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Introduction

In this document, we propose new models and resolution schemes for problems that
belong to the family of Cutting and Packing (C&P) problems [90]. The most "basic"
NP-complete problems in the C&P field are the bin-packing and the knapsack prob-
lems. In the former, the objective is to find the minimum number of bins needed to
pack all the items.

Problem 1 (Bin-packing Problem (BPP)) Given a set I of items i of size ¢;,
what is the minimum number of bins of size C needed to pack all the items of 17

The BPP is the main problem addressed here, but different knapsack problems
also appear as subproblems throughout the document. In this second problem, all
items cannot be packed in the containers, and the objective is to maximize the profit
associated with the input items.

Problem 2 (Knapsack Problem (KP)) Given a set I of itemsi of size ¢; and profit
pi, and a knapsack of size C, find the subset of I whose total size is smaller than C
which mazimizes the total profit of the selected items.

The rather simple structure of the classical BPP has made this problem one of the
most popular to test new methods, or to prove theoretical results. For example, its
variant of cutting-stock has been one of the first problems to be solved through column
generation methods [50,51], and BPP is one of the favorite subjects of approximability
studies (see for example [38]). These basic (yet hard) C&P problems can be seen
as "laboratories” in which new techniques are tested. Therefore, many results first
proposed for these problems lead to improvements for the resolution of many others.

For solving hard multi-dimensional packing problems efficiently, the literature shows
that the best results are achieved using meta-heuristics, mathematical programming
and constraint programming (CP). The first family of resolution method is effective
for large size instances (see [72] for example), while CP can be more efficient than
heuristics for problems involving one bin only (rectangle placement problems) [10].
For some particular cutting problems, where there are many instances of each item
type, mathematical programming can even be faster than greedy algorithms. This
justifies the fact that most of our algorithms use different resolution methods in a
collaborative way to tackle packing problems.



2 INTRODUCTION

In this document, we propose new models and methodologies that we apply to three
families of packing problems. In Chapter 1, we study decomposition methods and meta-
heuristics based on so-called strategic oscillation. We apply these techniques to packing
problems with different kinds of conflicts. In Chapter 2, we deal with the concept
of dual-feasible functions, which are used to derive polynomial-time lower bounds for
several bin-packing problems, and improve cuts for integer linear programs. In Chapter
3, we propose new models for two different packing problems in two dimensions. We use
these models into methods that use a combination of operations research and constraint
programming techniques.

Throughout the document, we follow a consistent methodology. A first feature of
our work is to use techniques from different fields: most notably integer programming,
constraint programming, meta-heuristics, and graph theory. Although "hybrid" would
be too strong a word, we always use these different methods in a collaborative way,
which improves the results that would be obtained by each method separately.

Chapter 1 is devoted to different kinds of decomposition methods and so-called
strategic oscillation. We used these methods to design lower and upper bounding
strategies for packing problems with conflicts. In particular, we show that these de-
composition methods can lead to effective collaborative resolution schemes. Our tech-
niques rely on two types of decompositions: Dantzig- Wolfe decomposition [39] of linear
programs, and tree-decomposition [83| of graphs. We first propose a resolution method
for the bin-packing problem with pairwise conflicts [49], based on the decomposition of
the conflict graph into several clusters. Each cluster can be solved independently if a
partition based on the decomposition is computed. This framework is exploited by a
tabu search, which assigns and remove items to/from clusters. The second problem
addressed is a new bin-packing problem with conflicts met in a multi-objective context.
The number of bins is limited, and we need to minimize the number of conflicts in the
bins. For this problem, we propose a method based on linear-programming and column
generation. Our method makes a good use of heuristic and meta-heuristic methods for
generating the initial basis, and the columns at each step of the process. Finally, we
address the bin-packing problem with fragile items [5], in which conflicts are modelled
by a level of fragility for each item. We propose a column generation scheme for solving
this problem. We designed a dynamic programming scheme for generating iteratively
the columns, and a meta-heuristic method for initializing the master problem. The
three meta-heuristics proposed in this chapter are based on the concept of strategic
oscillation, in which the search oscillates from feasible to unfeasible, or complete to
incomplete solutions.

Chapter 2 is clearly connected to mathematical programming and heuristics. It is
dedicated to so-called dual-feasible functions (DFF) [75], related to column-generation
techniques for the bin-packing problem and duality. These functions are used to derive
lower bounds for packing problems, but they can also strengthen valid cuts in integer
programs (see for example [1]). This chapter gives an comprehensive overview of the
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concept of DFF, and hints based on experimentation to determine the problems for
which it can be generalized. In the first part of this chapter, we describe the concept of
DFF and show how it is related to other concepts in the literature. Then we survey the
literature in which dual-feasible functions are used (sometimes implicitly, sometimes
under a different name), and stress the link with superadditive functions used in integer
programming. We show that a few different techniques are sufficient to generate most
functions of the literature. The second part of Chapter 2 deals with extensions of this
concept to various bin-packing problems (most notably two-dimensional problems, and
the addition of conflict-based constraints).

Chapter 3 deals with an important issue in two-dimensional cutting/packing prob-
lems: rectangle placement problems. This problem has been the subject of a large
number of contributions [9,10,43-45,54,67,79,82|. To our knowledge, methods based
on constraint programming are the most efficient exact algorithms for these problems
(see [10] for example). This can be explained by the fact that linear relaxations of the
integer models dedicated to these problems are generally weak. We propose new mod-
els for two different rectangle placement problems: the regular case, and the guillotine
case. We first show that the regular case is tightly linked with cumulative scheduling
problems. This allows us to use powerful results from the scheduling field (energetic
reasoning [41|, branching schemes, etc.). The obtained method relies on an effective
combination of operations research and CP techniques. We also propose the first effec-
tive graph-theoretical model for the guillotine case, which captures the combinatorial
structure of the patterns, and helps designing a CP-based resolution method. For both
problems, the efficiencies of our methods, which are able to compete with the best
methods of a large literature, rely on the strength of the new models, but also on the
new propagation and pruning algorithms.






Chapter 1 __

Decomposition methods and strategic
oscillation for bin-packing problems
with conflicts

The work described in this chapter has been published in an international journal [65].
Two reports [31, 64] are also submitted to international journals.

1.1 Introduction

In this chapter, we describe our lower and upper bounds for various bin-packing prob-
lems with conflicts using decomposition methods and meta-heuristics based on strategic
oscillation.

Handling conflicts is one of the first additional constraints to be demanded in indus-
trial applications. Incompatibilities can be modelled in many ways. In this document,
we address three variants: hard conflicts, soft conflicts, and fragilities. Given the dif-
ficulty of these problems, and the time that would be entailed by an exact resolution,
we focus on heuristic and lower bounding methods.

Packing problems with conflicts are generally harder to solve than the classical bin
packing problem (BP). Whereas a simple Integer Linear Programming (ILP) formula-
tion can find good solutions for BP and in many cases good lower bounds in a small
amount of time, this is generally not the case with conflicts. Since these problems are
difficult, a sensible way of addressing them is to decompose them into subproblems
that will be hopefully easier to solve. We will focus on two particular decomposition
methods: tree-decomposition of graphs and Dantzig-Wolfe decomposition of TLP.

The methods that we describe in this chapter share some similarities. The first,
as hinted above, is to rely on decomposition methods. The second is to generate
solutions using meta-heuristics based on so-called strategic oscillation. The idea is
to oscillate between two sets of solutions: complete/incomplete for the first problem,
over-constrained /relaxed for the second, and feasible/non-feasible for the third. We
used this oscillation strategies because, given a neighborhood, the conflicts may forbid
to travel simply from one good solution to a close one in the solution space (because
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non feasible or non complete solutions are encountered on the shortest path between
them).

The first problem considered is the classical bin-packing problem with conflicts
(BPC). In this problem, conflicts between two items are forbidden, and are modelled
with a graph. We show how tree-decomposition can be used to solve this problem. Ap-
plying this decomposition to BPC is not straightforward, since finding a partition of the
items based on the tree decomposition is a hard problem. We propose several heuristics
to address this problem, and a tabu search based on a construction/destruction scheme
where items are assigned to and de-assigned from clusters.

The second problem considered is a new problem, which we name min-conflict pack-
ing problem (MCBP). We met this problem in the context of multi-objective optimiza-
tion. The conflicts are of the same type as the first problem, but this time, the number
of bins is limited, and the objective is to minimize the number of violated conflicts.
We apply Dantzig-Wolfe decomposition to MCBP. Two difficulties arise: generating a
good initial basis and iteratively generating the columns in an efficient manner. For
the initial basis, we designed a tabu-search based on oscillation between solutions using
different numbers of bins. We proposed heuristics, a local search method and two ILP
models to generate the columns iteratively. The former are improved by the means of
cuts added to the models.

The third problem features a different variant of conflicts. Each item has a fragility,
and the total size of the items in a bin cannot be larger than the smallest fragility of an
item in the bin. We used a methodology similar to the previous problem (column gen-
eration). Initial columns are generated by a meta-heuristic, a Variable Neighborhood
Search (VNS), based on an oscillation between feasible and unfeasible solutions. The
subproblem is solved through a new dynamic programming scheme. It outperforms
our two ILP models and it finds a solution within a small amount of time for all our
instances.

1.2 A tree-decomposition based resolution scheme for
the bin-packing with conflicts

In this section, we deal with the classical bin-packing problem with conflicts. The
method we propose is generic and can be used for both one- and multi-dimensional
cases of the problem (the geometric constraints are handled by sub-routines). In this
document, we focus on the two-dimensional case.

Problem 3 (Two-dimensional Bin-packing Problem with Conflicts (BPC)) Let
I ={1,...,n} be a set of rectangular items i of width w; and height h;, a bin B of
width W and height H, and G = (I, E) a conflict graph. Two items i and j are in
conflict if (i,7) € E. What is the minimum number of bins needed to pack all items of
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I in bins of type B in such a way that two conflicting items are not packed in the same
bin, and no two items overlap?

The problem is defined with a conflict graph. In the following, we mainly use the
compatibility graph G'= (I,I x I \ E). Our decomposition method will be applied on
this graph.

Several heuristics have been proposed for the one-dimensional version of BPC [46,
49]. The most effective are based on classical any-fit algorithms originally designed
for BP, and on the search of cliques in the graph. The first-fit decreasing algorithm
sort, the items by decreasing size, and pack the items one by one in this order in the
first bin that can accommodate it. For the two-dimensional case, the same approach
can be used. It leads to a larger computing time since verifying that an item can
be packed into a bin is more difficult in two dimensions. Practically speaking, we
use the algorithm bottom-left of Coffman [37]. Other heuristics can also be used (see
the methods described in [71, 73| for example). Unfortunately, in many cases, these
algorithms do not lead to interesting results, since they do not take into account the
structure of the graph. In the sequel, we show how a decomposition method can help
such a algorithms to find a better solution.

Some methods dedicated to the one-dimensional case of BPC [49] rely on maximal
cliques or stable sets in the graph. Finding a stable set in the compatibility graph gives
a subset of items that have to be packed in different bins. On the contrary, finding
a clique gives a subset of compatible items that can be packed together. This notion
can be generalized using the concept of tree-decomposition applied to the compatibility
graph.

In a tree-decomposition, the graph is decomposed into clusters of vertices connected
in a tree. Each cluster corresponds with a subproblem to solve. A property of this
decomposition method is that each clique of the graph is contained entirely in at least
one cluster. Consequently, even if some conflicting items remain inside the clusters,
the compatibility graph associated with each subproblem should be denser, and thus
algorithms designed for the classical BP should be more effective when applied to the
different clusters.

Once a decomposition is computed, our method solves the problem related to each
cluster separately, and merges the solutions found. The most crucial issue is that a
given item /vertex can belong to several clusters of the decomposition. In a first phase,
we assign each item to a unique cluster (and thus this item is removed from the other
clusters). We show that finding the best partition of the items into the clusters is
NP-hard and we describe several heuristics to find good solutions.

Finally a tabu search based on our framework and strategic oscillation is proposed.
The idea is to alternate construction and destruction phases in which items are re-
spectively assigned and de-assigned from the clusters. Our methods are tested against
instances derived from the literature. Our computational experiments show the effec-
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tiveness of our approach.

1.2.1 Tree-decomposition and graph triangulation

We now define the notion of tree-decomposition, which will be applied to the compati-
bility graph of the BPC in the sequel.

A tree-decomposition is a special mapping of a graph into a set of clusters linked
in a tree.

Definition 1.2.1 (Robertson and Seymour [83]) A tree-decomposition of a given graph
G = (V,E) is a pair (C,T) where T = (N, A) is a tree with node set N and edge set
A, and C ={C; : i € N'}, is a family of subsets of V' such that:

1. UZENCZ = V;
2. ¥Y(v,w) € E, 3C; € C containing both items v and w,
3. Vi, j,k € N, if j is on the path from i to k in T, then C;NCy, C C;.

Figure 1.1 shows a graph G with eight vertices, and a tree decomposition of G onto
a tree with six nodes. The set of clusters is C = {C; = {0,1},Cy = {1,2,5,6},C3 =
{2,3,6},C4 ={3,6,7},C5 = {3,4}}.

Figure 1.1: A graph G and a possible tree-decomposition for G

The width w(C,T) of a tree-decomposition is equal to max;car(|C;| — 1). The
treewidth tw(G) of a graph G is defined as min{w(C,T)} where the minimum is taken
over all tree-decompositions (C,T') of G. Whereas for some graph families, such as trees
and series-parallel graphs, one can compute the treewidth in linear time, computing the
treewidth of a general graph is a N'P-complete problem. Several papers are devoted to
heuristics for this problem (see Koster et al. [68] or our paper [36]. The most famous
(and simple) method is Mazimal Cardinality Search (MCS) [85], which will be used in
this document.

The notion of tree-decomposition is strongly connected with the class of triangulated
graphs.

Definition 1.2.2 A graph is triangulated if every cycle of length > 3 has a chord, i.e.
an edge joining two non-consecutive vertices of a cycle.
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Tarjan and Yannakakis [85] showed that any triangulated graph contains at most n
maximal cliques, and proposed an algorithm to enumerate these cliques in linear time.
Computing a tree-decomposition for a graph is equivalent to finding a triangulation
of this graph, i.e. finding a suitable set of edges to add to the graph to obtain a
triangulated graph. Then, the clusters are obtained by enumerating in linear time the
maximal cliques of the triangulated graph.

1.2.2 A general scheme for applying a tree-decomposition to
the bin-packing problem with conflicts

In this section, we present our framework for applying tree-decomposition to the BPC.
Once a tree-decomposition is obtained, which means that the set of clusters was iden-
tified, each item has to be assigned to a specific cluster to prevent items belonging
to several clusters from being packed more than once. We call such an assignment a
cluster-separation and show that finding the best cluster-separation is N'P-complete.
Then we propose a first family of heuristics to find fast solutions for this problem.

Given a conflict graph G = (I, E), let us denote by G = (I,I x I \ E) the corre-
sponding compatibility graph. Our method works as follows. The tree-decomposition
is first applied to the compatibility graph G. Each cluster is related to a set of items
that induces a smaller and hopefully less dense subproblem than the original problem.
Then each cluster is solved independently. If the density of the graph has been sig-
nificantly decreased, algorithms dedicated to the classical bin-packing should be more
effective. Finally, the partial solutions obtained are merged into a unique solution.

Now suppose the graph of Figure 1.1 is a graph of compatibility. We can notice
that a vertex may belong to several clusters. For example, vertex 6 belongs to Cs, Cs
and Cy4. If the corresponding item is treated as many times as the vertex appears in a
cluster, the solution obtained will be of weak quality.

Algorithm 1 shows a step-by-step description of the new approach. At line 1, the
graph of compatibility is tree-decomposed. A cluster-separation is computed at line 2.
The separated clusters are then solved as subproblems by the means of any resolution
method at lines 4-5. Finally, at line 6, an improving heuristic is applied to the final
solution. This last step is not mandatory, but it allows us to partially correct the effects
of a bad cluster-separation.

When the partition of the item set is realized, we use a heuristic to solve the induced
subproblem. We used an adaptation of the Bottom-Left algorithm [37].

Note that although only heuristics are used in this document, our framework allows
exact methods to be used in each step of the algorithm (computing the decomposition,
partitioning, packing, improving). This would lead to better results, but also to much
more time-consuming methods.
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Algorithm 1: A Tree-Decomposition based framework for solving BPC.

input : Set I of n items and G = (I, E) graph of conflicts.
output: A Packing of the n items in a set B of bins.

(C,T) «— TreeDecomposition(G);
w(C, T) «— ClusterSeparation(C,T);
B «— 0
foreach C; € (C,T) do

L B «— B U ResolutionMethod(C;);

B «— ImprovingH euristic(B);

U W N =

=]

1.2.3 The cluster-separation problem

An important issue in the new approach is to find a suitable partitioning of the items
in the clusters. We call such a partitioning a cluster-separation.

Definition 1.2.3 Given a BPC instance with a compatibility graph G = (I, E) and
its tree-decomposition (C,T), a cluster-separation is a partition of the set of items I in
the set of nodes C' such that an item can be assigned to a node C; only if it belongs to
C; in the tree-decomposition.

A possible cluster-separation of the decomposition of Figure 1.1is C; = {0, 1},Cs =
{2,5,6},C3=0,Cqy = {3,7},C5 = {4}.

The choice of the cluster-separation is the most crucial part of the algorithm. We
say that a cluster separation is compatible with a given solution if, in this solution, two
items assigned to two different clusters are never packed in the same bin. We state
below that there always exists a cluster-separation that can lead to an optimal solution.

Proposition 1.2.1 For any BPC instance D with a compatibility graph G and its tree-
decomposition (C,T), there exists a cluster-separation p of (C,T) that is compatible with
an optimal solution for D.

We call the problem of finding the best cluster-separation the best-cluster-separation
problem. We now state that this problem is NP-complete for an arbitrary graph by
reducing the partition problem [48] to it.

Definition 1.2.4 Let D be a BPC instance with a compatibility graph G = (I, E)
and (C,T) its tree-decomposition and k an integer value. The best-cluster-separation
problem consists in finding a cluster separation of (C,T) compatible with to a solution
of value k, if it exists.

Proposition 1.2.2 The best-cluster-separation problem is N'P-complete.
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1.2.4 Greedy heuristics for the cluster separation problem

Since the best-cluster-separation problem is N'P-complete, a reasonable way of tackling
this problem for dense graphs is to use heuristics. This phase is the most crucial of our
approach since choosing a bad cluster-separation would lead to bad solutions.

The heuristics we propose belong to the family of greedy algorithms based on an ini-
tial sorting of the clusters. Consider a tree-decomposition (C,T’). A cluster-separation
can be computed as follows: 1) number the clusters according to a given ordering, and
2) for each cluster in the order chosen, assign all remaining items of the current cluster
C; to a new set .S; and remove these items from the subsequent clusters.

Several criteria have been proposed to explore the cluster tree associated to a tree-
decomposition (see e.g. [61]). Two types of criteria were introduced in [61]: local and
global. A local (resp. global) criterion evaluates the relevance of a candidate cluster
without (resp. by) taking into account the interactions with other clusters. The authors
also proposed two criteria, the cluster size (local) and the cluster neighborhood size
(global) corresponding to the number of clusters connected to it.

In this document we introduce a new global criterion, the demand D(i) of an item
1 as to be the number of clusters that contain . This criterion can be generalized and
applied to clusters as follows: the demand of a cluster C, is the sum of the demands

of the items of C,, : D(Cy) = >_D(i). A cluster with a large demand shares many
1€Cx
items with other clusters, and therefore this criterion identifies the "central” clusters

of the decomposition. We also introduce another local criterion that we call rand
corresponding to randomly sorting the clusters.

The choice of these simple heuristics may be justified by the fact that they do not
entail a large computing time, since the use of any complicated heuristic for computing
a cluster-separation would increase the computing time of algorithm 1.

1.2.5 A tabu search based on the tree decomposition and strate-
gic oscillation

Local search algorithms are widely acknowledged as powerful tools for providing high-
quality solutions to a wide variety of combinatorial problems. In the previous section,
we have stated that the cluster separation problem was the core of our resolution
approach. In order to improve the results obtained by the greedy heuristics, we designed
a tabu search that focuses on the cluster separation phase.

In this section, we describe the tabu search algorithm, denoted as TS-TD in the
following. Tabu search [52]| has already been used to solve packing problems (see [56]
for example), using a so-called oscillation strategy. We use this concept of oscillation
by iteratively switching from construction to destruction phases.
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1.2.5.1 Details of our tabu search

In our approach, a solution s is represented by a vector v of size n. Each element v;
of this vector records the current cluster to which item ¢ is assigned. We denote by D;
the set of possible clusters that can accommodate i. For example, according to figure
1.1, the domain of item 3 is D3 = {3,4,5}. The solution space of T'S-TD is defined as
the set of complete and incomplete solutions. A solution is said to be complete (resp.
incomplete) when its variables are (resp. are not) all assigned. In our approach, any
complete solution has to be feasible.

The initialization phase generates an initial non-complete solution vector by
assigning each item i such that |D;| = 1 (see Figure 1.2). The remaining items are set
to —1 and will be assigned to clusters during the search.

co|—1|-1|-1| 1| ca|—-1]| ¢4

| 2| a C2
() 3| c3 c3
-1] -1 Cq Cy4
-1 -1

Figure 1.2: A vector representing a solution and its initialization according to figure 1.1.

A move is the assignment of a variable i to a value in its domain D, (assign) or
the value —1 (remove from the cluster). The existence of two types of movements
is justified by the fact that our TS involves two phases, construction and destruction.
The construction phase guides the TS toward a complete solution while the destruction
phase desinstantiates some variables. Alternating these two phases plays the role of a
diversification process in order to enable the TS to explore new regions of the search
space.

Our objective function uses two terms. In a bin packing context, choosing solely
the real objective function, which is to minimize the number of bins, is rather pointless,
since many different solutions still in general have the same number of bins. It is often
better to extend this coarser grained measure by the gap value, computed from the
free area in each bin.

In our implementation, the tabu list (TL) is a set of moves classified tabu during
some iterations (tabu tenure). The tabu tenure is a static value equal to the total
number of possible moves. For example, the size of TL for the example of Figure 1.1
is equal to 14. Once TL is full, it will be resized in a such way that the oldest half is
erased.



A TREE-DECOMPOSITION BASED HEURISTIC FOR THE BPC 13

1.2.5.2 Strategic oscillation

Our diversification strategy consists in alternating the construction and destruction
phases following some dynamic criteria based on the number of iterations. Figure 1.3
shows the behavior of our TS through the search process. We first start a construction
phase. We keep running our local search until all items of s are assigned. A destruc-
tion phase is then applied on s by de-assigning some items in order to enable the next
construction phase to explore new regions of the search space, and the procedure is
repeated while no stopping criterion holds. This strategy may be controlled by two
parameters: the amplitude a and the frequency f. The amplitude represents the maxi-
mal number of backward moves to be performed during a destruction phase. The value
of the frequency is equal to the minimal number of complete solutions to reach during
the search process.

Number of items not yet packed

Number of iterations

Figure 1.3: A search trajectory in the search space. The frequency f is the number of times a complete solution is
obtained. The amplitude a represents the number of desinstatiations to perform in a destruction phase.

Our intensification phase consists in applying an improving heuristic on each
complete solution we find during the search process. It is based on the progressive
reduction of the number of bins used by the current solution. The idea is to destroy
some bins and redistribute their contents to the remaining bins.

1.2.6 Time complexity of the method

For graphs of bounded treewidth, the time complexity of the algorithm is reduced
compared to that of an equivalent construction heuristic.

The time complexity of computing a cluster-separation according to an ordering
criterion depends on the number of items n, the number of clusters |C| in the tree-
decomposition and the width w(C,T) of the tree-decomposition. If a local sorting
algorithm is used, the time complexity of this phase is in O(|C| x log(w(C,T"))), which
is in O(n x log(n)) for an arbitrary graph. For the global sorting strategies, the time
complexity is O(n?), since an initial phase with this time complexity is needed to
compute the size of the neighborhood of a cluster, or its demand.
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For the two-dimensional case of BPC, the time complexity of BLC (a simple adap-
tation of the bottom-left heuristic) is O(n?). If the graph is such that there is an
algorithm to find a tree-decomposition whose width is bounded by a constant, it would
lead to a O(1) time complexity in our framework (since the number of items in the
subproblems would be a constant).

The time complexity of the improving heuristic is O(|I?| x n?) where I7 is the
number of items to repack. The time complexity is entailed by the maximum number
of possible placements at any step of a packing. A possibility for reducing this time
complexity is to consider a constant number of items in /% and a number of open bins
such that the number of packed items is also bounded by a small constant. In this
case, the time complexity of this phase would also be O(1). Unfortunately, experiments
showed that it also dramatically weakens the effectiveness of the improving phase.

Let us summarize these results by studying the case of algorithm 1 applied using
MCS to compute the tree-decomposition, a greedy algorithm based on a local criterion
to compute the cluster-separation, BLC for solving the resulting clusters and the im-
proving heuristic, the overall time complexity would be O(m-+nxlog(n)+nxw(C,T)?).

If w(C, T) is bounded by a constant, the time complexity becomes O(m+nxlog(n)),
whereas the original constructive algorithms are at least in O(n?). For huge instances,
one can even avoid the sorting algorithm, which leads to a linear time complexity
(although the quality of the solution obtained is expected to be weak).

1.2.7 Synthesis of the computational experiments

We tested our approach on the two-dimensional version of the BPC. The test cases were
obtained from the classical two-dimensional bin-packing benchmarks. We generated
conflict graph randomly following the method used in [46]. We used instances of size
up to 120 items. We used the framework ParadisEO [16] to implement our tabu search.

For these instances, the tree-decomposition framework improves significantly the
performance of the greedy algorithms with a slightly larger computing time. The tabu
search outperforms the other methods, but needs a larger computing time.

We also generated huge instances (2000 items) to validate the effectiveness of the
tree-decomposition. For this test, we used the greedy heuristics based on the tree-
decomposition and we switched off the improvement heuristic that is used after the
solutions are merged. For sparse conflict graphs, the method does not bring any im-
provement in term of computing time, and deteriorates the quality of the solution,
since the width of the decomposition is close to the number of items. When the con-
flict graph is dense, the computing time is dramatically reduced, but there is a slight
reduction in the quality of the method.
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1.3 A column-generation algorithm for the min-conflict
packing problem

In the context of a multi-objective bin-packing problem, we studied a subproblem that
we name the "min-conflict packing problem".

Problem 4 (Min-Conflict Packing Problem (MCPP)) Given a set I of items,
a bin type B, a value M and a conflict graph G = (I, E) where (i,j) € E if i and j are
not supposed to be packed in the same bin, compute the minimum number of conflicts
that must occur if the set I is packed in M bins of type B.

This problem is justified by the fact that resources (bins) are not always in infinite
number, and that the decision maker may favor a solution violating some constraints if
its cost is small. The work we present is inserted in a general multi-objective scheme,
and we use the knowledge of solutions related to different numbers of bins in our
resolution method.

We first propose a compact formulation for this problem. This model is weak and
thus we propose a reformulation based on a column-generation scheme. The model
itself is an adaptation of the set-covering model of Gilmore and Gomory [50,51]. The
difficulty arises in the pricing subproblem, a bilinear knapsack problem, which is harder
to solve than the classical knapsack problem. We reformulate this problem with two
different ILP models. These models demand too much time, so we designed a greedy
heuristic and a local search method based on swaps in order to find good solutions in
a faster manner. In our method, the ILP solver is run only if the heuristics were not
able to find a column of reduced cost.

A tabu search is also proposed to generate a good initial basis for the LP. Like in the
previous section, it is based on strategic oscillation. For this method, we do not oscillate
from complete to incomplete, but from a number of bins to another. This is justified
by the fact that our method is run in the context of multi-objective optimization, and
thus we have recorded some good solutions related to different numbers of bins. When
the number of bins is increased, we will explore non-feasible solutions for our present
problem. When the number of bins is decreased, it leads to valid yet more constrained
solution that will make a better usage of the space in the bins (disregarding the number
of conflicts entailed).

1.3.1 A simple compact model

A simple linearization of a direct quadratic model for the min-conflict problem leads
to the following ILP model. Variables x;; are equal to 1 if 7 is packed in bin &k, and 0
otherwise. Variables y;; are equal to 1 when items ¢ and j are in the same bin. For an
item i, let N (i) be the set of items j such that ¢ and j are in conflict. Let also N ()
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be the items j of N(i) such that j > i. This set is used to avoid counting a conflict
twice in our models.

minz Z Yij (1.1)

i€l JEN*(i)

Z T > 1€ 1 (1.2)

keM
i=1
Yij = v +xp— 1,1 €1, € NT(i),ke M (1.4)
Yij € {O,l},i - I,j < N+(Z)
riw €{0,1}ie ke M (1.6)

Constraints (1.2) ensure that all items are packed, whereas constraints (1.3) verify
the capacity constraint. Constraints (1.4) are sufficient to ensure that if ¢ and j are
packed together, then y;; will be equal to one.

1.3.2 A set covering formulation

The linear relaxation of the ILP above is weak. Thus we used a formulation based
on a set covering model and the decomposition of Dantzig-Wolfe [39]. The ILP is
decomposed into a restricted master problem initialized with a set of columns, and
optimized to determine the value of the dual variables. The dual information is passed
to a subproblem that evaluates if there is a column that can be added to the master
problem and improve the current solution. If there is such a column, the master
problem is reoptimized, otherwise the process stops.

Let P be the set of possible patterns, i.e. the set of possible ways of packing items
in a bin. Each possible pattern is described by a column p = (aip, ..., Gip, - -, ajp)’,
where a;, is equal to 1 if item ¢ is in the pattern p, 0 otherwise. A new variable K,
is introduced, which corresponds with the number of conflicts in configuration p. The
decomposition is a simple adaptation of the model of Gilmore and Gomory [50, 51]
dedicated to the cutting-stock problem.

minZ:L’pr (1.7)
peP
s.t. Zaip:cp >1,Viel (1.8)
peEP
dw <M (1.9)
peEP

z, € {0,1},Vpe P (1.10)
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Two families of constraints are kept in the master: constraints (1.8) ensure that all
items are cut, whereas (1.9) verifies that the number of bins used is smaller than M.
The capacity constraint is left to the subproblem.

The weak dual of (1.7)-(1.10) reads as follows.

max Y _m; — OM (1.11)
1€l
st.Y apm—0 < K, VpeP (1.12)
i€l
m > 0,Viel (1.13)
0>0 (1.14)

Dual variables 7 are related to the demand constraints, whereas the dual variable
0 is related to the number of bins.

1.3.3 Solving the pricing subproblem using local search and
linear programming
In order to generate the best column to add to the current basis, the pattern to add is

the one with the smallest reduced cost, i.e. the pattern p for which 04+ K, -3 .,
is minimized. The only constraint for a pattern p is the capacity constraint of the bin.

T Ay

This is equivalent to solving the following bilinear problem, called pricing subproblem.

max Z(ﬂiai — Z a;a;) — 0 (1.15)

iel JEN+()
s.t. Zaici <C (1.16)

el
a; € {0,1},¥i € I (1.17)

It is a generalization of the knapsack problem, where each conflict between two
items reduces the value of the solution by one. The knapsack problem with hard
conflicts has been studied by, among others, Hifi and Michrafy [60]. In our problem,
conflicts may occur, but they are penalized in the objective function.

Compared to the cutting-stock problem, the pricing subproblem is more difficult to
solve. It transpired from our first experiments that solving the pricing to optimality at
each step of the column generation algorithm leads to a large computing time. Thus
we have developed a method that uses linear-programming, heuristics and local search.

1.3.3.1 Two ILP models for the pricing subproblem

A first way of solving the pricing subproblem is use a straightforward linearized version
of (1.15)-(1.17). For this purpose, we introduce variables b;; that are equal to 1ifa; =1
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and a; = 1, and to 0 otherwise.

max Z(ﬂiai — Z bi;) — 0 (1.18)

icl JEN+()
sty a;c; <C (1.19)
i€l
bijZai+aj—1,‘v’iEI,j€N+(z’) (120)
bij € {0,1},Vie I,j € N™(3) (1.21)
a; € {0,1},Vi e I (1.22)

A better model can be proposed, using a different type of variables b; for each item
type i. Each variable b; is equal to the number of items of N (i) that are packed with
1. Note that a; = 0 implies b; = 0. In this model the number of variables remains
linear, whereas it is quadratic in the previous model.

max Y icr(ma; —b;) — 0 (1.23)
s.t. > ieraici < C (1.24)
djen+t @ — INT@)| x (1—a;) <b Viel (1.25)

a; € {0,1}, Viel (1.26)

b; € N, Viel (1.27)

Both models can be improved by the means of cuts. We describe these cuts using
the formalism of model (1.23)-(1.27). Since one of the constraints is a classical knapsack
constraint, all techniques related to this constraint can be used. For example, if N .
is the maximum number of items that can be packed side by side, the following cut is
valid.

> " a; < Npax (1.28)
iel
Other hand-tailored techniques can be used for this specific problem. Note that
these cuts are valid because we seek a solution of positive value. In other
words, these cuts may exclude the optimal solution if this solution has not a positive
value.
First, note that if b; > 7;, a better solution is obtained by removing item i (because
it leads to more conflicts than its value of profit). This leads to the following family of
cuts.

This family of cuts can be generalized by considering sets of items. Let I; be a set
of items such that Zielf ™ — Zielf |N(i) N 1| <0. Clearly, this set cannot belong to
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an optimal solution. Consequently, if we are able to detect such a set /¢, we add the
following cut.

D a < Iy -1 (1.30)

i€ly

Another cut can be added. First we compute the minimum number N,;, of items
needed to obtain a sum of profit greater than or equal to 6.

> " a; > Ny (1.31)

el

An estimation of Ny, can be computed by sorting the items by decreasing value
of m; and disregarding the conflicts.

1.3.3.2 Heuristic solutions for the subproblem

Even with the cuts above, and even if the search is stopped as soon as a solution of
positive cost is found, our two ILP models do not lead to fast solutions in many cases.
Consequently, we developed heuristics and a local search method to fasten the column
generation process.

The greedy heuristics are based on an initial ordering on the items : decreasing 7;/c;,
decreasing (m; + [N (i)|)/c;, decreasing (m; + >,y 7;)/c; We compute the values of
degrees in a dynamic fashion (i.e. they are updated each time an item is selected or
rejected from the knapsack).

In the case where the greedy heuristics are not able to find a solution with negative
reduced cost, a local search phase is applied. It is based on two simple operators:
bit flip (select an unselected item or remove a selected item), and pairwise exchange
(replace an item by another item). At each step of the local search algorithm, all
possible bit-flip moves are tested. If none improves the value of the objective function,
the swap moves are tested. The method stops when no improvement has been realized
in the last iteration.

1.3.4 Computing the initial set of columns using tabu search
and strategic oscillation

Since the pricing phase has a large computational cost, finding a good initial basis is
crucial for our algorithm. Like in Section 1.2, we use a strategic oscillation in a tabu
search. This time, the oscillation uses the fact that the search is run in the context
of multi-objective optimization. The tabu search iterates from a number of bins to
another, leading alternatively to unfeasible and over-constrained solutions.
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1.3.4.1 Details of our tabu search

Given a set I of n items, a solution is a number of bin associated with each item of
I. A solution is a complete packing in which the capacity constraint is not violated in
any bin (the sum of the sizes of the items is not larger than the size of the bin). The
number of bins is initially fixed to M.

The search space S is thus composed of all possible configurations meeting this
constraint. A neighbor of a solution s is obtained by changing the bin associated to an
item in such a way that the capacity constraint remains satisfied. A soft conflict (i, j)
is said to be violated if ¢ and j are packed in the same bin. Our objective function
is the number of violated soft conflicts. When an item is moved from a bin to another,
the number of conflicts is updated only for the two bins involved in the move.

We used three different families of heuristic algorithms for the initialization phase
of the tabu search. The first is the family of Any-Fit algorithms. The second is based
on Soft Graph Coloring, and the third on a simple local search algorithm that tries to
improve iteratively an initial solution.

Our tabu list (TL) consists of a set of moves classified tabu during some iterations
(tabu tenure). The tabu tenure is a static value. Once TL is full, it is resized in a such
way that the oldest half is erased.

1.3.4.2 Strategic oscillation

We developed a diversification strategy based on two types of modifications (top-
down or bottom-up). Let m be the number of bins used in the current solution s,,. In
a top-down (resp. bottom-up) strategy, a solution s,, is replaced by a solution s, 4
(resp. Sm—a) where d is a possible value for the number of bins. These diversification
strategies are controlled by a parameter called distance d. The diversification distance
represents the number of bins to add or remove from the current solution depending
on the chosen strategy.

In case of a top-down strategy, d bins are added to a solution s, and thus a solution
Smiq 18 obtained by distributing the contents of m bins into m + d bins by means of
a classical bin packing heuristic. In case of a bottom-up strategy, d bins are removed
from the solutions, and the items in these d bins are distributed among the remaining
bins. The d bins are chosen following a given criterion, like the bins with the maximum
number of conflicts. Consequently, our method oscillates between increase phases, in
which it adds bins in order to reduce the number of conflicts, and decrease phases, in
which bins are erased, and the algorithms focuses on the space used in the bins.

Figure 1.4 illustrates these two diversification strategies. The blue (resp. red) arrow
shows a top-down (bottom-up) diversification of a solution s; (resp. s,,) with a distance
d; (resp. dp,).

In the context of multi-objective optimization, solution found at the previous steps
can be used to help diversifying effectively the search.
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Figure 1.4: Example illustrating the two diversification strategies “top-down” and “bottom-up”.

1.3.5 Synthesis of the computational experiments

We implemented the methods described above and tested them against benchmarks
derived from the literature. We used instances with up to 120 items, for which we
generated bounds for the whole Pareto front (more than 40 min conflict problems to
solve in the worst case).

We were able to solve a large number of instances to optimality just by computing
our bounds. However, our computational experiments confirm the fact that the pricing
subproblem to solve is much harder than the classical knapsack problem, even using
our second ILP model. Even with this faster model, generating the columns can take
time. The best results were obtained using the heuristics and the local search, and
then the second ILP model. We improved the results by stopping the ILP as soon as
it gets an improving solution. Finding better algorithms for the pricing subproblem
seems to be the main issue for improving the method. An efficient branch-and-price
method cannot be designed before we are able to improve the pricing phase.
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Figure 1.5: An instance of BPP-FO, a non-optimal solution with three bins and an optimal solution with two bins.
Fragilities are represented by dotted rectangles, and sizes with grey rectangles.
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1.4 A column generation algorithm for the bin-packing
with fragile objects

In this section, we deal with a variant of packing in which conflicts are modelled in a
different way. The problem is known in the literature as the Bin Packing Problem with
Fragile Objects (BPP-FO). The BPP-FO arises in the telecommunication field and in
particular in the allocation of cellular users to frequency channels (see Bansal et al. 5]
and Chan et al. [24]).

Problem 5 (Bin-packing Problem with Fragile Objects (BPP-FO)) Given a set
I of items i of size ¢; and fragility 1;, what is the minimum number of bins needed to
pack all the items of I in such a way that in each bin, the sum of the sizes is smaller
than the smallest fragility?

An example of BPP-FO instance, and two solutions is given in Figure 1.5. More
formally, let us denote I(k) as the set of items assigned to a bin k, we need to ensure
that

ie% ¢ < min {4} (1.32)
for all possible bins k.

The literature on the BPP-FO is still small. Bansal et al. [5| present approximation
schemes and probabilistic analysis. They consider approximations both with respect
to the number of bins and to the fragility of a bin. They present results for the general
BPP-FO and for a special case, denoted the frequency allocation problem, in which
weight and fragility are strictly correlated one to the other. Chan et al. [24] consider
instead the on-line version of the BPP-FO, in which an item arrives only after the
previous item has been packed and the decision cannot be changed. They study the
cases in which the ratio between the maximum and the minimum fragility is bounded
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or unbounded, and present, for both cases, algorithms with asymptotic competitive
ratios.

For the BPP-FO, we first propose simple compact models, which are able to solve
exactly many random instances in a fast manner. However, for some classes of hard
instances, these models are not sufficient anymore. For this reason, we propose a
reformulation of the problem using the Dantzig-Wolfe decomposition and column gen-
eration. The pricing subproblem to solve is a knapsack problem with fragile objects
described above.

Problem 6 (Knapsack Problem with Fragile Objects (KP01-FO)) Givenn items
i with profit p;, weight ¢; and fragility 1; (i =1,...,n) and a single uncapacitated bin,
find the subset of items of largest total profit whose total weight is not larger than the
fragility of any item in the bin.

Being able to solve this problem efficiently is the most crucial issue in our column-
generation algorithm. We propose two ILLP models and a dynamic-programming scheme
for KPO1-FO. As we will see below, the dynamic-programming scheme outperforms
both ILP models for all the instances we used.

For generating a suitable initial basis, we designed a variable-neighborhood search
(VNS) method based on strategic oscillation. We oscillate from feasible to non-feasible
solutions using different perturbation strategies. Our overall algorithm allows to find
tight lower and upper bounds in a fast manner and close the integrality gap for many
difficult instances that were not solved by the compact models within the allowed time
limit.

1.4.1 Compact models

We first present two compact formulations for BPP-FO requiring a polynomial number
of variables and constraints. We then discuss a third formulation using an exponential
number of variables.

1.4.1.1 A simple formulation

Let us define t.x = max;—y_,{¢;} to be the maximum fragility of an item. We
define gy, as a binary variable taking value 1 if bin k is used, 0 otherwise (k = 1,...,n).
We also define z;;, as a binary variable taking value 1 if item i is assigned to bin k, 0
otherwise (i,k = 1,...,n). The BPP-FO can be modeled as the following ILP:
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min Zyk (1.33)
k=1

wp=1 i=1....n (1.34)
k=1
ZC].I’]k S ¢max + %k(wz - Qpmax) i) k= ]-7 e, (135)
j=1
T <y L,k=1,....n (1.36)
yw €{0,1} k=1,...,n (1.37)
v €{0,1} ik=1,...,n (1.38)

Constraints (1.34) impose that each item is assigned to a bin. Constraints (1.35)
require that the sum of the weights of the items packed in a bin does not exceed the
fragility of any item packed in the same bin (if item ¢ is packed in bin & the right hand
side of the constraint is equal to v;, otherwise the constraint is redundant). Constraints
(1.36) are used to tighten the model linear relaxation.

Model (1.33)—(1.38) is derived from the classical BPP compact model. It has a clear
disadvantage that comes from the O(n?) Constraints (1.35), that model the non-linear
restriction (1.32) by using a large value (¢nax). This value can worsen consistently the
model linear relaxation, and makes the formulation very dependent from the fragility
of the last item.

1.4.1.2 A better formulation

We recall that the items are sorted by non-decreasing values of v;, breaking ties by non-
increasing values of ¢;. We define y; as a binary variable taking value 1 if item ¢ is the
item with smallest fragility in the bin in which it is packed, 0 otherwise (i = 1,...,n).
We also define xj; as a binary variable taking value 1 if item j is assigned to the bin
having item i as item with smallest fragility (bin ¢ for short in the following), 0 otherwise
(t=1,....,n,j=1i+1,...,n). The BPP-FO can be modeled as the following ILP:
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min Zyl (1.39)
i=1

i—1
yit+ > wi=1 i=1,....n (1.40)
=1
Z iy < (i — i)y i=1....n (1.41)
=i+l
y; € {0,1} i=1,....n (1.43)
v €401} i=1,...nj=i+1,...n (1.44)

Constraints (1.40) impose that either an item is the smallest item in its bin, either
it is assigned to a bin containing an item with smaller fragility. Constraints (1.41)
require that the sum of the weights of the items packed in a bin does not exceed the
smallest fragility in the bin. Constraints (1.42) are again used to tighten the model
linear relaxation.

1.4.2 A set covering formulation

We present a model that builds upon the classical decomposition method by Gilmore
and Gomory [50,51]. We define a pattern as a feasible combination of items. We
describe the pattern, say p, by a column (ayp, ..., @, - .., anp)", where a;, takes value
1 if item ¢ is in pattern p, 0 otherwise. Let P be the set of all valid patterns, i.e., the

Let also z, be a binary variable taking value 1 if pattern p is used, 0 otherwise
(p € P). The BPP-FO can be modeled as the following Set Covering problem:

min Yz, (1.45)

peP
Y apz>1 i=1,....n (1.46)
peEP
2, €{0,1} VpeP (1.47)

Constraints (1.46) impose that each item j is packed in at least one bin.

As the number of possible patterns may be very large, even solving the linear
relaxation of Model (1.45)-(1.47) may be difficult. We approach this problem, as it is
usually done in the literature, by means of a column generation method.

We initialize the model by a subset P C Pof patterns. We then drop the integrality
requirements (1.47) by replacing them with z, > 0, Vp € P. Note that we are allowed
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to drop the conditions z, < 1 since redundant (indeed we can always replace a solution
in which there exists a z, > 1 with a better one having z, = 1). We finally associate
dual variables m; (i = 1,...,n) to constraints (1.46).

We operate in an iterative way. We solve the linear model just outlined and check
if a pattern (i.e., a column) with negative reduced cost exists. If it exists, then we add
it to the model and re-iterate, otherwise we proved the optimality of the (eventually
fractional) solution obtained. The reduced cost of a pattern p is defined by

G=1-> ma (1.48)
=1

A pattern is added to the model if it satisfies the fragility requirement and has a
negative reduced cost. The existence of such pattern can thus be determined by solving
a KP01-FO with objective function

max i TiQip (1.49)
i=1
and subject to
ici% < i {gia;} (1.50)
- ap, € {0,1},Vie I (1.51)

Note that one of the main issues in column generation is a long tail convergence,
during which the value of the optimum is only marginally improved. Several methods
have been proposed to deal with this issue. One of the most promising is the notion of
dual cuts introduced by Valerio de Carvalho [86]. The idea is to add dual cuts to the
master problem (columns in the primal) to exclude dual solutions that are dominated
by others. This notion can be extended to the BPP-FO as follows.

Proposition 1.4.1 For a given item i, if there exists a set S C I such that ZjeS c; <
¢; and minjeg ¥; > 1; then
dom<m (1.52)
JjeS
is a valid dual cut for (1.45)-(1.47).

Many cuts of this type can be applied. Practically speaking, we use the of Type
I and II described in [86]. In the cuts of type I, the set S above is of size one. The
cuts of type II consider two items in S. If the number of cuts of type II is too large,
only a subset of them can be applied. Practically speaking, for the BPP-FO, this size
is not so large, since the conditions for S is more restrictive than for the cutting-stock.
Consequently, we applied all cuts of type II.
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1.4.3 Solving the Pricing Subproblem using dynamic program-
ming and linear programming

We solve the KP01-FO problem arising in the pricing phase by means of two ILP
models and a dynamic programming algorithm. Insights in the computational results
we obtained by using these three approaches will be given in Section 1.4.5 below.

ILP Models

We presented two compact ILP models to solve the BPP-FO, the latter (Model (1.39)—
(1.44)) being better than the former (Model (1.33)-(1.38)). A similar result can be
obtained for the KP01-FO.

A first ILP model can be obtained by using a binary variable z; taking value 1 if
item 4 is packed in the knapsack, 0 otherwise (i = 1,...,n). The KP01-FO can be
modeled as:

maxz T2 (1.53)
i=1
ZC]'I‘]' S wmax + "L‘Z(@Z)Z - QmeaLx)a \V/Z € I (154)
j=1
x; €{0,1} Viel (1.55)

The main difference with respect to the classical compact model for the KPO1 is
that here we need n constraints to impose the maximum capacity. Indeed, Constraints
(1.54) impose that whenever an item ¢ is packed in the knapsack, then the sum of the
weights of all the items packed cannot exceed the value ;.

A better ILP model can be obtained as follows. First, let us recall that items are
sorted by non-decreasing values of v;, breaking ties by non-increasing values of ¢;. We
define y; as a binary variable taking value 1 if item i is the item with smallest fragility
in the knapsack, 0 otherwise (i = 1,...,n). We also define x; as a binary variable
taking value 1 if item i is packed in the knapsack, but it is not the item with smallest
fragility (i = 1,...,n). We obtain:
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mame(xi + y;) (1.56)

i=1

zn:yi =1 (1.57)
=1

Z Ciry < Z%(d’z —¢) (1.58)
i—1 i—1

vy y<LViel (1.59)
j=k
r; € {0,1},Vie I (1.60)
yi €{0,1},Viel (1.61)

Constraint (1.57) imposes the existence of just one item with smallest fragility inside
the knapsack. Constraints (1.58) impose that the sum of the weights of the items in
the bin does not exceed the fragility of the smallest item in the bin.

By the definition of the two sets of variables it follows that x; + y; < 1, for i =
1,...,n. This simple consideration is generalized by constraints (1.59), that impose
that if an item ¢ is packed in the bin but is not the item with smallest fragility (i.e.,
if x; = 1), then no other item having larger fragility can be the item with smallest
fragility in the bin.

Dynamic programming

The KP01-FO can also be solved through dynamic programming. A trivial (but non
efficient) method is to consider all possible values of fragility ; in turn and each time
solve the related KP01 with the set of items {7 : ¢; < 1);} and a bin of size ;. With this
approach, in the worst case, the dynamic programming method is run n times (once
for each different value of fragility), leading to a complexity of O(n? * ¥y )-

A more efficient method can be used if the items are sorted by decreasing fragility.
The algorithm is the following: construct the regular dynamic programming table
related to a knapsack of size 1,.y, and take the maximum value obtained among a set
of dominant states. The validity of this method is based on the following proposition.

Note that the item with the largest fragility can be packed in a bin of any fragility.
This can be generalized as follows: the k first items can be packed in a bin of fragility
fr. This can be repeated for any value of k. This means that the classical dynamic
programming scheme can be used if states related to unreachable states are not con-
sidered.

Let (i, @) be a dynamic programming state for KP01 related to the i first items and
a knapsack of size at most . To simplify the notation, we will consider that (i, o) =



COLUMN GENERATION FOR BP WITH FRAGILE OBJECTS 29

—o0 if @ < 0 or if the state (i, «) cannot be reached. We denote by OPT (K P01—-FO)
the optimal value of the knapsack problem with conflicts.

Proposition 1.4.2 If the items are sorted by decreasing fragility, we have:

OPT(KP01-FO) = _max {(max{i: ¢; > a},a)} (1.62)

=Y,.., max

Each state (j,«) has to be explored only once. Using the same classical recursive
formula as KP01, we obtain a complexity of O(nlogn + tmax * 1) 0or O(¢mayx * 1) if the
items are initially sorted by decreasing fragility.

c| Vi | m

=W N
N = O = N
= O Co 0o OO
— N = e

5

Tableau 1.1: A small instance of KP01-FO

In figure 1.6 we report the dynamic programming table used to solve the instance
of BPO1-FO of Table 1.1. Note that the states related to item 4 (resp. 5) and total size
greater than 1, (resp 15) are forbidden. Following Proposition 1.4.2, we know that an
optimal state can be found in the set of "rightmost" states in the table.

When item 1 is considered, only two states are possible: packing item 1 (profit 1)
or not (profit 0). Once the first column is computed, the second can be computed by
adding or not item 2 to each state of column 1. Each column is computed in turn
following the same idea until all items have been considered.

1.4.4 Computing the initial set of columns using Variable-Neighborhood
Search and strategic oscillation

In the two precedent sections, we proposed tabu search methods based on strategic
oscillation. Another method that is able to implement this strategy is the Variable
Neighborhood Search (VNS). We refer to Hansen et al. [57] for a recent and complete
survey on VNS, and to Fleszar and Hindi [47] for a first successful application to the
BPP.

The general idea behind this methodology is to iteratively modify the incumbent
solution using a neighborhood which is initially small but becomes larger and larger
during the iterations. Each new solution obtained in this way is optimized through
local search and is possibly used to replace the incumbent one. We use the VNS to
oscillate from feasible solutions to unfeasible solutions.



30 DECOMPOSITION AND STRATEGIC OSCILLATION
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Figure 1.6: Table of states illustrating the dynamic programming procedure used to solve the instance of KP01-
FO described in Table 1.1. Each line corresponds with a fragility level going up from 0 to ¥maez and each column ¢
corresponds with the ¢ first objects of I. Each cell corresponds with a state. It is split in two sub-cells: in the lower one
we report the set of objects placed in the knapsack and in the upper one we report the corresponding profit. The dark
gray cells represent dominant states (which contain an optimal solution), light grey cells are forbidden.

We start by computing a heuristic solution, say o, using U(o) bins. The
solution used as a starting point in the VNS is the one using the minimum number of
bins among those found by different families of greedy algorithms.

We then enter a loop in which we modify ¢ using a perturbation method that
depends on a parameter k, initially set to 1. We define the neighborhood Ny (o) as
the set of solutions that are obtained by: (i) removing & bins from ¢ and (ii) reassigning
the corresponding items in a way that possibly violates the fragility requirements but
uses U(c) — 1 bins. By using different criteria to perform steps (i) and (ii) we create a
new solution, say o', belonging to Ny (o).

The new solution ¢’ is possibly infeasible, because the sum of the weights of the
items associated to one or more of the U(c) — 1 bins may exceed the fragility of the
most fragile items in the bins. We then try to minimize the sum of these weights
excesses by using a set of local search algorithms. The new solution obtained after
the local search application is denoted by o”.

If we manage to restore feasibility in all bins of ¢”, then we found a new heuristic



COLUMN GENERATION FOR BP WITH FRAGILE OBJECTS 31

solution using one bin less. We thus update the incumbent solution and restart with
k = 1. Otherwise, we reiterate the process until a maximum number of n;,, iterations
has been elapsed. If ¢” remains infeasible after n;., iterations, then we increase k by
one unit, so as to perform a search in a larger solution space. Whenever k exceeds a
given limit k.., we set again k = 1.

The algorithm is stopped whenever it finds an upper bound equal to the lower
bound or after the maximum computing time is elapsed.

1.4.4.1 Strategic oscillation

As briefly discussed above, the aim of our perturbation method is to modify the
incumbent solution ¢ so as to generate a new solution ¢’ belonging to the neighborhood
Ni(o). This neighborhood is the set of solutions that can be obtained from ¢ by means
of (i) the removal of k bins and (ii) the reassignment of the items originally packed
in the removed bins to U(c) — 1 bins. The U(o) — k bins that remain in o after the
removal of the k& bins are copied directly into ¢’; £ — 1 new empty bins are opened in
o’; all the U(o) — 1 bins obtained in this way are filled with the items originally to the
k removed bins by accepting violations of the fragility requirements.

On the basis of computational outcome we use a two-level objective function to
redistribute the removed items, which depends on the number of items conflicting with
the fragility of a bin, and the weight excess in a bin.

The solution obtained after the execution of the perturbation method is usually
infeasible, as some weight excess may exist in one or more bins. We try to restore
feasibility by means of a local search procedure that swaps items between pairs of
bins. We operate in a first improvement policy, i.e., as soon as an improving move
is found we perform it and re-iterate. We developed several types of swaps involving
one, two, three and four items. We perform the swaps in non-decreasing order of
their complexity. The local search phase is halted when all the weight excess has been
removed from the bins or when no improving move is found for any type of swap.

This strategic oscillation proved to be very profitable also for the BPP-FO, because
it allowed to quickly move from a solution to another by temporarily disregarding the
fragility requirements, which may be particularly strict, hence facilitating local search.

1.4.5 Synthesis of the computational experiments

Since no benchmarks existed for the BPP-FO, we proposed a set of challenging instances
based on our experimentations. These instances are derived from BP instance of the
literature [84|. We generated instances where fragilities are strongly-correlated, weakly-
correlated, and uncorrelated. We generated instances with up to 500 items. We kept
the instances for which the compact model described in this section was no able to find
a solution in five minutes.
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Strongly correlated instances are very easy and can be all (but one) solved by
the ILP model within the given time limit. Uncorrelated instances are instead more
difficult. It is worth noting that for two classes the model is not even able to solve 20%
of the instances to optimality. Weakly correlated instances are even more difficult, with
three classes for which the 20% ratio of optimal solutions is not reached. The average
percentage gaps are a bit higher than those noted for the uncorrelated ones.

Our overall algorithm outperforms the mathematical model, as it manages to obtain
78 optima out of 135, against the 51 obtained the model. Also the computational effort
is smaller (163 seconds against 380) and the average percentage gap is reduced by a
half. The mathematical model is very effective for solving the small instances with 50
items, but is weaker when solving the larger ones. The proposed algorithm can instead
solve an interesting number of larger instances.

1.5 Conclusions, future works

We applied several decomposition methods (tree-decomposition and Dantzig-Wolfe
decomposition) to packing problems with different kinds of conflicts (hard conflicts,
soft conflicts and fragility). We showed that, using these decompositions and meta-
heuristics based on strategic oscillation, we were able to design efficient methods for
solving these difficult combinatorial problems.

Applying tree-decomposition to problems that do not only include graph constraints
is not straightforward, but we have shown that it leads to interesting results for the
bin-packing problem with conflicts. Our framework allows to make collaborate different
kinds of methods, and can be easily parallelized. Using exact methods for solving the
different subproblems could be viable if the clusters are not too large.

Concerning column generation, it transpires from our experiments that the min-
conflict problem is much harder than the bin-packing with fragile objects. This is due
to the difficulty to solve the pricing subproblem of the MCBP. On the contrary, in the
BPFO, the pricing subproblem is tackled efficiently by our dynamic program scheme.
Different issues arise for the creation of exact methods for these two problems. For the
min-conflict problem, better ILP formulation (or better cuts) have to be proposed to
fasten the resolution of the pricing subproblem. We are now studying the application of
methods designed for the quadratic knapsack problem. For the bin-packing with fragile
object, the difficulty is to find a branching scheme that does not break the structure
of the subproblem, and allows our dynamic programming scheme to be used.

Concerning heuristic solutions, our experiments show that strategic oscillation is
well suited to packing problems with conflicts. It allows the meta-heuristic to go
from one good solution to another good solution quickly by using non-complete, or
non-feasible solutions. It also allows efficient diversification and intensification phases,
which are among the most important ingredients in a meta-heuristic based on local
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Chapter 2 __

Dual-feasible functions and
extensions

The work presented in this chapter has been published [28, 29, 33, 66] in several inter-
national journals. A report [31] will also be submitted soon to a journal.

2.1 Introduction

This chapter deals with fast lower bounds for several bin-packing problems. A large
part of our work deals with the variant called cutting-stock problem. This problem is
similar to the classical bin-packing problem: the main difference is that each item size
is repeated many times. It can be written as follows.

Problem 7 (Cutting-Stock Problem (CSP)) Given a set I of item types i of size
¢; and demand b;, how many rolls of size C are needed to cut b; times each item i of I
in such a way that the sum of their sizes in each bin is smaller than or equal to C'?

It can be modeled exactly like the bin-packing problem. However, the fact that
items are repeated many times is a feature that helps linear programming based meth-
ods to solve this problem efficiently. The best model to date is due to Gilmore and
Gomory [50,51] (see Chapter 1). This model has a strong linear relaxation (the famous
MIRUP property', see [81]), and is able to take into account a large number of possible
variants of bin-packing, since all constraints related to items in a given bin belong to the
pricing subproblem, which dynamically generates feasible columns (packing patterns)
for the model.

For large size instances, the computation of the LP relaxation of the model of
Gilmore and Gomory can be expensive in time. Moreover, in some real-life applications,
bin-packing lower bounds are computed repeatedly a large number of times. In these
cases, fast alternative techniques have to be used. Several authors have focused on
such techniques [18,58,69].

!The modified integer round-up property (MIRUP) for a linear integer minimization problem means
that the optimal value of this problem is not greater than the optimal value of the corresponding LP
relaxation rounded up plus one. Whether CSP has the MIRUP property or not remains an open
problem in the general case.

35
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In this chapter, we focus on lower bounding techniques based on so-called dual-
feasible functions (DFF). This concept has been studied in the literature and success-
fully applied to the classical bin-packing problem. We focused on two aspects of DFF"
the generation of useful DFF, and their generalization to more complicated packing
problems.

Our first contribution is to survey the different dual-feasible functions that were used
in the literature, some explicitly, other hidden behind a more complicated formalism.
We also gather results concerning these DFF and superadditive functions, and give an
insight into the simple frameworks that are generally used to generate DFF.

Our second contribution is a unified view and a simple formalism for dual-feasible
functions applied to other packing problems. Then we give some applications of this
concept to different variants of packing problems, namely the bin-packing problem, the
bin-packing problem with conflicts, the bin-packing problem with fragile items, and
the two-dimensional bin-packing problem with and without rotation.

2.2 Classical dual-feasible functions

The concept of dual-feasible function (DFF) has been used to improve the resolution
of several cutting/packing (C&P) problems, and more generally any problem involving
knapsack inequalities (scheduling problems, vehicle or network routing). It was used
for the first time for deriving algorithmic lower bounds for bin-packing problems by
Lueker [75]. Since then, several researchers have proposed new functions to improve
the results obtained by the initial method.

2.2.1 Definitions and properties

Definition 2.2.1 A function f :[0,1] — [0, 1] is dual-feasible if for any finite set S of
real numbers, we have
Yr<l= > f(z) <L
z€es z€s
Dual-feasible functions are generally defined in [0,1]. However, when data are
integer, using discrete values instead may lead to simpler formulations. Carlier and
Néron [21-23] propose a discrete version of DFF. They use the designation of redundant
functions to denote such functions. They are defined from [0, C] to [0,C'] (C and C’
strictly positive integers) instead of being defined from [0, 1] to [0, 1].
In this document, we consider discrete functions in general. We now define formally

these discrete DFF. For the sake of simplicity, for a given integer value C, we define
these function from {0,...,C} to [0, 1].

Definition 2.2.2 For a given integer value C, a function f : {0,...,C} = [0,1] is a
discrete dual-feasible function if for any finite set S of values in {0,..., C}, we have
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dYr<C= ) flr)<1

€S €S

In the following, unless it is clearly specified, all functions considered will be discrete.
We now introduce a dominant subset of the DFF, called Maximal DFF (MDFF).

Definition 2.2.3 A DFF f is a Maximal Dual Feasible Function (MDFF) if there
does not exist any other DFF ' such that f2) < f (2) for all x < C and there exists

© = 7o)
fly) ()
7o) < oy

a value y such that

Let us give a simple example of DFF, and how it is applied to produce a lower
bound for the cutting-stock problem.

Example 2.2.1 We consider an instance with a bin of size 10. The item set is com-
posed of one item of size 2, ten items of size 3, one item of size 7, and ten items of
size 8. A simple bound is obtained by summing the sizes of the items and divide it
by the size of the bin. The result is rounded up since the number of bins is integer.
Lo=[(1%24+10%34+1x7+10%8)/10| = 12. This bound can be improved by applying a
discrete DFF to the instance as a preprocessing. We give below an example of discrete
DFF defined from {0,...,10} to [0,1]. For each value z in {0,...,10}, we report the

value of f(x).

z 012 8 4 5 6 7 89 10
f@ylo o o0 1/3 1/3 1/2 2/3 2/3 1 1 I

When this function is applied to the instance, the following new bound is obtained:
[1+0+10%1/34+1%2/3+10x1] = 14.

Several properties characterize the MDFF functions. In the following, we rewrite
a result proved by [23] using our formalism. Recall that a function f is said to be
superadditive if for any x, y such that f(x), f(y) and f(z+y) are defined, f(x)+ f(y) <

f(x+y).

Proposition 2.2.1 (Theorem 1. of [253]). A dual-feasible function is maximal if and
only if f(0) =0, f is monotonously increasing, [ is superadditive, and f is such that
foralli=1,...,C/2 it holds that f(i) + f(C — 1) = 1.

2.2.2 Data-dependent DFF

We introduced data-dependent dual-feasible functions (DDFF) in [20] to generalize
a result proposed by Boschetti and Mingozzi [13|. The difference between DFF and
DDFF is that DFF have to be valid for any instance, whereas DDFF are computed for
a given instance (and thus cannot be applied to another instance). The definition of
DDFF is the following.
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Definition 2.2.4 Let [ = {1,...,n}, ¢1,¢,...,c, n integer values and C' an integer
such that C > ¢; fori=1,...,n. A Data-Dependent DFF (DDFF) f associated with
C and ¢y, ¢, ..., ¢y is a discrete application from I to {0,...,C"} such that

VL CL) <C=>) f@H<C

i€l i€l

Note that DFF are applied to indices. Two items of same size may have different
images.

DDFF have proved to be effective when applied to two-dimensional bin-packing
problems. They can lead to bounds that could not be reached by the application of
DFF.

2.2.3 Applications of DFF

As explained above, the classical applications of DFF are related to the computation
of lower bounds for the bin-packing problem. Formally, a bound is obtained as follows.
Let f be a discrete DFF defined from {0,...,C} to [0,1], [>_ ¢ f(2)] is a lower bound
for BPP.

Dual-feasible functions can also be used for problems in two or three dimensions
by applying them independently on each dimension (see [44]). To our knowledge, DFF
have only been computed for bin-packing problems.

Apart from computing fast lower bounds, any dual-feasible function can be used
to generate valid inequalities for integer programs defined over the sets S = {z € Z :
Z?Zl a;x; <b;, i =1,...,m} such that b; > a;; > 0 and b; > 0 for any i, j.

Proposition 2.2.2 Let S ={x € Z% : Y77 ayx; <b;, i=1,...,m}, withb; > a;; >

0 and b; > 0Vi,j. Foranyi, if f :{0,...,b;} — [0,1] is a DFF, then 2?21 flaij)x; <1
s a valid inequality for S.

The term DFF is hardly used in the context of cuts for linear programs (with the
notable exceptions of [4] and [2]). Note also that even if we focus on lower bounding
strategies for bin-packing problems, our work on dual feasible functions (and the cor-
responding dual solutions of the cutting stock) have also allowed to propose techniques
to stabilize column generation algorithms for this problem [29].

2.2.4 Discrete DFF and the model of Gilmore and Gomory

Discrete DFF are tightly linked with the model of Gilmore and Gomory [50,51] for the
cutting-stock problem. We already used this model in Chapter 1. We just recall some
details.

A combination of items of I in a roll is called a pattern. Each possible cutting
)T

pattern is described by a column labelled p: (aip, ..., ap, ..., ap)", Where a;, is the
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number of items of width ¢; in the pattern p. The model of Gilmore and Gomory [50,51]
is the following model (already defined in Chapter 1) applied to the set of patterns P
described just above.

minZzp (2.1)

peP
Z QipZp Z bz 1€l (22)
peEP
z,€{0,1} VpeP. (2.3)

Here, a valid cutting pattern is such that

Zaipci S C, ‘v’p epP (24)
el

ap, €N, Vpe Picl (2.5)

As explained in Chapter 1, the columns of (2.1)-(2.3) are generated iteratively by
solving the pricing subproblem. In our case, this problem is the classical knapsack
problem.

The weak dual of (2.1)-(2.3) reads:

max Y oicr bimi
S.t. Zaipﬂ-i S ]_,\V/p epP (27)
i€l
>0 (2.8)

One can notice that the condition for a solution 7 to be valid for this dual is
Y e Gipci < C = Y a;m < 1 for any pattern p, which is the definition of discrete
dual-feasible functionég

An alternative definition can be given for discrete DFF associated with a size C:
a function f is a discrete dual-feasible function if for any instance of cutting-stock
where the size of the bins is C, there exists a valid solution 7 of (2.6)-(2.8) such that
f(i) = m; for any value i in I.

An alternative definition of DDFF is that f is a DDFF dependent on a given
instance D if there exists a valid dual solution 7 of (2.6)-(2.8) applied to D such that
f(i) = m; for any value 7 in D. The main difference with DFF is that the dual problem
here is less constrained than for the DFF, since some patterns do not belong to P,
whereas for the DFF, all possible patterns related to the size C' have to be considered.

This explains why the DFF are named dual-feasible.
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2.3 A general point on view on DFF

We first propose a generalization of the concept of DFF to any problem that can be
modeled with a set-covering model and a subproblem. This name this concept Set-
Covering-DFF (SC-DFF).

Let I = {1,...,n} be a set of indices, and P the set of all possible patterns p
related to a given problem P. We denote by a;, the number of items of type 7 that
appear in pattern p and v(p) the cost of pattern p. Note that P is of exponential, yet
finite size.

Definition 2.3.1 Let P be the set of all possible patterns defined for set I and a
given problem P. A Set-Covering-DFF (SC-DFF) for (I, P) is a mapping g defined
from I to R" such that

pEP= Zaip x g(1) < wv(p) (2.9)

iel

The main difference with the classical DFF is that it applies to indices 7 instead of
the sizes ¢;. This is due to the fact that two items with the same size may be different
(take the problem with conflicts for example).

In this formalism, geometric constraints of packing applications are modeled as a
set of feasible patterns (the set of instance vector). Practically speaking, being able to
characterize this (possibly exponential size) set without enumerating all its elements is
crucial.

For most bin-packing problems, where the goal is to minimize the number of bins
used, the value v(p) is equal to 1 for all patterns p.

Now we give a definition of data-dependant set-covering DFF. This time the set of
patterns P(D) is restricted to those possible with the item sizes in D.

Definition 2.3.2 Let I be a set of items and D an instance of problem P. Let P(D)
be the set of valid patterns related to instance D. A Set-Covering-DDFF (SC-
DDFF) related to instance D is a mapping g defined from I to R such that

p € P(D) =Y ai*g(i) < v(p) (2.10)
iel

Note that for two different instances of the same problem, a SC-DDFF can be valid
for one and not for the other.

This formalism is compatible with constraints added during a branch-and-cut-and-
price algorithm. This means that SC-DFF could be used in any node of a search tree,
and not only at the root node as it is done up to now.

From now on, we will name CS-DFF the classical DFF (Cutting-Stock DFF). The
term CS-MDFF will be used for Maximal CS-DFF.

Note that when the constraints of the initial problem are equality constraints (set-
partitioning problem instead of set-covering problem), the only difference is that the
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values of f(i) can be negative. Practically speaking, this is rarely useful for packing
problems, since in these particular cases, set-partitioning models can be relaxed into
set-covering problem without modifying the value of an optimal solution. However, the
concept of "set-partitioning DFF" could be interesting to introduce for some specific
problems outside the field of bin-packing problems.

2.4 Computation of CS-DFF

Several papers propose CS-DFF ("classical" dual-feasible functions), sometimes implic-
itly when they are used to improve cuts in linear programs. Identifying the functions
underlying complicated formulations is far to be easy in some cases. We surveyed the
literature and gathered two literatures that were somehow disconnected. The goal was
to propose a guide for generating CS-DFF.

2.4.1 Frameworks for creating valid CS-DFF

A simple way of combining two functions is to compute a linear combination, or to
compose two CS-DFF (see [42] for example).

Proposition 2.4.1 A composition, or a positive linear combination of superadditive
functions is superadditive.

More particularly, it is shown in [80| that if f and g are superadditive, then, for
A>0,Mf, |fl, f+g, min{f, g} are superadditive. Note that for A > 0, max{0,z — A}
is also superadditive, whereas x + A is not.

A composition or a positive linear combination of CS-MDFF is also an CS-MDFF.
Function min{f, g} is not maximal, unless f = g. As function f(z) = |z| is not a
CS-MDFF, in general | f(x)] is not dominant either.

In this paragraph, we address the functions that apply on rational values. When
is rational, r, will denote the fractional part of x (r, = = — |z]). Practically speaking,
if the data are integer, one can divide all values by a given rational to obtain rational
values.

The following result shows that a way of associating two CS-DFF is to apply them
separately to the integer part and to the fractional part of the values. This is valid if
the conditions of Lemma 2.4.1 are verified.

Lemma 2.4.1 Let f and g be two superadditive functions respectively defined on [0, C]
and [0,1]. If f(x +1) — f(z) > v* for all x € [0,C — 1], and for all y,y' € [0,1] such
that y+vy' > 1, gly+y —1) > g(y) + g(y') — v*, the function defined as follows

hx) = f(lx]) +g(rs)

is superadditive on [0, C].
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The condition of the lemma is restrictive, since only strictly increasing functions f
can lead to a superadditive function. However the conditions on function g are not too
strong, and many functions can be used. For example, if ¢ is a classical CS-DFF defined
from [0, 1] to [0, 1], f has to be strictly increasing and such that f(z) — f(z—1) > 1 for
all z in [0, C]. We will show in the next section that functions proposed in [15] and [70]
use this framework.

The ceiling function is not superadditive. However it can lead to superadditive
functions if it is minored by a suitable value. We now generalize several results used
implicitly in [87] and [70].

Lemma 2.4.2 Let [ be a superadditive function. If § > 1, g(x) = max{0, [ f(z)] — 8}
18 superadditive.

In the literature, several superadditive and nondecreasing functions are proposed,
which are not maximal. The following results aim at creating a CS-MDFF when one
knows a non-maximal superadditive function f.

A dominating maximal CS-DFF fcan be built by keeping the images of the values
smaller than C'/2 and computing the images of the values larger than C'/2 by symmetry.
This is a generalization of what is done implicitly by Carlier et al. in [20].

Theorem 2.4.1 Let f be a superadditive and nondecreasing discrete function defined
from {0,...,C} to [0,1], and such that f(0) = 0. The following function is a mazimal
CS-DFF.

F:{0,....CY = 1[0,1]
f(C)=f(C—z), forC>z>E,

T L 1/2, for x =

)

2|Q v[Q

f(x), for z <

Theorem 2.4.2 shows another way of obtaining an CS-MDFF from a non-maximal
superadditive function f. The case we consider occurs when for some value x where f is
not continuous, the value of f(z) can be increased without modifying the other values.
This technique leads to an improved function with some singular values = such that
l_i)rgf(a:+e) < f(x) < 1_i>ré1+f($—|—€). This technique is implicitly used by [40,42,87] for
gxample. Theorem 2.4.% is used in the sequel to show that some functions are maximal.

For the sake of simplicity, for a given function f and a given value z* for which
f is defined, we define f** the function defined as follows: f*"(x) = f(x) if x # 2*,
and f*"(2*) = f(2*) + & with € a real value as small as needed. Note that when f is
a CS-DFF, f*" may or may not be a CS-DFF. In the following theorem, for a given
CS-DFF f, I, is the set of values 2* such that " is also a CS-DFF, i.e. the set of
values for which the image can be increased. In the sequel we say that a function f is
right-continuous in x if €lir(l)lf(ac +¢) = f(x).
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Theorem 2.4.2 Let [ be a superadditive and nondecreasing non-discrete function de-
fined from [0, C] to [0, f(C)] such that f(0) = 0. We denote by I the subset of values x
from [0, C] such that f* is a CS-DFF, and I, the set of remaining values. We suppose
that Iy is a discrete set of values {x1,...,x} and that f is right-continuous on each
set [0,x1), (21, xa), ... (xx, 1] of I;.

For a given function g, the following function

h+10,CT = [0, f(O)]

{f(x) ifeel
X —
g(x) ifxel

s a superadditive nondecreasing function if the following conditions are true.

1. f(x) < g(x) < lim f(x +¢) for any x in Iy

e—0T
2. g(x) +9(y) <glxe+y) ifr,y,x+y €l

3. 9(x)+fly) <glr+y) ifr € hhat+yelhandyel

2.4.2 A comparative analysis of CS-DFF

In the following, we describe several CS-DFF that were used in the literature (explicitly
or implicitly). These functions are defined for the values {0, ..., C'}. The image domain
will depend on the function. We will use the formalism that simplifies the most the
presentation.

Fekete and Schepers [42| propose three dual-feasible functions. Two are maximal,
but the third is not an CS-MDFF.

The first function £} is used implicitly by Martello and Toth [78] in their L, lower
bound for the bin-packing problem. Function f¥ with k& € {0,..., %}, consists in
removing all values of size less than a given threshold £, and symmetrically increasing
to one the size of the large values.

fyqo,...,Cy = 10,1]
1, for x > C —k,
r—=x/C, fork<z<C-—k,
0, for z < k.
It has been shown that this function is superadditive and nondecreasing [2,35], and
even maximal [35]. Only values k < C'/2 such that C' — k is the size of a large item are
interesting. Note than when k is small enough, f¥ is equivalent to the identity function,

and so the lower bounds for the bin-packing problem obtained using this function are
never smaller than the initial continuous bound.
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f(x)

Figure 2.1: Function f§ for C =10 and k = 3

The second function legs,p k € N*, can be seen as a special rounding procedure. It
is an improvement on a function proposed by Lueker [75], using Theorem 2.4.2. The
relative sizes of values equal to C/(k+ 1), C/(k+2), ..., C/(k+ 1) are not modified.

fig1:{0,...,C} = [0,1]

z/C, for x(k+1)/C € N,
[(k+1)xz/C|3, otherwise.

Proposition 2.4.2 Function ffg, is a mazimal CS-DFF.

The authors also propose a function ffg,, which is not superadditive (see [2]).
Several functions of the literature dominate this function (see [14,20]).

Boschetti and Mingozzi [14] and Boschetti [12] respectively propose bounds for the
two- and three-dimensional bin-packing problems. For the two-dimensional bin-packing
problem, they implicitly use function f§ and ff,,, an improved discrete version of
fgs,z- We do not report the formulation of this function, as a slightly improved version
([20]) is described next. In [35], it is shown that any iterative composition of f§* and
fHry is dominated by a function of the form f§,, | o f).

Carlier et al. propose a slight improvement on the function of Boschetti [20], by
enforcing the image of % to be 1/2. This function can also be obtained by applying
Theorem 2.4.1 to function |z/k]. Note that as for f§, when k& = 1, this function is
equivalent to the identity function. Let k € [1,C/2].

féona 1{0,...,C} = [0, 1]
1— UC okl - p > €

[C/k] 2 27

x> ¢ 1/2, if v =<,
lz/k] c

[CIR] ifr <35,

Proposition 2.4.3 Function f&qy,, dominates fpg.,.

In [87], Vanderbeck uses a superadditive and nondecreasing function fiig,, k €
{2,...,C}, to derive valid inequalities for the pattern minimization problem which are
stronger than the rank 1 Chvatal-Gomory cuts [27]. His function states as follows.
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f(x)

Figure 2.2: Function f&,,, for k=3

fopa:{0,...,C} —[0,1]
max{0, 2] — 1}
k—1
Function ffz, is a CS-DFF, and it is also superadditive (it is direct using Lemma
2.4.2). In [2], it is shown that fhs, dominates ffip .
Using Theorem 2.4.1, we have created a function ff, that dominates ffip .

T +—r

Proposition 2.4.4 The following function is a mazximal CS-DFF:

fopa:{0,...,C} = [0,1]
1— fip (C—a) ifx>1/2
T {1/2 ifx=1/2
fopa(x) if v <1/2

For the two following functions, the discrete formalism leads to complicated formu-
lations, so we use non-discrete functions instead. When integer data are used, one has
to divide all values by a real value in [1, C] before applying these functions.

In [15], Burdett and Johnson propose a function defined for rational values. When
valid inequalities are considered, the data we have to deal with are often rational. If
one wants to use this function for bounding (where data are in general integer), one
can multiply the initial values by a rational constant. For a given value z, let 7, be
the fractional part of x. The function of Burdett and Johnson is given next.

fBJ,l : [O,C] — [O, 1]

z = |z]/[C] 4+ max {O, (re = TCL)C{JO —rc) } .

Any value a # 1 can replace r¢ in this function, but it appears [80] that the

strongest inequality is obtained when o = r¢. If ro = 0, the function is equal to the
identity function. In [80], the authors show that this function is superadditive. An
alternative immediate proof of superadditivity derives directly from Lemma 2.4.1.
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Proposition 2.4.5 (directly deduced from Lemma 2.4.1 and [80]) Function fp;; is a
mazimal CS-DFF.

Letchford and Lodi [70] propose another way of strengthening Chvatal-Gomory
cuts [27] and Gomory fractional cuts [53] in linear programs. In the remainder, we
suppose that the fractional part of C' is such that ro > 0. In [70], the authors do not
precise that their improvement is based on a dual-feasible function. In this document,
we explicitly formulate the dual-feasible function that underlies their method. As fgp1,
it is based on Lemma 2.4.1.

Proposition 2.4.6 Let ¢ be equal to [%1 — 1. The following function is a CS-DFF.

frra:[0,C] — [0,1]
]

€+ 1lC]

We use Lemma 2.4.2 to show that this function is superadditive. However, it is not

x> |z]/|C| 4+ max < 0,

maximal.

Proposition 2.4.7 Function frr1 implicitly used by Letchford and Lodi [70] is super-
additive, but not maximal.

This means that one can propose an improved version of this function by applying
Theorem 2.4.1.

Proposition 2.4.8 The following function is a mazimal CS-DFF, and dominates frr, 1.

fLL,Z . [0, C] — [0, 1]

1_fLL,1<C_~r)7 1f.T>C/2,

T Q1/2 if v = C/2,

fLLJ(SL’), if x < C/2
Note that Dash and Giinliik [40] have proved that ¢ can be replaced in frr 1 by any

integer value k greater than ¢. We will use ff, , for this extension.
A particular case of the so-called eztended 2-step Mized-Integer Rounding (MIR)
inequalities of Dash and Giinliik [40] leads to a cut that can be obtained by applying a

CS-MDFF. This function also dominates ff; |, yet it is not equal to ff; ,. Again, we
suppose that the fractional part of C' is such that ro > 0.

Proposition 2.4.9 Let k be an integer greater than or equal to f%} —1. The following
function is a CS-DFF.

ng’,l : [070] - [07 1]

]/ C] + e=reifizra) if k=2 € N and 7, > re,
rz—TrC -‘

|z /[C] + max {0, %} , otherwise .
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This function is maximal, since it is obtained from f7; ; using Theorem 2.4.2.

Proposition 2.4.10 Function j‘"l’“)G,1 s increasing, superadditive, and symmetric and
hence is a CS-MDFF.

2.4.3 Summary of our literature study

In this paragraph, we sum up the different results stated in the current section. We
recall several kind of results: dominance, maximality, and the different techniques
underlying each family of functions.

In Table 2.1, we report a classification of the different functions. For each function,
we recall the paper in which context it was proposed (-’ means that it is a trivial CS-
DFF). We also report the type of application for which it has originally been designed
(column Appli.: Ib for lower bounding, and cuts for improved valid inequalities). Then
we give informations for each function: if it is a CS-MDFF, if it explicitly uses Lemmas
2.4.1 and 2.4.2, or Theorem 2.4.1.

Functions |£] (k # 1), fFgo fF, and fig, are not maximal, whereas ff,
is almost maximal. Only the image of % makes the latter non-maximal. All the
other functions are maximal. Among all the functions considered, only fplis,Q is not
superadditive.

Functions ff;,, ff,, and its improved versions ff, ff , are the only ones to use
Lemma 2.4.1. Note that these functions were originally proposed to derive cuts, which
can explain the fact that the fractional part is treated apart.

Lemma 2.4.2 is used to modify the fractional part in fF; |, ff,, and f5q,. It
underlies function f{,, and the function that dominates it, f{iz,. Function ffg,
does not use explicitly Lemma 2.4.2, but its structure is close to it (it "almost" uses
Lemma 2.4.2, since the integer values x are treated separately).

Theorem 2.4.1 is used by f&cn 1, firo and fiig,, and almost by fg,,, (only the
image of C'//2 has to be modified). Theorem 2.4.2 is used by fjg, and ff, to obtain
a maximal function, and by ff 5, to obtain a non-maximal function.

We have compared the different CS-DFF analyzed above against several types of
instances for the one-dimensional bin-packing problem generated in a classical way.
We used instances with up to 10000 items. Even for these large instances, each lower
bound is computed in less than 1 second.

As expected, maximal functions lead to improved results compared to non-maximal
functions. What is more surprising is the fact that function f(’}CMJ is strictly better
than fpar; for many test cases, although it only modifies the image of % This can be
explained by the fact that the instances are generated randomly, and thus items of size
% may appear several times in an instance.

Only the bounds based on the rounding function (ff,,, and f&qy, ) are better
than f§ on average. This means that if one wants to use a unique function, f&e,
would be this one (since it dominates the other rounding-based functions). But if one
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Function Paper Appli. | CS-MDFF lem. 2.4.1 lem. 24.2 thm. 2.4.1 thm. 2.4.2
identity - - yes no no no no
f& [42] 1b yes no no no no
%] - - no no no no no
fEso [42] Ib no no no no no
f };% M [14] b almost no no almost no
I gCMJ [20] Ib yes no no yes no
f \]33,1 [87] cuts no no yes no yes
f 55,1 [42] b yes no almost no yes
f gJ,l [15] cuts yes yes no no no
f f L1 [70] cuts no yes yes no no
f lk)G,l [40] cuts yes yes yes no yes
f fL,Z 29] - yes yes yes yes no
f 53,2 [29] - yes no yes yes no

Tableau 2.1: Summary of the properties of the functions analyzed in this document

is looking for the best results, he will have to use all the maximal CS-DFF described
in this document.

2.5 Extensions of DFF for various bin-packing prob-
lems

In this section, we describe the extensions of DFF to other packing problems that we
have proposed. The problems addressed are all bin-packing problems. We consider the
cases where conflicts between items can occur (pairwise conflicts, or a so-called fragility
constraint). We also consider several variants of the two-dimensional case.

2.5.1 DDFTF for the bin-packing problem (BP-DDFF)

In the following, we present DDFF designed for the bin-packing problem. For our
study, the only difference between bin-packing and cutting-stock will the fact that the
number of items for each type is small and thus packing |C/¢;| instances of a given
item ¢ may not be allowed. This means that the set P of valid patterns is different.
In BP-DDFF, the number of times an item is repeated in the instance is taken into
account.

2.5.1.1 Definition and link with CS-DFF

To our knowledge, the first implicit use of BP-DDFF for computing lower bounds for
bin-packing problems is due to Boschetti and Mingozzi [13]. We originally defined this
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concept under the name of data-dependent dual-feasible functions (DDFF) [20]. In this
document, we will use the term BP-DDFF (DDFF defined for bin-packing problem).
We now define formally this concept of BP-DDFF.

Definition 2.5.1 [20] Let I be a set of items i of size ¢;, and C a size of bin. A
bin-packing DDFF (BP-DDFF) g associated with this instance is a mapping from I to
0,1] such
Y a<C=D gli)<1 (2.11)
1€l1CI el

Any CS-DFF (or "classical" DFF) is tightly related to BP-DDFF.

Proposition 2.5.1 Let f : {0,...,C} — [0,1] be a discrete CS-DFF. Function g :
I — [0, 1] defined as follows: g(i) = f(c;) is a BP-DDFF for any instance.

However, some BP-DDFF are not BP-DFF, and only apply on specific instances.
We now give an example of DDFF to illustrate the fact that DDFF can lead to
values that would not be valid for a DFF.

Example 2.5.1 Consider an instance with a bin of size 100, and two items: item 1
of size 5 and item 2 of size 96. A valid DDFF defined from I to [0,100] can map item
1 to value 99 and item 2 to value 1. Note that with a DFF, the image of an item of
size 1 cannot be larger than 1/100.

2.5.1.2 A general BP-DDFF

The first BP-DDFF has been proposed by [20]. It uses a special parameter k. This
method generalizes the work of [13] and gives a different viewpoint on the method. We
now propose a way of computing a more generic family of BP-DDFF.

Let I = {1,...,n} be a set of indices, C' an integer value, and ¢, ca, ..., ¢, a list
of integer values less than or equal to C', and J a subset of I. The following family
of functions uses an arbitrary set of parameters « = {o; € N : i € I}. We denote
by KP(C,J,c,«), the value of an optimal solution to the classical one-dimensional
knapsack problem (Problem 2). The value C' is the size of the bin, J the set of items
1, each of size ¢;, and « is a function that associates a profit to the items of .J.

Formally, K P(C, J, ¢, a) can be stated as follows.

KP(C,J,c,a) = J’QJ,ZmE_); cigc{; a;}
Proposition 2.5.2 The following function g1 s a BP-DDFF defined for a given in-
stance D.
g1:1—10,1]
R {1 —KP(C—¢,J,c,a)/]KP(C, J,c,a) ifieJ
a;/KP(C, J,c,a) ifiel\J
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The values of the small items are equal to «;, and the sizes of the bin and of the
large items are computed by solving the knapsack problem described above. Then all
values are divided by K P(C, J, ¢, a) to obtain a function in [0, 1].

When applying a CS-DFF on D, removing an item may decrease the value of
the lower bound obtained. When BP-DDFF are used, this observation does not hold
anymore since the value of other items may be increased using the knapsack problem.

The knapsack problems involved are NP-hard in the general case. However they
can be solved in pseudo-polynomial time using dynamic programming (see [78] for
example). When the size of the bin is large, it may entail a large computing time. In
this case, the set of parameters a should be chosen in a way to re-enable the resolution
of the knapsack problem in a polynomial time. We investigated this idea in [35] by
choosing o; = 1,Vi € J, similarly to what is implicitly done in [13]. The optimal value
of the knapsack problem is then equal to the maximum number of items that can be
put together in a knapsack of size C. It can be solved in linear time if the items are
sorted by increasing order of size. However, the general form ¢; is more efficient for
computing lower bounds than the method of [35]. The best results on average were
obtained by using a; = ¢;, Vi € J.

2.5.1.3 Practical usefulness

Practically speaking, these functions were able to improve the quality of the lower
bounds for well-known two-dimensional benchmarks from the literature. For the one-
dimensional benchmarks, the improvement is small. This is due to the fact that in
two-dimensional benchmark the number of items of each type is generally smaller
than in the one-dimensional case. Consequently, taking into account the fact that the
number of small items is limited helps computing the quantity of lost space in the bins.

2.5.2 DDFTF for the bin-packing with conflicts (BPC-DDFF)

We now propose DDFF for the bin-packing with conflicts. Note that we consider the
generic case without specifying the geometric constraint applied to the problem. Sim-
ilarly to BP-DDFF, we will name BPC-DDFF the DDFF designed for BPC. We only
propose functions that depend on the data, since it seems difficult (if not impossible)
to design effective methods that would be valid for any graph.

Both techniques we propose are based on graph concepts: graph triangulation for
the first, tree-decomposition for the second. A formal definition of these concepts is
given in Chapter 1.

2.5.2.1 Knapsack-based BPC-DDFF

The first BPC-DDFF is a generalization of function g; defined in Proposition 2.5.2 for
BP.
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Proposition 2.5.3 Let hy be the function obtained from function g, where the knap-
sack problem K P 1is replaced by the disjunctive knapsack problem. Function hqy is an
BPC-DDFF.

To our knowledge, no dynamic programming scheme exists for the disjunctive knap-
sack problem with general graph. A first solution to solve these problems is to use an
ILP solver like ILOG cplex. We used other methods, based on graph concepts and a
relaxation of the problem.

When a conflict graph G is considered, only stable sets of G can be solutions of
the knapsack problem with conflicts (KPC). Thus a (possibly not practically tractable)
solution for the KPC is to compute all maximal stable sets of the conflict graph, and
then to solve for each stable set the associated knapsack problem. The maximum value
obtained for all stable sets is the optimal value for KPC. This solution is tractable
only if 1) the number of stable sets is small and 2) they can be computed with a
small complexity. Neither of the two conditions are fulfilled when a random graph is
considered.

For this method to be tractable, we relax our problem by removing edges to our
conflict graphs in such a way that its complementary graph becomes triangulated (see
Chapter 1). Tarjan and Yannakakis proved in [85] that any triangulated graph G
has at most n maximal cliques. In addition, they described a linear algorithm to
recognize a triangulated graph and to enumerate its maximal cliques. In our case, the
compatibility graph G is rarely triangulated. Finding the minimum set of edges to add
in order to obtain a triangulated graph is a NP-hard problem, so we use the heuristic
called Maximum Cardinality Search (MCS) [85] to triangulate the initial compatibility
graph.

In Figure 2.3, we give an example of triangulated compatibility graph and the
corresponding knapsack problems to solve. To compute the size of the bin, the six
knapsack problems have to be solved. To compute the size of item 10, only the knapsack
problems K P; KP,, KP5; and K Fs have to be solved.

2.5.2.2 A BPC-DDFF based on graph decomposition

Suppose the set I of items can be decomposed into two sets I; and I, of pairwise
incompatible items. In this case, two different DFF f and g can be applied to I; and
15, since the instance can be decomposed into two distinct sub-instances. Now, if there
is a third set I3 where each item is compatible with some items of I; and I, a lower
bound can be obtained as follows: [Zf(z) + > ¢g(1)+ > min {f(z),g(z)}—‘ This is

i€lq i€ls i€l3
true since each item of I3 will be packed either with items of I, items or Iy but not

both. We have used this technique to derive lower bounds during a branch-and-bound
method for the bin-packing problem [30].
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Figure 2.3: Knapsack problems to solve to compute the knapsack-based BPC-DDFF

Using our formalism, it is equivalent to applying the following BPC-DDFF, which
depends on two CS-DFF f and g¢.

h(f,g): 1 — [0,1] (2.12)
f(e) ifiel
i = 9 g(e) ifi eIy (2.13)

min{ f(¢;),g(c;)}  otherwise

This technique can be generalized by decomposing the graph into different inter-
secting subsets. Function hs is based on the concept of tree-decomposition (see Chapter
1), which captures the possible associations of items.

Let G = (I,I x I \ E) be the compatibility graph of the instance, and T = (S, A)
a tree-decomposition of G. The basic idea of hy is to assign a given DFF f, to each
node s € S of the tree-decomposition 7.

Let F be a list of valid discrete DFF f, ..., fig defined from {0,...,C} to [0, 1],
one for each node of the tree decomposition. For each vertex ¢ in the graph we define
S the set of nodes of the tree decomposition containing 7. Clearly there is always a set
of functions fi,..., fis| that allows to dominate the application of a single DFF (e.g.

fi=Ff=...=fis)

Proposition 2.5.4 The following function hy is a BPC-DDFF.

he: T — [0,1] (2.14)
i min{f.(c;)} (2.15)

s€St
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An issue is to choose a suitable set of functions to be applied to the nodes of the
tree decomposition. We use the following heuristic. For each node s, we compute the
value of the bound associated with each function of our initial set F" and we record the
function that leads to the best value. This strategy may not be optimal but it leads to
fast bounds.

If this technique is applied to an instance with the graph of Figure 2.3, since the
graph is triangulated, the optimal tree-decomposition uses the six maximal cliques of
the graph. Only one DFF is applied to items 1,2,3 and 4. Since item 10 belongs to
four clusters (four maximal cliques), four function will be applied to its size (one per
cluster), and the minimum will be kept.

2.5.2.3 Practical usefulness

These functions helped improving the results for the two-dimensional case of BPC. For
the one-dimensional case, the bounds were already tight. The results are somehow
disappointing, since the functions are not sufficient to obtain competitive results (even
if they improved the previous best combinatorial lower bounds). More complicated
bounds (involving the resolution of a transportation problems) were used after the
application of the DFF.

Considering the fact that the column-generation method returns good results for
this problem, we think that there is room for improvement for this variant of bin-
packing. Note that finding a DDFF for this problem is equivalent to finding a heuristic
solution for the dual problem. This would require using techniques from both contin-
uous and discrete optimization fields.

2.5.3 DFF for the bin-packing problem with fragile items (BPFI-
DFF)

In this section, we propose DFF for the bin-packing problem with fragile items (see
Chapter 1). Recall that the fragility of an item i is denoted ;.

The only lower bound previously dedicated to this problem is the so-called "frac-
tional lower bound". This bound is obtained by packing iteratively the items by in-
creasing fragility, allowing several parts of an item to be packed in two consecutive bins
(see [5]). Tt is a direct adaptation of the linear lower bound for the classical bin-packing
problem.

2.5.3.1 Definition and properties

We first define formally the notion of dual-feasible functions for BPFI (BPFI-DFF).

Definition 2.5.2 A mapping g defined from I to [0,1] is a BPFI-DFF if



54 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONS

> e <minfy} = ) g() <1 (2.16)

1€SCI €S

When a BPFI-DFF is computed, it can be directly used to derive a lower bound
for BPFI.

Proposition 2.5.5 If g is a BPFI-DFF and I a set of items to pack in a BPFI instance
D, Ly = [3,c;9(2)] is a valid lower bound for the minimum number of bins to use for

D.

The following proposition directly follows from Equation (2.16) and the definition
of a CS-DFF.

Proposition 2.5.6 If A\ is a CS-DFF and g and BPFI-DFF, Ao g is a BPFI-DFF.

This means that a CS-DFF can be applied as a postprocessing when a BPFI-DFF
is applied to the original instance, and may improve the results obtained.

The following results show a relation between superadditive functions and BPFI-
DFF. Note that without loss of generality, we consider that the fragilities are strictly
greater than 0.

Proposition 2.5.7 Let A be a superadditive and increasing function such that A\(0) =
0. The following function g is a BPFI-DFF.

g1 Ae) /A (W) (2.17)

Note that all maximal CS-DFF described in this chapter are superadditive and
increasing. Consequently, all useful functions defined for the cutting-stock can be used
for the bin-packing with fragile items. If they are defined independently of a size of
bin, they can be applied in a straightforward way. However some CS-DFF a defined
according to a size of bin. In this case, ., can be used as a fictive size of bin, or
hand-tailored techniques can be applied to improve this value.

The result of Proposition 2.5.7 can be improved by increasing the image of the large
items (i € I, ¢; > 1;/2) to the largest possible size that is allowed when the small items
have been transformed using function .

Proposition 2.5.8 Let A be a superadditive and increasing function such that A\(0) =
0. The following function g is a BPFI-DFF.

Alp) :
1- ma}f—ci{’\(cii/’)} if ¢; > ;)2 (2.18)
o if ¢; < 9i/2
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2.5.3.2 A specific family of BPFI-DFF

Creating BPFI-DFF from classical CS-DFF can be done using the results of Propo-
sitions 2.5.6,2.5.7 and 2.5.8. We now give an application of these theoretical results
to a simple superadditive function: [.]. We also show a way of using two different
BPFI-DFF to a given instance by using a decomposition method.

Corollary 2.5.1 Let k be a given parameter (1 < k < min;e/{t;}), the following
function is a BPFI-DFF.

b 167K (2.19)

P k]

Note that using g5 yields bounds that are better than Ly and Ly, since taking k = 1
leads to the same value as L. It can also be strictly greater than L,. Take n items of
width C'/2 4 € and fragility C. In this case, Ly = n/2 — 1, while the bound obtained
from gzc/2+€ is equal to ) .., 1/1 = n (which is the optimal result).

Function g5 can be improved by increasing the image of the large items (i € I,

¢; > 1;/2) to the largest possible remaining space when the other items have been
transformed using g5.

Corollary 2.5.2 Let k be a given parameter (1 < k < min;e/{1;}), the following
function is a BPFI-DFF.

I—  max {2} ife > 4/2

Ga iy e e (220)
ol if ¢; < 1by/2

Let us give an example to illustrate the improvements that can be achieved using
BPPFO-DFF.

Example 2.5.2 Take an instance with 100 items of width 5 and fragility 8 and 100
items of width 2 and fragility 7. Let Lo be the fractional bound.

Ly =92 (the 28 first bins are used to pack the 98 first items of size 2, then one bin
contains two items of size 2 and 3 units of an item of size 5. Finally, the remaining
items of size b are fractionally packed in 63 bins.

Ly with k=2 : [100 x* % + 100 %} = [100 % 1/2 4+ 100 % 1/3] = 84

- _ 9. [2/2] 12/2]7 =

L with k=2 : [100 * (1 — W) + 100 * m} = [100%2/3+100% 1/3] = 100

2.5.3.3 Knapsack-based BPFI-DDFF

Once again, function g; defined in Proposition 2.5.2 can be used. In this case, the
knapsack problems to solve to compute the size of the bin and the size of the large
items is a knapsack problem with fragile items. A dynamic programming method for
this problem is described in Chapter 1.
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2.5.3.4 Practical usefulness

The functions proposed lead to bounds that are close to the value returned by the
model of Gilmore and Gomory. However, they are also close to the simple fractional
lower bound. The small gap between this latter bound and the column-generation one
leaves small room for improvements for the DFF.

2.5.4 DFF for two-dimensional bin-packing problems (2BPP-
DFF)

We now consider the two-dimensional bin-packing problem with and without rotation.
We show that CS-DFF can be used to derive new 2BPP-DFF. The result for the
oriented case is due to Fekete and Schepers [44] (we just rewrite their result to fit our
formalism). Our main contribution here is the improvement for the case with rotation.

Problem 8 (Two-dimensional Bin-Packing Problem (2BPP)) Given a set I of
rectangular items i of size (w;, h;), what is the minimum number of bins of size (W, H)
needed to pack all the items of I in such a way that in each bin, the items can be packed
inside the boundaries of the bin without overlapping? If the rotation of the items is
allowed, we have a 2BPP with rotation (2BPP-R), otherwise, we have a 2BPP with
fized orientation (2BPP-0).

We avoid the repetitive formal definition of a 2BPP-O-DFF and 2BPP-R-DFF.
Just recall the fact that, using such a DFF, for any valid pattern P for 2BPP, the sum
of the images of the items in P is smaller than 1.

2.5.4.1 DFF for the oriented case [44] (2BPP-O-DFF)

Fekete and Schepers [44] have shown that two DFF could be applied to each dimension
of an instance of 2BPP-O to obtain a lower bound. Using our formalism, their result
can be written as follows.

Proposition 2.5.9 Let f and g be two discrete CS-DFF respectively defined from
{0,...,W} to [0,1] and {0,...,H} to [0,1]. The following function is a 2BPP-O-
DFF.

w i f(w;)*g(hy) (2.21)

If the identity function is used for f and g, the bound based on the surface of the
bins is obtained. Note that the value of the image depends on the two dimensions
independently. No actual two-dimensional DFF were derived in the literature. This
can be explained by the fact that characterizing the set of feasible patterns is hard.
Even verifying that a pattern is feasible is NP-complete (see Chapter 3).
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To our knowledge, there are no lower bounding techniques for 2BPP that do not rely
on techniques dedicated to the one-dimensional case. However, they have shown their
effectiveness on hard two-dimensional instances. This has been confirmed by Caprara
et al. [17]. In this paper, the authors have proposed a bilinear programming method
for finding the best pair of DFF to apply to a bin-packing instance. This method leads
to results that are close to those obtained by column-generation algorithms.

2.5.4.2 DFF for the case with rotation (2BPP-R-DFF)

The two following results are rewritings of those proposed in [33]|. The first is a gener-
alization of a bound of [14], the second is a truly original result.

The first result derives from a simple fact. For two given CS-DFF f and g, if a
lower bound for the oriented case based on these two functions is run for all possible
orientations of the items, and if the minimum is recorded, a valid lower bound is
obtained. Of course, the bound obtained would need an exponential time, since it would
lead to 2™ lower bounds to compute. Nevertheless a lower bound can be computed by
considering the following relaxation: for each item i, keep the smallest image that it
can have for its possible orientations. This leads to the following result.

Proposition 2.5.10 (implicitly used in [14]) Let f and g be two discrete CS-DFF re-
spectively defined from {0,..., W} to [0,1] and from {0,..., H} to [0,1]. The following
function is a 2BPP-R-DFF.

1+ 0= min{ f(w;) * g(hi), g(wi) * f(hi)} (2.22)

A better DFF, that dominates the previous one (if f and ¢ are increasing and
superadditive), is now described.

Proposition 2.5.11 Let f and g be two CS-DFF defined as above. The following
function is a 2BPP-R-DFF.

f(wi) x g(hy) + g(w;) * f(h;)
2

Yo 11> (2.23)

The result is not intuitive, but is becomes obvious when the following relaxation is
considered. From a 2BPP—R, construct a 2BPP—QO instance I’ of size 2 x n where
each item is repeated once for each of its orientation. Clearly, the value of an optimal
solution for this new problem cannot be more than twice the value of an optimal
solution for the original 2BPP—R instance. Take an optimal solution for 2BPP—R
with z bins, keep the z bins and create z new bins by rotating the z first bins. You
obtain a feasible solution for the new 2BPP—QO instance with 2 % z bins (see Figure
2.4).

The last result only holds when the bin is a square. It can be adapted for the case
where the bin is a rectangle by introducing dummy items (and thus constructing an
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Figure 2.4: An optimal solution for 2BP— R with z bins (the two upper bins) and a solution for the 2BP—O relaxation
using 2 x z bins (the two lower bins)

instance where the bins are square). Unfortunately, doing so breaks the dominance
result between o and ;. Note that the fact that some items can only have one
orientation is not taken into account in this result.

2.5.4.3 Practical usefulness

For the two-dimensional cases, the DFF lead to surprisingly good results when the
number of bins is large. When the number of bins decreases, the geometric constraint
becomes more important and the DFF are weaker. However, the results remain of
good quality (see Chapter 3 for a discussion on the reduction of the computing time
obtained using DFF). For the case with rotations, the bounds are rather simple, but
dominate the other bounds from the literature and are practically tight when the bin
is a square. However, in some cases, considering a rectangular bin can decrease the
quality of the bound by a wide range.

2.6 Conclusions, future works

In this chapter, we focused on lower bounding techniques for bin-packing problem using
the concept of dual-feasible functions. It is important to note that the link between
the theory of superadditive functions and dual-feasible functions also helps improving
cutting planes algorithms by enforcing some cuts with maximal functions. Therefore,
we give a tool for improving many previous methods in a straightforward manner.
Successfully generalizing the concept of dual-feasible function for several packing
problems hints that this methodology can be applied to problems that lie outside the
field of C&P problems. We plan to study and analyze such solutions for new prob-
lems. We will focus on problems for which set-covering models and column generation
give good lower bounds (variants of vehicule routing or staff scheduling problems for
example). An interesting fact is that the definition of SC-DFF can directly be applied
to a large variety of problems. One of the main difficulties is to handle the set of
constraints defined in the subproblem, which can be much more complicated than the
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one-dimensional knapsack problem involved in the cutting-stock problem. Character-
izing the set of feasible patterns is also a challenging issue.






Chapter 3 __

Mixing constraint-programmaing and
OR techniques for solving rectangle
placement problems

The work of this chapter has been published in an international journal [32] and in an
international conference [34] (an extended version is submitted to INFORMS Journal
on Computing).

3.1 Rectangle placement problems

When the two-dimensional bin-packing problem is addressed, verifying if a given subset
of items can be packed into a bin is NP-complete (whereas for the one-dimensional case
the answer is straightforward). This problem has been addressed under several names.
In the following, we will use the term rectangle placement problem. Figure 3.1 is an
example of solution for an instance of RPP with 12 items.

Problem 9 (Rectangle Placement Problem (RPP)) Given a list of rectangular
items, and a unique large rectangle, is it possible to pack all the items into the rectangle
without overlapping?

RPP not only occurs as a subproblem in two-dimensional packing problems (bin-
packing or knapsack problems), but also alone when rectangular pieces of steel, wood,
or paper have to be cut from a larger rectangle, and in many industrial applications
(VLSI design for example).

When RPP has to be repeatedly solved in a more general optimization problem,
researchers have focused on avoiding to solve this problem (see [19] for the knapsack
problem or [30] for the bin-packing problem). For example, bounds based on DFF can
be useful to detect non-feasible problems. As we will see in this chapter, considerable
practical difficulties arise in cases where solving RPP is unavoidable.

Different variants of RPP have been studied in the literature. In this document, we
focus on the regular ("unconstrained" rectangle packing problem), and on a classical
variant called guillotine-cutting problem. In this specific case of RPP, the rectangles

61
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Figure 3.2: A guillotine pattern

have to be cut using guillotine cuts only. A guillotine cut is parallel to one of the
sides of the rectangle, and must go from one edge all the way to the opposite edge of
a currently available rectangle.

Problem 10 (Guillotine Cutting Problem (GCP)) Given a list of rectangular items,
and a large rectangle, is it possible to cut the items from the large rectangle without
overlapping, and using only guillotine cuts?

Figure 3.2 pictures an example of guillotine pattern. A first cut separates items
1, 2 and 3 from the others, then a cut separates 4 and 5 from items 6 to 11 and so
on. Note that the pattern of Figure 3.1 is not guillotine, since no set of items can be
separated from the others without cutting an item.

Although GCP is considered as a "cutting" problem, the guillotine constraint can
also be relevant when one needs to pack items on shelves. Actually we have met this
particular problem during an industrial contract on an automatic storage device.

Surprisingly enough, although its combinatorial structure seems easier (with a nice
recursive pattern), GCP is harder to solve in practice than RPP for both heuristic
and exact methods. For the former, most of the researchers have restricted the search
space to so-called two-stage patterns, where the recursive structure is limited to a depth
of two (strips are cut from the large rectangles, and then each strip is cut to obtain
the final items). There are also works about three-stage patterns. These variants are
popular because they are relevant from a practical point of view, and can be modelled
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as effective ILP (see [76] for example). In our work we do not restrict our patterns to
be two-stage.

RPP has been the topic of many research papers, in the OR literature under the
name of feasibility problem [79,82], or orthogonal packing problem (in [43-45| for exam-
ple), and in the constraint programming community [9,10,54,67]. In the CP community,
RPP is much more addressed than GCP. This can be explained by the fact that the
structure of GCP is far to be straightforward to capture in a CP model, and that most
of the propagation algorithms are only effective when many rectangles have already
been packed.

For both versions (RPP and GCP), our contributions are twofold: they concern
new models and hybridization of CP and OR techniques based on these models. Our
new models are able to capture effectively the structure of the problems addressed, but
it transpires that an effective use of OR techniques is mandatory to be able to prune
solutions and fasten the search.

For RPP (Section 3.3), we have exploited the fact that the problem is tightly
linked to a classical cumulative scheduling problem. Our model creates two scheduling
problems in addition to the original problem. This allows us to adapt several methods
from the scheduling field to the packing field (energetic reasoning, ...).

For GCP (Section 3.4), we have proposed a brand new graph model, which captures
the recursive structure of a guillotine pattern. This model leads to a CP algorithm,
which uses the graph to check the guillotine constraint, and our RPP model to verify
that the items are packed into the boundaries of the large rectangle.

3.2 Constraint programming

Constraint programming is a paradigm aimed at solving combinatorial problems that
can be described by a set of variables, a set of possible values for each variable, and a
set, of constraints between the variables.

The set of possible values of a variable V' is called the variable domain, denoted as
D(V). It might be, for example, a set of numeric or symbolic values {vy, va, ..., v}, or
an interval of consecutive integers [a..]. In the latter case the lower bound of D(V)
is denoted as V'~ = « and the upper bound is denoted as V' = S.

A constraint between variables expresses which combinations of values for the vari-
ables are allowed. The question is whether there exists an assignment of values to
variables, such that all constraints are satisfied. The power of the constraint program-
ming method lies mainly in the fact that constraints can be used in an active process
termed “constraint propagation” where certain deductions are performed, in order to
reduce computational effort. Constraint propagation removes values from the domains,
deduces new constraints, and detects inconsistencies.

Constraint propagation alone is rarely sufficient to solve hard problems. The
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Figure 3.3: Modeling a rectangle placement with two interval graphs

constraint propagation algorithms are generally run at each node of an enumerative
method.

3.3 The rectangle placement problem (RPP)

The first OR methods for the rectangle placement problem consist in packing items
one by one in the bin [55,79]. They rely on the so-called bottom-left dominance rule
(see [26]), which states that each item can be packed in a leftmost and downward
corner. Each item is either adjacent to another item, or a side of the bin.

In [43,45], Fekete et al. propose a new model for the feasibility problem. They show
that a pair of interval graphs can be associated with any packing class (i.e., a set of
packings with common properties). The interest of this concept is that a large number
of symmetries are removed, since only one packing is enumerated per class. A graph
Gq = (I, E,) is associated with each dimension (I is the set of items) and d € {w, h} is
the dimension considered. An edge is added in the graph G, (respectively G},) between
two vertices ¢ and j if the projections of items ¢ and j on the horizontal (respectively
vertical) axis overlap (see Figure 3.3). They also provide a branch-and-bound [45]
to seek a pair of interval graphs with suitable properties, and then deduce a feasible
packing. In comparison with classical methods, this method avoids a large number of
redundancies, and outperforms the best previous OR, method [79].

The model of Fekete and Schepers has been improved by considering a better
representation of interval graphs (using so-called consecutive 1 matrices [62| or PQ-
trees [63]). Note that, even with these refinements, the methods based on interval
graphs are still outperformed by state-of-the-art CP methods. The CP community has
studied the RPP with several different models. In the first, the decision variables are
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the relative placement of each pair of items i and j (see [67,82] for example). Beldiceanu
and Carlsson [9] have shown that with a good propagation (performed by the SWEEP
algorithm), the non-overlapping constraints alone can lead to good results [11]. The
branching scheme consists in testing each possible position in the bin for each item in
turn.

Our work on rectangle placement lies between the OR and CP communities. We
use a constraint-programming scheme, which is based on scheduling techniques, and
add several pruning procedures based on OR, techniques (resolution of small knapsack
problems, and original applications of dual-feasible functions).

3.3.1 A constraint-based scheduling model for RPP

We now describe our constraint-based scheduling model for RPP. We first recall a
classical model for the non-overlapping constraint, and then explain how it can be
relaxed into a scheduling problem. This leads to a model that uses so-called cumulative
constraints in addition to the non-overlapping constraints.

3.3.1.1 A basic constraint programming model

In constraint programming, RPP can be classically encoded in terms of variables and
constraints. Two variables X; and Y; are associated with each item i. They represent
the coordinates of ¢ in the bin. We denote as D(X;) = [X/™" X™%] and D(Y;) =
[ymin ymaz] - regpectively the domains of variables X; and Y;, in which X" XM,
Y™™ and Y;"** are the lower and upper bounds of the domains. Initially, the domains
of these variables are respectively set to [0,...,W —w;] and [0,..., H — h;]. For each
pair of items ¢ and j, we associate the following constraint: [X;+w; < X;] or [X;+w; <
X;] or [Y;+h; <Yj] or [Y;+h; <Y;], which expresses the fact that items ¢ and j cannot
overlap in the bin.

This model is sufficient to ensure that the solution is valid, once the domains of
variables have been reduced to only one value such that all constraints are satisfied.
We will refer to this model as the “basic model”. Generally, this model is practically
ineffective to solve the problem. However, note that the use of the “sweep” algorithm
of Beldiceanu and Carlsson [9], which propagates efficiently the above-described con-
straint, gives competitive results.

3.3.1.2 A new relaxation into a scheduling model

In a previous work, we considered a new relaxation for the RPP. We remove the con-
straints related to the height of the items and replace them by a classical cumulative
constraint. Practically speaking, it means that several horizontal strips of an item are
allowed not to be contiguous on the vertical axis. Each solution of the relaxed problem
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Figure 3.4: A relaxation of RPP into a CuSP

corresponds with a set of patterns for RPP. If there is no solution for the relaxed prob-
lem, there is no solution for RPP. A partial solution of the relaxed problem is pictured
in Figure 3.4. This problem is known in the scheduling community as the cumulative
scheduling problem (CuSP).

Problem 11 (Cumulative scheduling problem (CuSP)) We are given a set of n
activities {Aq, ..., A} and a set of resources {Ry,..., Ry,}. FEach activity A; has a
processing time, requires a particular amount of a resource Ry and has to be executed
within a time window lest;, let;). Resources have a given capacity that cannot be ex-
ceeded at any point in time. The resource can execute several activities, provided that
the resource capacity is not exceeded. The problem to be solved consists in deciding
when each activity is executed, while respecting the resource constraints, and without
interruption.

In the following, we show how this relaxation is used to enforce our CP model, and
how constraint-based scheduling algorithms can be adapted to our models.

3.3.1.3 A constraint-based scheduling model

The relaxation described above can be applied to the width instead of the height. In
this case, another CuSP is obtained. Actually, our method uses both CuSP (one for
each dimension) to strengthen the original model.

We now describe formally the two CuSP addressed. The two considered resources
are termed R, and Rj,. The resource capacity of R, is equal to H and the resource
capacity of Ry is equal to W. We define a set {AY,..., A¥}. Each activity AY has a
processing time w;, requires an amount h; of the resource R,,, and has to be executed
within the time window [0, W). Similarly, we define a set {A%? ... A"} of activities.
Each activity A? has a processing time h;, requires an amount w; of the resource Ry,
and has to be executed within the time window [0, H).

We introduce a variable start(A) for each activity A, representing the start time of
A. Initially, the domain of variables start(A¥) is set to [0, ..., W —w;] and the domain
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of variables start(Al) is set to [0, ..., H — h;]. Resource constraints represent the fact
that activities require some amount of a resource throughout their execution. In our
non-preemptive cumulative case, the resource constraints can be expressed as follows:

vielo,..., W], > h; < H.

AY [start(AY ) <t<start(AY )+w;

vt elo,..., H], > w; < W.

Al /start(Al)<t<start(Al)+h;

In other words, the sum of resource requirement of activities AY (respectively A%)
executed at time ¢ has to be lower than or equal to the resource capacity H (respectively
W) of resource R,, (respectively Ry).

Finally, the scheduling problem is linked to the constraint programming model of the
original RPP (see above) with the following constraints: for each item i, [start(AY) =
X;] and [start(A") = Y;]. Tt is easy to see that once the variables start(AY) and
start(Al) are instantiated in such a way that all constraints are satisfied, the corre-
sponding solution is valid.

To describe our branch-and-bound algorithm, we use the start(A¥) and start(A)
variables. We use a schedule-or-postpone method, which works as follows: at each
step of the procedure, we choose an unscheduled activity and we schedule it as early
as the previous activities scheduled on the same resource will allow. We obtained the
best experimental results by working first on a given resource exclusively and then on
the other. Note that our work has now been extended by [54]|, who used the same
model, with an improved branching scheme based on the same ideas (in fact they use
dichotomy instead of testing each value of X in turn).

Since RPP has been modeled as a scheduling problem, it is now possible to use pow-
erful constraint-based scheduling propagation techniques specific to non-preemptive
scheduling problems (see for instance [6]). These techniques allow us to tighten the
domains of variables and to detect inconsistencies during the procedure. However, note
that edge-finding propagation techniques [6] were not useful for our problem.

3.3.2 Two-dimensional energetic reasoning

We now describe the concept of energetic reasoning, originally developed by Erschler
et al. [41,74] to solve cumulative scheduling problems. We suggest a generalization of
energetic reasoning, which allows the feasibility of orthogonal packing patterns to be
tested, and new adjustments to be found.

3.3.2.1 Feasibility tests and bounds adjustments

For scheduling problems, deductions made using energetic reasoning are based on the
consumption of resources by activities during given time intervals. For a given time
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interval [«, 3), @ < (3, energy is supplied by a resource and consumed by an activity.
The energy supplied by a resource of capacity C' in this interval is equal to (6 —a) x C,
and the energy consumed by an activity of demand ¢; is equal to ¢; x A;, where A;
is the part of activity ¢ scheduled in [«, 5). If the starting time of the activity is
not yet fixed, we determine the mandatory energy consumption in interval [, §). It is
obtained by considering the positions in which the processing of the activity is minimal
in o, 5). By considering the quantities of energy supplied and consumed within given
intervals, the energetic approach aims at developing satisfiability tests and time-bound
adjustments to ensure that either a given schedule is not feasible or to derive some
necessary conditions that any feasible schedule must satisfy.

Unlike activities in scheduling problems, the position of an item has to be fixed
with respect to both the horizontal and vertical dimensions. We therefore suggest the
following generalization of energetic reasoning. Instead of considering an interval [a, (),
we consider a rectangular window. We define the rectangular window [a, 3,7,0), a < 8
and y < 0, in which [a, 8) x [7,d) is the area under consideration.

Energy is now supplied by the bin and consumed by items. Energy supplied by the
bin in window [a, f,7,0) is equal to (8 — «) x (6 — 7). The energy consumed by an
item can be computed considering the bottom left and top right positions according
to the domains of its coordinate variables, in which the item’s consumption is minimal
(see Figure 3.5). Let @;(cv, 3) and h;(7,8) be respectively the width and the height of
the mandatory part of item ¢ in the window [«, /3,7, d) (see Figure 3.5). We have:

{Ei<0575) = max (0, min {wi, 6 — Og’Ximm +w; — &’ﬁ _ leaa:})

and
EZ(77 5) = max (0, min {h27 (s . f)/’ }/Zmln + hz _ ,.y’ 5 o }/'imax}>.

Energy consumed by item ¢ in window [«, 3,7, ) is then Ei(a,ﬁ,%é) = w(a, B) X
hi(7,d). Therefore, the total energy consumed by all items in window [, 3,7,0) is

E(a,B,7,0) = ic; El-(a, B,7,0). As in basic energetic reasoning, the following propo-
sition holds.

Proposition 3.3.1 If there is a feasible packing, then Vo, € [0,W), Vv, € [0, H),
such that o < B and v < 0, we have E(a, $,7,0) < (6 —a) x (6 — 7).

This means that for every possible window, energy supplied by the bin has to be
at least as large as minimal energy consumed by items. To perform feasibility tests,
we can test this inequality at each node of the search tree algorithm for all relevant
windows in the bin. If there exists a window for which the inequality does not hold,
then the considered node cannot lead to a feasible solution and can consequently be
pruned.

The values of E(a, B,7,0) can also be used to adjust domain variable bounds of X;
and Y;. Let ¢ be an item and let [, 3,7,0) be a window such that 8 < X™** + w,;. We
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Figure 3.5: Mandatory part of item i in the rectangle [a, 8,7, d) by considering its two extreme positions.

verify whether ¢ can be fully packed before (3, i.e., if i can be packed at a coordinate
X; such that X; +w; < g. If i is fully packed before /3, then its energy consumption
is obtained by considering its leftmost position. If this total energy consumption is
greater than (8 — a) x (0 — ), it means that item ¢ cannot be fully packed before 5.
In this case, we update the domain of X; to take into account this fact.

Baptiste et al. [7] studied the cumulative scheduling problem and showed that it is
sufficient to calculate energies for intervals belonging to a characterized set in order to
find all possible deductions. We generalized their result to the two-dimensional case.
Practically speaking, only a subset of possible intervals are used, since using all of them
is too time-consuming.

3.3.3 Using DFF in feasibility tests

DFF have been defined in details in Chapter 2. In this section, we focus on the
transformations applied to the partial instances of RPP to allow an effective usage of
DFF. The bounds applied on these instances are described in details in Chapter 2.
Note that when DFF are applied to the instance, a lower bound for the bin-packing
problem is obtained. If this value is greater than one, then the instance has no solution.

The problem with classical DFF is that they cannot take into account the fact that
some items are already packed. If DFF are applied on a partial solution, the value
returned will be the same as initially. Consequently, we operate some modifications on
the instance, based on the position of the packed items, to allow the DFF to produce
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better pruning methods.

In the first technique, we use DFF to improve the feasibility test based on energetic
reasoning. It relies on the fact that a small 20 PP instance is created when energetic
reasonings are used. In the second technique, we merge items that have been packed
to create a more constrained instance for which DFF may be able to show that there
is no solutions.

3.3.3.1 Using BP-DFF in Energetic Reasoning

Consider virtual items (w;(c, B),/i;i(% 9)) obtained from the widths and the heights of
items in window [« 3,7, d). The set of items corresponding to the mandatory parts of

~

the items of I in [a, 3,7, 6) is denoted by I(a, 3,7, 0).

Proposition 3.3.2 Let (I, B) be a RPP. For four integer values o, 3,7 and ¢, and a
domain variable for the x- and y-coordinates of the items of I, if the 20PP problem
defined by f(a, B,7,0) and B = (B—a, 0 =) has no solution, then there is no solution
for the original RPP with the current domain variables.

Several methods can be used to show that a particular 20 PP problem obtained
is not feasible, the quickest being to check that the continuous lower bound does not
exceed one. This corresponds to the feasibility test described in previous section. In
our case, we use the lower bounds based on DFF and described in Chapter 2. We
could use preprocessing methods or an exact method. Nevertheless, experimentation
has shown that the computation time required for this latter method is too great with
respect to the reduction of the search space.

3.3.3.2 Using BP-DFF on a constrained instance

The idea is to aggregate the items which are packed side-by-side to create new instances
which are more constrained than the initial instance (Figure 3.6). The lower bounds
and the reduction procedures are applied to these instances to obtain better results.
The method is based on a geometric observation. Consider the polygon v formed by
the set I; of items packed in the bin. If [; is replaced in the initial instance D by
another set ] such that items of /] can be packed in v, the following property holds:

Proposition 3.3.3 If there is no feasible solution for I\ I, + I} in B, then there is
no feasible solution for I in B such that items of I, are packed in 1.

Given a set of packed items I, we create a set /] which is more constrained than
I;. The idea is to maximize the height or the width of the created items to obtain two
instances (Figure 3.6). If several transformed items which are packed side by side are
shallow they can be packed one above the other in the new instance. To avoid this
situation we operate a second modification on the items. If the packed items have been
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Figure 3.6: Computing suitable instances for applying the DFF

cut into vertical strips, we add to the new items a height equal to H and the height
of the bin is updated to 2H. So the bounds can take into account the fact that these
items cannot be packed one above the other. If the packed items do not fit the width
of the bin a dummy item with size (w*, H) is created, w* being the free width to the
right of the packed items (Figure 3.6). Note that after the second transformation, item
3’ cannot be packed above item 2’. The same operation can be realized when the width
is considered. We denote the new instance obtained as D”. The results are improved
because the problem is more constrained as the number of large items increases.

3.3.4 Knapsack-based feasibility tests

We now show how reasoning can be done for pruning the search tree using the solution
of subset-sum problems. The subset-sum problem is a particular case of the knapsack
problem (Problem 2), where the size of each item is equal to its profit. It has been used
by Boschetti and Mingozzi [13] in a preprocessing, and by Fekete and Schepers [44,45]
in their exact method.

In our method, the main idea is to make use of the information that is given
by the domains of the variables in our constraint programming model. Similarly to
energetic reasoning, our algorithm allows to prune partial solutions, but also to realize
adjustments on the domains of the variables. An important part of our work is to avoid
computing non-necessary information to realize our tests, using dominance rules.

Let P be a partial solution for a RPP instance, and x a given x-coordinate. We
denote by H, the sum of the heights of the items whose variable has been fixed (X" =
X"} and such that x € [X;, X; + w;). If H, < H, additional items can be packed
in [z,z + 1). However, if there is no unpacked item j such that h; < H — H,, then
necessarily some area has been lost. Consequently, the value H — H, can be added to
the total area of the items to strengthen any reasoning based on the remaining area.

This idea can be generalized when items can be packed in [x,z + 1) without the
possibility of perfectly fitting the free space. Let I, be the subset of items ¢ whose
variable X; has not been fixed (X" < X™®) and such that x € [X™" XM 4 q,),
i.e., a piece of i could be packed in [z,z 4+ 1). We want to determine the minimum
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height loss in interval [z, x+1). This can be done by solving a classical one-dimensional
knapsack problem, where the size of the bin is H — H,, the set of items [, each of size
and profit h;.

We finely tuned this method by: 1) considering intervals instead of all coordinates
(time optimization); 2) performing all possible deductions; 3) taking into account the
mandatory parts of the items.

3.3.5 Computational experiments: a synthesis

The main conclusions that can be drawn from our computational experiments is that
including the cumulative constraints in the model and giving a priority in the branching
scheme for one of the two dimensions is sufficient to lead to competitive results. These
conclusions have been confirmed later by [54] in their computational experiments.

The two-dimensional energetic reasoning allows some additional deductions, but
the computing time is in general too large compared to its effectiveness. This is due
in part to our branching scheme, which first works on one dimension. However, for
some instances, the computing time is reduced, in particular instances for which some
solutions of CuSP do not have a corresponding RPP solution.

All our new feasibility tests reduce both the number of explored states and the
computing time. The best compromise between the reduction of the search space
and the time required seems to be the method used with one-dimensional energetic
reasoning and subset-sum reasoning. The size of the bin is small in the instances we
used. For larger bins, the subset-sum based methods have to be avoided, since their
computing time becomes too large.

We have compared the best previous algorithms in the literature with our method
[9,45]. For this purpose, we used difficult benchmarks with up to 20 items. Our method,
using improving techniques, dramatically reduces the search space in comparison with
all previous algorithms. Even in the absence of improving techniques, we are almost
competitive with the previous approaches. All instances can now be solved in less
than seven seconds, unlike the previous results, where some instances cannot be solved
within one hour.

3.4 The guillotine-cutting problem (GCP)

In the literature to date we find two alternative methods for solving the guillotine
cutting problem (see [59]). The first approach [25] consists in iteratively cutting the
bin into two rectangles, using horizontal or vertical cuts, until all the required rectangles
are obtained. The second approach [88| recursively merges items into larger rectangles,
using so-called horizontal or vertical builds [89]. The most recent work on the subject
is by Bekrar et al. [8], and provides an adaptation of the branch-and-bound method of



3.4. THE GUILLOTINE-CUTTING PROBLEM (GCP) 73

Martello et al. [77]. An adaptation of an RPP algorithm to the GCP is also proposed
by Amossen and Pisinger [3].

To our knowledge, the only existing CP procedures are based on methods that check
algorithmically at each node if the packed rectangles violate the guillotine constraint.
Our implementation of this method did not lead to interesting results.

In this document, we use another approach. We propose a new graph-theoretical
model for GCP. A first idea is to use a tree to represent a pattern. When a solution is
found, it can indeed be modeled as a tree, where the leaves correspond with items and
the inner vertices to cuts. This is a suitable representation for a final solution, but we
considered that it was not suitable for building a solution, since the number of vertices
is not known in advance, and represent different kinds of objects (cuts or items).

Another way of modeling a guillotine pattern with a graph would be to adapt the
model of [43], using algorithms to detect whether the guillotine constraint is satis-
fied. This is not how we have chosen to proceed. Instead, we propose a novel graph-
theoretical model that takes into account the specific combinatorial structure of the
guillotine-cutting problem.

We first describe the new concept of guillotine-cutting classes, which models equiva-
lent patterns for the GCP. Then we describe our new arc-colored oriented graph model,
and show the equivalence between finding a suitable graph and finding a feasible so-
lution for GCP. Finally, we study the combinatorial structure of our model, obtained
by removing colors and directions of the arcs. These non-directed multi-graphs have
a special structure, which is used to design efficient algorithm to recognize them and
computing the patterns associated with them. Finally, we describe roughly the CP
approach based on our model, and comment our computational experiments, which
show that our model allows to improve previous results by a wide range.

3.4.1 Guillotine-cutting classes

In order to avoid equivalent patterns in the RPP, Fekete and Schepers [43| proposed
the concept of packing class. Packing classes are general, and can model any pattern.
When only guillotine patterns are sought, packing classes may not be suited to the
problem, since two different packing classes may give rise to patterns having the same
combinatorial structure. We introduce the concept of guillotine-cutting class to include
all guillotine patterns. This takes into account the fact that exchanging the positions
of two rectangular blocks of items does not change the combinatorial structure of the
solution. The definition uses the notion of builds that we define below.

A build [89] involves creating a new item by combining two other items (see Figure
3.7). The result of a horizontal build of two items i and j, denoted build(i, j, horizontal),
is an item labeled min{i, j}, of width w; +w; and height max{h;, h;}. A vertical build
is defined similarly.
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1 1 2 |1

Figure 3.7: Vertical and horizontal builds of two items 1 and 2.

Figure 3.8: A guillotine-cutting class

Definition 3.4.1 Two solutions belong to the same guillotine-cutting class if they can
be obtained from a same sequence of horizontal and vertical builds.

Figure 3.8 shows a guillotine-cutting class. Clearly, if one member of a guillotine-
cutting class is feasible, then so are the other members. In this case we say that the
guillotine-cutting class is feasible. This concept reduces dramatically the number of
equivalent patterns in comparison with a direct application of the model of [43]. This is
hardly surprising, since the concept of packing classes was not designed for this specific
problem.

Note that there still remain redundancies. Two different sequences of builds may
lead to solutions with the same combinatorial structure, for example when there is a
partial pattern that can be obtained with either a horizontal or a vertical first cut.
This means that a given pattern may belong to several guillotine-cutting classes.

3.4.2 A new graph-theoretical model

We study a new class of directed and arc-colored graphs, and show that such graphs can
be associated with guillotine-cutting classes. We call these graphs guillotine graphs.

In order to define this new class, we introduce the concept of circuit contraction,
analogous to the classical concept of arc contraction used in graph theory.
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(a) initial graph (b) after cycle-contraction

Figure 3.9: Cycle-contraction

Definition 3.4.2 Let G = (V, E) be a graph, and p = vy, iy, ..., 0,0, a cycle of
G. Contracting 1 1s equivalent to iteratively contracting each edge of .

When referring to an undirected graph we use the term cycle-contraction. The
same concept can be applied to directed graphs, in which case we use the term circuit-
contraction. In Figure 3.9, contracting the black cycle in the left-hand graph leads to
the right-hand graph. The index of the vertex obtained by contracting a circuit p is
the smallest index of an item in pu.

In our new model, a vertex is associated with each item ¢, and a circuit is associated
with a list of horizontal or vertical builds. Let G = (I, A) be a directed graph. We use
a concept of arc coloring defined as follows. An arc coloring of a graph G is a mapping
¢ from A to a set of k colors. In order to distinguish between horizontal and vertical
builds, we equate horizontal builds with the color red, and vertical builds with the
color green. Thus in this document we focus on bicoloring (and arc-bicolored graphs),
i.e., we consider a mapping from A to {red, green}.

We say that a circuit is monochromatic if all arcs of the circuit have the same color.
In the graph, circuit-contracting a red (resp. green) circuit corresponds to a list of
horizontal (resp. vertical) builds. When a circuit p is contracted, the size associated
with the residual vertex is the size of the item built, and its label is the smallest
vertex label in . We now give a definition of guillotine graphs, which model guillotine
patterns.

Definition 3.4.3 Let G be an arc-bicolored directed graph. G is a guillotine graph if G
can be reduced to a single vertex x by iterative contractions of monochromatic circuits
with the following properties:

1. there are no steps in which a vertex belongs to two different monochromatic cir-
cuits

2. when a circuit p is contracted, either the current graph is a circuit, or exactly
two wvertices of p are of degree strictly greater than two.
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Figure 3.10: Modeling the pattern in Figure 3.2 with a dominant guillotine graph

Note that the definition can be directly generalized for higher dimensions (just by
considering k colors instead of two).

Many equivalent graphs can be associated with a given guillotine-cutting class, and
so we introduce different levels of dominance for these graphs.

In a normal guillotine graph, the two vertices x; and z; of degree greater than two
in a monochromatic circuit p are such that x; follows z; in u, x; cannot be the tail of
any arc outside y, and x; cannot be the head of any arc outside p.

Definition 3.4.4 Let G be a guillotine graph. G is a normal guillotine graph if
at any step of the iterative contraction process, in each monochromatic circuit p =
(1, 22), ..., (zk—1, xK), if there are two vertices x; and x; of degree strictly greater than
two, then (x;,x;) € p and [Nt (2;)| =1 and [N~ (z;)] = 1.

In dominant guillotine graphs, vertices have to be sorted by increasing index in any
circuit.

Definition 3.4.5 Let G be a normal guillotine graph. G is a dominant guillotine
graph of in all graphs obtained by applying circuit-contractions to G, vertices in a
monochromatic circuit are ordered by increasing index.

Figure 3.10 shows the dominant graph that models the configuration of Figure 3.2.

Theorem 3.4.1 If G is a dominant guillotine graph, G can be associated with a unique
quillotine-cutting class. Moreover, for each normal sequence of builds, there is exactly
one dominant guillotine graph.

If several normal sequences of builds lead to the same guillotine pattern, then several
graphs will be associated with the same pattern. This occurs in cases where a vertical
and a horizontal cut produce items of the same size, irrespective of the order in which
the two cuts are performed. Handling these symmetries is an issue that can only be
done using algorithmic methods. However, it has to be noted that from a practical
point of view, these cutting patterns are actually different, since they are related to
two different sequences of cuts for an automatic cutting device.
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Figure 3.11: A cycle-contractable graph

3.4.3 Cycle-contractable graphs

We now look at the combinatorial structure of our model when colors and orientations
are removed. This non-directed and uncolored version of guillotine graphs helps finding
linear algorithms for recognizing guillotine graphs, and may be easier to use in heuris-
tics or meta-heuristics. We name cycle-contractable graphs these undirected uncolored
guillotine graphs.

We first define the cycle-contractable graphs, and show that they are undirected
uncolored guillotine graphs.

Let G = (V,E) be an undirected multigraph. If there is a Hamiltonian cycle
= [v1,09,...,0,,v1], a corresponding ordering o can be associated with the vertices
of V (o(vg) = k) for k = 1,...,n. Hereafter, when a graph G has a Hamiltonian cycle,
we shall refer to any edge that is not included in the cycle as a backward edge.

Definition 3.4.6 Let G = (I, E) be an undirected multigraph. G is a cycle-contractable
graph if G contains a Hamiltonian cycle p with a corresponding ordering o such that

1. G does not include two equivalent backward edges [i, j] and [i, j]

2. G does not include two backward edges [i,j] and [k,l] such that o(i) < o(k) <
o(j) <o(l)

The graph in Figure 3.11 is a cycle-contractable graph. It can be depicted as a
circle of vertices and non-crossing chords.

In the following, we show that dominant guillotine graphs and cycle-contractable
graphs are similar. A first important property is that guillotine graphs contain a
Hamiltonian circuit. This result will be used throughout this chapter.

Lemma 3.4.1 If G is a guillotine graph, it contains a Hamiltonian circuit.

This allows us to show that dominant guillotine graphs have the structure of cycle-
contractable graphs. For this purpose we consider the graph obtained by removing the
color and the orientation of the arcs of the considered guillotine graph.
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Algorithm 2: Finding the Hamiltonian cycle in a cycle-contractable graph
Data: G = (V, E): multigraph;

1 U< 0;

2 L« 0

3 forall edge that appears twice in E do delete one of the two edges [v;, v;];
4 forall i such that |[N(v;))] =2do L <+ LU{uv;};

5 repeat

6 Let v; be a vertex in L and let v; and v, be its two neighbors;

7 | L+ L\{uv}

8 if [v;,v;] is not backward then p < U {[v;,v;]};

9 if [v;, vg] is not backward then p < p U {[v;, vi] };

10 G+ G\{v};

11 if [v;,v,] € G then G <+ G U {[v;, v¢]};

12 mark [v;, vg] as backward;

13 | if [N(v;)| =2 then L < LU {v,};

14 if |[N(vi)| =2 then L + LU {v};

15 until n = 3 or L is empty;

16 if n > 3 then exit with the FAIL status;

17 add each remaining edge in p if it is not backward;

18 return pu;

Theorem 3.4.2 An arc-uncolored undirected guillotine graph is a cycle-contractable
multigraph.

3.4.4 Computing the patterns associated with a cycle-contractable
graph

We now propose an algorithm to recognize cycle-contractable graphs. When such
graphs are considered, the first step is to determine which edges belong to the Hamil-
tonian cycle u, and which edges are backward (i.e. edges that do not belong to p).
Algorithm 2 finds the cycle p in linear time.

The validity of Algorithm 2 below is based on the two following lemmas, which
directly induce a recursive algorithm for finding the Hamiltonian cycle if the graph is
cycle-contractable. The idea is to remove all "double edges" and then to iteratively
delete the vertices of degree two. If there is only one vertex at the end of the process,
then the graph is cycle-contractable.

Lemma 3.4.2 The graph G', obtained from the cycle-contractable graph G by perform-
ing one of the two following modifications,

1. removing an edge [vj,vy] that appears twice in G
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2. deleting a vertex v; of degree two and its two incident edges [v;,v;] and [v;, vy,
and adding an edge [v;, vg] if it is not already in the graph.

15 a cycle-contractable graph. Moreover, any edge belonging to the Hamiltonian cycle
of G' and to G also belongs to the Hamiltonian cycle of G.

Lemma 3.4.3 Let G be a cycle-contractable graph. If G has at least three vertices and
no cycle of size two, it has at least one vertex of degree two.

Proposition 3.4.1 Algorithm 2 finds the Hamiltonian cycle of G if and only if G is
cycle-contractable.

We have shown that a given dominant guillotine graph leads to a unique cycle-
contractable graph. In this section we show that a given cycle-contractable graph
leads to exactly two guillotine-cutting classes. The first step is to deduce the only
possible valid orientation of the edges. Then a choice remains for the coloring of the
arcs. The two possible arc-colorings lead to two possible guillotine graphs, and thus to
two possible guillotine patterns.

Depending on the ordering of the vertices in the cycles, not all cycle-contractable
graphs give rise to dominant guillotine graphs. In order to avoid non-dominant so-
lutions we introduce the dominant cycle-contractable graphs, which yield dominant
guillotine graphs.

Definition 3.4.7 Let G be a cycle-contractable graph. If for one of the two possible
orientations, for all obtained arcs (x;,x;) of the Hamiltonian circuit (j # 1), then
either i < j, or there is a backward arc (x;,x;) such that | < j, G is a dominant
cycle-contractable graph.

Proposition 3.4.2 A cycle-contractable graph yields a dominant guillotine graph if
and only if it is a dominant cycle-contractable graph.

Algorithm 3 returns true if and only if the input cycle-contractable graph is domi-
nant (checked using Proposition 3.4.2). In this case, the algorithm visits the vertices v
of the obtained directed graph following the Hamiltonian circuit o. FEach time a new
circuit is entered or leaved, the current color is changed.

Proposition 3.4.3 Algorithm 3 colors the arcs of a dominant cycle-contractable graph
G in such a way that the bicolored graph H obtained is a dominant guillotine graph.

Corollary 3.4.1 Given the color of one arc, there is only one valid coloring for a
cycle-contractable graph.

Theorem 3.4.3 Fach dominant cycle-contractable graph is related to two guillotine-
cutting classes, and every dominant sequence of builds is related to one dominant cycle-
contractable graph.
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Algorithm 3: Orienting and coloring a cycle-contractable graph
Data: G = (V, E): a cycle-contractable graph;
1 Use Algorithm 2 to determine the backward edges;

Choose an orientation for the edges that is consistent with the hamiltonian cycle;
test < true;
forall arc (v;,v;) of the Hamiltonian circuit do

L if j <i and Pk < j s.t. (vg, ;) is a backward edge then test < fail;

if test = fail then
choose the other orientation for the edges;

[SA BN VU V]

forall arc (v;,v;) of the Hamiltonian circuit do
L if j <i and Pk < j s.t. (vx,v;) is a backward edge then return false;

© 0w N o

10 compute the corresponding ordering o;

11 choose a color;

12 forv:1—ndo

13 | v o(i);

14 Let ST be the set of backward arcs a such that a = (u,v);

15 forall « € ST do change the current color;

16 | Let S~ be the set of backward arcs a such that a = (v, u);

17 foreach backward arc a of S~ by decreasing value of label do
18 color a with the current color;

19 L change the current color;

20 | u=o(i+1),
21 | color the arc (v,u) with the current color;

22 return true;

Algorithm 4 computes the width and the height of the guillotine pattern associated
with the guillotine graph G. First the ordering o is computed using Algorithm 2. Then
the vertices are considered following . Initially a dummy build b is created, with the
current, item only. When there is a backward arc, the new build associated with the
corresponding circuit is computed and stored in b, and then pushed onto the top of S.
At the end of the algorithm, S contains only one element, which corresponds to the
guillotine pattern.

Proposition 3.4.4 For a given initial color, Algorithm 4 computes the size of the
pattern associated with the guillotine graph G.

The following theorem summarizes the different complexity results related to cycle-
contractable graphs and guillotine graphs.

Proposition 3.4.5 Let G be a guillotine graph with at least two vertices. The number
m of arcs in G is in [n,2n — 2], and the bounds are tight.
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Algorithm 4: Computing the size of the guillotine pattern related to a guillotine
graph
Data: G: a valid guillotine graph;

o: the corresponding ordering on the vertices (o(1) = 1);

[u—y

Let S be an initially empty stack of builds by;
fori:1—ndo
vj 4 o(1);
Let b; be a new build of size w; x h; and of label j;
foreach backward arc (vj,vy) of color ¢ by decreasing value of = (vy) do
repeat
remove from S its top element by;
b; < build(b;, by, c);
until b; has for label vy;

© O N O oA~ W N

10 push b; on the top of S;

11 Let b; be the iterative build of all elements of the stack;
12 return bj;

Using this property, we deduce that the algorithms described above take O(n) time
and space.

Theorem 3.4.4 Recognizing a cycle-contractable graph, and computing the two guillotine-
cutting classes related to this graph takes O(n) time and space.

Note that our exact approach below uses the colored and directed version of our
model. However, we are planning to use our model in a meta-heuristic and in this
case, we will use the uncolored undirected version. Indeed when an arc is added to the
graph, it may change the color of many other arcs. When the uncolored version of our
model is considered, one just has to use the coloration algorithm described above to
compute the new set of colors.

3.4.5 A constraint-programming approach

We designed an exact approach based on our new model for the guillotine-cutting
problem. The basic idea of the method is to seek a guillotine graph corresponding to a
configuration that fits within the boundary of the input bin. Our model is embedded
into a constraint-programming scheme, which seeks a suitable set of arcs. The model
is composed of two parts: a graph part, which verifies the guillotine constraint, and
a rectangle placement part, which verifies that the rectangles can be packed into the
bin. For the latter, we use the model described for the RPP.
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3.4.5.1 Variables

We now describe how the guillotine-cutting problem can be modeled in terms of two
sets of variables and constraints. The first variable set is related to the graph underlying
the pattern, to ensure that the configuration is guillotine, while the second is related
to geometric considerations, to ensure that the rectangles can be placed within the
boundaries of the large rectangle.

The first set of variables is related to the arcs of the guillotine graph to be built.
It specifies the state of each arc. The state of an arc is determined by its existence, its
orientation (backward or forward) and its direction (horizontal or vertical).

Recall that a guillotine graph can be reduced to a single vertex by iterative contrac-
tions of monochromatic circuits. Thus, each time such a monochromatic circuit p is
found in the graph under construction, p is contracted. In order to prevent contracted
vertices from being revisited, a state is associated with each vertex, specifying whether
or not it has been contracted, and giving its current dimensions. Thus, a vertex
represents an item or an aggregation of items. Its dimensions are either the dimensions
of the original rectangle 7, or the dimensions of a build of items corresponding to the
contractions in the graph.

A valid dominant guillotine graph may lead to a guillotine-cutting class that does
not fit within the boundaries of the bin. Consequently we use a second set of vari-
ables which represent the coordinates of a specific member of the guillotine-cutting
class under construction. We use the model designed for the unconstrained rectangle
placement problem (see Section 3.3.1.3).

3.4.5.2 Exploration of the search space

In our method, the branching scheme modifies only the graph variables directly: the
values of the geometric variables X and Y are deduced from constraint propagation.

At each node of the search tree an arc must be chosen for possible inclusion in
the graph. We use a depth-first strategy giving priority to the inclusion of backward
arcs in the current partial Hamiltonian path o = oy, ..., 04. The backward arc (o}, 0;)
is selected from among all the possible backward arcs, with j and ¢ respectively the
smallest and the largest index. If no backward arc is possible in ¢, then ¢ is expanded
by adding a forward arc between o, and another vertex.

3.4.5.3 Constraint-propagation techniques

During the search, constraint-propagation techniques are used to reduce the search
space by eliminating non-relevant values from the domain of the variables. These
techniques perform different deductions: they eliminate potential arcs that cannot
lead to a dominant guillotine graph or to a valid solution; they eliminate potential
coordinates that cannot lead to a valid solution; they add some arcs that are mandatory
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for obtaining a dominant guillotine graph and a valid solution; they update the possible
orientations or the backward status of arcs. These techniques are used to adjust the
domains of graph variables to the domains of coordinate variables, and vice versa.

3.4.6 Computational experiments: a synthesis

We have compared our methods for GCP with algorithms in the literature, using 25
instances [59] derived from strip-cutting problems. In this problem, the width of the
bin is fixed and the minimal feasible height for the bin must be determined. Therefore
this problem leads to a set of feasible or unfeasible decision problems. The number of
items in these instances is less than 25.

A first remark is that the computing time required by the algorithms is large com-
pared to the time required by our methods to solve the non-guillotine version. In many
cases, it is even more interesting to run the RPP solver before. We found that solving
the feasibility problems by increasing value of height led to the fastest results. This
suggests that our method is better at proving that a problem has no solutions than at
finding a feasible solution.

We also compared our methods to the best method of the literature [59]. We
were able to solve each test case in less than three seconds. For several instances, the
difference in terms of nodes in the search tree is large. For example the IMVB method
of [59] needs 40909 branching points to solve an instance, whereas our method needs
only 293. On average, our method needs 15 times fewer nodes that the best approach
BMVB of [59]. These results show that the additional information added by our model
enhances the exploration of branches in a tree search.

3.5 Conclusions, future works

Our experimentations on RPP and GCP confirm that CP techniques cannot be ignored
from the OR community when competitive results are sought. Moreover, methodology-
wise, we have shown that coupling OR and CP, packing and scheduling techniques was
of great interest.

Another strong conclusion is that even if CP models may be efficient for small or
medium sizes of problems, they may fail to find a solution for large instances. Clearly,
good heuristics and lower bounding procedures (based on DFF for example) remain
crucial to avoid running an expensive exact RPP or GCP procedure.

In our future works, we will focus on GCP. It transpires from our experiments that
even for medium size instances, exact methods can take a large computing time to find
a solution. Another issue is that our CP-based exact method for this problem is hard
to implement. Many constraints have to be hand-tailored and cannot be integrated
"out of the shelf" in a CP algorithm. We plan to work on a more CP-oriented method
based on the same ideas, which would mostly use constraints implemented in most CP
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solvers. Using our new graph-theoretical model for designing heuristic methods is also
a work in progress. The first works in this direction are already promising.



Conclusions and future work

In this document we have described new models and methods that we applied to
various packing problems. The main feature of our work is to use in a collaborative
way techniques from the mathematical programming, constraint programming, graphs,
dynamic programming and meta-heuristic communities.

Our work on decomposition methods has confirmed the fact that these methods,
when applied effectively, are helpful to solve hard combinatorial problems. We first
showed that tree-decomposition can be applied successfully on some packing problems.
It leads to a generic framework that can be used in many hybrid methods. For example,
taking into account the structure and the size of the subproblems, a different exact or
approximated method could be used for each cluster of the decomposition. We also
studied different ways of helping column generation using heuristics (for generating an
initial set of columns and for solving the pricing subproblem). Another conclusion is
that strategic oscillation is a suitable tool for solving packing problems in which some
patterns are excluded. It allows our meta-heuristics to travel from good solutions to
good solutions in a fast manner by relaxing some constraints.

We now plan to focus our work on hybrid methods. A first perspective is a tighter
collaboration between column-generation methods and meta-heuristics. It has been
shown that re-optimization and multiple column generation reduced the computing
effort by a wide range. Several questions arise from this statement. What are the wished
properties of an initial pool of columns? How meta-heuristics can help applying suitable
sets of dual cuts to stabilize column generation? Can multi-objective optimization help
generating a suitable set of columns in the pricing phase? Another research path is to
design a column-generation scheme based on the tree-decomposition, where the master
problem would consist of assigning items to clusters. For packing problems, a direct
application would lead to a better linear relaxation, but the pricing subproblem would
be harder to solve.

A second perspective on hybrid methods is to study heuristics based on math-
ematical programming (so-called matheuristics). We are now designing such a
method for the quadratic knapsack problem of Chapter 1, where the role of the local
search is played by a mathematical programming based method. We are also working
on generic matheuristics based on pseudo-polynomial formulations, which are im-
proved in an iterative process. The first experiments on time-dependent formulations
are already promising.

85
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Our work on dual-feasible functions and their extensions clearly shows that this
concept is useful for many different packing problems. It transpires that the effec-
tiveness of the DFF depends on the constraints added to the original structure of the
packing problem. If these constraints weaken the quality of the linear relaxation of
the model of Gilmore and Gomory, the bounds obtained using DFF are expected to be
weak. Another conclusion is that the difficulty to handle the additional constraints also
has a large impact on the efficiency of the method. For the bin-packing with conflicts,
for example, the column generation lower bound is strong, but our heuristics are not
able to approximate this bound effectively. This is due to the fact that each optimal
dual solution is highly data-dependent (because of the graph structure). For the other
problems we addressed, the lower bounds are much more effective.

Up to now, techniques based on DFF are only used for computing an initial lower
bound (at the root node of a branch-and-price method for example). When additional
cuts are added, their results are weakened, and thus no effective exact methods can
be based on DFF only. Focusing on constraints related to cuts and branching
constraints seems to be one of the most challenging and useful research path (this
would avoid solving repeatedly huge linear programs). Studying conflicts involving
more than two items is the main issue to handle. An effective solution would be to
design the branching scheme in such a way that the underlying conflict graph has
suitable properties.

Another difficult challenge is to generalize the DFF to other problems, such
as vehicle routing problems, where the structure of the "patterns" (routes) is more
complicated. Our first experiments tend to show that this issue needs a large amount
of work before any useful result is sought.

For rectangle placement problems, our work has confirmed that constraint program-
ming is one of the most useful techniques to solve this family of highly combinatorial
problems. We stressed the fact that OR techniques, such as DFF, are helpful to quickly
determine that a pattern is not feasible, and to prune nodes in a search method. Our
graph-theoretical model for the guillotine cutting problem has also proved to be useful
in the design of an exact method. It allows to represent and gather patterns in a way
that facilitates deductions and pruning during the search.

As a first perspective for this work, we plan to exploit our graph model in heuristic
and meta-heuristics frameworks. Our first experiments tend to show that this is a
viable approach, when the uncolored undirected model is used. A more CP-oriented
implementation, using classical implemented constraints, would also help our work to
be used and extended.

We are also studying real-life placement problems, and it transpires from our expe-
rience that focusing on the initial placement is not sufficient. One has to be aware that
items will be packed and removed repeatedly, deeply modifying the structure of the
initial packing pattern. Thus we plan to deal with the dynamic versions of these
problems, where robustness and real-time re-optimization have to be studied. Exact
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methods should be more difficult to apply. However, we believe that hybrid methods
based on our packing models will be useful. We are also interested in an extension
of our models into a bi-level context. We are now conducting a preliminary study
on this subject, focusing on reformulations, graph models and dynamic programming
schemes.

More generally, we are now applying our optimization techniques to problems that
lie outside the field of C&P problems. We have already obtained results on a variant of
the vehicle routing problem, flight scheduling, and staff scheduling problems.
In particular, we are studying special cases of multi-objective problems, where addi-
tional constraints or objectives added by the decision maker involve hard subproblems
for which we expect our hybrid resolution techniques to be useful.
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