optimal regularization parameters . . . . . . . . . . . . . 92

6.3.2 Synthetic and real data . . . . . . . . . . . . . . . . . . . 92

6.3.3 Exact and empirical continuity constraints . . . . . . . . . 93

6.4 Results and discussion . . . . . . . . . . . . . . . . . . . . 93

6.4.1 Continuity constraint . . . . . . . . . . . . . . . . . . . . 93

6.4.2 Laplace regularization . . . . . . . . . . . . . . . . . . . . 94

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.A Necessary and sufficient condition for continuity . . . . 100

6.A.1 Necessary condition . . . . . . . . . . . . . . . . . . . . . 100

6.A.2 Sufficient condition . . . . . . . . . . . . . . . . . . . . . . 100

6.B Laplace regularization matrix . . . . . . . . . . . . . . . . 101

83



84 CHAPTER 6. SIGNAL REGULARITY AND CONTINUITY

Overview

What are the parametric spaces of function to describe the diffusion signal in the

q-space? What kind of regularization can be proposed for a reconstruction ro-

bust to noise? In this chapter, we present a method for the reconstruction of the

diffusion attenuation in the whole q-space, with a special focus on continuity and

optimal regularization. We derive a modified Spherical Polar Fourier (mSPF) basis,

orthonormal and compatible with SPF (see Section 4.2.3), for the reconstruction

of a signal with continuity constraint. We also derive the expression of a Laplace

regularization operator in the basis, together with a method based on generalized

cross validation for the optimal choice of the parameter. Our method results in

a noticeable dimension reduction as compared with SPF. Tested on synthetic and

real data, the reconstruction with this method is more robust to noise and better

preserves fiber directions and crossings.

Keywords q-space imaging; parametric reconstruction; ensemble average propa-

gator; Laplace regularization; continuity constraint.

Organization of the chapter

We first shortly review the definition of the SPF basis, and we exhibit the sub-

space of continuous functions described in this basis, verifying E(0) = 1. We show

that this subspace is an affine subspace, and we provide a reconstruction method

through a novel basis, the mSPF basis, to directly estimate a signal with continuity

constraint. On the top of this method, we propose a Laplace regularization, which

is a classical operator in signal and image processing. Its expression in the mSPF

basis leads to a quadratic form of the coefficients, and can be efficiently added as

a penalization term to the least-squares estimation problem. Most mathematical

derivations are described in the appendices.

6.1 Introduction

In diffusion MRI, the acquisition and reconstruction of the signal attenuation on the

3D q-space allows reconstruction of the full probability of water molecules displace-

ment, known as the ensemble average propagator (EAP). The radial and angular

information contained in the EAP opens a wide range of applications, such as

the definition of new biomarkers [Cluskey and Ramsden, 2001, Piven et al., 1997],

or the characterization of axon diameters in the brain white matter [Assaf et al.,

2008, Özarslan et al., 2011]. The reconstruction techniques are based on the acqui-

sition of diffusion-sensitized MR signals, with the acquisition sequence described

in [Stejskal and Tanner, 1965], in which a pair of diffusion encoding magnetic field
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gradient are applied before and after the 180◦ pulse. There exists a Fourier relation

between the diffusion attenuation E(q) and the EAP

P (r) =

∫

R3

E(q)e−2ıπq · rd3q, (6.1)

where the wave vector q is directly related to the applied magnetic field gradient

pulse magnitude, direction, and duration.

The diffusion tensor [Basser et al., 1994b] is the first model historically pro-

posed to describe the EAP. Despite its wide acceptance into the research and

clinical communities, this model restricts the diffusion EAP within the family of

Gaussian probability density functions, and is limited for the description of com-

plex tissue structure. Since then, several models and methods were described

to extend the results of diffusion tensor, such as high angular resolution diffu-

sion imaging [Tuch, 2004a, Descoteaux et al., 2007b, Aganj et al., 2010a], or higher

order tensors [Özarslan and Mareci, 2003]. Beyond these approaches, it is pos-

sible to reconstruct the model-free diffusion propagator, through Diffusion Spec-

trum Imaging (DSI) [Wedeen et al., 2005], Diffusion Propagator Imaging (DPI)

[Descoteaux et al., 2011], Diffusion Order Transform [Özarslan et al., 2011] or re-

construction in Spherical Polar Fourier (SPF) basis [Assemlal et al., 2009b]. DSI

relies on the sampling of the diffusion signal on a regular Cartesian grid, and recon-

structs the EAP through fast Fourier transform. The main limitation of DSI is its

huge demand in acquisition time, and gradient pulse strength to fulfill the Nyquist

conditions [Callaghan, 1991b, Tuch, 2004a, Wedeen et al., 2005].

DPI [Descoteaux et al., 2011] is a more natural method to describe the diffusion

signal by a basis of functions solution to the 3D Laplace equation by parts. Though

this method enables analytical reconstruction of the diffusion propagator, it cannot

represent the diffusion signal in the whole q-space. Indeed, DPI represents the

signal using the 3D Laplace equation by part [Descoteaux et al., 2011]

E(q ·u) =
∑

l,m

[

cl,m
ql+1

+ dl,mq
l

]

Yl,m(u), (6.2)

where Yl,m is the real, spherical harmonic function. The basis functions in DPI

diverge both for q → 0 and q →∞.

The SPF basis functions instead have a radial profile with a Gaussian-like decay,

which is similar to the commonly observed diffusion signal. Besides, it is possible to

recover the EAP [Cheng et al., 2010b] and the Orientation Distribution Function

(ODF) [Cheng et al., 2010a] from the coefficients of the signal reconstructed in the

SPF basis. The SPF basis is thus a unique, model-free approach for the recon-

struction of the full signal E, the estimation of EAP and its derived characteristics.

It has been introduced in [Assemlal et al., 2009b] together with a regularization

method to overcome ill-condition of the estimation problem.
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However, the definition of the 3D functions of the SPF basis makes use of the

parameterization q ∈ R
3 = q ·u, where q ∈ R

+ and u ∈ S2. Near the origin, the

corresponding u is not unique, and we show in Section 6.2.1 that continuity problems

near the origin may arise if this parameterization is not used with care. Adding to

that, the regularization method introduced in [Assemlal et al., 2009b] is based on

a pair of empirical angular and radial low-pass filters. This regularization method

fully relies on the choice of the basis of functions. Besides, its implementation

requires to tune two separate regularization weights, which is impractical.

In this chapter, we present original and efficient solutions to solve all these im-

portant problems. First, we show that continuous functions reconstructed in the

classical SPF basis lie in an affine subspace which has a significantly reduced di-

mension. This means that the signal diffusion could be represented in this subspace

with less coefficients, leading to an estimation process with less measurements than

those required when representing the signal in the classical SPF basis. Second, we

propose a modified SPF (mSPF) basis, an orthonormal basis for this affine sub-

space, compatible with the SPF basis, but with reduced dimension and intrinsic

continuity near the origin. Thus, the signal reconstructed in the mSPF will sat-

isfy the important continuity constraint. Third, a Laplace regularization functional

in the mSPF basis is proposed and minimized for a robust reconstruction of the

diffusion signal. The method is analytical and ensures a fast implementation and re-

construction with continuity constraints. The Generalized Cross Validation method

is applied to find the unique optimal regularization weight between the regularity of

the solution and the data fit. Finally, synthetic and real data are used to illustrate

and validate the proposed method. In particular, better reconstruction results with

exact continuity constraints are obtained and illustrated in crossing fibers regions.

6.2 Theory

The Spherical Polar Fourier basis was recently introduced in [Assemlal et al., 2009b]

to reconstruct the diffusion signal in the complete 3D space. The functions Bn,l,m

of this basis are defined as the product of a radial and an angular function

Bn,l,m(q ·u) = Rn(q)Yl,m(u). (6.3)

Yl,m is the real, symmetric spherical harmonic introduced in [Descoteaux et al.,

2006], and the radial function Rn is reported below for the record

Rn(q) = κnL
1/2
n

(

q2

ζ

)

exp

(

− q
2

2ζ

)

(6.4)

κn =

√

2

ζ3/2

n!

Γ(n+ 3/2)
, (6.5)
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where L
1/2
n is the generalized Laguerre polynomial, and Γ is the Gamma function

Γ(z) =
∫∞
0 tz−1e−tdt. We use ΩN,L to denote the linear space of functions spanned

by the truncated basis {Bn,l,m, n ≤ N, l ≤ L, |m| ≤ l}. The choice of the scale factor

ζ can be related to the mean diffusivity of the measured data. Several strategies

were proposed in Assemlal et al. [2009b], here and throughout the experiments, we

retain

ζ =
1

8π2τD
, (6.6)

where τ is the diffusion time, and D is the mean diffusivity.

The SPF basis is orthonormal for the dot product

〈f, g〉 =

∫

R3

f(q)g(q)d3q. (6.7)

The construction of this basis was motivated by the need for a complete orthonor-

mal basis of antipodally symmetric and real functions. Besides, the radial profiles

Rn have a quasi-Gaussian decay, so that even a low radial truncation order leads

to an accurate reconstruction and extrapolation beyond the sampling domain of

the diffusion weighted attenuation E(q). From the reconstruction of the signal in

this basis, we can estimate the EAP following Cheng et al. [2010b] and the ODF

following Cheng et al. [2010a].

However, a closer look at the functions Bn,l,m near the origin reveals rapid

oscillations and a discontinuity. Moreover, by definition the value of the attenuation

E is equal to 1 when q = 0, but there is nothing in the SPF basis to impose this.

In this chapter, we show that the subset of functions verifying these properties

of continuity and imposed value at the origin is an affine subspace of ΩN,L. We

propose mSPF, an orthonormal basis for this subspace, and we give for convenience

the relation between this modified SPF (mSPF) basis and the SPF basis Bn,l,m

introduced in Assemlal et al. [2009b].

We also derive the Laplacian regularization functional expression in the mSPF

basis, for a robust reconstruction of the diffusion signal. Indeed, the dimen-

sion of the basis grows rapidly with the angular and radial orders, and diffusion

weighted images have a very low SNR. For the reconstruction of a smooth func-

tion, the Laplacian operator is a commonly proposed approach for regularization

[Descoteaux et al., 2007b]. We derive the calculation of the Laplacian operator in

the mSPF basis. The method is analytical, which ensures a fast implementation

and reconstruction.

In this section, we use indifferently a notation with three indices for the bases

elements, such as Bn,l,m, or a notation with a simple index i, convenient for matrix

notation. The link between both indexing systems is given by the functions n(i),

l(i) and m(i).



88 CHAPTER 6. SIGNAL REGULARITY AND CONTINUITY

6.2.1 Continuity in ΩN,L

Theorem 1. A function f =
∑

n,l,m an,l,mBn,l,m of the SPF basis is continuous if

and only if

∀l > 0,∀|m| ≤ l,
∑

n

an,l,mRn(0) = 0. (6.8)

The proof of this theorem is detailed in Appendix 6.A. The linear constraint in

Eq. 6.8 imposes that the polynomial part of fl,m =
∑

n an,l,mRn has no constant

term. This linear constraint can be imposed while estimating the coefficients by

constrained least squares estimation. Alternatively, we will derive a new basis of

functions to span the subspace of continuous functions. This approach greatly

simplifies the Laplace regularization formulation and implementation, as we show

in the next section.

In addition to this continuity constraint, we emphasize that the diffusion atten-

uation signal is defined as E(q) = S(q)/S(0), and therefore should verify

f(0) = 1. (6.9)

The set of continuous functions in ΩN,L verifying Eq. 6.9 is the solution of an

inhomogeneous linear equation, and therefore is an affine subspace of ΩN,L. This

affine space is fully characterized by an underlying linear subspace, and an origin. It

is underlain by Ω0
N,L, the kernel of the associated homogeneous equation f(0) = 0.

As for the origin of the affine subspace, we can choose any solution of Eq. 6.9. For

the sake of simplicity, we choose a simple Gaussian as the origin.

To sum up, any function f ∈ ΩN,L verifying the continuity property, together

with the property f(0) = 1 can be expressed as

f(q) = exp

(

−||q||
2

2ζ

)

+
∑

n,l,m

xn,l,mCn,l,m(q), (6.10)

where {Cn,l,m} is a basis of Ω0
N,L, the subspace of continuous functions f in ΩN,L

verifying f(0) = 0. In the remaining of this section, we give a construction for the

orthogonal basis {Cn,l,m}.
We first construct a basis of radial functions {Fn, n = 0 . . . N}, expressed as

Fn(q) = χn
q2

ζ
Pn

(

q2

ζ

)

exp

(

− q
2

2ζ

)

.

This verifies Fn(0) = 0; the polynomials Pn and the normalization constant χn are

to determine, provided that the following orthogonality property is fulfilled

〈Fn, Fp〉R3 =

∫ ∞

0
Fn(q)Fp(q)q

2dq = δn,p. (6.11)
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The substitution u = q2/ζ in Eq. 6.11 gives

∫ ∞

0
χnχm

ζ3/2

2
Pn(u)Pp(u)u

5/2e−udu = δn,p. (6.12)

The generalized Laguerre polynomial L
5/2
n suits this orthogonality property. Finally

the modified radial basis functions are

Fn(q) = χn
q2

ζ
L5/2

n

(

q2

ζ

)

e−q2/2ζ , (6.13)

and the normalization constant

χn =

√

2

ζ3/2

n!

Γ(n+ 7/2)
. (6.14)

The diffusion attenuation E(q)−exp(−||q||2/2ζ) is reconstructed through the func-

tions

Cn,l,m(q) = Fn(||q||)Yl,m

(

q

||q||

)

. (6.15)

The family of functions {Cn,l,m, n = 0 . . . N − 1, l = 0 . . . L, m = −l . . . l} is the

modified SPF (mSPF) basis, an orthonormal basis of Ω0
N,L.

The coefficients xn,l,m are estimated by minimization of the squared error crite-

rion ||y−Hx||2, where y is the vector of observations yk = E(qk)−exp(−||qk||2/2ζ)
measured at wave vectors qk. The observation matrix has entries

Hk,i = Cn(i),l(i),m(i)(qk).

This new space has a substantially reduced dimension: dim(ΩN,L) = (N +

1) ·L(L + 1)/2, whereas dim(Ω0
N,L) = N ·L(L + 1)/2. This dimension reduction

comes from the two systems of linear constraints of Eq. 6.8 (L(L + 1)/2 − 1 equa-

tions), and Eq. 6.9 (1 equation). As an example, when the angular truncation order

L = 4 is used, the reconstruction in Ω0
N,L requires 15 less coefficients, to represent

the same signal. This simplifies the implementation, reduces the demand in storage

capacity, and improves computational efficiency.

6.2.2 Link with the SPF basis

In this section we give the link between SPF and mSPF bases. This relation-

ship is useful as SPF [Assemlal et al., 2009b] is a now a state-of-the-art method

in diffusion MRI. We can therefore reconstruct the ensemble average propagator

(EAP) following Cheng et al. [2010b], the orientation distribution function (ODF)

following Cheng et al. [2010a], or the apparent fiber population dispersion follow-

ing Assemlal et al. [2011]. The SPF basis is built on Laguerre polynomials L
1/2
n



90 CHAPTER 6. SIGNAL REGULARITY AND CONTINUITY

while we use L
5/2
n in this chapter. Using the recurrence relations between Laguerre

polynomials detailed in [Abramowitz and Stegun, 1970, p. 783], we have:

Fn(q) =
n
∑

i=0

3χn

2κi
Ri(q)−

(n+ 1)χn

κn+1
Rn+1(q). (6.16)

If the function f(q) = E(q) − exp(−||q||2/2ζ) is expressed in this basis, f(q) =
∑

xn,l,mCn,l,m(q), then the coefficients an,l,m of E in the SPF basis are obtained

by a = Mx + a0, where

Mij = δl(i),l(j)δm(i),m(j) ·



























3χn(j)

2κn(i)
n(i) ≤ n(j)

−
n(i)χn(j)

κn(i)
n(i) = n(j) + 1

0 n(i) > n(j) + 1

and a0 = [
√

4π/κ0 0 0 . . .]T, as exp(−||q||2/2ζ) =
√

4π/κ0B0,0,0(q).

M is the change-of-basis matrix from mSPF to SPF, two orthonormal bases.

Therefore, this matrix is orthogonal: the orthogonal projection of any function in

ΩN,L, represented by its coefficients a in the SPF basis, onto the subspace Ω0
N,L has

coefficients x = MTa.

6.2.3 Laplace regularization in the mSPF basis

In this section, we propose to introduce a regularization term in the fitting proce-

dure. We choose as a regularization functional

U(x) =

∫

R3

|∆Ex(q)|2 d3q, (6.17)

where Ex(q) = exp(−||qk||2/2ζ) +
∑

i xiCi(q) is the reconstructed signal. This

continuous operator is rotational invariant, and independent on the choice of a

specific basis. Besides, the Laplace operator was already applied successfully

for several applications ranging from natural image denoising [You and Kaveh,

2000, Chan and Shen, 2005] to the field of diffusion MRI, for signal reconstruction

[Descoteaux et al., 2007b, Koay et al., 2009b, Descoteaux et al., 2010].

We minimize ||y − Hx||2 + λU(x), where the observations are yk = E(qk) −
exp(−||qk||2/2ζ) and H is the observation matrix. In this section, we write the

Laplace penalization as a quadratic form

U(x) = (x− x0)
TΛ(x− x0) + U0. (6.18)

Hence the penalized least squares has a unique minimum

x̂ = x0 + (HTH + λΛ)−1(y −Hx0). (6.19)
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In what follows, we give explicit directions how to compute the matrix Λ and the

vector x0.

When Ex(q)−exp(−||qk||2/2ζ) is expressed in the mSPF basis with coefficients

xi,

U(x) =

∫

R3

(

∑

i

xi∆Ci(q) + ∆e−||qk||
2/2ζ

)2

d3q (6.20)

=
∑

i

∑

j

xixj

∫

R3

∆Ci(q) ·∆Cj(q) d3q

+2
∑

i

xi

∫

R3

∆Ci(q) ·∆e−||qk||
2/2ζd3q

+ . . . (6.21)

The constant term is discarded since it plays no role in the minimization. Thus we

have the quadratic form of Eq. 6.18, where

Λij =

∫

R3

∆Ci(q) ·∆Cj(q) d3q, (6.22)

and x0 = Λ−1v, with

vi =

∫

R3

∆Ci(q) ·∆e−||qk||
2/2ζd3q (6.23)

The Laplace operator ∆ can be written in spherical coordinates, with the

Laplace-Beltrami operator ∆b,

∆Cn,l,m(q u) = χn

( 1

q2
∂

∂q

(

q2F ′
n(q)

)

Yl,m(u)

+
Fn(q)

q2
∆bYl,m(u)

)

(6.24)

Since the spherical harmonics are eigenfunctions of the Laplace-Beltrami operator

with eigenvalue −l(l + 1), we have

∆Cn,l,m(q u) = χn

(

F ′′
n (q) + 2

F ′
n(q)

q
− l(l + 1)Fn(q)

q2

)

Yl,m(u) (6.25)

As the spherical harmonics form an orthonormal basis for the canonical dot product

on S2, the entries of the matrix Λ are

Λi,j = δl(i),l(j)δm(i),m(j)

∫ ∞

0
hi(q)hj(q) dq, (6.26)

where

hi = χn(i)

(

qF ′′
n(i) + 2F ′

n(i) −
l(i) (l(i) + 1)

q
Fn(i)

)

. (6.27)
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Similarly, the vector v has entries

vi = δl(i),0δm(i),0

∫ ∞

0
hi(q) ·

(

q3

ζ2
− 3q

ζ

)

exp

(

− q
2

2ζ

)

dq. (6.28)

The computation of the integrals in Eq. 6.26 and 6.28 is analytical and needs no

numerical integration. It is described in details in Appendix 6.B.

6.3 Material and methods

6.3.1 Optimal regularization parameters

We adopted the Generalized Cross Validation (GCV) algorithm [Craven and Wahba,

1985] to find the regularization weight λ which guarantees the best balance between

the smoothness of the reconstruction, and the data fit. This algorithm, as well

as the L-curve method [Hansen, 2000], have already been applied successfully for

other applications in q-ball diffusion MRI [Koay et al., 2009b, Descoteaux et al.,

2010, 2007b]. The GCV method has the major advantage to be generalizable to

the situation where there is more than one λ parameter to optimize. It is the case

in [Assemlal et al., 2009b], where there are two regularization matrices N and L,

which act respectively as radial and angular low-pass filters, with corresponding

weights λN and λL.

The GCV method is based on a one-fold cross validation: among K samples,

we use K − 1 samples to fit the model parameters, and predict the K-th left-apart

sample. The process is repeated K times, and the mean prediction error is the

value we want to minimize. Fortunately, the mean prediction error, called the GCV

function, has a simple expression

GCV(λ;y) =
||y − ŷλ||2
K − Tr(Sλ)

, (6.29)

which makes this method very efficient. The matrix Sλ = H(HTH + λΛ)−1HT

is the smoother matrix, and ŷλ = Sλy. With the GCV method, it is possible to

adapt the regularization parameters to the data. However, there is no analytical

solution for the minimization of the GCV function and for computational efficiency,

we compute the optimal λ parameters once. This choice is validated in the next

section, and results show it is indeed a good compromise.

6.3.2 Synthetic and real data

We simulate diffusion weighted measurements with a multi-compartment Gaussian

model

E(q) =
P
∑

p=1

ωp exp(−2πτqTDpq), (6.30)
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where P ∈ 1, 2, 3 is the number of compartments, ωp is the relative compartment

size and Dp the corresponding diffusion tensor. The diffusion weighted signal is cor-

rupted by Rician noise, with controlled variance parameter σ. Using this diffusion

model locally, we created a synthetic diffusion field simulating a sin-shaped and a

straight fiber, crossing each other at 90◦.

The wave vectors qk for synthesis are arranged on 3 shells, with the strategy

recently proposed in [Caruyer et al., 2011a,b]. In short, this method is a general-

ization of the electrostatic repulsion, introduced in [Jones et al., 1999b] for single

q-shell experiment design, to the multiple q-shell case.

The experiments on real data were carried out on the publicly available phantom

[Poupon et al., 2008a, Fillard et al., 2011] which served as the data for a tractogra-

phy contest, held at the DMFC MICCAI workshop, London (2009). The diffusion

signal was sampled on 3 q-shells, with b-values ranging from 650 to 2000 s ·mm−2,

and 64 directions per shell.

For the experiments, we compare the diffusion signal, the ensemble aver-

age propagator (EAP) reconstructed from the SPF coefficients by the method

in [Cheng et al., 2010b], and the orientation distribution function (ODF) recon-

structed in constant solid angle, implementing the technique in [Cheng et al.,

2010a].

6.3.3 Exact and empirical continuity constraints

We presented in Section 6.2.1 a linear constraint to impose the continuity of the

reconstructed signal. An alternate solution proposed in [Cheng et al., 2010b] is to

artificially add P virtual data points qk, k = K + 1 . . . P close to zero, verifying

E(qk) = 1. As P goes to infinity, it is possible to show that the solution of this

system tends to the exact solution [see Golub and Van Loan, 1983, pp. 410–412].

We study the convergence of this empirical continuity approach. As a measure of

discontinuity of the reconstructed signal Ê about 0, we define d(Ê) the difference

between extremal values of the set {limq→0+ Ê(qu),u ∈ S2}. We also compare the

relative difference between the solution cAC of the least squares problem with ana-

lytical constraint, and the solution cEC(P ) of the system with empirical constraint

with P virtual measurements.

6.4 Results and discussion

6.4.1 Continuity constraint

We compare the solution cAC and cEC(P ), for a single Gaussian distribution. To

focus on the continuity constraint, we do not impose any other kind of regulariza-

tion. The signal is corrupted by Rician noise, with corresponding SNR = 25. An
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Figure 6.1: Diffusion signal corresponding to a single fiber oriented along the x-

axis, reconstructed from 120 samples in the q-space. The signal is shown on the

(qx, qy)-plane, and the grey levels correspond to signal range from 0.0 (white) to 1.0

(black). q values are understood in mm−1. This illustrates the discontinuity at the

origin inherent to the SPF basis, and how the reconstruction in mSPF solves this

problem.

example of signal and its reconstruction is reported on Fig. 6.1.

We evaluate the difference of the signal reconstructed with exact continuity

constraint and with empirical constraint. We plot on Fig. 6.2 the relative squared

difference between the coefficients estimated with a strict continuity constraint, ĉAC,

and the coefficients estimated with an empirical continuity constraint, ĉEC. The

convergence is pretty fast, and P = 60 virtual measurements give good results. This

confirms the intuition in [Cheng et al., 2010b]; however the minimum number of

virtual measurements P for an acceptable accuracy heavily depends on the angular

order of the SPF basis, as reported on Fig. 6.2. This makes this empirical solution

impractical. Besides, discontinuity is not strictly imposed: as experimented and

reported on Fig. 6.3, the value of d(Ê) remains unacceptably high while we impose

the value on P = 150 virtual measurements.

6.4.2 Laplace regularization

Laplace regularization was implemented in the mSPF basis, and we compare it with

separate Laplace-Beltrami and radial low-pass filter, proposed in [Assemlal et al.,

2009b]. The GCV function is significantly lower for the optimal Laplace regulariza-

tion (Table 6.1). This result suggests that Laplace regularization is more suitable

than separate Laplace-Beltrami and radial low-pass filtering. Furthermore, the op-

timal λΛ parameter does not vary much from one diffusion model to another. We

can therefore select a unique λΛ parameter for the regularization of a whole volume.
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Figure 6.2: Relative difference between reconstruction with a strict continuity con-

straint, and reconstruction with a loose continuity constraint. Results on a synthetic

Gaussian diffusion signal, from K = 150 measurements on 3 q-shells, plus P virtual

measurements at q = 0, for various angular orders L of the SPF basis. Depending

on the radial order, the number of additional measurements needed for an accurate

reconstruction may become huge, and really impractical.
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Figure 6.3: Discontinuity, measured about the origin, of a synthetic Gaussian dif-

fusion signal, reconstructed from K measurements on 3 q-shells, plus P virtual

measurements at q = 0. The discontinuity remains very high, even for a large

number of additional, virtual measurements (P = 150).
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1 fiber 2 fibers, 90◦ 2 fibers, 60◦

λ0
L, λ

0
N 4.0 · 10−7, 8.1 · 10−9 3.2 · 10−7, 1.2 · 10−8 5.1 · 10−8, 5.5 · 10−8

GCV0
L,N 5.7 · 10−1 3.4 · 10−1 4.8 · 10−1

λ0
Λ 1.6 · 10−1 1.7 · 10−1 2.4 · 10−1

GCV0
Λ 5.3 · 10−1 3.1 · 10−1 4.2 · 10−1

Table 6.1: Optimal λ parameters and corresponding GCV minimum, for various

synthetic diffusion models. The sampling consists in 200 diffusion weighted mea-

surements on 3 q-shells, with a max b-value of 3000s ·mm−2. Radial and angular

orders were set to 5 and 6, respectively. 1st row: separate Laplace-Beltrami and

radial low-pass filter smoothing, 2nd row: Laplace regularization.

The regularization also impacts on the extrapolation capacity of the method.

Hardware limitations often restrict the sampling to a bounded region in the q-space.

Increasing the radial order of the mSPF basis will allow better signal reconstruction

within the sampled area of the q-space. It might however introduce undesirable

oscillations outside this area, as reported on Fig. 6.4, where the radial truncation

order was set to N = 5. Adding a regularization constraint greatly improves the

extrapolation of the diffusion signal. Laplace regularization performs slightly better

in this task, though a more complete study, involving real data and outside the scope

of this paper, should be carried out to further validate this.

We also compare the reconstruction with both regularization constraints on

our synthetic diffusion field in Fig. 6.5. Laplace regularization performs better in

crossing fiber regions, and the results show better directional coherence. Besides,

in isotropic regions, the reconstructed ODFs have a smoother profile than with

separate Laplace-Beltrami and radial filtering.

Similar results are obtained on the real data experiment, depicted on Fig. 6.6.

We have overlaid the ground truth fiber orientations, as provided by Fillard et al.

[2011]. The reconstruction results with optimal Laplace regularization show slighly

sharper EAP and ODF profiles. We acknowledge that the reconstruction of this

dataset was very challenging, due to the low anisotropy of the signal.

6.5 Conclusions

We have proposed a novel orthonormal basis for the reconstruction of the diffusion

signal in the complete 3D q-space, based on Gaussian-Laguerre functions. This

new method enables the reconstruction of a continuous signal, with known value

at the origin. This mathematical constraint results in a dimension reduction with

respect to the SPF basis, and a better reconstruction of the diffusion signal at the
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Figure 6.4: Reconstruction and extrapolation of a diffusion signal, for a Gaussian

diffusion model, from 120 measurements on 3 q-shells. We plot the reconstructed

(solid lines) and ground truth (dashed lines) radial profiles of the signal on se-

lected lines in the q-space. The maximum q value of the sampling scheme was

set to 60mm−1, the hatched area represents the no-sample area. We compare the

reconstruction without regularization, with separate Laplace-Beltrami and radial

filter, and with Laplace regularization. Laplace regularization performs better in

smoothing radial profiles, and we avoid oscillations outside the sampling area.

same sampling rate. This also greatly simplifies the reconstruction method, and

reduces the associated computational cost as the continuity constraint is naturally

imposed. The mSPF basis is presented with its linear relation to the SPF basis for

convenience, so that the methods of SPF imaging directly transpose to mSPF.

We also derive a regularization functional based on the Laplace operator, to-

gether with its analytical expression in the mSPF basis. This is shown to be mathe-

matically and practically better than separate Laplace-Beltrami and radial low-pass

filtering. The experiments on simulations and real data show good results, for the

reconstruction and extrapolation of the radial profile. The angular profile recon-

struction is more robust to noise, and better detection of fiber crossing is reported.

Summary of the contributions of this chapter

• Continuous signal representation in a modified Spherical Polar Fourier (SPF)

basis.

• Dimension reduction with respect to conventional SPF basis.

• Analytical Laplace regularization for a robust reconstruction.

• Optimal regularization weight through generalized cross validation.
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Figure 6.5: Reconstruction of a diffusion propagator field, from 120 measurements

on 3 shells (max b-value was 3000s ·mm−2). We compare the diffusion EAP profile

(top row) P (r0u), for r0 = 15µm, and the diffusion ODF ψ(u) (bottom row). Fiber

crossing are better resolved with Laplace regularization, and isotropic regions are

smoother.
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Figure 6.6: Diffusion ODF and EAP profiles reconstructed from the diffusion MRI

data of the fiber cup. Zooms on crossing regions A and B are displayed. Within

each block: EAP profile P (r0u), for r0 = 17µm (top row) and diffusion ODF recon-

structed in constant solid angle ψ(u) (bottom row). The left column corresponds

to a reconstruction with separate angular and radial low-pass filters, while the right

column is the reconstruction with Laplace regularization. The EAP profiles and

ODF reconstructed with Laplace regularization are somehow sharper in crossing

regions.
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• Validation on simulations and real experimental data.

6.A Necessary and sufficient condition for continuity

In this appendix, we give a proof of Theorem 1, relative to the continuity of a

function f ∈ ΩN,L, expressed as a sum of SPF functions.

6.A.1 Necessary condition

A necessary condition for the continuity of the function f is that the restriction of

f to any line in R
3 must be continuous about 0. For u ∈ S2 and q ∈ R, we note

fu(q) = f(qu) the restriction of f to the line of direction u.

lim
q→0+

fu(q) = fu(0) = f(0) (6.31)

⇒
∑

n,l,m

an,l,mRn(0)Yl,m(u) = f(0) (6.32)

⇒
∑

l,m

(

N
∑

n=0

an,l,mRn(0)

)

Yl,m(u) = f(0). (6.33)

Eq. 6.33 must hold for any u ∈ S2. The left hand part is written as a sum of

spherical harmonic functions, while the right hand part does not depend on u.

The only constant function in the Spherical Harmonics basis is Y0,0. Hence all

the spherical harmonic coefficients in Eq. 6.33 must be zero, except for l = m = 0.

∀l > 0,∀m s. t. |m| ≤ l,
N
∑

n=0

an,l,mRn(0) = 0 (6.34)

6.A.2 Sufficient condition

Now we show that if the necessary condition in Eq. 6.34 is met, then the function

f is continuous about 0. We can write f as a finite sum of functions fl,m =
∑

n an,l,mBn,l,m. If we prove the continuity of fl,m, for any 0 ≤ l ≤ L and any

−l ≤ m ≤ l, then by linearity we prove the continuity of f .

The continuity of f00 is direct, as the Gauss-Laguerre functions are continuous

and Y00 is constant. Next, we consider 0 < l ≤ L and −l ≤ m ≤ l. By continuity

of Rn, we can write ∀ǫ′ > 0,∃α > 0 such that

|q| < α⇒
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

n=0

an,l,mRn(q)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< ǫ′. (6.35)

This is true for ǫ′ = ǫ/||Yl,m||∞. Besides,

∀u ∈ S2,
|Yl,m(u)|
||Yl,m||∞

≤ 1, (6.36)
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hence

∀u ∈ S2, |q| < α⇒ (6.37)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

n=0

an,l,mRn(q)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

||Yl,m(u)||
||Yl,m||∞

<
ǫ

||Yl,m||∞
.

(6.38)

This proves the continuity of fl,m about 0, and by linearity the continuity of f .

6.B Laplace regularization matrix

In this appendix, we derive the general expression of the Laplace regularization

matrix Λ in the mSPF basis. The entries of the matrix Λ are

Λi,j = δl(i),l(j)δm(i),m(j)

∫ ∞

0
hi(q)hj(q) dq, (6.39)

where

hi = χn(i)

(

qF ′′
n(i) + 2F ′

n(i) −
l(i) (l(i) + 1)

q
Fn(i)

)

. (6.40)

The function hi can be written as

hi(q) = χn(i)
q

ζ
exp

(

− q
2

2ζ

)

Gn(i),l(i)

(

q2

ζ

)

, (6.41)

where Gn,l =
∑

k g
n,l
k Xk is a polynomial. It is hard to express the coefficients

gn,l
k in a compact form. Instead of manually deriving these coefficients, we compute

them using polynomial algebra facilities, provided in the SciPy library [Jones et al.,

2001] in PythonTM. The coefficients gn,l
k are algebraically computed on demand as

it involves simple operation on polynomials: derivation and addition. The first

coefficients are given in Table 6.B for convenience.

Hence the integrand hi(q)hj(q) can be written as

hi(q)hj(q) =
χn(i)χn(j)

ζ
exp

(

−q
2

ζ

)

Ti,j

(

q2

ζ

)

(6.42)

where Ti,j(X) is the polynomial XGn(i),l(i)(X)Gn(j),l(j)(X). The coefficients ai,j
k of

Ti,j are simply obtained from the coefficients of Gn(i),l(i) and Gn(j),l(j). Therefore,

the entries of the regularization matrix are

Λi,j =
χn(i)χn(j)

ζ

d
∑

k=0

ai,j
k

∫ ∞

0
exp(−q2/ζ)

(

q2

ζ

)k

dq

=
χn(i)χn(j)

2
√
ζ

d
∑

k=0

ai,j
k Γ(k + 1/2). (6.43)
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h

Table 6.2: Coefficients gn,l
k of the polynomials involved in the computation of the

Laplace regularization matrix in mSPF basis.

k G0,l G1,l G2,l

0 6− l(l + 1) 7(3 − l(l + 1)/2) 15.75(3 − l(l + 1)/2)

1 −7 −44.5 + l(l + 1) −145.125 + 4.5l(l + 1)

2 1 14.5 78.375 − l(l + 1)/2

3 −1 −12

4 0.5
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Overview

Is it possible to process the diffusion signal during acquisition, in real-time? Could

the ODF be estimated online? What kind of feedback could an online estimation

system provide on the accuracy of the reconstructed diffusion information? In this

chapter, we first provide an online estimation method of the ODF in constant solid

angle, based on Kalman filter. We carefully design the Kalman filter to include

an adequate error propagation method, adapted to the estimation of the ODF in

constant solid angle. This online reconstruction provides a real-time feedback on

the reconstruction accuracy throughout the acquisition process. Then, a method

called STAR (STatistical Analysis of Residuals) is presented and applied to the

online detection of motion in high angular resolution diffusion images. Compared

to existing techniques, this method is image-based, and is built on top of a Kalman

filter at no additional cost. The performance of STAR is tested on simulated and

on real data, and compared to the classical generalized likelihood ratio test.

Keywords online estimation; orientation distribution function; motion detection;

q-ball imaging; real-time processing.

Organization of the chapter

We first quickly review the method of estimation of the ODF in constant solid

angle in q-ball imaging, with a special focus on error propagation in the least-

squares estimation problem. Then we present an incremental solution based on

Kalman filtering, to the estimation of this ODF. On the top of the Kalman filter,

we propose a method to detect subject motion, based on a monitoring of Kalman

filter residuals. We end the chapter with an experimental section, showing the

sensitivity and specificity of the motion detection, on real and simulated data.

7.1 Introduction

Diffusion MRI has provided a great tool for neuroscientists to understand and an-

alyze in vivo the anatomy of the brain white matter fiber tracts, that connect

different areas of the cortex. The diffusion tensor model [Basser et al., 1994a]

has become increasingly popular, and the study of scalar indices derived from

it has proved useful in the diagnosis of a wide range of neurological diseases

[Jones, 2010a, Johansen-Berg and Behrens, 2009]. For several specific applications,

among which fiber tractography, this model is however known to be limited, and

high angular resolution imaging techniques should be used instead, to reconstruct

the model-free ensemble average propagator [Assemlal et al., 2008, Ozarslan et al.,

2009, Descôteaux et al., 2009], or the orientation distribution function (ODF) [Tuch,

2004b, Descoteaux et al., 2007a, Aganj et al., 2010b, Tristán-Vega et al., 2009].
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The acquisition of high angular resolution diffusion images requires longer time

than diffusion tensor imaging. As the quality of the reconstruction depends on

the noise level and the acquisition parameters, the number of required acquisitions

in diffusion MRI might not be known in advance. Therefore, the online estima-

tion of the ODF provides a valuable feedback on the reconstruction accuracy. A

Kalman filtering framework for the online estimation of ODF has already been pro-

posed [Poupon et al., 2008b, Deriche et al., 2009]. The first contribution in this

chapter is to adapt the Kalman filtering framework to the online reconstruction of

ODF in constant solid angle, recently introduced in the Q-Ball imaging community

[Aganj et al., 2010b, Tristán-Vega et al., 2009]. With a special focus on a proper

error propagation in the estimation, we show that the Kalman filter provides online

a relevant index for the accuracy of the reconstructed ODF.

Besides, subjects are likely to move during diffusion acquisitions, and we can

identify at least three motivations to develop a method for the online detection of

motion. First, images can be registered prior to diffusion model estimation; however

this might increase partial volume effects [Pfefferbaum et al., 2000], because of the

relatively low spatial resolution of diffusion weighted images and of interpolation in

the registration procedure. This also modifies the variance properties of the image

[Rohde et al., 2005], which should be considered carefully for group studies. When

subject moves during acquisition, a warning could be issued, so as to take a deci-

sion accordingly. Depending on the number of images already acquired, the decision

could be to restart the scan, or acquire a few more diffusion weighted images than

originally planned to compensate for the variance increase due to the registration.

Second, diffusion acquisitions use a gradient table, which is a set of orientations

and b-values, and has been designed following an optimal sampling strategy. In

Q-ball imaging for instance, the set of orientations is designed to sample the sphere

in an optimal isotropic fashion [Jones et al., 1999a, Papadakis et al., 2000]. When

correcting for motion, the diffusion encoding gradients should be rotated to be con-

sistently defined in a coordinate frame related to the subject [Rohde et al., 2004,

Barmpoutis et al., 2007, Leemans and Jones, 2009]. This modification might break

the optimal sampling strategy as originally planned, and affect the reconstruction

of the ODF. Finally, in the context of online processing of diffusion images, motion

must be detected, so that it can be corrected to continue the incremental recon-

struction.

A solution for online motion detection and correction was recently proposed

[Aksoy et al., 2011]. The authors use a camera inside the scanner to detect and

evaluate a rigid motion. Their study shows the improvement in ODF reconstruc-

tion with this prospective approach for motion correction, over a classical offline

registration. However this technique requires additional hardware which is to date

not always available on scanners. Another approach [Alhamud et al., 2011] is based



106CHAPTER 7. ONLINE HARDI AND APPLICATION TO MOTION DETECTION

on the interleaving of echo navigators through the acquisition sequence. Authors in

[Alhamud et al., 2011] also report good results in detecting and correcting motion,

but these additional acquisitions affect the overall protocol time.

In this chapter, we apply the online reconstruction to the online detection

of motion in Q-ball imaging. Our method does not require new hardware nor

change in the acquisition protocol, and is based on a Kalman filter reconstruc-

tion of the HARDI signal [Poupon et al., 2008b, Deriche et al., 2009]. Then we

introduce STAR (STatistical Analysis of Residuals), an original method for the

detection of motion in diffusion weighted images. The method is tested under var-

ious experimental conditions on semi-artificial and on real data, and compared to

the Generalized Likelihood Ratio Test (GLRT) [Willsky and Jones, 1976]. In the

Results section, we report successful detection of small motion (rotation by angle

under 2◦), even in noisy conditions. The detection using STAR outperforms GLRT,

while STAR does not need any delay for the detection.

7.2 Methods

In this section, we review the definition and the expression of the ODF calculated in

constant solid angle. It has been shown recently that this mathematically correct

definition of ODF can be reconstructed in Q-ball imaging [Aganj et al., 2010b,

Tristán-Vega et al., 2009]. We present an incremental reconstruction algorithm for

this ODF, based on the Kalman filter. A special focus on the noise propagation is

addressed, for an accurate reconstruction of the ODF in constant solid angle.

We formalize the problem of motion detection only from the observation of the

diffusion signal. We present a brief review of methods for fault detection, in partic-

ular GLRT built upon the Kalman filter, as first described by [Willsky and Jones,

1976]. Finally, we present STAR, an original approach based on a statistical mod-

eling of the image. It has several advantages over GLRT. Both algorithms are

implemented, and we present at the end of this section the validation methods used

to compare them.

7.2.1 ODF in constant solid angle

The ODF is a spherical function, retaining the angular information of the ensemble

average propagator, P . When defined as the marginal probability of direction, the

ODF, ψ, is the probability for a water molecule to diffuse along a given direction,

in a constant solid angle. It is defined from the diffusion propagator as:

ψ(u) =

∫ ∞

0
P (ru)r2dr. (7.1)

In diffusion MRI, we measure the signal, s(q), which is related to the ensemble
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average propagator P through a Fourier transform, under the narrow-pulse condi-

tion [Callaghan, 1991a],

P (r) =

∫

q∈R3

s(q)

s(0)
e−2πiq · rdq. (7.2)

Under the assumption of a mono-exponential decay of the diffusion signal s, the

relation between s(q), s(0) and the ODF ψ is given by:

ψ(u) =
1

4π
+

1

16π2
FRT

{

∇2
b ln(− ln

s

s(0)
)

}

(u), (7.3)

where FRT denotes the Funk-Radon Transform, and ∇2
b the Laplace-Beltrami op-

erator [Aganj et al., 2010b].

The computation of the ODF can be implemented using the modified spheri-

cal harmonic basis for real and symmetric functions [Descoteaux et al., 2007a] to

describe the transformed signal y = ln(− ln(s/s(0))) [Aganj et al., 2010b], as both

the Funk-Radon transform and the Laplace-Beltrami operations in Eq. 7.3 have a

close-form matrix expression in the spherical harmonic basis. If ĉj are the spherical

harmonic coefficients that describe y, then the spherical harmonic coefficients to

describe the ODF ψ are

ĉ′j =























1

2
√
π

j = 1

− 1

8π
(−1)

lj

2

1× 3× . . . × (lj + 1)

2× 4× . . . × (lj − 2)
ĉj j > 1,

(7.4)

lj = {0, 2, 2, 2, 2, 2, 4, 4, 4, . . .} for j = {1, 2, 3, . . .} is the order associated to the j-th

spherical harmonic.

7.2.2 Estimation in presence of noise

The computation of the spherical harmonic coefficients ĉ describing y from a series of

measurements y[k] = ln(− ln(s[k]/s(0))) = ln(− ln(s(qu[k])/s(0))), k = 1 . . . K at

discrete positions u[k] on the unit sphere, and a measurement without any diffusion

encoding gradient s(0) is implemented by minimizing:

M(c) = (y −Bc)TΣ−1(y −Bc) + λcTLc. (7.5)

The second term is a Laplace-Beltrami regularization constraint on the fitted sig-

nal, with the matrix L having diagonal elements l2j (lj + 1)2. The matrix Σ in the

data fitting term of Eq. 6.17 accounts for the uncertainty in the diffusion weighted

measurements s[k], as well as for the distortion introduced by the non-linear trans-

form, which is illustrated in Fig. 7.1. The distortion is higher in high-magnitude

and low-magnitude signal modes.
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Figure 7.1: (left) Non linear transform on the diffusion signal; (right) derivative with

respect to the signal. The distortion is maximum for s/s(0)→ 0.0 and s/s(0)→ 1.0,

and minimum for s/s(0) ≈ 1/e.

The diagonal elements of Σ can be approximated through first-order error prop-

agation. The uncertainty on the transformed signal y can be approximated as

δy =
∂y

∂s
δs = − 1

s ln(s/s0)
δs (7.6)

Provided that the error on separate measurements are uncorrelated, the diagonal

elements σ2[k] of Σ are

σ2[k] =
Var(s[k])

s[k]2 ln2(s[k]/s0)
, (7.7)

where Var(s[k]) denotes the variance of the diffusion signal s[k], and can be es-

timated once for the whole volume using a method like PIESNO for instance

[Koay et al., 2009a].

7.2.3 Incremental ODF reconstruction

Provided that the acquisition sequence is incremental (in this study we use the

incremental point sets as in [Deriche et al., 2009]), the energy in Eq. 6.17 can be

minimized incrementally using a Kalman filter [Deriche et al., 2009]. The incre-

mental system adapted to the reconstruction of the ODF in constant solid angle is
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���

���

Figure 7.2: Synthetic mixture of Gaussian model, and reconstruction of the ODF in

constant solid angle using the Kalman filter. (top) 60◦, and (bottom) 90◦ crossing

fibers. The 30 first iterations of the Kalman filter are shown.

given by:

Initialization















c[0] = E[c]

P̃[0] = E[(c− c[0])(c − c[0])T]

P[0] = (P̃[0]−1 + λL)−1

Update



































V [k] = B[k]P[k − 1]B[k]T + σ2[k]

g[k] = P[k − 1]B[k]TV [k]−1

P[k] = (I− g[k]B[k]) P[k − 1]

γ[k] = y[k]−B[k]c[k − 1]

c[k] = c[k − 1] + g[k]γ[k]

(7.8)

The σ2[k] depend on the data as expressed in Eq. 7.7, and the covariance V [k]

of the residual γ(k) can no longer be precomputed off-line. The expected covariance

of the estimated spherical harmonic coefficients c[k] is the matrix P[k] computed by

the Kalman filter. Then the expected mean squared error on the spherical harmonic

coefficients describing the ODF is given by:

MSE(c′[k]) = Tr(FTLTP[k]LF), (7.9)

where F is the matrix form of the Funk-Radon transform and has diagonal elements

2πPlj (0), where Plj (0) is the Legendre polynomial of degree lj evaluated at 0, and

L is the Laplace-Beltrami matrix as in Eq. 6.17.

The Kalman filter was derived with the assumption that the local diffusion

propagator does not change in time. Next, we show how we can derive a motion

detection algorithm from this Kalman filter.

7.2.4 Motion and diffusion signal

Subject motion generally occurs in a short time compared to the acquisition time.

This may induce an abrupt change in the diffusion signal. The detection of abrupt

changes in dynamical systems has been extensively studied [Willsky and Jones,
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1976, Basseville and Benveniste, 1984]; a very good review of methods and algo-

rithms can be found in [Basseville and Nikiforov, 1993]. They propose a classifica-

tion of change detection problems, together with suggested methods and algorithms

to address them.

In the previous section, we have introduced a Kalman filter solution to recon-

struct the spherical harmonic coefficients of the Q-ball signal. The state of our sys-

tem is the vector of spherical harmonic coefficients c[k], and a motion of the subject

at time θ is likely to imply a modification of this state, c[k ≥ θ] = c[k < θ] + p.

The problem of motion detection reduces to the problem of change detection in this

multidimensional system. Besides, since both the time θ and the magnitude p of

the change are unknown a priori, and the classification in [Basseville and Nikiforov,

1993] suggests to use a generalized likelihood ratio test (GLRT) for the detection.

In the next section we briefly describe this method and its implementation upon a

Kalman filter, as originally introduced in [Willsky and Jones, 1976].

Classical solution: the generalized likelihood ratio test

The Kalman filter presented in the first section is built under the hypothesis of

no motion. We can monitor the residuals of this Kalman filter for each iter-

ation, and test whether the hypothesis is still valid. As it has been shown in

[Willsky and Jones, 1976], the prediction error after a change occurred at time θ

for subsequent iterations can be decomposed as

γ[k] = G(k, θ)p + γ1[k] (7.10)

where γ1 is zero-mean Gaussian distributed with covariance V [k], G(k, θ) represents

the propagation of a jump at time θ, to the prediction error at time k. This can be

computed as in [Willsky and Jones, 1976],















G(k, θ) = B[k]



I−
k−1
∑

j=θ

g[j]G(j, θ)



 ,

G(k, k) = B[k].

(7.11)

The problem of a change detection is to discriminate between two hypotheses

• (H0): no change in the state vector: γ[j] = γ1[j], j = θ0 . . . k,

• (H1): at time θ0, the state vector becomes c + p0.

When p0 and θ0 are known, a natural statistic for the detection is the likelihood

ratio. Provided that the residuals are linearly related to the change (Eq. 7.10), the

log-likelihood ratio is

l(k; θ0,p0) = ln
pH1

(γ[θ0 . . . k])

pH0
(γ[θ0 . . . k])

. (7.12)
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Provided that the densities pH0
and pH1

are Gaussian, after simplification this

rewrites as

l(k; θ0,p0) =

k
∑

j=θ0

γ[j]V −1[j]G(j, θ0)p0. (7.13)

In our case, both p and θ are unknown. The generalisation of the likelihood

ratio method suggests to replace θ0 and p0 in Eq. 7.13 by their maximum likelihood

estimates

θ̂(k) = arg max
θ
l(k; θ, p̂(k; θ))

p̂(k; θ) =





k
∑

j=θ

GT (j, θ)V [j]−1G(j, θ)





−1
k
∑

j=θ

GT (j, θ)V [j]−1γ[j].

(7.14)

Finally, the decision is taken by comparing l(k; θ̂, p̂) to a threshold ǫ.

This technique works fine, yet suffers from several drawbacks. First, the calcu-

lation of the maximum likelihood estimate of p involves the inversion of a matrix

in Eq. 7.14 which has full rank only if k− θ > dim(p). In other words, this implies

a delay at least equal to the dimension of the problem. As an example, when the

signal is fitted in the 4-th order symmetric spherical harmonic basis, this dimension

is 15. In addition, the choice of a threshold ǫ was reported to be critical, and highly

dependant on the delay [Basseville and Benveniste, 1983]. Finally, in our situation

the state vector represents the diffusion signal locally, and GLRT does not say how

to combine the statistics of different voxels to calculate a statistic which could be

an indicator of motion for the whole volume at once. To address these weaknesses,

we propose in the next section an original approach without delay, incorporating a

statistical model of the image, in order to provide a more suitable detection algo-

rithm.

Statistical Analysis of the Residuals

The reconstructed image is a vector field c(r), where c is a vector of spherical

harmonic coefficients describing the diffusion signal at voxel position r. We consider

the difference p between two such vector fields c1 and c2, representing the same

subject before and after a rigid transform. In what follows, we consider p(r) as a

random variable, with unknown covariance matrix C.

Hence if there is no motion, the residuals for the whole volume will be distributed

as N (0, V [k]), where V [k] is the variance predicted by the Kalman filter. Otherwise

the overall variance of the residuals will increase as V [k]+G(k, θ)CG(k, θ)T, where

G(k, θ) is the matrix for the propagation of a jump at time θ to the prediction error

at time k, and the covariance matrix C of p is unknown.
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Based on the previous observations, we design a test for motion detection with-

out delay. This means that based on measurements up to time k, we are able to

decide whether a motion occurred at time k or not. Given a sample of M residu-

als at time k, at voxel positions x1 . . . xM selected randomly within the brain, the

hypotheses that a motion did occur at time θ or not are equivalent to:

• (H0): γ[k] has variance V [k], as predicated by the Kalman filter.

• (H1): γ[k] has a variance σ2 > V [k].

This decision problem is commonly addressed with a one-sided χ2-test [Snedecor and Cochran,

1989]. We first calculate the statistic

T =

∑M
j=1 γ

2(xj)[k]− (1/M
∑M

j=1 γ[k])
2

V [k]
. (7.15)

Under the hypothesis (H0), T approximately follows a χ2
M−1 distribution. We want

to reject the hypothesis with a significance level α: under the hypothesis (H0), we

compute p such that P(T > p) = α. The value of p is obtained from the inverse

cumulative function of the χ2
M−1 distribution.

7.2.5 Validation methods

We implemented the incremental reconstruction using Kalman filtering, together

with GLRT and STAR for motion detection. These techniques were tested on real

data, and a quantitative analysis of both was performed on semi-artificial data,

where the motion is simulated by a rigid transform. In this section, we describe

how these images were synthesized.

The simulation is based on a tensor field reconstructed images of still subject,

acquired on a 3T Siemens magnet at the Center for Magnetic Resonance Research,

University of Minnesota Medical School, with 200 encoding directions computed

following the optimal sampling scheme of [Deriche et al., 2009], b = 1000 s/mm2,

2.0mm isotropic resolution, 25 b = 0 images, 128 × 128 image matrix, 64 slices,

TE = 90ms and TR = 8500ms. We choose a series of diffusion gradient directions

{g[k], k = 1 . . . K} and a b-value for synthesis. The rigid motion is specified by

an instant θ, its rotation component R and its translation vector t. Provided

that the diffusion encoding gradients should be rotated accordingly [Rohde et al.,

2004, Barmpoutis et al., 2007, Leemans and Jones, 2009], the gradient directions

used for synthesis are {g[1],g[2], . . . ,g[θ − 1],Rg[θ], . . . ,Rg[K]}. The synthetic

diffusion weighted images θ, . . . ,K are finally applied the rigid transform (R, t),

and corrupted by Rician noise.
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Figure 7.3: STAR statistics for simulations with and without motion. Each point

represents a simulation; the theoretical threshold was calculated as explained in

Section 7.2.4, so that the FPR does not exceed 5%.

7.3 Results and Discussion

We evaluate the general likelihood ratio, and the residual-based statistics computed

for STAR as a motion detection criterion. We first investigate the accuracy of the

theoretical threshold in STAR. Then we compare the sensitivity and specificity

of GLRT and STAR, for different values of the experimental parameter. Within

this section, we report the true positive rate (TPR), defined as TPR = #detected

positives / #positives, and the false positive rate, define as FPR = #mislabeled

negatives / #negatives.

7.3.1 Threshold selection in motion detection

One of the advantages of STAR outlined in the previous section is that the threshold

for the detection can be deduced from the target false positive rate. In practice,

as M becomes large, we approximate the χ2
M−1 distribution for the decision test

described in Section 7.2.4 by a normal distribution: (T −M + 1)/
√

2(M − 1) ∼
N (0, 1), and p is given by the inverse normal cumulative density function. For a false

positive rate fewer than 5%, the theoretical threshold is (p−M +1)/
√

2(M − 1) =

1.64. This value is experimentally tested, and the results are presented in the next

section.

We report in Fig. 7.3 the value of the statistics (T −M + 1)/
√

2(M − 1), for

a series of 100 experiments without motion, and a series of 100 experiments where

the volume was rotated after 18 acquisitions by an angle of 2◦. The threshold was

taken as 1.64, for which the false positive probability is 5%. The empirical false

positive rate we report for these 200 simulations is 4%, while the true positive rate

is 90%.
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Figure 7.4: TPR versus FPR in motion detection. This experiment was done on 100

datasets without motion, and 100 acquisitions for which a rigid motion (rotation

by an angle of 2◦) occurred after 20 diffusion weighted images were acquired.

7.3.2 Motion detection: sensitivity and specificity

We computed both detection criteria on a series of 100 datasets without motion,

and a series of 100 experiments with motion. We plot in Fig. 7.4 the curve TPR

versus FPR obtained by choosing different threshold values.

We also evaluate the robustness of GLRT and STAR in various experimental

conditions. For a fixed FPR = 5%, we plot the TPR score of both methods.

The experimental conditions include the delay, instant of motion in the acquisition

sequence, SNR and motion magnitude. Results of these simulations are reported in

Fig. 7.5. The experimental conditions, unless explicitly modified, were a rotation

around the left-right axis by an angle of 3◦, SNR = 20, motion instant θ = 20 and

a delay k − θ = 3 (for GLRT). The experiment includes 400 negatives (simulations

without motion) and 100 positives (simulations with motion). The monitoring of

residuals in STAR and in GLRT is limited to 500 voxels randomly selected within

the brain to get a computational cost adequate for online treatment.

Experiment on a real data

We also validate our methods on a real dataset, with the same imaging parameters

as above. During the acquisition, the subject was asked to slightly tilt his head

after 80 images were acquired. The motion was a posteriori identified as a rotation

of 20◦ about the z-axis (see Fig. 7.6). The detection algorithms could detect this

motion: with a delay of 2 acquisitions for GLRT, and with no delay for STAR.

7.4 Discussion

Among the challenges of a motion detection algorithm, we have tested both GLRT

and STAR in these conditions:
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Figure 7.5: TPR: The threshold was chosen so that FPR = 5%. We compare

the performance of GLRT and STAR. The dependency on several experimental

conditions is tested: (a) SNR, (b) motion magnitude, (c) delay of the detection, (d)

instant of motion.

Figure 7.6: A real acquisition: the subject was asked to slightly move his head during the

acquisition.
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• small delay for the detection (ideally no delay);

• motion that occurred in the first few iterations of the Kalman filter;

• very noisy conditions (SNR down to 10);

• small motion.

Both criteria show good results in detecting motion, even in severe experimental

conditions. As expected, STAR is more robust to noise (Fig. 7.5.a), and performs

better in detecting small motion (Fig. 7.5.b), since it combines natively the residuals

from different voxels.

In addition, GLRT cannot be computed if the number of acquired signal is lower

than the dimension of the model, which is 15 in the case of 4th-order real, symmetric

spherical harmonics. This impacts the ability to detect motion occurring at the

beginning of an acquisition sequence: they are detected by STAR, while GLRT

cannot be computed (see Fig. 7.5.d). In addition, GLRT needs a delay greater than

6 to get similar sensitivity as STAR (Fig. 7.5.c). STAR does not need any delay in

the decision.

7.5 Conclusions

In this chapter, we have proposed a method for the detection of motion in diffusion

MRI. We have developed a Kalman filter solution for the estimation of the ODF

in constant solid angle. The detection algorithm STAR is based on the analysis of

the residuals of the Kalman filter, yet it is general and can be directly applied to

any linear diffusion model reconstruction. Compared to other techniques for the

prospective detection and correction of motion [Aksoy et al., 2011, Alhamud et al.,

2011], our method does not require any camera or additional device. Once motion

is detected by our technique, a decision could be taken by the scanner operator, or

the protocol in [Alhamud et al., 2011] could be used for motion correction.

The proposed technique was tested on semi-artificial data as well as in a real

data, and shows good results for the online detection of motion. Compared to

GLRT, which is a classical solution for the detection of changes in dynamical sys-

tems, STAR combines the residuals at different voxel positions to compute a statis-

tic, on which the decision is based. STAR performs better than GLRT in the

detection of small motion, motion in noise, or motion occurring early in the acqui-

sition protocol. Besides, STAR does not need any delay for the detection, which

makes it very efficient in practical situations.

Summary of the contributions of this chapter

• We present an incremental reconstruction of the ODF in constant solid angle.
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• A motion detection algorithm is proposed, on top of the Kalman filter, at no

additional cost.

• The motion detection is evaluated on synthetic and real data.
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Overview

How to place the sampling directions for a multiple q-shell acquisition? Can we

generalize the geometrical approaches in q-ball imaging to several shells? We present

in this chapter a method to optimize the angular coverage of a sampling protocol

on multiple spheres in q-space. The main objective of this approach is that the

sampling is uniform on each shell separately, and is also uniform when considered

as a whole. This method can be seen as a generalization of the electrostatic analogy

in q-ball imaging experiment design.

Keywords Multiple q-shell acquisition; Angular uniform; Acquisition design; q-

space imaging; Angular resolution.

Organization of the chapter

We first present the motivations, along with the energy we minimize to construct

angular uniform multiple q-shell acquisition schemes. Depending on the minimiza-

tion procedure, we show that the same energy can produce incremental acquisition

sequence, with an adapted minimization algorithm, compatible with prematurely

aborted scans. In the experimental validation, we present some geometrical features

of the multiple shell acquisition. Finally, the sampling sets are shown in action, for

the reconstruction of diffusion tensor and HARDI models. The angular resolution

is compared to other acquisition schemes.

8.1 Introduction

There are many degrees of freedom in the construction of a multiple shell design. If

we try to determine all the parameters that fully describe a sampling protocol on

several shells, we have: the total number of samples, K; the number of spheres in

the q-space, S; the shell radii, qs; the number of points on each shell, Ks, such that
∑

s≤S Ks = K, the positions (directions) on each sampling shell, us,k ∈ S2.

With the large and increasing number of reconstruction techniques in the liter-

ature [Khachaturian et al., 2007, Wu and Alexander, 2007, Assemlal et al., 2009b,

Aganj et al., 2010a, Ye et al., 2012] (see Chapter 4, Section 4.2.3), it is not clear

whether a preferred, unified strategy would fit the needs of every method. In par-

ticular we believe that the selection of parameters K, S, qs and Ks should be driven

by the needs of the reconstruction method, the time limit for the acquisition and

the physical limitations of the imaging system. This chapter mainly deals with the

choice of the sampling directions, once all other sampling parameters have been set.
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8.2 Angular-uniform sampling on multiple shells

We present in this section an electrostatic repulsion energy for the construction of

angular-uniform point sets on several shells. The energy is made of two terms: the

first controls the angular repartition on each shell, while the second controls the

angular uniformity of the set of directions as a whole. A point set minimizing this

energy can be constructed by direct minimization, or incrementally. In the latter

case, by providing a quasi-uniform distribution of points throughout the acquisition,

the sampling sequence will be allow prematurely aborted scans to be processed

anyway.

8.2.1 A generalization of electrostatic energy to multiple shell

In the design of q-ball imaging acquisition, the most popular approach is to spread

out the sampling directions as uniformly as possible on the sphere (see Chapter 5,

Section 5.2.1). Similarly, we propose to construct the sampling directions on each

shell, with the following principles. For the sake of rotational invariance, it is

desirable that the angular coverage of each sphere be as uniform as possible. Besides,

we also require the whole set of directions (i.e. the set of all sampling points in

q-space, reprojected onto the unit sphere) to be as uniform as possible.

Uniform on each shell

We propose the following electrostatic energy, which is a natural generalization of

the method in Jones et al. [1999a], Jansons and Alexander [2003] to multiple q-shell,

V1 =
1

S

S
∑

s=1

1

K2
s

∑

i6=j

v(us,i,us,j), (8.1)

where the elementary electrostatic repulsion v is

v(u,v) =
1

||u− v||2 +
1

||u + v||2 . (8.2)

This energy, V1, is the sum the electrostatic repulsion energy on each shell. The en-

ergy of shell s is weighted by 1/K2
s . Indeed, the energy increases as K2 [Cook et al.,

2007], and this weighting ensures equal importance of the uniformity for each shell.

Uniform as a whole

So that the whole set of sampling directions be uniform, we also consider this

electrostatic energy,

V2 =
1

K2

∑

s 6=t

Ks
∑

i=1

Kt
∑

j=1

v(us,i,ut,j). (8.3)
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Figure 8.1: Optimal point set on 2 shells, K1 = K2 = 50 points per shell. The

weighting parameter is set to α = 0.5. (left) sample points in the q-space, (right)

sampling directions, i.e. the sampling points reprojected onto the unit sphere.

This energy, V2, is the sum of all elementary electrostatic repulsions between two

pair of points on different shells.

Finally, we construct our set of points by minimizing the energy

V = αV1 + (1− α)V2. (8.4)

The minimization of V is a non-convex optimization problem. We implemented

the minimization through sequential least squares quadratic programming, with

analytically pre-calculated gradient, and equality constraints ||us,k||2 = 1, s =

1 . . . S and k = 1 . . . Ks. Our implementation, in PythonTM, makes use of the

fmin_slsqp routine from the SciPy optimization package [Jones et al., 2001]. A

solution found for K1 = K2 = 50 and α = 0.1 is plotted on Fig. 8.1.

8.2.2 Balancing per-shell and global uniformity

The weighting parameter α ∈ [0, 1] in Eq. 8.4 balances the trade-off between unifor-

mity on each shell (measured by energy V1), and angular uniformity of the sampling

scheme as a whole (measured by energy V2). The case α = 0 is somehow underde-

termined, as any rotation of one shell with respect to the others does not change

the energy. At the opposite, the case α = 1 would put all the weight on global

uniformity, but nothing would prevent poor angular coverage of each single shell.

These two extremal cases are illustrated on Fig. 8.2.

We plot on Fig. 8.3 the value of both energies V1 and V2 for the configuration

minimizing V , while the α parameter varies from 0 to 1. Except near these extremal

values of α, the solution is not much sensitive to the choice of α. Since then, we

chose α = 0.5 throughout our experiments.
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Figure 8.2: Extremal values of the weighting factor α: minimum energy configu-

rations for S = 2 shells, K1 = K2 = 50 points per shell, points reprojected on

the unit sphere. (left) α = 0: all the importance is given to the uniformity of

the configuration on each shell, independently of the other. As a result, the global

coverage is non-uniform. (right) α = 1: the global angular coverage is uniform, but

if we consider the repartition of points on shell 1 (blue dots) or shell 2 (red dots)

separately, the angular coverage is not uniform.
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Figure 8.3: (left) Energy V1, measuring uniformity on each shell, and (right) V2,

measuring uniformity of the set of directions as a whole. Energy evaluated for the

optimum configurations, for various α. Except near 0 and 1, the solution does not

much depend on the choice of α.
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8.2.3 Incremental construction of an optimal arrangement

Some recent work on single shell acquisition design [Cook et al., 2007, Dubois et al.,

2005, Deriche et al., 2009] are about the interest of incremental sampling sequences,

for which an interruption at any point would result in an approximately optimal de-

sign. Such designs are useful to process data from prematurely aborted acquisitions,

as well as to process data online (see Chapter 5, Section 5.2.2).

In the sequel we adapt the approach proposed in Deriche et al. [2009] to the

problem of multiple q-shells design. To find a nearly optimal design for K points, we

construct the point set incrementally: K iterations are required. At each iteration k,

we first select the sphere s on which to add the k-th point. Then we find the direction

Us,i minimizing V , while the other directions remain fixed. The minimization at

each iteration is done by an exhaustive search among a set of 10000 pseudo-random

points uniformly distributed on each sphere. Therefore we construct a set of points,

that remain nearly optimal throughout the acquisition sequence.

8.3 Geometrical properties of the multiple shell point

sets

We present in this section some geometrical measures on the generated point sets,

and compare to optimal configurations on the sphere. We also compare the incre-

mental point sets configurations to the optimal configurations. The plots report

the value of the electrostatic repulsion, per shell and as a whole. For an easier

interpretation, we plot the so-called normalized electrostatic energy, which is the

energy divided by the minimum electrostatic energy V ∗, for the same number of

points under consideration. In short, the closer to 1, the better.

8.3.1 Uniformity of each shell

We generated sampling protocols on S = 2, 3 and 4 shells, with the same number

of points per shell, Ks = 6 . . . 60. We computed the average electrostatic energy on

each shell V1. We plot on Fig. 8.4 (right) the normalized energy V1/V
∗, where V ∗

is the electrostatic of the optimal configuration on a single sphere.

The ratio is very close to 1 for all considered values of s and Ks. This means

that there is almost no price to pay on the uniformity per shell, to get a globally

uniform configuration.

8.3.2 Uniformity of the sampling directions as a whole

With the same optimal sets of directions, we evaluate the angular uniformity of the

sampling directions as a whole. We plot on Fig. 8.4 (right) the normalized energy

V2/V
∗. Once again, the ratio is very close to 1. Surprisingly enough, as the number
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Figure 8.4: (left) normalized average energy per shell V1. (right) normalized average

energy of the sampling directions as a whole, V2/V
∗. The normalized energy are

very close to 1 in all cases.

of shell increases, the constructed point sets becomes closer to the electrostatic

optimum. This is somehow counter-intuitive, as the number of constraints increases

with the number of shells.

8.3.3 Construction of incremental point sets

We also evaluate the geometrical properties of incrementally constructed multiple

shell point sets. We report on Fig. 8.5 the normalized energy of the incremental

configurations. We first note that the energy per shell remains very low, and close

to the optimal. However, and in particular when the number of points per shell

is moderate (Ks ≤ 20), the energy as a whole is significantly higher, which is an

index of a non-uniform configuration. We illustrate this on Fig. 8.6, where we plot

the incrementally constructed point set and the optimal point set for S = 2 shells,

and Ks = 17 points per shell. Therefore for a moderate sample size, it is probably

better to start a scan with an optimal point sets. The scan can be further extended

with the incremental construction.

With this method, we are therefore able to construct point set configurations on

several spheres. The configuration on each shell, separately, is closely uniform and

almost optimal with respect to the electrostatic repulsion criterion. Additionally,

the set of directions, which is the set of all sampling points considered as a whole,

is also uniform on the sphere, and almost optimal for the same energy. We now

use these point sets as sampling protocols in q-space imaging, and compare their

performance with radial sampling.

8.4 Experiments and results

We provide in this section an experimental validation of this approach. We test

the sampling schemes in action, and evaluate the angular resolution of staggered
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Figure 8.5: Geometrical properties of the incrementally constructed point sets on S

shells. (left) Normalized average energy per shell V1/V
∗, of the incremental point

set with Ks points per shell. (right) Normalize average energy of the sampling

directions as a whole, V2/V
∗. The average energy per shell remains low, but the

energy as a whole is significantly higher than for the optimal configurations.

Figure 8.6: (left) incrementally constructed point set on S = 2 shells, Ks = 17

points per shell, and (right) optimal configuration for the same parameters. For

such a small sample size, the incremental construction gives poorly uniform config-

urations.



8.4. EXPERIMENTS AND RESULTS 127

6 9 12 15 18 21 24 27 30
Number of points per shell (Ks )

1

2

3

4

5

6

7

M
ea

n 
an

gu
la

r e
rr

or

radial
staggered

Figure 8.7: Average angular error between the principal direction of the estimated

tensor and the axis of the cylinder. Signal simulation and reconstructed was re-

peated with 2000 different orientations, and 100 repetitions with random, Rician

noise for each orientation. We plot here the median, first and third quartiles, and

extremal values of the angular error (in degrees).

multiple q-shell, compared to radial sampling, for single fiber reconstruction and

HARDI methods.

8.4.1 Single fiber compartment

We simulated a single fiber by a cylinder with impermeable wall. The diffusion sig-

nal was simulated following Soderman and Jonsson [1995]. The cylinder dimensions

were set to L = 5 mm, and ρ = 5 µm; and the diffusion time is set to τ = 20.8 ms.

The signal is simulated for different acquisitions schemes, and corrupted by Rician

noise, with corresponding SNR = 25 with respect to the baseline, non diffusion-

weighted signal. From these noisy measurements, we fit a diffusion tensor model,

using weighted linear least squares method (see Chapter 4, Section 4.2.2). This

process is repeated 100 times for a given cylinder model, to get an estimate of

the average angular error. Besides, to test the rotational invariance of acquisition

schemes, this in turn is repeated 2000 times, for cylinders with different axis ori-

entations. Acquisition protocols are defined on S = 3 shells in q-space, and the

number of points per shell ranges from Ks = 6 to Ks = 30. Results of the average

angular error are reported on Fig. 8.7.

As expected, the angular error decreases as the number of points per shell in-

creases. The median angular error is smaller for the acquisition protocol we propose,

as compared to radial sampling for the same total number of acquisitions. For a

small number of points per shell, the angular error is decreased by 2◦. Besides,

the range of angular errors is smaller when considering tensors with different direc-
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Figure 8.8: Crossing angle for a reconstructed fiber crossing. The q-space signal

was reconstruction in the mSPF basis, with Laplace regularization as presented in

Chapter 6, fixed regularization weight λ = 0.5. The ODF was further estimated

using the SPFI method in Cheng et al. [2010a]. The boxplot represents min and

max values, as well as the first and third quartiles.

tions on the sphere. This means that our proposed method gives a more precise

reconstruction, and with a better rotational invariance than radial sampling.

8.4.2 Multi-fiber reconstruction

We also compare the accuracy of multiple fiber detection and discrimination with

both sampling protocols. The signal is now simulated using a mixture of 2 Gaussian

distributions, with equal compartment size. The corresponding diffusion tensors

have a FA = 0.7 and a mean diffusivity 2.1 · 10−3 mm · s−1. Two crossing angles

are considered, for 90◦ and 60◦. The signal is corrupted by Rician noise, with

corresponding SNR = 25 with respect to the baseline, non diffusion-weighted signal.

The signal is estimated in the mSPF basis (see Chapter 6), and the ODF in constant

solid angle is estimated using the SPFI method in Cheng et al. [2010a]. The angular

and radial truncation orders were set to L = 6 andN = 2, respectively. The maxima

of the ODF are computed with a discrete search on a random set of 10000 points on

the sphere, leading to an accuracy of 0.1◦. The acquisition protocol was defined on

S = 3 shells, and the number of points per shell Ks ranges from 15 to 40. Results

of the reconstructed crossing angle are reported on Fig 8.8. When the number of

maxima was not exactly 2 (in practice, either 1, 2 or 3 was observed), we set the

angle to 0◦. As for the previous experiments, the experiment was repeated 1000

times, with simulated Rician noise and random rotation of the fibers to test the

rotational invariance of the reconstruction.

The accuracy of the reconstructed angle for fiber crossing increases with the

number of acquisition directions. In particular, when the number of directions per
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Figure 8.9: Web interface to download optimal configurations on several shells,

available online here. The number of shells and number points per shell can be

selected.

shell decreases, there is a clear advantage of our method with respect to radial

sampling. Note that with both methods, the separation angle between fibers is

slightly underestimated. This is a well-known limitation of most reconstruction

techniques [Tournier et al., 2004, Schultz and Seidel, 2008, Jiao et al., 2011].

Software

The generated points sets can be generated and downloaded through an online web

application, available on my website (see Fig. 8.9).

8.5 Conclusions

We have proposed a novel method to generate sampling schemes for multiple q-shell

acquisitions. Our method is dedicated to the placement of acquisition directions

on each sphere, with a good angular coverage per shell and as a whole. This is

done through an energy minimization, which is an extension of the electrostatic

repulsion to multiple shells. With an adequate minimization algorithm, we show

that this energy can be used to create acquisition sequence with incremental angular

coverage, that are compatible with aborted scans.

The geometrical properties of the generated point sets are satisfactory: the

http://www-sop.inria.fr/members/Emmanuel.Caruyer/q-space-sampling.php
http://www-sop.inria.fr/members/Emmanuel.Caruyer/q-space-sampling.php
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angular coverage per shell is indeed very close to the optimal arrangements in q-

ball imaging. This is also the case for the angular coverage as a whole. Tested

in practice, for the reconstruction of single and multiple fiber compartments, this

sampling strategies gives a better angular precision. Single fiber orientation is

determined with a lower angular error, and the crossing angle in two fibers case is

also more accurate.

Summary of the contributions of this chapter

• We present a novel method to generate sampling directions for multiple shells

acquisition.

• The sampling protocols offers nearly optimal angular coverage per shell and

globally.

• The angular reconstruction accuracy is improved with respect to radial sam-

pling.

• The discrimination of fiber crossings is also improved.
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Overview

Given a basis of functions to describe the diffusion signal, what is the best sam-

pling strategy for an accurate estimation of the coefficients? Is there a means to

minimize the condition number corresponding to the linear estimation system of

coefficients in an orthonormal basis? Is this compatible with the previous chapter,

where the motivation was purely geometrical? We propose a general method to de-

sign acquisition schemes with minimal condition number, for the reconstruction of

coefficients in a given orthonormal basis. This method is detailed for the spherical

harmonics in q-ball imaging, and related to the sampling theorems about sampling

on the spheres. We also derive a method for quasi-optimal sampling in multiple

q-shell, for the reconstruction in the mSPF basis, presented in this thesis.

Keywords Acquisition design; Condition number; Multiple q-shell acquisition; q-

space imaging; q-ball imaging; harmonic analysis on the sphere.

9.1 Introduction

In the introduction of the previous chapter (see Chapter 8, Section 8.1), we have

listed the various parameters that specify a multiple q-shell protocol. The remaining

of the chapter was the description of a method to arrange sampling directions so

that the angular coverage be uniform. In this chapter, we are interested in the

relationship between the acquisition strategy, and the choice of a basis in parametric

signal reconstruction.

The question of sampling efficiency has already been studied for parametric es-

timation in diffusion MRI. Beyond the geometrical approaches, for the reconstruc-

tion of diffusion tensor MRI, the noise performance has been studied through the

minimization of the condition number [Papadakis et al., 1999, Skare et al., 2000].

In q-space MRI, several studies on multiple shell sampling [Caruyer et al., 2011a,

Assemlal et al., 2009a, Ye et al., 2012, Daducci et al., 2011] focused on the effi-

ciency of various sampling strategies. In particular, Assemlal et al. [2009a] studies

the impact of radial and angular sampling on the condition number of the recon-

struction problem in SPF basis, but they do not provide a method to systematically

improve the noise performance. In Daducci et al. [2011], the sampling on several

shells is investigated under the light of the novel sampling theorem on the sphere in

McEwen and Wiaux [2011], which gives a minimum sampling rate to avoid alias-

ing in harmonic analysis on the sphere. However, as we show in this chapter, the

number of points of the spherical sampling proposed in McEwen and Wiaux [2011]

(and presented earlier in this thesis, in Chapter 5, Section 5.2.4) can be reduced for

a given truncation order. Besides, as they use sampling on equiangular grids, there

is no clue on angular uniformity of the proposed schemes.
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In this chapter, we give a general method for optimal design of experiment in

parametric signal reconstruction. We apply this to the optimal design in q-ball

imaging, for the reconstruction in the truncated spherical harmonics basis, and

compare to sampling theorem on the sphere. We also apply this to multiple q-

shell experimental design, for the reconstruction in the mSPF basis we presented

in this thesis (see Chapter 6). We compare each novel sampling strategy to state-

of-the-art sampling, in terms of condition number and noise performance for the

reconstruction.

9.2 Theory

In this section, we outline the general pipeline in parametric reconstruction of the

diffusion signal, for 1D q-space, q-ball and 3D q-space diffusion MRI. Within this

framework, we present a method based on the notion of cubature formula (the

extension of quadrature formula to higher dimension) to create optimal design of

experiments, with respect to the condition number associated to the problem of

parameters estimation.

9.2.1 Parametric estimation of the diffusion signal

The quantity of interest in diffusion MRI is the ensemble average propagator (EAP)

or the orientation distribution function (ODF), which are both related to the diffu-

sion signal through linear continuous transforms (Fourier transform, Radon trans-

form, etc.). Since then, a common approach is to first reconstruct the diffusion

signal in a continuous basis of functions, then apply the transform of interest to

each component of the signal to get the quantity of interest. Therefore the diffusion

signal is approximated in a finite, orthonormal basis of functions

∀q ∈ Ω, E(q) =
R
∑

i=1

cifi(q), (9.1)

where Ω ⊂ R
3. Depending on the application, we have Ω = R (1D diffusion signal),

Ω = S2 (q-ball imaging) or Ω = R
3 (q-space imaging).

Provided K measurements yk = E(qk) of the signal at wavevectors qk, the

coefficients ĉi are estimated by least squares. Put in matrix form, we write

ĉ = (HTH)−1HTy. (9.2)

H is the design matrix, and has entries Hki = fi(qk).

9.2.2 Condition number

We present a general method to choose the sampling points qk to optimize the noise

performance. When the parameters are estimated through linear least squares, the
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covariance matrix of the estimate is approximately equal to σ2(HTH))−1, where

σ2 is the variance of the measurements. The problem of optimal design is recast

as an optimization problem, where we try to minimize a function of the covariance

matrix, or equivalently of the information matrix M = 1/K HTH, where K is the

number of measurements.

A useful index for noise performance and stability of the reconstruction is the

condition number κ(M) = λmax(M)/λmin(M) of the information matrix. The con-

dition number is an upper bound to the relative error propagation from the mea-

surements to the coefficients estimates,

||∆c||/||c||
||∆y||/||y|| ≤ κ(M).

The optimal value of κ(M) is 1, in which case the information matrix is proportional

to the identity IR. We present here a systematic method to find a sampling scheme

with minimal condition number.

9.2.3 Condition number and cubature formula

The coefficients of the information matrix Mij can be interpreted as the approxi-

mation of the continuous dot product 〈fi, fj〉

Mij =
1

K

K
∑

k=1

fi(qk)fj(qk) ≈
∫

Ω
fi(q)fj(q)dΩ(q) = δij (9.3)

The basis is orthonormal, hence if this approximation is exact, M = IR, and the

associated condition number equals 1. This naturally introduces the notion of

quadrature formula, and its generalization to higher dimension, called the cubature

formula.

Definition 2. A cubature formula for the integral I =
∫

Ω g(q)dΩ(q) is a collection

of nodes qs and weights ωs such that

I =
S
∑

s=1

ωsg(qs) (9.4)

If such a cubature formula exists for the integral in Eq. 9.3, then we place

the sampling points at nodes qs, and the number of repetitions Ks at node qs

is proportional to the weight ωs. In the two next section, we present a method

to generate sampling schemes with minimal condition number in parametric q-ball

imaging (for reconstruction in spherical harmonics) and q-space imaging, for the

reconstruction in mSPF basis.
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9.3 Optimal design in q-ball imaging

In this section, we present a method to generate cubature formula for the spherical

harmonic basis. We introduce the notion of spherical design, and present a method

to generate spherical design with a uniform coverage on the sphere. We compare our

approach to the sampling theorems on the sphere (see Chapter 5, Section 5.2.4),

in terms of minimum number of points K for a given truncation order L of the

spherical harmonics basis, and in terms of rotational invariance of the proposed

schemes.

The real, symmetric spherical harmonic basis {Ylm} truncated to order L has

dimension R = (L+ 1) · (L+ 2)/2. Put back into the general framework presented

in Section 9.2.2, we have Ω = S2, and the basis functions are fi = Yi, where

i(l,m) = 1, 2, . . . , R for (l,m) = (0, 0), (2,−2), . . . , (L,L). The spherical harmonic

basis is equivalent to the basis of harmonic polynomial of degree L on S2, for which

cubature formulae exist and are called spherical design.

9.3.1 Spherical design

Definition 3. A spherical t-design [Delsarte et al., 1977] is a sequence of K points

X = (uk), k = 1 . . . K on the unit sphere, such that the integral of any polynomial

p(x, y, z) of degree at most t over the sphere is equal to the average value of the

polynomial on X :

1

K

K
∑

k=1

p(ukx, uky, ukz) =

∫

S2

p(ω)d2ω. (9.5)

As the diffusion signal is symmetric, a design X is optimal for the reconstruction

in the truncated SH basis to order L if X ∪−X is a spherical 2L-design. Then the

approximation in Eq. 9.3 is exact and κ(M) = 1. In what follows, we explain how

to construct such a sequence of points on the sphere.

9.3.2 Necessary conditions for a spherical design

For the construction of a spherical 2L-design with antipodal symmetry, we rely here

on the equivalence criterion in [Goethals and Seidel, 1981].

Theorem 2. A set X = (uk)k=1...N is a spherical 2L-design iff it verifies

∀x ∈ R
3,

1

K

K
∑

k=1

〈x,uk〉2L =

(

L−1
∏

ℓ=0

1 + 2ℓ

3 + 2ℓ

)

||x||2L (9.6)

In the above theorem, Eq. 9.6 is a multivariate polynomial equality. This

rewrites as a system of (2L + 1) · (2L + 2)/2 non-linear, polynomial equations in
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Geometric Electrostatic Optimal (L = 4)

Figure 9.1: Arrangements of K = 50 points on the unit sphere, (from left to right)

geometric construction as in Koay [2011], minimum electrostatic configuration as

in Jones et al. [1999b] and spherical design.

(uk)k=1...K to ensure coefficients equality of the left-hand and right-hand polyno-

mials: ∀a, b, c ∈ N such that a+ b+ c = 2K,

(2L)!(1 + 2L)

a!b!c!

K
∑

k=1

ua
kxu

b
kyu

c
kz =



















L!

(a/2)!(b/2)!(c/2)!
a, b and c even,

0 otherwise.

(9.7)

For a given order L, and a given number of samples K, we note by ΩK
L ⊂ (S2)K the

feasible set {(uk)k=1...K s.t. (9.7) is satisfied}. As K increases, this set becomes a

non-empty set, and infinitely many spherical designs exist. To constrain the sam-

pling scheme to have a uniform coverage, we propose to minimize the electrostatic

energy, while constraining the solution in ΩK
L .

9.3.3 Spherical design with uniform density

In order to have a good rotational invariance, together with minimum condition

number, we propose to minimize the modified electrostatic energy, under the con-

straint of being a spherical 2L-design. The optimal point set is given by

arg min
(uk)∈ΩN

L

∑

i6=j

1

||ui − uj||2
+

1

||ui + uj ||2
. (9.8)

This is a nonlinear optimization problem, with nonlinear equality constraints. How-

ever, both the objective function and the constraints are differentiable, and the

derivatives have algebraic expressions. Therefore, we solve this problem by sequen-

tial quadratic programming, initialized with a uniform random population of points

on the unit sphere. This method guarantees to find a local minimizer, provided that

the feasibility set is not empty. By repeating the optimization several times, we in-

crease the probability of finding a global optimum.

An example of optimal direction set for order L = 4 is presented on Fig. 9.1,

and compared to a geometric [Koay, 2011] and an electrostatic [Jones et al., 1999b,

Jansons and Alexander, 2003] arrangements of points.
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Figure 9.2: q-ball imaging: condition number of the information matrix corre-

sponding to the truncated SH up to order L = 4 (left) and L = 6 (right), of the

electrostatic, geometric and optimal point sets. The geometric configurations are

only provided for K ≥ 50, as this method is reported to be dedicated to large K by

the author in [Koay, 2011]. Our proposed, optimal design is based on spherical de-

sign, and therefore exists for K ≥ 24 at order L = 4, and for K ≥ 46 at order L = 6

[Goethals and Seidel, 1981]. By construction, the condition number associated is

exactly 1.

9.3.4 Comparison to conventional schemes in q-ball imaging

We first compare to conventional sampling strategies in q-ball, in terms of the

condition number of the proposed scheme. Then we compare our approach more

specifically to the sampling theorem on the sphere, putting the emphasis on the

differences between the two approaches.

Condition number

We evaluate and report on Fig. 9.2 the noise performance of point sets generated

with electrostatic analogy [Jones et al., 1999b, Jansons and Alexander, 2003] and

by geometrical construction [Koay, 2011], for the reconstruction of SH coefficients of

the diffusion signal. We compare these sampling methods to the proposed, optimal

point set based on spherical design.

Sampling theorem on the sphere

Our approach, even derived with different motivations, is closely related to the

sampling theorem on the sphere [McEwen and Wiaux, 2011]. This theorem gives

an explicit construction of a sampling scheme on equiangular grid for an exact

reconstruction of of band limited signals on the sphere. The sampling points are
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Truncation order Number of samples

L Sampling theorem Spherical design

4 22 24

6 56 47

8 106 78

10 172 120

Table 9.1: Number of samples for an exact reconstruction of a band-limited signal

on the sphere. We compare the novel sampling theorem in McEwen and Wiaux

[2011] and our approach based on spherical designs.

defined by colatitude and longitude angles

ϑt =
π(2t+ 1)

2L− 1
, t = 0, 1, . . . , L− 1

ϕp =
2πp

2L− 1
, p = 0, 1, . . . , 2L− 2.

The associated quadrature weights are derived in the article. The first comment on

this method is that, being aligned on equiangular grid, the sample points form a

poorly uniform coverage of the sphere. In particular, the sampling is sparser along

the equator of the sphere, than about the poles. This is not desirable, as the true

signal is in general not band-limited, and there exists a systematic approximation

error when the signal is represented in the spherical harmonic basis. With no prior

on this approximation error, it is better to place the points in a uniform fashion,

for a better rotational invariance.

Besides, the number of points in this sampling theorem is K = 2L2 − 3L + 2.

This new result in McEwen and Wiaux [2011] improve on the previous findings of

Driscoll and Healy [1994], in that they reduce the number of samples required for

exact reconstruction. Concerning the spherical design, there is no general formula

giving the minimum number of sampling points for a given truncation order. How-

ever, for several orders, spherical designs have been constructed (see for instance

[Hardin and Sloane, 1996] and the authors’ website.) and we report on Table 9.1

the associated number of measurements, as compared to the number of measure-

ments of the sampling theorem. Except for the smallest truncation order L = 4,

the method based on spherical designs gives sample schemes with significantly fewer

measurements than this novel sampling theorem. We would like to mention that

these approaches on sampling theorems also provide efficient methods for the com-

putation of the spherical harmonic coefficients, as they target very high truncation

orders (up to L = 1024). In diffusion MRI, as the truncation order is moderate (up

http://www2.research.att.com/~njas/sphdesigns/dim3/
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Figure 9.3: Evaluation of Gauss-Laguerre quadrature for one dimensional q-space.

(Left) An example of signal and its reconstruction. The blue squares and the green

circles represent the regular and quadrature samples respectively. The radii of the

circles are proportional to the number of repeated acquisitions. (Right) Condition

number of the information matrix.

to L = 10 reported in the literature), the reconstruction using the classical design

matrix is efficient enough, and we are more concerned with the acquisition time,

and therefore the number of measurements.

9.4 Optimal design in q-space imaging

Chapter 8 presents a method to place the sampling directions in a uniform fashion.

We already pointed out the numerous parameters to be determined in a multiple

q-shell protocol design (see Chapter 8, Section 8.1). Here we specify what should

be the number of shells S, shell radii qs, and the number of points per shell Ks,

to minimize the condition number associated to the problem of estimating the

coefficients in mSPF basis. To introduce the method, we first present a method for

optimal design in one dimensional q-space MRI, for the reconstruction in a closely

related basis.

9.4.1 Optimal design in one dimensional q-space MRI

The simple harmonic oscillator basis for the reconstruction of real diffusion signal in

one dimension [Ozarslan et al., 2008] is given by Φi(q, u) = κi(u) exp(−2π2q2u2)L
−1/2
i (4π2q2u2),

where u is a characteristic length, L
−1/2
i the generalized Laguerre polynomial of de-

gree i and κi(u) a normalization constant.

Put back into the general framework presented in Section 9.2.2, we have Ω = R,

and the basis functions are fi = Φi. For the evaluation of the dot product in Eq. 9.3,
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Figure 9.4: 2-shell (left) and 3-shell (right) acquisition protocols: regular multiple

q-shell with constant number of points per shell, and optimal arrangement with

minimal condition number for reconstruction in SPF basis.

we use the substitution x = 4π2q2u2, so that

〈Φi,Φj〉 = 2πuκi(u)κj(u)

∫ ∞

0
L
−1/2
i (x)L

−1/2
j (x)x−1/2e−xdx. (9.9)

When the basis is truncated to order N , the evaluation of Eq. 9.9 reduces to the

problem of Gauss-Laguerre quadrature [Abramowitz and Stegun, 1970]. The opti-

mal samples are qs =
√
xs/2πu, with Ks repetitions, where Ks is proportional to

xse
xs/[L

−1/2
N (xs)]

2 and the nodes xs, s = 1 . . . N + 1 are the roots of L
−1/2
N+1 .

To show the feasibility of one dimensional q-space signal reconstruction from

a set of measurements on a limited support size, we compare the Gauss-Laguerre

quadrature to a regular sampling on the range [0, qmax]. We plot on Fig. 9.3 an

example of reconstruction of a diffusion signal corresponding to the restricted dif-

fusion between two parallel planes, separated by distance d [Ozarslan et al., 2008].

The truncation order in the basis was set to N = 5, and the corresponding Gauss-

Laguerre quadrature works on 6 nodes. The result for a total of 20 acquisitions is

visually identical to the reconstruction from a regular sampling. Besides, the asso-

ciated information matrix is better conditioned for the quadrature sampling. The

reason why the condition number is not exactly 1 in this case is that the quadra-

ture weight ωs is approximated by the number of repetitions at node qs, which is

an integer.

9.4.2 Optimal design in q-space imaging

The truncated spherical polar Fourier (SPF) basis [Assemlal et al., 2009b] is able to

represent the diffusion signal in the whole q-space. To represent a continuous signal,

which verifies E(0) = 1, we have proposed in this thesis a modified version of the

SPF basis (see Chapter 6). We reconstruct the signal as E(q ·u) = exp(−q2/2ζ) +
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∑

nlm anlmCnlm(q ·u). The basis functions are Cnlm(q ·u) = Fn(q)Ylm(u), with

Fn(q) = χn
q2

ζ
exp

(

− q
2

2ζ

)

L5/2
n

(

q2

ζ

)

, (9.10)

ζ is a scale factor, χn a normalization constant, and Ylm is the real spherical

harmonic function. When the radial and angular truncation orders are N and

L, respectively, this basis has dimension R = N · (L + 1) · (L + 2)/2. Put back

into the general framework presented in Section 9.2.2, we have Ω = R
3, and

the basis functions are fi = Ci, where i(n, l,m) = 1, 2, . . . , R for (n, l,m) =

(0, 0, 0), (0, 2,−2), . . . , (N,L,L).

For the construction of an optimal design for this basis, we build on the findings

of the previous two sections. We show that the radial part of the integral in Eq. 9.3

reduces to a Gauss-Laguerre quadrature problem, while the angular part reduces

to a spherical design problem.

Therefore we propose a design on N + 1 spheres in the q-space. The shell s has

radius qs =
√
ζxs, where xs is the sth root of L

5/2
N+1. The number of points Ks on

shell s should be proportional to ωs = exp(−xs)/[xs(L
5/2
N (xs))

2] Finally, the points

on each sphere should form a spherical 2L-design. Example of points sets generated

with this method are depicted on Fig. 9.4. They are compared to multiple shell

sampling where the shell radii are evenly spaced, and the number of points equal

on each shell, as suggested in [Assemlal et al., 2009a].

9.4.3 Multiple q-shell and three dimensional signal reconstruction
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Figure 9.5: Condition number of multiple shell sampling, corresponding to the

mSPF basis.

Using the results on Gauss-Laguerre quadrature and spherical designs, we gen-

erated optimal sampling schemes on multiple shells for the reconstruction in the

SPF basis. We compare this to the sampling strategy with shell radii evenly spaced

and constant number of points per shell proposed in [Assemlal et al., 2009a]. The

condition number for the reconstruction in SPF basis is reported on Fig. 9.5.
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Figure 9.6: 2 shell (top) and 3 shell (bottom) sampling in action, for the recon-

struction of a synthetic diffusion signal corresponding to a mixture of Gaussian,

simulating fiber crossing. The circles represent the sampling shells, and the line

widths are proportional to the number of points per shell.

We also simulate both methods, for the sampling and reconstruction of a syn-

thetic diffusion signal corresponding to a mixture of Gaussian. Visual reconstruction

is reported on Fig. 9.6, and quantitative comparison on Fig. 9.7.

9.5 Conclusion

In this chapter, we develop a computational framework for optimal design of ex-

periment in diffusion MRI. For the reconstruction of a signal on a sphere, and a

3D signal, we propose sampling scheme with minimal condition number, for the

parametric estimation of the signal in the spherical harmonic basis, and in the

modified spherical polar Fourier basis. The angular uniform approach presented

in the previous chapter is used to further constrain the solution to the condition

number minimization problem. In this way, among all sampling configurations with

minimum condition number, we retain the one that is most uniform. These sam-

pling schemes also allow exact reconstruction of band-limited signals in these bases.

Monte-Carlo simulations show that the signal to noise ratio of the parameters esti-

mated from our optimal sampling scheme is improved with respect to conventional

sampling scheme, for the same number of acquisitions.
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Figure 9.7: Mean squared error for a synthetic diffusion signal corresponding to a

mixture of Gaussian, with Rician noise (SNR=25).

As a conclusion to this study, we claim that a sampling method is optimal for

a reconstruction in a given basis and a given order. This means that in addition

to the technical and physical limitations of the imaging system, the choice of the

type of reconstruction and the angular uniformity of the sampling scheme must be

taken into account when designing the acquisition protocol.

Summary of the contributions of this chapter

• We present a method to generate sampling directions that minimize the con-

dition number for the parametric estimation problem in spherical harmonics

and modified spherical polar Fourier bases.

• Provided that the number of measurements is large enough, we have an exact

reconstruction of band-limited signals in the spherical harmonics and spherical

polar Fourier bases.

• In the case of spherical harmonics, the minimum number of measurements

is reduced with respect to conventional sampling theorems on the sphere on

equiangular grids.

• This method, combined with the angular uniform approach of the previous

chapter, provides sampling schemes that are also nearly uniform.
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10.1 General conclusion

We have presented in this thesis several contributions related to the signal acqui-

sition in diffusion MRI, and the estimation of local diffusion information from the

MR signal attenuation in PGSE experiments. This work brings new mathematical

methods for the parametric representation of the signal in a basis of continuous

functions, and its reconstruction from noisy, discrete measurements. The method

for discrete sampling is also investigated, in relation to this parametric estimation

problem to gain maximum information from a given number of samples, to achieve

the best possible reconstruction. Therefore we have covered the whole pipeline,

from acquisition sequence design, to the reconstruction of the diffusion propagator

and its derived characteristics.

10.1.1 Local diffusion estimation: evil is in the details

In conclusion to the estimation and reconstruction contributions, we would like to

emphasize how the mathematical formulation of the problem is important, from a

theoretical and a practical point of view. The definition of a basis of continuous

functions in Chapter 6 has permitted the estimation of a continuous signal directly

from the measurements, with no additional constraint to impose. We are also able

to represent the Laplace regularization penalty in a simple quadratic form, and

therefore this leads to an efficient estimation scheme with analytical solution. In

practice, this has also significantly reduced the dimension of the basis, and therefore

the computational cost and the demand in storage capacity, for the same power of

description.

10.1.2 Guidelines for multiple q-shell experiment design

In this general conclusion, we would also like to come back to the two contributions

related to multiple q-shell sampling. These contributions have been presented in two

separate chapters: Chapter 8 presents a general-purpose method to define sampling

schemes on several shells, that uniformly span the space of directions; Chapter 9

presents an approach to get sampling schemes that minimize the condition number

for the reconstruction in a given parameterization. We would like to emphasize

that these two contributions are directed towards the same goal, achieving the best

possible reconstruction for a given acquisition time, and they are complementary

to each other. Indeed, the optimal design problem, when trying to minimize the

condition number, often leads to an under-constrained optimization and possibly

many optimal configurations. Among all these configurations, we are interested in

the one that has best angular coverage, and this is possible please to the approach

in Chapter 8, in conjunction with this minimal condition number criterion.
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10.2 Applications and Collaborations

The findings and contributions of this thesis have already opened the way to fruitful

contributions in the Athena team and with our partners. We would like to mention

some of these contributions, or application of our methods.

10.2.1 Angular-uniform multiple q-shell design

The contribution on the angular-uniform multiple q-shell has been used and com-

pared to other approaches in Merlet et al. [2011] for the reconstruction of the dif-

fusion signal under sparse constraints, using the so-called compressed sensing tech-

nique. Merlet et al. concluded that the uniform-angular sampling was useful and

performed better than other sampling strategies for the reconstruction of the MR

signal with under-sampled measurements, under a sparsity constraint. Besides,

the script to generate and download the sampling schemes has been online on my

website for a year, and is used by several groups, in particular our partners at the

Center for Magnetic Resonance Research, University of Minnesota, for their routine

acquisitions.

10.2.2 Parametric dictionary learning

The modified spherical polar Fourier basis (see Chapter 6) has been used to learn

and design a novel parametric dictionary from a training set of samples. This

is an ongoing work, which has been used in a proposal for the recent HARDI

Contest, organized at the International Symposium on Biomedical Imaging, 2012

[Merlet et al., 2012]. The dictionary was used to reconstruct the ODF from a q-ball

sampling on 15 points. The results are pretty good and promising, and comparable

to other approaches taking much more samples.

10.3 Future work

In continuation to the work we have done during this thesis, we would like to

continue developing acquisition methods and investigate the link between diffusion

signal and tissue microstructure. In particular, the fine characterization of tissue

microstructure information, such as axon diameters or axon density, is a topic that

we have not explored during this thesis, but would like to work on in the near

future. One of the physical aspect of the acquisition sequence that can help is the

form and length of the diffusion gradient pulses. In particular, considering the true

relationship between the diffusion signal attenuation and the diffusion propagator,

which is no longer a Fourier transform when the narrow-pulse condition is not met,

can help in designing novel acquisition methods.
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At the same time, we are also interested in the clinical applications and clinical

research in diffusion MRI. We believe, from the discussions with our colleagues in

strong interaction with medical doctors, and from our readings, that there is still

a huge gap between the state-of-the-art methodological approaches in estimation,

modelling, reconstruction and analysis in one hand, and clinical applications in

situ in the other hand. This is because clinical scanners have their limitations,

because children and patients with severe neurological disorders can barely sustain

acquisitions for a long time. These are probably the constraints we should take

into account first in developing new methods to help diagnosis. Therefore all the

theoretical aspects to reduce acquisition time, to simplify data processing, and

finally ease the diagnosis are of utmost interest to us.
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11.1 Conclusion générale

Nous avons présenté dans cette thèse plusieurs contributions pour l’acquisition et la

reconstruction du signal en IRM de diffusion, et pour l’estimation des paramètres

locaux de diffusion à partir de l’atténuation du signal dans une séquence à écho de

spin et impulsion de gradients. Cette thèse apporte des méthodes mathématiques

innovantes pour la représentation paramétrique du signal dans une base de fonc-

tions continues, et sa reconstruction à partir de mesures discrètes et bruitées. Le

protocole d’échantillonnage est également étudié, en relation avec cette approche

paramétrique, afin d’obtenir le maximum d’information possible des mesures, pour

un temps d’acquisition donné, et ainsi obtenir la meilleure reconstruction possible.

Nous pensons avoir exploré les principales étapes du processus d’acquisition et de

reconstruction, présenté dans l’introduction (Fig. 2.1) : depuis l’élaboration des

protocoles d’acquisition, à la reconstruction du propagateur moyen de diffusion et

ses caractéristiques dérivées.

11.1.1 Estimation locale de la diffusion: le diable se cache dans les

détails

En conclusion de nos contributions sur l’estimation et la reconstruction locale, nous

aimerions souligner combien la modélisation et le choix des outils mathématiques

est important, aussi bien d’un point de vue théorique qu’en pratique. La définition

d’une base de fonctions continue dans le Chapitre 6 a permis d’estimer un sig-

nal continu, directement depuis les mesures discrètes, bruitées, sans avoir à im-

poser de contrainte supplémentaire. Nous pouvons également dériver l’opérateur de

régularisation basé sur le Laplacien du signal, qui s’exprime en fonction des coeffi-

cients comme une simple forme quadratique. Ceci permet de résoudre le problème

d’estimation sous contrainte de régularité de façon analytique. En pratique, cette

nouvelle base a également permis de réduire de façon significative la dimension de

l’espace des paramètres, et ainsi de diminuer la complexité des algorithmes de re-

construction, et de compresser les données, pour décrire exactement la même famille

de signaux.

11.1.2 Mode d’emploi de l’échantillonnage en Fourier

Nous aimerions également revenir dans cette conclusion générale sur nos con-

tributions liées aux protocoles d’acquisition sur plusieurs sphères dans l’espace

de Fourier. Nous avons présenté ces deux contributions dans deux chapitres

séparés : le Chapitre 8 présente une méthode générale pour élaborer des protocoles

d’échantillonnage sur plusieurs sphères, en faisant en sorte d’optimiser la couver-

ture angulaire ; par ailleurs, le Chapitre 9 présente une méthode systématique de

minimisation du nombre de conditionnement, associé au problème de l’estimation
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paramétrique dans une base donnée. Nous voudrions souligner encore une fois

que ces deux contributions sont complémentaires, mais surtout répondent à un ob-

jectif unique, celui d’obtenir la meilleure reconstruction possible, pour un temps

d’acquisition donné. En effet, le problème de minimisation du nombre de condi-

tionnement admet généralement une infinité de solutions. Parmi toutes ces solu-

tions, nous proposons de retenir celle qui offre la meilleure couverture angulaire,

à la lumière des résultats que nous avons montrés dans le Chapitre 8. Comme

nous l’avons présenté, cela est rendu possible en minimisant l’énergie électrostatique

généralisée à plusieurs sphères, sous contrainte de vérifier les conditions pour min-

imiser le nombre de conditionnement.

11.2 Applications des méthodes, et collaborations

les contributions présentées dans cette thèse ont permis d’ouvrir la voie à plusieurs

travaux en collaboration avec nos collègues de l’équipe-projet Athéna, ainsi que

avec nos partenaires. Nous aimerions présenter deux de ces travaux en commun,

ainsi que des applications de nos méthodes.

11.2.1 Échantillonnage à répartition angulaire uniforme

L’approche permettant de générer des schémas d’échantillonnage à couverture an-

gulaire uniforme a été utilisée et comparée à d’autres approches dans Merlet et al.

[2011], pour la reconstruction du signal de diffusion sous contrainte de parci-

monie, en utilisant le compressed sensing. Merlet et al. concluent que la méthode

répartissant les points de façon uniforme donne de meilleurs résultats que d’autres

stratégies d’échantillonnage. Par ailleurs, le script permettant de générer et de

télécharger des schémas d’échantillonnage suivant notre méthode est en ligne depuis

un an maintenant, et est régulièrement utilisé par plusieurs groupes, notamment

par nos partenaires au Center for Magnetic Resonance Research, à l’Université du

Minnesota, pour leurs acquisitions en IRM de diffusion.

11.2.2 Apprentissage de dictionnaire paramétrique

La basee de Fourier sphérique modifiée, présentée dans le Chapitre 6, a été utilisée

pour créer un dictionnaire par apprentissage sur un jeu de données. C’est un tra-

vail en cours, que nous avons utilisé pour participer au concours de reconstruction

de modèles de diffusion à haute résolution angulaire, organisé à l’occasion de la

conférence International Symposium on Biomedical Imaging, 2012 [Merlet et al.,

2012]. Nous avons utilisé le dictionnaire pour reconstruire la fonction de distribu-

tion d’orientation à partir d’un échantillonnage sphérique sur seulement 15 points.



154 CHAPTER 11. CONCLUSIONS (EN FRANÇAIS)

Les résultats sont plutôt encourageants, et se comparent bien aux autres approches,

qui travaillent avec beaucoup plus d’échantillons.

11.3 Perspectives

Nous envisageons de poursuivre ce travail que nous avons fait et présenté dans cette

thèse, et continuerons à développer des méthodes d’acquisition pour étudier le lien

entre le signal de diffusion et la microstructure des tissus. En particulier, nous

sommes intéressés à la possibilité de pouvoir remonter à des informations détaillées

sur la structure fine des tissus dans la matière blanche, en particulier le diamètre

des axones ou encore la densité des fibres au sein d’un faisceau. Nous pensons qu’un

des paramètres des séquences d’acquisition pouvant aider à cela est la forme et la

durée des impulsions de gradients. Prendre en compte un modèle plus précis du

lien entre signal de diffusion et propagateur, qui n’est pas exactement une relation

de Fourier, pourrait permettre de créer de nouvelles techniques d’acquisition.

Nous sommes également fortement intéressés par les applications cliniques de

l’IRM de diffusion. Pour avoir longuement discuté de ces problèmes avec d’autres

collègues, en relation directe avec des médecins et partenaires hospitaliers, nous

croyons qu’il y a encore un fossé (voire un canyon !) à combler entre les nouvelles

approches méthodologiques pour l’estimation, la modélisation, la reconstruction et

l’analyse d’une part, et les applications cliniques in situ d’autre part. Les scanners

cliniques ont malheureusement leurs limitations, mais aussi les patients et les en-

fants qui souffrent de maladies neurologiques peuvent difficilement rester longtemps

dans le scanner sans bouger. Ce sont probablement ces contraintes qu’il faut con-

sidérer en priorité lorsqu’il s’agit de développer de nouvelles méthodes pour l’aide

au diagnostique. En ce sens, toutes les approches théoriques qui permettent de

réduire les temps d’acquisitions, de simplifier le traitement des données et finale-

ment d’apporter de nouveaux outils pour le diagnostique vont dans le bon sens, et

sont les directions vers lesquelles nous souhaitons nous diriger.
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H.-E. Assemlal, D. Tschumperlé, and L. Brun. Efficient computation of pdf-based

characteristics from diffusion mr signal. In MICCAI, pages 70–78, Berlin, Hei-

delberg, 2008. Springer-Verlag. ISBN 978-3-540-85989-5.
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