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ABSTRACT

Machine Learning Methods for Discrete Multi-scale Flows:
Application to Finance
by
Nicolas Mahler
Doctor of Philosophy in Applied Mathematics

Ecole Normale Supérieure de Cachan

This research work studies the problem of identifying and predicting the trends of a single
financial target variable in a multivariate setting. The machine learning point of view on this problem
is presented in chapter I. The efficient market hypothesis, which stands in contradiction with the
objective of trend prediction, is first recalled. The different schools of thought in market analysis,
which disagree to some extent with the efficient market hypothesis, are reviewed as well. The tenets
of the fundamental analysis, the technical analysis and the quantitative analysis are made explicit.
We particularly focus on the use of machine learning techniques for computing predictions on time-
series. The challenges of dealing with dependent and/or non-stationary features while avoiding the
usual traps of overfitting and data snooping are emphasized. Extensions of the classical statistical
learning framework, particularly transfer learning, are presented. The main contribution of this
chapter is the introduction of a research methodology for developing trend predictive numerical

models. It is based on an experimentation protocol, which is made of four interdependent modules.

The first module, entitled Data Observation and Modeling Chozices, is a preliminary module
devoted to the statement of very general modeling choices, hypotheses and objectives. The target
variable and the corresponding explanatory variables are chosen by the user. Hypotheses regarding
their relative distribution and structure of dependence are formulated. The prediction setup - either
the regression setup or the binary classification setup - is specified. The time ranges of the training

set and of the test set are finally defined.

The second module, Database Construction, turns the target and explanatory variables into
features and labels in order to train trend predictive numerical models. This module corresponds to
Chapter II, which aims at finding a time- series representation, capable of computing homogeneous,
interpretable, robust and parsimonious features. In that perspective, chapter II first introduces
significant economic and financial variables, which play the role of target series and of explanatory

series in chapter IV. Their intra and inter heterogeneities are highlighted. Criteria specific to time-
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series representation methods are then drawn up to ensure the transformation of heterogeneous
sequences into databases relevant for learning. Representation methods, which meet these criteria
satisfactorily, are reported. State-space models - and the Kalman filter - are notably made explicit.
The main contribution of this chapter is the presentation of the UniCart method, which is a new
multiscale and piecewise approximation method. Inspired by the CART algorithm, it computes a
top- down binary tree structured segmentation for any given finite real series. The UniCart procedure
has led to the design of two types of databases, whose features are close to the representations used
in technical analysis. Both types of databases are extensively illustrated and their stationarities are

particularly studied.

The purpose of the third module, entitled Model Construction, is the construction of trend
predictive numerical models. Chapter III presents thus three different model construction meth-
ods, which have been consecutively developed and backtested. The first method, called Kalman
LagLasso (KLL), performs linear model selection in the regression setup. It is based on the for-
mulation of strong hypotheses about data, which enable the statement of a linear relation between
the (Kalman) filtered target variable and the (Kalman) filtered and lagged explanatory variables.
Model selection is achieved by a new procedure called LagLasso, actually a Lasso-type procedure
which includes selection of lags for individual factors. The second method aims at learning the
distribution of UniCart features and labels in the binary classification set up. We particularly focus
on tree aggregation based procedures, such as Random Forests (RF). The third method, whose pre-
sentation is the main contribution of this chapter, first states a statistical model that we call model
for clustering and classification. In this mixture model, the different component distributions - or
regimes - are unknown and non- parametric and have to be identified and learnt. This is achieved
by a new transfer learning procedure, called Relabeled Nearest Neighbors (RNN), which learns a
pseudometric based on the relative importance of features in the prediction. The RNN procedure

is entirely parameter-free.

The fourth and last module, entitled Backtesting and Numerical Results, evaluates the accu-
racy of the trend predictive numerical models over a "significant" test set via two generic backtesting
plans. The first plan computes recognition rates of upward and downward trends. The second plan
designs trading rules using predictions made over the test set. Each trading rule yields a profit and
loss account (P&L), which is the cumulated earned money over time. These backtesting plans are
additionally completed by interpretation functionalities, which help to analyze the decision mecha-
nism of the numerical models. These functionalities can be measures of feature prediction ability and

measures of model and prediction reliability. They decisively contribute to formulating better data



hypotheses and enhancing the time- series representation, database and model construction proce-
dures. This is made explicit in chapter IV. Numerical models, aiming at predicting the trends of
the target variables introduced in chapter II, are indeed computed for the model construction meth-
ods described in chapter III and thoroughly backtested. The switch from one model construction
approach to another is particularly motivated. The dramatic influence of the choice of parameters
- at each step of the experimentation protocol - on the formulation of conclusion statements is also
highlighted. The RNN procedure, which does not require any parameter tuning, has thus been
used to reliably study the efficient market hypothesis. New research directions for designing trend

predictive models are finally discussed.



RESUME

Méthodes d’Apprentissage pour des Flots Discrets Multi-Echelles:
Application & la Finance
par
Nicolas Mahler
Docteur en Mathématiques Appliqués

Ecole Normale Supérieure de Cachan

Ce travail de recherche traite du probléme d’identification et de prédiction des tendances d’une
série financiére considérée dans un cadre multivarié. Le cadre d’étude de ce probléme, inspiré de
I'apprentissage automatique, est défini dans le chapitre I. L’hypothése des marchés efficients, qui
entre en contradiction avec 1’objectif de prédiction des tendances, y est d’abord rappelée, tandis que
les différentes écoles de pensée de l'analyse de marché, qui s’opposent dans une certaine mesure a
I'hypothése des marchés efficients, y sont également exposées. Nous explicitons les techniques de
I’analyse fondamentale, de I’analyse technique et de ’analyse quantitative, et nous nous intéressons
particuliérement aux techniques de 'apprentissage statistique permettant le calcul de prédictions
sur séries temporelles. Les difficultés liées au traitement de facteurs temporellement dépendants
et /ou non-stationnaires sont soulignées, ainsi que les piéges habituels du surapprentrissage et de la
manipulation imprudente des données. Les extensions du cadre classique de 1'apprentissage statis-
tique, particuliérement 1’apprentissage par transfert, sont présentées. La contribution principale
de ce chapitre est l'introduction d’une méthodologie de recherche permettant le développement de
modeéles numériques de prédiction de tendances. Cette méthodologie est fondée sur un protocole
d’expérimentation, constitué de quatre modules.

Le premier module, intitulé Observation des Données et Choiz de Modélisation, est un
module préliminaire dévoué & l’expression de choix de modélisation, d’hypothéses et d’objectifs
trés généraux. La variable cible, ainsi que les variables explicatives associées, sont choisies par
I'utilisateur. Des hypothéses sont formulées quant a leurs lois de distribution et structure de dépen-
dance relatives. Le cadre de la prédiction - régression ou classification binaire - est précisé. Les
historiques de l'ensemble d’apprentissage et de ’ensemble de test sont finalement définis.

Le second module, Construction de Bases de Données, transforme la variable cible et les
variables explicatives en facteurs et en labels afin d’entrainer les modéles numeériques de prédiction
de tendances. Ce module correspond au chapitre II, dont le but est de trouver un mode de représen-

tation des séries temporelles capable de produire des facteurs homogénes, interprétables, robustes
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et parcimonieux. Dans cette perspective, ce chapitre introduit d’abord des variables économiques
et financiéres de premier plan, amenées a jouer le réle de variables cibles et explicatives dans le
chapitre IV. Leurs intra- et inter-hétérogénéités sont soulignées. Des critéres propres aux méthodes
de représentation sont alors établis pour garantir la transformation de séquences hétérogénes en bases
de données pertinentes pour I'apprentissage. Les méthodes de représentation remplissant ces critéres
de fagon satisfaisante sont mentionnées. Les modéles a espace d’états sont par exemple explicités.
La contribution principale de ce chapitre est la présentation d’une nouvelle méthode multi-échelle
d’approximation par morceaux, appelée UniCart. Inspirée par 1’algorithme CART, celle-ci calcule
pour toute série réelle finie une segmentation récursive indexée par un arbre binaire. La procédure
UniCart a permis la construction de deux types de bases de données, dont les facteurs sont proches
des représentations utilisées en analyse technique. Ces deux types de bases sont illustrés et leurs
stationnarités relatives particuliérement étudiées.

Le troisiéme module, intitulé Construction de Modéles, a pour but la construction de mod-
éles numériques de prédiction de tendances. Le chapitre III, associé au module, présente ainsi
trois méthodes différentes de construction de modéles, consécutivement développées et testées. La
premiére d’entre elles, appelée Kalman LagLasso (KLL), est une méthode de sélection de modéles
linéaires dans le cadre de la régression. Elle est fondée sur la formulation d’hypothéses fortes sur
les données, permettant de proposer une relation linéaire entre la variable cible (Kalman) filtrée et
les variables explicatives, également (Kalman) filtrées, et décalées dans le temps suivant une plage
finie de retards. La sélection de modéles est effectuée par une nouvelle procédure appelée LagLasso,
laquelle est une procédure de type Lasso qui sélectionne a la fois variables explicatives et retards
appropriés. La seconde méthode vise 'apprentissage de la loi de distribution des facteurs et labels
UniCart dans le cadre de la classification binaire. Nous nous intéressons pour ce faire particuliére-
ment aux procédures d'agrégation d’arbres de classification, telles que les Foréts Aléatoires (FA). La
troisiéme méthode, dont la présentation est la contribution principale de ce chapitre, s’appuie sur
un modéle statistique que nous appelons modéle de clustering et de classification. Dans ce modéle
de mélanges, les lois composantes - ou régimes - sont inconnues, non-paramétriques et doivent étre
identifiées et apprises. Ces taches sont remplies par une nouvelle procédure, appelée Plus Proches
Voisins Relabelisés (PPVR), qui apprend une pseudo-métrique fondée sur I'importance relative des
facteurs dans la prédiction. La procédure PPVR ne nécessite ’entrée d’aucun paramétre.

Le quatriéme et dernier module, intitulé Backtesting et Résultats Numériques, évalue la pré-
cision des modéles de prédiction de tendances sur un ensemble de test significatif, & I’aide de deux
procédures génériques de backtesting. Le premiére procédure renvoie les taux de reconnaissance

des tendances de hausse et de baisse. La seconde construit des régles de trading au moyen des



predictions calculées sur I’ensemble de test. Le résultat (P&L) de chacune des régles de trading cor-
respond aux gains et aux pertes accumulés au cours de la période de test. De plus, ces procédures de
backtesting sont complétées par des fonctions d’interprétation, qui facilite 1’analyse du mécanisme
décisionnel des modéles numériques. Ces fonctions peuvent étre des mesures de la capacité de pré-
diction des facteurs, ou bien des mesures de fiabilité des modéles comme des prédictions délivrées.
Elles contribuent de facon décisive a la formulation d’hypothéses mieux adaptées aux données, ainsi
qu’a I'amélioration des méthodes de représentation et de construction de bases de données et de
modeéles. Ceci est explicité dans le chapitre IV. Les modéles numériques, propres a chacune des
méthodes de construction de modéles décrites au chapitre IV, et visant a prédire les tendances des
variables cibles introduites au chapitre 11, sont en effet calculés et backtestés. Les raisons du passage
d’une méthode de construction de modéles & une autre sont particuliérement étayées. L’influence
du choix des parameétres - et ceci a chacune des étapes du protocole d’expérimentation - sur la
formulation de conclusions est elle aussi mise en lumiére. La procédure PPVR, qui ne requiert
aucun calcul annexe de parameétre, a ainsi été utilisée pour étudier de fagon fiable I’hypothése des
marchés efficients. De nouvelles directions de recherche pour la construction de modéles prédictifs

sont finalement proposées.



FOREWORD

This research work has been conducted within the frame of the French Industrial Agreements
for Training Through Research (CIFRE) scheme. It has been a project shared by the Strategic Risk
Management company, the CMLA research unit of the Ecole Normale Supérieure de Cachan and

the TSI research unit of Télécom ParisTech.

Strategic Risk Management is a leading consulting group, based in Paris, which helps clients
identify their financial objectives, concerns and constraints. Its team of economists and statisticians

develops strategies for:

e understanding long-term economic and financial trends as well as short-term market ineffi-
ciencies.
e monitoring the changing risks and returns related to these shifts.

e reviewing client portfolios regularly to determine whether adjustments are needed.

The Center for Mathematical Studies and their Applications (CMLA) of the Ecole Normale
Supérieure de Cachan is a public laboratory. It particularly hosts the Machine Learning Group
@CMLA, which involves researchers and engineers working on theoretical and industrial projects in

the field of statistical modeling and massive data analysis. Ongoing projects are:

e recommender systems.

e machine learning and finance.

e machine learning for large graphs.
e image classification.

e uncertainty analysis and control of experiments for physical and industrial systems.

The Signal and Image Processing (TSI) department of Télécom ParisTech is devoted to the
missions of teaching and research in the domains of signal processing, image processing and machine

learning. The main research topics are:

e the development of algorithms and statistical processing techniques, in particular for model
learning.
e multimedia indexing, sensor networks, and biometrics.

e coding and transmission for multimedia communications.
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Introduction

A jug fills drop by drop

Buddha

This research work focuses on the application of machine learning methods to the problem of
computing predictions on multivariate time-series as input variables. More specifically, considering
a single target financial variable, we aim at identifying its current trend and predicting the next one
at a fixed horizon using a pool of explanatory economic and financial variables.

Context

This problem is so challenging that merely supposing a solution actually exists is a subject of intense
debate among academics and financial professionals. According to the efficient market hypothesis, in
an efficient market - that is a market where there are rational and well-informed investors competing
for a maximal profit - assets are correctly priced. In other words, because markets incorporate
information well, prices are at any given time close to the true values of assets, thus making price
changes difficult, if not impossible, to anticipate [Bac00, Sam65, Fam?70].

On the other hand, the schools of thought in market analysis - mainly fundamental analysis,
technical analysis and quantitative analysis each propose their own methodology for implementing
successful investment strategies. Fundamental analysis is based on the careful review of companies’
balance sheets and on the study of their economic and financial environments. Fundamental analysts
have developed a theory of valuation, based on accounting principles. According to them, the value
of any investment is determined by the (expected) cashflows it will generate. They assess the value
of any company equity and compare it with its stock price [Lew03, BMA10]. The idea is to favor
undervalued stocks before they gain popularity in the market. Fundamentalists and economists
have also introduced specific notions of returns and of risks to determine optimal investments in
a portfolio of assets in a trade-off between risk and return. This risk and return analysis is called
the modern portfolio theory. The intuitive underlying key idea is the risk reduction of the portfolio
through diversification. Quantitatively, the portfolio theory investigates the problem of maximizing
the portfolio return for a given risk level. The constraints of this problem are defined by the nature
of the portfolio, whether it does include at least one risk-free asset - of return variance of zero - or
not. Solving this problem leads to the construction of efficient portfolios yielding the best return
for a given risk level [Mar52, Mar59, Mer92]. It has also initiated the development of the Capital
Asset Pricing Model (CAPM) [Sha70], which states a linear relation between the expected returns of
assets and their covariances, these latter being interpreted as new measures of risk. This model also
makes specific assumptions regarding the rational behavior of investors, supposed to select efficient
portfolios and to agree on the expected returns and covariances of the assets, the available market
information and the distribution of returns. The Arbitrage Pricing Theory (APT) proposes another
point of view and a more general class of models [Ros76a, Ros76b]. It assumes first that asset
returns are linearly driven by a set of macro-economic or financial factors. Then it shows that, in
the absence of arbitrage (and under complementary assumptions), the expected asset returns are
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linearly related to their covariances with the factors, which are again seen as measures of risk. For
fundamental analysts, these models are a support for taking relevant investment decisions. They
have to be completed by more bottom-up analyses, for example by the study of the relation between
the financing decisions taken by a given company, its capital structure and the stock market reaction.
Only then can fundamental analysts propose global risk management strategies.

Technical analysis aims at identifying or predicting the trend of financial instruments relying
on historical data only to the exclusion of underlying economic theory. Rather, it focuses on the
behavior of investors. Actually, technicians assume that the psychology of investors, their rationality
and their irrationality have a direct impact in terms of supply and demand conditions. According
to technical analysts, the behavior of investors shapes patterns, i.e. geometric shapes produced by
prices and volumes, that are specific to buying and selling scenarios, and that can be used for trend
prediction [Gay90, Bol67, PF01, Mur99, Ach00, Pri02, EMBO07, BB02]. Note that such patterns are
usually computed using solely the historical data of the variable to predict. Besides, the discovery
of patterns requires considerable expertise and a broad experience of market price formation. Usual
criticisms against technical analysis focus precisely on the alleged subjectivity of pattern discovery,
as highlighted in [LMWO00, Aro06, Sew08].

Now, quantitative analysis in finance first focuses on the discovery of stylized facts characterizing
financial series [Sew08]. Stylized facts or empirical properties are actually empirical facts supported
by consistent observations made through measurements of a statistical quantity. For example, the
absence of autocorrelation of financial returns, or their non-stationarities such as volatility clustering
effects, are stylized facts. Observing them is the common first step of the various quantitative
analysis approaches - as quantitative analysis hardly provides an unified theory.

Indeed, the traditional approach of quantitative analysis, referred to as mathematical finance or
financial mathematics or computational finance, often distinguishes between the works of econome-
tricians devoted to risk and portfolio management and of mathematicians interested in pricing and
hedging derivative securities [Meu09, Meull]. On the one hand, econometricians use discrete-time
processes for modeling financial series. Autocorrelated and stationary time series are studied via
AutoRegressive Moving Average (ARMA) processes. Long memory phenomenons - characterized by
a decay of the autocorrelation at a polynomial rate - are tackled by fractionally differenced processes
[Hos81]. Besides, non-stationarities are studied by different classes of processes. AutoRegressive In-
tegrated Moving Average (ARIMA) processes, for example the random walk, deal with unit-root
non-stationarity [Phi85, CW88]. Finally, AutoRegressive Conditional Heteroskedasticity (ARCH)
processes [Eng82] and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) pro-
cesses [Bol86] reproduce clustered volatility effects. On the other hand, derivatives pricing is based
on continuous-time processes. The counterpart of ARMA processes are Ornstein-Uhlenbeck and
Continuous AutoRegressive Moving Average (CARMA) processes [Meu09, Meul0, Meull]. Famous
interest rate models, such as the Vasicek model [Vas77] and the model by Cox, Ingersoll, and Ross
(CIR) model [CIR85], derive from Ornstein-Uhlenbeck processes. Long memory is addressed by frac-
tional Brownian motion processes. Besides, Levy processes are actually the continuous-time version
of random walks. They include the brownian motion, whose geometric form is used to model stock
prices in Black-Scholes model [BS73, Mer73], and Poisson jump processes. As highlighted in [CT08],
Levy processes play an important role in modelling non-stationarities. Finally, stochastic volatility
models, where volatility follows a stochastic process [CR76, Hes93, Che96, HKLW02], propose, along
with subordination models, processes capable of modelling volatility clustering effects fairly well.

Recent trends in quantitative analysis, particularly at instigation of econophysics - or statistical
finance [MS99, Bou02, BP04], recommend to place special emphasis on empirical data to the detri-
ment of classical economics axioms. For example, it is highlighted in [Bou08] that the Black-Scholes
model is still very popular among financial practitioners, although the probability of extreme events
it implies concerning price changes - supposedly Gaussian - is by nature underestimated. According
to [Bou02, Bou08], the massive amounts of data recorded in the financial markets should be used
to properly question models and to validate, modify or discard them. In that perspective, applying
statistical learning methods [HTF01, LGWcs, BBL04, BBLO05, Tsy10] to the problems of design-
ing investment strategies is relevant, more and more popular and actively studied, for example in
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[LMWO00, YSCO08, CB08, Cha09, FHST10]. It is motivated indeed first by the ability of these modern
methods to deal with massive and high-dimensional data sets [BvdG11]. Second, such methods do
not require any a prior: assumptions about the distribution of the data. Instead, they are designed
to solve model selection problems via the optimization of an empirical performance criterion, called
the empirical risk. For example, in supervised learning setups, such as the classification or the
regression setup, data consist of labelled objects, each object being made of a set of features. The
empirical risk stands then naturally for an empirical measure of the prediction error. The minimiza-
tion of the empirical risk, performed by learning algorithms, returns as output a decision function
- a classifier or a regressor - capable of using the features to make "good" predictions of the labels.
Theoretical guarantees regarding the generalization of the learnt decision function - the fact that it
will perform well when confronted to unseen observations - are clearly established. Relying upon
the link between the minimization of the empirical risk and of the theoretical risk, they ensure the
success of statistical learning techniques. This thesis aims precisely at applying these techniques to
the problem of predicting the trends of a single financial series of interest in a multivariate context.

Challenges

Yet, however appealing the use of learning techniques may be, this problem of trend prediction is
an ill-posed problem. It simultaneously and implicitly addresses interconnected - and ambitious -
challenges. The first one is to define clearly and precisely the concept of trend, actually a quite
loose concept. Generally speaking, the trend of a time series refers to a - deterministic or stochastic
- smooth function approximating locally, at a given time and scale, the time series. This consensual
definition can lead to very different modelling attempts:

e a first approach, inspired by econometrics [Tsa05], consists in directly specifying a rigid -
deterministic or stochastic - structure for the trend, removing it and modelling the residuals.

e in a second approach, common in data mining or signal processing, time series can be turned
into new features through a specific representation method, for example based on piecewise
constant or linear approximation [YF00, KCHPO01], symbolic strings [LKLC03], harmonic anal-
ysis (such as Fourier and wavelet-based methods) [Mal99], singular value decomposition and
singular spectrum analysis [GNZ01], etc. These methods have all scored a large number of
impressive achievements in filtering applications. They could therefore potentially lead first to
a natural, intuitive, interpretable and economically meaningful definition of trend, and second
to the design of a trend and features extraction method.

Thus, both approaches are able to produce databases made of features and labels. Still, another
key aspect concerns the statistical characteristics of the provided features: are they sufficiently
stationary and concise to be successfully processed by statistical learning methods?

Indeed, the "classical" framework of statistical learning theory relies on the assumption that
data samples are independent and identically distributed (iid). Recent theoretical and applied
contributions extend this framework to the case of non-iid sequences. They focus on stationary
time-dependent series, usually assumed to have ergodic [AN10] or strong mixing properties [Dou94,
Yu94, Mei00, Vid03, MR08, RSS10] (such properties indicating roughly a dependence weakening
over time) or to be autoregressive time series [MSS11b, MSS11c]. It is explicitly shown that, under
strong mixing assumptions, the use of well-known learning algorithms is theoretically supported
[SA09, SHS09, SC09, KV09, MR10]. Besides, learning with non-stationary sequences is also a
topic under intensive investigation. Actually, the problem of handling non-stationarities in time
series, that are changes in the joint probability distribution of the (streaming) data samples, can be
addressed in many ways. The specific field of prediction of individual sequences [CBL06, Sto05] -
also referred to as online learning [RST10b, RST10a] or as universal prediction - proposes to view the
data samples or sequence as the outcomes of an unknown mechanism instead of a stochastic process.
A typical model combines the predictions made by a class of reference forecasters or experts and
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produces a prediction for each point of the sequence. The performance of each expert is measured by
a cumulated loss computed - via a loss function - on the past predictions. The goal of the model is to
iteratively minimize the regret, which is the difference between the predictions of the model and the
predictions made by the best expert, retrospectively. Strategies based on the exponentially-weighted
average of the experts’ predictions [Vov90] are known to deal particularly well with non-stationary
time series [SJC11, HS09] (and also with stationary ergodic times series [OW10]). Note finally that
the ideas of prediction of individual sequences have been widely applied to the problem of designing
investment strategies [Cov91l, HSSW98, BEYG00, SL05, Gys06b, AHKS06]. Dynamic Bayesian
Networks (DBNs) [Gha97, FMR98, Mur02] have also recently proposed a radically different approach
for handling non-stationary time series. These directed graphical models enable the modelling
of conditional dependences between a given set of variables within and across time slices. The
statement of the dependences between variables is very flexible and not restricted to a specific
structure. Dynamic Bayesian Networks encompass thus all State-Space Models (SSMs), including
for example Hidden Markov Models (HMMs) [Rab89, CMRO05] and Kalman Filter Models (KFMs)
[RG99]. In their original form, they are supposed to be stationary. Their parameters (namely
the parameters of the conditional distributions) and their structure, once stated or learnt (e.g.
through local [SYS* 06, SculQ] or global optimization strategies [Mur02, WD09]), remain unchanged
through time. Now, non-stationary effects can be modelled by incorporating in DBNs the ability
for parameter change [BNI98, PRM00, GH00, PHWO01, MPRO05, IHS06, ORBD08, FSJW08, GKE1(]
and/or structure change [PADF02, TL04, Fea06, XM07, GHFX07, WZSS08, RH08, GH09, SKXO09,
KSX09, KSAX09, FSX09, WKY*11]. DBNs, mostly under the form of KFMs and HMMs, have
been widely used in finance [BH, MEQ7] and econometrics. Finally, the study of non-stationarities
can be tackled from the point of view of transfer learning. Indeed, in this very recent and dynamic
sub-field of machine learning, the training data and the test data are not supposed to be identically
distributed nor even to belong to the same feature space [PY10]. Transfer learning studies then
the conditions, restrictions and transfer from the training set to the test set. It is closely related
to multi-task learning which aims at learning the knowledge common to multiple tasks [Car97,
BDSO03] and semi-supervised learning [Zhu05]. It also encompasses the field of domain adaptation
[IM06, BMP06, BDBCPO07], where the feature spaces are identical and where the training data is
made of two particular subsets. The distribution of the first - usually large - subset is different but
related to the test set distribution, while the second - usually much smaller - subset is distributed
as the test set. When there is no second subset, we speak of learning under sample selection bias
[Hec79, Zad04] or covariate shift [Shi00]. These closely related tasks compose the transductive
transfer learning setting [PY10]. The knowledge to transfer can take several forms. The statistician
usually determines the form under which it can be best transferred. For example, it can be assumed
that only a limited part of the training set can be relevant to learn the test set distribution. This
problem is then addressed by developing ad hoc strategies for increasing the weights of the useful
data in the learning process [DYXYO07, JZ07, HSG"07, BBS07, QCSSLO09]. Another problem can
be to learn the most appropriate parametric model based representation [LP04, EP04, BCWO08] or
feature based representation [Jeb04, BMP06, BDP07, AMPY(07, AEP08] of data in order to enhance
the similarity between the two data sets and to improve the learning performances.

Transfer learning also provides a good framework to mention pitfalls common to all model
construction approaches, particularly in an evolving environment. A first such trap is overfitting,
which occurs when a numerical model, too sophisticated, is unable to generalize. Another related
problem is data snooping, which refers to the systematic (re)use of the same training data for
inference or model selection [LM90, STW99, Whi00, CG06]. Both problems can be seen as too
ambitious attempts of knowledge transfer. We believe that preventing these problems requires a
specific methodology enabling model automatic construction, backtesting and analysis. We partic-
ularly emphasize the necessity for limiting or abolishing human intervention during the database
and model construction. It is crucial to propose an efficient model construction procedure but also
to draw valid conclusions about the statistical nature of the data. In that perspective, rigorous
backtesting procedures have to implemented to test efficiency the relevance of the model. Besides,
developing in parallel interpretablity functionalities is very helpful to analyze the backtesting re-
sults and to compare them to the mainstream opinions and theories in economics and finance. This
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interpretation effort can lead to a deeper understanding of the data but it can also question the
reliability of the model and lead to dramatic/potential improvements.

To sum up, the problem of trend prediction raises related and ambitious challenges. The first
one is to choose a relevant time series representation method. Indeed, it has to help to define the
concept of trend properly and in an economically meaningful way. It also has to turn input time
series into more stationary and interpretable features. Secondly, the next challenge is to design a
model construction method capable of handling the probable features time dependence and non-
stationarity. Additionally, the validity of the representation and of the model have to be checked
by specific backtesting plans. Their role is also to analyze (and to help avoiding) the typical effects
of overfitting and data snooping. They finally have to enable a better understanding of data via
interpretation functionalities and to enhance database and model construction methods.

Methodology and Practical Contributions

We propose an experimentation protocol for studying and improving the construction of trend
predictive models. It consists of the following string of four modules (cf. figure 1), which aims, by
being executed repeatedly, at solving the aforementioned challenges.

e The first module, entitled Data Observation and Modeling Choices, is a preliminary module
devoted to the statement of very general modeling choices and objectives. These objectives
are expressed first of all by the choice of the setup, which indicates the nature of the prediction
task. For example, we have to decide whether we aim at predicting of real labels - this is the
regression setup - or binary or categorical labels - this is the classification setup. We also can
choose to order the objects according to their propensity of being of positive labels - this is the
ranking setup. This choice of setup is crucial as it is of unequal difficulty and as it conditions
the possibility of benefiting from the learning procedure of a certain number of interpretation
functionalities. Besides, we can specify hypotheses concerning the data. For example, we
can suppose that the distribution of the variables is Gaussian (or not). We also can assume
a structure of dependence for the variables, e.g. that they are they follow an autoregressive
process. Finally, we assume that these hypotheses are valid for time ranges of both the training
and test sets, which have to be selected.

e The main task of the second module, Database Construction, is to use a well-chosen time
series representation method to transform explanatory and target series into features and
labels. The set of features and labels are then split up to form a training set and a test set,
according to the previously selected time ranges. Both sets have to be sufficiently homogeneous
to enable the use of learning techniques. The distribution of their relative features in are
compared in that perspective.

e In the third module, Model Construction, we extend the classic statistical model for classifi-
cation by defining a statistical model for clustering and classification. It is actually a mixture
model where the different component distributions - or regimes, unknown and non-parametric,
have to be identified and learnt. This is achieved via the construction of a single regime attri-
bution function and of regime specific decision functions. These latter deliver predictions for
labels.

e The fourth and last module, Backtesting and Numerical Results, provides the results of
backtesting plans, which aim at analyzing the relevance of the predictions produced by the
previous functions over a "significant" test set. Therefore, the first backtesting plan evaluates
the precision of the predictions via appropriate error measures. The second one uses the
same output predictions to design trading rules and to compute corresponding profit and
loss accounts. Backtesting plans are additionally completed by interpretation functionalities
helping the statistician to understand the reasons for any regime attribution or prediction.
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These functionalities can be related to measures of influence of features in the predictions and
therefore to variable ranking and selection. They also can give indications about the reliability
of the model and about its predictions. They decisively contribute to formulating better data
hypotheses and enhancing the time-series representation, database and model construction
procedures.

The experimentation protocol 1 highlights the constant reassessment and control of each of these
steps. This empirical approach demands a meticulous and rigorous linking of the steps. In that
perspective, the tuning of parameters of each step of the protocol plays a key role and has to be
achieved according to clearly identified procedures.

The experimentation protocol has led to the design of new procedures for each module. The
database construction is thus achieved via UniCart, a representation method for univariate series
based on the CART algorithm. It consists indeed of a multiscale and piecewise approximation
method, implemented by a top-down binary tree structured segmentation procedure. Its linear
version enables the approximation of a finite signal by a scale specific succession of linear segments.
UniCart is actually a simple method which fulfils many interesting - from an economic and financial
point of view as well as from a learning point of view - objectives.

e [t is first inspired by technical analysis and defines the concept of trend in an intuitive and
familiar war for financial practitioners. Besides, both features and labels are deduced from
the UniCart representation, which is very convenient. Finally, working with interpretable
features helps to question the economic meaning and relevance of both representation and
model construction procedures, to understand their performance and their limits intuitively,
and to improve them more easily.

e In a supervised learning perspective, one of the most important achievements of UniCart is
to provide a robust database, ensuring that similar financial series have close representing
features. Its compression ability, the fact that it can provide a concise description of any
financial series, was not an absolute priority as the new learning procedures resist the curse
of dimensionality well. However, regarding the representation and model interpretability, it is
definitely very useful. Besides, UniCart has allowed us to study the importance of building
homogenized features and labels, matching the learning hypotheses better (than the raw sam-
ples of variables). Finally, the UniCart representation being made of successive trends existing
at various trends led us to question lag and scale effects and prediction abilities.

Secondly, a new transfer (supervised) learning procedure, called Relabeled Nearest Neighbors
(RNN), has been developed for the construction of efficient trend predictive models. This meta-
algorithm reconsiders simultaneously the problems of learning different regimes (i.e. different dis-
tributions of trends and labels), of model selection and of overfitting in an original way. It requires
a clustering method as well as a generator of hierarchical partitioning rules, typically a base proce-
dure for growing tree classifiers or regressors. Rather than being focused on the optimization of a
performance criterion within different regimes, this procedure is centered on learning a pseudomet-
ric based on the relative importance of features in the prediction. It leads to the recursive dyadic
partitioning of the training set. This recursive partition enables the computation of a score, which
indicates for each training data object its propensity of being of positive label. The goal of the RNN
classifier is to transfer this hierarchical partitioning structure as well as the corresponding score from
the training set to the test set. This is done via an 1-nearest neighbor procedure.

The last contribution of this thesis concerns the design of RNN specific backtesting plans. The
first backtesting plan computes thus the recognition rate and the area under the ROC curve of
the RNN classifier. The second one designs trading rules based on RNN predictions and scores
and analyzes their profit and loss accounts. Backtesting plans are finally completed by a simple
and straightforwardly computed measure of features relevance. In practice, outstanding backtesting
results are obtained for a set of major financial time series over very significant historical ranges.
They particularly prove that the RNN procedure prevents overfitting (contrarily to the Random
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Forests procedure) and is able to handle heterogeneous data well, without human intervention and
user tuning efforts. This allows us to draw reliable conclusions regarding the validity of efficient
market hypothesis, the tenets of technical analysis, the existence of regimes, the predictive power
of each feature according to its lag and scale, etc.

Organization of the Manuscript

This research work proposes a machine learning point of view on market analysis. It first introduces
an experimentation protocol, which has led to the development of new procedures for constructing
databases and learning trend predictive models. UniCart, a multiscale piecewise representation
procedure, has thus been designed to compute databases, made of homogeneous features inspired
by technical analysis. Meanwhile, a new transfer learning procedure, called Relabeled Nearest
Neighbors (RNN), has been created to thwart the possible differences between the training and
test set feature distributions. It aims at learning a pseudometric in a supervised setup and does
not require any tuning subroutine. It has thus allowed us to study reliably the efficient market
hypothesis. This document details this research work. It consists of four chapters, summarized
hereafter.

A Machine Learning Point of View on Market Analysis

This chapter introduces the efficient market hypothesis. It explains why it stands in contradiction
with the main schools of market analysis, which are fundamental analysis, technical analysis and
quantitative analysis. These three points of view are thoroughly presented. We focus then on
statistical learning theory and on its applicability to the problems of prediction in finance. In that
perspective, the classic learning theory is recalled. Challenges preventing the straightforward use
of machine learning techniques for computing predictions on financial series are identified. The
treatment of non-iid data in different sub-fields of machine learning is particularly discussed. The
transfer learning framework, that we believe to be relevant to avoid overfitting and data snooping,
is made explicit. Finally, the experimentation protocol, which sums up our research methodology, is
presented. It is made of four modules, whose sequential (re-)execution has led to the formulation of
a new model for clustering and classification and to the design of the new procedures UniCart and
Relabeled Nearest Neighbors. The three following chapters correspond to the three last modules of
the experimentation protocol.

Construction of Economic and Financial Databases

This chapter, which stands for the second module of the experimentation protocol, focuses on the
construction of databases for learning trend predictive models. It thus first presents our search
for an ideal time-series representation method. It introduces in that perspective the economic and
financial variables, which play the role of explanatory and target variables in the fourth chapter.
Their inter and intra heterogeneity, which is highlighted, help to recapitulate the stakes of time series
representation. Properties of approximation, interpretability and homogeneization are expected
from the representation method. Two particular methods are thus emphasized. The first one
consists of applying the Kalman filter to linear state-space models. It is a well-known and popular
method among quantitative analysts for detrending financial series. The second method is UniCart.
It is a multiscale piecewise representation method, which shares close ties with the CART algorithm.
It implements a top-down binary tree structured segmentation, what is is presented and illustrated.
We then explain how the linear interpolation version of UniCart is used to build databases. These
databases are of two types. The first type of database is made of linear trends computed at different
scales and lags and of corresponding statistical quantities. The features of the second type of
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database are exclusively returns, considered at different scales and for the most recent lag only. The
stationarity of these two types of databases is investigated using the example of the S&P500 index.

Construction of Trend Predictive Models

This chapter represents the third module of the experimentation protocol. It reports three model
construction approaches, called respectively Kalman Laglasso (KLL), UniCart Random Forests
(RF) and UniCart Relabeled Nearest Neighbors (RNN). These approaches have been consecutively
developed to meet the improvements suggested by the backesting results - presented in the next
chapter. The KLL approach states a linear model in the regression setup, where the (Kalman)
filtered target variable depends on (Kalman) filtered and lagged explanatory variables. Variable
and lag selection is performed by a new Lasso-type method called Laglasso, which is described in
detail. Yet, the bactesting results show that the regression setup may be too ambitious. They also
underline difficulties in assessing the relative importance of each explanatory variable. Thus, to lower
the targeted level of precision, the prediction problem that we consider in the following is expressed
in the binary classification setup. UniCart databases are used to train numerical models. The label
is the sign of the linear trend (or the sign of a specific return) of the target variable at user-chosen
scale and horizon. The learning methods are restricted to tree aggregation procedures, as they
produce very interpretable numerical models. Tree classifiers are therefore thoroughly introduced,
while usual tree aggregation procedures, such as Boosting, Bagging and Random Forests are carefully
reviewed. We particularly focus on Random Forests classifiers and show in chapter IV that too large
RF classifiers tend to overfit. We believe that this overfitting incident is due to the non-stationarity
of the features, which can be studied in the transfer learning framework. We aim particularly at
learning partitioning structures transferable from the training set to the test set. We therefore state a
new mixture model for the UniCart features and labels. This model consists of an unknown number
of unknown non-parametric component distributions, that we call regimes. The Relabeled Nearest
Neighbors (RNN) procedure is introduced for identifying the number of regimes and for computing a
regime attribution function and accurate regime specific prediction functions. The RNN procedure
is a meta-algorithm, which requires a method for generating hierarchical partitioning rules and a
clustering method. It consists of three steps which are made explicit. The first step computes
a pseudometric using an ensemble of tree classifiers built on the training set. The second step
produces new labels for the training set via a dyadic partitioning performed with the clustering
method. Finally, in the third step, new labels are attributed to the objects of the test set using the
pseudometric for 1-NN classification.

Backtesting and Numerical Results

In this fourth and last chapter, which corresponds to the fourth module of the experimentation
protocol, backtesting plans are introduced. They aim at assessing the accuracy of the constructed
trend predictive numerical models. The first plan computes trend recognition rates. The second
plan designs trading rules using the predictions of the trends and computes their profit and loss
accounts (P&Ls). These plans are completed by interpretation functionalities, which evaluate the
feature importance and the prediction reliability. Backtesting results, which have motivated the
consecutive development of the model construction approaches, are also presented in this chapter.
Predictions of the monthly variations of the S&P500 index, computed by KLL numerical models over
the last twenty years, are first thoroughly analyzed. It is shown that the KLL numerical models out-
perform standard competitors. However, the gap existing between the ambitious goal of predicting
real labels and the actual precision of the predictions is highlighted. In addition, while the variable
and lag selection step does not allow definitive conclusions to be drawn regarding the relevance of
the variables, the decisive role played by the filtering step is emphasized. These observations have
justified the switch from the regression setup to the binary classification setup. To enhance inter-
pretation functionalities, the UniCart procedure has been designed. The Random Forests procedure
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as well as the Relabeled Nearest Neighbors procedure have been used in conjunction with UniCart
databases to build classifiers, called respectively UniCart RF and UniCart RNN numerical models.
Such models have been employed for predicting the trends of all the target variables introduced in
chapter II (including the S&P500 index) over the last five years. The backtesting results show that
UniCart RF classifiers tend to overfit, which is not the case of UniCart RNN classifiers. Besides,
these numerical models shed new light on the efficient market hypothesis. It is particularly shown
that the most reactive UniCart RNN trading rules perform best. New perspectives of development
for the UniCart RNN numerical models are finally suggested.
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Chapter 1

A Machine Learning Point of View on
Market Analysis

La forme, c’est le fond qui remonte a la
surface

Victor Hugo

This research work focuses on the application of machine learning methods to the problem of
computing predictions on multivariate time-series as input variables. More specifically, considering
a single target financial variable, we aim at identifying its current trend and predicting the next one
at a fixed horizon using a pool of explanatory economic and financial variables. This very ambitious
task stands in contradiction with the Efficient Market Hypothesis (EMH). Yet, different schools of
thought in market analysis, whatever they agree to some extent or disagree with the EMH, propose
investment strategies to beat the market. This chapter reviews them carefully. It especially explains
why technical analysis, and particularly patterns of traditional technical analysis, can be considered
as a first step to applying learning techniques to the prediction of financial series. It also highlights
the challenges to overcome. These latter motivate the introduction of an experimentation protocol
for the rigorous development of trend predictive models. The approach developed in this thesis
is sustained by the experimentation protocol. This chapter is therefore organized as follows. The
first section is devoted to the presentation of the main viewpoints in market analysis. Basic notions
concerning securities and financial markets are first introduced. The efficient market hypothesis
and its different forms, expressing various degrees of skepticism towards the existence of successful
investment strategies, are then clearly formulated. Conversely, schools of market analysis are shown
to propose their own philosophy and methods for the implementation of such strategies. In that
perspective, the grounding principles of fundamental and economic analysis, technical analysis and
quantitative analysis are made explicit. Special emphasis is placed on technical analysis patterns
as they help to grasp the concept of trend and of data representation from the point of view of
practitioners. Specific such patterns are exhibited and their capacity to recognize current and
future trends is discussed. At last, technical analysis does not propose automated pattern recognition
procedures (nor statistical models for financial variables), which is a severe limit to its systematic use
and evaluation. Technical analysis can thus be profitably addressed from a machine learning point of
view. The goal of the second section is precisely to introduce the classic statistical learning theory, its
conditions of use and the extended learning framework - or alternate methods - enabling to handle
time-series. Different learning problems, such as classification and regression, are first formally
presented. Their classic reduction to a global problem of risk minimization is recalled. It is shown
that this problem can be solved in a great many ways very efficiently, even in the case of a very large
number of explanatory variables. Besides, the limits of the statistical learning theory, as for instance
the requirement of the restrictive iid assumption, are highlighted. Dealing with non- stationary, time
dependent and noisy data is thus extremely challenging. In that perspective, extensions of the usual
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statistical learning framework to time-series are reported, as well as other approaches in machine
learning capable of handling non-stationarity effects. Online, semi-supervised, and transfer learning
are particularly focused on. The third section points out the steps - or modules - we considered
ideal and necessary to develop a method for learning trend predictive models. These modules are
summed up and linked in the experimentation protocol, which is described in details. The constant
reformulation, analysis and backtesting of module specific procedures has led to the approach -
based on UniCart and RNN algorithms - presented in this thesis. The organization of programs
and subprograms implementing this new approach is displayed. It will be further clarified in the
following chapters. Finally, the statistical model for clustering and classification is provided and its
corresponding notations also introduced.

I.1 State of the Art: Viewpoints in Market Analysis

This section is devoted to the presentation of the mainstream opinions in market analysis about the
design of investment strategies beating the market. The efficient market hypothesis and its different
forms, expressing various degrees of skepticism towards the possibility of anticipating price changes,
are first clearly formulated. Conversely, schools of market analysis, which propose each their own
philosophy and methods for devising successful investment strategies, are reviewed. Fundamental
analysis is first shown to be based on economical and financial theories exclusively. Secondly,
the major role played by the study of investors’ psychology and behavior in technical analysis is
underlined. According to technical analysts, specific mechanisms of greed and regret of market
actors are supposed to create price patters. Some of them are exhibited and their capacity to
recognize current and future trends is discussed. Unfortunately, technical analysis does not provide
systematic pattern extraction and recognition methods (nor clearly identified statistical models
for financial variables). This lack, which is a limit to a reliable use of technical analysis relative
methods, naturally leads to the study of quantitative analysis. The main goal of the numerical
models produced by quantitative methods is to reproduce stylized facts of financial series. The
main quantitative methods are presented. The roles of econometrics in risk management and of
stochastic calculus in the pricing of derivatives are thus compared. The reasons of the emergence
of econophysics, which proposes to reject classic economic axioms and to place special emphasis
on data, are made explicit. In that perspective, the relevance of machine learning techniques in
market analysis is motivated. Their use in conjunction with data representation specific of technical
analysis are also investigated.

I[.1.1 The Efficient Market Hypothesis
Financial Markets and Spot Trading in a Nutshell

Financial markets offer the frame and conditions for exchanging financial products, for instance fi-
nancial securities, such as stocks and bonds, commodities, foreign exchange rates based instruments,
etc. Such products can be exchanged, sold or bought from one moral person to another via spot trad-
ing - a classical exchange where products are immediately delivered - or via derivatives [FMJF10].
These latter refer to contracts, which specify a delivery date, and whose financial value derives from
the fluctuations of an underlying asset (such as stocks, bonds, etc). Besides, the values of financial
products are determined by supply and demand and are freely available informations in the market.
However, transactions are anonymous (ideally, it is not possible to know who trades what) and do
have a cost. Finally, this thesis is focused on spot trading solely. Securities, commodities and foreign
exchange rates are all used later in our trend prediction applications.

The term security is actually a broad notion which includes specific types of financial products.
The official definition of a security given in the Securities Exchange Act of 1934 is: "Any note,
stock, treasury stock, bond, debenture, certificate of interest or participation in any profit-sharing
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agreement or in any oil, gas, or other mineral royalty or lease, any collateral trust certificate, preorga-
nization certificate or subscription, transferable share, investment contract, voting-trust certificate,
certificate of deposit, for a security, any put, call, straddle, option, or privilege on any security,
certificate of deposit, or group or index of securities (including any interest therein or based on the
value thereof), or any put, call, straddle, option, or privilege entered into on a national securities
exchange relating to foreign currency, or in general, any instrument commonly known as a "secu-
rity"; or any certificate of interest or participation in, temporary or interim certificate for, receipt
for, or warrant or right to subscribe to or purchase, any of the foregoing; but shall not include
currency or any note, draft, bill of exchange, or banker’s acceptance which has a maturity at the
time of issuance of not exceeding nine months, exclusive of days of grace, or any renewal thereof the
maturity of which is likewise limited.". A more synthetic definition can be found in [Har11], where
a "security is a paper certificates (definitive securities) or electronic records (book-entry securities)
evidencing ownership of equity (stocks) or debt obligations (bonds)". Financial securities can be
therefore reduced to two classes of financial products:

e debt securities (bonds). A bond is a formal contract to repay borrowed money with interest
at fixed intervals [OSon|. The borrowed money is called the principal. It has to be paid at a
settlement date, called the maturity. The interest is called the coupon. In the following, we
will only focus on government bonds also called treasury bonds. Such bonds are issued by the
government and are not exposed to default risk.

e equity securities (stocks). The capital stock of a company is the original capital invested by
the founders of the company. The stock of a business is divided into shares, also referred to as
stocks, in the plural form. Therefore, stocks represent a fraction of the ownership in a business.
From an accounting point of view, a business is a separate entity from its owners. Therefore, the
capital stock is a liability on the business. More generally, the accounting equation states that
all the economic resources of the company, called assets, equals liabilities plus shareholder’s
equity [MMBWon]. However, in the stock market, the price per share does not correspond to
the equity per share calculated in the accounting statements. Stock markets indeed answer
the need of investors to trade stocks. Thus, the price of a stocks fluctuate according to supply
and demand conditions.

A commodity however is a physical substance, such as metals and agricultural goods, which can be
exchanged in a commodity market under the form of fungible trading units. Examples of commodi-
ties are grains, metals, livestock, oil, cotton, coffee, sugar, and cocoa [MMO0O]. The commodities we
focused on are oil and gold. Finally, a foreign exchange rate indicates naturally the rate at which
two currencies are exchanged one for another. The foreign exchange rates we investigated are the
euro against the US dollar, denoted EUR/USD, and the UK pound sterling against the US dollar,
denoted UK/USD.

Now, whatever the type of exchange and the type of products they may propose, financial
markets are considered by many academics and professionals as informationally efficient - at least
to some extent. This very influential assumption is presented in the next subsection.

Statement of the EMH: why Beating the Market is Impossible

An investor strategy which yields consistent profits over a long period of time is said to beat the
market. The question whether it is possible to implement investment strategies beating the market or
to predict the fluctuations of speculative asset prices is the subject of intense debate among academics
and financial professionals. The efficient market hypothesis (EMH) brings a definite answer. It stems
from the seminal work of Bachelier [Bac00] and is properly formulated in [Sam65, Fam70]. According
to the efficient market hypothesis, in an efficient market, that is a market where there are rational
and well-informed investors competing for a maximal profit, assets are correctly priced. In other
words, because markets incorporate information well, prices are at any given time close to the true
values of assets [Fam65b]. Another definition of the efficient market hypothesis can be found in

13



[FMJF10]: "Publicly-available, relevant information about the issuers will lead to correct pricing
of freely-traded securities in properly-functioning markets.". Thus, if one supposes that financial
markets are informationally efficient and that the only way to beat the market is to exploit new
information before competitors do, then it is impossible to beat the market [Shi08].

Now, the efficient market hypothesis can be further completed by the random walk theory,
introduced in [Bac00]. It is very precisely developed in [Fam65a]: "the theory of random walks
says that the future path of the price level of a security is no more predictable than the path of
a series of cumulated random numbers. In statistical terms the theory says that successive price
changes are independent, identically distributed random variables. Most simply this implies that
the series of price changes has no memory, that is, the past cannot be used to predict the future
in any meaningful way". The random walk theory states that under the efficient market theory
hypothesis, asset prices are random walks, because price changes respond only to new information,
which is by nature unpredictable [Shi08]. Therefore, the random walk theory is a refinement of the
efficient market hypothesis. Its consequence is that prices are impossible to predict, or rather that
the best prediction for an asset price at any horizon is the actual price of the asset.

Actually, three different versions of the efficient market hypothesis have been defined in [Rob67,
Fam70] to test the nature of financial markets. Each of them gives a specific definition for informa-
tion.

e The weak form says that information concerning past prices exclusively is immediately incor-
porated into prices. It is therefore impossible to beat the market by knowing past prices.

e The semi-strong form claims that all publicly available information is immediately incorporated
into prices. It is therefore impossible to beat the market by knowing any kind of information
made public.

e The strong form says all information, public and private, is immediately incorporated into
prices. There is no way to beat the market.

The weak form of the EMH stands in contradiction with technical analysis, while the semi-strong
rejects both technical and fundamental analysis. In the following, the main schools of thought in
market analysis, which are the fundamental, technical and quantitative analyses, are reviewed. It
is explained first why they oppose the efficient market analysis, and above all the specific approach
they propose to design successful investment strategies.

[.1.2 Fundamental Analysis: Strong Economic and Financial Theoretical
Grounds

Fundamental analysis is based on the careful review of companies’ balance sheets and on the study
of their economic and financial environment. The goal is to favor undervalued stocks before they
gain popularity in the market. Fundamental analysts have therefore developed a theory of valuation,
called discounted cash flow (DCF) analysis, to compute the present value of any investment and
to value any company [Lew03, BMA10]. It aims at forecasting the cash flows (C¢)¢>,, where C; >
0,Vt > 1, generated by the investment C, < o and at discounting them using a rate r*, which
expresses the investment risk and updates the cost of money. The net present value NPV of an
investment is the sum of these forecast and discounted cash flows.

NPV, =C, _,.EL
- o *\t "
— (14+7*)

Particularly, the net present value of the equity (as well as the assets) of any given company can
thus be computed by considering its future expected dividends as cash flows. If the efficient market
hypothesis were true, the stock price, reflecting all publicly available information about that com-
pany, would be a better estimate of the true value of the company than the net present value of the
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equity. It would actually be the best estimate of its true value. Fundamental analysts assume on
the contrary that the market can fail in valuing companies and that it is possible by conjecturing
companies’ future cash flows to better guess their true value [Lew03, BMA10Q].

Now, the discount rate r* of a given investment usually stands for a reference rate of return,
reckoned by market actors for investments of similar risk [Lew03]. Note for example that there are
so-called risk-free investments, such as investments in government bonds. Such investments pay
indeed a fixed rate of interest, while the risk is very limited as governments (nearly) always honor
their debts. The definition of the discount rate implicitly raises two questions. First, it is necessary
to define an appropriate measure of risk. Second, it is equally required to be able to compute the
expected rate of return of any investment corresponding to its given risk. The modern portfolio
theory (MPT) introduces precisely the concept of risk as the variance of the return of a considered
portfolio, which refers to an investment made in a fixed number of assets [Mar52, Mar59]. The
driving idea in portfolio theory is diversification, which mechanically reduces risk as soon as the
portfolio includes non-correlated assets. The purpose of the portfolio theory is to maximize the
expected return of the portfolio for a given risk level, or equivalently to minimize the risk for a given
level of expected return.

In classic portfolio theory, portfolio returns are considered over a single period of time. Investors
allocate their capital among the assets at the beginning of the time period and do not change this
allocation until the end of the period. Time subscripts are therefore not used in the following
problem statement. The returns of a number N of assets are thus represented by the random vector
X = (-Xi)lsiSN € RY, whose mean p € RY and covariance & € R¥ x R are supposed to be known
(or estimated) by the investor. We call portfolio any allocation of the investor capital in the N
assets, which is represented by a vector w = (wi)lgiSN € RY. Each weight w? stands for a fraction
of the invested capital, which is summed up by the relation

N

w'lzg w' =1,

=1

where 1 = (1,...,1) € RV.
The portfolio return is naturally

N
Xp=w'X = Zwixi.
1=1

We call efficient portfolio any portfolio w that maximizes the expected return
pp=E(Xp) =w'y
for a given level of risk expressed as the variance
0p =Var(Xp) =w'Jw.

Equivalently, efficient portfolios can be defined as portfolios minimizing the risk (or the portfolio
variance) subject to a given expected return. In this mean-variance framework, finding the efficient
portfolios reduces to the following problem of constrained optimization:

.1
w* = argmin-w'Jw,
w2
subject to w'uy = r,
w'l = 1

b

where 7 > 0 is the required expected return. We call finally efficient frontier the set of efficient
portfolios solving this problem for all (acceptable) values of . In the next paragraphs, such solutions
are derived under specific assumptions and the form of the corresponding efficient frontier is made
explicit.
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Solving the problem I.1 is achieved via the Lagrange multipliers method. Set the Lagrangian
function:

flw, A, Az) = éw’Ew—l—)\l(r —w'p)+ A (1—w'l).

The first-order conditions for optimality are obtained by differentiating this function with respect
to each variable and setting the result to zero:

Xou 1 w
o o | x| =A |=| 17 |,
1’ o o - 1

where 0 = (0,...,0) € RV

If we suppose that X' is positive definite, which implies that all the N assets are risky (i.e. of strictly
positive variance), and that the vectors {, 1} are linearly independent, then the above matrix is
invertible. This yields the unique solution:

w=5(u 1)A1<’1">,

WhereA:( w1 )IZ'_l( w1 )

Consequently, if two efficient portfolios u and v are of respective returns r,, and r,, then the efficient
portfolio of return a7, + o, 7, is necessarily the linear composition o, u + a,v. This remark plays
an important role in the derivation of the Capital Asset Pricing Model (CAPM). Besides, the
following relationship between the portfolio variance 0% and the portfolio expected return up can
be straightforwardly deduced:

o3 = ( ur 1)A—1<“1P>.

The efficient frontier in the space generated by {1p, 0%} is therefore an hyperbola. It is referred to as
the efficient frontier for risky assets and represented in black in the figure I.1. Besides, the portfolio

* _ 2711 . . . 2 _ . . .
Wiy = 1rp—7 of minimum variance o, = is represented in red in the same figure.

s
We suppose now that there is, in addition of the N risky assets, a single risk-free asset of return

©° and of associated weight w®. Using the same notations as previously, the portfolio return is
rewritten

N
Xp=uw’X°+uw'X =wX°+) w'X".
1=1
The expected return is
pp =E(Xp) =wu’ +w'y,
while the variance remains

0% =Var(Xp) =w'Sw.

The constrained optimization problem becomes:

o1
w* = argmin-w'Jw,
w2
subject to w°u® +w'y =
wl+w'l = 1.

The corresponding Lagrangian function is then:

Flw®,w, A, \;) = lu'zw + A (r—wu® —w'p) + A (1 —w® —w'l).
2
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The derivative equations form the following system:

o 0 w° 1 w 0
0o XY u 1 « w | o0
uw @ o o - r
1 1" o o - 1

We suppose again that X is positive definite, and that the vectors {(u°, u), (1,1)} are linearly inde-
pendent. The previous system, therefore invertible, yields the unique solution:

e ()

()

risky,* wrisky,* _ 271(# B /“‘01) ]

’ 15 (p—pel)
The efficient portfolio consists therefore of an investment of weight w® in the risk-free asset and of
an investment of weight (1 —w°®) in a specific portfolio made of only risky assets. Notice indeed that
w"**¥* does not depend on the required return r.
The efficient frontier in the space generated by {up,o%} is therefore a straight line, called the
capital market line, which goes through the points {1°, o} and {trisky,», O }. This latter point,
representing the portfolio w”***¥*, can be shown to be the tangent point to the hyperbola (being
the efficient frontier for only risky assets) of the Capital Market Line. The portfolio w* is usually
referred to as the tangency portfolio. Both the Capital Market Line and the tangency portfolio are
represented in blue in the figure I.1. Another geometric and intuitive way of defining the tangency
portfolio is to see it as the portfolio maximizing the Sharpe ratio [Sha66]:

and

w* = (1—w®)w

2
r15ky,*

W'l — o

SR(w, po) = W' Sw

Finally, any rational investor applying the mean-variance methodology would split its capital be-
tween the risk-free asset and the tangency portfolio. This is the key concept of separation [Tob56,
Mer92].

The Capital Asset Pricing Model (CAPM) [Sha63, Sha64, Lin65] can be derived from the im-
portant aforementioned results of modern portfolio theory. It is based first on the existence of a
risk-free asset. Secondly, it requires that all the investors forecast the same values of the expected
mean {4, u} and of the covariance X' of the N + 1 assets. It finally assumes that they all aim at
building efficient portfolios, possibly with various required returns. We consider the linear composi-
tion of all the investors’ efficient portfolios. It consists of an investment in the risk-free asset and of
the linear composition of investors’ efficient portfolios for risky assets only. Using previous results,
we know that the latter is necessarily an efficient portfolio too, denoted M, and usually referred to
as the market portfolio. All the investors’ efficient portfolios define thus a Capital Market Line.

Consider now the portfolio P(a) consisting of a fraction a of capital invested in an arbitrary
asset ¢ and of a fraction (1 — a) invested in the market portfolio M. The first two moments of this
portfolio are:

bpa) = O+ (1—a)uy,
Opa) = 0707 +2a(1—a)o,m+(1—a)oly,
The market portfolio M = P(0) belongs to two efficient frontiers. The first one is obtained via a

mean-variance analysis applied to the N risky assets. The second one stems from the same analysis
operated on the asset 7 and the portfolio M. These efficient frontiers are hyperbola, which intersect
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Figure [.1: MPT

at M = P(o). Besides, they do not cross the Capital Market Line. Indeed, it would mean otherwise
that there exist portfolios which are superior to the efficient frontier of the risky assets. Therefore,
the two efficient curves are tangent at M = P(o0). Equalling the slopes of their tangents at this
point yields the following relationship:

dpp(a)

dup(a) e _ BM — bo
= g Yk ey
dop(a) {a=0} U;o(t : {a=0} ou

Basic manipulations finally lead to the Capital Asset Pricing Model:

U‘,M
Ki = Ho + (KM — Ho) 12
oM

It is also often expressed as follows:

Mi — o = Billm — o),

where §; = ”;;M is called the beta-coefficient of the asset 2, (up — o) the market risk premium and
Wi — o the risk premium on the asset 2. This formula enables the comparison between the risk on
the asset ¢+ and the market risk. For example, if 8; > 1, then the asset ¢ is riskier than the market.
More generally, a given asset is riskier than another one if it has a higher §.

The Capital Asset Pricing Model can also be derived from the simple one-factor model:
Xt = Ho +ﬂi(XM — Ho) + i,

where &; is a normal random variable independent of X™. In this formula, §; stands for the
systematic risk, i.e. the risk that is common to the asset z and to the market and that can therefore
not be diversified away, while ¢; refers to the unsystematic risk. This is summed up by the following
relationship:

Var(X*') = B2Var(XM) + Var(e;),
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where B2Var(X ™M) is a fraction of variance of the asset 7 explained by the market. More specifically,
[B; measures the sensitivity of the asset ¢ to the overall market movements.
Finally, we call Security Market Line the graphical representation of the Capital Asset Pricing Model
formula in the space generated by the risk § and by the expected return 7:

T = fo + Blpm — po)-

It allows the investor to distinguish between overvalued and undervalued assets.More specifically,
it can be employed for computing the discount rate 7* of a given investment made in a specific
asset. It enables therefore the computation of the investment net present value, in other words the
valuation of the investment.

The CAPM can be extended to sophisticated linear factor models, such as in the Arbitrage
Pricing Theory (APT) [Ros76a, Ros76b]. In this framework, asset returns are directly assumed to
follow a linear factor model structure, the factors being possibly financial returns or macro-economic
variables, that can be the GDP, inflation indicators, the unemployment rate, the housing market,
the household savings rate, corporate profits, etc. It can then be shown that, in the absence of
arbitrage (and under complementary technical assumptions), the expected asset returns are linearly
related to their covariances with the factors, which are again seen as measures of risk. Furthermore,
the use of such factor models is motivated by the need to identify the first two moments p and
27 of a given set of assets before performing any risk and return analysis. It is interesting to note
that fundamental analysis has thus a direct link with quantitative analysis, which will be presented
in a next subsection. As a conclusion, a typical investor can use the CAPM or any other relevant
factor method to compare systematic risks of assets and to value companies and assets. Most often
however, investors complete this multivariate analysis by a more bottom-up approach, mainly by
analyzing the financing decisions taken by each company, their influence on the capital structure of
the company and on its popularity in the market (cf. [BMA10] for more information on financing
decisions, payout policies and risk management aspects). They may also be interested in enriching
their investment strategy using technical indicators. Technical analysis proposes indeed a totally
different point of view (than fundamental analysis) on market analysis. It is briefly reviewed in the
next part. Geometric technical patterns are particularly emphasized and commented.

I[.1.3 Technical Analysis: Representations, Patterns and Predictions

Technical analysis aims at identifying or predicting the trend of financial instruments. Its ground-
ing hypothesis states that market prices contain all relevant information for this identification or
prediction task [Sew08]. Unlike fundamental analysis, technical analysis is not motivated by any
underlying economic theory [BB02]. It focuses instead on the influence of investor mimicry in the
price formation and on specific buying and selling mechanisms, which are revealed by geometric
shapes produced by prices and volumes. More specifically, these patterns usually consist in specific
consecutive trends, implicitly defined as price directions which may exist at different scales, possi-
bly completed by characteristic values of particular indicators (such as volume ratios). According
to [Gay90, Bol67, PF01, Mur99, Ach00, Pri02, EMBO07, BB02], they could be used successfully for
trend prediction and for determining adapted trading dates. Technical analysis stands therefore
in contradiction with all the forms of the efficient market analysis. Various quantitative studies
evaluating the performance of technical strategies also point out the usefulness of technical analysis
[BLL92, LeB96, DNW96, NW99, FRGMSRO00, LMWO00]. These positive views are however tempered
in [PI104], which highlights that the majority of studies supporting technical analysis propose biased
backtesting procedures (subject to data snooping effects, ex post parameter selection, etc).

Besides, technical analysis is explicitly centered on the concept of trend. It defines the trend
of a price as a series of consecutive ascending or descending bottoms and tops which define a trend
channel [BB02, Mur99]. The trendline connecting the tops is called the resistance level and stands for
the selling pressure - i.e. the supply. Meanwhile, the trendline connecting the bottoms is the support
level and represents the buying pressure - i.e. the demand. New support and resistance levels as
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well as trend changes are created via breaks through current support or resistance levels. A trend
is commonly represented by a linear segment, which locally - "at a given scale" - approximates the
price. We focus in the following on patterns specific of traditional technical analysis (also called chart
analysis), which are supposed to be trend reversal or trend continuation patterns [BB02, Mur99].
Trend channels (cf. figures [.2 and [.3) are thus patterns of trend continuation.

Channel Up: 02-Jan-2002 to 01-Aug-2006
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Figure 1.2: SP500 Channel Up
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Channel Down: 01-Jun-2009 to 01-Jul-2010
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Figure 1.3: EURUSD Channel Down
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Technicians also mention flags, actually small rectangles contained in a broader upward or
downward movement and oriented against this movement. Likewise, pennants are also short-term
trend continuation patterns, and usually consist in small symmetrical triangles (cf. figures 1.4 and
1.5). According to technicians, these patterns are formed when some of the market actors stop
trading. Newcomers, having observed the current trend, can then choose to bet on a continuation

of the trend.
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Figure [.4: GOLD Flag and Pennant
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Figure I.5: SP500 (Down) Flag and Pennant

23



movement. Therefore, a symmetrical triangle is difficult to anticipate [BB02].

Price

Now, triangles are very popular figures among technicians. Although not necessarily contained
in a clear major trend, they are considered as trend continuation patterns. They are distinguished
between ascending (cf. figures 1.7 and 1.9)), symmetrical (cf. figure 1.6) and descending triangles
(cf. figure 1.8). An ascending triangle is made of a horizontal resistance level and of an upward
support level, which indicates that the buying pressure increases while the market supply remains
stable (for example as long as a large sell order has not been executed). Conversely, a descending
triangle is made of a horizontal support level and of a downward resistance level. Both ascending
and descending triangles are supposed to be reliable trend continuation patterns. On the contrary,
a symmetrical triangle is made of a downward resistance level and of an upward support level.
Technicians have to wait for one of these trendlines to be broken to know the orientation of the next
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Figure [.6: EURUSD Symmetrical Triangle
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Descending Triangle: 01-Sep-2009 to 01-Sep-2010
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Figure [.8: EURUSD Descending Triangle
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Ascending Triangle: 01-Sep-2006 to 01-Aug-2008
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Figure 1.9: EURUSD Ascending Triangle
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Trend reversal patterns are somehow more complex. They are based on investors’ tendencies to
mimicry. Technicians assume indeed that investors, by alternately regretting having missed a profit
opportunity or by greedily wanting to reproduce one, shape consecutive cycles, which are referred
to as head and shoulders (cf. figures 1.10 and 1.11 ), triple and double bottoms (cf. figure [.12), as
well as triple and double tops (cf. figure [.13). Those patterns are also usually confirmed by specific
trading volume variations (cf. [BB02]).
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Figure 1.10: SP500 Head And Shoulders
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Double Top: 01-Jun-2006 to 01-Dec-2008
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Figure [.13: SP500 Double Top

This list of patterns is far from being exhaustive. Yet, it illustrates first the trend based repre-
sentation system for financial series, which is extensively used in technical analysis. Secondly, it also
allows us to understand in an intuitive way the critics formulated against technical analysis. For
[Sew08, Aro06], technical analysis - particularly chart analysis - is based on the representativeness
heuristic. This psychological phenomenon, introduced in [TK74], refers to the process of intuitive
classification, that is accomplished by people in everyday life [Aro06]. This heuristic assumes that
each object, member of a given class, displays features which are characteristic of that class. Classi-
fication is therefore achieved by evaluating the similarity between the features of a given object and
the distinctive features of each class [Aro06]. The difficulty of a recognition by representativeness
resides in the choice of the appropriate set of features describing the objects, and in the selection of
the characteristic features of each class. Particularly, in the case of technical analysis, features that
are the most visually striking (for example, a set of specific consecutive trends) are not necessarily
the most useful to perform classification (i.e. to predict the next trend). The most encountered
criticism against technical analysis focuses thus precisely on the subjectivity of the patterns, in
other words on the alleged lack of convincing proof that these patterns are characteristic features
announcing a trend continuation or a trend reversal. That is why we have developed a time series
representation method so that any financial series can be automatically and rigorously turned into
representative features. This method will be presented in the next chapter. This is also why we
have designed a procedure learning the relationship between representative features (of a set of ex-
planatory variables) and the future trend of a target variable. This procedure will be introduced in
the fourth chapter. These attempts of representing and modelling financial series belong actually
to the field of quantitative analysis, which is explored in the next subsection.
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I[.1.4 Quantitative Analysis: Focus on Stylized Facts

Quantitative analysis in finance aims at constructing models for both risk management and deriva-
tives pricing purposes [Meu09, Meull]. These models are usually designed first to reproduce stylized
facts, which are general statistical properties, often qualitative, supported by consistent observations
made on a wide range of instruments, markets and time periods [Con01, Con07, Sew11]. Next, on the
one hand, in the field of derivatives pricing, modelling approaches are conducted using continuous-
time processes (and stochastic calculus). On the other hand, in the field of risk management, they
are based on discrete-time processes (mainly econometric models) [Meu09, Meul0, Meull]. We
obviously focus on this latter case in this thesis and that is why we now review key concepts in
econometrics and classic econometric models. We also insist on the stylized facts they enable to
reproduce.

Econometricians usually prefer to work with the returns or logarithmic returns (X;) of the (uni-

variate) financial series (Z;), which are closer to stationary signals. The concept of stationarity plays
indeed a central role in the development of econometric linear models. The strong form of stationary
states that the joint distribution of any vector of returns (X, ,..., Xz, ), where (t,,...,t) € R.*,
remains constant across time. The weak form only assumes that the mean u; = E(X;) and the
covariance between lagged returns Xy 5; = Cov(X;_ g, X;), where k > o, are time-invariant. It
is a more realistic assumption than the strong form. Linear econometric models have thus been
developed for weakly stationary returns.
Another key concept is lag autocorrelation, which refers to the existence of a correlation relationship
between weakly stationary lagged returns. Specific tests such as the Portmanteau test [BP70] and
the Ljung-Box test [LB78] can be used to check whether the returns are serially correlated. If the
returns are found to be autocorrelated, model selection procedures, such as the Akaike information
criterion [Aka73], the Bayesian information criterion [Sch78], or the careful examination of the par-
tial autocorrelation function computed at different lags [Tsa05] help to determine the order p of the
following AutoRegressive Model AR(p):

P
Xt =¢o + Z ¢ Xt—i + at,
=1
where (a;) are iid random variables (i.e. white noises) often called shocks, innovations, or innova-
tive residuals, and where the real coefficients (¢;) of the model are usually estimated by the least
square method. Furthermore, this model implies the linear recurrent equation between the lag-i

autocorrelations p(1) = Zy_; 4
p
Pr = Z Gipr—i-
1=1

The associated polynomial equation is called the characteristic equation of the model:

p .
1— Z ¢z’ = o.
=1

This equation yields solutions, whose inverses (z; | ),<i<p are known as characteristic roots in econo-
metric literature. It can be shown that a sufficient and necessary condition ensuring the weak sta-
tionarity of the AutoRegressive process (X;) is that its the characteristic roots are smaller than 1
in modulus, i.e. |z; .| > 1 [Tsa05].

It is interesting to note that Moving-Average models can be seen as a class of AutoRegressive models
of infinite order:

—+o00
Xt = ¢o + Z b Xe i + ag,

=1

which, under specific parameter constraints, reduce to the expression:

q
Xe=06o+) biars,

=1
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where g is said to be the order of the Moving-Average model M A(q).

AutoRegressive and Moving-Average models can be refined by introducing a combination of both,
called AutoRegressive Moving- Average (ARMA) models. An ARMA process of order (p, g) is given
by

P q
Xt = ¢o + Z ¢ Xt i +ap+ Z Gias;.

1=1 1=1
Usually, this mixed form requires fewer parameters (than pure AR or MA models) to describe
dynamic (weak stationary) data [Tsa05]. Besides, the condition for weak stationarity, computed with
the AutoRegressive part of the ARMA model, is the same as it would be for this pure AR model.
Therefore, (X; is weakly stationary if the characteristic roots computed with the autoregressive part
are smaller than 1 in modulus.
As a consequence, the lag-i autocorrelation p(7) of an ARMA process converges exponentially to
0 as the lag i increases. Yet, specific time series can display a decay of the autocorrelation at a
polynomial rate. These long-memory effects can be reproduced by fractionally differenced processes
[Hos81].
Moreover, ARMA models can be extended by allowing a fixed number of characteristic roots to
equal 1. Simple examples are the random walk, defined by

Xt = Xi 1 + ag,

and the random walk with drift
X =pu+ Xy + ay,

where u is a time trend of the series (X;) and is called the drift of the model. More generally,
AutoRegressive Integrated Moving-Average (ARIMA) models of order (p, d, q) are obtained by dif-
ferencing d times the series X; and by modelling the residuals with an ARMA model of order (p, q).
This type of non-stationarity, called unit-root non- stationarity, can be evidenced by Dickey-Fuller
tests [Phi85, CW83].

Now, the autocorrelation of returns of financial series has been extensively studied. According
to many empirical works, returns are usually serially uncorrelated (or weakly correlated) but still
dependent, which can be illustrated by the positive, significant and slowly decaying as lag increases
autocorrelation of absolute or squared returns [Con07]. This latter phenomenon is commonly re-
ferred to as volatility clustering. These observations on the dependence and non- stationarity of
returns have been made so often that they are considered as stylized facts [Tay, Con07, Sew11].
Volatility models are therefore constructed as follows [Tsa05]. A first model, for instance an ARMA
model, is first stated to filter returns. As the autocorrelation is usually weak, this step often reduces
to remove the mean u; of the returns:

Xt = MUt + a;.

The existence of a significant serial correlation of the square residuals (a7 ), referred to as AutoRe-
gressive Conditional Heteroscedasticity (ARCH) effect, is then tested via, for example, a Ljung-Box
test [LB78] or via a Lagrange multiplier test [Eng82]. AutoRegressive Conditional Heteroscedas-
ticity models can be employed in an attempt to reproduce ARCH effects. They assume thus that
each residual a; can be described by a volatility factor o; multiplied by a white noise €;, while the

volatility o7 is given by a linear relation of the lagged squared residuals af ,,...,a} ,, [Eng82]:
m
a; = 0, o =ap + Z aa; ;.
1=1

Again, the number of lagged terms m is the order of the model. It can be selected using the partial
autocorrelation function, just as is done with AutoRegressive models.

Less specific, Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) models suppose
that the volatility o7 can be expressed as a linear relation of the lagged square innovative residuals
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a; ,,...,a;_,, and of the lagged volatility factors o7 ,,...,07_, [Bol86]:

m s
2 2 2
at = Ot€Et, 0y =0+ E ;0 ; + E ,BjUt—j-
=1 Jj=1

The order (m, s) has to be specified but in practice, only low order models are used. Note that a
great variety of generalized autoregressive conditional heteroscedasticity models has been developed
(refer to [Tsa05]) for a complete review). Besides, to prevent the volatility from being governed by
a too rigid structure, stochastic volatility models have also been designed, where the description
of volatility includes a random additive component [MT90, Tay94, HRS94, JPR94|. Finally, it is
worth mentioning linear State-Space Models (SSM), whose specific form is sufficiently general to
handle AutoRegressive Integrated Moving-Average Models (ARIMA) or stochastic volatility models
[DKO01]. Besides, the Kalman filter enables various inferences tasks to be performed on this broad
class of models [Ham94]. Linear state-space models and the Kalman filter are discussed in the next
chapter.

ARCH and GARCH models are linear in mean and non-linear in variance. Indeed, the mean u;
is expressed via an ARMA model (linear according to lagged returns and lagged residuals), while
the variance o is written as a quadratic function of lagged residuals a; = X; — u¢. Yet, there
are more general non-linearity effects in financial time series, as proven in [SL89, Hsi91, ACW97,
AP03? ]. The study of business cycles, which refer to periods of growth and contraction of the
overall economic activity [BM46, SW89, SW88, SW93|, provides interesting examples of such non-
linearities. Particularly, Markov-switching models [Ham89, KN99] as well as dynamic factor with
regime switching models [DR96, KN98, KY95, Cha98, CP10, BG04] have been proven particularly
relevant to capture abrupt changes in the distribution of macro-economic and financial variables
and to help identifying expansion and recession periods.

As mentioned earlier, if risk management is based on econometrics and discrete-time processes,
derivatives pricing is based on stochastic calculus and continuous-time processes [Meu09, Meul0,
Meull]. Yet, there is a deep link between the concepts and the models specific to these two areas
of quantitative analysis. The counterpart of ARMA processes are thus Ornstein-Uhlenbeck and
Continuous AutoRegressive Moving Average (CARMA) processes [Meu09, Meul0, Meull]. Famous
interest rate models, such as the Vasicek model [Vas77] and the model by Cox, Ingersoll, and
Ross (CIR) model [CIR85], derive from Ornstein-Uhlenbeck processes. Long memory is addressed
by fractional Brownian motion processes. Besides, Levy processes are actually the continuous-time
version of random walks. They include the brownian motion, whose geometric form is used to model
stock prices in Black-Scholes model [BS73, Mer73], and Poisson jump processes. As highlighted in
[CT08], Levy processes play an important role in modelling non- stationarities. Finally, stochastic
volatility models, where volatility follows a stochastic process [CR76, Hes93, Che96, HKLWO02],
propose along with subordination models processes capable of modelling volatility clustering effects
fairly well.

Recent trends in quantitative analysis, particularly at instigation of econophysics - or statistical
finance [MS99, Bou02, BP04], recommend to place special emphasis on empirical data to the detri-
ment of classical economics axioms. For example, it is highlighted in [Bou08] that the Black-Scholes
model is still very popular among financial practitioners, although it assumes that price changes are
Gaussian. Yet, the distribution of returns, especially at high frequencies, is known to have heavy
tails - this stylized fact having been checked by many empirical studies [MS99, Con01, Sew11]. Ac-
cording to [Bou02, Bou08], the massive amounts of data recorded in the financial markets should
be used to properly question models and to validate, modify or discard them. In that perspective,
applying statistical learning methods [HTF01, LGWcs, BBL04, BBLO05, Tsy10] to the problems of
designing investment strategies is relevant, more and more popular and actively studied, for ex-
ample in [LMWO00, YSCO08, CB08, Cha09, FHST10]. It is motivated indeed first by the ability of
these modern methods to deal with massive and high-dimensional data sets [BvdG11]. Second, such
methods do not require any a prior: assumptions about the distribution of the data. Learning
methods and their applicability to financial series are thoroughly investigated in the next section.
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[.2 Machine Learning and Time-Series: Principles and Chal-
lenges

This section focuses on the statistical learning theory, which provides a rigorous theoretical frame-
work for the study of prediction problems. These problems are formally introduced as particular
instances of a global problem of risk minimization, determined by the choice of the setup (therefore
of the model) and of the loss function. Classic assumptions of the learning theory, particularly
the hypothesis of independence and identical distribution made on data, are then recalled. Spe-
cific model selection algorithms, which aim at solving the minimization problem, are presented as
well. The role of the assumptions in the derivation of performance guarantees for such algorithms is
highlighted in the context of classification. Yet, these assumptions are also restrictive and stand in
contradiction with the non-stationarity of financial data. Challenges preventing the straightforward
application of machine learning techniques to financial series are thus carefully identified. Possible
extensions of the classic learning theory, which would allow us to explore and to compute predictions
on financial data, are finally reviewed.

I[.2.1 Introduction to Statistical Learning Theory.

According to [BBL04], "the goal of Machine Learning is to automate the process of data observation
and of model construction and use. The goal of Learning Theory is to formalize it". Statistical
Learning Theory studies thus three main learning problems, which are classification (or pattern
recognition), regression estimation and density estimation. They can be seen as particular instances
of the global problem of risk minimization [Vap95|, which is formalized hereafter. We consider the
measurable space Z. We assume that Z € Z is a random vector, which represents the data, and
which is distributed according to the unknown distribution P. We observe the sample of independent
identically distributed (iid) random variables Z,., = (Z,,..., Z,) with distribution P. It is called
the set of observations or the training set. Using these observations, we aim at constructing a
numerical model fn = fn(Zl, ..., 4y), that we may also call a prediction or decision function, which
yields accurate prediction or estimation results when applied to unseen observations (the test set).
In that perspective, we introduce the following loss function @) and the risk R:

RU%=HQMJU=JQ&JMP&)

We aim at finding a prediction function fn whose risk R(fn) is close to the optimal risk R* =
inf; R(f). Yet, as P is unknown, the risk R(f) can not be directly computed. Learning algorithms
consider instead an available and practical criterion, usually a surrogate of the following empirical
risk [BBLO4]:

Ba(f) =3 Q(2:f).

The returned function f\n has thus to be of low empirical risk Rn(f\n) and must also generalize
well, i.e. display a small risk difference |R(f,,) — Rn(fn)|. These two conditions are not necessarily
compatible. For instance, overfitting occurs when the empirical risk Rn(fn) is much smaller than
the true risk R(fn).

We now consider the problem of classification. The random vector Z is then denoted Z =
(X,Y) e Z =X x)Y, where X = (X*,...,XP) € X is a random vector and where Y € ) is a
label. Labels are usually - though not always - binary, i.e. ) ={—1,+41}. The loss function is the
classification error:

while the true risk and the empirical risk are expressed as follows.

1 n
R(f) = B(Lisx)2vy) = J]l{f(z#y}dp(m,y), Rn(f) == 3 Lisxosv-
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Besides, it is common knowledge that the Bayes classifier defined as

r(z) = 1 ifn(a) _> 2 where n(z) = P(Y = 1|X = z)
—1 otherwise,

minimizes the true risk [DGL96]. The goal of classification is then to identify this optimal function.
Several theoretical results, variants of the No Free Lunch theorems ([Wol96, WM97, Wol01]), show
that overfitting can be prevented by restricting the set of functions in which the minimization
is performed, and/or by replacing the risk to be minimized by a regularized criterion penalizing
particularly too complicated candidate functions [BBL04]. We introduce therefore the set F of
candidate functions and suppose for simplicity that there exists a unique function fz € F so that

f7 = argmin R(f).
feF

To have a better idea of the role played by F, we consider the classic error decomposition:
R(fn) — R* = (R(f) — R(f3)) + (R(f3) — R),

where f\n € F. The first term on the right hand side is called the estimation error, also referred
to as the variance in statistics. The second term is called the approximation error, or the bias in
statistical terms [vS11]. This decomposition turns the search for a good model f\n into a trade-off
to find between the two errors. However, it does not give indications about a strategy to pursue.

Statistical learning theory focuses primarily on the estimation error [vS11]. A simple and natural
strategy to minimize it is provided by the empirical risk minimization (ERM) approach. It consists
in searching for a function minimizing the empirical risk Rn(fn) in lieu of the true risk (as this
latter quantity is not observable):

ffRM = argmin R, (f).
feF

The first performance guarantee of the ERM approach is its consistency, i.e. the fact that the
minimum of the empirical risk Rn(]/‘\fRM) converges to the minimum of the true risk RB(fx):

P(R(fZFM) — R(f3)l > &) — o.

The study of the ERM consistency is deeply linked with the study of uniform deviations of empirical
processes, as:

|R(fn) — R(f%)| < 2sup |R(f) — Ru(f)],

fEF
which implies:
~ £
P(IR(fn) — R(fF)l > €) < P(sup|R(f) — Ra(f)| > -).
fer 2

We conclude by the uniform law of large numbers:

P(sup |R(f) — Ra(f)| > &) — o.
feFr 2 n—oo

The uniform convergence over the class of functions F is therefore a sufficient condition for con-
sistency of the ERM approach over 7. Note that it is actually also a necessary condition [VCT71,
DGL96, vS11].

Now, consistency is an asymptotic property, which does not provide finite sample performance
guarantees for the ERM approach. It is possible to produce generalization bounds, i.e. upper bounds
for probabilities of uniform deviations, whatever the size of the class of candidate functions F. If it
is finite, i.e. F ={f.,..., fm}, we need the following deviation inequality.
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Theorem 1. (Hoeffding [Hoe63]): let X,,..., X, be independent bounded random wvariables
such that X; € [a;,b;]a.s., where a;,b; € R,Vi. Then Ve > 0, we have:

P(;;Xi—E(X) ) >E)§2exp<—m>.

The derivation of the bound is then straightforward.

P(sup |R(f) — Ra(f)l >€) < ZIF’(IR(fi) — Ra(fs)l > €)

feF

P(sup |[R(f) — Rn(f) >€) < 2mexp(—2ne?),
feF

where Hoeffding’s inequality has been applied to the collection of variables (X1, (x.)£v. 1y - - -+ 3 L{f: (Xn)£Yn))-

In the infinite (and non-countable) case, the extension of such results requires the introduction of
tools specific to the Vapnik-Chervonenkis theory, particularly of capacity measures [DGL96, BBL04,
vS11]. Denote by Fz, ., the class of functions F projected on the finite sample Z,., = (Z,, ..., Zy),
where Z; = (X;,Y;).

Fzom ={f(X2),..., f(Xn)), f € FL.
The cardinal |Fz,. | indicates the number of functions of F which can be distinguished from each
other by their values on the finite sample X,., = (X,,...,X,). We call the shattering coefficient
Sz of the class of functions F the function defined by

Sr(n) = max|Fx, |
Xyin ‘

It indicates the maximal number of ways to classify the sample X,., with the class of functions F.
The shattering coefficient is a capacity measure of classes of functions [DGL96, BBL04, vS11]. It
measures the richness of a class of functions via the different values they may take on the finite
sample. It is the counterpart of the size of a class of functions in the finite case. Besides, if
Sr(n) = 2", we say that F shatters X,.,.

The following important result uses the shattering coefficient to compute an upper bound of the
probability of uniform deviation.

Theorem 2. (Vapnik-Chervonenkis [VC71]): Ve > o, we have:

Plsup|R(f) ~ Rn(f)| > €) < 4Sx(an)exp (—"2").
feF

The proof of this inequality is based on the replacement of the true risk R(f) by an estimate
R;l(f) computed on an independent sample, denoted Z::m = (Z::, .. .,Z,Il), where Z, = (X,,Y; ),
and called the ghost sample [BBLO04]. This intermediate result is referred to as the symmetrization

lemma [BBLO04].
Lemma 3. ("Symmetrization” [BBL04]): Ve > o, such that ne* > 2, we have:

P(sup |R(f) — Rn(f)| > €) < 2P(sup |Ra(f) — R () > ).
fer fer 2

The following inequalities lead then to the Vapnik-Chervonenkis theorem:

P(sup |R(f) — Rn(f)| >€) < 2P(sup|Rn(f) — Ra(f)l > =)
fer fer 2
— 2P( sup |Ra(f)—RL(f)> )
fE]'—Zlm,lem 2
< 2Sx(zn)P(Ra(f) = R, (£)] > 7)
< 4Sr(em)exp ("),
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the last inequality being obtained via a simple application of the Hoeffding’s theorem.

A drawback of such a generalization bound is the difficulty of computing the shattering coeffi-
cient Sz(n) [vS11]. It can be overcome by introducing the Vapnik-Chervonenkis (VC) dimension:

VC(F) =max{n € N, |Fz,. | =2"}
The next combinatorial result relates the VC dimension to the shattering coefficient:

Lemma 4. (Vapnik-Chervonenkis [VC71], Sauer [Sau72], Shelah [She72]): let F be a class
of functions with finite VC dimension d. Then, Vn € N,

d
<) c©
In particular, Vn > d,

en\?
Srin) < (7).
F(n) < d
The shattering coefficients grow then polynomially with n, providing that the VC dimension of
the class of functions F is finite. The finiteness of the VC dimension is thus a sufficient (and also

necessary [VC71, VC81, DGLY6]) condition for the consistency of the ERM approach.

Until now, we have obtained distribution-free generalization bounds. Yet, taking into account
the underlying probability distribution may lead to substantially sharper bounds [BBL04, vS11]. In
that perspective, we introduce the annealed VC entropy:

Hr(n) =logE(|Fz,.,|)-

It enables the derivation of the following generalization bound.

P(sup |R(f) — Rn(f)l > €) < z2exp (Hf(2n) o ngz)
feF

The proof is based once again on the symmetrization lemma and also on the use of Rademacher
variables. These latter are iid random variables, denoted o,,...,0,, also independent from the
samples Z,., and Z::m. Besides, they check: IP(0; = 1) = P(0; = —1) = 2. We have then:

P(sup R(f) — Ru(f)| >¢) < 2B(sup|Ra(f) — R,(f) > )

feF feF
' €
= 2P(  sup  |Ra(f) —R,(f)l > =)
T€% !, 2
= 2EP;(  sup —|ZUz Ligxo2va — Lipoenzva)l > )
fe]:zm,Z,':

Indeed, the variables - > (Lpxoevit— Lig(x4v,)) and £ Zl L0 (L x 2y — Lif(xi)2v,)) are
identically distributed. Applying the Hoeffding’s inequality ylelds the result

P(sup |R(f) — Bn(f)| > €)

feFr

IN

€
(ot (315t ) > )
2B( |72, .2 |SuP |ZU 2y~ Lipoazva)l > )

n52

2E(|-7'—Zm,zl’m|eXP(_ 3 ))

Another capacity measure for classes of functions is based on the Rademacher variables intro-
duced above and referred to as Rademacher averages [Men03, BBL04, BBL05]. The Rademacher
average R(G) of a given class of function G is defined as

IN

R(G) = Esup — Z oif

fegn
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while its empirical counterpart is

n

Rnl0) =Eosup ~ 3 0if(Z0).

feg i,

We use them to get the next distribution-dependent generalization bounds in the classification
context.

Theorem 5. (Barteltt, Boucheron, Lugost [BBL02], Koltchinskii, Panchenko [KP04]): V§ >
0, with probability at least 1 — 8, we have, Vf € F:

log(3)
R(f) < Ralf) + RF) +1/ 2 2.
Besides, with probability at least 1 —6, Vf € F,
2log(2)
R(f) < Bn(f) + Rn(F) + 1/ —

The proof is based on symmetrization and convexity arguments and also on the following con-
centration inequality.

Theorem 6. (McDiarmid or Bounded Differences or Hoeffding-Azuma tnequality [McD89]).
Let G: Z™ — R be a function of Z = (Z,,...,Zy,) which satisfies Vi, Vz,, ... ,zn,zi’ € Z,
sup |G(z1,...,zi,...,zn)—G(zl,...,zl 5,20 > ¢,

PRI
1

21,202
then Ve > o,

2
P(IG(2) — E(G(Z))] > €) exp (— L) .
2 i G

Furthermore, these generalization bounds are tighter those obtained by the previous capacity
measures. To see that, we need to introduce the concept of covering numbers. Given a distance d,
we define the covering number N(F, ¢, d) as the minimal number of open balls (with respect to the
metric d) of radius € > o needed to cover the class of functions F [Men03]. We have the following
upper bound on empirical Rademacher averages.

Theorem 7. (Dudley [Dud, Sud, vdVW96, Dud99]):

*t Jlog N L2 (pn
Ro(F) < 12J Wg (Foe, L2 (pn))
o n
where the L?(u,) norm 1s defined as ||f||22mn) =3 Y (X3

Besides, a tight VC dimension bound on covering numbers is provided by the next result.

Theorem 8. (Haussler [Hau95]): let F be a class of functions with finite VC dimension d.
Then, Ve > 0, VX,,..., X, € X,

N(F,e, I (un)) < CA(2)7,

where C 1s a positive constant.

Combining these two last inequalities leads to



which yields an improved generalization bound.

Many capacity measures can thus be used to bound the estimation error (R(f,)— R(f3)). How-
ever, regarding the approximation error (R(f%)— R*), we have no guarantees that the optimal model
f* is contained in the set of functions F. A possible solution is the Structural Risk Minimization
(SRM) approach [VC74, Vap82], whose following version can be found in [DGL96].

Theorem 9. (Structural Risk Minimisation (Vapnik-Chervonenkis [VC74], Vapnik [Vap82]):
assume that Fy, F,, ... 15 sequence of classes of dectsion functions such that for any distribution
P of (X,Y),

lim R(f},)) =R,

n—-+00

and that the VC dimensions VC(F,),VC(F,),... are all finite. If

VC(Fg, 1
b, too, and VCUkilogn)
n n—oo
then the classifier fn which minimizes the empirical risk over the class of functions Fy s
strongly consistent, 1.e.
lim R(f,) = R*, with probability 1.

n—-+oo

In other words, the estimation and approzimation errors of the classifier fn converge to o.

The theorem supposes that the approximation error converges to o, but it does not propose a
method for constructing the classes (F,)i<n<tco checking this condition nor a method to compute
the sequence (kp)i<n<ioo- Besides, minfmizing the empirical risk can be computationally very
difficult, as it is not "smooth enough" [BBLO05, Vay06].

We consider now classifiers of the form

1 ifg(z) > o
—1 otherwise

f(z) = 2sgn(g(z)) — 1 _{

where g : X — R is a real-valued function. We denote L the probability of error of g and L, its
empirical version:

L(g) =P(sgn(g(X)) #Y) =P(f(X) #Y) = R(f)

and
n

1 n
Y Ellagagixizv) = - gE(ﬂf(XibéYi) = Ra(f).

1=1

1
n
We introduce moreover the cost function ¢ : R — R such that ¢(z) > 15, 1of(z). The cost
function is a surrogate loss function which allows us to introduce the following surrogate empirical
risk as well:

Alg) =E(—¢(g(X)Y)) and  An(g)==) —¢(g(X.)V;).

S|k

Obviously, we have:

L(g) <A(g) and  Ln(g) < Anlg).

We have then all the ingredients to deduce, using the McDiarmid’s inequality and arguments of
convexity, a general upper bound on the classifier performance [BBLO05].

Theorem 10. ("Margin-based performance bound"” [BBLO05]): assume that the class of func-
tions G and the cost function ¢ check the following conditions:

e there exists B > o such that

sup #¢(—g(z)y) < B.
9€G,(z,y)EX XY
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e the function ¢ is Lipschitz, i.e. there exists a constant Ly such that

l¢(u) — @(v)| < [u— v, Vu,v € R.

Then with probability at least 1 — 4,

L(8n) < A(@n) < An(Gn) +2LgE(Rn (9(Xsm)) + BW

The performance of the classifier g, is thus controlled by the empiric Rademacher average of
the class of functions G.

This very general setting enables the introduction of two important types of classifier construc-
tion methods: the ensemble methods and the kernel methods. Both of them state explicit classes
of candidate functions for classifiers.

For example, ensemble methods, such as Boosting or Bagging, choose classifiers in classes of the
form:

N N
Gr = {g(m) =D abi(z), NEN ) lal <Abs,... by € B},
=1 i=1
where B is called the class of base classifiers and contains only functions defined on X and taking
values in {—1,+1}. Using subadditivity properties of Rademacher averages, Hoeffding’s inequality
and Sauer’s lemma, we get the following upper bound on the empiric Rademacher average of the
class G, [BBLO5]:

R (G (Xiim)) = AR (B(X1m)) < A\/2VC(B):?€(TL+ 1)

Pugging it into the result of the previous theorem implies that the probability of error L(g,) of any
function g, € Gx checks with probability at least 1 — §:

A N 2V C(B)log(n + 1) 2log %
L(gn) SAn(gn)+2L¢\/ n + B TE

Note particularly that the VC dimension of the base class B, which appears in the right-hand side,
is typically much smaller than the VC dimension of the class G [BBLO5]. This is therefore a strong
result, which is tempered by the replacement of the empirical probability of error L,(g,) by the
surrogate empirical risk A, (g, ). Still, it is possible to bound A, (g, ) by a quantity related to L, (g, ),
simply by choosing well the cost function ¢. Fix thus v > o and consider

0 ifz <—y
dlz)=<¢ 1 ifz>o
1+ % otherwise

Observe that ¢(z) > 1j +oof(z), B =1 and Ly = =. Hence, ¢ is a valid cost function. We have also

¢(z) < 11—y, toof(z). This implies:

n

Y —¢lg(X)Yi) < L1 (g),

=1

Anlg) ==

where L3 (g9) = Y 7 | 11 co4i(9(X:)Y:)). Intuitively, L} (g) counts the number of pairs which are

either misclassified or well classified, but with a too small confidence, or "margin"  [BBLO5].

Finally, we have the margin-based performance bound: Vy > o, with probability at least 1 — 4:

A [2VC(B)1 log %
L(8n) < 3(0,) +22/VOBIBR 4 1) | f2l085

¥ n n
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Likewise, kernel methods such as Support Vector Machines aim at choosing classifiers in specific
constrained classes of functions. They are of the form:

N N
G\ = {g(m) = ZciK(mi,m),N eN, Z cic;K(zi,z;) <A, zy,...,zN € X},
i1=1

2,J=1

where K : X x X — R is a positive definite kernel function. It is again possible to derive a
margin-based performance bound using similar arguments and properties of Kernel Hilbert spaces.
We state it without proof: with probability at least 1 — ¢:

2log %

n

We make now additional assumptions on the cost function ¢. Like in [Vay06], we suppose that
¢ : R — R, is strictly convex, differentiable, strictly increasing with ¢(o) = 1, lim, , -, ¢(z) = o.
Indeed, as we will see, minimizing the convex risk A(g) = E(¢(—Y ¢g(X))) is not only computationally
interesting, but also benefits from useful theoretical properties. First, it leads to an optimal function
g* which is related to the Bayes classifier f*(z) = 21,(z)>: —1 such that sgn(g*) = f*. The proof is
based on convexity arguments [BBL05, Vay06, LV04]. Thus, for the following usual cost functions,
the corresponding optimal functions are easily computed:

e the exponential cost ¢(z) = exp(z), used in the procedure AdaBoost, yields the optimal

function g*(z) = ilOg(:lef(jz) ).
e the logit cost ¢(z) =log,(1 + exp(z)) is associated to g*(z) = log( 1j£;”()z) ).

e the hinge loss ¢(z) = (1 + ), used in Support Vector Machines, directly induces the Bayes
classifier f*. Note however that this latter cost function does not satisfy the aforementioned
assumptions as it is not strictly convex nor differentiable.

In case of the exponential and logit costs, under specific technical assumptions [Zha04, LV04],
convexity arguments lead to the inequality valid for g,Gx,

L(gn) — L* < 2¢/2(A(gn) — A%)=.
Therefore, using previous results, we get:

L(gn)—L* < 2\/5(14(971)—gien(iz‘l(g))iJrzxﬁ(giengfxfl(g)—A*)i

log?\* 1
4\/5<2L¢A\/2VC(B)IOg(n+ Y +B\/ﬂ> +2y/2(inf A(g) — 4%)%,
n n geGA

with probability at least 1 —§. Note that the last term of the right-hand side is the approximation
error, which equals o if A is chosen sufficiently large. It is difficult to describe further and more
precisely this error as the approximation properties of the class Gy are not yet well understood. Note
that a similar result can be obtained for the hinge loss [BBLO05]. Further informations concerning the
approximation properties of kernel classes and the universal consistency of Support Vector Machines
can be found in [Ste01, Ste02, Ste05].

IN

Other frameworks for deriving tight generalization bounds have been developed and are under
current investigation. The Probably Approximately Correct (PAC) - Bayesian analysis of statistical
learning is one of them. In this approach, in the classification context, the set of candidate functions
F is randomized. We denote 7 the (fixed) prior distribution associated to the set 7. We aim at
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choosing from the data a posterior distribution p,, over the set F. The true risk and the empirical
risks are thus denoted:

Ep(R(f))ZJR(f)dp(f) and Ep(Rn(f))=JRn(f)dp(f),

where p stands for any posterior distribution.
The following PAC-Bayesian bound, historically first expressed in [McA99], states that with proba-
bility at least 1 — §, for any posterior distribution p, we have:

K(p,n) + log(2n) + log(%
Ep(R(f)>—Ep(Rn(f))g¢ p, ) + log(2n) + log()

2n —1

where K(p,7) is the Kullback-Leibler divergence between the distributions p and n: K(p,7) =
I, (log(£)) if p admits a density with respect to 7, denoted 2, and K(p,m) = +oo otherwise. The
proof of this bound is based on convexity inequalities, properties of the Kullback-Leibler divergence
and on the Hoeffding’s inequality [LSMO01, See03].

A similar proof leads to the following tighter bound [LSMO01, See03]:

S

K(p, ) + log(2£2
K(E, (R(f)),Ep(Rn(f))) < (e, ) + log (% ),

n

where, with a slight abuse of notation, K (E, (R(f)),E,(R.(f))) denotes the Kullback- Leibler diver-
gence between the Bernoulli distributions of respective parameters E, (R(f)) and E, (R, (f)). Note
that other bounds and further explanations can be found in [Cat03, Cat07, Zha06b, Zha06a, Aud].

This brief and partial summary of statistical learning theory highlights that algorithms for
constructing classifiers (in the binary setup) exist and are reliable under specific assumptions. Par-
ticularly, proofs of consistency and rates of convergence for generalization bounds are based on
sophisticated probabilistic tools, mainly concentration inequalities (applied to empirical processes
in a functional space) and symmetrization techniques. Classically formulated, these methods and
results require the assumption that the observations are independent and identically distributed.
In the next subsection, we review the challenges we are confronted with when applying learning
methods to financial data, which are not iid.

I.2.2 Challenges and Extensions of the Classic Learning Framework

The non-iid case is a burning issue in statistical learning theory. Particularly, learning with station-
ary (or identically distributed) dependent series has attracted increasing interest. It is very popular
to study such time series under different types of asymptotic independence conditions, called mixing
conditions [MR10, MSS11a], introduced hereafter. Let Z,..c = (Z¢):<¢t< 100 De a stationary process.
Let

ot =0(Z,,...,%,)

1

be the sigma-algebra generated by the first n random variables Z,, ..., Z,, and

© — o(Z, .. )

On

the sigma-algebra generated by the infinite set of random variables (Z;);<,. The dependence between
past and future events defined with such algebras can de quantified with the following coefficients
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a, B, ¢ - expressed as in [Yu94]:

alk) = sup |[P(ANB)— P(A)P(B)|
Beoy?,
1 I J
Blk) = sup D2 IP(4inB;)— P(A:)P(B;)|

neN
{A;} partitionin o]
{Bj} partitionin o’ ,

sup |P(A|B)— P(A)|.
neN
Aco?

Beoy

1=1 j=1

b
=
I

We say that the process 7., is:

e o-mixing or strongly mixing if

e [-mixing or absolutely regular if

e ¢-mixing if
o(k) — o.
k—o0
As noted in [Bra05, Dou94], a(k) < B(k) < ¢(k),Vk € N, which means that phi-mixing implies
beta-mixing, which in turn implies alpha-mixing.

According to [Vid03], f-mixing is "just the right" assumption for deriving generalization bounds
in the non- iid case. To see why, suppose that the process Z,.., is stationary and f-mixing. The
celebrated following technique [Yu94, Ber27] enables the construction of new process =,.., made of
independent blocks, which have the same distribution as finite sequences of Z,.o,. As in [Yu94], we
consider the sample Z,., = (Z,,...,Z,) and define m,, € N and u,, € N such that 2m,u, =n. We
divide then the sample Z,., into 2y, blocks of each length m,, as follows:

Zz(ufl)m,14r1:(2u71)m71 (Zt)z(ufl)mn+1§t§(2u71)mn

Z(zu—1]mn+1:2umn = (Zt)(zu—l)mn+1gt§2umn
where 1 < u < u,. Focusing only on the sequence of blocks Z,,, = (Za(u—1)mn+1:(2u—1)mn )1<u<pn,
we define the corresponding sequence of iid blocks =, = (Z5(u—1)mn+1:(2u—1)m.. )i<u<p, such that
the sequence =, is independent of Z,., but such that each block =.(w—1)m, +1:(2u—1)m, has the
same distribution as the block Z,(y—1)m,+1:(2u—1)m, from the original sequence:

[N

L L
2(u—1)mp+1:(2u—1)m, — Zz(u—l)m,,+1:(2u—1]mn = Zl:mn-

Because of the mixing assumption on Z, ..., the dependence between the blocks Z,(w—1)m,+1:(2u—1)m.,
decreases as the lag m,, separating the blocks increases. Hence the distribution of the two sequences
Zm, and =, become closer and closer to each other. This is highlighted by the following lemma.

Lemma 11. (Lemma 4.1 wn [Yu94]): for any measurable function ¢ with respect to the process
7100 untformly bounded by M,

E(¢) — E(¢)] < M(bn —1)B(mn) < M(pp —1)¢(mn),

where the first ezpectation E(¢) is computed with the distribution of Z,..,, while the second
one E(¢@) s computed using the distribution of =,.o.
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Used in conjunction with the independent blocks construction technique, this lemma is the
key to apply methods for deriving generalization bounds in the iid case - such as symmetrization
techniques and concentration inequalities - to the S-mixing case (and also to the ¢-mixing case)
[Yu94, KV09, MR10, MSS11a]. For example, (non- parametric) generalization bounds are obtained
in [Mei00] via an extension of the method of the structural risk minimization approach suggested
by Vapnik to the f-mixing case. In this case again, the consistency of regularized Boosting methods
is proven in [LKS06]. Besides, Rademacher complexity-based bounds are derived in [MRO08], while
stability-based bounds are derived in [MR10] for f-mixing and ¢-mixing sequences. These latter
bounds are shown to be useful to analyze the properties of various kernel regularization-based and
relative entropy-based regularization algorithms (such as Support Vector Regression, Kernel Ridge
Regression, and Support Vector Machines), when used with mixing inputs. Finally, PAC-Bayes
generalization bounds for classifiers and scoring functions are obtained in [RSS10] using an approach
exploiting the notion of fractional covers of graphs [SU97]. This approach enables the representation
of data dependencies with a graph and the splitting of a process into subsets of independent random
variables via a decomposition of this graph. It applies then usual iid PAC-Bayes bounds in the
[-mixing case. Besides, the problem of making predictions at a fixed horizon A € N on - mixing
time series is studied in [MSS11b] from a learning point of view. The goal is still to find a prediction
function fp, = fn(Z4,..., Zn), although in [MSS11b] both classification and regression problems are
considered, i.e. fn can be binary or real-valued. The distinction between past and future events
appears clearly in the expressions of the true and of the empirical risks:

n
1

R(f) =E(Q(m(2),f) and  Ru(f) =3 Q(Zin,f).

t=1

where 7,(Z) = (Z¢in)t>.. Generalization error bounds are provided for stationary univariate au-
toregressive (AR) models. The proof is based first on generalization bounds obtained in [MR08]
for stationary f-mixing sequences. These bounds rely on Gaussian complexity, which is similar
to Rademacher complexity, except that the random variables o4,..., 0, are no longer binary and
uniformly distributed but real-valued and Gaussian [BMO03]. Secondly, it is shown that the Gaussian
complexity of a specific order AR model can be relevantly bounded. A strategy based on the Struc-
tural Risk Minimization approach is then proposed to select the best model, and is illustrated by
predicting interest rate movements. This work builds a very interesting bridge between statistical
learning theory and econometric models. A practical limitation is that the data structure dependence
is usually unknown, which is an obstacle to the computation of the generalization bounds. Actually,
this limitation concerns in most extensions of the statistical learning theory to the f-mixing case
(in all the aforementioned ones at least) and motivates the method for estimating S-mixing rates
(from data) presented in [MSS11a].

Now, there are interesting points of view apart f-mixing. For instance, the consistency of Sup-
port Vector Machines is proven in [SHS09] for processes satisfying a certain weak law of large
numbers, incidentally for a-mixing (non-stationary) processes, generalizing results obtained in
[Ste02, Ste05]. Besides, the consistency of Support Vector Machines using Gaussian Radial Ba-
sis Function (RBF') kernels is also proven for a class of processes exhibiting a sufficiently fast decay
of correlations - a rather general class of dynamical process. The approach is based on the use of
bounds on the sequence of correlations, on the properties of Gaussian RBF kernels, and on a specific
concentration inequality involving the sequence of correlations. In [MSS11c|, stationary and depen-
dent time series models are studied. Rademacher complexity based generalization bounds for such
models are derived. The approach is based on concentration inequalities for dependent data due to
Van de Geer and on a symmetrization technique close to those developed in [RST10b, RST10a] for
online learning.

There is thus theoretical support for extending the standard statistical learning theory to
cases where data are dependent and stationary. Indeed, kernel and ensemble methods have been
extensively and successfully applied to the problem of predicting movement of financial series

[TCO1, VGSB*01, CG02, TC02, jK03, HW06a, HWO06b, USC06, CM08, HW08, YSC08, LDOS,
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FRDO09, FHST10, WZ10, HW10, Huall]. Besides, very recent works show how the tools and tech-
niques of statistical learning theory can be used to analyze econometric models and online learning
[RST10b, RST10a]. Such connections also open perspectives to learn with non-stationarities. Partic-
ularly, the sub-field of online learning called prediction of individual sequences [CBLO06, Sto05, Stol1]
proposes a relevant framework for dealing with non-stationary time series [SJC11]. It investigates
the problem of sequentially computing a forecast 2; = 2;(2.,...,2:—.) € Z5 given the past obser-
vations z,,2,,...,2t—, € Z. Unlike in statistical learning theory, no assumption is made on the
mechanism generating these data samples, which is not supposed to be a stochastic process. The
notion of risk is therefore not defined and the constructions specific to statistical learning theory
that lead to a prediction function of low risk are here not applicable. Instead, the performance of
a forecasting strategy S is assessed via a cumulative loss, computed iteratively using a loss func-
tion I : Zf x Z — R during n rounds of prediction, and a finite class of experts or forecasters
fet = fre(z1,...,2¢-1) € Z5, where 1 < k < g. The goal is to ensure that the cumulative loss is
close to that of the best forecaster in the class. In other words, we want a forecasting strategy of low
regret, where regret refers to the difference between the two cumulative losses. A natural setting of
prediction of individual sequences is to study forecasting strategies based on weighted averages of
experts:

q

Py

2y = E Wit fr ts
k=1

where

q
Drt>0  VkeE{1,...,q) and ) @y = 1.
k=1

Therefore, using notations of [Stoll], we define the cumulative losses of the strategy S and of the
strategy associated to w as:

n n q

fln(s) = Zl(ftyzt)ZZZ(Zﬁ)k,tfk,t,Zt>,
t=1 t=1 k=1
n q

Lp(w) = Zl(zwk,tfk,tyzt>-
t=1 k=1

The regret to minimize is:
Rn(S) = Ln(S) —inf L, (w).

In this setting, forecasting strategies are determined by the iterative computation of @;. We aim
therefore at finding relevant ways of updating @;, which ensure tight bounds on the regret R,(S).
Such theoretical guarantees are particularly provided by strategies based on exponentially-weighted
average of experts [Vov90, CBL06, Sto05]. In practice, they are employed to model stationary
ergodic times series [OW10] as well as non- stationary ones. For instance, they can be used to adapt
to stationarity changes [SJC11, HS09], putting increasingly more weight on new patterns (i.e. on the
best up-to-date forecasters) and less on the old ones, which may be not as efficient or even counter-
productive. It is thus not surprising that the concepts of prediction of individual sequences are very
popular to tackle the problem of designing investment strategies [Cov91, HSSW98, BEYG00, SLO5,
Gy606b, AHKSO06].

Complex time series can also be modelled using Dynamic Bayesian Networks (DBNs) [Gha97,
FMR98, Mur02], which are extensions of Bayesian Networks (BNs) to the temporal setting. A
Bayesian Network (G, @) is a probabilistic graphical model which uses the Directed Acyclic Graph
(DAG) G = (V, E) (refer to the appendix for a definition of DAGs) to represent the joint probability
distribution of the finite set of random variables V = (Z?*,..., ZP). Directed edges e = Z*Z! ¢ E
indicate a causal dependence of the child node Z' € De(Z*) toward its parent Z* € Pa(Z'), where
De(Z*) is the set of descendents of Z* and Pa(Z') the set of parents of Z!. Besides, a Bayesian
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Network satisfies the local Markov property, which states that each variable Z* is independent of
its non-descendents given its parents in G [Whi90, Lau96, Pea00, KF09]:

z* 1 7L |\Pa(Z*), VZT Cc V \ De(Z*).

Note that we have the inclusion Pa(Z*) C V' \ De(Z*) because the graph G is acyclic. Additionally,
using these conditional independences and the Bayes rule (hence the name Bayesian Networks), the
joint probability distribution of (Z*,..., ZP) can be factorized as follows:

P(z*,...,2°) = | [ P(2*Pa(2")),
k=1

where P(Z*|Pa(Z*) € ©, which is the set of @ of parametrized conditional distributions. This
factorized form is particularly helpful for inference, i.e. to compute the conditional probability
P(Z¥|ZE) of a set of query variables ZX given a set of observed variables ZZ. The variable
elimination algorithm finds the factorized form of this conditional probability using all variables
ZM connected and disjoint to ZX and Z¥. It then sequentially considers each variable Z™ € ZM,
collects each factor in P(Z¥|Z"%) that includes Z™, and creates a new factor by summing out Z™.
A drawback of this procedure is that it is performed given a query. Hence it is not computationally
efficient to compute a large number of marginals. Instead, the junction tree algorithms are based
on the construction of a junction tree, which is a maximum spanning tree connecting clusters of
nodes. It satisfies specific properties which ensure, via message passing strategies, the computation
of all marginals [Lau96, CLDS99]. Note that these two methods perform exact inference. In case
of massive data sets, it can be necessary to use instead approximate inference methods, such as
variational methods [JGJS99], Monte Carlo sampling and Markov chain Monte Carlo (MCMC)
methods (particularly the Gibbs sampling and the MetropolisUHastings algorithm) [Mac98], loopy
belief propagation [Pea88, Wei00], etc. In practice, the Bayesian Network is not known. Its structure
as well as its parameters have to be learnt, the first task being much harder than the second
one [Mur98]). Dealing with missing values and with hidden nodes is also a problem. That is
why authors usually distinguish between four cases, regarding whether the structure is known or
unknown and the observability is full or partial [Mur98]. In case of known structure and full
observability, a natural solution is to maximise the log-likelihood L(®|Z,.,) of the training set

Zim = ((z;,...,zf),...,(z;,...,z,’;)):

n P
L(6|Z:n) = }_ ) log P(Zf|Pa(Z})).
1=1 k=1

If the structure is known and the observability partial, a possible strategy consists in finding a
(locally) optimal maximum likelihood estimate of the distribution parameters via the Expectation
Maximization (EM) algorithm [Mur98, BG07, GY06a]. In the two last cases, structure learning
may be achieved as explained in [Sch10, Scul0] by search and score methods. They perform model
selection in the space of DAGs via the optimization of a given criterion, usually the BIC score
[HGCO95]. Other possible strategies for structure learning are constraint-based methods, which
aim first at pruning DAGs edges and second at determining the directions of the remaining edges
[VP90, SG, Scul0Q]. Finally, hybrid methods, which combine both search and score and constraint-
based techniques, seem to be the most popular strategies [FNP99, SNMMO07, Sch10].

Consider now the sequence of random vectors Z,..c = (Z;):<t<to0. A Dynamic Bayesian Network
is defined as the pair of Bayesian Networks (B,, B_,) [Mur02]. The BN B, particularly specifies
the prior distribution P(Z,), while B_, introduces the directed acyclic graph model formed by
the variables Z},...,Z” and by their respective parents Pa(Z}),..., Pa(ZF). It also defines the
conditional probability P(Z;|Z; ,) as follows:

P
Zt|Zt 1 H Zk|Pa Zk))
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Note that B_, is therefore a two-slice temporal Bayesian Network (2TBN). The nodes in the first slice
are not parametrized. On the other hand, each node in the second slice is associated to a conditional
probability distribution, which specifies P(ZF|Pa(ZF)), Vt > 1 [Mur02]. The joint distribution of
the DBN is computed by unrolling the 2TBN to get the n time slices:

:ﬁﬁp ZF|Pa(ZF)).

t=1 k=1

The DBN structure is rich and flexible. State-Space Models (SSMs), including for example Hidden
Markov Models (HMMs) [Rab89, CMRO05] and Kalman Filter Models (KFMs) [RG99], and many
other sophisticated dynamic models are particular instances of DBNs [Mur02]. The first interest of
a DBN is that it provides a compact representation of temporal causal links via the directed acyclic
graph of its 2TBN. For example, encoding factorial HMMs as DBNs requires exponentially fewer
parameters [Mur02]. Additionally, the DBN structure can be used to solve (more) efficiently inference
problems, i.e. to compute marginals of the type P(ZF|Z,.,) with algorithms of low complexity
(these problems being referred to as prediction if 7 < ¢, filtering if 7 = ¢ and smoothing if 7 > ¢).
It is shown in [Mur(02] that exact inference for DBNs can be quickly executed via backward and
forward passes implementing the junction tree algorithm. Besides, approximate inference can be
performed offline using standard methods, such as loopy belief propagation (which includes the
Boyen-Koller algorithm [BK98] and the Factored Frontier algorithm [MWO01]) or MCMC methods,
as well as online by plugging DBNs in particle filtering algorithms [Mur02]. Finally, the methods for
learning DBS are essentially those which have been developed for learning BNs and graphical models
[Mur02, Sch10]. Last but not least, DBNs, in their original form, are supposed to be stationary.
Their parameters and their structure remain unchanged through time. However, non-stationary
effects can be modelled by incorporating in DBNs the ability for parameter change [BNI98, PRMOO,
GHO00, PHWO01, MPRO05, IHS06, ORBD08, FSJW08, GKE10] and/or structure change [PADF02,
TLO04, Fea06, XM07, GHFX07, WZSS08, RH08, GH09, SKX09, KSX09, KSAX09, FSX09, WKY *11].
DBNs, mostly under the form of KFMs and HMMs, have been widely used in finance [BH, MEQ7]
and econometrics.

Non-stationarities can also be studied in the framework of transfer learning. Indeed, in this
sub-field of machine learning, the training data and the test data are not supposed to be identically
distributed nor even to belong to the same feature space [PY10]. Transfer learning focuses then
on knowledge transfer from the training set to the test set. This transfer can be considered under
different settings and completed via various approaches. These distinctions are made explicit here-
after using the concepts of domain and of task introduced in [PY10] in the context of supervised
learning. The domain D = {X, Py, } consists thus of the space X and of the distribution Py,  of
the random variables X,., = (X,,...,Xn). The task 7 ={Y, Py,..|x,...} is made of the space ) and
of the conditional distribution Py, |x,., of the labels Y;., = (Y;,...,Y},) given X,.,. The training -

or source - set ((X51 Ys, )y (Xs,g, Vs, )) is thus composed of the corresponding source domain
Ds and of the learning task 75, while the test - or target - set ((XT, Yr,), ..., (X, Y7, )) cor-
responds to the source domain D7 and to the learning task 77. The following proper definition of

transfer learning is proposed in [PY10].

Définition 12. (Definition 1(transfer learning) [PY10]): transfer learning aims at learning a
function fr from the training set Ds and Ts, which yields a low prediction error on the test
set Dr and Tr.

This definition enables the distinction between different types of transfer learning. For instance,
in the setting of inductive transfer learning, the target learning task 77 is supposed to be different,
but related, to the source learning task 7s.

Définition 13. (Definition 2(inductive transfer learning) [PY10]): inductive transfer learning
1s transfer learning with condition Ts # Tr.
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This type of transfer learning is closely related to multi-task learning which aims at learning
the knowledge common to multiple tasks in order to improve the learning of each specific task
[Thr96, Car97, Bax00, BDS03]. On the other hand, in the setting of transductive transfer learning,
the source and the target tasks are supposed to be the same, whereas the source and the target
domains are assumed to be different.

Définition 14. (Definition 3(transductive transfer learning) [PY10]): transductive transfer
learning s transfer learning with conditions Dg # Dr and Ts = Tr.

The condition Dg # Dr can indicate that the spaces Xs and Xr are different or that Xs = Xr,
while the distribution of the training and of the test sets are different in the sense that Py, #
Px, .., - This latter case particularly includes domain adaptation [IM06, BMP06, BDBCP07], where

the spaces Xs and Xr are identical and where the training data ((Xsl,Ysl), oy (Xsng) Vs )) is
made of two particular subsets. The distribution of the first - usually large - subset is different but
related to the distribution of the test set ((XTl yYr, )y (X, Y, )), while the second - usually

much smaller - subset has the same distribution as the test set. When there is no second subset,
we speak of learning under sample selection bias [Hec79, Zad04] or covariate shift [Shi00]. Semi-
supervised learning also manages two training subsets, where the first one, often large, is unlabeled,
while the second one is small and labeled. The idea is that the unlabeled training data can be used
to improve the learning of the prediction function [Zhu05]. Finally, the last type of transfer learning
is unsupervised transfer learning, naturally defined as follows.

Définition 15. (Definition 4(unsupervised transfer learning) [PY10]): unsupervised transfer
learning 1s transfer learning with condition Ts # Tr, while (Ys,,...,Ys, ) and (Yr,,..., Y7, )
are not observable.

Besides, an important aspect of transfer learning problems is to determine the form of the
knowledge to transfer. For instance, only a limited part of the training set can be relevant to learn
the test set distribution, the other part of the training set being useless or even harmful. A solution
is then to develop strategies for identifying this relevant part of the training set and increasing its
influence in the learning process [DYXY07, JZ07, HSG'07, BBS07, QCSSL09]. Another example
of problem is to find the most appropriate parametric model based representation [LP04, EP04,
BCWO08] or feature based representation [Jeb04, BMP06, BDP07, AMPY(07, AEP08] of data in order
to enhance the similarity between the two data sets and to improve the learning performances. Note
that these different approaches are not specific to a particular setting.

We consider transfer learning as a relevant framework for developing exploratory analyses of
non-iid time series. It is indeed well designed to determine the conditions, limits and opportunities
of any type of knowledge transfer from a given training set to a specific test set. For instance,
we believe that it can help to prevent overfitting, which occurs when a too sophisticated numerical
model is unable to generalize. Likewise, it can instigate methods for controlling data snooping, which
refers to the bias induced by a systematic (re)use of the same training data for inference or model
selection and which can lead to artificially good modelling results [LM90, STW99, Whi00, CG06].
These two problems, typical of model construction approaches with non-stationary data, can be
seen as misleading knowledge transfer attempts, possibly of too complex or misspecified prediction
functions. In order to avoid such pitfalls and to develop an efficient transfer learning approach, we
present a specific methodology based on model automatic construction, backtesting and backtesting
interpretation in the next section.

I.3 Research Methodology

The non-stationarity and time dependence of financial series are the main obstacles to a straightfor-
ward application of machine learning techniques to market analysis. Indeed, the classic statistical
learning theory has been developed in the iid case. Although there exist many relevant extensions
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to various cases where the data are identically distributed and somehow time dependent, the case
where data are non-stationary and time dependent is still difficult to address. Practical applications
can thus suffer from problems due to overfitting and data snooping. We have developed therefore
a stepwise research methodology for constructing reliably trend predictive numerical models. This
methodology is conducted by an experimentation protocol, made of four successive components - or
modules executed one after another. It is also based on a new statistical model for clustering and
classification, actually an extension of the classic statistical model for classification. This model and
the experimentation protocol are both introduced in the next subsection. Besides, the sequential
(re-)execution of the four modules has led to the development of a database construction procedure,
based on the UniCart algorithm. It has also motivated the statement of a new statistical model for
clustering and classification and the design of a new transfer learning procedure, called Relabeled
Nearest Neighbors (RNN).

I[.3.1 Presentation of the Experimentation Protocol

Learning trend predictive numerical models requires first to find a time series representation method
capable of turning financial series into more homogeneous, interpretable and economically mean-
ingful features. In parallel, we need a machine learning approach, which yields precise and robust
prediction functions even when trained with (possibly still) time dependent and non-stationary fea-
tures. Finally, these prediction functions have to be evaluated and analyzed via backtesting plans.
It is important to understand their decision mechanism, for example to highlight the role of each
feature or to estimate the probability of realization of any prediction. These interpretation func-
tionalities help to understand better the statistical nature of the data, and to improve the database
and model construction methods as well. In addition, they enable comparisons with other opin-
ions, results, or methods in economics and computational finance, which is also a way to limit data
snooping. In that perspective, it is useful to automate as much as possible the steps of database
construction and of model selection. The backtesting results are then all the most reliable, while
further interpretation and enhancements are fully justified.

These requirements for learning efficiently trend predictive numerical models compose the four
modules of the experimentation protocol (cf. figure I.14). The first module, entitled Data Observa-
tion and Modeling Chozces, serves to define general modeling choices and objectives. We consider
the following set of p finite financial series:

D= (D;,...,Df)i—,
By convention, D* is the target variable, i.e. the variable for which we want to compute predictions.
Besides, D?, ..., D? are the explanatory variables. Next, we choose the setup, distinguishing between
classification, ranking or regression. In other words, before turning the set D into the set of labeled
features Z = (X,Y) (as done in the next module), we decide on the nature of the prediction task.
Hence we determine the set of labels V). We have )) = R in case of regression and Y = {—1,+1}in
case of (binary) classification. The choice of the setup is particularly important, as these prediction
objectives are of unequal difficulty. Predicting real labels is indeed more difficult and more ambitious
than predicting binary ones, while the difficulty of ranking (i.e. ordering the database objects
according to their propensity of being of positive labels) stands in between. Besides, the classification
and ranking setups naturally enable more interpretation functionalities, such as the computation of
probabilities of realization associated to predictions. Assumptions on the data distribution and on
the data generating process are also formulated in this module. For example, we can suppose that
the distribution IPp is Gaussian or that the process generating the :—th series (Dzhstgnp isan AR
or an ARMA process. Finally, the time ranges for the training set and for the test set are defined
as well. They are respectively denoted {1,...,np,,, .} and {np,. +1,...,7D,,, +7D,..,}, and satisfy:
np,,, + ND,.,; = ND-

The second module, Database Construction, turns the explanatory and target series D into
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features and labels Z = (X,Y’) via an user chosen time series representation ¢. We have:
D % x
D % v
Labels are defined as movements of the target series at an user specified horizon and scale. The

specification of the horizon and of the scale necessarily reduce slightly the number of objects in both
the training set and the test set. We denote thus the labeled objects of the training set:

(Xtrn, ) Yirnl )1 R (Xtrnn”n ) Yirnnhn )1

where n4, < np,,, . Note that for clarity, when there cannot be any confusion between the training
set and the test set, the training set is simply referred to

(X1, Y1),..., (X, Ya),
where n := ng, < np,,,. Likewise, the labeled objects of the test set are denoted

(‘thest1 ) Yiest1 )1 ey (Xtest Yiest )1

where n¢est < np,,,,. Besides, note that the number d of features is usually larger than the number
p of explanatory variables, as there is more than one computed feature per variable. Hence we have
Xtrn, Xtest € X = R?. The distributions of the features and labels P, v,,. and Px,.,,yv,.., have
to be sufficiently similar to ensure the success of learning techniques. The database construction is
thoroughly studied in the second chapter.

Ntest ) Ntest

In the third module, Model Construction, we define a statistical model for clustering and
classification. We consider the random triplet (X,Y, R) ~ P where the observation vector X € X
and the label Y € ) have already been defined, and where R € {1,..., Nr} is a latent variable
standing for a specific distribution of the random pair (X,Y). The distribution of that random pair
is given by the mixture model

Ng
(X,Y)~) P,
T=1

where ¢, = P(R = r) is a weight, and where P, = P(xyv)gr—r is a non-parametric component
distribution also called regime. Each regime P, is unknown and the number Ny of regimes is also
unknown. Note that this model encompasses the classic models for classification and for regression,
for which there is only one regime (Ng = 1). The goal is then to find a number Ng, a regime
attribution function H : X — [1, Ng] and regime specific prediction functions (fr),—., . n,, Where

fr: X — Y, so that the numerical model defined by the triplet (NR, H, (fT)T:L_,_,NR> yields good
backtesting performances. This model is further investigated in the third chapter, where methods
for finding the triplet (NR, H, (fT)T:L_,_,NR) are proposed.

The fourth and last module, Backtesting and Numerical Results, consists of two backtesting
plans, which assess the precision of the prediction functions produced in the third module. The first
one computes a straightforward measure of the prediction error. The second one designs trading
rules using predictions made over the test set and computes their relative profit and loss accounts
(P&Ls). Backtesting plans are completed by interpretation functionalities helping the statistician
to understand the reasons for any regime attribution or prediction. These functionalities can be
related to measures of influence of features in the predictions and therefore to variable ranking and
selection. They also can give indications about the reliability of the model and about its predictions.
They decisively contribute to formulating better data hypotheses and enhancing the time-series
representation, database and model construction procedures. The experimentation protocol 1.14
emphasizes thus the interactions between these modules. It shows that any innovation in a module
influences the further cyclical execution of the modules. To get backtesting results as reliable
as possible, it is therefore helpful to limit user intervention in the experimentation protocol and
to automate parameter tuning and model selection in the execution of each module. The fourth
chapter is devoted to the presentation of the backtesting results.
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Raw historical data:
D = (D{,...,D})i-1,.mp-

Computation of predictions/scores
via (Ng, H, (fi)r—1, . ng)
over the test set.

v

v

Choice of the setup:
Y eR? Y e{-1,+1}?

—> Predict or Rank?

Backtesting plan 1:
computation of prediction
error rate and AUC.

v

v

Data modeling hypotheses, e.g.
]PD = 7

Backtesting plan 2:
design of trading rules
and computation of P&Ls.

v

v

Definition of the training
and test set time ranges:
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Computation of feature relevance
and analysis of backtesting results.

¥

Choice of data representation ¢.

Definition of the statistical model:
(X,Y)~ Y e, P,

v

v

Computation of features:
D& X

Mixture model selection:
find Ng and H: X —{1,...,Ng}.

v

v

Computation of labels:

D¥&Yy.

Classification model selection:
find (fr)rzl ..... Nr>
where f,: X — ).

v

v

Comparison of distributions:

thrnxytrn
vS. PXtestthest .

Qutputs:

Figure I.14: Experimentation Protocol and Notations
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1.3.2 Input-Output Diagram of the UniCart/RNN approach

The repeated executions of the modules of the experimentation protocol have led to the design of
new procedures. The database construction is thus achieved via UniCart, a multiscale and piecewise
approximation method based on the CART algorithm, which is used for the representation of uni-
variate series. In addition, a new transfer (supervised) learning procedure, called Relabeled Nearest
Neighbors (RNN), has been developed. This meta-algorithm aims at learning a pseudometric based
on the relative importance of features (or of iterative classifiers?) in the prediction. This pseudo-
metric is used to define a hierarchical partitioning structure, which is transferred from the training
set to the test set. Finally, the trend predictive numerical models obtained through the UniCart and
RNN procedures are evaluated via specific backtesting plans. The first backtesting plan computes
the recognition rate and the area under the ROC curve of the RNN classifier. The second one
designs trading rules using RNN predictions and scores and calculates their profit and loss accounts
(P&Ls). The backtesting plans are also completed by interpretation functionalities. They allows us
to evaluate and to improve the model and also to draw conclusions concerning market analysis, that
we can compare with mainstream opinions and theories in economics and computational finance.
In order to make the reading of the thesis easier, we sum up the UniCart/RNN approach with
the following input-output diagram. The modules as well as the flow of the variables between the
modules are represented. Note finally that the plan of the next sections is based on the development
of each module. The second chapter is devoted to the database construction, the third one to the
model construction and the fourth and last one to the presentation and analysis of the backtesting
results.
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Input-Output Diagram UniCart RNN

Input series: D = (Dg, ..., Df)t:1 _____ np -

%f

Database Construction via UniCart (Matlab)

e Parameters: W, w, g, K.

e Inputs: D= (D;,...,D?)iy  np.

e Inputs Format: csv file.

° OUtPUtS: Z = ((thy thl)) R (ti) Y;p))

t=1,...,n

e Qutputs Format: csv file.

Model Construction via RNN (R)

-
e Parameters: h, Ntrn, Ntest.
° IHPUtS: Zirn = ((thrnt) Y;rnt)y RN (tirntl .Y:‘.}:‘nt ))
t=1,..., Nirn
Zfest = ((thestty 1/:Jastt )) cee (ti;sttl Y;Iejstt )) .
=1,...;Ntest
e Inputs Format: csv file.
e Outputs: (NR,H, (fr)r=a,.., NR)
e Outputs Format: R data frames.
\
Backtesting Results (Excel)
-
e Parameters: Opuy, Oselr.
. 1 P
e Inputs: (fH(thestt""’XiPCStt)(XtEStt’ ceey XtEStt))tzl,---,ntest
e Inputs Format: R data frames.
e Outputs: Error Prediction, ROC Curve, P&Ls.
e Outputs Format: csv file.
-
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Chapter 11

Construction of Economic and
Financial Databases

Do you wish to rise? Begin by descending.
You plan a tower that will pierce the
clouds? Lay first the foundation of
humility

Saint Augustine

Chapter I focuses on the applicability of machine learning techniques to the construction of
trend predictive models for financial variables. It introduces an experimentation protocol, which
achieves this construction in four interdependent modules. Particularly, the second module aims a
computing the database used to train the numerical model. Ideally, this database is made of features
(and labels) homogeneous enough to satisfy the requirements of the statistical learning theory. Be-
sides, these features must be sufficiently intuitive and interpretable to enable further developments
and improvements of the overall trend prediction approach. The search for a time series representa-
tion, capable of providing a database meeting these objectives, is thus totally justified. This chapter
introduces two time series representations. The first one, well-known to quantitative analysts, com-
bines state-space models and the Kalman filter. The second one, called UniCart, is a new multiscale
and piecewise approximation method. Based on the CART algorithm, it implements a top-down
binary tree structured segmentation. In this chapter, we focus on the UniCart method. We show
that it can lead to the design of two types of databases. These databases are made of trend-based
features, which are close to the representations used in technical analysis. They can therefore help
reproducing automatically the reasoning of technician analysts and market professionals. The plan
of the chapter is as follows. Significant economic and financial variables, which play the role of target
series and of explanatory series in chapter IV, are introduced in the first section. Basic stylized facts
are recalled. The use of sophisticated time series representations is then motivated. Specific criteria
for representation methods are highlighted. They evaluate qualitatively the capacity of these meth-
ods to turn heterogeneous sequences into databases relevant for modelling. Representation methods
meeting these criteria in a satisfactory way are reported. State- space models and Kalman filter
as well as the UniCart method are particularly made explicit. The UniCart method is particularly
emphasized and illustrated. Its implementation by a binary tree structure based top down procedure
is thoroughly documented, and two variants - regression and interpolation - are introduced. The
second section is devoted to the construction of UniCart databases. Their principle of construction
consists in shifting a sliding window across the time ranges of explanatory variables to compute
local features. It is explained in detail. Two types of features, hence two types of databases, are
then displayed. The first one is composed of lagged trends, considered at a single chosen scale, and
of associated statistical quantities, while the second one is made of multiscale returns of lag 1. Both
are extensively illustrated and their stationarities are particularly studied. Finally, we sum up the

55



Matlab implementation of the construction of UniCart databases with an input-output diagram.

II.1 Representations of Economic and Financial Series

This section aims at introducing time series representations, which are relevant for constructing
trend predictive models. In that perspective, key financial variables, used in the fourth chapter as
target series, are first introduced, as well as specific explanatory economic and financial variables.
Standard stylized facts are recalled. A synthesis of the tasks pursued in this document via a well-
chosen time series representation initiates the second subsection. Ideal properties of time series
representations for learning efficient and interpretable numerical models are particularly stated and
commented. Classical methods, which are likely to check these properties, are then briefly reviewed.
We focus especially on the application of the Kalman filter to linear state-space models, what is
often used by quantitative analysts to detrend financial series. UniCart, a representation method
performing multiscale piecewise approximation, is finally introduced. Its linear version produces
configurations close to technical analysis patterns via the computation of linear trends at various
scales, which is illustrated. Its implementation according to a top-down binary tree structured
segmentation procedure is also thoroughly presented.

I1.1.1 Presentation of Key Economic and Financial Variables

As we are interested in predicting the trends of financial variables in general, we need to consider
a set of variables which are representative of the diversity of financial data. We propose to select
variables from different areas of the financial markets. In the following, we introduce target variables,
i.e. variables whose trends, converted to labels, have to be predicted.

1. Stocks:

e the Daily S&P 500 Index expressed in U.S. Dollars, denoted SP500 (cf. figures II.1 and
I1.2) and available at http://fr.finance.yahoo.com/q/hp?s="GSPC. This is a
value-weighted index composed of the prices of 500 common stocks, nearly all of them
being stocks of the 500 most important companies trading in the American stock markets.

SP500: SP500 log returns:
03/01/1950 03/01/1950
to to
31/03/2011 31/03/2011
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Figure II.1: SP500 Series Figure I1.2: SP500 Log Returns
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e the Daily Euro Stoxx 50 Index expressed in Euros, denoted SX5E (cf. figures 11.3 and
I1.4) and available at http://www.stoxx.com/download/historical values/
hbrbcpe.txt. This index is composed of the prices of 50 stocks, all of them being
stocks of European major and sector leader companies.

SX5E: SX5E log returns:
31/12/1986 31/12/1986
to to
31/03/2011 31/03/2011
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Figure I1.3: SX5E Series Figure [1.4: SX5E Log Returns
. Commodities:

e the Daily Price of Gold (afternoon fixing in London) expressed in U.S. dollars, denoted
GOLD (cf. figures II.5 and I1.6) and available at http://www.bundesbank.de/
statistik/statistik zeitreihen.php?lang=en&open=devisen&func=list&tr=
www_s332 b01015_3.

GOLD: GOLD log returns:
01/04/1968 01/04/1968
to to
31/03/2011 31/03/2011
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Figure II.5: GOLD Series Figure I11.6: GOLD Log Returns

57



e the West Texas Intermediate Daily Spot Oil Price expressed in U.S. dollars per barrel,
denoted OIL (cf. figures I1.7 and I1.8) and available at http://www.eia.gov/dnav/
pet/hist/LeafHandler.ashx?n=PET&s=RWTC&f=D. West Texas Intermediate is a
light and sweet crude oil. It is used as a benchmark in oil pricing and is the underlying
commodity of New York Mercantile Exchange’s oil futures contracts.

OIL: OIL log returns:
01/02/1946 01/02/1946

to to
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Figure I1.7: OIL Series Figure I1.8: OIL Log Returns

3. Exchange rates:

e the Daily U.S./Euro Foreign Exchange Rate, denoted EURUSD (cf. figures II1.9 and
I1.10) and availableat http://research.stlouisfed.org/fred2/series/DEXUSEU.

EURUSD: EURUSD log differences:
04/01/1999 04/01/1999

to to
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Figure I1.9: EURUSD Series Figure I1.10: EURUSD Log Differences
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e the Daily U.S./U.K. Foreign Exchange Rate, denoted DEXUSUK (cf. figures II.11
and [1.12) and available at http://research.stlouisfed.org/fred2/series/

DEXUSUK.
DEXUSUK: DEXUSUK log differences:
04/01/1971 04/01/1971
to to
31/03/2011 31/03/2011
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Figure [1.11: DEXUSUK Series Figure [1.12: DEXUSUK Log Differences

A specific set of explanatory economic and financial variables is associated with each of these
target variables in the fourth chapter of the thesis. Naturally, explanatory and target variables are
not exclusive sets. Any target variable can play the role of explanatory variable of itself or of any
other target variable. As an example, the set of explanatory variables for SP500 includes OIL and
GOLD. It is completed by the following significant U.S. economic variables, that we mention and
plot to illustrate the diversity of economic and financial data.

e the Daily U.S. 10-Year Treasury Constant Maturity Rate, denoted DGS10 (cf. figures I1.13
and I1.14) and available at http: //research.stlouisfed.org/fred2/series/DGS10.
As explained in section 1.1, treasury securities are debt financing instruments issued by gov-
ernments. Different maturities are available. Treasury bills refer to less than one year maturity
and do not pay interest until their maturity. Treasury bonds have a maturity of ten or twenty
years and have a coupon payment every six months.

DGS10: DGS10 log differences:
02/01/1962 02/01/1962
to to
31/03/2011 31/03/2011
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Figure I1.13: DGS10 Series Figure I1.14: DGS10 Log Differences
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e the US 3-Month Treasury Bill, denoted DTB3 (cf. figures I1.15 and II.16) and available at
http://research.stlouisfed.org/fred2/series/DTB3.

DTB3: DTB3 log differences:
04/01/1954 04/01/1954
to to
31/03/2011 31/03/2011
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Figure I1.15: DTB3 Series Figure [1.16: DTB3 Log Differences

e the S&P 500 Price-to-Earnings Ratio, denoted PER (cf. figures I1.17 and I1.18) and available
at http://www.econ.yale.edu/~shiller/data.htm. The P/E ratio of a stock is a
measure of the price paid for a share relative to the annual net income or profit earned by
the firm per share. In the case of a market index such as the S&P 500, a weighted average of
all stock constituents is computed, by calculating each stock’s underlying market cap (price
multiplied by number of shares in issue) to give the total value in terms of market capitalization
for the whole market index.

PER: PER log returns:
01/08/1967 01/08/1967
to to
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Figure I1.17: PER Series Figure 11.18: PER Log Returns
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e the US Unemployment Rate, denoted UNEMPLOY (cf. figures 11.19 and I1.20) and available
at http://research.stlouisfed.org/fred2/series/UNEMPLOY.
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Figure I1.19: UNEMPLOY Series
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Figure 11.20: UNEMPLOY Log Differences

e the NAPM, ISM Manufacturing, Purchasing Managers’ Composite Index, denoted NAPM
(cf. figures I1.21 and I1.22) and available at http://research.stlouisfed.org/fred2/
series/NAPM. Released by the Institute for Supply Management every month, this economic
indicator is a composite index that is based on five major indicators: new orders, inventory
levels, production, supplier deliveries, and the employment environment. It is the best in-
dicator of factory production and it is popular for detecting inflationary pressure as well as
manufacturing economic activity, both of which investors pay close attention to.
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Figure I1.21: NAPM Series
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e the Personal Income, denoted INCOME (cf. figures 11.23 and 11.24) and available at http:
//research.stlouisfed.org/fred2/series/PI.
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Figure I1.23: INCOME Series
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Figure I1.24: INCOME Log Differences

e the US Population, denoted POP (cf. figures 11.25 and I1.26) and available at http://
research.stlouisfed.org/fred2/series/POP.
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Figure I1.25: POP Series
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e the Consumer Price Index for All Urban Consumers, denoted CPIAUCSL (cf. figures
I1.27 and I1.28) and available at http://research.stlouisfed.org/fred2/series/
CPIAUCSL. This variable is an inflation indicator.

CPIAUCSL: CPIAUCSL log differences:
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Figure 11.27: CPIAUCSL Series Figure I11.28: CPIAUCSL Log Differences

e the 30-Year Conventional Mortgage Rate, denoted MORTG (cf. figures I1.29 and 11.30) and
available at http://research.stlouisfed.org/fred2/series/MORTG.

MORTG: MORTG log differences:
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Figure I1.29: MORTG Series Figure 11.30: MORTG Log Differences

Additional explanatory variables are used in this document for building trend predictive numer-
ical models for the target variables SX5E, GOLD, OIL, EURUSD, DEXUSUK.

e the CACA40 French Stock Market Index, denoted CACA40, available at http://finance.
yahoo.com/g?s="FCHI.

e the DAX German Stock Market Index, denoted DA X, availableat http://finance.yahoo.
com/g?s="GDAXI.

e the Huro Area 10-Year Government Benchmark Bond Yield, denoted EURGS10, available at

http://sdw.ecb.europa.eu/quickview.do?SERIES KEY=143.FM.M.U2.EUR.4F.BB.
U2 10Y.YLD.
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e the daily German 10-Year Treasury Constant Maturity Rate, denoted BUND), available at
http://www.bundesbank.de/statistik/statistik zeitreihen.en.php?lang=
en&open=zinsen\&func=row\&tr=WT4608.

e the 3-Month Eurodollar Deposit Rate, denoted DED3, available at
http://research.stlouisfed.org/fred2/series/DED3.

e the Daily Chine/U.S. Foreign Exchange Rate, denoted DEXCHUS, available at
http://research.stlouisfed.org/fred2/series/DEXCHUS.

e the Daily Hong Kong/U.S. Foreign Exchange Rate, denoted DEXHKUS, available at
http://research.stlouisfed.org/fred2/series/DEXHKUS.

e the Daily India/U.S. Foreign Exchange Rate, denoted DEXINUS, available at
http://research.stlouisfed.org/fred2/series/DEXINUS.

e the Daily Japan/U.S. Foreign Exchange Rate, denoted DEXJPUS, available at
http://research.stlouisfed.org/fred2/series/DEXJPUS.

e the Daily Switzerland/U.S. Foreign Exchange Rate, denoted DEXSZUS, available at
http://research.stlouisfed.org/fred2/series/DEXSZUS.

e the Weekly U.S. Ending Stocks of Crude Oil and Petroleum Products, denoted OILSTOCKS,
available at http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s
=WTTSTUS1&E=W.

e the Total Industry Capacity Utilization, denoted TCU, available at
http://research.stlouisfed.org/fred2/series/TCU.

Economic and financial variables are usually highly noisy, serially correlated and nonstation-
ary (cf. to subsection I.1.4). This temporal heterogeneity, specific to each series, is usually first
addressed by computing straightforward transformations, such as returns, logarithmic returns (as
systematically plotted previously), indices or rates. These transformations yield new representa-
tions for each series. Their interest is that they have more interesting statistical properties than
raw samples. Particularly, they are closer to stationary signals [Tsa05]. They are thus the first step
to the development of econometric models which can for example reproduce the effects of volatility
clustering (such as conditional heteroscedastic models) or capture abrupt changes (such as regime-
switching models). Likewise, homogeneous features are needed to develop trend predictive models.
Obviously, the vector formed by any target variable and its corresponding explanatory variables is
not only temporally heterogeneous (because of the temporal heterogeneities of each variable), but
also spatially heterogeneous. Indeed, these variables have different historical ranges and are available
at different sampling rates: daily for financial data and monthly or quarterly for economic data. The
latter ones are often lagged and/or revised. Because of these temporal and spatial heterogeneities,
the relevant scales of observation may be very different from one variable to another. A time series
representation capable of addressing these intra and inter heterogeneities is thus required. Its rele-
vance will be first evaluated by the performance of its associated trend predictive model, i.e. via the
backtesting plans of the experimentation protocol. It will also be assessed by the propensity of the
database and model construction procedures to be improved, i.e. by the richness of the informations
provided by interpretation functionalities. Note that the results obtained via a time series represen-
tation, which is close to the representation methods used by financial practitioners, are likely to be
more easily interpreted. In the next subsection, the use of time series representations for developing
trend predictive models is thoroughly motivated. The properties of the ideal representation method
are particularly listed.
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I1.1.2 Stakes of Time Series Representation

Time series representations are a subject of great interest in the signal processing, machine learning
and data mining communities. In this document, they are employed to accomplish or to make
possible the following tasks - made explicit in [KCHP93, KK03, LKLC03, LE07, Reb07]:

e compression/approximation: it consists in turning a time series of length n into a set of k£ asso-
ciated features, where k£ < n, so that the new sparse representation provides a reconstruction
of the series, usually optimal according to a distance.

e indexing: in a database, it aims at retrieving the time series which is most similar to a target
time series, according to a similarity criterion or a distance.

e clustering: it aims at computing a grouping structure for the time series of a database. This
structure can be a set of clusters or a dendrogram (a nested set of clusters). It is determined
using a similarity criterion or a distance.

e classification/regression: it aims at predicting the label of each time series of a test set via a
classifier built using a training set. The labels can belong to a finite set (this is classification),
or can be real (this is regression).

Specific properties are required to meet these objectives. From a signal processing point of view, it
is first particularly relevant to provide a representation method whose properties of approximation
can handle with precision the noise inherent in each series, existing potentially at different scales and
varying over time [Mal99]. From a statistical learning point of view, what matters is to work with
stationary features. We expect therefore a homogenization effect from the representation method
in order to make plausible the hypothesis of identical distribution (cf. subsection I[.2.1). Note
also that the labels are predefined in many applications concerned with classification and regression
tasks. This is not the case when constructing trend predictive models. Actually, a specific procedure
for extracting features as well as another one for extracting trends, which play the role of labels,
are necessary. Ideally, both would be provided by the same time series representation method.
Another essential point is the robustness of the representation, which would ensure that similar
economic or financial series have close representing features. We are also interested in working with
features analogous the representations used by financial practitioners and experts. Our conclusions
concerning the validity of the constructed models and the relevance of specific features would then
be easily comparable to their opinions and theories. Particularly, multiscale features would help to
question the concept of trend, introduced in technical analysis as a series of consecutive ascending
or descending bottoms and tops [BB02, Mur99], and its prediction ability. We also have to deal
with the curse of dimensionality [HTF01]. This refers to the exponential increase volume caused by
adding dimensions to a Euclidean space. In a high dimensional space, all the points are "far away"
from each other. In other words, too many features would be counterproductive when considering
clustering and classification tasks. Admittedly, the compression ability of the representation method
is not an absolute priority as the new learning procedures resist to the curse of dimensionality well
[Vay06]. However, regarding the representation and model interpretability, it would definitely be
extremely convenient. To sum up, the ideal time series representation would provide multiscale,
homogeneous, interpretable (from an economic point of view), robust and parsimonious features as
well as labels.

Time series representations suitable for the tasks of compression, indexing, clustering and pre-
diction, and a priori capable of handling heterogeneous multivariate series are briefly reviewed here.
We focus first on harmonic analysis methods. They aim at providing a sparse representation of any
given finite series (of finite energy) via a decomposition over a chosen family of elementary functions
[Mal99]. This family is usually called a dictionary. Elementary functions are referred to as atoms.
Dictionaries can consist of a single orthonormal basis or can be made of redundant families, which
improve the sparsity of the series representation. Fourier analysis is thus based on the orthonormal
basis made of sinusoidal waves. Any function of finite energy and of finite support can be repre-
sented as a sum of such elementary functions. Fourier analysis is well adapted to the representation
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of uniform regular functions but fails to provide a sparse representation when confronted with non
stationary series [Mal99]. On the other hand, wavelet bases, which are orthonormal bases made of
atoms localized both in time and in frequency [Mey87, Dau88, Mal], yield parsimonious representa-
tions of piecewise regular functions containing transient perturbations. They also define a multiscale
(the coined term being multiresolution) representation of series. Besides, constructing dictionaries
specifically adapted to the series is also possible. Wavelet packet (orthonormal) bases provide atoms
whose frequency localization is optimally determined according to a cost function [CMW92, CW92].
Likewise, local cosine (orthonormal) bases are computed so that their time localization is optimal.
Finding sparse adaptive representations in redundant dictionaries is finally a popular alternate so-
lution, illustrated by the development of matching pursuit algorithms [MZ93] and basis pursuit
algorithms [CDS01]. Such procedures have been extensively used to decompose and filter financial
series more efficiently [RZ97, Gre98, Ram99|, sometimes in conjunction with econometric models
[Cap02]. Different concepts of local stationarity have also been introduced to study non- stationary
time series more accurately [Koz96, Dah97, MPZ98, NvSK00, FBvS03, DMvS98, Isc, CS03, FSRO06].

Singular spectrum analysis [BK86a, BK86b, GNZ01] is a radically different time series repre-
sentation which provides filtering, forecasting and detection of structural change facilities. The
filtering or analysis step aims at decomposing any given one-dimensional series of interest into ad-
ditive components of various resolutions, distinguishing between a long term trend, oscillatory and
noise components. The analysis step actually consists of two steps:

e the decomposition step turns the original one-dimensional series of interest into a set of lagged
subseries, which forms the trajectory matrix M. The singular value decomposition of the
trajectory matrix provides a decomposition into elementary matrices, each of them being
associated with an eigenvector of MM .

e the reconstruction step regroups the elementary matrices into a set of new matrices. Each of
them is transformed into a new series, which is an additive component of the original series.
Criteria and conditions for separability between trend and oscillatory components, as well as
specific corresponding procedures, are proposed in [GNZ01].

Once trend components have been extracted, we consider the linear subspace defined by the eigen-
vectors associated with each trend. It is used to compute a linear recurrent formula between the
components of the time series [GNZ01]. This formula allows future values of the time series to be
forecast. Structural changes are said to occur when the time series is no longer governed by the for-
mula. Detection procedures are proposed in [GNZ01]. Although singular spectrum analysis is a very
recent technique, mostly employed to handle climatic, meteorological and geophysical time series,
it has also been successfully used for modeling and predicting financial series [TWWO02, HSZ09].

The data mining point of view is also extremely interesting as it provides interpretable and
intuitive time series representations. Piecewise Aggregate Approximation (PAA), which actually
refer to piecewise constant approximation, is one of them. Time series are thus summarized by
a set of consecutive constant segments, whose length is user defined [YF00] or adaptively deter-
mined [CKMPO02]. Such techniques can also be used as a transformation preceding a discretiza-
tion step which turns the time series into a consecutive set of equiprobable symbols. This latter
technique, called Symbolic Aggregate approXimation (SAX), is a very popular method in data
mining [LKLCO03]. Besides, Piecewise Linear Approximation (PLA) techniques are also largely em-
ployed. They aim at summarizing time series via linear interpolation or linear regression, and are
usually implemented by bottom-up or top-down procedures [KCHP93, KCHPO01]. Such data min-
ing techniques are currently more and more used to represent and analyze financial times series

[cFICLmNO8, cFICyKmNO08, cFICLmNO07, HA07, cFICmN06].

Now, econometric models (cf. subsection [.1.4) remain the most common representation tech-
niques of financial series. Actually, they are not applied to the series themselves but systematically
to the returns or logarithmic returns of the series, which are closer to stationary signals. The next
subsection therefore focuses on linear state-space models and on the Kalman filter, which enables
to perform various inferences tasks on this broad class of models.
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I1.1.3 State-Space Models and Kalman Filter

State-space models are defined by a set of two equations: the observation equation II.1 and the
state equation I1.2 [RG99, DKO01, Mur02]. We set the following notations: O; € R™ is an observed
random vector, while U; € RP is a hidden (or unobserved) random vector. In addition, I7; and I}
are real matrices of size respectively m X p and p x p and have to be specified. Finally, oy, and oy,
are the observation and evolution covariance matrices of size respectively m x m and p x p. The
following linear state space model is defined:

Ot:HtUt‘F‘/t, V}’”N(O,th), (II].)
Ui = U + Wy, Wi ~ N (o, ow,), (I1.2)
UO NN(mEHO’Vo)!

In the application of the fourth section, we assume that oy, = oy and ow, = ow, for any t.
Then the observation and evolution covariance matrices oy and oy are the only parameters of the
model. They are estimated from available data using maximum likelihood, thanks to the L-BFGS-B
quasi-Newton optimization algorithm (cf. [LN89, RHBZ95]).

The Kalman filter is an algorithm employed for recursively estimating the internal state of
the process U; given the sequence of noisy observations O,., = (O,,...,0O,) [Kal60, KB61, RG99,
Mur02]. This inferring task is called filtering if 7 = ¢, smoothing if 7 > ¢ and predicting if 7 < ¢.
We denote by ﬁtl‘r the estimate of the state at time ¢ given observations up to and including time 7.
Besides, Cy; is the associated error covariance matrix and /d is the identity matrix. The Kalman
filter can be summed up by the system of equations:

Oy = N0 _1pp s, (I1.3)
Clt—r = Ptctfl\tflptT +ow,_,,
I, = Oy — Uy, (I1.4)

S; = ILCyy . [T, + ov;,
Ky = Cyp—r 11, S; 7,
ﬁt|t = 0t\t—1 + Ki I,
Cyt = (Id— K¢I1;)Cyjp—y,

The equation (I1.3) computes the predicted state at step ¢, while the equation (II.4) the innovation
residual. Therefore, the observed signal O; can be decomposed into a predicted filtered component
and an innovative residual. This is the time series representation provided by the Kalman filter
applied to state-space models. It is often used by quantitative analysts to detrend financial time
series. The next subsection is based on multiscale piecewise linear approximation, which is maybe
closer to the concerns and intuitions of both technical analysists and economists.

I1.1.4 UniCart

Methodology and Notations. UniCart, which shares close ties with the Classification And
Regression Trees (CART) algorithm [BFOS84], is a method we have developed. It provides a time
series representation based on multiscale piecewise approximation. It consists of top-down binary-
tree structured procedure, completed by a best-scale criterion. As with CART, the procedure is
declined in a tree-growing and a tree-pruning phase. Before stating explicitly the goal of UniCart,
we need to introduce notations and concepts. They are very similar to those recalled in the appendix
for tree classifiers. Consider a finite real series d = (dt):cr, where I ={1,...,|I|}. UniCart recursively
partitions the set of indices I of the series d. It produces a finite set of disjoint subsets (I;),<;<;
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such that their union forms the set I, i.e.

11|

r=\Jr.
Jj=1

We define this recursive partition as the couple (¢r,¢r), where ¢r is a rooted binary tree tr = (V, A)
and where ¢r is a function of the type:

~ IxV — P[
tr = . ~
(2,v) +—— tr(z,v),

P; being the set of partitions of I. The function tr satisfies the following conditions.
e The root 1 € V of the tree tr checks tr(I,1) = I.

e Bach node v € V is associated with a subset ¢r(I,v) such that its child nodes are associated
respectively with ¢r(I,vy) and ¢r(I,vg), which are disjoint subsets checking:

tr(I,v) = tr(I,vg)| Jr(I,vg).

We choose the recursive partition (tr,tr) in a set of candidate functions, made of finite intersections
of splits. We define a split or splitting rule I, as a finite subset of I of the type

Ip ={1,...,tsp)
The set of finite combinations of splits is denoted Sp. Additionally, there exists I,,, € Sp such that:

tr(l,vy) = ]Spvﬁt}(l,v),
tr(I,vg) = I;:puﬂ{r(l,v).

Finally, we define the approximation function f as a function of the type:

B I — R
f_{t — ().

We call regression tree the triplet (tr,fr, f). Denoting V the set of the leaves of the tree tr, the
value [(t) attributed to ¢ by the regression tree (¢r,tr, f) has to be close to the value d;. It is given

by the formula:
1(t) = f( Jite t}u,v})

UEV

Goal. We can now state the goal of the UniCart procedure. Referring to the appendix, it aims at
minimizing the tree impurity Q(tr,tr, f). With a slight abuse of notation, we denote the impurity
criterion: Q(tr) := Q(tr,tr, f). We recall that the tree impurity Q(tr) is the sum of the impurities
Q(v) of the nodes v € V, which can be written:

Qltr) =) Q(v).

VeV

Referring to the appendix again, minimizing the impurity Q(¢r) can be achieved through the iterative
maximization of the quantity

AQ(sp,v) = Q(v) — Q(vr) — Q(vr),
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called the goodness of split. The best split sp, is the split in Sp which most decreases AQ(sp, v).
We have:

Qv) = Q(vr) — Q(vr),

max AQ(sp,v).
spESP

AQ(sp,v)
AQ(sps, v)

The recursive partition stops as soon as a stopping criterion is fulfilled, i.e. when the subsets of are
of a (user-)required size in our implementation.

Besides, selecting the most suitable level of segmentation is possible through the minimization
of a cost-complexity function. We define the cost-complexity function @, (tr) (actually the same as
the function defined for the CART algorithm [BFOS84]):

Qaltr) = Q(tr) + alV|.

Minimal cost-complexity pruning (tuning parameter ) is classically done using k-fold cross-validation.
This criterion allows the best scale in the tree structured linear decomposition to be found, that is
the ensemble of terminal nodes V' giving the best adapted approximation indexed in the tree.

UniCart Pseudocode. The parameters of the UniCart procedure are the series d = (d)¢—., 1
and the parameter w, which defines the minimal node size under which the segmentation stops. The
steps for executing the UniCart procedure are recapitulated in the following pseudocode.

1. Initalization:

e U =0, nertv = 1.

e V={1},A=0,tr =(V,A),tr(I,1) =1.
2. While v < neztv

o Ifltr(I,v)] > w

- Compute AQ(sp,v) = Q(v) — Q(vr) — Q(vr), Vsp € Sp.
- Compute AQ(sp«,v) = MmaXspesp, AQ(sp, v).
- Creation of vy, the left child node of v, corresponding to the split sp,. We have:

t}'(I,UL) :Isp*ﬁt"‘f'(.[,’l}),

|4 =V Ulve},
A = A Hvvr}.
- Creation of vy the right child node of v, corresponding to the split sp,. We
have: . .
tr(I,vgr) =Ig, Ntr(l,v),
14 =V U{UR})
A = Al H{vvgr}

- Update nezxtv = nextv + 2.

e Updatev: v=1v+1.

3. Outputs: (tr,tr, f).
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Definition of the Impurity. We propose to work with the impurity criterion based on the norm
1. We define, Vv € V,

[tr(I,v)]
Q) =2 S g —a, - x 2
Tetr(I1,v)
This choice for the impurity @ defines the linear UniCart. The definition of a, and T, leads to
two different versions of the linear UniCART. Version I1.5 returns a multiscale linear approximation
purely based on regression, which implies a gap between consecutive trends. On the other hand,

version 11.6 refers to an interpolation approach and produces a continuous approximation:

1. at each node v, compute a, and T, so that

(ay,T,) = argmin Z (dr —a—T x 7). (I1.5)
a€R, TER -
TEtr (I,v)
Denoting
Tminy — min{T; T E t;‘([) ’U)},
Tmaz,y — max{T, TE t}'(]a U)}y
Av = (Tmaa:,'u — Tmin,v + 1)1
1
1 2
Mv = . )
1 A,
we have:
T, = (MJMv)_le(dT)Tet'r(I,v)y
Ay = d'rmazyu - Tvaaz,v-

2. at each node v, considering the first and last time indices of t~r(1,'u), Tminw and Tmagy, We
have the following relationship:

= Qy+ Tvain,v;

Tmin,v
Tmaz,w — Qv + Tvaaz,v,
which implies
. drminYuTmaz,v - drmaz,v Tmin,v 11
ay = , (11.6)
Tmaz,v — Tmin,v
dTmam,'u - dTm'Ln,‘u
T, = —/7>
Tmaz, v — Tmin,v

In the rest of the document, we uniquely focus on version II.6 of the linear UniCart, while still
referring to UniCart. Particularly, the linear trends mentioned in the following are the interpolated
linear trends (7%)yey. Their computation (hence performed as in II.6) is illustrated in the next
paragraph.

Illustration. UniCart is applied to the case of the daily SP500 considered on a local window of
W = 1000 o0pen days. This window encompasses the period from 01/05/1971 to 24/01/1974. The
minimal node size under which the segmentation stops is w = 5days. The number of samples used
in the tree-pruning phase equals 50. This latter phase is quite time consuming. It is also superfluous
if our main concern is to detect the most important trend changes in the time window. In such a
case, the choice of the best scale is rather controlled by the minimal node size than by the pruning
procedure. Figures I1.31, 11.32, I1.33, 11.34, I1.35 and I1.36 illustrate the flexibility and the simplicity
of the method.
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As a conclusion concerning the UniCart procedure, note that there are actually many ways of
using the results of the multiscale approximation to compute features, which are not only necessarily
linear trends. In the next section, we focus particularly on two types of databases.

I1.2 Construction of UniCart Databases

The UniCart procedure does not directly produce features and labels for training numerical models.
Instead, it delivers a multiscale representation of finite series. This section introduces methods for
transforming this multiscale representation into features and labels. It is organized as follows. It
presents first the intangible database construction principle, which consists of applying UniCart
to the explanatory variables considered over a sliding window. Two types of databases are then
introduced. Each of them contains a family of interpretable and intuitive explanatory features,
computed via a specific processing of the UniCart representation. The statistical characteristics
of these features, particularly their homogeneity and their multiscale nature, are illustrated and
compared via application examples.

I1.2.1 Principle of Construction

Methodology and Notations - Features Extraction. The database construction is based on
a sliding time window, which moves across the historical base along the time range of the target
variable according to its sampling step. At each step, a windowed series is extracted for each
explanatory variable and for the target variable by considering each of these variables in a time
range corresponding to the time window. UniCart is then applied over each windowed series. It
produces a multiscale linear segmentation. Note that the variables do not have to be sampled at
the same frequency. We introduce the following notations. As in subsection 1.3.1, we consider the
set of p finite financial series:

D= (D:, B Df)tzl,.. n

oD *

By convention, D* is the target variable. Besides, D?,..., DP are the explanatory variables. Let
W < np

be the size of the sliding time window. As in subsection II.1.4, the minimal subset size below which
the segmentation stops is denoted

w < W.

For each variable 1 and each sample date ¢, the windowed series (Dz)t,WJrlSuSt is converted via the
extraction features function ¢x to a set of features z; = (mz,v)vEVt" This set is indexed by the nodes

of the UniCart tree tri = (V}?, A%). For simplicity, the corresponding partition and approximation

functions are denoted respectively t}z('u) = t}z({t —W +1,...,t},v) and ftzv We have:

(DZ)t—W—Q—lSuSt = .’E: = ("E;,v)vEVt"

Yet, handling all the features of each tree would be computationally infeasible and not necessarily
relevant for learning efficient models. Besides, the number of features may not be constant from
a given time window to another, which could be a problem for the database construction. It is
therefore wiser to consider only a subset of z¢ = ("Dé,v)vEVt" Our solution is to re-index the set of

features z¢ according to their vertical position in the tree, referred to as the scale
s=s(1,t,W,w) < S(z,t, W, w),
and according to their horizontal position, referred to as the lag
kE=k(s,i,t,W,w) < K(s,1i,t, W,w).
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Note that S(z,t, W, w) is the depth of the tree tri and K (s,1,t, W, w) the number of nodes at each
level s. We select then for each set of features z; = (Iz,v)vevg a maximal number of scales and, for
each scale, an associated maximal number of lags. With a slight abuse of notation, we still denote
it:

Ty = (mé,v)vev; = (mz,s,k)sgs,kgK-
Likewise, any variable indexed by the nodes v € V are equivalently indexed by the couple (s, k),
with s < S and k < K.

Methodology and Notations - Label Extraction. Among features, linear trends are now
denoted _ _ '
T} = (T{ s 1) C z4.

They naturally allow computation of binary labels. The user is invited to select a scale s*. The
most recent lag at scale s* is denoted k*, while the horizon of prediction is h. The binary labels are
then:

ye(h) = Sgn(TtlJrh,s*,k* - Ttl,s*,k* ).

As with features, this computation is denoted:

(D})t—w+1<u<t % ye(h).
Basically, it means that the user chooses for himself the scale at which labels are computed. Finally,
The UniCart database is composed of both features and labels, which is written:

1

(zf,..., 2, ¥e(R))w<t<np—h

Pseudocode - Features and Label Extraction. To sum up, the database construction embeds
the windowed series 4
(Df)1<i<p,t—w+1<u<t

indexed by
W<t<np—h
into the sequence of features
(Ié)lgigp,WStSnD—h:
where
o} = (@} o )s<s k<K

This sequence of features is completed by the labels

(ye(h))w<t<np—h,
where
yi(h) = Sgn(TtlJrh,s*,k* - Ttl,s*,k*)'

where s* is user-defined, k* is the most recent lag at scale s* and h is the horizon of prediction.
The database is thus expressed as:

(z¢,y:(h)),

where

The following pseudocode is then straightforward:
1. While W <t<np—h,

e Compute:

. ¢ . .
(DY)t wiicu<t = Tt = (Ty 5 1 )s<S k<K
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e Compute:
i [
(D})t—wra<u<t — ye(h).
e Updatet: t =1+ 1.
2. Outputs: (z¢,y:(h))w<t<np—h-

With a slight abuse of notation, we write the neat relation stated in the experimentation protocol
(cf. subsection [.3.1):

D¢—X>a:
Dgy

In the next subsection, two methods for computing the features z are made explicit.

I1.2.2 Two Types of Databases

Multiscale Trend based Returns vs. Single-scale Trend based Features. Consider as
previously the windowed series (Dz)t_wﬂgugt. As mentioned earlier, it is necessary that the
number of features remain constant over the shifts of the sliding window. Therefore, the two
computing features methods, which are now introduced, require that the user enter both a maximal
number of scales S and a maximal number of lags for each scale, denoted K = K(s). Only the
features whose scale s and lag k& check:
s < S
{ k <K

are taken into consideration. Note also that the number of scales S(z,%¢, W, w) is not necessarily
larger than the maximal number of scales S. This remark holds true for K(z2,t,W,w,s) and K. By
convention, if S(i,t, W, w) < S or K(i,t,W,w,s) < K, the available features are selected, while the
remaining features are all virtually set to o. In practice, S and K are small. We distinguish between
two different types of databases:

e a first type of database (z, yt(h))w<t<nD n is composed of features, which are all considered
at the finest scale available s*. The features :rt are made of the linear trends (T b5 k)1<k<K and
of corresponding statistical quantities. For 1 < k < K these latter are the duration Durt sk
of the trend Ttls* » the variance Vart s+ i of the series over the trend, the skewness Skewt s ko
the kurtosis Kurt; . . as well as the minimal and maximal distances Mznt s+ and Maa:t sk
of the series to the trend. To define these quantities, we denote Var, Skew Kurt, Men and
Maz the usual operators computing respectively the variance, the skewness, the kurtos1s, the
minimum and the maximum of a given random variable. The corresponding formulas are:

Durz,s*,k = t}t('s*i k)l = Tmaa: s* .k Trinin,s*,k +1

Varz’s*,,c = Varrem(s* k) {D’ ai’s*,k — Tti’s*,,C X T}

Skewz,s*,k - Skewretn(s k)? |:D1 ai,s*,k - Tti,s*,k X T} ]lVarzys*yk>o
Kurti,s*,k = Kurt‘ret;z(s*,k]’ |:D}r - a’i,s*,k - T t,s* k X T:| ]lVart « >0
Miné,s*,k = Minret”rt(s*,k)i [D‘Zr - a‘i,s*,k - Tti,s*,k X T}

Mamils*,k = MamTet;t(s*’kV [Dj. — a‘i,s*,k — Tt",s*’k X 7':| .

This type of database requires the user to choose a number K of most recent lags to select at
the scale s*.
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e a second type of database is made of returns exclusively, considered at the scales {1,..., 5’}
and for the most recent lag 1 only. For 1 < s < S, these latter are the returns Ret} , ,, the

ratios Shi’s,,c and the ratios Soi,slk. The corresponding formulas are:

250

. D! Dur?
7 _ Tmaz,s,k t,s,k
Rett’s’k = {D, } —1
Tmin,s,k
. Di
i _ . 41,5,k
let,s,k - \/VG'TTEt’Ft(S,k]’ |: D? 1j|
5,k
Shi _ Ret; ,
t,s,k NI )
. D! Dur!?
7 _ T 5,k t,s,k
Rett’s’k,O — |:Dzmaz 2 :| —1
Tmin,s,k
) 2
DR _ 250 Z . Dliisk 1 .
= i | T D
t,s,k Dur; TELT:(5,k) Dl & ;jhs,k <o
7,5,k
; Ret}
; _ t,s,k,0
S04,k = Dr'_, -
t,s,k

The returns Shi,S,,C and Soi,s’,c are actually returns divided by a measure of noise, being respec-
tively inspired of Sharpe ratios and Sortino ratios. This database is composed of multiscale
returns, usually more stationary than the linear trends T} ;.

The computation of the two databases is illustrated in the next paragraph.

Construction of the two Databases: Illustrations. The principle of construction of the two
databases is now made clear using the set of explanatory variables presented in subsection II.1.1.
As explained in the fourth chapter, this set has been constituted in the perspective of predicting
the trends of the variable SP500. All these variables have not been available since the same date
and at the same frequency. For example, SP500 has been sampled at a daily rate since 03/01/1950
(following the convention dd/mm/yyyy), whereas MORTG is a monthly variable that has been
available since 01/04/1971. Despite these differences, as explained in the previous paragraphs, the
principle of trend determination and collection is alike for all series.

In practice, in our implementation, a sliding time window is defined for each variable of the set.
As each series is likely to start from a different date, the sliding time windows start from the latest
of them all. This defines a start date, which corresponds to u = 1. The end date corresponds to the
date at which the value Dy, of the target variable SP500 is available. The shifts of the windows
across the series are coordinated. They are guided by the shift of the window of the target variable
SP500. When this leading window moves along the time range of SP500, it defines a specific time
sub-part. The latest date of this sub-part, which is the current end date, defines the positioning of
the other windows. Their relative end dates must be less recent than or as recent as the leading
window latest date.

We display the following graphs to give a clear idea of the sliding windows’ relative positioning
at the beginning of the features collection. The first sliding windows of two daily variables, SP500
and DGS10, and of two monthly variables, UNEMPLOY and PER, are thus reproduced in the
figures 11.37, 11.38, 11.39 and 11.40. The size of the sliding windows is fixed at W = 1000days. We
choose a very broad window so that it is easier to see on graphs. The start date of all "first" sliding
windows, that is the latest date among the first dates of each variable time range, is 01/05/1971.
The last date of the SP500 time window is 24/01/1974, i.e. W = 1000 days after 01/05/1971. It
means that the last dates of all other sliding windows are less recent or as recent as 24/01/1974.
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Once the relative positioning of the sliding windows has been completed, the UniCart segmen-
tation procedure is applied to each of them. In the case of the first type of database, the K lagged
features of the finest scale are selected. The next graphs zoom on the previous sliding windows (cf.
figures 11.41, 11.43, 11.45 and 11.47). Figures 11.42, 11.44, I1.46 and I1.48 show the UniCart approxi-
mation produced on this time window for the variables SP500, DGS10, UNEMPLOY and PER
with the following parameters:

W = 1ooodays

w = 100days

S = s*scale levels

K = gconsecutive trend lags.

Besides, figures 11.49, 11.50, 11.51, I1.52 represent the features obtained for these variables over the
whole historical range (i.e. via the iterated application of UniCart on the sliding window, which is
shifted over this range).
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In the case of the second type of database, features of lag 1 and of scales {1, ..., 5’} are selected.
Again, the next graphs zoom on the previous sliding windows. They show the results of the UniCart
segmentation performed on SP500 uniquely (cf. figures I1.54, I1.55, I1.56, I1.57 and I1.58) with the
following parameters:

W = 1ooodays
w = 3o0days

S = gscale levels
K = 1trend lag.

As an example, figure 11.59 finally displays the SP500 features computed over the whole historical
range.
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The two types of databases depend on the size W of the sliding window, on the minimal segment
size w < W, on a limited number number 3 of scale levels as well as on a limited number K of trend
lags, and on the horizon h of prediction. They are illustrated here with parameter values, which
enable a clear introduction to the database construction task. In the applications of the fourth
chapter, the size of the sliding window is reduced to W = 250days. The stationarity of the features
of the two types of databases is studied in the next paragraph.
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Stationarity of the Features in two Types of Databases. Once a choice has been made about
the type of the database, and the database has been computed, any classical machine learning
procedure can be used to train the prediction function. Yet, a last and important prerequisite
concerns the stationarity of the features. We anticipate here the backtesting results of chapter IV.
Each of the two types of SP500 UniCart databases has been split into a training set, made of features
corresponding to the historic range from 01/05/1971 to 31/03/2006, and into a test set, which starts
at 31/03/2006 and ends at 31/03/2011. The boxplots I1.60, 11.61, 11.62 and I1.63 graphically compare
the quartiles of specific features’ distributions for the training set and the test set of the first database.
They show that some of these features are not homogeneous. Particularly, the SP500 linear trends
do not have the same distribution support. This is a problem for learning an accurate numerical
model because, as underlined in subsection IV.2.2 of chapter IV, this feature plays an important role
in the prediction. In consequence, the influence of this feature has motivated the introduction of
more homogeneous - and trend-related - features, hence the creation of the second type of database.
The boxplot 11.64 highlights that these return-based features are much more stationary. In addition,
the TreeRank based method for testing the homogeneity of two samples [CVD09] has been applied to
our problem of comparison of features’ distributions. The results of this test confirm this graphically
observed increase in stationarity but also reject the homogeneity hypothesis even at low levels. A
model construction procedure capable of handling non- stationarities is therefore needed. A new
transfer learning algorithm, called Relabeled Nearest Neighbors, is thus introduced in the subsection
I11.3 of the next chapter.
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I1.2.3 Input-Output Diagram of the UniCart Database Construction Pro-
cedure

The following simplified diagram sums up the Matlab implementation of the UniCart database
construction procedure. It consists of three nested modules. The first one, entitled Interpolation
Linear UniCart, turns any given finite series (d;)sc; into the UniCart approximation tree (¢r, tr, f).
The second module, UniCart Segmentation, calls the first module to produce the linear approxima-

tions (tr;:(s, k), t;';(s, k), ft"’s’k) indexed by the couple (s, k) of scale and lag for each windowed series
(Dg)t_w+15u5t. The third module, Compute Features, uses the second module to compute the set
of features z! = (mz,s,k)SSS,kﬁK associated with the approximations (tri(s, k),t;':(s, k), f})s’k). The
features z? are collected for all variables D}, ..., DY over the historic range W < t < np — h.

Input-Output Diagram UniCart

Input series: D = (D;,...,D})t—1, . np-
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Chapter 111

Construction of Trend Predictive
Models

And Now for Something Completely
Different

Monty Python

Chapter II is devoted to the construction of databases relevant for learning and improving trend
predictive numerical models. The goal of this chapter is precisely to present our research, oriented by
the experimentation protocol, for the most suitable setup and model construction procedure. Three
different modeling approaches have thus been consecutively developed and shaped: first linear model
selection in the regression setup, then classic learning in the binary classification setup, and finally
transfer learning with a non-parametric regime model. They correspond respectively to the section
1, 2 and 3 of this chapter. The switch from one approach to another is thoroughly motivated in
chapter IV. Particularly, the interpretability, the robustness and the quality of the parameter tuning
of the procedures, specific to each successive approach, are shown to increase significantly. The
regression setup, somehow the most conventional in financial modeling, is investigated in section
1 via the Kalman Laglasso (KLL) approach. Strong hypotheses are formulated on data, which
enable the statement of a linear relation between the (Kalman) filtered target variable and (Kalman)
filtered and lagged factors. These factors are monthly sampled variables (hence both economic
and financial factors are sampled at the same frequency). Model selection is performed by a new
procedure called Laglasso. Laglasso is a Lasso-type procedure which includes selection of lags
for individual factors. The backtesting results of chapter IV prove that this selection step may
suffer from lack of robustness, and requires a heavy parameter tuning procedure. Particularly, the
model does not provide a fair idea of the relevance of explanatory variables. Finally, the lack of
precision of the predictions has convinced us that the setup may be too ambitious and inappropriate.
The binary classification setup, introduced in section 2, provides a more realistic targeted level
of precision for the predictions. The approach developed in this setup consists in learning the
distribution of UniCart features and labels via tree aggregation based procedures, such as Random
Forests (RF). Many interpretation functionalities are made available. For instance, probabilities
of realization, associated with predictions delivered by the numerical model, greatly help in the
designing of efficient trading rules. The RF procedure also ranks features according to their relative
predictive ability. It emphasizes thus the dominant influence in the prediction of the trend-related
features of the target variable. However, a strong overfitting effect is observed. The performance
of tree classifiers dramatically decrease in case of a too small value of the minimal node size. In
other words, tree classifiers of a too large size do not generalize well. We consider this overfitting
incident as a transfer learning failure. More precisely, the partition structure of any large tree
classifier cannot be successfully transferred from the training set to the test set. To produce a
partitioning structure, which would be transferable, the non-parametric regime model stated in
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subsection I.3.1 is introduced in section 3. The regimes as well as the number of regimes are learnt
using a new transfer learning procedure called Relabeled Nearest Neighbors (RNN). This meta-
algorithm requires a generator of hierarchical partitioning rules, e.g. any tree aggregation procedure,
and a clustering method, e.g. any hierarchical or spectral clustering method. It is composed of three
steps. It uses first partitioning rules, constructed on the training set, to produce a pseudometric.
Secondly, a hierarchical dyadic partition of the training set is computed using the pseudometric and
the clustering method. We call this step relabeling as the terminal clusters allow new labels, i.e.
regimes, to be defined. These new labels are additionally associated with scores, which have the
property to rank the objects of the training set according to their relative proximity (i.e. according
to their propensity of being labelled +1). The third and final step reduces to a straightforward
1-nearest neighbor classification. For any object in the test, the pseudometric indicates its closest
object in the training set. The regime and score of this latter are thus attributed to the test set
object. RNN is proven in chapter IV to yield very good and stable results. It notably exhibits
an outstanding reduction of overfitting compared to the RF procedure for our cases of study. To
complete this presentation, another of our procedure, which has led to the development of the RNN
procedure, is described in appendix. It is called Supervised Boosted Nearest Neighbors (SBNN)
and is, like RNN, specifically designed to learn different regimes. It introduces the new notion of
clusterizer, actually a distance-based function indicating whether two objects are closed to each
other or not. The SBNN procedure trains specific classifiers, called local classifiers, using clusters
of objects defined by the clusterizers. The underlying idea of the procedure is to use the boosting
philosophy to simultaneously aggregate clusterizers and local classifiers in order to get more precise
classifiers. Unfortunately, the computational difficulties of this approach make it hardly usable, even
if heuristics to reduce that computation cost have been developed. Specific parameters must also
be specified. We preferred therefore to use the RNN procedure.

Consecutive Modeling Approaches [chapter III]
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II1.1 Kalman LagLasso

The goal of the Kalman LagLasso approach, developed in the regression setup, is to predict the
variations of a target variable at a given horizon. This section first states restricting hypotheses,
which motivate the introduction of a specific temporal regression model. This model defines a linear
relationship between the Kalman innovation residual of the target variable and lagged and Kalman
innovation residuals of the explanatory variables. To estimate the parameters of the model, classical
linear model selection procedures are reviewed. A new procedure, called LagLasso, is introduced.
It consists in selecting the most significant lagged residuals under the constraint that only one lag
per variable can be chosen. The LagLasso implementation is finally described in detail.

II1.1.1 Statement of the KLL Temporal Regression Model

The following modeling choices and hypotheses are made. We work in the regression setup and
consider that the label is the variation of a target variable at a given horizon. We assume that the
label can be decomposed into an inner component, which is due solely to the target variable itself,
and an exogenous component, which can be explained by a small subset of factors. We also suppose
that the influence of each of these factors can change over time and can be lagged. Finally, the
label is supposed to be particularly sensitive to unexpected variations of the factors, that is to say
to large deviations of the explanatory variables from their own trend. To meet these hypotheses,
the explanatory variables and the target variable are filtered via a linear state-space model, which
is specified for each of them. Their innovation residuals are computed with the Kalman algorithm
(cf. equation II.4 in subsection II.1.3). Formally, we observe the random pair (X:,Y;) over time
t =1,...,n. We consider ¥; as being the residual of the target variable and X, as the random
vector of dimension p whose components are residuals of explanatory variables (th, cey X'tp). We
aim at predicting (Y;)¢—n 11, .. n+n, Where the integer b > 1 is the prediction horizon. The following
regression model is introduced (where all variables are supposed to be centered hence there is no
constant term):

P
Vien =Y BiXi o) (I11.1)

The lag of the #** variable is an integer denoted o(7) and checks o < (i) < X. The regression
coefficients are represented by the real vector 8 = (B,,...,84). Lags and regression coefficients
are unknown parameters of the model and have to be estimated. A model selection procedure is
therefore needed. In the next subsection, the regression problem and the linear regression estimation
model are recalled, as well as classic procedures of model selection in linear regression.

I11.1.2 Model Selection in the Regression Setup

Regression Problem and Linear Regression Estimation Model. As in subsection I.2.1, the
random vector Z = (X,Y) € Z = X x ), distributed according to P, stands for the data. The
random vector X = (X*,..., X?) € X represents the factors (in our case the residuals of explanatory
economic and financial variables). Besides, the label Y € ) is real, i.e. ) = R. The loss function is:

Q(Z,f) = LY, f(X)) =Y — fF(X)P.

The true risk and the empirical risk are expressed as follows.

RUA) =B(Y — fOOF) = [y = f@PdPle,y),  Ralf) = & 3 i FUXP.
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Using the observations Z,., = (Z,, ..., Z,), we aim at finding a numerical model fn=FulZ4,..., Z0)
of low prediction error in the set of candidate functions 7. We consider the linear regression problem,
i.e. the particular case where the candidate functions f € F are linear:

fl2)=fplz) =2"B, ze€PRP,

where f = (B4,...,B8p) € R? and z,., = (z,,...,2,) are realizations of the random vectors X,., =
(X.,...,Xn). Once again, all the variables are supposed to be centered. The least square estimator
f\ﬁ,s is obtained via the application of the ERM strategy over the set F of linear functions.

ﬁls(zlzn) = (XIann)ilXInan-
In the case of linear regression estimation in the classical paradigm, we suppose that the labels Y
follow a model with additive and Gaussian noise:

Y =XpB+e¢,

where € «~ N'(0,02). The least square estimator is unbiased:

E(B*) = B,
and the Gauss-Markov theorem [HTFO01] shows that it has the smallest variance among all linear
unbiased estimators.

Regularization Methods: Ridge Regression and the Lasso. As pointed out in subsection
1.2.1, the risk can be expressed as a trade-off between bias and variance:

R(f) =Ex (var(YlX) + var(f,s(X)) + bias(f,g(X)).

This decomposition shows that including many variables naturally provides a lower bias, but usually
also a higher variance. On the contrary, having fewer variables helps reducing the variance of the
estimator but also produces a higher bias. Introducing a small bias in the estimation of § might lead
to a substantial decrease in variance and hence to a smaller prediction error. A strategy to control
the variance term is to add a penalty on £. This is called shrinkage or regularization [HTF01]. For
instance, the Ridge Regression is a regularization method, which uses L* penalty [HTF01]. We have:

p
Arid .
;Z ge(len) = argmin ||Y,., — X:Tnﬁnz + )‘ij"za A>o,
pER? =
Aridge

where ||.5||* is the L* norm of RP. The Ridge Regression delivers a path of solutions /5,
by the parameter A:

indexed

A;\idgg(zl:n) = (X1nX;rn + }\Id)_leTnyln

To select a single A, that is a single Ridge solution, cross-validation or Mallows’ C,, are the most
popular criteria. Another celebrated regularization method is the Lasso (acronym for Least Absolute
Shrinkage and Selection Operator), which uses L* penalty [BET04]. We have:

P
Bless0(Z,.,) = argmin ||Yiin — X, 8|7 + )\Z|,3j|, A>o.

pERP =

Compared to the L? penalty, the L' penalty adds sparsity. This means that, for any A value, a
smaller subset of factors are selected for computing the estimator ﬁg\““"(Zrn) than for computing
the estimator ,B\;‘ldge(Zlm). This is an interesting interpretation property. However, unlike Ridge
Regression, Lasso solutions have no closed form. Quadratic programming techniques can be used to
compute the Lasso estimator but the Lars (acronym for Least Angle Regression algorithm, the "S"
suggesting "Lasso" and "Stagewise" [BET04]) is a much simpler and computationally more efficient

strategy [BET04].
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Lars Pseudocode. The Lars algorithm is an iterative procedure of variable selection generalizing
the concept of bisector in a multidimensional framework [BET04, BEWO07]. Its pseudocode is as
follows. Note that it is written with z,.,, = (z.,...,z,), realizations of the random variables
Xin = (X.,...,X,) and that the set of iteratively selected variables is called the active set.

1. Standardize the factors z; to have mean o and variance 1. Imitialisation: r =y — vy,
Bi = o, V.

2. Find the factors z; most correlated with r.

3. Move B; from o toward its least-squares coefficient (z;,r), until some other competitor
Tk, k # 7, has as much correlation with the current residual as z; has.

4. Mowve (B, Bx) in the direction defined by their joint least squares coefficient of the current
residual on (zj,zy), until some other competitor z; has as much correlation with the
current restdual, i.e.:
<zr >=<zg,r >=<z;,7 >.

5. If a non-zero coefficient hits zero, drop it from the active set, reinclude the variable in
the tnactive set and recompute the current joint least squares direction.

6. Eliminate the variable 5 from the inactive set. Continue until p variables are entered.

Under a slight modification, the Lars algorithm yields all Lasso solutions [BET04]. Finally,
the Lasso sparse selection of factors is computable via the Lars algorithm. It may lead to both a
variance reduction of the estimator ﬁ - hence to more accurate predictions - and to a gain in terms of
interpretability. However, the Lasso cannot be used straightforwardly to estimate the parameters of
the model III.1. Indeed, the Lasso problem does not take into account the constraint of selecting a
single lag per variable. The next subsection is devoted to the presentation of the LaglLasso problem
and to the introduction of a new algorithm for solving it.

I11.1.3 LaglLasso: Introduction and Application

The LagLasso model. We introduce specific notations for the lagged vectors.

Xi,a = (Xl

1—0o) "

LX),

where 1 <42 <nand 1 <o < Y. In addition, the vector X;,.5; regroups the lagged vectors in a
single one:
Xivy = (X} . X5 X2, XP 5.

K3

Naturally, X, 5:n+5,::5 1s the matrix made of these lagged vectors

_ 1 1 p p .
Xl+Z‘:n+Z‘,1:Z' - (Xz PRI I AT S 3 PR Xz' P 1Xi72)1+Z'S1Sn+Z'-

Likewise, we use a double index for B;, € RP*¥ to account for the variables and the lags. We
consider the problem:

p X
Alagl .
N (2 s, (i) = argmin Yo s)mem) — XL gy am BIE+HAY_ D) 1Biel A > 0.

peRPx T Jrapm—

Besides, we choose the following type of candidate functions:

RX¥ 5 R
fs = » 5
z — Zi:l Zg’:l ﬁi,vmi,o,

such that 3lo(7), B; »(i) # 0. We propose to solve this problem via the procedure explained in the
next paragraph.
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The LagLasso solution. This problem of lag identification is different from the problem stated
in [CCO8], where a Lars algorithm specifically designed for time series is introduced. Each variable
is then represented by a matrix made of its lagged realizations: this algorithm manages to select
iterative blocks of lags corresponding to a single variable instead of single lags corresponding each
to a variable. On the other hand, we aim not only at building a competitive prediction method for
time series but also at clearly stating the problem of lag identification. The idea consists in writing
a variant of the Lars/Lasso algorithm, where both a variable and a lag are selected at each step,
all the other lags of the variables being then eliminated from the possible further selections. By
analogy with the Lars algorithm, the set of iteratively selected lagged variables is called the active
set. We call this variant the LaglLasso procedure. Its steps of the LaglLasso are the following:

max

1. Choose lag and lag™": o; € [lag™™®, lag™*], Vi.

2. Standardize the factors z;, to have mean o and variance 1. Initialisation: r =y — 7,
Bi,e =0,Yi,0.

3. Find the factors x;, most correlated with r.

4. Move Bj , from o toward its least-squares coeffictent (z;,,7), until some other competitor
Tk, k #7, has as much correlation with the current residual as z;, has.

5. Move (B0, Prr) 1n the direction defined by their joint least squares coefficient of the
current restdual on (z;,,2k,), until some other competitor z;, has as much correlation
with the current residual, i.e.:
< Ty, >=<Tg,r, 7 >=<Tj o, T >.

6. If a non-zero coefficient hits zero, drop it from the active set, reinclude the variable and
all its lags wn the inactive set and recompute the current joint least squares direction.

7. Eliminate all the lags corresponding to variable 3 from the inactive set. Continue until
p variables are entered.

In addition, as for the Ridge and Lasso regressions, both C,-type and cross-validation stopping
criteria are implemented to select a single step in this iterative process, hence a single vector ,3\
Reconsidering the statistical model 111.1, the model selection is performed straightforwardly via
LagLasso. It provides the main interpretation functionality of the Kalman Laglasso procedure,
as it enables a ranking of the explanatory variables according to their importance. Unfortunately,
backtesting results, provided in the next chapter, show the parameter tuning difficulties of Kalman
LagLasso, which are directly linked to the appreciating of the relevance of the explanatory vari-
ables. Besides, the precision of the Kalman Laglasso predictions casts a serious doubt on the
appropriateness of the setup. We switch therefore to the binary classification setup, which is less
demanding regarding the precision of the predictions and possibly richer in terms of interpretation
functionalities.

II1.2 Tree Aggregation Procedures for Binary Classification

This section is devoted to the presentation of the most popular tree aggregation procedures in the
binary classification setup. These procedures are extensively used in the data mining and machine
learning communities mainly because of their interpretability [BFOS84, RM08]. This section there-
fore first introduces tree classifiers. The CART algorithm for learning tree classifiers is particularly
made explicit. Secondly, the aggregation techniques of Boosting and of Bagging are presented. We
explain how both of them produce very efficient classifiers by combining weak classifiers. We also
show how they lead to the design of specific tree aggregation procedures, such as Boosted Trees,
Bagged Trees and Random Forests (RF). The interpretation functionalities of these procedures are
finally highlighted.
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I11.2.1 Introduction to Tree Classifiers

Tree classifiers are regarded as interpretable classifiers, and often referred to as "weak" classifiers,
i.e. classifiers with a low predictive power. They are also sophisticated mathematical objects, whose
definition borrows from both machine learning and graph theory [Big93, Bol98, CG01, BFOS8&4,
RMO08]. In this subsection, tree classifiers are first presented as a specific set of candidate functions
for binary classification. The CART procedure for growing tree classifiers is then thoroughly recalled.

Tree Classifiers: Candidate Functions for Binary Classification. Following the notations of
the subsection .2.1, the objects of the database are realizations of the random vector (X*,..., XP) €
X, where X is a Borel space. The labels of the objects are represented by the binary variable
Y € Y ={—1,1}. Tree classifiers are now rigorously defined using the notions of recursive partition,
splitting rule and rule of label attribution. We call a partition of X a finite set of disjoint subsets
(Xi)iel such that their union form the space X, i.e.

11|

X = U X;.
1=1

A recursive partition of the space X is defined as the couple (¢r,¢r), where tr = (V, A) is a rooted
binary tree and where ¢r is a function of the type:

~ XxV — B(X)
tr = ~

(X,v) +— tr(X,v)
which satisfies the following conditions.

e The root 1 € V of the tree checks tr(X,1) = X.

e Bach node v € V is associated with a subset ¢r(X, v) such that its child nodes are associated
respectively with ¢r(X,vy) and tr(X,vg), which are disjoint subsets checking:

tr(X,v) = tr(X,v) | Jtr(X,vR).

We denote V the set of the leaves of the tree tr. The leaves v € Vsub of any subtree trsy, =
(Vsub, Asup) C tr define a partition {t}sub()(,v)}{vevsub} of X. Usually, the recursive partitions
associated with tree classifiers are defined as finite intersections of splits. We define a split or
splitting rule sp as the inverse image of an unbounded interval under a single explanatory variable.
It is typically of the type:

sp=X, (] —o00,al), a €R, 1 €{1,...,p}

The real value a is called the threshold. The set of finite combinations of splits is denoted Sp C B(X).
Additionally, we suppose that there exists sp, € Sp such as:

t}‘(){yv[’) = spvﬂt}(xav)a
tr(X,vr) = spSNitr(X,v).

Each subset of the partition is thus an element of the set Sp. The last ingredient to define a tree
classifier is the rule of label attribution. We call rule of label attribution any function of the type:

f_{B(X) — Y

A —  f(A).

99



The rule is usually the majority vote computed on the training set. In other words, the label
attributed to A € B(X) is the label of the largest number of the objects of the training set z,.,
contained in A. The majority rule is formally defined as follows.

fum(A) = argmax p,(j|A) = argmazjcy pr(4,7),

JEY
where
pr(7]14) = Z(z,y)exxy ]]'{ZEA,y:j},
[ANz,.p]
pr(5,4) = Z(z,y)EXxyﬂ{zeA,y:j}.

n

A tree classifier is defined by the triplet (¢r,¢r, fas). Any object X of the database browses the tree
from the root to a leaf. It is oriented to the node associated subset to which it belongs. It is thus
associated with a leaf, then with the leaf corresponding subset and finally with the label attributed
to the subset via the rule. The label [(X) attributed to X by the tree classifier (tr,tr, fas) is given
by the formula:

I(X) = fM< Jix € t”r()f,v})

vEV

Tree classifiers have been introduced as elementary candidate functions for binary classification.
The CART algorithm is a procedure which allows such functions to be trained. Its goal is formally
stated in the next paragraph.

Goal of the CART algorithm [BFOS84]. The construction of a tree classifier (tr,r, far) is
based on the concept of purity. The purity of a tree node is related to the proportion of objects
of different labels in its associated subset. A node is said to be purer than another one if its
proportion of objects of different labels is lower. When growing a binary tree classifier, the goal
is that each couple of child nodes is purer than its parents. To state this goal more formally, the
notion of impurity is now introduced. We denote p,(v) the proportion of objects of the training
set corresponding to the node v. Besides, p,(jlv), 7 € Y, v € V, represents the proportion of these
objects, labelled 7. Using a slight abuse of notation, we have:

7 Z?: ]lz fr(X,v
pr(v) = p(fr(X,v) = == {ne (x0)

pr(ilv) = p.(5lr(X,v)).

Additionally, the function ¢;mp is said to be an impurity function if it satisfies the following prop-
erties.

® (imp is defined on the set {(p,,p,) : (p1,p2) € B2, ps +p = 1}.
® ¢imp has a maximum only at the point (3, 7).

® ¢;mp has a minimum at the points (1,0) and (o, 1).

® ¢imp is a symmetric function of p,, p.

® ¢imp is strictly concave.

The node impurity measure @ is defined using this impurity function.

Q(v) = pr(v)gq(v),
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where
{ vV — Ry
TV v Gimplpr(—1l), pr(+1])).

Therefore, at node v, the impurity is maximal if the two labels are equally represented in the subset
tr(X,v). It is on the contrary minimal if all the objects have the same labels. There are various
functions ¢;,,, hence various impurity measures:

e the misclassification function: ¢imp(p:,p2) =1 — maz(ps,pa).
e the Gini function: ¢ipp(p1,p2) =p1 X D2

e the entropy function: @imp(ps,p2) = —(ps x logp, + p2 x logp,).
e the Kearns-Mansour function: ¢;mp(p:,p2) = /D1 X po. Check it.

Finally, we call tree impurity the quantity denoted Q(tr) := Q(tr,tr, far) with a slight abuse of
notation:

Qltr) =) pr(v)gv) =) Q(v).

veV vev

The CART algorithm aims precisely at minimizing the tree impurity Q(¢r) using the Gini impurity
function.

CART Pseudocode [BFOS84|. Minimizing the tree impurity Q(¢r) is achieved through the
iterative maximization of the quantity

AQ(sp,v) = Q(v) — Q(vr) — Q(vr),

called the goodness of split. We give a slight and intuitive justification for this iterative strategy.
Consider the tree tr obtained from the tree tr by splitting the subset of one of its leaf v € V with
a split s,» € Sp. Two child nodes v’L and v;a are thus added to the leaf v € V. It is straightforward
to notice that

Qitr) =Y Q) +Q(v,)+Qvg) = Qltr) —Q(v') + Q(vy) + Q(vg).
veV —{v'}
The strict concavity of ¢;,p implies that, for any node v and any split sp,

AQ(sp,v) > o,

with equality if and only if p,(jlv) = p.(jlvr) = p-(jlvr), V5 € Y. The CART algorithm is
centered on this result. The iterative maximization of the tree impurity stops as soon as a tree-
growing stopping criterion is met - for example when the subset size or the goodness of split reach
a minimum threshold, or if the number of nodes exceeds a maximum threshold. The pseudocode is
as follows.

1. Initialization:
e v =0, nextv = 1.
o V={1},A=0,tr = (V,A),tr(X,1) = X.

e Choose the stopping criterion: [tr(X,v)| < Omin, where |tr(X,v)| is the size of the
subset tr(X,v) and Opm;n a minimum threshold.

2. Loop:
e [f the stopping criterion s not fulfilled:
- Compute AQ(sp,v) = Q(v) — Q(vr) — Q(vr), Vs € Sp.
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- Compute AQ(sp«,v) = maxspesp AQ(sp, v).
- Creation of vy, the left child node of v, corresponding to the split sp,. We have:

t‘:’l(Xa’UL) = SPx ﬂt}'(X,U),

v —V vz,
A = AU{vur}
- Creation of vy the right child node of v, corresponding to the split sp,. We
have: . .
fr(X,vR) = sp NEr(X,v),
14 =V U{vR}a
A = A H{vvr}.

- Update nezxtv = nextv + 2.

e Updatev: v=1v+1.
3. End of Loop. Outputs: (tr,tr, f).

Additional information, particularly concerning pruning methodology and consistency results,
can be found in [BFOS84]. Other meaningful procedures for the construction of tree classifiers,
particularly the ID3 and C4.5 algorithms, are presented in [Qui86, Qui93, Qui96]. A known char-
acteristic of these procedures is their instability [Bre96]. Indeed, it has been observed that small
perturbations in the training set may lead to the construction of very different tree classifiers. Proce-
dures of aggregation are precisely methods for improving the variance and the bias of tree classifiers.
They are reviewed in the next subsection.

I11.2.2 Techniques of Aggregation of Weak Classifiers

Techniques of aggregation (or ensemble learning methods, mixtures of experts, committee of learn-
ers, etc) aim at selecting and combining many classifiers, via a weighted or unweighted vote of their
predictions, in order to produce a more accurate classifier [F'S95, SS99, Vay06, Bre96, FH99, AAGOS6,
Bre01]. The combined classifiers are called weak or base classifiers. Methods for combining weak
classifiers which can apply to any type of weak classifiers are usually referred to as meta-algorithms.
For example, Boosting [F'S95, SS99, Vay06] and Bagging (or Bootstrap Aggregating) [Bre96, FH99]
are meta-algorithms, whereas Random Forests (RF)[Bre01] is a bagging-based method which only
handles tree classifiers. In this document, we are interested in highly efficient and very interpretable
techniques of aggregation. We focus therefore on tree aggregation procedures. In the next subsec-
tions, the Bagging and Boosting methods are recalled. Their use in conjunction with tree classifiers
is motivated. The Random Forests (RF) procedure is finally introduced as a specific extension of
the Bagged Trees strategy.

Boosting and Boosted Trees. Boosting algorithms are deterministic techniques of aggregation
of weak classifiers. They follow an iterative strategy. They maintain a probability distribution on
the objects of the training set, which is initialized as the uniform distribution and updated at each
step to emphasize misclassified objects. Each step consists thus of the computation of a weighted
error on the training set, which is minimized via the selection of a weak classifier. The classifier is
attributed a weight, inversely proportional to the error. Boosting algorithms produce a weighted
linear combination of the weak classifiers. The first boosting algorithm is called Adaboost and was
introduced in [Sch90, Fre95, FS95]. We recall here the Adaboost pseudocode as stated in [Vay06]
and first introduce the notations. We denote 9, the vector representing the discrete distribution on
the objects of the training set at iteration ¢ and

RL(F) =D (i) Lip(m v
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the weighted error on the training set of weak classifier f. The algorithm consists of the following
steps.

1. Initralization: )
1/}1(1) = _1Vl € {11 B 'an}'
n
2. For . =1,...,lmaz, ezecute the following procedure.

e Choose weak classifier f, approzimately minimizing Ry over all f € F.

e Set Ry = R:(f.) and adjust the weight w, of the classifier f,:

1 (1—R${*>
'LUL:—IH x|
2 R,

e Update the distribution vector:

¢L+1 (Z) = ¢L(Z) €exp ( - waL(mi)yi)-
Normalize the updated vector.

3. Output:

tmaz

k... = E w, fo.
=1

Adaboost is seen in [FHTO8| as an implementation of a gradient descent method to minimize
the following surrogate of the empirical risk:

An(f) = _Z ezp(—yif(z:)).

Consistency results, based on convex risk minimization strategies, can be found in [Bre00, MMZ02,
LV04, BJM06, LKS06, BT07]. Finally, it is straightforward to boost tree classifiers, although a last
parameter to tune is the size of each tree. As very large trees are prone to overfitting, it is usually
wiser to use small sized trees. A method proposed in [HTF01] is to restrict all trees to be the same
size. The ANOVA (abbreviation for analysis of variance) expansion of any aggregated tree classifier
f highlights the degree of interaction between features:

p p p
FX) =) fOXN)+ Y fORX, X+ Y fORD(XT, xR XN+
j=1 7,k=1 7,k,l=1

Indeed, the first term indicates a sum of trees which depends on one feature only. The second term
refers to trees which depend on two features exactly, etc. It is claimed in [HTFO01] and empirically
checked by us (in the next chapter) that low-order interactions are the most relevant. Choosing
the optimal size of the trees can thus be achieved by applying a cross-validation strategy to a
small number of aggregated tree classifiers of "reasonable" size J € {1,..., Jmaz}, €& Jmaz = 10.
Naturally, a combination of trees is less interpretable than a single one. However, the feature
importance is a functionality that remains available. Indeed, the relative importance of any feature
in a given tree classifier is computed by summing the improvements in tree purity gained by the
splits of that feature. This measure is easily extended to aggregated tree classifiers by summing the
relative importance of each variable over all aggregated trees [Fri00].
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Bagging and Bagging Trees. Bagging or Bootstrap Aggregating is random technique of ag-
gregation of weak classifiers. It follows an iterative strategy. At each step, a bootstrap sample
of the training set, i.e. a replicate of the training set obtained via resampling with replacement,
is generated. A weak classifier is then selected to minimize the error computed on the bootstrap
sample. The Bagging procedure produces an equally weighted linear combination of weak classi-
fiers. The Bagging pseudocode is recalled here. The bootstrap sample at iteration ¢ is denoted

((z3,,0Y1,.)y- -+ (Tp, 11 Yn, ). The error on the training set of weak classifier f is written:

n,
Ro(£) =) Uistal)2ul,)
1=1

The steps of the algorithm are the following.

1. For it =1,...,ttmaz, execute the following procedure.

e Construct a bootstrap sample of the training set ((z; ,,Ys,)"s-- -, (ZTg, 1y Yn, )

e Choose weak classifier f, approrimately minimizing R., over all f € F.

2. Output:
tmaz
1
F,..= Z fo-
=1 Lmaz

Bagging has been introduced in [Bre96] to reduce the variance of aggregated weak classifiers
(cf. the estimation error as defined in the subsection [.2.1). Unstable classifiers, that intuitively are
classifiers whose predictions can change drastically under a slight change in the training set, have
been particularly investigated. Bagging has been reported to yield excellent results when applied
to unstable weak classifiers such as tree classifiers [Bre96], [FH99]. Instability has been formally
defined in [BY02]. Theoretical results regarding the variance reduction effect for unstable classifiers
have also been obtained in [BY02]. On the other hand, n the case of U-statistics, it was shown in
[BS06] that bagging could not always reduce variance, whereas it always increases bias. Additionally,
conditions for improving nearest neighbor classifiers through bagging have been discussed in [HS05]
and consistency results have been obtained. Bagging nearest neighbor classifiers was finally proven
to be universally consistent in [BD10]. Finally, plugging bagging to any procedure for generating
tree classifiers is straightforward and referred to as Bagged Trees. The remarks made in the case of
the Boosted Trees procedure about the choice of the tree size and the interpretability of the tree
classifiers remain true for the Bagged Trees procedure. The Random Forests procedure, which can
be seen as an extension of the Bagged Trees procedure, is introduced in the next paragraph.

Random Forests. Random Forests is a random and iterative technique of aggregation of tree
classifiers. It is initialized by choosing a number p’ < p, where p is the number of features. At each
step, a bootstrap sample of the training set is generated. A tree classifier is grown on this sample
so that

e at each node, the best split is determined using a subset of p’ variables, which are randomly
selected.

e it is not pruned (in some versions, the growing can stop at early stages).

The procedure produces an equally weighted linear combination of tree classifiers. The pseudocode
of the algorithm is as follows and uses the same notations as for bagging.

1. For 1 =1,...,tmaz, ezecute the following procedure.

e Choose p' < p the number of features to be considered at each node of each tree.

e Construct a bootstrap sample of the training set ((z; ,,Y; ), (Tp, 1»Yn, )
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e Grow the tree classifier f, approrimately minimizing R} :

(a) at each node, randomly select p' features.
(b) pick up the best split among the p' features.

e Use the objects, which were not selected in the bootstrap sample, to estimate the
error of the tree classifier by predicting the class of each such object.

2. Output:
tmaz
1
E.,,.. = Z fo-
=1 Lmaz

Random Forests was introduced in [Bre01] as a combination of bagging and random selection
of variables [AAGO6], [Ho98], [Die00]. A first consistency result has been obtained in the particular
case of quantile regression [Mei06]. Recently, the link between random forests and nearest neighbor
methods has been highlighted in [LJ06], [BD10]. By considering random forests as randomized
nearest neighbor rules, consistency results have been found [BDLO08]|, [Bia]. Furthermore, Random
Forests have many interpretation functionalities. As mentioned in the algorithm description, it gen-
erates an internal unbiased estimate of the generalization error as the forest construction progresses,
by predicting, for each tree, classes on samples that were not used to grow the tree. It also ranks the
features according to their importance in the classification, not only using the improvement in tree
purity but also according to their corresponding prediction accuracy. In addition, Random Forests
yields a similarity measure by computing, for each pair of objects, their number of occurrences in
the same terminal node over all trees. Finally, the RF classifier associates a realization probability
with each computed prediction by averaging the predictions made by each tree for each class.

Conclusions. We chose to use Random Forests for its efficiency and its wide range of interpretation
functionalities. Results are reported in chapter IV. Particularly, overfitting was observed in specific
applications, caused by the choice of a too small terminal node size for tree classifiers (i.e. by too
large tree classifiers). This observation has lead us to the design of a new transfer learning procedure,
called Relabeled Nearest Neighbors (RNN), and introduced in the next section.

III.3 Relabeled Nearest Neighbours

We aim at constructing partitioning structures for classification, which would be transferable from
the training set, denoted Ttrn,.n,,, from now on, to the test set, denoted Ttest,.p,, - In this section,
this problem is stated in mathematical terms. The algorithm Relabeled Nearest Neighbours (RNN)
is introduced to solve it. The following statistical model for clustering and classification is therefore
defined. We consider the random triplet (X,Y, R) ~ P, where X € X is the observation vector,
where the label Y € )) = {—1,+1}, and where R € {1,..., Ng} is a latent variable standing for a
specific distribution of the random pair (X,Y). The distribution of the random pair (X,Y") is given
by the mixture model

Ngr
(X,Y)~ ) cPr,
r=1
where ¢, = P(R = r) is a weight, and where P, = Px yv)g—r is a non-parametric component

distribution also called regime. HEach regime P, is unknown and the number Ng of regimes is
also unknown. The goal is then to find a number of regimes Ng, a regime attribution function

.....
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RNN is a three-step procedure for constructing the numerical model (NR,H, (fT)T:L,_,,NR).

The first step is entitled Computation of the Pseudometric. It computes the pseudometric dg}\,N
by generating an ensemble 7% of hierarchical partitioning rules. Each rule is considered as a node
weighted graph. The node weight actually reflects the prediction ability of the corresponding split.
The figure II1.1 proposes an intuitive representation of these rules.

Figure III.1: Partitioning Rules as Node Weighted Graphs

The second step, called Relabeling the Training Set, produces the hierarchical partitioning
rule (trgnwn,tr RN N, SCRN N ) Using the training set, the pseudometric dg}\,N and a clustering method
selected by the user. The leaves Vg of the tree are new labels, which stand for regimes identified
in the training set. In other words, the training set is relabeled. These new labels are represented
in blue in figure I11.2. Besides, the function scgyy is a scoring function, which induces a partial
order relation in the space X. Its computation is based on the tree trgyy as shown in figure II1.2.

( )

93$° g

Figure II1.2: Partitioning of the Training Set

Finally, the third step 1-NN Classification attributes the new labels and the corresponding
scores to the test set. In practice, the distances between a given object in the test set and each
object of the training set are evaluated with the pseudometric dg}vN. The attributed label is the
label of the closest object in the training set. In the following subsections, we present thoroughly
the three steps of the procedure.
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I11.3.1 Step 1: Computation of the Pseudometric

New Representation of Hierarchical Partitioning Rules. A large hierarchical partitioning
rule risks overfitting, while a rule that is too small may not capture all the relevant and available
information. The tree-growing step is usually completed by a pruning step whose role is precisely to
determine the optimal size of the tree. We propose here another method for constructing robust clas-
sifiers with additional functionalities. It aims at using the information provided by the tree-growing
step regarding the relative importance of each split. We consider thus hierarchical partitioning rules
as node-weighted directed acyclic graphs. Each node weight indicates the prediction ability of the
associated split, which is measured by the decrease in the tree impurity. The following figures shows
the difference between the classic representation of a hierarchical partitioning rule - figure III.3 -
and the one we introduce - figure I11.4.

( )

- J
Figure II1.3: Classic Representation Figure I11.4: New Representation

Classification Paths Based Pseudometric. Consider the hierarchical partitioning rule (¢r, tr, f),
where tr = (V, A) and V ={1,...,|V|}. We denote L, the operator, which returns the leaf of the
tree tr attributed to the object z, once z has been classified by the rule.
Lir _{ X — (1, VD
RNN z — Liyn(z).

We also define the operator C%,; », which returns the path of nodes visited by the object z when it
is classified by the rule. This path of nodes is denoted {1 = Lo (@)

o X — P{y,...,IVI)
BVN ) 2 v 15 Ly (2))

We call C¥, v (z) the classification path of the object z in the tree tr. Consider now the two objects
z and z'. To compare their classification paths in the tree tr, we introduce the operator PYy v,

which returns the path L&, v (z) 5 L&, v (z') from the leaf Li . (z) to the leaf L\ (z').

o _ ] XXX — P(a,...,IVID)
RNN (z,z') +— (L8yn(z) S LEyn(z)).

In other words, Py y(z,z') is the sequence of nodes common to the classification paths of z and
z' in tr. Besides, the relation between Py, and C¥y . is expressed as follows.

Pliyw(a,2") = {OZNN(mJ A cf;NN(:c'J} | Jmax {cf{w(m) N cf;NN(m')},
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where

{CRNN( ) A CRynl(z )} { rnn( U Chnnl(z } ~ { Avn mCRNN }

As an example, the classification paths of z and z’ are respectively tagged in red and in yellow in
the figures II1.5 and II1.6. In this case, Phyy(z,z') = 1.

( N

-] H

Figure II1.5: Classification Path for z Figure III.6: Classification Path for z’

-

In addition, we introduce a!” the function returning the weights of the nodes of the tree tr.

tr vV o — IR+
o'’ =
v — av).

In the applications in chapter IV, we define a!" using the decreases (AQ(spy+,v))vey in the tree
impurity defined with the Gini function.

al” (v) = AQ(spy-,v), Vv € V.

Finally, the pseudometric d%,  (z,z') is computed by summing the weights o’ (v) over the sequence
of nodes P&y y(z,z').

dRNN z, $ Za ]l{'UEPt N(z,z/)}.

Let now 7 be an ensemble of hierarchical partitioning rules generated by bagging. Straightfor-
wardly, the pseudometric d;:’}vN is the sum of the pseudometrics d%,  over all trees ¢r in the
ensemble 7x.
T
diyn(z,z') = Z ot (v V) vept (22
(tr,tr,f)ETr

As a conclusion, defining this pseudometric can also be seen as a method to re-encode the objects
of the training set using their classification paths in the ensemble 7% . Indeed, the distance between
the objects z and z' is made via the comparison of their corresponding series of classification paths

t t
(CRTNN (m)) (tr.fr f)ETR and (CRTNN (m’)) (trér, f1ETR"

I11.3.2 Step 2: Relabeling the Training Set

This step aims at computing the ordered hierarchical partitioning rule (¢7ayn, 7 RN N, SCRN N ) USIDG
the training set, the pseudometric d;’}\,N and a user-chosen clustering method. This is achieved in
the two complementary sub-steps.
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e Apply recursively a user-chosen clustering method to the matrix

(d’g]aVN(&?, m’))z,z'eztm]mtm :

This produces the tree trgyy = (Vrny, Arnn) and a recursive partition of the training set,
denoted (t’:rRNN(mt"'njzntrnYIU)'UEVRNN)' This recursive partition is illustrated by the graphs
I11.8, III.9, III.10, III.11, III.12 and III.13. Each graph represents a specific subset of the
SP500 training set under the form of a hierarchical partitioning structure called dendrogram.
These dendrograms are produced by this sub-step when used with a hierarchical agglomerative
clustering method.

e Reorder iteratively the nodes v € Vgyn according to the proportion of positive labels corre-
sponding to the subsets t}RNN(:Dtmm”n ,vr,) C Ttrn,.,, and t}RNN(mtmmtm ,UR) C Ttrn,.,,,. -
By convention, the left child node and the right child node of v are respectively denoted vy,
and vgr. For simplicity, we also denote y,, C Ytrn,.m,,, and y,, C Ytrnon,,, the labels of

respectively t}RNN(:Dtmm”n ,vr) and t}RNN(mtmmtm ,Ur). They satisfy the relation:

|{iyva1 = +1}| |{iyval = +1}|
|va| - |yvn|

The score is computed in parallel on the recursive partition of training set. It is defined by
the following recurrence relations - illustrated by figure II1.7.

» 1
SCRNN (tTRNN(mtrn,mtm ) 1)) = SCRNN (ﬂitrnmm) =3

» » 1
SCRNN (t"'RNN(mtrn,;ntm ) UL)) = SCRNN (t"'RNN(Itrnlmtm ) U)) PUCOE=

; » 1
SCRNN (t"'RNN(mtrn,;ntm ) UR)) = SCRNN (t?"RNN(Itmmm ) U)) + e

where b returns the level of any node v in the tree trryy:

b N — N
Tl nm — minfmeN 2™ <n<2am—1}

Figure II1.7: Computation of the Score on the Training Set
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The outputs of these combined sub-steps are:

e the leaves Vgyy which are considered as new labels of the training set. We say that they relabel
the training set. For example, the figure 1I1.14 compares the original labels of the SP500
training set, where labels +1 are represented in blue and labels —1 in green, with the new
RNN labels. Note that the recursive partitioning stops only when the size It;‘RNN(a:tmmm |
of the subsets equals 1. Hence the large number of new labels.

e the score defined on the training set such that:

1)
S(.’L‘) = Z W,V.’B c mtrnjiﬂtrn'

vECHTNN (2)

The computation of the score of the SP500 training set is illustrated with figure III.15.

RNN Dendrogram, node — 0 / p — 0.001 RNN Dendrogram, node — 1 / p — 0.001

i

Average Linkage Method Average Linkage Method

v."' f

——

Figure I11.8: trann(Tirn,.,, 1) Figure I11.9: {rann (Ttrny.n,,,  2)
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RNN Dendrogram, node — 2 / p — 0.001 RNN Dendrogram, node — 3 / p — 0.001

Height

Average Linkage Method Average Linkage Method

Figure II1.10: {rann(Ttrn,..,, ,3) Figure IIL.11: {rann(irn,.n,,,, ,4)

RNN Dendrogram, node — 4 / p — 0.001 RNN Dendrogram, node — 6 / p — 0.001

Height

.

Average Linkage Method Average Linkage Method

Figure II1.12: {rann(Ttrn,.,, ,3) Figure I11.13: {ranw(eirn,.n,,,, ,6)

S&P500 Training Set Relabelling , p = 0.001
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Figure II1.14: SP500 Training Set Relabeling
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S&P500 Training Set Score , p = 0.001
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Figure II1.15: Score Computation

Clustering Methods. A clustering method is required for fulfilling the relabeling task. Generally
speaking, clustering is a field of unsupervised learning [HTFO01]. It aims at identifying in a database
groups of objects or clusters, which are homogeneous according to a given similarity measure. It has
inspired many analyses and procedures [Har75, And73, Mur85, Gor99, HTF01]. Yet, the question of
its theoretical foundations has emerged only recently [VLBD05, BDvLP06]. Properties of stability,
convergence and consistency of various clustering methods are currently under active investigation
[vL09, vLBBO08, BvL09, CM10, PP11]. We focus here on Hierarchical Agglomerative Clustering
(HAC) [MRS08] and Spectral Clustering [vLO07].

Hierarchical Agglomerative Clustering. Hierarchical Agglomerative Clustering (HAC) is an
iterative bottom-up procedure for merging clusters, which produces a hierarchical partition of data
called dendrogram [MRS08]. It requires a linkage criterion, which determines a distance or a simi-
larity measure between two finite sets. The HAC procedure is initialized by considering each object
of the training set as a cluster. The most similar pair of clusters is then found iteratively using the
linkage criterion and merged into a new cluster. The procedure stops when all the objects of the
training set are in the same cluster. A dendrogram is produced, which recapitulates the consecutive
cluster agglomerations [CM10, JD88].

The corresponding pseudocode, stated in [MRS08], is reproduced here. We denote Sim =
(S1m(1,7))i<i<nirn,1<j<n.,, the similarity matrix of the training set, where Sim is initialized as
follows:

Sim(i,) = dgy y (@ern,, Tern, )-

Besides, we need to maintain temporary programming variables. Let Sim®°" be a vector of vectors
initialized as the matrix Stm, where each row (Sim(i, j)) <i<m.ji<i has been sorted in the increasing

order. We denote Sim'™%? the corresponding indices of Sim in the reordered matrix Sim®°Tt.

We also denote Cls a set of active clusters, which are updated during the procedure. The output
dendrogram is denoted Agendro. Now, we also need to choose a linkage criterion. A linkage criterion
is a function Link

Llnk = ’P{mtrn”"trn} x ’P{xtrnlzﬂtrn} E— R+
= (A,B) — Link(A,B),
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which depends on a similarity measure that we denote Dist. The function Link is usually chosen
among the following criteria (this list is non-exhaustive):

the single - linkage criterion : Link(A, B) = mingeca, z-epDist(z,z').

the complete - linkage criterion : Link(A, B) = mazgca, o cpDist(z,z').

the average linkage criterion : Link(A, B) = m ZzeA,z,EB Dist(z,z').

the average group linkage criterion: Link(A, B) = m Z(z,z')e(AUB)z Dist(z,z').

The HAC procedure consists of the following steps.
1. Initralization:

e for each object 1 € {1,...,n4rn}, Cls(z) = 1.

sort index

e Compute Sim and Stm
® Apendro = 0.
2. Fori€{1,...,nenl,
e Find the most similar pair of clusters: 1* = argming;,(;)—, Simsort(4, ).
7* = S1mi"e? (1% arg min(Sim*°Tt(i*,.))).

Update dendTOgTam! Adendro = Adendro U {(Z*:]*)}

Deactivate cluster 357 : Cls(7*) = o.
Update Sim*°Tt.
For i € {1,...,n4n}, Cls(12) =1, 11 #£ 1%,
— Delete values Sim(1i,7*) and Sim(i1, %) in the vector Sim®° (1, .).
— Update Stm: Sim(it,1*) = Link(Stm(2,1*), Stm(iz, %)) and Sim(i*,12) = Sem(iz,1*).
— Insert new value Sim(i1,1*) in the vector Stm*°"t(11,.) and Sim(1*, 1) in S1m°T(i*, ),
respecting the increasing order.

3. Output Agendro-

Cutting the dendrogram at a specific level produces a flat clustering in a certain number of
clusters. Likewise, it is straightforward to select the cutting point that produces a user-defined
number of clusters. These procedures have recently been reformulated in a specific framework,
where properties of stability and convergence have been proved [CM10]. Note finally that the
second step of the RNN procedure systematically requires two clusters as outputs.

Spectral Clustering. Spectral Clustering aims at producing a user-defined number ¢l of clusters
by using the eigenvectors of the Laplacian graphs, computed on the training set. Defining Laplacian
graphs requires introducing the following notations. The similarity matrix of the training set is

denoted as previously Sim = (S'Lm(z,])) , where for more simplicity:

1<i<Ntrn,1<j <Ntrn
: o TR
Szm(z, .7) - dRNN(It’I"rh ) "Dtrn] )

The diagonal matrix diagsim = (diagsm(i,j)) , Where

1<i<ntrn,1<J<Ntrn
n

diagsim(i,1) = ) Sim(i, j).
J=1

As in [vL07], we distinguish three different Laplacian graphs:

e the unnormalized graph Laplacian, defined as
A?ap = diagsim — Sim
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e the normalized graph Laplacians, defined as

AZ

1 g T3 A0 i T s R I L
Ay = d1agg,y, Apypdiags,,, = I —diagg,;, Stm diagg,;,
lap

= diagg;,, Al,p = I — diagg,,,, S1m
where [ is the identity matrix.

Once a version of the graph Laplacian has been chosen, the projections of the objects of the training
set on the first ¢l eigenvectors are computed. The projected objects are then clustered into cl clusters
using K-means. We now reproduce the pseudocode of the spectral clustering procedures as stated in
[vLO7]. We distinguish between unnormalized spectral clustering and normalized spectral clustering
using the graph Laplacians 4;,, [NJWO01] and A7, [SM00]. The inputs are the similarity matrix
Sim and the number cl.;4 of clusters.

1. Compute the graph Laplacian Ay, © € {0, 1,2}.

2. Compute the first cle;y etgenvectors eig*, ..., eig® of Afap.
3. Let eig € R*** be the matriz containing the vectors eig*,...,eig" as columns.

eigi;

4. If 1 =1, normalize the rows of eig: eig;; — ——21—~.
(XK=, e195)>

5. Define the vectors (eigi) corresponding to the rows of eig.

ie{1,...,n}

6. Cluster (eigz-) wnto cl clusters using K-means.

ie{1,...,n}
7. Output the resulting clusters.

Note finally that properties of convergence of the graph Laplacian have been established in
[vLBBO08| and [PP11].

I11.3.3 Step 3: 1-NN Classification

The hierarchical partitioning rule (trgyw,trryn, sScryn) is computed at step 2 on the training set.
It is extended as follows to the space X.

e The recursive partition (t}RNN(X, ’U)UGVRNN) of the space X is defined via 1-NN classification

applied to the recursive partition (t}RNN(:Etmm”n , ’U)'UEVRNN) of the training set.

trenn (X, v) = {m € X, arg min Ay (z,z) € t;"RNN(mtm,;nmvv)}-

z'€trrNN (Cﬂtm,;ntm ,v)

Particularly, we call regimes the subsets corresponding to the leaves of this rule

(t‘:"RNN(X: U))

~ )
vEVRNN

which form a partition of X.

e The score scryn is likewise straightforwardly extended to a scoring function X — [o, 1],
which induces a partial order relation in the space X.

1)t
s(z) = Z 7( 2b3v) Ve € X,

vECHTNN (=)
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Note that the computation of s(z) relies solely on C’Zﬁ%”(:r) =015 Lt x(z)}, hence on
Lt v (z), which is a leaf of the tree trgyy. In other words, we have the relation:

s(z) = s(z'), Vz € tr(X,v), Vz' € t}(mtmmzm,v), v € Vann.
The value of the score characterizes therefore the regime.

Finally, the Relabeled Nearest Neighbors procedure is a new meta-algorithm which aims at
identifying and at predicting regimes. It is proven in the next chapter that it yields very good and
stable results. It notably exhibits an outstanding reduction of overfitting, compared to the Random
Forests.

I11.3.4 Input-Output Diagram of the RNN Procedure

The following diagram recapitulates the three steps of the RNN procedure, implemented with R.
In practice, splitting rules are stumps, i.e. tree classifiers of size 3 (one parent node and two child
nodes). Besides, the hierarchical partitioning rules of step 1 are tree classifiers generated by bagging.
The inputs of the procedure are the labeled training and test sets.

{ (mtrnt )y Ytrng (h))lgtSntrn ) (mtEStt ) Ytest, (h)):lgtgntest }

Note that the labels are computed as explained in subsection II.2.1, using the linear trends of the
target variable.

yi(h) = sgn (T;Hl,s*,k* — ths*’k*),

where s* is user-defined, k* is the most recent lag at scale s* and h is the horizon of prediction.
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[ Input-Output Diagram RNN ]

Computation of the Pseudometric

e Inputs: {(ztrm:ytrm (h))1<t<niom  (Ttests, ytestt(h))lgtgmest}-
e Inputs Format: csv files.

T7 T7
" Outputs: { (dRken (@ermir Bermy)) i (AN @ernis Taest)) i i <mans }

e Outputs Format: R data frames.

Relabeling the Training Set

T
e Inputs: {(mt"‘"tl Yerne (h))i<t<nirn, (dR?V'N(me"z ) ‘Tt?"nj)) 1<46,5<nirm }

e Inputs Format: R data frame.

[ ] Olltplltsl {trRNN, (t’:"RNN(zt"‘nl:n”nyv)) ’ (SCRNN({:,‘RNN(:E”“‘:"”H’v)))veVRNN}'

vEVRNN

e QOutputs Format: R data frames.

1-NN Clarsiﬁcation

( )

-
o tuputs: { (are, sty (W) <t (@B (22rm 160 o s |

e Inputs Format: R data frames.

e Outputs: <scRNN(a:test]))
1<t<ntest
e Qutputs Format: R data frame.
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The pseudocodes corresponding to these three steps are as follows.

Pseudocode - Computation of the Pseudometric.

1. Generate the ensemble Tr of bagged tree classifiers using the training set (Tirn,, Ytrn, (h))i<t<n,,.
and the CART algorithm with the Gint function. We get:

atr(v) = AQ(spv*y’U)yvv € Va
where tr = (V, A) € Tr.

2. Compute the pseudometric on the training set.

Tr _ tr
ARy N (Ttrng, Trn,) = E " (V) e pn,  (2erm, @irm
(tr,tr,f)ETR

i

J

3. Compute the pseudometric between the training set and the test set.

Tr _ tr
dENn (Ttrn,, l‘testj) = E a (U)]l{uep;;gw (@trn; rest; )}

(tr,tr,f)ETR

4. Outputs:

T7 T7
{ (N (@erns Brn,)) < iy, (BRN N (Btrnis Ttesty)) s i, 1< imenns }

Pseudocode - Relabeling the Training Set.
1. Initialization:

e v =0, nextv = 1.

e FEnter
VRN ={1}
ARnN =0
irRNN = (Vanw, Arnw)
t‘:rRNN(Itrnlmtrn ) 1) = Ttrn,.p,,,
SCRNN (mtrnizn”n = %

e Choose a clustering method.
2. While v < neztv

o If lfrann (Tirn,.., V)| >3

- Apply the clustering method to t}RNN(mtrthm,v).
Produce two clusters t}RNN(mtmmtmrvL) and t}RNN(mtmmtmr'UR) such that:

x the following relation 1s checked.

|{iyva1 = +1}| |{iyval = +1}|
|va| - |yvn|

x vy, and vg are respectively the left child node and the right child node of v.

{ Veny = Vany Ulvet Ulvr],
Apnvn = Arnn Ulvur} U{vvr)
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- Compute the scores corresponding to these new nodes.

" " 1
SCRNN (tTRNN(-’Etmth ) 'UL)> = SCRNN (t"'RNN(Itrnlmtm ) U)) PR

£ = £ .
SCRNN | tPRNN (Ttrn,..,, »VR) | = SCRNN |tTRNN(Ttrn,.n,, V) | T sroris

- Update nezxtv = nextv + 2.

e Updatev: v=v+ 1.

3. Outputs:

{t"'RNN; (t"'RNN(Itrnlmtm ) U))veVRNN’ (SCRNN(Itrnlmtm ) U))veVRNN }

Pseudocode - 1-NN Classification.
1. For 7 =1 to Nyest

2. Find *
- . T
v = argmin dgf y (Ttrn,, Ttest, )-
1€[1,ntrn]

3. Attribute v* € Vgyn to the object Tiest, such that 1* € t}RNN(IEtmth,U)-

4. Attribute scay N (test;) = scaNN ((TRNN (Ttrn, ., V"))

5. Outputs:

<SCRNN(Itest])> .
1<5<N¢est
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Chapter IV

Backtesting and Numerical Results

I only believe in statistics that I doctored
myself

Winston S. Churchill

Methods of database and model construction are reported in chapters II and III. They have
been consecutively developed to meet the improvements suggested by the module Backtesting and
Numerical Results (cf. the experimentation protocol - figure 1.14 in subsection 1.3.1). The goal
of this chapter is to introduce this module and to present the results obtained with a group of key
financial target variables composed of stocks, commodities and exchange rates. The first components
of the backtesting module are two generic backtesting plans, which evaluate the accuracy of any
trend predictive numerical model over a "significant" time period.

e The first plan computes the model recognition rate of upward and downward trends at a
user-chosen horizon and scale.

e The second plan designs trading rules using predictions made over the test set. The underlying
idea is the following. Imagine a trader who can decide, at each moment, to sell or to buy one
unit of the target variable, or to keep his position unchanged. If the prediction of the next
trend is positive, the trader buys; if it is negative, he sells. This trading rule yields a profit
and loss account (P&L), which is the cumulated earned money over time.

In addition, interpretation functionalities, such as measures of feature prediction ability and mea-
sures of model and prediction reliability, help to analyze the decision mechanism of the numerical
model. The decisive role played by these interpretation functionalities in the switch from one mod-
eling approach to another is clarified in this chapter. Another important aspect of the backtesting
analysis concerns the dramatic influence of the parameter computation procedures - at each step of
the experimentation protocol - on the formulation of conclusion statements. This methodological
difficulty is particularly highlighted, as it has led to the design of the Relabeled Nearest Neighbors
(RNN) procedure. This procedure has then been used to study the Efficient Market Hypothesis
(EMH), what is illustrated. The plan of this chapter is as follows. The first section is devoted to the
backtesting analysis of Kalman Laglasso (KLL) predictions of SP500 monthly variations. These
real-valued predictions are calculated using a pool of filtered and lagged explanatory variables, which
are considered on a five years sliding window moving across a twenty years historical data range.
Results, i.e. trend recognition rates and P&Ls computed over this period, are summed up for differ-
ent KLL and classic linear models. The selection of lagged variables by specific KLL models during
the backtesting is particularly investigated. It is shown that if well-chosen KLL models outperform
their competitors, they also suffer from drastic limits concerning prediction accuracy, interpretation
functionalities and parameter tuning. The prediction level of precision is therefore lowered in the
next sections, as we switch from the regression setup to the binary classification setup. In addi-
tion, the UniCart representation procedure is introduced to provide more interpretable and intuitive
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features and labels. The second section focuses on the construction of trend predictive numerical
models using the Random Forests (RF) and the Relabeled Nearest Neighbors (RNN) procedures
with the two types of UniCart databases. The interpretation functionalities of both procedures are
used to upgrade the decision-making of the trading rules and to identify the most important fea-
tures. Backtesting analyses are performed over a period of five years for the group of target variables
introduced in subsection II.1.1. They highlight the overfitting of Random Forests numerical models,
and show that it is due to the size of the tree classifiers. Conversely, they prove that the RNN pro-
cedure, which does not require any parameter tuning procedure, is not submitted to this overfitting
phenomenon. In the third section, the specific backtesting results of the RNN numerical models are
thoroughly studied. The efficient market hypothesis is questioned using RNN numerical models,
whose trading decisions have been delayed. In addition, the relabeling of the training set and the
1-NN classification of the test set are meticulously illustrated using the application examples of the
second section. New research directions for designing trend predictive models are finally discussed.

Consecutive Modeling Approaches

[z woryoag] symsax Suryseyyoeq jo worjejardiajuy

v
| B Sl ]

IV.1 The Prospective Kalman LaglLasso Approach

In this section, we use the Kalman LagLasso (KLL) approach, presented in section III.1, to compute
predictions of monthly movements of the SP500 index. Modeling choices, hypotheses and param-
eters are specified in the first subsection. The Kalman Laglasso model and the related calibration
methods are also very briefly recalled. The second subsection is devoted to the presentation of back-
testing results. In practice, different KLL numerical models, corresponding each to a specific value
of maximal lag, are calibrated using a pool of factors considered on a time window of five years.
Each of them computes a prediction of the variation of the SP500 index over the next month.
A significant number of successive predictions is produced by shifting the time window over the
last 20 years of SP500 monthly variations. Their accuracy is evaluated via the backtesting plans.
Recognition rates as well as P&Ls of KLL numerical models are shown to compare favorably to
those obtained with classic state-space models. In addition, these results highlight the importance
of the Kalman filtering step. They also suggest that the choice of the regression setup may be too
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ambitious. Besides, straightforward measures of factor importance, based on the relative relevance
of the iteratively selected variables, are also computed. They finally point out the limits of the KLL
approach in terms of interpretation functionalities.

IV.1.1 SP500 KLL Numerical Models

We work with the modeling choices and hypotheses stated in subsection III.1.1. We aim at predicting
the real-valued monthly variation of the SP500 index at horizon h = 1 month. We assume that this
variation can be decomposed into an inner component, which is due solely to the SP500 index, and
an exogenous component, which can be explained by a small subset of macro-economic and financial
factors. They are picked up among the following US variables, introduced in the subsection II.1.1.

e the Monthly US 10-Year Treasury Constant Maturity Rate (GS10).

e the Monthly US 3-Month Treasury Bill (TB3).

e the SP500 Price-to-Earnings Ratio (PER).

e the US Unemployment Rate (UNEMPLOQOY).

e the NAPM, ISM Manufacturing, Purchasing Managers’ Composite Index (NAPM).
e the Disposable Personal Income (INCOME).

e the Monthly Price of Gold, in London, afternoon fixing (GOLD).

e the Monthly Spot Oil Price, West Texas Intermediate, in dollars per barrel (OIL).
e the US Population (POPULATION).

e the Consumer Price Index For All Urban Consumers (CPIAUCSL).

e the 30-Year Conventional Mortgage Rate (MORTG).

Note that these variables need to be chosen carefully. We observed indeed that having too many
correlated factors in the database is usually very counter-productive. In addition, we assume that
the influence of each of these factors can change over time and can be lagged. Finally, the SP500
variation is supposed to be particularly sensitive to unexpected variations of the factors, that is to
say to large deviations of the explanatory variables from their own trend. The Kalman LaglLasso
modeling approach is based on these hypotheses. We denote Y; the SP500 monthly variations and
X; ={X},...,XP} the random vector of dimension p, which represents the monthly variations of the
explanatory variables. The variables X; and Y; are filtered via a specific linear state-space model,
directly characterized by the matrices [ and II; of equations II.1 and II.2 in subsection 11.1.3. We
consider the following very simple models.

e State-Space Model 1 (SSM1) also called local level model or Arima(0,1,1):
Pt = Ht = 1.

e State-Space Model 2 (SSM2) also called local linear trend model or Arima(0,2,2):

Iy =1 and II; = ( tot )
0 1
The innovation residuals of the variables X; and Y; are computed with the Kalman filtering algo-
rithm. Referring to the equations II.1 and II.2 in subsection II.1.3, we assume that the observation
and evolution covariance matrices oy, and ow, check:

UVt =0y

ow, =—0w.
They are estimated via the L-BFGS-B quasi-Newton optimization algorithm (cf. [LN89, RHBZ95]),
which is a maximum likelihood strategy. Besides, we denote Y; the residual of the SP500 monthly
variation. The residuals of the variations of the explanatory variables are likewise denoted X; =

{th, e ,ti}. In our case of multivariate time series, one could wonder whether to use in practice
a different filter for each individual time series or the same filter. In our implementation, we used
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one state-space model for the response Y; and the same state-space model for all factors related to

XF, where k = 1,...,p, for simplicity of use. We observe thus the random pair (X¢,Y:) over time
t=1,...,n and aim at predicting Y,,.,. The KLL temporal regression model is as in equation III.1

in subsection III.1.1. ,
1?t—o—:L = Z ,Bz‘)zti_g(i)-
1=1

The lag of the it variable is the integer o(7), which checks o < o(z) < X. In the next subsection, we
focus on four Kalman LaglLasso numerical models, corresponding to the maximal lags >/ = 1, 3, 6, 12.
The lags as well as the regression coefficients represented by the real vector 8 = (f8.,...,8q) are
estimated by the Laglasso procedure (cf. subsection III.1.3). The next subsection presents the
backtesting plans and results specific to the different Kalman Laglasso models and to classic linear
models.

IV.1.2 Backtesting Plans and Results

The backtesting plans aim at evaluating the precision of the Kalman Lagliasso numerical models
and at exploring further refinements. They are based on the same principle: considering the last
20 years of SP500 monthly variations, we use a sliding window of five years to make a prediction
of the variation of the SP500 index over the next month. A number of successive predictions at
horizon A = 1 month are obtained and compared with those computed with classic linear univariate
and multivariate models. The following models are thus studied to clarify the role played by the
filtering step and by the variable and lag selection step.

e SSM1: Iy = II; = 1. No explanatory variables are used.
e SSM2: It =1 and IT; = ( vt ) No explanatory variables are used.
0o 1

e KLL models for 5 = 1,3,6,12: the SP500 only is filtered using SSM2, while all the explana-
tory variables are filtered using SSM1.

e Regression-based and Lasso-based models: the SP500 only is filtered using SSM2 while the
explanatory variables are not. Variable selection is performed through Regression or Lasso.

The first backtesting plan consists in computing a recognition rate of upward and downward
variations of the SP500 depending on the amplitude of the variation of the index. The results
presented in the table IV.1.2 clearly show that the Kalman LaglLasso models outperform the other
ones. These results are completed by the figures IV.1, IV.2, IV.3 and IV.4. They display the kernel
estimated density of the conditional variables v;|(sgn(%:) = 1) and y:|(sgn(g:) = —1), where y; stand
for the observed variations of the SP500 index and §; for the predictions computed by KLL models
for the different maximal lags. These figures prove that KLL models are particularly efficient for
the detection of downward trends of great amplitude. Yet, they perform poorly when confronted
with upward trends of great amplitude. The second backtesting plan implements a straightforward
trading rule based on the predictions of the SP500 variations. Imagine a trader who sells or buys
one unit of the SP500 index every month. If the prediction of the model for next month is positive,
the trader buys. If it is negative, he sells. At the end of the backtesting period, the gained P&Ls
are compared on figure IV.5: State Space Models 1 and 2 are represented in green, Regression and
Lasso- based Models in red and Kalman LagLasso Models in black. Note that the gains obtained
with LagLasso models are all higher than gains obtained with other models. Besides, State Space
Model 2 performs much better than State Space Model 1. This underlines the essential role played
by the filtering step. Finally, the importance and predictive ability of each factor in KLL models
is analyzed with the following simple indicators. The figures IV.6, IV.7, IV.8 and IV.9 display thus
the occurrences of each factor for respectively X = 1,3,6,12 months. These graphs give a hint
about the relative importance of the factors but not necessarily about their relative relevance. They
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are therefore completed by the tables IV.2, IV.3, IV.4 and IV.5. These latter indicate whether the

predictions delivered by each factor, i.e. {ﬁii;_a(i]}, are of the same sign as the targeted labels
{Gt+.}. They allow us therefore to distinguish between the number of right predictions and the
number of wrong predictions per factor. They show that despite the good results obtained by the

KLL numerical models, the recognition rate of every factor is quite poor.

Figure IV.1: vy|(sgn(%:)), 2 =1 Figure IV.2: v¢|(sgn(%:)), X = 3

00
conditional. distrib

conditional. distrib

Figure IV.3: y;|(sgn(9:)), > =6 Figure 1V.4: y|(sgn(g:)), & = 12
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Kalman Kalman Kalman Level Model | Local Trend | Lasso Model Regression
), LagLasso, LagLasso, LagLasso, Model Model
X =3 X =6 X =12
60% 59% 60% 52.4% 57.6% 57.6% 55.7%
60.7% 60.1% 60.1% 52.8% 59% 58.4% 56.2%
62.6% 61.1% 61.1% 50.4% 59.5% 58.8% 58.8%
63.5% 60.6% 61.5% 50% 58.7% 57.7% 57.7%
67.1% 62.9% 64.3% 47.1% 55.7% 58.6% 58.6%
69.1% 65.5% 67.3% 45.4% 56.4% 58.2% 54.5%

Table IV.1: Recognition Rates of SP500 Upward and Downward Movements
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Figure IV.6: Selected Variables Histogram for KLL, ¥ =1

Explanatory Variable

# Correct Preds

# Wrong Preds

CPIAUCSL
GOLD
GS10
INCOME
MORTG
NAPM
OIL
PER
POPULATION
TB3MS
UNEMPLOY

# Selections
31 19
41 20
21 10
41 20
10 5
63 34
48 23
48 16
57 26
44 21
34 19

12
21
11
21
5
29
25
32
31
23
15

Table IV.2: Correct and Wrong Predictions per Variable for KLL, Y =1
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Selected Variables, lag.max = 3
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Figure IV.7: Selected Variables Histogram for KLL, ¥ =3

Explanatory Variable | # Selections | # Correct Preds | # Wrong Preds
CPIAUCSL 14 6 8
GOLD 14 4 10
GS10 20 10 10
INCOME 10 4 6
MORTG 13 7 6
NAPM 32 16 16
OIL 53 24 29
PER 33 15 18
POPULATION 28 15 13
TB3MS 36 15 21
UNEMPLOY 26 16 10

Table IV.3: Correct and Wrong Predictions per Variable for Kalman LagLasso, > = 3

127



25

20

15

10

CHTAUGSLS
G LD$§§
G4108
INCOMES$
MORTGS
NAPM$

o OIL$

o PHRS

o PQPULATIO
TIB3MSS
UNEMPLOY$

e

Selected Variables, lag.max = 6

11 11

12

25

13

Figure IV.8: Selected Variables Histogram for KLL, ¥ =6

Explanatory Variable

# Selections

# Correct Preds

# Wrong Preds

CPIAUCSL
GOLD
GS10
INCOME
MORTG
NAPM
OIL
PER
POPULATION
TB3MS
UNEMPLOY

29
11
11
12
8
15
25
27
23
25
13

20

Table IV.4: Correct and Wrong Predictions per Variable for KLL, > =6
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Figure IV.9: Selected Variables Histogram for KLL, X = 12

Explanatory Variable

# Selections

# Correct Preds

# Wrong Preds

CPIAUCSL
GOLD
GS10
INCOME
MORTG
NAPM
OIL
PER
POPULATION
TB3MS
UNEMPLOY

51
47
17
36
21
23
48
33
33
38
43

24
23
9
20
14
10
30
14
15
22
21

27
24
8
16
7
13
18
19
18
16
22

Table IV.5: Correct and Wrong Predictions per Variable for KLL, > = 12

129




IV.1.3 Conclusions and Limits of the KLL Approach
Two striking observations can be made concerning the backtesting results.

e Kalman LaglLasso numerical models outperform their more classic competitors. Yet, there is
a stunning gap between the ambitious goal of predicting real labels and the actual accuracy
of the KLL predictions. Indeed, they only yield a recognition rate of 60% in the best case (cf.
table IV.1.2).

e The filtering step seems to play a more important role than the variable and lag selection
step. First, the tables IV.2, IV.3, IV.4 and IV.5 all point out the poor recognition rate of
downward and upward trends per variable. In addition, the results obtained by the Kalman
LagLasso numerical models for different maximal lags are very similar. This hardly highlights
the influence of lagged variables in the prediction of SP500 movements. Eventually, the choice
of the filtering step is decisive as shown in table IV.1.2 and figure IV.5. These results have
the merit of reminding us that good estimating of the current trend of the target variable is
of major importance.

The main drawback of the Kalman LagLasso procedure is that it does not provide a method for
automatically choosing the most appropriate filter for each variable. This is also an important
limit in terms of interpretation functionalities, as we are unable to quantitatively compare the
respective relevance of variable filtering and of variable selection. The switch from the regression
setup to the binary classification setup is therefore strongly motivated. It first allows us to lower the
prediction level of precision, as we aim at predicting binary labels and not real ones. Besides, many
learning procedures specific to the binary classification setup benefit from advanced interpretation
functionalities, such as a precise analysis of the importance of features. In the next sections, we
work in the binary classification setup. We use the UniCart procedure for turning economic and
financial variables into interpretable features. This leads to the computation of new databases
comprising up-to-date information, even if these variables are not sampled at the same frequency
rate. Besides, UniCart features are computed at different scales, which may correspond to different
filtering levels. Trend predictive numerical models, trained using the Random Forests (RF) and the
Relabeled Nearest Neighbors (RNN) procedures, are compared. Particularly, we show that the RNN
procedure is not submitted to an overfitting effect observed with the RF procedure.

IV.2 From the UniCart RF to the UniCart RNN approach

This section aims at evaluating the relevance of the UniCart RF and UniCart RNN approaches. In
that perspective, these approaches are applied to the prediction of the trends of the following group
of key financial target variables (cf. subsection II.1.1).

1. Stocks: the daily S&P 500 index expressed in U.S. Dollars, denoted SP500, and the daily
Euro Stoxx 50 Index expressed in Euros, denoted SX5E.

2. Commodities: the daily price of gold (afternoon fixing in London) expressed in U.S. dollars,
denoted GOLD, and the West Texas Intermediate daily spot oil price expressed in U.S. dollars
per barrel, denoted OIL.

3. Exchange rates: the daily U.S./Euro foreign exchange rate, denoted EURUSD, and the daily
U.S./U.K. foreign exchange rate, denoted DEUKUSD.

The parameters of the numerical models, trained on the two types of UniCart databases, are specified
in the first subsection. The backtesting plans and results are thoroughly presented in the second
subsection. For each target variable, recognition rates, ROC curves as well as P&Ls of trading
rules are computed over the common time period of five years starting at 31/03/2006 and ending at
31/03/2011. The overfitting effect, which occurs for too large UniCart RF classifiers, is particularly
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emphasized. It is conversely shown that the UniCart RNN numerical models are by nature not
submitted to this effect. In parallel, the interpretation functionalities of the RF and RNN procedures
are focused on. The role of the scores in the improvement of trading rules is thus highlighted. Finally,
the identification of the most predictive features is illustrated for each target variable. The measures
of feature prediction ability, computed via the Gini based variable importance functionality, have
motivated the design of the Relabeled Nearest Neighbors procedure.

IV.2.1 UniCart RF and RNN Numerical Models

The two types of UniCart databases are used in the backtesting. The first one is made of single-scale
trend based features, while the second one is composed of multiscale trend based returns. We recall
the definitions introduced in subsection I1.2.2.

e The first type of database [{z¢, y:(h)Jw<t<n,—n is composed of features, which are all consid-
ered at the finest scale available s*. The features z; are made of the linear trends {T} .. .}, cr< %

and of corresponding statistical quantities. For 1 < k < K, these latter are the duration
Dur; .. . of the trend T} .. ., the variance Var} .. , of the series over the trend, the skewness

Skewz,s*,k, the kurtosis Kurti,s*,,c as well as the minimal and maximal distances Mmi’s*’,c and
Ma:z:i}s*,,C of the series to the trend. In the following backtesting plans, we set the parameters:

W = 2godays
w = go days
h = 2gdays.

Besides, we work with a single scale level, denoted s*, and with K = 3 consecutive trend lags.
Note that on graphs [V.24, 1V.44, IV.64, 1V.84, IV.104, IV.124, features are first denoted by
their type, where D stands for Dur, V for Var, S for Skew and K for Kurt. The name of
the variable is then indicated, followed by the lag.

e The second type of database is made of returns exclusively, considered at the scales {1,.. . S}
and for the most recent lag 1 only. For 1 < s < S, these latter are the returns Ret; , ,,

the ratios Shi s r and the ratios Soi s x- The values of the parameters W, w, h are the same

as those entered for the first type of database. Moreover, we consider § = 3 consecutively
nested scale levels and the most recent trend lag only, i.e. K = 1. Note like previously that
on graphs IV.25, IV .45, IV.65, IV.85, IV.105, IV.125, features are first denoted by their type,
then by their name, scale and lag. The scale s = 1 indicates the broadest scale that we aim at
predicting, while the scale s = 3 is the finest one.

Each UniCart database is then split into a training set and a test set. The distribution of features
and labels is learnt on the training set using either the Random Forests (cf. subsection I11.2.2) or
the Relabeled Nearest Neighbors (cf. section III.3) procedures. More specifically, the RF procedure
is used with #¢,,,, = 500 equally weighted tree classifiers. In the following backtesting experiments,
we also focus on the minimal size of the subsets of the training set, which are associated with the
leaves of the tree classifiers. We express it as a ratio p between the number of objects contained in
the largest subset and the number of objects in the training set. Hence a high value for p indicates
that the tree classifiers are small sized. In addition, the RNN procedure manages an ensemble 7%
of 20 bagged large sized tree classifiers such that p = o0.001.

IV.2.2 Backtesting Plans and Results

The advanced interpretation functionalities of the RF and the RNN procedure enable the construc-
tion of more sophisticated backtesting plans. The UniCart RF numerical models compute indeed
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probabilities of realizations, which complete the corresponding predictions. Likewise, the UniCart
RNN numerical models produce scores, which enable the ranking of the data according to their
propensity of being labeled +1. The concept of Receiver Operating Characteristic (ROC) provides
a functional criterion for evaluating the ranking performance [GS66, CDV11]. The ROC curve of
a given scoring function sc is defined as the plot of the true positive rate against the false positive
rate:

R — [o,1]"

ROCse = { t — {P(sc(X) > t]Y = —1), P(sc(X) > t]Y = +1)}.

In case of UniCart RF numerical models, the probability of realization associated with the positive
label is used as the input scoring function for the construction of the ROC curve. In the following,
we therefore call score this probability of realization. In this subsection, ROC curves complete the
classic recognition rates. They are used to visualize in two dimensions the relevance of the ordering
induced by scores, which are computed on test sets. Scores are also used to improve the design of
trading rules. We define the buying threshold 63,, and the selling threshold 6,.;. A buying order
for the considered target variable is placed as soon as the score exceeds the buying threshold py,.
Likewise, a selling order is placed when the score reaches the selling threshold 8.;;. In between, the
trader holds its position. Besides, orders can be executed with a user-determined delay, that we call
the trading rule sensitivity and denote Sy. Expressed in days, this parameter allows us to observe
the effect of delaying the order execution on the final value of the P&L. In our experiments, orders
are executed as soon as the score exceeds the buying or selling threshold during the number of days
indicated by the trading rule sensitivity. Transactions costs are taken into account and set at 1%
of transaction amounts. In addition, the P&Ls gained by the trading rules over the test period
are annualized. Last but not least, the feature importance is evaluated using the Gini function.
This is a very popular functionality, specific to tree classifiers [BFOS84, HTF01]. The backtesting
results, detailed in the next subsections, are organized as follows. For each target variable, the
recognition rates, the ROC curves, the annualized P&Ls of the trading rules and the measures
of feature relevance are displayed for the two types of database. All these results are reported
according to the ratio p, as this parameter plays a determining role in the exhibition of overfitting.
Besides, we illustrate the production of scores over the test set. The P&L gained by the trading
rule corresponding to these scores is also represented for well-chosen parameters 65,y and 6sey;.

Backtesting Material for each Target Variable

e Explanatory variables

e Size of the training and test sets(corresponding dates)

e Recognition rates of UniCart RNN numerical models - DB 1 and 2
e ROC curves of UniCart RNN numerical models - DB 1 and 2

e Annualized P&Ls of UniCart RNN trading rules - DB 1 and 2

e Feature importance - DB 1 and 2

e [llustrative example of scores and P&Ls
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SP500 Backtesting Results

The explanatory variables are those used in the subsection IV.1.2 for the construction of Kalman La-
gLasso numerical models. The only difference is that the financial variables are this time considered
daily sampled, while the economic variables remain monthly sampled - as they naturally are. The
UniCart databases are thus built with series available at different frequencies from 01/01/1972 to
31/03/2011, and containing up-to-date daily information. The training set encompasses the period
from 01/01/1972 to 31/03/2006, while the test set starts at 31/03/2006 and ends at 31/03/2011. The
table IV.6 displays the recognition rates obtained for the UniCart RF and UniCart RNN numerical
models trained on the first database. It shows that the UniCart RF numerical models perform better
for the largest values of the ratio p, i.e. for small sized tree classifiers. This table also illustrates
obvious overfitting effects, as larger sized trees achieve extremely good results on the training set and
perform poorly on the test set. It is finally shown that the RNN procedure, despite using very large
tree classifiers, obtains results comparable to the best RF classifiers. Note that the RNN recognition
rate of the training set, which is actually relatively low, is very close to the RNN recognition rate of
the test set. This emphasizes the absence of overfitting. In addition, the recognition rates obtained
using the second database are reported table IV.7. They show that the more homogeneous features
of the second database enable a dramatic reduction in overfitting for all UniCart RF numerical
models. Note that The RNN numerical model remains very competitive. Besides, the ROC curves,
computed with the scores of the test set, globally confirm the observations made on the recognition
rates. The figures IV.12, IV.13, IV.14 stress the relatively good performances of the small sized
UniCart RF classifiers on the first database, while the figures IV.15, IV.16, and IV.17 underline the
overfitting effect. The comparison with the graph IV.10, which represents the ROC curve computed
with the RNN score, proves that the RNN model can handle non-stationary features. In addition,
the ROC curves corresponding to the UniCart RF classifiers trained on the second database may
help refining our analysis. Indeed, the curves displayed by graphs V.18 and IV.19 indicate rather
satisfying results, while the graphs IV.20, IV.21, IV.22, and V.17 reveal clear perturbations in the
convexity of the curves. This is not the case of the RNN ROC curve - cf. figure IV.11. This curve is
also radically different from its counterpart of the first database. It shows that the RNN procedure,
while capable of dealing with non-stationarities, achieves much better results in case of features
having the same support of distribution. Annualized P&Ls of trading rules computed for the first
and second databases are then presented. These rules are parametrized first with specific values of
the buying and selling thresholds 8.y and 65y, which check the relation:

ebuy =1— esell =6.

The last parameter is the trading rule sensitivity, which is expressed in days. The table V.8 focuses
on the first database, while the table IV.9 presents results for the second database. Both tables
display results, which are consistent with previous recognition rates and ROC curves. In addition,
the table IV.9 shows that the trading rules of UniCart/RF numerical models all yield high P&Ls
with one notable exception. Trading rules do not thus perform as good as expected for large sized
tree classifiers used with high buying thresholds and low selling thresholds. Furthermore, it is clear
that the P&Ls obtained with the RNN numerical model are much more stable. Results concerning
the UniCart features importance are also reported. This importance is evaluated with the Gini
function during the training of the UniCart RF classifier of parameter p = o.001. This latter
numerical model, like the RNN one, uses the largest tree classifiers taken into consideration in this
backtesting analysis. Among the numerical models we tested, it contains the richest information
regarding feature relevance. The graph IV.24, computed on the first database, shows thus reliably
that the most important feature is the most recent SP500 linear trend. The graph IV.25, specific
to the second database, confirms this result and stresses the dominant role played by the SP500
returns of the largest scale. Finally, the graph IV.26 displays the scores computed over the test set
for the first database. The scores are drawn in blue and the different colors of the SP500 series
stand for the different RNN regimes. It is completed by the graph IV.27, which represents the P&L
gained with the trading rule based on these scores for parameters 6y = 8seu = 0.5. The graphs
IV.28 and 1V.29 illustrate the same kind of results for the second database.
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Trn Trn — Trn + Test Test — Test +
p—o0.001 | 92,48% 88,00% 04,48% 56,28% 4,28% 96,41%
p=o.01 | 89,38% 86,96% 90,73% 52,55% 23,42% 75,04%
p = 0.05 79,77% 80,10% 79,59% 58,79% 49,07% 66,28%
RE | PO | 7BB2% T208% T6,06% 62,67% 44,42% 76,76%
p=0.3 66,23% 76,34% 60,57% 71,98% 70,26% 73,31%
p—o5 | 6597% 7586% 60,44% T72,15% 70,07% 73,74%
RNN | p=o.001 | 64,20% 77,15% 57,09% 71,58% 70,26% 72,6%
Table IV.6: SP500 Recognition Rates, 1°* DB
Trn Trn — Trn + Test Test — Test +
p=o0.001 | 94,12% 92,87% 94,84% 75,38% 69,45% 80,15%
p = 0.01 90,68% 90,34% 90,88% 72,06% 70% 73,72%
p=o.05 | 81,33% 77,34% 83,65% 71,01% 71,27% 70,80%
RE | P=O1 | 7585% 7948% 73,73% 72,15% 84,73% 62,04%
p=o0.3 | 74,28% 70,04% 76,74% 74,33% 74,36% 74,31%
p—o5 | 7416% 68,78% 77,20% T74,25% 73,64% T74,74%
RNN | p=o.001 | 73,34% 69,22% 75,73% 74,25% 74,36% 74,16%
Table IV.7: SP500 Recognition Rates, 2"¢ DB
ROC Curve p — 0.001 / AUC — 0.7404863 ROC Curve p — 0.001 / AUC — 0.82815
e -
\;/ :
£ J
H J r
/ ] ﬁ
i JJ

Figure IV.10: RNN, p =o0.001, 1° DB
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Figure IV.11: RNN, p =o0.001, 2™ DB




ROC Curve p = 0.5 / AUC = 0.7267058

1rue positive rate

False positive rate

Figure IV.12: RF, p=o0.5, 1°* DB

ROC Curve p = 0.1 / AUC = 0.6451801

False positive rate

Figure IV.14: RF, p =o0.1, 1°* DB

ROC Curve p = 0.01 / AUC = 0.4970599
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Figure IV.16: RF, p =o.01, 1%

DB
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ROC Curve p = 0.3 / AUC = 0.7171068

Figure IV.13: RF, p =o0.3, 1°* DB

False positive rate

ROC Curve p = 0.05 / AUC = 0.5805523
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Figure IV.15: RF, p =o0.05, 1° DB
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ROC Curve p = 0.001 / AUC = 0.5130138
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Figure IV.17: RF, p = 0.001, 1°* DB



ROC Curve p = 0.5 / AUC = 0.7729582

//

False positive rate

Figure IV.18: RF, p=o0.5, 2™ DB

ROC Curve p= 0.1 / AUC = 0.7942163
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False positive rate

Figure IV.20: RF, p =o0.1, 2™ DB

1rue positive rate

ROC Curve p = 0.01 / AUC = 0.7767896

False positive rate

Figure IV.22: RF, p = o0.01, 2™

DB

Figure IV.19: RF, p =o0.3, 2™ DB

Figure IV.21: RF, p =o0.05, 2™ DB

ROC Curve p = 0.3 / AUC = 0.7765043
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False positive rate

ROC Curve p = 0.05 / AUC = 0.7840451

False positive rate

ROC Curve p = 0.001 / AUC = 0.8022681

—
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Figure IV.23: RF, p = 0.001, 2™ DB
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f=o5 =04 6=03 6=02 6OH=o01
Sy=o | -1,43% 0,19% -0,07% 0,12% 7,36%
Sy=1| -333% 0,19% -0,06% 0,12% 7,36%
RF, p—ooor | SY=2| 54T% 019% -001% 0,17% 736%
’ Sy=3| -1,60% 0,19% 0,09% 0,12% 6,19%
Sy=4 | 492% 0,19% -0,01% -0,14% 5,75%
Sy=5| -2,32% 0,19% -0,04% -0,17% 7,36%
Sy—o | -9,84% -4,05% 0,15% 0,11% -1,28%
Sy=1|-11,81% -532% 0,15% 0,21% -1,28%
Sy=2|-2758% -597% 0,13% 0,13% -1,2%
RF, p =0.01

Sy=3|-17,34% -4,95% 0022% 0,12% -1,2%
Sy=4| -926% -7,13% 0,22% 0,21% -1,16%
Sy=5 | -1559% -3,61% 0,19% -0,17% -1,2%
Sy—o| 503% 939% -81% -423% 6,68%
Sy=1| -423% -85% -7,91% -560% 6,30%
RE. o— oo | SY=2| -143% -368% -511% -550% 646%
' P 5 | sy—=3| 2,30% -1,9% -0,33% -0,99% 5,20%
Sy=4| 261% -3,05% -4,71% -5,07% 5,84%
Sy=5| -6,03% -692% -7,82% -7,06% 5,93%
Sy—o | -8095% -3,99% -4,46% 2,80% 11,44%
Sy=1| -7,04% -3,28% -2,29% 3,14% 11,27%
RE, p—oq |SY=2| 510% -050% 049% 366% 1246%
’ ' Sy=3| 1,35% 2,20% 3,20% 507% 11,76%
Sy=4| -1,35% 027% 043% 2,97% 12,53%
Sy=5 | -58% -4,34% -1,99% 2,41% 13,42%

Sy—o | 627% 6,42% 623% 4% 4%
Sy=1| 509% 697% T7,07% 500% 509%
RE. oo Sy==2| 4,76% 571% 6,33% 537% 537%
P03 I sy—3| 6,06% 6,06% 58% 432% 4,32%
Sy=4 | 844%  844% 844% 8,16%  8,16%
Sy=5| 881% 959% 9,75%  9,04%  9,04%
Sy—o| 567% 568% 6,23% 6%  6,07%

Sy=1| 660% 7,0™% 7,0% 7% 7%
RE, p—og | SY=2| 494% 589% 633% 649% 649%
’ Sy=3| 644% 585% 585% 637% 6,37%
Sy=4 | 842% 842% 8,44% 844%  844%
Sy=5| 897% 9,75% 9,75% 9,56%  9,56%
Sy=o| 7,05% 6,82% 589% 551% 9,25%
Sy=1| 648% 641% 641% 6,53%  9,63%
Sy=2| 4,82% 499% 587% 567% 9,39%
RNN, p=0001 | o _ .| 546% 508% 598% 6,08% 9.65%
Sy=4| 817% 817% 844% 8,44%  9,26%
Sy=5| 959%  94%  9,40% 9,45%  10,4%

Table IV.8: SP500 Annualized P&Ls, 1°¢ DB
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=05 O6=04 6=03 6=02 6H=01
Sy=o | 12,40% 859% 9%  866% 2,15%
Sy=1|11,12% 9,15% 10,02% 8,23%  2,22%
RF. p—oc0s | SY=2 13,01% 112% 10,02% 8,14%  1,57%
’ ' Sy=3 | 1389% 852% 845% 7,96%  1,88%
Sy=g4|1229% 11,11% 9,75% 881%  2,05%
Sy=5 | 11,35% 12,29% 9,85%  7,82%  1,83%
Sy—=o | 9,15% 6,24% 548% 9,08%  5,77%
Sy=1| 863% 7,05% 647% 8385%  5,92%
Sy=2| 9,74% 9,14% 7,50% 9%  5,23%
RF, p=o0.01
Sy=3| 8,82% 7,19% 4,84% 8,59% 5,41%
Sy=4 | 876% 7,54% 4,74% 8,60% 6%
Sy=5| 9,21% 11,84% 7,53% 830% 531%
Sy=o| 453% 6,81% 7,32% 570% 158%
Sy=1| 4,62% 877% 7.67% 571%  2,64%
RE, p—oos | SV=2 518%  9,04%  820% 571% 3%
’ ' Sy=3| 575% 826% 742% 3,14% 2,11%
Sy=g4| 752% 949% 7,87% 4,10%  4,05%
Sy=5| 7,88% 10,99% 7,31% 4,19%  3,59%
Sy=o 10,5% 10,09% 10,63% 10,82% 7,91%
Sy=1| 9,58% 9,47% 10,54% 11,77% 8,54%
RF, p—os | SV=2 90,1%  8,83% 9,87% 11,01% 10,13%
’ ' Sy=3 8% 8,32% 10,11% 11,82% 8,73%
Sy=4| 817% 817% 952% 10,73% 8,11%
Sy=5| 8,65% 8,66% 9,43% 10,63% 8,43%
Sy=o| 731% 7,45% 820% 823% 9,10%
Sy=1| 7,18% 7,69% 823% 840%  8,16%
RE, p—o5 | SY=2 564%  6,72%  7,15%  7,53%  8,22%
’ Sy=3| 7,44% 821% 921% 9,97%  9,28%
Sy=4] 9,15% 9,15% 10,21% 10,21%  8,94%
Sy=5| 996% 10,11% 9,13% 9,13%  7,71%
Sy=o| 65% 7,36% 7,37% 890% 9,71%
Sy=1| 7,40% 6,79% 7,95% 8,64% 9,08%
RF. o—o Sy=2| 6,45% 6,14% 7,53% 8,93% 8,93%
'P=O5 gy —a| 703% 828% 9,97% 10,93% 10,93%
Sy=4| 7,85% 9,88% 10,21% 10,26% 10,26%
Sy=5| 9,91% 9,40% 9,13% 9,02% 9,02%
Sy=o| 7,80% 7,12% 727% 7,22%  8,39%
Sy=1| 7,18% 6,35% 7,89% 849%  847%
Sy=2| 564% 580% 648% 7,68%  7,90%
RNN, p=0.001 | o/ .| 744% 809% 051% 10,25%  826%
Sy=4| 9,15% 10,21% 1021% 9,70% 8%
Sy=5| 9,96% 9,23% 8,96% 9,13 8,15%

Table IV.9: SP500 Annualized P&Ls, 2"¢ DB
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Figure IV.24: Gini Features Importance, p = 0.001, 1°¢ DB
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Figure IV.25: Gini Features Importance, p = 0.001, 2"¢ DB
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SX5E Backtesting Results

OIL CAC40 DAX
Explanatory Variables | GOLD EURUSD DEXUKUSD
DGS10 EURGS10 SP500

Table IV.10: Data for SX5E

Training Set | From 05/08/1991 to 31/03/2006
Test Set | From 31/03/2006 to 31/03/2011

Table IV.11: Size of the Sets

Trn Trn — Trn + Test Test — Test +

p=o.001 | 91,92% 88,61% 93,90% b51,15% 2,15% 96,63%
p=o0.01 | 91,04% 89,68% 91,86% 47,90% 4,62%  88,06%
p=o.05 | 82,16% 80,71% 83,03% 47,18% 17,99% 74,27%
p=o0.1 | 77,01% 7559% 77,87% 42,26% 28,05% 55,44%
p=o0.3 | 70,48% 83,56% 62,64% 59,49% 81,35% 39,20%
p=o05 | 71,87% 73,24% 71,04% 68,07% 71,12% 65,24%

RF

RNN | p=o0.001 | 70,72% 69,11% 71,68% 68,31% 70,96% 65,85%

Table IV.12: SX5E Recognition Rates, 1 DB

Trn Trn — Trn + Test Test — Test +

p=o.001 | 94,77% 92,44% 96,19% 59,73% 48,73% 70,75%
p=o0.01 | 92,85% 91,88% 93,44% 60,29% 53,17% 67,41%
p=o0.05 | 85,20% 84,96% 8535% 68,71% 68,10% 69,32%
p=o0.1 | 8059% 7874% 81,71% 73,23% 78,25% 68,20%
p=o0.3 | 7856% 81,50% 76,78% 72,68% 81,43% 63,91%
p=o0.5 | 76,08% 82,56% 72,15% 69,50% 83,17% 55,80%

RF

RNN | p=o.001 | 75,79% 80,44% 72,96% 70,06% 83,17% 56,92%

Table IV.13: SX5E Recognition Rates, 2" DB
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ROC Curve p = 0.001 / AUC = 0.6765419
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Figure IV.30: RNN, p = 0.001, 1°¢
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Figure IV.32: RF, p=o0.5, 1°* DB

ROC Curve p= 0.1 / AUC = 0.4388946
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Figure IV.34: RF, p =o0.1, 1* DB

ROC Curve p = 0.01 / AUC = 0.4023016
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Figure IV.36: RF, p =o.01, 1°

DB

DB
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ROC Curve p = 0.001 / AUC = 0.7259999
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Figure IV.31: RNN, p = o0.001, 2™

ROC Curve p = 0.3 / AUC = 0.6785805
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Figure IV.33: RF, p=0.3, 1°* DB

ROC Curve p = 0.05 / AUC = 0.4566775

False positive rate

Figure IV.35: RF, p =o0.05, 1°** DB

ROC Curve p = 0.001 / AUC = 0.4746941
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Figure IV.37: RF, p = 0.001, 1°* DB



Figure IV.38: RF, p=o0.5, 2™ DB

Figure IV.40: RF, p =o0.1, 2™ DB

Figure IV.42: RF, p =o.01, 2™ DB

ROC Curve p = 0.5 / AUC = 0.7551644
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ROC Curve p = 0.1 / AUC = 0.7038168
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ROC Curve p = 0.01 / AUC = 0.6746865
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Irue positive rate

Figure IV.39: RF, p =o0.3, 2™ DB
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Figure IV.41: RF, p =o.05, 2™ DB
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ROC Curve p = 0.3 / AUC = 0.7139892
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Figure IV.43: RF, p = 0.001, 2™ DB



f=o5 6 =o0.4 #=o0.3 f=o0.2 6 =o0.1

Sy=o0| -9,11%  -520% -518% -524% -4,99%

Sy=1| -10,62% -520% -518% -524%  -4,99%

Sy=2| -10,33% -520% -526% -524%  -4,99%

RF, p—ocor | SU=3| 1032% 520% 535% -524%  -4,09%
’ ‘ Sy=g4| -11,01% -520%  -5%  -531% -4,97%
Sy=5| -12,36% -520% -513%  -524%  -4,99%

Sy=o | -20,66% -833% -4,73% -543%  -522%

Sy=1| -19,01% -551% -4,67% -525%  -5,22%

Sy=2| -1527% -7,12% -4,73%  -531% -4,94%

RE, p—oo1 | SY=3| 1871% -424% -524% 540% 5%

’ ' Sy=g4| -18,68% -6,27% -4,67% -531%  -532%
Sy=5| -17,68% -811% -524% -511% -548%

Sy—o| 3598% 2141% -1501% -6,43% -5,43%
Sy=1|-167,92% -17,5% -1427% -583%  -5,25%
Sy=2|-179,31% -10,90% -14,50% -6,22%  -5,31%

RE. »— oo | SY=3| -33,20% -12,02% -1497% -570%  -542%
PP gy — 4| 21,06%  -6,38% -10,56% -6,10%  -5,31%
Sy=r5| -24,48% -1526% -12,37% -6,85%  -5,11%
Sy=o| -691% -16,23% -34,52% -22,10% -10,43%
Sy=1| -8,04% -11,05% -26,83% -21,23% -10,67%
Sy==2| -13,20% -18,47% -30,30% -22,88% -10,60%
RF, p—oq |SY=3]| 1L1% -1102% -3240% -2025% -1087%
’ ' Sy=g4| -997% -11,23% -2445% -21,95% -9,32%
Sy=5| -7,16%  -7,92% -20,90% -12,51% -10,08%

Sy—o | 1,62%  164% 041%  2,68% -6,22%

Sy=1| 026%  -0,14% -257% -581%  -7,60%

Sy=2| 245%  245%  007% -2,20% -5,32%

RE. 50— o Sy=3| -1,00% -1,45% -3,14% -4,15% -6,04%
'P=O03 L ey—4| 036%  036% -064% -1,70%  -4,76%
Sy=5| 2,38%  238%  025% -027% -1,70%

Sy—o| 433%  480%  4,34%  484%  447%

Sy=1| 1,75%  138%  1,32%  1,32%  153%

Sy=2| 430%  430%  4,30%  4,30%  4,3%

RE. 5o Sy=3| 2,08%  174%  144%  144%  1,76%
'PTO5 gy — | 405%  4,05%  3,36%  3,36%  3,36%
Sy=5| 610%  6,10% 610% 6,10%  6,1%

Sy=o| 515%  344%  453%  520%  2,5%

Sy=1| 1,32%  2091%  3,78%  3,78%  547%

Sy=2| 430%  331%  465%  539%  6,31%

Sy=3| 1,44%  326%  354%  3,54%  5,08%

RNN, p=0001 | o | 336%  414% 380% 422%  7.27%
Sy=5| 610%  7.72%  680%  680%  7,49%

Table IV.14: SX5E Annualized P&Ls, 1°¢ DB
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6 =o.5 6 =o0.4 =03 BH=o02 6H=o01
Sy—o| 1,08%  165% -0,45% 4,50% 10,21%
Sy=1| -059% 261% -0,80% 3,25%  9,80%
Sy==2| -1,80% 184% -021% 2,51% 9,10%
RE, p—ocos |SY=3| 232%  249% 2,03% 117%  983%
’ ' Sy=g4| -948% -1,71% -6,18% 0,23%  8,03%
Sy=5| -1,34%  3,09% -0,04% 4,24%  8,90%
Sy—o | 1,99% -7,68% 391% 387% 3,13%
Sy=1| -251% -9,56% 3,22% 2,80% 2,45%
Sy=2| -343% -11,24% 2,77% 0,01%  3,85%
RF, p—oo1 | SY=3| 005% -604% -229% -0,80% 3,14%
: ' Sy=4|-10,71% -1517% 1,61% -3,06% -0,02%
Sy=5| -1,19% -343% 6,26% 1,84% 4,07%
Sy=o| 9,17%  894% 566% 2,95% 3,44%
Sy=1| 439%  322% 153% 1,56% 3,12%
Sy=2| 1,54%  3,11% 0,83% 3,38% 2,63%
Sy=3| 381% -0,56% -2,51% -0,30% 1,87%
RF, p=o0.05
Sy=4| 1,54%  4,99% 146% 3,45% 152%
Sy=5| 560% 574% 3,31% 515% 4,18%
Sy—o| 952%  9,24%  7,94% 6,63% 1,89%
Sy=1| 565% 542% 546% 4,50%  3,60%
Sy=2| 455%  554% 621% 4,14% 1,86%
RF, p—os |SY=3| 082% 161% 272% 245%  104%
: ' Sy=4| 6,75%  832% 6,99% 4,41%  0,6%
Sy=5| 6,76%  832% 860% 6,04% 2,36%
Sy—o| 521%  6,44% 6,09% 549% 587%
Sy=1| 420% 5091% 6,70% 4,17%  4,74%
Sy=2| 6,08%  6,65% 521% 4,92% 4,92%
RE. 5o Sy=3| 4,70% 527% 4,38% 144% 121%
' PTO03 gy —y | 754%  7,13%  6,26% 3,63%  3,69%
Sy=5| 643%  6,99% 510% 6,08% 6,08%
Sy=o| 3,92%  339% 3,39% 4,24% 4,97%
Sy=1| 519%  540% 540% 4,44%  4,45%
Sy=2| 3,35%  4,19% 4,19% 3,16% 3,16%
RE. 50— o Sy=3| 3,30%  430% 4,30% 3,36% 3,36%
PEOS gy —a | 413%  4,13%  4,13% 427%  4.41%
Sy=5| 451%  552% 552% 451% 451%
Sy—o| 3,43%  6,25% 507% 7,44% 7,66%
Sy=1| 434%  620% 4,28% 6,76% 7,01%
Sy==2| 3,35%  5099% 4,01% 6,06% 6,79%
Sy=3| 343%  3,88% 1,39% 4,76% 4,57%
RNN, p=0001 | o/ | 413%  470% 1,96% 3.80% 5%
Sy=5| 451%  566% 503% 6,19% 7,08%

Table IV.15: SX5E Annualized P&Ls, 2"¢ DB
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Figure IV.44: Gini Features Importance, p = 0.001, 1°¢ DB
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Figure IV.45: Gini Features Importance, p = 0.001, 2"¢ DB
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Figure IV.47: STOXX P&L, Opyy = 0.6, 05y = 0.4, 1 DB
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GOLD Backtesting Results

OIL DGS10 DTB3 DED3
Explanatory Variables | SP500 EURGS10 EURUSD
DEXCHUS DEXHKUS DEXINUS
DEXJPUS DEXSZUS DEXUSUK
Table IV.16: Data for GOLD
Training Set | From 09/09/1981 to 31/03/2006
Test Set From 31/03/2006 to 31/03/2011
Table IV.17: Size of the Sets
Trn Trn — Trn + Test Test — Test +
p=o0.001 | 9290% 93,59% 92,14% 52,11% 43,66% 55,54%
p=o0.01 | 91,30% 91,56% 91,02% 56,59% 41,13% 62,86%
p=o0.05 | 82,40% 80,58% 84,38% 59,43% 43,10% 66,06%
RF p=o0.1 75,92% 70,67% 81,63% 64,47% 32,39% 77,49%
p=o0.3 | 72,07% 72,76% 71,32% 67,8% 52,11% 74,17%
p=o0.5 | 70,93% 71,64% 70,16% 70% 47,61% 79,09%
RNN | p=o0.001 | 69,87% 70,89% 68,76% 70% 47,61% 79,09%
Table IV.18: GOLD Recognition Rates, 1°* DB
Trn Trn — Trn + Test Test — Test +
p=o0.001 | 94,7% 95% 94,36% 73,01% 57,48% 78,97%
p=o0.01 | 91,51% 91,04% 92,05% 75,37% 46,92% 86,28%
p=o.05 | 83,69% 83,85% 83,50% 77,56% 53,37% 86,84%
RF p=o0.1 78,83% 78,18% 79,58% 76,99% 56,01% 85,04%
p=o0.3 | 75,72% 73,03% 78,81% 77,32% 49,85% 87,85%
p=o0.5 | 7567% 73,3T% 78,32% T77,40% 51,61% 87,29%
RNN | p=o.001 | 74,99% 72,24% 78,14% 76,67% 48,68% 87,40%

Table IV.19: GOLD Recognition Rates, 2"¢ DB
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1rue positive rate

Figure IV.50: RNN, p = 0.001, 1°¢

ROC Curve p = 0.001 / AUC = 0.6294358
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Figure IV.52: RF, p=o0.5, 1°* DB

ROC Curve p= 0.1 / AUC = 0.58916

False positive rate

Figure IV.54: RF, p =o0.1, 1* DB
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ROC Curve p = 0.01 / AUC = 0.4824064
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Figure IV.56: RF, p =o.01, 1%

DB
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Figure IV.51: RNN, p = o0.001, 2™

ROC Curve p = 0.001 / AUC = 0.75659
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ROC Curve p = 0.3 / AUC = 0.6266913
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Figure IV.53: RF, p =o0.3, 1°* DB

ROC Curve p = 0.05 / AUC = 0.5826173
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Figure IV.55: RF, p =o.05, 1°** DB

ROC Curve p = 0.001 / AUC = 0.459926

False positive rate

Figure IV.57: RF, p = 0.001, 1°* DB



ROC Curve p = 0.5 / AUC = 0.7158295
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Figure IV.58: RF, p =o0.5, 2™ DB

ROC Curve p= 0.1 / AUC = 0.7950909
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Figure IV.60: RF, p =o0.1, 2" DB
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ROC Curve p = 0.01 / AUC = 0.754426
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Figure IV.62: RF, p = o0.01, 2™

DB

Figure IV.59: RF, p =o0.3, 2™ DB

ROC Curve p = 0.3 / AUC = 0.7264068
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Figure IV.61: RF, p = o0.05, 2™ DB

Figure IV.63: RF, p = 0.001, 2™ DB
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ROC Curve p = 0.001 / AUC = 0.7545201
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=05 6H=04 6=03 6H=02 6 =o0.1
Sy=o0| -6,06% -1,13% 5,50% 8,3% -178,63%
Sy=1|-2,12% 1,41% 6,51% 7,47% -178,63%
Sy=2|-796% 6,14% 6,54% 8,61% -178,90%
RF, p =o0.001

Sy=3| 2,51% 3,93% 5,48% 7,79% -178,90%
Sy=a4|-0,79% 3,35% 7,84% 7,08% -178,63%
Sy=5| 0,59% 12,22% 7,37% 8,77% -178,90%
Sy=o0| -3,08% 3,79% 5,08% 7,62% -177,59%
Sy=1 4,.2% 8,46% 0,67% 7,16% -175,56%
RF, p— 0.01 Sy=2| 6,79% 13,16% 1,94% 729% -175,16%
’ ’ Sy=3| 6,01% 6,02% -0,47% 7,48% -175,56%
Sy=a4| 4,67"% 3,38% -1,18% 6,81% -175,16%
Sy=5| 8,06% 11,40% 0,28% 7,42% -171,97%

Sy=o| 7,54% 18,82% 16,14% 16,31% 11,21%

Sy=1| 4,49% 17,90% 13,69% 15,56% 10,54%

RF. o — 00 Sy=2| 760% 14,92% 13,36% 17,46% 11,3%
P 5 Sy=3| 8,01% 18,34% 13,48% 13,52% 10,81%

Sy=a4| 8,08% 7,95% 10,25% 13,47% 10,1%

Sy=r5 | 11,03% 15,10% 12,27% 14,65% 11,41%

Sy=o | 17,03% 19,07% 22,55% 21,15% 19,32%

Sy=1 | 13,55% 15,07% 21,58% 20,02% 19,28%

RF, p—o0.1 Sy=-2|12,92% 17,97% 21,81% 21,40% 19,11%
’ ' Sy=3 | 14,95% 15,14% 21,97% 19,05% 18,63%
Sy=4| 573% 10,76% 16,80% 15,74% 17,72%

Sy =5 17% 20,2% 22,43% 18,42% 17,95%

Sy=o | 18,78% 16,91% 1757% 15,86% 19,46%

Sy=1 | 13,17% 14,56% 14,81% 13,48% 19,20%

RF. 5 — o Sy=2| 895% 13,49% 13,49% 14,62% 20,04%
P 3 Sy=3 | 15,79% 16,28% 16,28% 13,75% 19,18%
Sy=a4| 3,86% 2,39% 3,98% 5,85% 17,29%

Sy=r5 | 13,56% 12,83% 12,83% 13,51% 18,30%

Sy=o | 12,42% 12,42% 12,42% 13,11% 11,65%

Sy=1| 9,29% 9,29% 9,29% 9,21% 9,37%

RF, p—os Sy=-2|10,72% 10,72% 10,72% 11,14% 9,04%
’ ’ Sy=3|12,72% 12,72% 12,72% 13,34% 12,22%
Sy=4|-049% -0,49% -0,49% -1,96% -1,62%

Sy=r5| 9,92% 9,92% 9,92% 9,71% 7,96%

Sy=o | 12/42% 12,42% 12,42% 15,86% 10,23%

Sy=1| 9,29% 9,29% 9,29%  14,20% 10,68%

RNN, p = 0.001 Sy=-2|10,72% 10,72% 10,72% 13,49% 7,88%
’ Sy=3 | 12,72% 12,72% 12,72% 15,97% 14,05%
Sy=4|-0,49% -0,49% -0,49% 2,03% -0,64%

Sy=x5| 9,92% 9,92% 9,92% 12,83% 6,18%

Table IV.20: GOLD Annualized P&Ls, 1°¢ DB
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f=o5 =04 0H=0.3 6 =o.2 6 =o0.1

Sy—=o| 983% 14,73% 13,99% 1569% 11,28%

Sy=1| 622% 11,15% 13,15% 15,66% 11,51%

RE, p—ocor | SY=2| 204% 1020% 1287% 1366% 1145%
’ ' Sy=3| 2,03% 558% 14,09% 16,28% 11,51%
Sy=4 | -7,04% 13,82% 14,21% 13,66% 10,10%
Sy=5|-1500% 190% 13,03% 13,52% 10,33%

Sy—o | 18,72% 14,68% 182% 12,32% 12,96%

Sy=1| 17,92% 10,54% 16,78% 11,20% 13,39%

RF, p—oo1 | SY=2| 1484% 1239% 1754% 970%  12,78%
’ ' Sy=3 | 18,64% 12,00% 17,28% 12,14% 13,68%
Sy=4 | 11,78% 839% 1588% 12,77% 12,91%

Sy=5| 533% 7.62% 17,65% 11,58% 10,58%

Sy=o | 20,13% 19,87% 18,20% 6,58%  15,18%

Sy=1| 17,52% 14,30% 15,07% 7,75%  14,88%

RE, p—oog | SY=2| 1380% 1882% 1515% 715%  1516%
’ Sy=3| 16,92% 19,71% 16,06% 580% 15,95%
Sy=4 | 12,11% 19,45% 13,12% 10,290% 16,16%

Sy=s5| 1091% 13,05% 12,84% 12,57% 14,88%

Sy—o | 16,36% 9,82% 3,41% 13,95% 13,32%

Sy=1| 725% 861% 3,67% 13,56% 12,57%

RF, p—os |SY=2| 879% 693% 520% 1258% 1246%
’ ’ Sy=3 | 925% 12,64% 8,10% 14,42% 12,75%
Sy=4| 12%  16,36% 11,16% 17,65% 14,02%

Sy=5| 559% 995% 6,91% 1519% 10,17%

Sy—o | 12,34% 11,55% 11,40% 11,93% 12,41%

Sy=1| 849% 10,09% 9,70% 11,97% 13,14%

RE, p—os |SY=2| 825% 1036% 11,02% 1136% 1253%
’ Sy=3| 917% 11,22% 11,24% 11,68% 11,68%
Sy=4 | 1520% 16,58% 14,53% 13,46% 13,18%

Sy=5| 7,30%  9,90% 9,90% 10,23% 12,01%

Sy=o| 9,77% 10,65% 11,39% 11,62% 11,68%

Sy=1| 454%  867% 11,03% 11,30% 12,26%

RE. 50— o Sy=2| 756%  925% 11,90% 11,27% 11,79%
'PEO5 gy —a| B70%  10%  10,79% 11,10% 11,19%
Sy=4 | 12,81% 12,74% 14,25% 13,02% 13,28%

Sy=5| 713%  9,90% 9,86%  9,66% 11,51%

Sy—o| 12%  10,35% 8,711%  8,63%  4,05%

Sy=1| 244%  867% 7,96%  7,25%  184%

Sy=2| 896% 925% 6,74%  507%  221%

RNN, p=0001 | o/ 0| 852%  10%  0906% 7,55%  4,20%
Sy=4 | 1325% 12,74% 11,81% 11,52% 10,95%

Sy=5| 638%  99% 444%  033%  0,84%

Table IV.21: GOLD Annualized P&Ls, 2" DB
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Figure IV.64: Gini Features Importance, p = 0.001, 1°¢ DB
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Figure IV.65: Gini Features Importance, p = 0.001, 2"¢ DB
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Figure IV.67: GOLD P&L, 6y = 0.6,05c1 = 0.4, 1t DB
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Figure IV.69: GOLD P&L, 0yyy = 0.6, 051 = 0.4, 2" DB
160



OIL Backtesting Results

SP500 MORTG NAPM TCU
Explanatory Variables | DEXJPUS EURUSD GOLD
DGS10 DTB3 OILSTOCKS

Table IV.22: Data for OIL

Training Set | From 12/09/1990 to 31/03/2006

Test Set | From 31/03/2006 to 31/03/2011

Table IV.23: Size of the Sets

Trn

Trn — Trn + Test Test —

Test +

RF

p=o0.001 | 91,67%
p=o0.01 | 90,95%
p=o0.05 | 83,9%
p=o0.1 | 76,88%
p=o0.3 | 69,34%
p=o0.5 | 67,88%

91,44% 91,85% 65,32% 17,83%
91,84% 90,22% 65,24%  23,26%
83,11% 84,55% 62,40% 47,80%
73,69% 79,49% 64,83% 46,77%
72,03% 67,13% T74,47% 64,86%
59,08% 75,09% 78,04% 63,57%

87,01%
84,42%
69,07%
73,08%
78,87%
84,65%

RNN

p=o0.001 | 67,57%

59,47% T74,20% 78,12% 63,57%

84,77%

Table IV.24: OIL Recognition Rates, 15t DB

Trn

Trn — Trn + Test Test —

Test +

RF

p =o0.001 | 95,55%
p=o0.01 | 93,83%
p=o0.05 | 85,29%
p=o0.1 | 80,25%
p=o0.3 | 75,36%
p=o0.5 | 73,89%

95,68% 95,43% 66,45% 69,65%
93,45% 94,18% 64,99% 66,17%
83,91% 86,57% 66,29% 72,14%
76,51% 83,74% 76,09% 64,93%
77,09% 73,74% 79,01% 72,39%
73,31% 74,44% 81,69% 72,39%

64,90%
64,42%
63,46%
81,49%
82,21%
86,18%

RNN

p =o0.001 | 74,23%

65,48% 82,40% 83,06% 67,41%

90,62%

Table IV.25: OIL Recognition Rates, 2"¢ DB
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ROC Curve p = 0.001 / AUC = 0.7751038

1rue positive rate

Figure IV.70: RNN, p = 0.001, 1°¢

False positive rate

ROC Curve p = 0.5 / AUC = 0.7506262

False positive rate

Figure IV.72: RF, p=o0.5, 1°* DB

ROC Curve p = 0.1 / AUC = 0.6036642

False positive rate

Figure IV.74: RF, p =o0.1, 1* DB

ROC Curve p = 0.01 / AUC = 0.5239712

1rue positive rate

-

False positive rate

Figure IV.76: RF, p =o.01, 1°

DB

DB

162

Figure IV.71: RNN, p = o0.001, 2™

ROC Curve p = 0.001 / AUC = 0.8225651

False positive rate

ROC Curve p = 0.3 / AUC = 0.7593482

False positive rate

DB

Figure IV.73: RF, p=o0.3, 1°* DB

ROC Curve p = 0.05 / AUC = 0.5686371

False positive rate

Figure IV.75: RF, p =o.05, 1°** DB

ROC Curve p = 0.001 / AUC = 0.5280257

—
y

False positive rate

Figure IV.77: RF, p = 0.001, 1°* DB



ROC Curve p = 0.5 / AUC = 0.8217716

False positive rate

Figure IV.78: RF, p=o0.5, 2™ DB

ROC Curve p= 0.1 / AUC = 0.7858559

False positive rate

Figure IV.80: RF, p =o0.1, 2" DB

1rue positive rate

ROC Curve p = 0.01 / AUC = 0.7503438

1 o

False positive rate

Figure IV.82: RF, p = o0.01, 2™

DB

Figure IV.79: RF, p =o0.3, 2™ DB

Figure IV.81: RF, p =o.05, 2™ DB

ROC Curve p = 0.3 / AUC = 0.8143672

False positive rate

ROC Curve p = 0.05 / AUC = 0.74144

—

False positive rate

ROC Curve p = 0.001 / AUC = 0.748659

False positive rate

Figure IV.83: RF, p = 0.001, 2™ DB
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=05 6=04 6=03 6 =o.2 6 =o0.1
Sy—o | 13,80% 7,72% 6,99% 6,17%  8,33%
Sy=1| 502% 811% 681% 6,17%  844%
Sy=2| 6%  845% 6,99%  7,06%  844%
RF, p—oco1 |SU=3| 257% 8%  630% 617%  84%
’ ‘ Sy=4| 555% 9,13% 681%  7,06%  844%
Sy=5 | 11,58% 7.88% 6,39%  7,06%  7,96%
Sy—o | 12,37% 4,54% 6,99% 6,17%  8,7%
Sy=1|17,60% 3,31% 6,81% 6,17%  8,69%
RF, p—oor |SY=2|1226% 149% 609%  7,06%  870%
’ ' Sy—=3| 449% 157% 6,39% 6,17%  8,69%
Sy—a4| 1,75% 0,82% 6,81%  7,06%  8,70%
Sy—=5|11,32% 2,60% 6,39% 7,06%  8,33%
Sy—o| 050% 1801% 12,33% -14,64% 7,97%
Sy=1| 7,71% 21,63% 14,70% -533%  7,23%
RE. »—oor | SY=2| T10% 2371% 1524% -589%  8,60%
' P 5 | sy=3| 4,32% 13,18% 12,84% -7.61%  6,99%
Sy=4| 901% 1452% 11,08% -19,40% 8,5%
Sy=5 | 20,96% 22,18% 1520% -27,79%  7,63%
Sy—o | 801% 1857% 14,26% 12,62% 21,10%
Sy=1|1516% 20,71% 1507% 16,12% 20,58%
RF, p_oq |SY=2| 986% 2206% 17,60% 1747% 2150%
’ ' Sy—3| 487% 11,48% 6,80% 15,69% 20,79%
Sy=a4|1041% 17,68% 14,75% 11,90% 21,46%
Sy—=5 | 19,38% 22,54% 15,09% 14,14% 19,68%
Sy—o | 18,35% 10,60% 11,67% 4,17%  1,74%
Sy=1|19,14% 2120% 11,48% 543%  1,67%
RE. oo Sy==2|18,69% 19,37% 8,70%  569%  15%
'P=03 N gy—a| 745% 9,33% 3,77%  -9,80%  -0,23%
Sy=4 | 19,49% 10,78% 0,20%  4,74%  4,13%
Sy=5 | 16,22% 20,28% 9,91%  10%  7,61%
Sy—o | 21,70% 21,86% 22,22% 22,29%  23,18%
Sy=1|2228% 22,61% 22,90% 22,90% 22,97%
RF, p—og | SY=2|2253% 2221% 2278% 2278% 22,67%
’ Sy=3|17,06% 17,60% 17,69% 17,69% 17,11%
Sy=a4 | 22,03% 21,64% 20,91% 20,91% 22,98%
Sy=5 | 21,03% 21,03% 20,35% 20,35% 18,87%
Sy=o | 22,78% 22,66% 22,82% 22,52% 23,63%
Sy=1|2228% 22,00% 2243% 23,13% 24,67%
RNN, p—o0r | SY=2 | 341% 2321% 2206% 2141% 2141%
’ Sy=3|17,05% 17,05% 17,60% 18,15% 19,41%
Sy=4|2203% 22,03% 21,64%  20%  20,7%
Sy=5 | 21,03% 21,4% 21,94% 21,58% 21,58%

Table IV.26: OIL Annualized P&Ls, 15t DB
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=05 O6=04 6=03 6=02 6H=01
Sy=o0| 9,40% 12,74% 14,16% -6,05% 6,40%
Sy=1| 1453% 14,43% 1558% -8,26% 6,82%
Sy=211229% 17,33% 17,0"% -7,22% 6,82%

RF, p =o0.001
Sy=3 | 1523% 13,72% 14,50% -7,58% 6,58%
Sy=4 | 148"% 14,49% 17,20% -4,16% 7,55%
Sy=5|22,39% 20,37% 19,55% -5,98% 6,08%
Sy=o | 13,81% 18,88% 16,63% 20,41% 18,67%
Sy=1] 9,56% 19,42% 17,72% 20,36% 17,05%
RF, p = 0.01 Sy=2|12,77% 20,67% 19,91% 21,60% 16,91%
’ Sy=3| 3,85% 15,81% 12,12% 15,65% 18,44%
Sy=4 | 16,0"% 16,68% 18,92% 21,32% 20,12%
Sy=5 | 18,33% 20,75% 18,29% 22,01% 16,49%
Sy=o0 | 17,84% 2554% 22,71% 22,23% 22,36%
Sy=1|21,74% 26,44% 22,79% 21,82% 22,92%
RF, p = 0.05 Sy=2|1575% 27,34% 2381% 24,12% 24,44%
’ ' Sy=3 | 22,46% 25,17% 19,62% 17,36% 18,63%
Sy=4 1 2331% 27,0"% 24,04% 24,81% 24,21%
Sy=5 | 26,21% 28,38% 23,54% 22,16% 23,85%
Sy=o0 | 22,64% 18,31% 25,67% 22,88% 26,04%
Sy=1|21,13% 19,43% 26,22% 2327% 25,22%
RF, p—o0.1 Sy=2|21,10% 19,59% 26,87% 24,77% 26,05%
’ ’ Sy=13 | 16,72% 15,67% 21,39% 19,03% 25,45%
Sy=4|1533% 16,61% 23,92% 24,81% 26,11%
Sy=5 | 16,82% 19,55% 26,12% 24,19% 25,30%
Sy=o | 18,85% 24,16% 24,59% 25,56% 15,91%
Sy=1| 18,41% 23,58% 24,31% 24,63% 15,96%
RF, p—o3 Sy=2119,00% 24,36% 24,74% 24,38% 17,04%
’ Sy=3 | 16,10% 19,50% 25,18% 23,97% 19,06%
Sy=4 | 18,94% 24,77% 26,69% 24,62% 19,25%
Sy=5 | 18,80% 22,43% 24,16% 22,66% 19,25%
Sy=o | 24,54% 24,72% 24,99% 25,56% 23,99%
Sy=1|2427"% 24,33% 24,51% 24,63% 23,33%
RF. 5 — o Sy=-2| 24,69% 23,76% 24,84% 24,38% 23,86%
' P 5 Sy=13|21,96% 21,13% 24,37% 23,97% 23,97%
Sy=4 | 23,8% 24,77% 2542% 24,62% 24,62%
Sy=x5 | 23,7%% 22,43% 22,45% 22,66% 23,41%
Sy=o0 | 26,33% 27,11% 23,70% 24,82% 20,01%
Sy=1|27,02% 26,94% 23,67% 23,87% 19,14%
RNN, p = 0.001 Sy=2|27,56% 27,37% 24,91% 23,86% 18,96%
’ Sy=3 | 27,86% 28,40% 25,77% 23,97% 20,18%
Sy=4 | 26,50% 26,85% 23,20% 24,62% 20,57%
Sy=x5|26,67% 26,10% 24,69% 23,41% 18,57%

Table IV.27: OIL Annualized P&Ls, 2"¢ DB
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Figure IV.84: Gini Features Importance, p = 0.001, 1°¢ DB
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Figure IV.85: Gini Features Importance, p = 0.001, 2"¢ DB
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EURUSD Backtesting Results

SP500 CAC40 DAX MORTG
Explanatory Variables | OIL GOLD NAPM
DGS10 DTB3 DED3 EURDGSI10
Table 1V.28: Data for EURUSD
Training Set | From 05/08/1991 to 31/03/2006
Test Set From 31/03/2006 to 31/03/2011
Table IV.29: Size of the Sets

Trn Trn — Trn + Test Test — Test +
p=o0.001 | 93,3% 92,88% 93,73% 47,85% 60,40% 41,87%
p=o0.01 | 92)23% 092,17% 92,29% 34,09% 36,84% 32,78%
p=o0.05 | 87,55% 85,64% 89,52% 53,60% 62,41% 49,40%
RF p=o0.1 79,1% 77,39% 80,87% 71,26% 68,67% 72,49%
p=o0.3 | 71,44% 66,76% 76,26% 81,21% 66,42% 88,28%
p=o0.5 | 71,36% 66,76% 76,10% 81,30% 66,67% 88,28%
RNN | p=o0.001 | 70,9% 68,11% 73,77% 81,30% 66,67% 88,28%

Table IV.30: EURUSD Recognition Rates, 15 DB
Trn Trn — Trn + Test Test — Test +
p=o0.001 | 9497% 94,73% 9521% 74,82% 57,27% 81,59%
p =0.01 93% 93,28% 92,70% 76,84% 63,37% 82,04%
p=o0.05 | 84,33% 86,51% 82,06% 77,09% 49,42% 87,77%
RF p=o0.1 | 81,59% 83, 77% 79,33% 77,33% 53,78% 86,42%
p=o0.3 | 76,18% 71,31% 81,23% 84,29% 73,26% 88,55%
p=o0.5 | 76,18% 7157% 80,95% 84,62% 74,42% 88,55%
RNN | p=o0.001 | 75,93% 73,78% 78,16% 84,62% 75,29% 88,22%

Table IV.31: EURUSD Recognition Rates, 2"¢ DB
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1rue positive rate

Figure IV.90: RNN, p = 0.001, 1°¢

ROC Curve p = 0.001 / AUC = 0.7662757

T

False positive rate

ROC Curve p = 0.5 / AUC = 0.7898709

False positive rate

DB

Figure IV.92: RF, p=o0.5, 1°* DB

ROC Curve p = 0.1 / AUC = 0.7156453

False positive rate

Figure IV.94: RF, p =o0.1, 1* DB

1rue positive rate

ROC Curve p = 0.01 / AUC = 0.2928703

/

False positive rate

Figure IV.96: RF, p =o0.01, 1° DB

Figure IV.91: RNN, p = o0.001, 2™

ROC Curve p = 0.001 / AUC = 0.8702187

False positive rate

ROC Curve p = 0.3 / AUC = 0.7755303

False positive rate

DB

Figure IV.93: RF, p=0.3, 1°* DB

ROC Curve p = 0.05 / AUC = 0.5818164

False positive rate

Figure IV.95: RF, p =o0.05, 1°** DB

ROC Curve p = 0.001 / AUC = 0.5141637

J

False positive rate

Figure IV.97: RF, p = 0.001, 1°* DB
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Figure IV.98: RF, p=o0.5, 2™ DB

Figure IV.100: RF, p =o0.1, 2™ DB

ROC Curve p = 0.5 / AUC = 0.8703426

False positive rate

ROC Curve p = 0.1 / AUC = 0.8319484

False positive rate

ROC Curve p = 0.01 / AUC = 0.7909897

T

False positive rate

Irue positive rate

Figure IV.99: RF, p =o0.3, 2™ DB

Irue positive rate

ROC Curve p = 0.3 / AUC = 0.8685841

False positive rate

ROC Curve p = 0.05 / AUC = 0.7903192

False positive rate

[

Figure IV.101: RF, p = o.05, 2™ DB

Irue positive rate

ROC Curve p = 0.001 / AUC = 0.7950059

False positive rate

Figure IV.102: RF, p =o0.01, 2™ DB Figure IV.103: RF, p = 0.001, 2™ DB

172



6 =o.5 0=04 6=03 6=02 6OH=o01
Sy=o| -566% -6,45% 041% 1,48% -0,03%
Sy=1| -2,32% -525% 0,63% 1,48% -0,03%
Sy=2| -082% -4,04% 072% 1,76% -0,03%
RF, p—ooor | SY=3| 001% -680% 053% 176% -0,03%
’ ' Sy=4| -084% -7,19% 061% 1,86% -0,03%
Sy=5| 4,59% -896% 154% 1,76% -0,03%
Sy=o| -946% -2,65% 4,49% 9,65% -0,03%
Sy=1|-11,49% -354% 3,73%  9,74% -0,03%
Sy==2|-13901% -2,79% 572%  10% -0,03%

RF, p=o0.01
Sy=3|-16,14% -4,16% 3,56% 9,97% -0,03%
Sy=4| -941% -3,90% 3,90% 9,61% -0,03%
Sy=5| -814% -6,78% 543%  9,68% -0,03%
Sy—o| 508% -2,18% 099% -0,00% 0,50%
Sy=1| -7,79% -4,39% -1,34% -1,05% 0,64%
Sy=2| -641% -343% -1,32% -1,46% 1,12%

RF, p=o0.05
Sy=3| -634% -2,26% 242% -1,51% 0,93%
Sy=4| -703% -2,80% -2,07% -1,71% 1,03%
Sy=5| -337% -2,28% -2,15% -0,83% 1,91%
Sy=o| 341% 6,46% 3,18% 0,31% -1,03%
Sy=1| 3,96% 617% 1,30% -0,57% -0,59%
RF, p—oq |SY=2| 603% 713% 217% -0,49% -055%
’ ' Sy=3| 854%  7,20% 1,34% -0,43% -1,85%
Sy=a4| 637% 7,18% 2,92% -0,16% -0,98%
Sy=5| 681% 7,12% 142% 1,22% -0,17%
Sy—=o| 989% 10,12% 10,12% 8,17% 8,33%
Sy=1| 945% 9,91% 991% 8,13% 6,60%
RE. o— o Sy=2| 7,85% 7,64% 7,64% 643% 7,04%
'PTO03 |l gy—a| 8,03% 848% 8,48%  843%  7,29%
Sy=4| 7,68% 7,68% 7,68% 7.68% 651%
Sy=5| 670% 7,18% 7,18% 7,19%  6,03%
Sy—o| 10,12% 10,12% 10,12% 9,89% 9,25%
Sy=1| 945% 9,91% 991% 991% 7.67%
RF, p—og | SY=2| T8% T6%  T6L%  760%  783%
’ Sy=3| 803% 848% 848% 843% 826%
Sy=4| 7,68% 7,68% 7,68% T7.68% 7,74%
Sy=5| 6,70% 7,18% 7,18% 7,19% 6,74%
Sy=o | 10,12% 4,39% 551% 4,05% 2,13%
Sy=1| 945%  4,40% 553% 4,28% 2,46%
Sy=2| 7,85%  4,69% 456% 3,31% 155%
RNN, p=0001 | o .| 803% 432% 488% 301% 1,12%
Sy=4| 7,68% 3,60% 620% 458% 2,86%
Sy=5| 6,70% 561% 645% 4,65% 2,99%

Table IV.32: EURUSD Annualized P&Ls, 15 DB
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=05 O6=04 6=03 6=02 6H=01

Sy—o| 7,24% 12,39% 8,58% 9,32% 4,77%

Sy=1| 745% 11,72% 8,64% 9,60%  4,24%

Sy==2| 88% 10,58% 8,04% 9,71%  4,45%

RE, p—ooo | SU=3| 962% 1157% 858% 080%  447%
’ ' Sy=4| 9,16% 10,18% 6,51% 10,08% 4,03%
Sy=5| 645% 112% 826% 10,27% 4,5%

Sy—o | 862% 10,31% 4,83% 10,66% 1,47%

Sy=1| 88% 1024% 543% 11,15% 1,14%

Sy=-2| 9,64% 824%  4,13% 10,38% 1,32%

RF, p—oor | SY=3|1183% 909% 627% 1088% 143%
’ ' Sy=g4|1164% 655% 6,34% 10,72% 1,99%
Sy=5| 821% 9,13% 742% 11,05% 3,15%

Sy=o| 921% 10,31% 11,08% 8,61% 7,32%

Sy=1| 10,6% 11,42% 11,50% 10,13% 8,82%

Sy==2| 937% 10,56% 11,14% 8,36% 7,10%

RE. o—oor | SY=3|1061% 1111% 1158% 10,37%  8,70%
PPTO05 gy — s | 11,39%  11,13%  10,34%  8,24%  7,24%
Sy=5 | 10,52% 12,20% 12,42% 8,99%  7,30%

Sy—o | 795% 7095% 7,80% 7,36% 10,27%

Sy=1| 893% 871% 864% 869%  9,27%

Sy==2| 694% T757% 7,54% 6,93% 10,10%

RF, p—os |SY=3| 723% 8I5% 797% 811% 9,28%
’ ' Sy=4| 792% 6,85% 646% 643% 7,93%
Sy=5| 824% 801% 830% 840% 8,74%

Sy—=o | 10,22% 10,28% 0,74% 8,55%  9,01%
Sy=1|10,18% 9,96% 9,91% 8,73%  9,16%

Sy=2| 920% 7,60% 7,60% 7,03% 7,40%

RE. oo Sy=3| 820% 815% 843% 7.86% 7,86%
'P=O03 N gy—y | 896% 7,68% 6,38% 6,38%  6,76%
Sy=5| 713% 7,19% 7,19% 562% 6,01%

Sy—=o | 1051% 10,07% 0,89% 9,74%  8,55%

Sy=1| 996% 991% 991% 991%  8,73%

Sy==2| 764% 750% 7,60% 7,60% 7,03%

RE. 50— o Sy=3| 820% 843% 843% 843%  7,86%
'P=O05 ey —u | 7,68% 7,68% 7,68% 6,38%  6,38%
Sy=5| 718% 7,19% 7,19% 7,19% 562%

Sy—o | 9,84% 8,62% 8,70% 2,29% 3,01%

Sy=1| 934% 814% 8,07% 120%  2,64%

Sy==2| 7,85% 7,38% 7,33% 1,32%  2,40%

Sy=3| 803% 745% 6,20% 0,96% 1,63%

RNN, p=o0001 | o/ | 7.68% 638% 417% -035%  0.28%
Sy=5| 670% 510% 501% 1,14%  0,53%

Table IV.33: EURUSD Annualized P&Ls, 2"¢ DB
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Figure IV.104: Gini Features Importance, p = 0.001, 1 DB
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Figure IV.105: Gini Features Importance, p = 0.001, 2"¢ DB
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Figure IV.107: EURUSD P&L, 6pyy = 0.5, 051 = 0.5, 1t DB
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Figure IV.109: EURUSD P&L, 6y = 0.5,05e1 = 0.5, 2" DB
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DEXUSUK Backtesting Results

Explanatory Variables

SP500
DGS10

GOLD EURUSD
EURDGS10

Table IV.34: Data for DEXUSUK

Training Set | From 13/09/1971 to 31/03/2006
Test Set From 31/03/2006 to 31/03/2011
Table IV.35: Size of the Sets

Trn Trn — Trn + Test Test — Test +
p=o0.001 | 92,66% 92,64% 92,68% 72,39% 72,41% 72,38%
p=o0.01 | 88,72% 88,55% 88,91% 71,17% 71,23% 71,13%
p=o.05 | 7872% 81,75% 75,58% 70,61% 73,97% 68,23%
RF p=o0.1 | 7421% 7548% 72,90% 74,25% 70,45% 76,93%
p=o0.3 | 74,04% 7532% 72,71% 74,33% 70,65% 76,93%
p=o05 | 72,72% 71,91% 73,56% 73,85% 67,91% 78,04%
RNN | p=o0.001 | 71,39% 70,09% 72,73% 73,68% 67,51% 78,04%

Table IV.36: DEXUSUK Recognition Rates, 1 DB
Trn Trn — Trn + Test Test — Test +
p=o0.001 | 93,81% 94,49% 93,14% 74,98% 68,75% 79,16%
p=o0.01 | 87,80% 88,98% 86,63% 77,81% 73,59% 80,65%
p=o0.05 | 81,62% 84,24% 79,03% 75 71% 70,97% 78,89%
RF p=o0.1 | 80,06% 78,82% 81,29% 78,95% 70,77% 84,44%
p=o0.3 | 7811% 76,66% 79,54% 76,92% 70,77% 81,06%
p=o0.5 | 78,10% 76,64% 79,54% 76,92% 70,77% 81,06%
RNN | p=o0.001 | 77,21% 75,29% 79,10% 76,84% 70,36% 81,19%

Table IV.37: DEXUSUK Recognition Rates, 2"¢ DB
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Figure IV.110: RNN, p = 0.001, 1°* DB

Figure IV.112: RF, p=o0.5, 1°* DB

Figure IV.114: RF, p=o0.1, 1°* DB
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Figure IV.116: RF, p =o0.01, 1°* DB

ROC Curve p = 0.001 / AUC = 0.7541099
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ROC Curve p = 0.5 / AUC = 0.7521597
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ROC Curve p = 0.1 / AUC = 0.8095436
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ROC Curve p = 0.01 / AUC = 0.7873753
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Figure IV.111: RNN, p = o0.001, 2™ DB

Figure IV.113: RF, p=o0.3, 1°* DB

ROC Curve p = 0.001 / AUC = 0.8615937
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Figure IV.115: RF, p =o0.05, 1* DB

Figure IV.117: RF, p =o0.001, 1°* DB

ROC Curve p = 0.001 / AUC = 0.7824788
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Figure IV.118: RF, p = 0.5, 2™ DB

Figure IV.120: RF, p =o0.1, 2™ DB

Figure IV.122: RF, p =o0.01, 2™ DB

ROC Curve p= 0.5 / AUC = 0.836242
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igure IV.119: RF, p =o0.3, 2™ DB
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ROC Curve p = 0.3 / AUC = 0.8271572
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Figure IV.121: RF, p = o.05, 2™ DB

Figure IV.123: RF, p = 0.001, 2™ DB

Irue positive rate

ROC Curve p = 0.001 / AUC = 0.8175471

False positive rate



=05 6=04 6=03 6H=02 6H=o01

Sy=o| 497% 2,58% 4.23% 576% 3,61%

Sy=1| 7,06% 146% 3,76% 576% 3,62%

Sy=2|391% 3,35% 454% 568% 3,65%

RF, p—ooo1 | SY=3 | 722% 450% 279% 592% 3,64%

’ ' Sy=4 | 699% 4,66% 301% 540% 3,63%

Sy=5| 897% 056% 4,09% 6,20% 3,76%

Sy=o | 451% 6,18% 6,77% 2,36% 6,63%

Sy=1| 370% 446% 6,07% 1,85% 6,20%

Sy==2| 761% 820% 743% 1,06% 6,59%

RE, p—oo1 | SY=3| 046% 560% 620% 063% 641%

’ ' Sy=4| 786% 7,00% 7,44% -0,52% 5,96%

Sy=5| 7,37% 740% 6,06% 0,09% 6,39%

Sy—o | 1,85% 1,70% 4,69% 550% 6,78%

Sy=1|085% -0,35% 4,63% 427% 6,04%

Sy==2|281% 1,84% 4,13% 539% 6,23%

RE. o—oor | SY=3]026% -044% 318% 450% 559%

PP gy — 4| 4,38%  3,98% 4,56%  3,83%  4,42%
Sy=5 | 247% 2,02% 427% 4,28% 5%

Sy=o | 6,30% 6,53% 6,60% 7,02% 3,85%

Sy=1|471% 4,64% 4,69% 562% 3,93%

Sy==2|622% 622% 566% 559% 4,50%

RE, p—oq |SY=3|49%% 478% 423% 466% 169%

’ ' Sy=4 | 562% 562% 562% 5096% 3,54%

Sy=5 | 544% 544% 456% 518% 0,28%

Sy—o | 6,04% 6,43% 6,60% 6,60% 5,93%

Sy=1|471% 454% 4,69% 4,60% 4,61%

Sy=2| 6,06% 6,22% 566% 566% 4,22%

RE. oo Sy=3 | 4,94% 4,78% 4723% 423% 4,23%

'PTO3 sy —4 | 559% 562% 562% 562% 5,62%

Sy=5 | 544% 544% 456% 4,56% 4,56%

Sy—o | 4,03% 4,45% 4,63% 4,18% 4,78%

Sy=1|292% 2,74% 2,90% 2,90% 2,90%

Sy==2| 4,06% 4,23% 3,63% 3,63% 3,04%

RE oo Sy=3| 437% 421% 3,65% 3,65% 3,65%

PPTOb gy | 4,37%  4,40%  4,40%  4,40%  4,40%

Sy=5 | 241% 2,41% 142% 1,42% 1,42%

Sy=o | 445% 4,63% 4,78% 524% 1,15%

Sy=1|274% 2,90% 2,90% 4,05% 1,91%

Sy==2|423% 3,63% 363% 4,78% 3,94%

Sy=3 | 421% 3,65% 3,65% 3,26%  2,26%

RNN, p=0001 | o | 440% 440% 440% 4,85% 4,23%

Sy=5 | 241% 142% 142% 4,56% 2,37%

Table IV.38: DEXUSUK Annualized P&Ls, 1°¢ DB
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=05 6=04 6=03 6H=02 6H=o01
Sy=o|-027% 4,76% 4,86% 7,30% 4,54%
Sy=1|-1,49% 4,87% 3,67% 6,88% 5,01%
Sy=2 0,11% 4,42% 4% 6,60%  4,59%
RF, p— 0.001 Sy=31-0,36% 3,32% 3,20% 7,28% 5,22%
’ ' Sy=4| 562% 4,41% 4,17% 6,42% 5,48%
Sy=5| 1,68% 4,56% 4,59% 6,08% 5,24%
Sy=o| 503% 538% 6,08% 6,76% 6,18%
Sy=1| 4,16% 3,21% 4,85% 5,69% 5,52%
Sy=2| 490% 4,42% 5,72% 6,13% 5,50%
RF, p— 0.01 Sy=3| 2,98% 1,71% 551% 5,05% 4,82%
’ Sy=4| 6,77% 577% 554% 5,15% 5,23%
Sy=5| 6,16% 507% 6,46% 5,94% 541%
Sy=o| 4,54% 4,48% 4,58% 5,12% 9,01%
Sy=1| 2,43% 3,41% 3,71% 3,92% 8,32%
Sy=2| 4,09% 4,40% 521% 4,90% 8,61%
Sy=3| 2,47% 2,75% 3,14% 3,62% 8,58%
RF, p =o0.05
Sy=a4| 4,36% 4,42% 4,66% 4,82% 8,68%
Sy=5| 426% 4,44% 4,93% 4,72% 8,79%
Sy=o| 653% 6,58% 5,85% 3,08% 6,41%
Sy=1| 4,77% 4,33% 4,49% 2,29% 5,93%
Sy=2| 493% 6,27% 581% 3,50% 6,10%
RF, p— o1 Sy=3| 4,69% 4,84% 4,29% 2,17% 5,86%
’ ' Sy=4| 6,25% 6,26% 4,76% 4,44% 7,42%
Sy=5| 4,80% 5,49% 5,65% 4,43% 6,54%
Sy=o| 333% 3,12% 3,78% 3,29% 3,12%
Sy=1] 1,51% 1,93% 2,79% 2,55% 3,05%
Sy=2| 384% 3,13% 3,73% 3,92% 3,72%
RF, p— 0.3 Sy=3| 3,15% 2,78% 3,18% 3,17% 3,25%
’ Sy=a4| 4,38% 4,38% 4,16% 4,16% 4,33%
Sy=5| 2,33% 1,96% 3,75% 3,75% 3,82%
Sy=o| 3,33% 3,11% 3,60% 3,51% 2,54%
Sy=1| 1,51% 1,93% 2,79% 2,97% 2,65%
Sy=2| 3,84% 3,71% 3,51% 4,14% 3,28%
RF. »— o Sy=3| 3,15% 2,78% 3,18% 3,27% 2,85%
1P =05 Sy=4| 4,38% 4,38% 4,16% 4,32%  4,68%
Sy=5| 2,33% 1,96% 3,75% 3,81% 3,38%
Sy=o| 3,05% 3,21% 3,39% 1,56% 8,73%
Sy=1| 1,61% 1,51% 2,83% 1,95% 8,93%
Sy=2| 329% 3,29% 3,44% 1,24% 9,19%
Sy=3| 2,93% 3,15% 3,96% 1,18% 8,63%
RNN, p=o0001 | o/ | 365% 365% 4,20% 2,78% 8 93%
Sy=5| 2,33% 2,33% 4,25% 1,04% 8,06%

Table IV.39: DEXUSUK Annualized P&Ls, 2" DB

183




1000

800

600

400

200

(Gini) Ranked Variables

T'DEXUSUK1
T'EURUSD1
T'EURGS101
Max' DEXUSUK1
T'EURUSD2
S'TEURGS101

T DEXUSUK2
Min' DEXUSUK1
T'DGS102
T'SP5001
V'EURGS101
SDEXUSUK1
K'EURGS101
T'EURGS103
S'TEURGS102

V' DEXUSUK1
S'DEXUSUK2
Max'EURUSD1
S'GOLD1
T'EURGS102

IIDD....IDIIIIIIIII

Figure IV.124: Gini Features Importance, p = 0.001, 1 DB
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Figure IV.125: Gini Features Importance, p = 0.001, 2"¢ DB
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Figure IV.127: DEXUSUK P&L, 6y = 0.5, 05c1 = 0.5, 15t DB
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Figure IV.129: DEXUSUK P&L, 64,y = 0.5,050 = 0.5, 2™¢ DB
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IV.2.3 Conclusions

RF and RNN numerical models, trained on the two types of UniCart databases using a group
of meaningful financial target variables, have been extensively backtested in this subsection. The
backtesting results can be summed up in a few points.

1. RF numerical models tend to overfit. The overfitting effect depends on the parameter p, which
determines the size of the tree classifiers. The higher the value of the parameter p, the smaller
the size of the tree classifiers. Our experiments show that decreasing gradually the value of p
usually leads to less and less accurate classifiers.

2. The analysis of feature importance performed on the first type of database highlights that the
non-lagged linear trend of the target variable is the most influential feature in the prediction
computation. This observation is consistent with the guiding principle of technician analysts:
"Follow the trend". Besides, the study of the second type of database shows that returns - of
the target variable - computed for the broader scales are the most relevant. These observations
emphasize that the role of machine learning in finance is rather to select the scale of observation
than the features.

3. RNN numerical models are not submitted to overfitting. The recognition rates and ROC curves
of these classifiers underline that the RNN procedure is capable of handling non-stationary
features. However, the trading rules based on the predictions of the RNN numerical models
are not necessarily highly competitive. Indeed, the UniCart representation also has to be well
adapted to the modeled financial series.

Points 1 and 2 have motivated the creation of the Relabeled Nearest Neighbors procedure. The
intuition behind was that the importance of features could be taken into account to distinguish
between objects of the training set and to draw robust comparisons between the training set and the
test set. A decisive advantage of the RNN procedure is that it enables the construction of parameter
freed models. We believe that this is essential from a methodological point of view. Indeed, it has
allowed us to reliably analyze the link existing between the performance of the trading rules and
their sensitivity - measured by the reaction delay parameter. The next section focuses first on the
study of the efficient market hypothesis via trading rules based on UniCart RNN numerical models.
We propose then further improvements and extensions of the UniCart RNN approach.
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IV.3 Further Perspectives for the UniCart RNN Approach

This section is devoted to the analysis of the backtesting results of UniCart RNN numerical models.
We believe that this analysis is particularly reliable because it is based on procedures and backtesting
plans specifically designed to avoid data snooping. Indeed, the RNN procedure does not require any
subroutine for parameter tuning. Hence the UniCart RNN numerical models only depend on the
set of UniCart parameters (W, w, h), whose values have been fixed for the whole group of considered
target variables and for the two types of databases.

W = 2rodays
w = godays
h = 2gdays.

The fact that the backtesting results of section IV.2, obtained for different target variables with
a restricted number of parameters, are consistent with each other gives appropriate credit to the
UniCart RNN approach. It also strongly supports the study of the efficient market analysis via the
UniCart RNN trading rules, presented in the first subsection. The behaviour of these trading rules
suggests an extension of the UniCart RNN approach, which could help improving the stability of
the score. This is discussed in the second subsection.

IV.3.1 About the Efficient Market Hypothesis

The aim of this subsection is to question the efficient market hypothesis. In that perspective,
we focus on the parameter sensitivity Sy of the UniCart RNN trading rules. This parameter is
expressed in days and is used to place buying and selling orders. More specifically, a single buying
(resp. selling) order is placed as soon as the RNN score exceeds the buying (resp. selling) threshold
during the number of days indicated by the parameter Sy. Note that in our experiments, reported
in section IV.2, we can not place more than one order. Therefore, when the score stays above the
buying threshold (resp. below the selling threshold), we do not increase the invested money. Instead,
we just keep our position. Our method to study the efficient market hypothesis is to observe the
P&Ls gained by the UniCart RNN trading rules by making the parameter Sy vary over a wide
range of values, from Sy = godays to Sy = 1day. The graphs 1V.130, 1V.132, 1V.133, 1V.134,
IV.135 report the annualized P&Ls obtained for the SP500 index and the first type of UniCart
database as well as all the thresholds 6y, and 6,.; considered in subsection IV.2.2. The graphs
IV.131, 1V.137, 1V.138, IV.139, IV.140 display the annualized P&Ls specific to the second type
of database. Furthermore, the annualized P&Ls computed using the first type of database with
parameters Opyy = 05e11 = 0.5 for respectively the variables STOXX, GOLD, OIL, EURUSD and
DEXUSUK are presented by the graphs [V.142, IV.144, 1V.146, IV.148 and IV.150. The graphs
IV.143, 1V.145, 1V.147, IV.149 and IV.151 are their counterparts of the second type of database.
Note that for clarity and conciseness, all the P&Ls corresponding to all examined parameters fpyy
and ;. = 0.5 are not reproduced in this document. Nonetheless, two decisive observations can be
made on all of them.

e The variance of the annualized P&Ls - obtained at the term of the test period - tends to reduce
when the sensitivity Sy tends to 1. In other words, the performances of the trading rules are
more stable for small sensitivity values.

e The P&Ls are also usually higher for small sensitivity values. The case of GOLD is an
exception and the contrary is actually observed on graph IV.145. This is explained by the
behavior of the price of gold during the test period, which is almost constantly increasing (cf.
figure IV.69). The selling orders placed by our trading rules thus almost systematically lead
to losses.

These observations may imply that the efficient market hypothesis need a smoother reformulation.
Contrarily to what the weak form of the EMH states, markets would then incorporate information
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"quickly" into prices, and not immediately. This mechanism is however difficult to quantify, all the
most that our trading rules do not yield very stable P&Ls even for small sensitivity values. The
next and last section suggests improvements of the UniCart RNN approach regarding this stability
aspect.
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IV.3.2 Improvements for the UniCart RNIN Approach

Instability of UniCart RNN numerical models. The subsection IV.3.1 highlights the variance
reduction of the annualized P&Ls when the sensitivity decreases, i.e. Sy — 1. Yet, if the variance
of the P&Ls is admittedly reduced for small sensitivity values, it is not necessarily very low. This
lack of stability of the UniCart RNN numerical models is addressed here from another point of
view. We illustrate the two last steps of the RNN procedure, the relabeling of the training set
and the 1-NN classification of the test set, using the first database made for the modeling of the
SP500 index. The graph IV.152 represents thus the original labels of the training set, while the
graph IV.153 displays the new labels computed for the training set by the RNN procedure. The
scores corresponding to these new labels are plotted on graph IV.154. The new labels, as well as
scores, are then transferred via 1-NN classification to the test set, as shown in graphs IV.156 and
IV.157. These figures particularly highlight the concentration of the scores around the values o and
1. The score clearly identifies broad-scale upward and downward trends, perturbed by transitory
variations of large amplitude. These observations are also made on the test set of the SP500 second
database, as underlined by figure V.28, as well as on the databases of all the other target variables,
as emphasized by graphs [V.46, V.48, V.66, IV.68, IV.86, V.88, IV.106, [V.108, IV.126 and IV.128.
The new model suggested next paragraph aims at moderating the magnitude of the high-frequency
variations of the score.
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Figure IV.152: SP500, Trn Labels, 15t DB

Figure IV.153: SP500, New Trn Labels, 15t DB

Figure IV.154: SP500, Trn Scores, 15t DB
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Figure IV.155: SP500, Test Labels, 15t DB

Figure IV.157: SP500, Test Scores, 1t DB
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Suggestion of a new model. We consider the random process X ~ P, where

We call X a random multiscale process indexed by the time ¢ and by the scale s. We aim at finding
the multivariate regression function

f:(fs)s
1<s< S

which leaves the process X (as) invariant (as possible) over various scales s at horizon h. We denote
first 7, the translation operator such that

m((X2),) = (X20a),
We introduce then the following true and empirical risks.
R(f) = E(Q(Th((X_S)S>,f>> and  Ba(f) ==Y Q((Xiin),f),

where the loss function @ is:

Q(m((x7),).7) -y

£((),) —m((x),)

Suppose that the process X is made of the UniCart trends or returns of a given target financial
variable. Consider that f = (fs)s is a multivariate regression tree and that each split sp in the tree
f is defined by a single scale 5. The splot sp is typically of the type:

Sp = X§71 (] — 00, a]))

where a is a real threshold. Our problem is then a problem of scale selection, in the sense that
we aim at selecting the splits, hence the scales, which most reduce the risk. We believe that this
problem, by mixing several scales, may lead to more stable trend predictive numerical models.

We propose to study a RNN-like formulation of this problem. We introduce the following
mixture model, inspired by the model stated in section III.3. We consider the random pair process
(X,R) ~ P, where X is a random multiscale process and where R = (Rt)t €{1,...,Ng}is a latent
process standing for a specific distribution of the random vector X; = (X;),<s<s. The distribution
of the random process X is given by the mixture model

Ng
X~ E ct,r Py r,
r=1

where ¢;, = P(R; = r) is a weight and where P, , = PXt-\Rzzr is aregime. Each regime (Pt,r)

1<r<Ng
is unknown and the number Ng of regimes is also unknown. The goal is then to find a number
of regimes Ng, a regime attribution function H : X — {1,..., Ng} and regime specific prediction

functions (f,,s) , where 1 <7 < Ng,1<s< S and f,; : ¥ — R, so that the numerical model

defined by the triplet (NR,H, (f,,s)r S) has a low prediction error. The UniCart RNN approach

can not be directly applied to find and to transfer the regimes. Particularly, the problem considered
here is a combination of regression problems and not a binary classification problem. Yet, slight
changes in the RNN procedure may be sufficient to study this new problem.
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IV.3.3 Input-Output Diagram of the Backtesting Plans

The following diagram sums up the steps of backtesting plans, implemented with R and Excel. The
target variable is denoted (Dj,, )1<t<n,.., and is required to compute the P&Ls of the trading rules.
Besides, recognition rates are computed by adopting the convention

{ scryn(z)

[Input-Output Diagram Backtesting Plans]

Computation of the Recognition Rates (RR)

e N

e Inputs: {(wtrn“ Ytrn, (h), SCRNN(ztrnt)> , (Etest“ Ytest, (h), SCRNN (Ttest, ), Dtlestt) }
1<t<nirn 1<t<ntest

e Inputs Format: R data frames and csv files.

e Outputs: (RRtm, RR; ., RR,,,, RRis, RR,,,, RRtESt>

e QOutputs Format: Excel files.

Computation of the ROC Curves

e Inputs: (ytestt(h),scRNN(a:testt)) .
1<t<ntest

e Inputs Format: R data frame.

e Qutputs: (ROCSCRNN)-

e Outputs Format: R graphics - ROCR package.

Design of Trading Rules - Computation of P&Ls

° InplltSI (ztest“ SCRNN (ztestt), Dtlgstt, gbuy, gsell)
1<t<ntest
e Inputs Format: R data frames.
e Outputs: (P&Ltestt> .
1<t<ntest
e Outputs Format: Excel files.

Evaluation of Feature Importance (FI)

e Inputs: ((a”(v)) ) .
VEV ) tr=(v,A)eTR

e Inputs Format: R data frames.

e Outputs: (FI’“)

-

1§k§p.
e QOutputs Format: R data frames.
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Appendix

Supervised Boosted Nearest Neighbors

As indicated in the introduction of chapter III, this subsection presents the Supervised Boosted
Nearest Neighbors (SBNN) procedure. Like the RNN procedure, it aims at discovering and learning
different regimes in the binary classification setup. It is based on the new concepts of clusterizer and
local classifier. We call clusterizer any distance-based function indicating whether two objects of the
database are closed from each other. Given an object of the database, any clusterizer defines thus a
subset of the training set. We call local classifiers the classifiers indexed by this subset. The SBNN
procedure is a boosting-like algorithm, which aggregates a given ensemble of clusterizers and local
classifiers to produce more precise classifiers. In the following, we introduce notations and state the
SBNN goal and pseudocode. Computational difficulties are emphasized as well.

Notations. We consider the statistical model introduced in subsection III.3. In the SBNN ap-
proach, clusterizers cz are used to identify the different regimes. These functions depend on a given
distance Dist and on a given number / € N of nearest neighbors. They are defined as follows.

X X Ttrn,.,, ~ — {—1,+1}
cz =

(T, Ttrn,) —o1—21 (zzrnJENN(z))

where
NN( ) NNDZSt( )

is the set of the I nearest neighbors of the object z in the training set zy,,,,  according to the
distance Dist. In the following, we suppose that the clusterizers cz belongs to the finite ensemble
C of clusterizers, which corresponds to a family of |C| distances. In addition, for more clarity, usual
notations are simplified and we have: z; := z¢,; and n := ny.,. The local classifiers, corresponding
to the object z, are then denoted

(fi)e;eNN(2)-
We assume finally that the local classifiers (f;).<j<n belong to the class of functions F.

Goal of the SBNN Procedure and Pseudocode. The idea is to use the boosting philosophy
to aggregate clusterizers (cz,),<,<,,,,, and local classifiers (f,),<.<,,..., Where f, = (f, j)i<j<n. For
each object z;, we denote by v, ; the discrete distribution on the objects of the training set at step ¢.
We consider the weighted empirical error R;, of base clusterizer cz and of local classifiers (f;):<j<n-

Ry (cz, f) Z Z'lh,] ]l{cz (zi,zj)=—1,f;(®;)#yi}

i=1 j=1
We aim at minimizing the following smoother bound of the weighted empirical error:
1—cz,(z;,z4) 1+ cz, (x4, z4)
AL (cz, f) ZZ’/’LJ exp(—wL(Lz’JfL,j(a:i)yi+L2’J _
1=1 j=1
The idea is to diminish the influence of the object z; on z; during the training phase as soon as:
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e either z; is not a neighbor of z;.

e or the classifier f, ,, did predict correctly the label of z;, i.e. f, j(z:) = y;.
Conversely, the influence of z; on z; is increased if:

e z; is a neighbor of z;

e and the classifier f, ,; did not predict correctly the label of z;, i.e. f, ;(z:) # v.
This motivates the following SBNN pseudocode.

1. Initialization:

. 1 .
qpl,j(z)zﬁa VZ,]E{l,...,n}.
2. For t =1,..., tymaz, execute the following procedure.

e Choose clusterizer cz, and local classifiers f, ; approximately minimizing R; over all
cz € C and (fj)i<j<n C F.
e Set Ry" = R'/(cz,, f.) and adjust the weight w,:

e Update the distribution vector:
. . 1_Czb(mia"pl) 1+CZL(IZ‘1"E4)
Voo li) = g li)exp = (EELEE gy, g 2B ) )

Normalize the updated vector.

3. Outputs:

CZLmam ("EhmJ) = ZZZ? w, CZL(mian)
.. (z,z;) =Y ime w, EEm) £ (),

The SBNN prediction of the object z is computed as follows.

J* =argmingeq, oy CZ,,..(z,2;)

Frpe(@,250) = T007 w, =220 f, o (a),
Computational Difficulties. Selecting at each step ¢ the best clusterizer cz, € C and the corre-
sponding local classifiers f, C F requires to compute the local classifiers of each clusterizer cz € C.
This is computationally highly expensive. To reduce this computation cost, a possible strategy is
to reduce the number of local classifiers. This can be done by defining clusterizers via clusters of
objects instead of neighborhoods of objects. Clusters are computed using the distance Dist and a
user-chosen number of clusters cI. We have then:

X X Ttrn,, ~— {—1,+1}
cz = . 5 —
(iE ) &3]) 1 21 (C’lus(z]):C’lus(z])

where 4
Clus(z) := ClusD*t(z)

cl

is the integer indicating the cluster of the object z. It naturally checks:
1 < Clus(z) < dl.

We denote then f.; cius(z) the local classifier, corresponding to the object z and to the clusterizer
cz. At each iteration ¢ of the SBNN procedure, cl local classifiers are trained (instead of n¢,.,, local
classifiers).
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Conclusion. The main drawback of the SBNN procedure is that it requires parameters to be
entered, either the number I of nearest neighbors or the number cl of clusters. Besides, the family
of distances, which defines the ensemble of clusterizers, has to be chosen carefully as it has a strong
influence on output classifiers. We preferred therefore to work with the RNN procedure.
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