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Introdu
tion
In this do
ument, we propose new models and resolution s
hemes for problems thatbelong to the family of Cutting and Pa
king (C&P) problems [90℄. The most "basi
"NP-
omplete problems in the C&P �eld are the bin-pa
king and the knapsa
k prob-lems. In the former, the obje
tive is to �nd the minimum number of bins needed topa
k all the items.Problem 1 (Bin-pa
king Problem (BPP)) Given a set I of items i of size ci,what is the minimum number of bins of size C needed to pa
k all the items of I?The BPP is the main problem addressed here, but di�erent knapsa
k problemsalso appear as subproblems throughout the do
ument. In this se
ond problem, allitems 
annot be pa
ked in the 
ontainers, and the obje
tive is to maximize the pro�tasso
iated with the input items.Problem 2 (Knapsa
k Problem (KP)) Given a set I of items i of size ci and pro�t
pi, and a knapsa
k of size C, �nd the subset of I whose total size is smaller than Cwhi
h maximizes the total pro�t of the sele
ted items.The rather simple stru
ture of the 
lassi
al BPP has made this problem one of themost popular to test new methods, or to prove theoreti
al results. For example, itsvariant of 
utting-sto
k has been one of the �rst problems to be solved through 
olumngeneration methods [50,51℄, and BPP is one of the favorite subje
ts of approximabilitystudies (see for example [38℄). These basi
 (yet hard) C&P problems 
an be seenas "laboratories" in whi
h new te
hniques are tested. Therefore, many results �rstproposed for these problems lead to improvements for the resolution of many others.For solving hard multi-dimensional pa
king problems e�
iently, the literature showsthat the best results are a
hieved using meta-heuristi
s, mathemati
al programmingand 
onstraint programming (CP). The �rst family of resolution method is e�e
tivefor large size instan
es (see [72℄ for example), while CP 
an be more e�
ient thanheuristi
s for problems involving one bin only (re
tangle pla
ement problems) [10℄.For some parti
ular 
utting problems, where there are many instan
es of ea
h itemtype, mathemati
al programming 
an even be faster than greedy algorithms. Thisjusti�es the fa
t that most of our algorithms use di�erent resolution methods in a
ollaborative way to ta
kle pa
king problems. 1



2 INTRODUCTIONIn this do
ument, we propose new models and methodologies that we apply to threefamilies of pa
king problems. In Chapter 1, we study de
omposition methods and meta-heuristi
s based on so-
alled strategi
 os
illation. We apply these te
hniques to pa
kingproblems with di�erent kinds of 
on�i
ts. In Chapter 2, we deal with the 
on
eptof dual-feasible fun
tions, whi
h are used to derive polynomial-time lower bounds forseveral bin-pa
king problems, and improve 
uts for integer linear programs. In Chapter3, we propose new models for two di�erent pa
king problems in two dimensions. We usethese models into methods that use a 
ombination of operations resear
h and 
onstraintprogramming te
hniques.Throughout the do
ument, we follow a 
onsistent methodology. A �rst feature ofour work is to use te
hniques from di�erent �elds: most notably integer programming,
onstraint programming, meta-heuristi
s, and graph theory. Although "hybrid" wouldbe too strong a word, we always use these di�erent methods in a 
ollaborative way,whi
h improves the results that would be obtained by ea
h method separately.Chapter 1 is devoted to di�erent kinds of de
omposition methods and so-
alledstrategi
 os
illation. We used these methods to design lower and upper boundingstrategies for pa
king problems with 
on�i
ts. In parti
ular, we show that these de-
omposition methods 
an lead to e�e
tive 
ollaborative resolution s
hemes. Our te
h-niques rely on two types of de
ompositions: Dantzig-Wolfe de
omposition [39℄ of linearprograms, and tree-de
omposition [83℄ of graphs. We �rst propose a resolution methodfor the bin-pa
king problem with pairwise 
on�i
ts [49℄, based on the de
omposition ofthe 
on�i
t graph into several 
lusters. Ea
h 
luster 
an be solved independently if apartition based on the de
omposition is 
omputed. This framework is exploited by atabu sear
h, whi
h assigns and remove items to/from 
lusters. The se
ond problemaddressed is a new bin-pa
king problem with 
on�i
ts met in a multi-obje
tive 
ontext.The number of bins is limited, and we need to minimize the number of 
on�i
ts in thebins. For this problem, we propose a method based on linear-programming and 
olumngeneration. Our method makes a good use of heuristi
 and meta-heuristi
 methods forgenerating the initial basis, and the 
olumns at ea
h step of the pro
ess. Finally, weaddress the bin-pa
king problem with fragile items [5℄, in whi
h 
on�i
ts are modelledby a level of fragility for ea
h item. We propose a 
olumn generation s
heme for solvingthis problem. We designed a dynami
 programming s
heme for generating iterativelythe 
olumns, and a meta-heuristi
 method for initializing the master problem. Thethree meta-heuristi
s proposed in this 
hapter are based on the 
on
ept of strategi
os
illation, in whi
h the sear
h os
illates from feasible to unfeasible, or 
omplete toin
omplete solutions.Chapter 2 is 
learly 
onne
ted to mathemati
al programming and heuristi
s. It isdedi
ated to so-
alled dual-feasible fun
tions (DFF) [75℄, related to 
olumn-generationte
hniques for the bin-pa
king problem and duality. These fun
tions are used to derivelower bounds for pa
king problems, but they 
an also strengthen valid 
uts in integerprograms (see for example [1℄). This 
hapter gives an 
omprehensive overview of the



INTRODUCTION 3
on
ept of DFF, and hints based on experimentation to determine the problems forwhi
h it 
an be generalized. In the �rst part of this 
hapter, we des
ribe the 
on
ept ofDFF and show how it is related to other 
on
epts in the literature. Then we survey theliterature in whi
h dual-feasible fun
tions are used (sometimes impli
itly, sometimesunder a di�erent name), and stress the link with superadditive fun
tions used in integerprogramming. We show that a few di�erent te
hniques are su�
ient to generate mostfun
tions of the literature. The se
ond part of Chapter 2 deals with extensions of this
on
ept to various bin-pa
king problems (most notably two-dimensional problems, andthe addition of 
on�i
t-based 
onstraints).Chapter 3 deals with an important issue in two-dimensional 
utting/pa
king prob-lems: re
tangle pla
ement problems. This problem has been the subje
t of a largenumber of 
ontributions [9, 10, 43�45,54, 67, 79, 82℄. To our knowledge, methods basedon 
onstraint programming are the most e�
ient exa
t algorithms for these problems(see [10℄ for example). This 
an be explained by the fa
t that linear relaxations of theinteger models dedi
ated to these problems are generally weak. We propose new mod-els for two di�erent re
tangle pla
ement problems: the regular 
ase, and the guillotine
ase. We �rst show that the regular 
ase is tightly linked with 
umulative s
hedulingproblems. This allows us to use powerful results from the s
heduling �eld (energeti
reasoning [41℄, bran
hing s
hemes, et
.). The obtained method relies on an e�e
tive
ombination of operations resear
h and CP te
hniques. We also propose the �rst e�e
-tive graph-theoreti
al model for the guillotine 
ase, whi
h 
aptures the 
ombinatorialstru
ture of the patterns, and helps designing a CP-based resolution method. For bothproblems, the e�
ien
ies of our methods, whi
h are able to 
ompete with the bestmethods of a large literature, rely on the strength of the new models, but also on thenew propagation and pruning algorithms.





Chapter 1De
omposition methods and strategi
os
illation for bin-pa
king problemswith 
on�i
ts
The work des
ribed in this 
hapter has been published in an international journal [65℄.Two reports [31,64℄ are also submitted to international journals.1.1 Introdu
tionIn this 
hapter, we des
ribe our lower and upper bounds for various bin-pa
king prob-lems with 
on�i
ts using de
omposition methods and meta-heuristi
s based on strategi
os
illation.Handling 
on�i
ts is one of the �rst additional 
onstraints to be demanded in indus-trial appli
ations. In
ompatibilities 
an be modelled in many ways. In this do
ument,we address three variants: hard 
on�i
ts, soft 
on�i
ts, and fragilities. Given the dif-�
ulty of these problems, and the time that would be entailed by an exa
t resolution,we fo
us on heuristi
 and lower bounding methods.Pa
king problems with 
on�i
ts are generally harder to solve than the 
lassi
al binpa
king problem (BP). Whereas a simple Integer Linear Programming (ILP) formula-tion 
an �nd good solutions for BP and in many 
ases good lower bounds in a smallamount of time, this is generally not the 
ase with 
on�i
ts. Sin
e these problems aredi�
ult, a sensible way of addressing them is to de
ompose them into subproblemsthat will be hopefully easier to solve. We will fo
us on two parti
ular de
ompositionmethods: tree-de
omposition of graphs and Dantzig-Wolfe de
omposition of ILP.The methods that we des
ribe in this 
hapter share some similarities. The �rst,as hinted above, is to rely on de
omposition methods. The se
ond is to generatesolutions using meta-heuristi
s based on so-
alled strategi
 os
illation. The idea isto os
illate between two sets of solutions: 
omplete/in
omplete for the �rst problem,over-
onstrained/relaxed for the se
ond, and feasible/non-feasible for the third. Weused this os
illation strategies be
ause, given a neighborhood, the 
on�i
ts may forbidto travel simply from one good solution to a 
lose one in the solution spa
e (be
ause5



6 DECOMPOSITION AND STRATEGIC OSCILLATIONnon feasible or non 
omplete solutions are en
ountered on the shortest path betweenthem).The �rst problem 
onsidered is the 
lassi
al bin-pa
king problem with 
on�i
ts(BPC). In this problem, 
on�i
ts between two items are forbidden, and are modelledwith a graph. We show how tree-de
omposition 
an be used to solve this problem. Ap-plying this de
omposition to BPC is not straightforward, sin
e �nding a partition of theitems based on the tree de
omposition is a hard problem. We propose several heuristi
sto address this problem, and a tabu sear
h based on a 
onstru
tion/destru
tion s
hemewhere items are assigned to and de-assigned from 
lusters.The se
ond problem 
onsidered is a new problem, whi
h we name min-
on�i
t pa
k-ing problem (MCBP). We met this problem in the 
ontext of multi-obje
tive optimiza-tion. The 
on�i
ts are of the same type as the �rst problem, but this time, the numberof bins is limited, and the obje
tive is to minimize the number of violated 
on�i
ts.We apply Dantzig-Wolfe de
omposition to MCBP. Two di�
ulties arise: generating agood initial basis and iteratively generating the 
olumns in an e�
ient manner. Forthe initial basis, we designed a tabu-sear
h based on os
illation between solutions usingdi�erent numbers of bins. We proposed heuristi
s, a lo
al sear
h method and two ILPmodels to generate the 
olumns iteratively. The former are improved by the means of
uts added to the models.The third problem features a di�erent variant of 
on�i
ts. Ea
h item has a fragility,and the total size of the items in a bin 
annot be larger than the smallest fragility of anitem in the bin. We used a methodology similar to the previous problem (
olumn gen-eration). Initial 
olumns are generated by a meta-heuristi
, a Variable NeighborhoodSear
h (VNS), based on an os
illation between feasible and unfeasible solutions. Thesubproblem is solved through a new dynami
 programming s
heme. It outperformsour two ILP models and it �nds a solution within a small amount of time for all ourinstan
es.1.2 A tree-de
omposition based resolution s
heme forthe bin-pa
king with 
on�i
tsIn this se
tion, we deal with the 
lassi
al bin-pa
king problem with 
on�i
ts. Themethod we propose is generi
 and 
an be used for both one- and multi-dimensional
ases of the problem (the geometri
 
onstraints are handled by sub-routines). In thisdo
ument, we fo
us on the two-dimensional 
ase.Problem 3 (Two-dimensional Bin-pa
king Problem with Con�i
ts (BPC)) Let
I = {1, . . . , n} be a set of re
tangular items i of width wi and height hi, a bin B ofwidth W and height H, and G = (I, E) a 
on�i
t graph. Two items i and j are in
on�i
t if (i, j) ∈ E. What is the minimum number of bins needed to pa
k all items of



A TREE-DECOMPOSITION BASED HEURISTIC FOR THE BPC 7
I in bins of type B in su
h a way that two 
on�i
ting items are not pa
ked in the samebin, and no two items overlap?The problem is de�ned with a 
on�i
t graph. In the following, we mainly use the
ompatibility graph Ḡ = (I, I × I \E). Our de
omposition method will be applied onthis graph.Several heuristi
s have been proposed for the one-dimensional version of BPC [46,49℄. The most e�e
tive are based on 
lassi
al any-�t algorithms originally designedfor BP, and on the sear
h of 
liques in the graph. The �rst-�t de
reasing algorithmsort the items by de
reasing size, and pa
k the items one by one in this order in the�rst bin that 
an a

ommodate it. For the two-dimensional 
ase, the same approa
h
an be used. It leads to a larger 
omputing time sin
e verifying that an item 
anbe pa
ked into a bin is more di�
ult in two dimensions. Pra
ti
ally speaking, weuse the algorithm bottom-left of Co�man [37℄. Other heuristi
s 
an also be used (seethe methods des
ribed in [71, 73℄ for example). Unfortunately, in many 
ases, thesealgorithms do not lead to interesting results, sin
e they do not take into a

ount thestru
ture of the graph. In the sequel, we show how a de
omposition method 
an helpsu
h a algorithms to �nd a better solution.Some methods dedi
ated to the one-dimensional 
ase of BPC [49℄ rely on maximal
liques or stable sets in the graph. Finding a stable set in the 
ompatibility graph givesa subset of items that have to be pa
ked in di�erent bins. On the 
ontrary, �ndinga 
lique gives a subset of 
ompatible items that 
an be pa
ked together. This notion
an be generalized using the 
on
ept of tree-de
omposition applied to the 
ompatibilitygraph.In a tree-de
omposition, the graph is de
omposed into 
lusters of verti
es 
onne
tedin a tree. Ea
h 
luster 
orresponds with a subproblem to solve. A property of thisde
omposition method is that ea
h 
lique of the graph is 
ontained entirely in at leastone 
luster. Consequently, even if some 
on�i
ting items remain inside the 
lusters,the 
ompatibility graph asso
iated with ea
h subproblem should be denser, and thusalgorithms designed for the 
lassi
al BP should be more e�e
tive when applied to thedi�erent 
lusters.On
e a de
omposition is 
omputed, our method solves the problem related to ea
h
luster separately, and merges the solutions found. The most 
ru
ial issue is that agiven item/vertex 
an belong to several 
lusters of the de
omposition. In a �rst phase,we assign ea
h item to a unique 
luster (and thus this item is removed from the other
lusters). We show that �nding the best partition of the items into the 
lusters isNP-hard and we des
ribe several heuristi
s to �nd good solutions.Finally a tabu sear
h based on our framework and strategi
 os
illation is proposed.The idea is to alternate 
onstru
tion and destru
tion phases in whi
h items are re-spe
tively assigned and de-assigned from the 
lusters. Our methods are tested againstinstan
es derived from the literature. Our 
omputational experiments show the e�e
-



8 DECOMPOSITION AND STRATEGIC OSCILLATIONtiveness of our approa
h.1.2.1 Tree-de
omposition and graph triangulationWe now de�ne the notion of tree-de
omposition, whi
h will be applied to the 
ompati-bility graph of the BPC in the sequel.A tree-de
omposition is a spe
ial mapping of a graph into a set of 
lusters linkedin a tree.De�nition 1.2.1 (Robertson and Seymour [83℄) A tree-de
omposition of a given graph
G = (V,E) is a pair (C, T ) where T = (N , A) is a tree with node set N and edge set
A, and C = {Ci : i ∈ N}, is a family of subsets of V su
h that:1. ∪i∈NCi = V ,2. ∀(v, w) ∈ E, ∃Ci ∈ C 
ontaining both items v and w,3. ∀i, j, k ∈ N , if j is on the path from i to k in T , then Ci ∩ Ck ⊆ Cj.Figure 1.1 shows a graph G with eight verti
es, and a tree de
omposition of G ontoa tree with six nodes. The set of 
lusters is C = {C1 = {0, 1}, C2 = {1, 2, 5, 6}, C3 =

{2, 3, 6}, C4 = {3, 6, 7}, C5 = {3, 4}}.
Figure 1.1: A graph G and a possible tree-de
omposition for GThe width w(C, T ) of a tree-de
omposition is equal to maxi∈N (|Ci| − 1). Thetreewidth tw(G) of a graph G is de�ned as min{w(C, T )} where the minimum is takenover all tree-de
ompositions (C, T ) of G. Whereas for some graph families, su
h as treesand series-parallel graphs, one 
an 
ompute the treewidth in linear time, 
omputing thetreewidth of a general graph is a NP-
omplete problem. Several papers are devoted toheuristi
s for this problem (see Koster et al. [68℄ or our paper [36℄. The most famous(and simple) method is Maximal Cardinality Sear
h (MCS) [85℄, whi
h will be used inthis do
ument.The notion of tree-de
omposition is strongly 
onne
ted with the 
lass of triangulatedgraphs.De�nition 1.2.2 A graph is triangulated if every 
y
le of length > 3 has a 
hord, i.e.an edge joining two non-
onse
utive verti
es of a 
y
le.



A TREE-DECOMPOSITION BASED HEURISTIC FOR THE BPC 9Tarjan and Yannakakis [85℄ showed that any triangulated graph 
ontains at most nmaximal 
liques, and proposed an algorithm to enumerate these 
liques in linear time.Computing a tree-de
omposition for a graph is equivalent to �nding a triangulationof this graph, i.e. �nding a suitable set of edges to add to the graph to obtain atriangulated graph. Then, the 
lusters are obtained by enumerating in linear time themaximal 
liques of the triangulated graph.1.2.2 A general s
heme for applying a tree-de
omposition tothe bin-pa
king problem with 
on�i
tsIn this se
tion, we present our framework for applying tree-de
omposition to the BPC.On
e a tree-de
omposition is obtained, whi
h means that the set of 
lusters was iden-ti�ed, ea
h item has to be assigned to a spe
i�
 
luster to prevent items belongingto several 
lusters from being pa
ked more than on
e. We 
all su
h an assignment a
luster-separation and show that �nding the best 
luster-separation is NP-
omplete.Then we propose a �rst family of heuristi
s to �nd fast solutions for this problem.Given a 
on�i
t graph G = (I, E), let us denote by G = (I, I × I \ E) the 
orre-sponding 
ompatibility graph. Our method works as follows. The tree-de
ompositionis �rst applied to the 
ompatibility graph G. Ea
h 
luster is related to a set of itemsthat indu
es a smaller and hopefully less dense subproblem than the original problem.Then ea
h 
luster is solved independently. If the density of the graph has been sig-ni�
antly de
reased, algorithms dedi
ated to the 
lassi
al bin-pa
king should be moree�e
tive. Finally, the partial solutions obtained are merged into a unique solution.Now suppose the graph of Figure 1.1 is a graph of 
ompatibility. We 
an noti
ethat a vertex may belong to several 
lusters. For example, vertex 6 belongs to C2, C3and C4. If the 
orresponding item is treated as many times as the vertex appears in a
luster, the solution obtained will be of weak quality.Algorithm 1 shows a step-by-step des
ription of the new approa
h. At line 1, thegraph of 
ompatibility is tree-de
omposed. A 
luster-separation is 
omputed at line 2.The separated 
lusters are then solved as subproblems by the means of any resolutionmethod at lines 4-5. Finally, at line 6, an improving heuristi
 is applied to the �nalsolution. This last step is not mandatory, but it allows us to partially 
orre
t the e�e
tsof a bad 
luster-separation.When the partition of the item set is realized, we use a heuristi
 to solve the indu
edsubproblem. We used an adaptation of the Bottom-Left algorithm [37℄.Note that although only heuristi
s are used in this do
ument, our framework allowsexa
t methods to be used in ea
h step of the algorithm (
omputing the de
omposition,partitioning, pa
king, improving). This would lead to better results, but also to mu
hmore time-
onsuming methods.



10 DECOMPOSITION AND STRATEGIC OSCILLATIONAlgorithm 1: A Tree-De
omposition based framework for solving BPC.input : Set I of n items and G = (I, E) graph of 
on�i
ts.output: A Pa
king of the n items in a set B of bins.
(C, T )←− TreeDecomposition(G);1
µ(C, T )←− ClusterSeparation(C, T );2
B ←− ∅;3 forea
h Ci ∈ µ(C, T ) do4

B ←− B ∪ ResolutionMethod(Ci);5
B ←− ImprovingHeuristic(B);61.2.3 The 
luster-separation problemAn important issue in the new approa
h is to �nd a suitable partitioning of the itemsin the 
lusters. We 
all su
h a partitioning a 
luster-separation.De�nition 1.2.3 Given a BPC instan
e with a 
ompatibility graph G = (I, E) andits tree-de
omposition (C, T ), a 
luster-separation is a partition of the set of items I inthe set of nodes C su
h that an item 
an be assigned to a node Ci only if it belongs to

Ci in the tree-de
omposition.A possible 
luster-separation of the de
omposition of Figure 1.1 is C1 = {0, 1}, C2 =
{2, 5, 6}, C3 = ∅, C4 = {3, 7}, C5 = {4}.The 
hoi
e of the 
luster-separation is the most 
ru
ial part of the algorithm. Wesay that a 
luster separation is 
ompatible with a given solution if, in this solution, twoitems assigned to two di�erent 
lusters are never pa
ked in the same bin. We statebelow that there always exists a 
luster-separation that 
an lead to an optimal solution.Proposition 1.2.1 For any BPC instan
e D with a 
ompatibility graph G and its tree-de
omposition (C, T ), there exists a 
luster-separation µ of (C, T ) that is 
ompatible withan optimal solution for D.We 
all the problem of �nding the best 
luster-separation the best-
luster-separationproblem. We now state that this problem is NP-
omplete for an arbitrary graph byredu
ing the partition problem [48℄ to it.De�nition 1.2.4 Let D be a BPC instan
e with a 
ompatibility graph G = (I, E)and (C, T ) its tree-de
omposition and k an integer value. The best-
luster-separationproblem 
onsists in �nding a 
luster separation of (C, T ) 
ompatible with to a solutionof value k, if it exists.Proposition 1.2.2 The best-
luster-separation problem is NP-
omplete.
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s for the 
luster separation problemSin
e the best-
luster-separation problem isNP-
omplete, a reasonable way of ta
klingthis problem for dense graphs is to use heuristi
s. This phase is the most 
ru
ial of ourapproa
h sin
e 
hoosing a bad 
luster-separation would lead to bad solutions.The heuristi
s we propose belong to the family of greedy algorithms based on an ini-tial sorting of the 
lusters. Consider a tree-de
omposition (C, T ). A 
luster-separation
an be 
omputed as follows: 1) number the 
lusters a

ording to a given ordering, and2) for ea
h 
luster in the order 
hosen, assign all remaining items of the 
urrent 
luster
Ci to a new set Si and remove these items from the subsequent 
lusters.Several 
riteria have been proposed to explore the 
luster tree asso
iated to a tree-de
omposition (see e.g. [61℄). Two types of 
riteria were introdu
ed in [61℄: lo
al andglobal. A lo
al (resp. global) 
riterion evaluates the relevan
e of a 
andidate 
lusterwithout (resp. by) taking into a

ount the intera
tions with other 
lusters. The authorsalso proposed two 
riteria, the 
luster size (lo
al) and the 
luster neighborhood size(global) 
orresponding to the number of 
lusters 
onne
ted to it.In this do
ument we introdu
e a new global 
riterion, the demand D(i) of an item
i as to be the number of 
lusters that 
ontain i. This 
riterion 
an be generalized andapplied to 
lusters as follows: the demand of a 
luster Ck is the sum of the demandsof the items of Ck : D(Ck) =

∑
i∈Ck

D(i). A 
luster with a large demand shares manyitems with other 
lusters, and therefore this 
riterion identi�es the "
entral" 
lustersof the de
omposition. We also introdu
e another lo
al 
riterion that we 
all rand
orresponding to randomly sorting the 
lusters.The 
hoi
e of these simple heuristi
s may be justi�ed by the fa
t that they do notentail a large 
omputing time, sin
e the use of any 
ompli
ated heuristi
 for 
omputinga 
luster-separation would in
rease the 
omputing time of algorithm 1.1.2.5 A tabu sear
h based on the tree de
omposition and strate-gi
 os
illationLo
al sear
h algorithms are widely a
knowledged as powerful tools for providing high-quality solutions to a wide variety of 
ombinatorial problems. In the previous se
tion,we have stated that the 
luster separation problem was the 
ore of our resolutionapproa
h. In order to improve the results obtained by the greedy heuristi
s, we designeda tabu sear
h that fo
uses on the 
luster separation phase.In this se
tion, we des
ribe the tabu sear
h algorithm, denoted as TS-TD in thefollowing. Tabu sear
h [52℄ has already been used to solve pa
king problems (see [56℄for example), using a so-
alled os
illation strategy. We use this 
on
ept of os
illationby iteratively swit
hing from 
onstru
tion to destru
tion phases.



12 DECOMPOSITION AND STRATEGIC OSCILLATION1.2.5.1 Details of our tabu sear
hIn our approa
h, a solution s is represented by a ve
tor v̄ of size n. Ea
h element v̄iof this ve
tor re
ords the 
urrent 
luster to whi
h item i is assigned. We denote by Dithe set of possible 
lusters that 
an a

ommodate i. For example, a

ording to �gure1.1, the domain of item 3 is D3 = {3, 4, 5}. The solution spa
e of TS-TD is de�ned asthe set of 
omplete and in
omplete solutions. A solution is said to be 
omplete (resp.in
omplete) when its variables are (resp. are not) all assigned. In our approa
h, any
omplete solution has to be feasible.The initialization phase generates an initial non-
omplete solution ve
tor byassigning ea
h item i su
h that |Di| = 1 (see Figure 1.2). The remaining items are setto −1 and will be assigned to 
lusters during the sear
h.

Figure 1.2: A ve
tor representing a solution and its initialization a

ording to �gure 1.1.A move is the assignment of a variable i to a value in its domain Di (assign) orthe value −1 (remove from the 
luster). The existen
e of two types of movementsis justi�ed by the fa
t that our TS involves two phases, 
onstru
tion and destru
tion.The 
onstru
tion phase guides the TS toward a 
omplete solution while the destru
tionphase desinstantiates some variables. Alternating these two phases plays the role of adiversi�
ation pro
ess in order to enable the TS to explore new regions of the sear
hspa
e.Our obje
tive fun
tion uses two terms. In a bin pa
king 
ontext, 
hoosing solelythe real obje
tive fun
tion, whi
h is to minimize the number of bins, is rather pointless,sin
e many di�erent solutions still in general have the same number of bins. It is oftenbetter to extend this 
oarser grained measure by the gap value, 
omputed from thefree area in ea
h bin.In our implementation, the tabu list (TL) is a set of moves 
lassi�ed tabu duringsome iterations (tabu tenure). The tabu tenure is a stati
 value equal to the totalnumber of possible moves. For example, the size of TL for the example of Figure 1.1is equal to 14. On
e TL is full, it will be resized in a su
h way that the oldest half iserased.
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 os
illationOur diversi�
ation strategy 
onsists in alternating the 
onstru
tion and destru
tionphases following some dynami
 
riteria based on the number of iterations. Figure 1.3shows the behavior of our TS through the sear
h pro
ess. We �rst start a 
onstru
tionphase. We keep running our lo
al sear
h until all items of s are assigned. A destru
-tion phase is then applied on s by de-assigning some items in order to enable the next
onstru
tion phase to explore new regions of the sear
h spa
e, and the pro
edure isrepeated while no stopping 
riterion holds. This strategy may be 
ontrolled by twoparameters: the amplitude a and the frequen
y f . The amplitude represents the maxi-mal number of ba
kward moves to be performed during a destru
tion phase. The valueof the frequen
y is equal to the minimal number of 
omplete solutions to rea
h duringthe sear
h pro
ess.

Figure 1.3: A sear
h traje
tory in the sear
h spa
e. The frequen
y f is the number of times a 
omplete solution isobtained. The amplitude a represents the number of desinstatiations to perform in a destru
tion phase.Our intensi�
ation phase 
onsists in applying an improving heuristi
 on ea
h
omplete solution we �nd during the sear
h pro
ess. It is based on the progressiveredu
tion of the number of bins used by the 
urrent solution. The idea is to destroysome bins and redistribute their 
ontents to the remaining bins.1.2.6 Time 
omplexity of the methodFor graphs of bounded treewidth, the time 
omplexity of the algorithm is redu
ed
ompared to that of an equivalent 
onstru
tion heuristi
.The time 
omplexity of 
omputing a 
luster-separation a

ording to an ordering
riterion depends on the number of items n, the number of 
lusters |C| in the tree-de
omposition and the width w(C, T ) of the tree-de
omposition. If a lo
al sortingalgorithm is used, the time 
omplexity of this phase is in O(|C| × log(w(C, T ))), whi
his in O(n × log(n)) for an arbitrary graph. For the global sorting strategies, the time
omplexity is O(n2), sin
e an initial phase with this time 
omplexity is needed to
ompute the size of the neighborhood of a 
luster, or its demand.



14 DECOMPOSITION AND STRATEGIC OSCILLATIONFor the two-dimensional 
ase of BPC, the time 
omplexity of BLC (a simple adap-tation of the bottom-left heuristi
) is O(n3). If the graph is su
h that there is analgorithm to �nd a tree-de
omposition whose width is bounded by a 
onstant, it wouldlead to a O(1) time 
omplexity in our framework (sin
e the number of items in thesubproblems would be a 
onstant).The time 
omplexity of the improving heuristi
 is O(|IB| × n2) where IB is thenumber of items to repa
k. The time 
omplexity is entailed by the maximum numberof possible pla
ements at any step of a pa
king. A possibility for redu
ing this time
omplexity is to 
onsider a 
onstant number of items in IB and a number of open binssu
h that the number of pa
ked items is also bounded by a small 
onstant. In this
ase, the time 
omplexity of this phase would also be O(1). Unfortunately, experimentsshowed that it also dramati
ally weakens the e�e
tiveness of the improving phase.Let us summarize these results by studying the 
ase of algorithm 1 applied usingMCS to 
ompute the tree-de
omposition, a greedy algorithm based on a lo
al 
riterionto 
ompute the 
luster-separation, BLC for solving the resulting 
lusters and the im-proving heuristi
, the overall time 
omplexity would be O(m+n×log(n)+n×w(C, T )3).If w(C, T ) is bounded by a 
onstant, the time 
omplexity be
omes O(m+n×log(n)),whereas the original 
onstru
tive algorithms are at least in O(n3). For huge instan
es,one 
an even avoid the sorting algorithm, whi
h leads to a linear time 
omplexity(although the quality of the solution obtained is expe
ted to be weak).1.2.7 Synthesis of the 
omputational experimentsWe tested our approa
h on the two-dimensional version of the BPC. The test 
ases wereobtained from the 
lassi
al two-dimensional bin-pa
king ben
hmarks. We generated
on�i
t graph randomly following the method used in [46℄. We used instan
es of sizeup to 120 items. We used the framework ParadisEO [16℄ to implement our tabu sear
h.For these instan
es, the tree-de
omposition framework improves signi�
antly theperforman
e of the greedy algorithms with a slightly larger 
omputing time. The tabusear
h outperforms the other methods, but needs a larger 
omputing time.We also generated huge instan
es (2000 items) to validate the e�e
tiveness of thetree-de
omposition. For this test, we used the greedy heuristi
s based on the tree-de
omposition and we swit
hed o� the improvement heuristi
 that is used after thesolutions are merged. For sparse 
on�i
t graphs, the method does not bring any im-provement in term of 
omputing time, and deteriorates the quality of the solution,sin
e the width of the de
omposition is 
lose to the number of items. When the 
on-�i
t graph is dense, the 
omputing time is dramati
ally redu
ed, but there is a slightredu
tion in the quality of the method.



COLUMN GENERATION FOR THE MIN-CONFLICT PROBLEM 151.3 A 
olumn-generation algorithm for the min-
on�i
tpa
king problemIn the 
ontext of a multi-obje
tive bin-pa
king problem, we studied a subproblem thatwe name the "min-
on�i
t pa
king problem".Problem 4 (Min-Con�i
t Pa
king Problem (MCPP)) Given a set I of items,a bin type B, a value M and a 
on�i
t graph G = (I, E) where (i, j) ∈ E if i and j arenot supposed to be pa
ked in the same bin, 
ompute the minimum number of 
on�i
tsthat must o

ur if the set I is pa
ked in M bins of type B.This problem is justi�ed by the fa
t that resour
es (bins) are not always in in�nitenumber, and that the de
ision maker may favor a solution violating some 
onstraints ifits 
ost is small. The work we present is inserted in a general multi-obje
tive s
heme,and we use the knowledge of solutions related to di�erent numbers of bins in ourresolution method.We �rst propose a 
ompa
t formulation for this problem. This model is weak andthus we propose a reformulation based on a 
olumn-generation s
heme. The modelitself is an adaptation of the set-
overing model of Gilmore and Gomory [50, 51℄. Thedi�
ulty arises in the pri
ing subproblem, a bilinear knapsa
k problem, whi
h is harderto solve than the 
lassi
al knapsa
k problem. We reformulate this problem with twodi�erent ILP models. These models demand too mu
h time, so we designed a greedyheuristi
 and a lo
al sear
h method based on swaps in order to �nd good solutions ina faster manner. In our method, the ILP solver is run only if the heuristi
s were notable to �nd a 
olumn of redu
ed 
ost.A tabu sear
h is also proposed to generate a good initial basis for the LP. Like in theprevious se
tion, it is based on strategi
 os
illation. For this method, we do not os
illatefrom 
omplete to in
omplete, but from a number of bins to another. This is justi�edby the fa
t that our method is run in the 
ontext of multi-obje
tive optimization, andthus we have re
orded some good solutions related to di�erent numbers of bins. Whenthe number of bins is in
reased, we will explore non-feasible solutions for our presentproblem. When the number of bins is de
reased, it leads to valid yet more 
onstrainedsolution that will make a better usage of the spa
e in the bins (disregarding the numberof 
on�i
ts entailed).1.3.1 A simple 
ompa
t modelA simple linearization of a dire
t quadrati
 model for the min-
on�i
t problem leadsto the following ILP model. Variables xik are equal to 1 if i is pa
ked in bin k, and 0otherwise. Variables yij are equal to 1 when items i and j are in the same bin. For anitem i, let N(i) be the set of items j su
h that i and j are in 
on�i
t. Let also N+(i)



16 DECOMPOSITION AND STRATEGIC OSCILLATIONbe the items j of N(i) su
h that j > i. This set is used to avoid 
ounting a 
on�i
ttwi
e in our models.
min

∑

i∈I

∑

j∈N+(i)

yij (1.1)
∑

k∈M

xik ≥ 1, i ∈ I (1.2)
n∑

i=1

cixik ≤ C, k ∈M (1.3)
yij ≥ xik + xjk − 1, i ∈ I, j ∈ N+(i), k ∈M (1.4)

yij ∈ {0, 1}, i ∈ I, j ∈ N
+(i) (1.5)

xik ∈ {0, 1}, i ∈ I, k ∈M (1.6)Constraints (1.2) ensure that all items are pa
ked, whereas 
onstraints (1.3) verifythe 
apa
ity 
onstraint. Constraints (1.4) are su�
ient to ensure that if i and j arepa
ked together, then yij will be equal to one.1.3.2 A set 
overing formulationThe linear relaxation of the ILP above is weak. Thus we used a formulation basedon a set 
overing model and the de
omposition of Dantzig-Wolfe [39℄. The ILP isde
omposed into a restri
ted master problem initialized with a set of 
olumns, andoptimized to determine the value of the dual variables. The dual information is passedto a subproblem that evaluates if there is a 
olumn that 
an be added to the masterproblem and improve the 
urrent solution. If there is su
h a 
olumn, the masterproblem is reoptimized, otherwise the pro
ess stops.Let P be the set of possible patterns, i.e. the set of possible ways of pa
king itemsin a bin. Ea
h possible pattern is des
ribed by a 
olumn p = (a1p, . . . , aip, . . . , a|I|p)
T ,where aip is equal to 1 if item i is in the pattern p, 0 otherwise. A new variable Kpis introdu
ed, whi
h 
orresponds with the number of 
on�i
ts in 
on�guration p. Thede
omposition is a simple adaptation of the model of Gilmore and Gomory [50, 51℄dedi
ated to the 
utting-sto
k problem.

min
∑

p∈P

xpKp (1.7)
s.t.

∑

p∈P

aipxp ≥ 1, ∀i ∈ I (1.8)
∑

p∈P

xp ≤M (1.9)
xp ∈ {0, 1}, ∀p ∈ P (1.10)
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onstraints are kept in the master: 
onstraints (1.8) ensure that allitems are 
ut, whereas (1.9) veri�es that the number of bins used is smaller than M .The 
apa
ity 
onstraint is left to the subproblem.The weak dual of (1.7)-(1.10) reads as follows.
max

∑

i∈I

πi − θM (1.11)
s.t.

∑

i∈I

aipπi − θ ≤ Kp, ∀p ∈ P (1.12)
πi ≥ 0, ∀i ∈ I (1.13)

θ ≥ 0 (1.14)Dual variables π are related to the demand 
onstraints, whereas the dual variable
θ is related to the number of bins.1.3.3 Solving the pri
ing subproblem using lo
al sear
h andlinear programmingIn order to generate the best 
olumn to add to the 
urrent basis, the pattern to add isthe one with the smallest redu
ed 
ost, i.e. the pattern p for whi
h θ+Kp−

∑
i∈I πiaipis minimized. The only 
onstraint for a pattern p is the 
apa
ity 
onstraint of the bin.This is equivalent to solving the following bilinear problem, 
alled pri
ing subproblem.

max
∑

i∈I

(πiai −
∑

j∈N+(i)

aiaj)− θ (1.15)
s.t.

∑

i∈I

aici ≤ C (1.16)
ai ∈ {0, 1}, ∀i ∈ I (1.17)It is a generalization of the knapsa
k problem, where ea
h 
on�i
t between twoitems redu
es the value of the solution by one. The knapsa
k problem with hard
on�i
ts has been studied by, among others, Hi� and Mi
hrafy [60℄. In our problem,
on�i
ts may o

ur, but they are penalized in the obje
tive fun
tion.Compared to the 
utting-sto
k problem, the pri
ing subproblem is more di�
ult tosolve. It transpired from our �rst experiments that solving the pri
ing to optimality atea
h step of the 
olumn generation algorithm leads to a large 
omputing time. Thuswe have developed a method that uses linear-programming, heuristi
s and lo
al sear
h.1.3.3.1 Two ILP models for the pri
ing subproblemA �rst way of solving the pri
ing subproblem is use a straightforward linearized versionof (1.15)-(1.17). For this purpose, we introdu
e variables bij that are equal to 1 if ai = 1



18 DECOMPOSITION AND STRATEGIC OSCILLATIONand aj = 1, and to 0 otherwise.
max

∑

i∈I

(πiai −
∑

j∈N+(i)

bij)− θ (1.18)
s.t.

∑

i∈I

aici ≤ C (1.19)
bij ≥ ai + aj − 1, ∀i ∈ I, j ∈ N+(i) (1.20)

bij ∈ {0, 1}, ∀i ∈ I, j ∈ N
+(i) (1.21)

ai ∈ {0, 1}, ∀i ∈ I (1.22)A better model 
an be proposed, using a di�erent type of variables bi for ea
h itemtype i. Ea
h variable bi is equal to the number of items of N+(i) that are pa
ked with
i. Note that ai = 0 implies bi = 0. In this model the number of variables remainslinear, whereas it is quadrati
 in the previous model.

max
∑

i∈I(πiai − bi)− θ (1.23)
s.t.

∑
i∈I aici ≤ C (1.24)

∑
j∈N+(i) aj − |N

+(i)| × (1− ai) ≤ bi ∀i ∈ I (1.25)
ai ∈ {0, 1}, ∀i ∈ I (1.26)
bi ∈ N, ∀i ∈ I (1.27)Both models 
an be improved by the means of 
uts. We des
ribe these 
uts usingthe formalism of model (1.23)-(1.27). Sin
e one of the 
onstraints is a 
lassi
al knapsa
k
onstraint, all te
hniques related to this 
onstraint 
an be used. For example, if Nmaxis the maximum number of items that 
an be pa
ked side by side, the following 
ut isvalid.

∑

i∈I

ai ≤ Nmax (1.28)Other hand-tailored te
hniques 
an be used for this spe
i�
 problem. Note thatthese 
uts are valid be
ause we seek a solution of positive value. In otherwords, these 
uts may ex
lude the optimal solution if this solution has not a positivevalue.First, note that if bi ≥ πi, a better solution is obtained by removing item i (be
auseit leads to more 
on�i
ts than its value of pro�t). This leads to the following family of
uts.
bi ≤ πi − 1, ∀i ∈ I (1.29)This family of 
uts 
an be generalized by 
onsidering sets of items. Let If be a setof items su
h that ∑i∈If

πi −
∑

i∈If
|N(i) ∩ If | ≤ 0. Clearly, this set 
annot belong to
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t su
h a set If , we add thefollowing 
ut.
∑

i∈If

ai ≤ |If | − 1 (1.30)Another 
ut 
an be added. First we 
ompute the minimum number Nmin of itemsneeded to obtain a sum of pro�t greater than or equal to θ.
∑

i∈I

ai ≥ Nmin (1.31)An estimation of Nmin 
an be 
omputed by sorting the items by de
reasing valueof πi and disregarding the 
on�i
ts.1.3.3.2 Heuristi
 solutions for the subproblemEven with the 
uts above, and even if the sear
h is stopped as soon as a solution ofpositive 
ost is found, our two ILP models do not lead to fast solutions in many 
ases.Consequently, we developed heuristi
s and a lo
al sear
h method to fasten the 
olumngeneration pro
ess.The greedy heuristi
s are based on an initial ordering on the items : de
reasing πi/ci,de
reasing (πi + |N(i)|)/ci, de
reasing (πi +
∑

j∈N(i) πj)/ci We 
ompute the values ofdegrees in a dynami
 fashion (i.e. they are updated ea
h time an item is sele
ted orreje
ted from the knapsa
k).In the 
ase where the greedy heuristi
s are not able to �nd a solution with negativeredu
ed 
ost, a lo
al sear
h phase is applied. It is based on two simple operators:bit �ip (sele
t an unsele
ted item or remove a sele
ted item), and pairwise ex
hange(repla
e an item by another item). At ea
h step of the lo
al sear
h algorithm, allpossible bit-�ip moves are tested. If none improves the value of the obje
tive fun
tion,the swap moves are tested. The method stops when no improvement has been realizedin the last iteration.1.3.4 Computing the initial set of 
olumns using tabu sear
hand strategi
 os
illationSin
e the pri
ing phase has a large 
omputational 
ost, �nding a good initial basis is
ru
ial for our algorithm. Like in Se
tion 1.2, we use a strategi
 os
illation in a tabusear
h. This time, the os
illation uses the fa
t that the sear
h is run in the 
ontextof multi-obje
tive optimization. The tabu sear
h iterates from a number of bins toanother, leading alternatively to unfeasible and over-
onstrained solutions.
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hGiven a set I of n items, a solution is a number of bin asso
iated with ea
h item of
I. A solution is a 
omplete pa
king in whi
h the 
apa
ity 
onstraint is not violated inany bin (the sum of the sizes of the items is not larger than the size of the bin). Thenumber of bins is initially �xed to M .The sear
h spa
e S is thus 
omposed of all possible 
on�gurations meeting this
onstraint. A neighbor of a solution s is obtained by 
hanging the bin asso
iated to anitem in su
h a way that the 
apa
ity 
onstraint remains satis�ed. A soft 
on�i
t (i, j)is said to be violated if i and j are pa
ked in the same bin. Our obje
tive fun
tionis the number of violated soft 
on�i
ts. When an item is moved from a bin to another,the number of 
on�i
ts is updated only for the two bins involved in the move.We used three di�erent families of heuristi
 algorithms for the initialization phaseof the tabu sear
h. The �rst is the family of Any-Fit algorithms. The se
ond is basedon Soft Graph Coloring, and the third on a simple lo
al sear
h algorithm that tries toimprove iteratively an initial solution.Our tabu list (TL) 
onsists of a set of moves 
lassi�ed tabu during some iterations(tabu tenure). The tabu tenure is a stati
 value. On
e TL is full, it is resized in a su
hway that the oldest half is erased.1.3.4.2 Strategi
 os
illationWe developed a diversi�
ation strategy based on two types of modi�
ations (top-down or bottom-up). Let m be the number of bins used in the 
urrent solution sm. Ina top-down (resp. bottom-up) strategy, a solution sm is repla
ed by a solution sm+d(resp. sm−d) where d is a possible value for the number of bins. These diversi�
ationstrategies are 
ontrolled by a parameter 
alled distan
e d. The diversi�
ation distan
erepresents the number of bins to add or remove from the 
urrent solution dependingon the 
hosen strategy.In 
ase of a top-down strategy, d bins are added to a solution sm and thus a solution
sm+d is obtained by distributing the 
ontents of m bins into m + d bins by means ofa 
lassi
al bin pa
king heuristi
. In 
ase of a bottom-up strategy, d bins are removedfrom the solutions, and the items in these d bins are distributed among the remainingbins. The d bins are 
hosen following a given 
riterion, like the bins with the maximumnumber of 
on�i
ts. Consequently, our method os
illates between in
rease phases, inwhi
h it adds bins in order to redu
e the number of 
on�i
ts, and de
rease phases, inwhi
h bins are erased, and the algorithms fo
uses on the spa
e used in the bins.Figure 1.4 illustrates these two diversi�
ation strategies. The blue (resp. red) arrowshows a top-down (bottom-up) diversi�
ation of a solution sl (resp. sm) with a distan
e
dl (resp. dm).In the 
ontext of multi-obje
tive optimization, solution found at the previous steps
an be used to help diversifying e�e
tively the sear
h.
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Figure 1.4: Example illustrating the two diversi�
ation strategies �top-down� and �bottom-up�.
1.3.5 Synthesis of the 
omputational experiments
We implemented the methods des
ribed above and tested them against ben
hmarksderived from the literature. We used instan
es with up to 120 items, for whi
h wegenerated bounds for the whole Pareto front (more than 40 min 
on�i
t problems tosolve in the worst 
ase).We were able to solve a large number of instan
es to optimality just by 
omputingour bounds. However, our 
omputational experiments 
on�rm the fa
t that the pri
ingsubproblem to solve is mu
h harder than the 
lassi
al knapsa
k problem, even usingour se
ond ILP model. Even with this faster model, generating the 
olumns 
an taketime. The best results were obtained using the heuristi
s and the lo
al sear
h, andthen the se
ond ILP model. We improved the results by stopping the ILP as soon asit gets an improving solution. Finding better algorithms for the pri
ing subproblemseems to be the main issue for improving the method. An e�
ient bran
h-and-pri
emethod 
annot be designed before we are able to improve the pri
ing phase.
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Figure 1.5: An instan
e of BPP-FO, a non-optimal solution with three bins and an optimal solution with two bins.Fragilities are represented by dotted re
tangles, and sizes with grey re
tangles.1.4 A 
olumn generation algorithm for the bin-pa
kingwith fragile obje
tsIn this se
tion, we deal with a variant of pa
king in whi
h 
on�i
ts are modelled in adi�erent way. The problem is known in the literature as the Bin Pa
king Problem withFragile Obje
ts (BPP-FO). The BPP-FO arises in the tele
ommuni
ation �eld and inparti
ular in the allo
ation of 
ellular users to frequen
y 
hannels (see Bansal et al. [5℄and Chan et al. [24℄).Problem 5 (Bin-pa
king Problem with Fragile Obje
ts (BPP-FO)) Given a set
I of items i of size ci and fragility ψi, what is the minimum number of bins needed topa
k all the items of I in su
h a way that in ea
h bin, the sum of the sizes is smallerthan the smallest fragility?An example of BPP-FO instan
e, and two solutions is given in Figure 1.5. Moreformally, let us denote I(k) as the set of items assigned to a bin k, we need to ensurethat

∑

i∈I(k)

ci ≤ min
i∈I(k)

{ψi} (1.32)for all possible bins k.The literature on the BPP-FO is still small. Bansal et al. [5℄ present approximations
hemes and probabilisti
 analysis. They 
onsider approximations both with respe
tto the number of bins and to the fragility of a bin. They present results for the generalBPP-FO and for a spe
ial 
ase, denoted the frequen
y allo
ation problem, in whi
hweight and fragility are stri
tly 
orrelated one to the other. Chan et al. [24℄ 
onsiderinstead the on-line version of the BPP-FO, in whi
h an item arrives only after theprevious item has been pa
ked and the de
ision 
annot be 
hanged. They study the
ases in whi
h the ratio between the maximum and the minimum fragility is bounded
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ases, algorithms with asymptoti
 
ompetitiveratios.For the BPP-FO, we �rst propose simple 
ompa
t models, whi
h are able to solveexa
tly many random instan
es in a fast manner. However, for some 
lasses of hardinstan
es, these models are not su�
ient anymore. For this reason, we propose areformulation of the problem using the Dantzig-Wolfe de
omposition and 
olumn gen-eration. The pri
ing subproblem to solve is a knapsa
k problem with fragile obje
tsdes
ribed above.Problem 6 (Knapsa
k Problem with Fragile Obje
ts (KP01-FO)) Given n items
i with pro�t pi, weight ci and fragility ψi (i = 1, . . . , n) and a single un
apa
itated bin,�nd the subset of items of largest total pro�t whose total weight is not larger than thefragility of any item in the bin.Being able to solve this problem e�
iently is the most 
ru
ial issue in our 
olumn-generation algorithm. We propose two ILP models and a dynami
-programming s
hemefor KP01-FO. As we will see below, the dynami
-programming s
heme outperformsboth ILP models for all the instan
es we used.For generating a suitable initial basis, we designed a variable-neighborhood sear
h(VNS) method based on strategi
 os
illation. We os
illate from feasible to non-feasiblesolutions using di�erent perturbation strategies. Our overall algorithm allows to �ndtight lower and upper bounds in a fast manner and 
lose the integrality gap for manydi�
ult instan
es that were not solved by the 
ompa
t models within the allowed timelimit.1.4.1 Compa
t modelsWe �rst present two 
ompa
t formulations for BPP-FO requiring a polynomial numberof variables and 
onstraints. We then dis
uss a third formulation using an exponentialnumber of variables.1.4.1.1 A simple formulationLet us de�ne ψmax = maxi=1,...,n{ψi} to be the maximum fragility of an item. Wede�ne yk as a binary variable taking value 1 if bin k is used, 0 otherwise (k = 1, . . . , n).We also de�ne xik as a binary variable taking value 1 if item i is assigned to bin k, 0otherwise (i, k = 1, . . . , n). The BPP-FO 
an be modeled as the following ILP:
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min

n∑

k=1

yk (1.33)
n∑

k=1

xik = 1 i = 1, . . . , n (1.34)
n∑

j=1

cjxjk ≤ ψmax + xik(ψi − ψmax) i, k = 1, . . . , n (1.35)
xik ≤ yk i, k = 1, . . . , n (1.36)

yk ∈ {0, 1} k = 1, . . . , n (1.37)
xik ∈ {0, 1} i, k = 1, . . . , n. (1.38)

Constraints (1.34) impose that ea
h item is assigned to a bin. Constraints (1.35)require that the sum of the weights of the items pa
ked in a bin does not ex
eed thefragility of any item pa
ked in the same bin (if item i is pa
ked in bin k the right handside of the 
onstraint is equal to ψi, otherwise the 
onstraint is redundant). Constraints(1.36) are used to tighten the model linear relaxation.Model (1.33)�(1.38) is derived from the 
lassi
al BPP 
ompa
t model. It has a 
leardisadvantage that 
omes from the O(n2) Constraints (1.35), that model the non-linearrestri
tion (1.32) by using a large value (ψmax). This value 
an worsen 
onsistently themodel linear relaxation, and makes the formulation very dependent from the fragilityof the last item.
1.4.1.2 A better formulationWe re
all that the items are sorted by non-de
reasing values of ψi, breaking ties by non-in
reasing values of ci. We de�ne yi as a binary variable taking value 1 if item i is theitem with smallest fragility in the bin in whi
h it is pa
ked, 0 otherwise (i = 1, . . . , n).We also de�ne xji as a binary variable taking value 1 if item j is assigned to the binhaving item i as item with smallest fragility (bin i for short in the following), 0 otherwise(i = 1, . . . , n, j = i+ 1, . . . , n). The BPP-FO 
an be modeled as the following ILP:
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min

n∑

i=1

yi (1.39)
yi +

i−1∑

j=1

xij = 1 i = 1, . . . , n (1.40)
n∑

j=i+1

cjxji ≤ (ψi − ci)yi i = 1, . . . , n (1.41)
xji ≤ yi i = 1, . . . , n, j = i+ 1, . . . , n (1.42)

yi ∈ {0, 1} i = 1, . . . , n (1.43)
xji ∈ {0, 1} i = 1, . . . , n, j = i+ 1, . . . , n. (1.44)Constraints (1.40) impose that either an item is the smallest item in its bin, eitherit is assigned to a bin 
ontaining an item with smaller fragility. Constraints (1.41)require that the sum of the weights of the items pa
ked in a bin does not ex
eed thesmallest fragility in the bin. Constraints (1.42) are again used to tighten the modellinear relaxation.1.4.2 A set 
overing formulationWe present a model that builds upon the 
lassi
al de
omposition method by Gilmoreand Gomory [50, 51℄. We de�ne a pattern as a feasible 
ombination of items. Wedes
ribe the pattern, say p, by a 
olumn (a1p, . . . , aip, . . . , anp)T , where aip takes value

1 if item i is in pattern p, 0 otherwise. Let P be the set of all valid patterns, i.e., theset of patterns p for whi
h ∑n
i=1 ciaip ≤ mini=1,...,n{ψiaip}.Let also zp be a binary variable taking value 1 if pattern p is used, 0 otherwise(p ∈ P ). The BPP-FO 
an be modeled as the following Set Covering problem:
min

∑

p∈P

zp (1.45)
∑

p∈P

aipzp ≥ 1 i = 1, . . . , n (1.46)
zp ∈ {0, 1} ∀p ∈ P. (1.47)Constraints (1.46) impose that ea
h item j is pa
ked in at least one bin.As the number of possible patterns may be very large, even solving the linearrelaxation of Model (1.45)�(1.47) may be di�
ult. We approa
h this problem, as it isusually done in the literature, by means of a 
olumn generation method.We initialize the model by a subset P̃ ⊆ P of patterns. We then drop the integralityrequirements (1.47) by repla
ing them with zp ≥ 0, ∀p ∈ P̃ . Note that we are allowed
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onditions zp ≤ 1 sin
e redundant (indeed we 
an always repla
e a solutionin whi
h there exists a zp > 1 with a better one having zp = 1). We �nally asso
iatedual variables πi (i = 1, . . . , n) to 
onstraints (1.46).We operate in an iterative way. We solve the linear model just outlined and 
he
kif a pattern (i.e., a 
olumn) with negative redu
ed 
ost exists. If it exists, then we addit to the model and re-iterate, otherwise we proved the optimality of the (eventuallyfra
tional) solution obtained. The redu
ed 
ost of a pattern p is de�ned by
cp = 1−

n∑

i=1

πiaip. (1.48)A pattern is added to the model if it satis�es the fragility requirement and has anegative redu
ed 
ost. The existen
e of su
h pattern 
an thus be determined by solvinga KP01-FO with obje
tive fun
tion
max

n∑

i=1

πiaip (1.49)and subje
t to
n∑

i=1

ciaip ≤ min
i=1,...,n

{ψiaip} (1.50)
aip ∈ {0, 1}, ∀i ∈ I (1.51)Note that one of the main issues in 
olumn generation is a long tail 
onvergen
e,during whi
h the value of the optimum is only marginally improved. Several methodshave been proposed to deal with this issue. One of the most promising is the notion ofdual 
uts introdu
ed by Valerio de Carvalho [86℄. The idea is to add dual 
uts to themaster problem (
olumns in the primal) to ex
lude dual solutions that are dominatedby others. This notion 
an be extended to the BPP-FO as follows.Proposition 1.4.1 For a given item i, if there exists a set S ⊂ I su
h that ∑j∈S cj ≤

ci and minj∈S ψj ≥ ψi then ∑

j∈S

πj ≤ πi (1.52)is a valid dual 
ut for (1.45)-(1.47).Many 
uts of this type 
an be applied. Pra
ti
ally speaking, we use the of TypeI and II des
ribed in [86℄. In the 
uts of type I, the set S above is of size one. The
uts of type II 
onsider two items in S. If the number of 
uts of type II is too large,only a subset of them 
an be applied. Pra
ti
ally speaking, for the BPP-FO, this sizeis not so large, sin
e the 
onditions for S is more restri
tive than for the 
utting-sto
k.Consequently, we applied all 
uts of type II.
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ing Subproblem using dynami
 program-ming and linear programmingWe solve the KP01-FO problem arising in the pri
ing phase by means of two ILPmodels and a dynami
 programming algorithm. Insights in the 
omputational resultswe obtained by using these three approa
hes will be given in Se
tion 1.4.5 below.
ILP ModelsWe presented two 
ompa
t ILP models to solve the BPP-FO, the latter (Model (1.39)�(1.44)) being better than the former (Model (1.33)�(1.38)). A similar result 
an beobtained for the KP01-FO.A �rst ILP model 
an be obtained by using a binary variable xi taking value 1 ifitem i is pa
ked in the knapsa
k, 0 otherwise (i = 1, . . . , n). The KP01-FO 
an bemodeled as:

max
n∑

i=1

πixi (1.53)
n∑

j=1

cjxj ≤ ψmax + xi(ψi − ψmax), ∀i ∈ I (1.54)
xi ∈ {0, 1} ∀i ∈ I (1.55)The main di�eren
e with respe
t to the 
lassi
al 
ompa
t model for the KP01 isthat here we need n 
onstraints to impose the maximum 
apa
ity. Indeed, Constraints(1.54) impose that whenever an item i is pa
ked in the knapsa
k, then the sum of theweights of all the items pa
ked 
annot ex
eed the value ψi.A better ILP model 
an be obtained as follows. First, let us re
all that items aresorted by non-de
reasing values of ψi, breaking ties by non-in
reasing values of ci. Wede�ne yi as a binary variable taking value 1 if item i is the item with smallest fragilityin the knapsa
k, 0 otherwise (i = 1, . . . , n). We also de�ne xi as a binary variabletaking value 1 if item i is pa
ked in the knapsa
k, but it is not the item with smallestfragility (i = 1, . . . , n). We obtain:
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max

n∑

i=1

πi(xi + yi) (1.56)
n∑

i=1

yi = 1 (1.57)
n∑

i=1

cixi ≤
n∑

i=1

yi(ψi − ci) (1.58)
xi +

n∑

j=k

yj ≤ 1, ∀i ∈ I (1.59)
xi ∈ {0, 1}, ∀i ∈ I (1.60)
yi ∈ {0, 1}, ∀i ∈ I (1.61)Constraint (1.57) imposes the existen
e of just one item with smallest fragility insidethe knapsa
k. Constraints (1.58) impose that the sum of the weights of the items inthe bin does not ex
eed the fragility of the smallest item in the bin.By the de�nition of the two sets of variables it follows that xi + yi ≤ 1, for i =

1, . . . , n. This simple 
onsideration is generalized by 
onstraints (1.59), that imposethat if an item i is pa
ked in the bin but is not the item with smallest fragility (i.e.,if xi = 1), then no other item having larger fragility 
an be the item with smallestfragility in the bin.Dynami
 programmingThe KP01-FO 
an also be solved through dynami
 programming. A trivial (but none�
ient) method is to 
onsider all possible values of fragility ψi in turn and ea
h timesolve the related KP01 with the set of items {i : ci ≤ ψi} and a bin of size ψi. With thisapproa
h, in the worst 
ase, the dynami
 programming method is run n times (on
efor ea
h di�erent value of fragility), leading to a 
omplexity of O(n2 ∗ ψmax).A more e�
ient method 
an be used if the items are sorted by de
reasing fragility.The algorithm is the following: 
onstru
t the regular dynami
 programming tablerelated to a knapsa
k of size ψmax, and take the maximum value obtained among a setof dominant states. The validity of this method is based on the following proposition.Note that the item with the largest fragility 
an be pa
ked in a bin of any fragility.This 
an be generalized as follows: the k �rst items 
an be pa
ked in a bin of fragility
fk. This 
an be repeated for any value of k. This means that the 
lassi
al dynami
programming s
heme 
an be used if states related to unrea
hable states are not 
on-sidered.Let ψ(i, α) be a dynami
 programming state for KP01 related to the i �rst items anda knapsa
k of size at most α. To simplify the notation, we will 
onsider that ψ(i, α) =
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−∞ if α < 0 or if the state (i, α) 
annot be rea
hed. We denote by OPT (KP01−FO)the optimal value of the knapsa
k problem with 
on�i
ts.Proposition 1.4.2 If the items are sorted by de
reasing fragility, we have:

OPT (KP01−FO) = max
α=0,...,ψmax

{ψ(max{i : ψi ≥ α}, α)} (1.62)Ea
h state (j, α) has to be explored only on
e. Using the same 
lassi
al re
ursiveformula as KP01, we obtain a 
omplexity of O(n logn+ψmax ∗n) or O(ψmax ∗n) if theitems are initially sorted by de
reasing fragility.
i ci ψi πi1 2 8 12 4 8 13 6 8 14 4 6 25 2 4 1Tableau 1.1: A small instan
e of KP01-FOIn �gure 1.6 we report the dynami
 programming table used to solve the instan
eof BP01-FO of Table 1.1. Note that the states related to item 4 (resp. 5) and total sizegreater than ψ4 (resp ψ5) are forbidden. Following Proposition 1.4.2, we know that anoptimal state 
an be found in the set of "rightmost" states in the table.When item 1 is 
onsidered, only two states are possible: pa
king item 1 (pro�t 1)or not (pro�t 0). On
e the �rst 
olumn is 
omputed, the se
ond 
an be 
omputed byadding or not item 2 to ea
h state of 
olumn 1. Ea
h 
olumn is 
omputed in turnfollowing the same idea until all items have been 
onsidered.1.4.4 Computing the initial set of 
olumns using Variable-NeighborhoodSear
h and strategi
 os
illationIn the two pre
edent se
tions, we proposed tabu sear
h methods based on strategi
os
illation. Another method that is able to implement this strategy is the VariableNeighborhood Sear
h (VNS). We refer to Hansen et al. [57℄ for a re
ent and 
ompletesurvey on VNS, and to Fleszar and Hindi [47℄ for a �rst su

essful appli
ation to theBPP.The general idea behind this methodology is to iteratively modify the in
umbentsolution using a neighborhood whi
h is initially small but be
omes larger and largerduring the iterations. Ea
h new solution obtained in this way is optimized throughlo
al sear
h and is possibly used to repla
e the in
umbent one. We use the VNS toos
illate from feasible solutions to unfeasible solutions.
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Figure 1.6: Table of states illustrating the dynami
 programming pro
edure used to solve the instan
e of KP01-FO des
ribed in Table 1.1. Ea
h line 
orresponds with a fragility level going up from 0 to ψmax and ea
h 
olumn i
orresponds with the i �rst obje
ts of I. Ea
h 
ell 
orresponds with a state. It is split in two sub-
ells: in the lower onewe report the set of obje
ts pla
ed in the knapsa
k and in the upper one we report the 
orresponding pro�t. The darkgray 
ells represent dominant states (whi
h 
ontain an optimal solution), light grey 
ells are forbidden.We start by 
omputing a heuristi
 solution, say σ, using U(σ) bins. Thesolution used as a starting point in the VNS is the one using the minimum number ofbins among those found by di�erent families of greedy algorithms.We then enter a loop in whi
h we modify σ using a perturbation method thatdepends on a parameter k, initially set to 1. We de�ne the neighborhood Nk(σ) asthe set of solutions that are obtained by: (i) removing k bins from σ and (ii) reassigningthe 
orresponding items in a way that possibly violates the fragility requirements butuses U(σ)− 1 bins. By using di�erent 
riteria to perform steps (i) and (ii) we 
reate anew solution, say σ′, belonging to Nk(σ).The new solution σ′ is possibly infeasible, be
ause the sum of the weights of theitems asso
iated to one or more of the U(σ) − 1 bins may ex
eed the fragility of themost fragile items in the bins. We then try to minimize the sum of these weightsex
esses by using a set of lo
al sear
h algorithms. The new solution obtained afterthe lo
al sear
h appli
ation is denoted by σ′′.If we manage to restore feasibility in all bins of σ′′, then we found a new heuristi




COLUMN GENERATION FOR BP WITH FRAGILE OBJECTS 31solution using one bin less. We thus update the in
umbent solution and restart with
k = 1. Otherwise, we reiterate the pro
ess until a maximum number of niter iterationshas been elapsed. If σ′′ remains infeasible after niter iterations, then we in
rease k byone unit, so as to perform a sear
h in a larger solution spa
e. Whenever k ex
eeds agiven limit kmax, we set again k = 1.The algorithm is stopped whenever it �nds an upper bound equal to the lowerbound or after the maximum 
omputing time is elapsed.1.4.4.1 Strategi
 os
illationAs brie�y dis
ussed above, the aim of our perturbation method is to modify thein
umbent solution σ so as to generate a new solution σ′ belonging to the neighborhood
Nk(σ). This neighborhood is the set of solutions that 
an be obtained from σ by meansof (i) the removal of k bins and (ii) the reassignment of the items originally pa
kedin the removed bins to U(σ) − 1 bins. The U(σ) − k bins that remain in σ after theremoval of the k bins are 
opied dire
tly into σ′; k − 1 new empty bins are opened in
σ′; all the U(σ)− 1 bins obtained in this way are �lled with the items originally to the
k removed bins by a

epting violations of the fragility requirements.On the basis of 
omputational out
ome we use a two-level obje
tive fun
tion toredistribute the removed items, whi
h depends on the number of items 
on�i
ting withthe fragility of a bin, and the weight ex
ess in a bin.The solution obtained after the exe
ution of the perturbation method is usuallyinfeasible, as some weight ex
ess may exist in one or more bins. We try to restorefeasibility by means of a lo
al sear
h pro
edure that swaps items between pairs ofbins. We operate in a �rst improvement poli
y, i.e., as soon as an improving moveis found we perform it and re-iterate. We developed several types of swaps involvingone, two, three and four items. We perform the swaps in non-de
reasing order oftheir 
omplexity. The lo
al sear
h phase is halted when all the weight ex
ess has beenremoved from the bins or when no improving move is found for any type of swap.This strategi
 os
illation proved to be very pro�table also for the BPP-FO, be
auseit allowed to qui
kly move from a solution to another by temporarily disregarding thefragility requirements, whi
h may be parti
ularly stri
t, hen
e fa
ilitating lo
al sear
h.1.4.5 Synthesis of the 
omputational experimentsSin
e no ben
hmarks existed for the BPP-FO, we proposed a set of 
hallenging instan
esbased on our experimentations. These instan
es are derived from BP instan
e of theliterature [84℄. We generated instan
es where fragilities are strongly-
orrelated, weakly-
orrelated, and un
orrelated. We generated instan
es with up to 500 items. We keptthe instan
es for whi
h the 
ompa
t model des
ribed in this se
tion was no able to �nda solution in �ve minutes.



32 DECOMPOSITION AND STRATEGIC OSCILLATIONStrongly 
orrelated instan
es are very easy and 
an be all (but one) solved bythe ILP model within the given time limit. Un
orrelated instan
es are instead moredi�
ult. It is worth noting that for two 
lasses the model is not even able to solve 20%of the instan
es to optimality. Weakly 
orrelated instan
es are even more di�
ult, withthree 
lasses for whi
h the 20% ratio of optimal solutions is not rea
hed. The averageper
entage gaps are a bit higher than those noted for the un
orrelated ones.Our overall algorithm outperforms the mathemati
al model, as it manages to obtain78 optima out of 135, against the 51 obtained the model. Also the 
omputational e�ortis smaller (163 se
onds against 380) and the average per
entage gap is redu
ed by ahalf. The mathemati
al model is very e�e
tive for solving the small instan
es with 50items, but is weaker when solving the larger ones. The proposed algorithm 
an insteadsolve an interesting number of larger instan
es.1.5 Con
lusions, future worksWe applied several de
omposition methods (tree-de
omposition and Dantzig-Wolfede
omposition) to pa
king problems with di�erent kinds of 
on�i
ts (hard 
on�i
ts,soft 
on�i
ts and fragility). We showed that, using these de
ompositions and meta-heuristi
s based on strategi
 os
illation, we were able to design e�
ient methods forsolving these di�
ult 
ombinatorial problems.Applying tree-de
omposition to problems that do not only in
lude graph 
onstraintsis not straightforward, but we have shown that it leads to interesting results for thebin-pa
king problem with 
on�i
ts. Our framework allows to make 
ollaborate di�erentkinds of methods, and 
an be easily parallelized. Using exa
t methods for solving thedi�erent subproblems 
ould be viable if the 
lusters are not too large.Con
erning 
olumn generation, it transpires from our experiments that the min-
on�i
t problem is mu
h harder than the bin-pa
king with fragile obje
ts. This is dueto the di�
ulty to solve the pri
ing subproblem of the MCBP. On the 
ontrary, in theBPFO, the pri
ing subproblem is ta
kled e�
iently by our dynami
 program s
heme.Di�erent issues arise for the 
reation of exa
t methods for these two problems. For themin-
on�i
t problem, better ILP formulation (or better 
uts) have to be proposed tofasten the resolution of the pri
ing subproblem. We are now studying the appli
ation ofmethods designed for the quadrati
 knapsa
k problem. For the bin-pa
king with fragileobje
t, the di�
ulty is to �nd a bran
hing s
heme that does not break the stru
tureof the subproblem, and allows our dynami
 programming s
heme to be used.Con
erning heuristi
 solutions, our experiments show that strategi
 os
illation iswell suited to pa
king problems with 
on�i
ts. It allows the meta-heuristi
 to gofrom one good solution to another good solution qui
kly by using non-
omplete, ornon-feasible solutions. It also allows e�
ient diversi�
ation and intensi�
ation phases,whi
h are among the most important ingredients in a meta-heuristi
 based on lo
al
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Chapter 2Dual-feasible fun
tions andextensions
The work presented in this 
hapter has been published [28, 29, 33, 66℄ in several inter-national journals. A report [31℄ will also be submitted soon to a journal.2.1 Introdu
tionThis 
hapter deals with fast lower bounds for several bin-pa
king problems. A largepart of our work deals with the variant 
alled 
utting-sto
k problem. This problem issimilar to the 
lassi
al bin-pa
king problem: the main di�eren
e is that ea
h item sizeis repeated many times. It 
an be written as follows.Problem 7 (Cutting-Sto
k Problem (CSP)) Given a set I of item types i of size
ci and demand bi, how many rolls of size C are needed to 
ut bi times ea
h item i of Iin su
h a way that the sum of their sizes in ea
h bin is smaller than or equal to C?It 
an be modeled exa
tly like the bin-pa
king problem. However, the fa
t thatitems are repeated many times is a feature that helps linear programming based meth-ods to solve this problem e�
iently. The best model to date is due to Gilmore andGomory [50,51℄ (see Chapter 1). This model has a strong linear relaxation (the famousMIRUP property1, see [81℄), and is able to take into a

ount a large number of possiblevariants of bin-pa
king, sin
e all 
onstraints related to items in a given bin belong to thepri
ing subproblem, whi
h dynami
ally generates feasible 
olumns (pa
king patterns)for the model.For large size instan
es, the 
omputation of the LP relaxation of the model ofGilmore and Gomory 
an be expensive in time. Moreover, in some real-life appli
ations,bin-pa
king lower bounds are 
omputed repeatedly a large number of times. In these
ases, fast alternative te
hniques have to be used. Several authors have fo
used onsu
h te
hniques [18, 58, 69℄.1The modi�ed integer round-up property (MIRUP) for a linear integer minimization problemmeansthat the optimal value of this problem is not greater than the optimal value of the 
orresponding LPrelaxation rounded up plus one. Whether CSP has the MIRUP property or not remains an openproblem in the general 
ase. 35



36 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONSIn this 
hapter, we fo
us on lower bounding te
hniques based on so-
alled dual-feasible fun
tions (DFF). This 
on
ept has been studied in the literature and su

ess-fully applied to the 
lassi
al bin-pa
king problem. We fo
used on two aspe
ts of DFF:the generation of useful DFF, and their generalization to more 
ompli
ated pa
kingproblems.Our �rst 
ontribution is to survey the di�erent dual-feasible fun
tions that were usedin the literature, some expli
itly, other hidden behind a more 
ompli
ated formalism.We also gather results 
on
erning these DFF and superadditive fun
tions, and give aninsight into the simple frameworks that are generally used to generate DFF.Our se
ond 
ontribution is a uni�ed view and a simple formalism for dual-feasiblefun
tions applied to other pa
king problems. Then we give some appli
ations of this
on
ept to di�erent variants of pa
king problems, namely the bin-pa
king problem, thebin-pa
king problem with 
on�i
ts, the bin-pa
king problem with fragile items, andthe two-dimensional bin-pa
king problem with and without rotation.2.2 Classi
al dual-feasible fun
tionsThe 
on
ept of dual-feasible fun
tion (DFF) has been used to improve the resolutionof several 
utting/pa
king (C&P) problems, and more generally any problem involvingknapsa
k inequalities (s
heduling problems, vehi
le or network routing). It was usedfor the �rst time for deriving algorithmi
 lower bounds for bin-pa
king problems byLueker [75℄. Sin
e then, several resear
hers have proposed new fun
tions to improvethe results obtained by the initial method.2.2.1 De�nitions and propertiesDe�nition 2.2.1 A fun
tion f : [0, 1]→ [0, 1] is dual-feasible if for any �nite set S ofreal numbers, we have
∑
x∈S

x ≤ 1⇒
∑
x∈S

f(x) ≤ 1.Dual-feasible fun
tions are generally de�ned in [0, 1]. However, when data areinteger, using dis
rete values instead may lead to simpler formulations. Carlier andNéron [21�23℄ propose a dis
rete version of DFF. They use the designation of redundantfun
tions to denote su
h fun
tions. They are de�ned from [0, C] to [0, C ′] (C and C ′stri
tly positive integers) instead of being de�ned from [0, 1] to [0, 1].In this do
ument, we 
onsider dis
rete fun
tions in general. We now de�ne formallythese dis
rete DFF. For the sake of simpli
ity, for a given integer value C, we de�nethese fun
tion from {0, . . . , C} to [0, 1].De�nition 2.2.2 For a given integer value C, a fun
tion f : {0, . . . , C} → [0, 1] is adis
rete dual-feasible fun
tion if for any �nite set S of values in {0, . . . , C}, we have
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∑
x∈S

x ≤ C ⇒
∑
x∈S

f(x) ≤ 1.In the following, unless it is 
learly spe
i�ed, all fun
tions 
onsidered will be dis
rete.We now introdu
e a dominant subset of the DFF, 
alled Maximal DFF (MDFF).De�nition 2.2.3 A DFF f is a Maximal Dual Feasible Fun
tion (MDFF) if theredoes not exist any other DFF f ′ su
h that f(x)
f(C)
≤ f ′(x)

f ′(C)
for all x ≤ C and there existsa value y su
h that f(y)

f(C)
< f ′(y)

f ′(C)
.Let us give a simple example of DFF, and how it is applied to produ
e a lowerbound for the 
utting-sto
k problem.Example 2.2.1 We 
onsider an instan
e with a bin of size 10. The item set is 
om-posed of one item of size 2, ten items of size 3, one item of size 7, and ten items ofsize 8. A simple bound is obtained by summing the sizes of the items and divide itby the size of the bin. The result is rounded up sin
e the number of bins is integer.

L0 = ⌈(1∗2+10∗3+1∗7+10∗8)/10⌉= 12. This bound 
an be improved by applying adis
rete DFF to the instan
e as a prepro
essing. We give below an example of dis
reteDFF de�ned from {0, . . . , 10} to [0, 1]. For ea
h value x in {0, . . . , 10}, we report thevalue of f(x).
x 0 1 2 3 4 5 6 7 8 9 10

f(x) 0 0 0 1/3 1/3 1/2 2/3 2/3 1 1 1When this fun
tion is applied to the instan
e, the following new bound is obtained:
⌈1 ∗ 0 + 10 ∗ 1/3 + 1 ∗ 2/3 + 10 ∗ 1⌉ = 14.Several properties 
hara
terize the MDFF fun
tions. In the following, we rewritea result proved by [23℄ using our formalism. Re
all that a fun
tion f is said to besuperadditive if for any x, y su
h that f(x), f(y) and f(x+y) are de�ned, f(x)+f(y) ≤
f(x+ y).Proposition 2.2.1 (Theorem 1. of [23℄). A dual-feasible fun
tion is maximal if andonly if f(0) = 0, f is monotonously in
reasing, f is superadditive, and f is su
h thatfor all i = 1, . . . , C/2 it holds that f(i) + f(C − i) = 1.2.2.2 Data-dependent DFFWe introdu
ed data-dependent dual-feasible fun
tions (DDFF) in [20℄ to generalizea result proposed by Bos
hetti and Mingozzi [13℄. The di�eren
e between DFF andDDFF is that DFF have to be valid for any instan
e, whereas DDFF are 
omputed fora given instan
e (and thus 
annot be applied to another instan
e). The de�nition ofDDFF is the following.



38 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONSDe�nition 2.2.4 Let I = {1, . . . , n}, c1, c2, . . . , cn n integer values and C an integersu
h that C ≥ ci for i = 1, . . . , n. A Data-Dependent DFF (DDFF) f asso
iated with
C and c1, c2, . . . , cn is a dis
rete appli
ation from I to {0, . . . , C ′} su
h that

∀I1 ⊂ I,
∑

i∈I1

ci ≤ C ⇒
∑

i∈I1

f (i) ≤ C ′Note that DFF are applied to indi
es. Two items of same size may have di�erentimages.DDFF have proved to be e�e
tive when applied to two-dimensional bin-pa
kingproblems. They 
an lead to bounds that 
ould not be rea
hed by the appli
ation ofDFF.2.2.3 Appli
ations of DFFAs explained above, the 
lassi
al appli
ations of DFF are related to the 
omputationof lower bounds for the bin-pa
king problem. Formally, a bound is obtained as follows.Let f be a dis
rete DFF de�ned from {0, . . . , C} to [0, 1], ⌈∑x∈S f(x)⌉ is a lower boundfor BPP.Dual-feasible fun
tions 
an also be used for problems in two or three dimensionsby applying them independently on ea
h dimension (see [44℄). To our knowledge, DFFhave only been 
omputed for bin-pa
king problems.Apart from 
omputing fast lower bounds, any dual-feasible fun
tion 
an be usedto generate valid inequalities for integer programs de�ned over the sets S = {x ∈ Zn+ :∑n
j=1 aijxj ≤ bi, i = 1, . . . , m} su
h that bi ≥ aij ≥ 0 and bi > 0 for any i, j.Proposition 2.2.2 Let S = {x ∈ Zn+ :

∑n
j=1 aijxj ≤ bi, i = 1, . . . , m}, with bi ≥ aij ≥

0 and bi > 0 ∀i, j. For any i, if f : {0, . . . , bi} → [0, 1] is a DFF, then ∑n
j=1 f(aij)xj ≤ 1is a valid inequality for S.The term DFF is hardly used in the 
ontext of 
uts for linear programs (with thenotable ex
eptions of [4℄ and [2℄). Note also that even if we fo
us on lower boundingstrategies for bin-pa
king problems, our work on dual feasible fun
tions (and the 
or-responding dual solutions of the 
utting sto
k) have also allowed to propose te
hniquesto stabilize 
olumn generation algorithms for this problem [29℄.2.2.4 Dis
rete DFF and the model of Gilmore and GomoryDis
rete DFF are tightly linked with the model of Gilmore and Gomory [50,51℄ for the
utting-sto
k problem. We already used this model in Chapter 1. We just re
all somedetails.A 
ombination of items of I in a roll is 
alled a pattern. Ea
h possible 
uttingpattern is des
ribed by a 
olumn labelled p: (a1p, . . . , aip, . . . , a|I|p)

T , where aip is the



2.2. CLASSICAL DUAL-FEASIBLE FUNCTIONS 39number of items of width ci in the pattern p. The model of Gilmore and Gomory [50,51℄is the following model (already de�ned in Chapter 1) applied to the set of patterns Pdes
ribed just above.
min

∑

p∈P

zp (2.1)
∑

p∈P

aipzp ≥ bi i ∈ I (2.2)
zp ∈ {0, 1} ∀p ∈ P. (2.3)Here, a valid 
utting pattern is su
h that

∑

i∈I

aipci ≤ C, ∀p ∈ P (2.4)
aip ∈ N, ∀p ∈ P, i ∈ I (2.5)As explained in Chapter 1, the 
olumns of (2.1)-(2.3) are generated iteratively bysolving the pri
ing subproblem. In our 
ase, this problem is the 
lassi
al knapsa
kproblem.The weak dual of (2.1)-(2.3) reads:

max
∑

i∈I biπi (2.6)s.t. ∑
i∈I

aipπi ≤ 1, ∀p ∈ P (2.7)
πi ≥ 0 (2.8)One 
an noti
e that the 
ondition for a solution π to be valid for this dual is∑

i∈I aipci ≤ C =⇒
∑
i∈I

aipπi ≤ 1 for any pattern p, whi
h is the de�nition of dis
retedual-feasible fun
tions.An alternative de�nition 
an be given for dis
rete DFF asso
iated with a size C:a fun
tion f is a dis
rete dual-feasible fun
tion if for any instan
e of 
utting-sto
kwhere the size of the bins is C, there exists a valid solution π of (2.6)-(2.8) su
h that
f(i) = πi for any value i in I.An alternative de�nition of DDFF is that f is a DDFF dependent on a giveninstan
e D if there exists a valid dual solution π of (2.6)-(2.8) applied to D su
h that
f(i) = πi for any value i in D. The main di�eren
e with DFF is that the dual problemhere is less 
onstrained than for the DFF, sin
e some patterns do not belong to P ,whereas for the DFF, all possible patterns related to the size C have to be 
onsidered.This explains why the DFF are named dual-feasible.



40 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONS2.3 A general point on view on DFFWe �rst propose a generalization of the 
on
ept of DFF to any problem that 
an bemodeled with a set-
overing model and a subproblem. This name this 
on
ept Set-Covering-DFF (SC-DFF).Let I = {1, . . . , n} be a set of indi
es, and P the set of all possible patterns prelated to a given problem P. We denote by aip the number of items of type i thatappear in pattern p and v(p) the 
ost of pattern p. Note that P is of exponential, yet�nite size.De�nition 2.3.1 Let P be the set of all possible patterns de�ned for set I and agiven problem P. A Set-Covering-DFF (SC-DFF) for (I, P ) is a mapping g de�nedfrom I to R+ su
h that
p ∈ P ⇒

∑

i∈I

aip ∗ g(i) ≤ v(p) (2.9)The main di�eren
e with the 
lassi
al DFF is that it applies to indi
es i instead ofthe sizes ci. This is due to the fa
t that two items with the same size may be di�erent(take the problem with 
on�i
ts for example).In this formalism, geometri
 
onstraints of pa
king appli
ations are modeled as aset of feasible patterns (the set of instan
e ve
tor). Pra
ti
ally speaking, being able to
hara
terize this (possibly exponential size) set without enumerating all its elements is
ru
ial.For most bin-pa
king problems, where the goal is to minimize the number of binsused, the value v(p) is equal to 1 for all patterns p.Now we give a de�nition of data-dependant set-
overing DFF. This time the set ofpatterns P (D) is restri
ted to those possible with the item sizes in D.De�nition 2.3.2 Let I be a set of items and D an instan
e of problem P. Let P (D)be the set of valid patterns related to instan
e D. A Set-Covering-DDFF (SC-DDFF) related to instan
e D is a mapping g de�ned from I to R+ su
h that
p ∈ P (D)⇒

∑

i∈I

aip ∗ g(i) ≤ v(p) (2.10)Note that for two di�erent instan
es of the same problem, a SC-DDFF 
an be validfor one and not for the other.This formalism is 
ompatible with 
onstraints added during a bran
h-and-
ut-and-pri
e algorithm. This means that SC-DFF 
ould be used in any node of a sear
h tree,and not only at the root node as it is done up to now.From now on, we will name CS-DFF the 
lassi
al DFF (Cutting-Sto
k DFF). Theterm CS-MDFF will be used for Maximal CS-DFF.Note that when the 
onstraints of the initial problem are equality 
onstraints (set-partitioning problem instead of set-
overing problem), the only di�eren
e is that the
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an be negative. Pra
ti
ally speaking, this is rarely useful for pa
kingproblems, sin
e in these parti
ular 
ases, set-partitioning models 
an be relaxed intoset-
overing problem without modifying the value of an optimal solution. However, the
on
ept of "set-partitioning DFF" 
ould be interesting to introdu
e for some spe
i�
problems outside the �eld of bin-pa
king problems.2.4 Computation of CS-DFFSeveral papers propose CS-DFF ("
lassi
al" dual-feasible fun
tions), sometimes impli
-itly when they are used to improve 
uts in linear programs. Identifying the fun
tionsunderlying 
ompli
ated formulations is far to be easy in some 
ases. We surveyed theliterature and gathered two literatures that were somehow dis
onne
ted. The goal wasto propose a guide for generating CS-DFF.2.4.1 Frameworks for 
reating valid CS-DFFA simple way of 
ombining two fun
tions is to 
ompute a linear 
ombination, or to
ompose two CS-DFF (see [42℄ for example).Proposition 2.4.1 A 
omposition, or a positive linear 
ombination of superadditivefun
tions is superadditive.More parti
ularly, it is shown in [80℄ that if f and g are superadditive, then, for
λ ≥ 0, λf , ⌊f⌋, f + g, min{f, g} are superadditive. Note that for λ > 0, max{0, x−λ}is also superadditive, whereas x+ λ is not.A 
omposition or a positive linear 
ombination of CS-MDFF is also an CS-MDFF.Fun
tion min{f, g} is not maximal, unless f = g. As fun
tion f(x) = ⌊x⌋ is not aCS-MDFF, in general ⌊f(x)⌋ is not dominant either.In this paragraph, we address the fun
tions that apply on rational values. When xis rational, rx will denote the fra
tional part of x (rx = x−⌊x⌋). Pra
ti
ally speaking,if the data are integer, one 
an divide all values by a given rational to obtain rationalvalues.The following result shows that a way of asso
iating two CS-DFF is to apply themseparately to the integer part and to the fra
tional part of the values. This is valid ifthe 
onditions of Lemma 2.4.1 are veri�ed.Lemma 2.4.1 Let f and g be two superadditive fun
tions respe
tively de�ned on [0, C]and [0, 1]. If f(x + 1)− f(x) ≥ v∗ for all x ∈ [0, C − 1], and for all y, y′ ∈ [0, 1] su
hthat y + y′ > 1, g(y + y′ − 1) ≥ g(y) + g(y′)− v∗, the fun
tion de�ned as follows

h(x) = f(⌊x⌋) + g(rx)is superadditive on [0, C].



42 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONSThe 
ondition of the lemma is restri
tive, sin
e only stri
tly in
reasing fun
tions f
an lead to a superadditive fun
tion. However the 
onditions on fun
tion g are not toostrong, and many fun
tions 
an be used. For example, if g is a 
lassi
al CS-DFF de�nedfrom [0, 1] to [0, 1], f has to be stri
tly in
reasing and su
h that f(x)−f(x−1) > 1 forall x in [0, C]. We will show in the next se
tion that fun
tions proposed in [15℄ and [70℄use this framework.The 
eiling fun
tion is not superadditive. However it 
an lead to superadditivefun
tions if it is minored by a suitable value. We now generalize several results usedimpli
itly in [87℄ and [70℄.Lemma 2.4.2 Let f be a superadditive fun
tion. If β ≥ 1, g(x) = max{0, ⌈f(x)⌉−β}is superadditive.In the literature, several superadditive and nonde
reasing fun
tions are proposed,whi
h are not maximal. The following results aim at 
reating a CS-MDFF when oneknows a non-maximal superadditive fun
tion f .A dominating maximal CS-DFF f̂ 
an be built by keeping the images of the valuessmaller than C/2 and 
omputing the images of the values larger than C/2 by symmetry.This is a generalization of what is done impli
itly by Carlier et al. in [20℄.Theorem 2.4.1 Let f be a superadditive and nonde
reasing dis
rete fun
tion de�nedfrom {0, . . . , C} to [0, 1], and su
h that f(0) = 0. The following fun
tion is a maximalCS-DFF.
f̂ : {0, . . . , C} → [0, 1]

x 7→





f(C)− f(C − x), for C ≥ x > C
2
,

1/2, for x = C
2
,

f(x), for x < C
2
.Theorem 2.4.2 shows another way of obtaining an CS-MDFF from a non-maximalsuperadditive fun
tion f . The 
ase we 
onsider o

urs when for some value x where f isnot 
ontinuous, the value of f(x) 
an be in
reased without modifying the other values.This te
hnique leads to an improved fun
tion with some singular values x su
h that

lim
ε→0−

f(x+ε) < f(x) < lim
ε→0+

f(x+ε). This te
hnique is impli
itly used by [40,42,87℄ forexample. Theorem 2.4.2 is used in the sequel to show that some fun
tions are maximal.For the sake of simpli
ity, for a given fun
tion f and a given value x∗ for whi
h
f is de�ned, we de�ne f̄x∗ the fun
tion de�ned as follows: f̄x∗(x) = f(x) if x 6= x∗,and f̄x∗(x∗) = f(x∗) + ε with ε a real value as small as needed. Note that when f isa CS-DFF, f̄x∗ may or may not be a CS-DFF. In the following theorem, for a givenCS-DFF f , I2 is the set of values x∗ su
h that f̄x∗ is also a CS-DFF, i.e. the set ofvalues for whi
h the image 
an be in
reased. In the sequel we say that a fun
tion f isright-
ontinuous in x if lim

ε→0+
f(x+ ε) = f(x).



2.4. COMPUTATION OF CS-DFF 43Theorem 2.4.2 Let f be a superadditive and nonde
reasing non-dis
rete fun
tion de-�ned from [0, C] to [0, f(C)] su
h that f(0) = 0. We denote by I2 the subset of values xfrom [0, C] su
h that f̄x is a CS-DFF, and I1 the set of remaining values. We supposethat I2 is a dis
rete set of values {x1, . . . , xk} and that f is right-
ontinuous on ea
hset [0, x1), (x1, x2), . . . (xk, 1] of I1.For a given fun
tion g, the following fun
tion
h : [0, C]→ [0, f(C)]

x 7→

{
f(x) if x ∈ I1
g(x) if x ∈ I2is a superadditive nonde
reasing fun
tion if the following 
onditions are true.1. f(x) ≤ g(x) ≤ lim

ε→0+
f(x+ ε) for any x in I22. g(x) + g(y) ≤ g(x+ y) if x, y, x+ y ∈ I23. g(x) + f(y) ≤ g(x+ y) if x ∈ I2, x+ y ∈ I2 and y ∈ I12.4.2 A 
omparative analysis of CS-DFFIn the following, we des
ribe several CS-DFF that were used in the literature (expli
itlyor impli
itly). These fun
tions are de�ned for the values {0, . . . , C}. The image domainwill depend on the fun
tion. We will use the formalism that simpli�es the most thepresentation.Fekete and S
hepers [42℄ propose three dual-feasible fun
tions. Two are maximal,but the third is not an CS-MDFF.The �rst fun
tion fk0 is used impli
itly by Martello and Toth [78℄ in their L2 lowerbound for the bin-pa
king problem. Fun
tion fk0 , with k ∈ {0, . . . , C

2
}, 
onsists inremoving all values of size less than a given threshold k, and symmetri
ally in
reasingto one the size of the large values.

fk0 : {0, . . . , C} → [0, 1]

x 7→





1, for x > C − k,

x/C, for k ≤ x ≤ C − k,

0, for x < k.It has been shown that this fun
tion is superadditive and nonde
reasing [2,35℄, andeven maximal [35℄. Only values k ≤ C/2 su
h that C − k is the size of a large item areinteresting. Note than when k is small enough, fk0 is equivalent to the identity fun
tion,and so the lower bounds for the bin-pa
king problem obtained using this fun
tion arenever smaller than the initial 
ontinuous bound.
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Figure 2.1: Fun
tion fk
0

for C = 10 and k = 3The se
ond fun
tion fkFS,1, k ∈ N∗, 
an be seen as a spe
ial rounding pro
edure. Itis an improvement on a fun
tion proposed by Lueker [75℄, using Theorem 2.4.2. Therelative sizes of values equal to C/(k + 1), C/(k + 2), . . ., C/(k + 1) are not modi�ed.
fkFS,1 : {0, . . . , C} → [0, 1]

x 7→

{
x/C, for x(k + 1)/C ∈ N,

⌊(k + 1)x/C⌋ 1
k
, otherwise.Proposition 2.4.2 Fun
tion fkFS,1 is a maximal CS-DFF.The authors also propose a fun
tion fkFS,2, whi
h is not superadditive (see [2℄).Several fun
tions of the literature dominate this fun
tion (see [14, 20℄).Bos
hetti and Mingozzi [14℄ and Bos
hetti [12℄ respe
tively propose bounds for thetwo- and three-dimensional bin-pa
king problems. For the two-dimensional bin-pa
kingproblem, they impli
itly use fun
tion fk0 and fkBM,1, an improved dis
rete version of

fkFS,2. We do not report the formulation of this fun
tion, as a slightly improved version( [20℄) is des
ribed next. In [35℄, it is shown that any iterative 
omposition of fki0 and
f jiBM,1 is dominated by a fun
tion of the form fkBM,1 ◦ f

l
0.Carlier et al. propose a slight improvement on the fun
tion of Bos
hetti [20℄, byenfor
ing the image of C

2
to be 1/2. This fun
tion 
an also be obtained by applyingTheorem 2.4.1 to fun
tion ⌊x/k⌋. Note that as for fk0 , when k = 1, this fun
tion isequivalent to the identity fun
tion. Let k ∈ [1, C/2].

fkCCM,1 : {0, . . . , C} → [0, 1]

x 7→





1− ⌊(C−x)/k⌋
⌊C/k⌋ , if x > C

2
,

1/2, if x = C
2
,

⌊x/k⌋
⌊C/k⌋ , if x < C

2
.Proposition 2.4.3 Fun
tion fkCCM,1 dominates fkFS,2.In [87℄, Vanderbe
k uses a superadditive and nonde
reasing fun
tion fkV B,1, k ∈

{2, . . . , C}, to derive valid inequalities for the pattern minimization problem whi
h arestronger than the rank 1 Chvátal-Gomory 
uts [27℄. His fun
tion states as follows.
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Figure 2.2: Fun
tion fk
CCM,1

for k = 3

fkV B,1 : {0, . . . , C} → [0, 1]

x 7→
max{0,

⌈
kx
C

⌉
− 1}

k − 1Fun
tion fkV B,1 is a CS-DFF, and it is also superadditive (it is dire
t using Lemma2.4.2). In [2℄, it is shown that fkFS,1 dominates fkV B,1.Using Theorem 2.4.1, we have 
reated a fun
tion fkV B,2 that dominates fkV B,1.Proposition 2.4.4 The following fun
tion is a maximal CS-DFF:
fkV B,2 : {0, . . . , C} → [0, 1]

x 7→





1− fkV B,1(C − x) if x > 1/2

1/2 if x = 1/2

fkV B,1(x) if x < 1/2For the two following fun
tions, the dis
rete formalism leads to 
ompli
ated formu-lations, so we use non-dis
rete fun
tions instead. When integer data are used, one hasto divide all values by a real value in [1, C] before applying these fun
tions.In [15℄, Burdett and Johnson propose a fun
tion de�ned for rational values. Whenvalid inequalities are 
onsidered, the data we have to deal with are often rational. Ifone wants to use this fun
tion for bounding (where data are in general integer), one
an multiply the initial values by a rational 
onstant. For a given value x, let rx bethe fra
tional part of x. The fun
tion of Burdett and Johnson is given next.
fBJ,1 : [0, C]→ [0, 1]

x 7→ ⌊x⌋/⌊C⌋ +max

{
0,

(rx − rC)/(1− rC)

⌊C⌋

}
.Any value α 6= 1 
an repla
e rC in this fun
tion, but it appears [80℄ that thestrongest inequality is obtained when α = rC . If rC = 0, the fun
tion is equal to theidentity fun
tion. In [80℄, the authors show that this fun
tion is superadditive. Analternative immediate proof of superadditivity derives dire
tly from Lemma 2.4.1.
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tly dedu
ed from Lemma 2.4.1 and [80℄) Fun
tion fBJ,1 is amaximal CS-DFF.Let
hford and Lodi [70℄ propose another way of strengthening Chvátal-Gomory
uts [27℄ and Gomory fra
tional 
uts [53℄ in linear programs. In the remainder, wesuppose that the fra
tional part of C is su
h that rC > 0. In [70℄, the authors do notpre
ise that their improvement is based on a dual-feasible fun
tion. In this do
ument,we expli
itly formulate the dual-feasible fun
tion that underlies their method. As fBJ,1,it is based on Lemma 2.4.1.Proposition 2.4.6 Let ζ be equal to ⌈ 1
rC
⌉ − 1. The following fun
tion is a CS-DFF.

fLL,1 : [0, C]→ [0, 1]

x 7→ ⌊x⌋/⌊C⌋ +max



0,

⌈
rx−rC
1−rC

ζ
⌉

(ζ + 1)⌊C⌋



 .We use Lemma 2.4.2 to show that this fun
tion is superadditive. However, it is notmaximal.Proposition 2.4.7 Fun
tion fLL,1 impli
itly used by Let
hford and Lodi [70℄ is super-additive, but not maximal.This means that one 
an propose an improved version of this fun
tion by applyingTheorem 2.4.1.Proposition 2.4.8 The following fun
tion is a maximal CS-DFF, and dominates fLL,1.

fLL,2 : [0, C]→ [0, 1]

x 7→





1− fLL,1(C − x), if x > C/2,

1/2, if x = C/2,

fLL,1(x), if x < C/2.Note that Dash and Günlük [40℄ have proved that ζ 
an be repla
ed in fLL,1 by anyinteger value k greater than ζ . We will use fkLL,1 for this extension.A parti
ular 
ase of the so-
alled extended 2-step Mixed-Integer Rounding (MIR)inequalities of Dash and Günlük [40℄ leads to a 
ut that 
an be obtained by applying aCS-MDFF. This fun
tion also dominates fkLL,1, yet it is not equal to fkLL,2. Again, wesuppose that the fra
tional part of C is su
h that rC > 0.Proposition 2.4.9 Let k be an integer greater than or equal to ⌈ 1
rC
⌉−1. The followingfun
tion is a CS-DFF.

fkDG,1 : [0, C]→ [0, 1]

x 7→





⌊x⌋/⌊C⌋ + (rx−rC)/(1−rC )
⌊C⌋

if k 1−rx
1−rC

∈ N and rx > rC ,

⌊x⌋/⌊C⌋ +max

{
0,

⌈

rx−rC
1−rC

k
⌉

(k+1)⌊C⌋

}
, otherwise .
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tion is maximal, sin
e it is obtained from fkLL,1 using Theorem 2.4.2.Proposition 2.4.10 Fun
tion fkDG,1 is in
reasing, superadditive, and symmetri
 andhen
e is a CS-MDFF.2.4.3 Summary of our literature studyIn this paragraph, we sum up the di�erent results stated in the 
urrent se
tion. Were
all several kind of results: dominan
e, maximality, and the di�erent te
hniquesunderlying ea
h family of fun
tions.In Table 2.1, we report a 
lassi�
ation of the di�erent fun
tions. For ea
h fun
tion,we re
all the paper in whi
h 
ontext it was proposed ('-' means that it is a trivial CS-DFF). We also report the type of appli
ation for whi
h it has originally been designed(
olumn Appli.: lb for lower bounding, and 
uts for improved valid inequalities). Thenwe give informations for ea
h fun
tion: if it is a CS-MDFF, if it expli
itly uses Lemmas2.4.1 and 2.4.2, or Theorem 2.4.1.Fun
tions ⌊
x
k

⌋ (k 6= 1), fkFS,2, fkLL,1 and fkV B,1 are not maximal, whereas fkBM,1is almost maximal. Only the image of C
2
makes the latter non-maximal. All theother fun
tions are maximal. Among all the fun
tions 
onsidered, only fkFS,2 is notsuperadditive.Fun
tions fkBJ,1, fkLL,1 and its improved versions fkDG,1 fkLL,2 are the only ones to useLemma 2.4.1. Note that these fun
tions were originally proposed to derive 
uts, whi
h
an explain the fa
t that the fra
tional part is treated apart.Lemma 2.4.2 is used to modify the fra
tional part in fkLL,1, fkLL,2 and fkDG,1. Itunderlies fun
tion fkV B,1, and the fun
tion that dominates it, fkV B,2. Fun
tion fkFS,1does not use expli
itly Lemma 2.4.2, but its stru
ture is 
lose to it (it "almost" usesLemma 2.4.2, sin
e the integer values x are treated separately).Theorem 2.4.1 is used by fkCCM,1, fkLL,2 and fkV B,2, and almost by fkBM,1 (only theimage of C/2 has to be modi�ed). Theorem 2.4.2 is used by fkFS,1 and fkDG,1 to obtaina maximal fun
tion, and by fkV B,1 to obtain a non-maximal fun
tion.We have 
ompared the di�erent CS-DFF analyzed above against several types ofinstan
es for the one-dimensional bin-pa
king problem generated in a 
lassi
al way.We used instan
es with up to 10000 items. Even for these large instan
es, ea
h lowerbound is 
omputed in less than 1 se
ond.As expe
ted, maximal fun
tions lead to improved results 
ompared to non-maximalfun
tions. What is more surprising is the fa
t that fun
tion fkCCM,1 is stri
tly betterthan fBM,1 for many test 
ases, although it only modi�es the image of C

2
. This 
an beexplained by the fa
t that the instan
es are generated randomly, and thus items of size

C
2
may appear several times in an instan
e.Only the bounds based on the rounding fun
tion (fkBM,1 and fkCCM,1) are betterthan fk0 on average. This means that if one wants to use a unique fun
tion, fkCCM,1would be this one (sin
e it dominates the other rounding-based fun
tions). But if one
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tion Paper Appli. CS-MDFF lem. 2.4.1 lem. 2.4.2 thm. 2.4.1 thm. 2.4.2identity - - yes no no no no
fk0 [42℄ lb yes no no no no
⌊xk ⌋ - - no no no no no
fkFS,2 [42℄ lb no no no no no
fkBM,1 [14℄ lb almost no no almost no
fkCCM,1 [20℄ lb yes no no yes no
fkV B,1 [87℄ 
uts no no yes no yes
fkFS,1 [42℄ lb yes no almost no yes
fkBJ,1 [15℄ 
uts yes yes no no no
fkLL,1 [70℄ 
uts no yes yes no no
fkDG,1 [40℄ 
uts yes yes yes no yes
fkLL,2 [29℄ - yes yes yes yes no
fkV B,2 [29℄ - yes no yes yes noTableau 2.1: Summary of the properties of the fun
tions analyzed in this do
umentis looking for the best results, he will have to use all the maximal CS-DFF des
ribedin this do
ument.2.5 Extensions of DFF for various bin-pa
king prob-lemsIn this se
tion, we des
ribe the extensions of DFF to other pa
king problems that wehave proposed. The problems addressed are all bin-pa
king problems. We 
onsider the
ases where 
on�i
ts between items 
an o

ur (pairwise 
on�i
ts, or a so-
alled fragility
onstraint). We also 
onsider several variants of the two-dimensional 
ase.2.5.1 DDFF for the bin-pa
king problem (BP-DDFF)In the following, we present DDFF designed for the bin-pa
king problem. For ourstudy, the only di�eren
e between bin-pa
king and 
utting-sto
k will the fa
t that thenumber of items for ea
h type is small and thus pa
king ⌊C/ci⌋ instan
es of a givenitem i may not be allowed. This means that the set P of valid patterns is di�erent.In BP-DDFF, the number of times an item is repeated in the instan
e is taken intoa

ount.2.5.1.1 De�nition and link with CS-DFFTo our knowledge, the �rst impli
it use of BP-DDFF for 
omputing lower bounds forbin-pa
king problems is due to Bos
hetti and Mingozzi [13℄. We originally de�ned this
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on
ept under the name of data-dependent dual-feasible fun
tions (DDFF) [20℄. In thisdo
ument, we will use the term BP-DDFF (DDFF de�ned for bin-pa
king problem).We now de�ne formally this 
on
ept of BP-DDFF.De�nition 2.5.1 [20℄ Let I be a set of items i of size ci, and C a size of bin. Abin-pa
king DDFF (BP-DDFF) g asso
iated with this instan
e is a mapping from I to
[0, 1] su
h ∑

i∈I1⊆I

ci ≤ C ⇒
∑

i∈I1

g(i) ≤ 1 (2.11)Any CS-DFF (or "
lassi
al" DFF) is tightly related to BP-DDFF.Proposition 2.5.1 Let f : {0, . . . , C} → [0, 1] be a dis
rete CS-DFF. Fun
tion g :

I → [0, 1] de�ned as follows: g(i) = f(ci) is a BP-DDFF for any instan
e.However, some BP-DDFF are not BP-DFF, and only apply on spe
i�
 instan
es.We now give an example of DDFF to illustrate the fa
t that DDFF 
an lead tovalues that would not be valid for a DFF.Example 2.5.1 Consider an instan
e with a bin of size 100, and two items: item 1of size 5 and item 2 of size 96. A valid DDFF de�ned from I to [0, 100] 
an map item
1 to value 99 and item 2 to value 1. Note that with a DFF, the image of an item ofsize 1 
annot be larger than 1/100.2.5.1.2 A general BP-DDFFThe �rst BP-DDFF has been proposed by [20℄. It uses a spe
ial parameter k. Thismethod generalizes the work of [13℄ and gives a di�erent viewpoint on the method. Wenow propose a way of 
omputing a more generi
 family of BP-DDFF.Let I = {1, . . . , n} be a set of indi
es, C an integer value, and c1, c2, . . . , cn a listof integer values less than or equal to C, and J a subset of I. The following familyof fun
tions uses an arbitrary set of parameters α = {αi ∈ N : i ∈ I}. We denoteby KP (C, J, c, α), the value of an optimal solution to the 
lassi
al one-dimensionalknapsa
k problem (Problem 2). The value C is the size of the bin, J the set of items
i, ea
h of size ci, and α is a fun
tion that asso
iates a pro�t to the items of J .Formally, KP (C, J, c, α) 
an be stated as follows.

KP (C, J, c, α) = max
J ′⊆J,

∑

i∈J′ ci≤C
{
∑

i∈J ′

αi}Proposition 2.5.2 The following fun
tion g1 is a BP-DDFF de�ned for a given in-stan
e D.
g1 : I → [0, 1]

i 7→

{
1−KP (C − ci, J, c, α)/KP (C, J, c, α) if i ∈ J
αi/KP (C, J, c, α) if i ∈ I \ J



50 CHAPTER 2. DUAL-FEASIBLE FUNCTIONS AND EXTENSIONSThe values of the small items are equal to αi, and the sizes of the bin and of thelarge items are 
omputed by solving the knapsa
k problem des
ribed above. Then allvalues are divided by KP (C, J, c, α) to obtain a fun
tion in [0, 1].When applying a CS-DFF on D, removing an item may de
rease the value ofthe lower bound obtained. When BP-DDFF are used, this observation does not holdanymore sin
e the value of other items may be in
reased using the knapsa
k problem.The knapsa
k problems involved are NP-hard in the general 
ase. However they
an be solved in pseudo-polynomial time using dynami
 programming (see [78℄ forexample). When the size of the bin is large, it may entail a large 
omputing time. Inthis 
ase, the set of parameters α should be 
hosen in a way to re-enable the resolutionof the knapsa
k problem in a polynomial time. We investigated this idea in [35℄ by
hoosing αi = 1, ∀i ∈ J , similarly to what is impli
itly done in [13℄. The optimal valueof the knapsa
k problem is then equal to the maximum number of items that 
an beput together in a knapsa
k of size C. It 
an be solved in linear time if the items aresorted by in
reasing order of size. However, the general form g1 is more e�
ient for
omputing lower bounds than the method of [35℄. The best results on average wereobtained by using αi = ci, ∀i ∈ J .2.5.1.3 Pra
ti
al usefulnessPra
ti
ally speaking, these fun
tions were able to improve the quality of the lowerbounds for well-known two-dimensional ben
hmarks from the literature. For the one-dimensional ben
hmarks, the improvement is small. This is due to the fa
t that intwo-dimensional ben
hmark the number of items of ea
h type is generally smallerthan in the one-dimensional 
ase. Consequently, taking into a

ount the fa
t that thenumber of small items is limited helps 
omputing the quantity of lost spa
e in the bins.2.5.2 DDFF for the bin-pa
king with 
on�i
ts (BPC-DDFF)We now propose DDFF for the bin-pa
king with 
on�i
ts. Note that we 
onsider thegeneri
 
ase without spe
ifying the geometri
 
onstraint applied to the problem. Sim-ilarly to BP-DDFF, we will name BPC-DDFF the DDFF designed for BPC. We onlypropose fun
tions that depend on the data, sin
e it seems di�
ult (if not impossible)to design e�e
tive methods that would be valid for any graph.Both te
hniques we propose are based on graph 
on
epts: graph triangulation forthe �rst, tree-de
omposition for the se
ond. A formal de�nition of these 
on
epts isgiven in Chapter 1.2.5.2.1 Knapsa
k-based BPC-DDFFThe �rst BPC-DDFF is a generalization of fun
tion g1 de�ned in Proposition 2.5.2 forBP.
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tion obtained from fun
tion g1 where the knap-sa
k problem KP is repla
ed by the disjun
tive knapsa
k problem. Fun
tion h1 is anBPC-DDFF.To our knowledge, no dynami
 programming s
heme exists for the disjun
tive knap-sa
k problem with general graph. A �rst solution to solve these problems is to use anILP solver like ILOG 
plex. We used other methods, based on graph 
on
epts and arelaxation of the problem.When a 
on�i
t graph G is 
onsidered, only stable sets of G 
an be solutions ofthe knapsa
k problem with 
on�i
ts (KPC). Thus a (possibly not pra
ti
ally tra
table)solution for the KPC is to 
ompute all maximal stable sets of the 
on�i
t graph, andthen to solve for ea
h stable set the asso
iated knapsa
k problem. The maximum valueobtained for all stable sets is the optimal value for KPC. This solution is tra
tableonly if 1) the number of stable sets is small and 2) they 
an be 
omputed with asmall 
omplexity. Neither of the two 
onditions are ful�lled when a random graph is
onsidered.For this method to be tra
table, we relax our problem by removing edges to our
on�i
t graphs in su
h a way that its 
omplementary graph be
omes triangulated (seeChapter 1). Tarjan and Yannakakis proved in [85℄ that any triangulated graph Ghas at most n maximal 
liques. In addition, they des
ribed a linear algorithm tore
ognize a triangulated graph and to enumerate its maximal 
liques. In our 
ase, the
ompatibility graph G is rarely triangulated. Finding the minimum set of edges to addin order to obtain a triangulated graph is a NP-hard problem, so we use the heuristi

alled Maximum Cardinality Sear
h (MCS) [85℄ to triangulate the initial 
ompatibilitygraph.In Figure 2.3, we give an example of triangulated 
ompatibility graph and the
orresponding knapsa
k problems to solve. To 
ompute the size of the bin, the sixknapsa
k problems have to be solved. To 
ompute the size of item 10, only the knapsa
kproblems KP3 KP4, KP5 and KP6 have to be solved.2.5.2.2 A BPC-DDFF based on graph de
ompositionSuppose the set I of items 
an be de
omposed into two sets I1 and I2 of pairwisein
ompatible items. In this 
ase, two di�erent DFF f and g 
an be applied to I1 and
I2, sin
e the instan
e 
an be de
omposed into two distin
t sub-instan
es. Now, if thereis a third set I3 where ea
h item is 
ompatible with some items of I1 and I2, a lowerbound 
an be obtained as follows: ⌈∑

i∈I1

f(i) +
∑
i∈I2

g(i) +
∑
i∈I3

min {f(i), g(i)}

⌉. This istrue sin
e ea
h item of I3 will be pa
ked either with items of I1, items or I2 but notboth. We have used this te
hnique to derive lower bounds during a bran
h-and-boundmethod for the bin-pa
king problem [30℄.
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Figure 2.3: Knapsa
k problems to solve to 
ompute the knapsa
k-based BPC-DDFFUsing our formalism, it is equivalent to applying the following BPC-DDFF, whi
hdepends on two CS-DFF f and g.
h(f, g) : I → [0, 1] (2.12)

i 7→





f(ci) if i ∈ I1
g(ci) if i ∈ I2
min{f(ci), g(ci)} otherwise (2.13)This te
hnique 
an be generalized by de
omposing the graph into di�erent inter-se
ting subsets. Fun
tion h2 is based on the 
on
ept of tree-de
omposition (see Chapter1), whi
h 
aptures the possible asso
iations of items.Let G = (I, I × I \ E) be the 
ompatibility graph of the instan
e, and T = (S,A)a tree-de
omposition of G. The basi
 idea of h2 is to assign a given DFF fs to ea
hnode s ∈ S of the tree-de
omposition T .Let F be a list of valid dis
rete DFF f1, . . . , f|S| de�ned from {0, . . . , C} to [0, 1],one for ea
h node of the tree de
omposition. For ea
h vertex i in the graph we de�ne

Si the set of nodes of the tree de
omposition 
ontaining i. Clearly there is always a setof fun
tions f1, . . . , f|S| that allows to dominate the appli
ation of a single DFF (e.g.
f1 = f2 = . . . = f|S|).Proposition 2.5.4 The following fun
tion h2 is a BPC-DDFF.

h2 : I → [0, 1] (2.14)
i 7→ min

s∈Si
{fs(ci)} (2.15)



2.5. EXTENSIONS OF DFF FOR VARIOUS BIN-PACKING PROBLEMS 53An issue is to 
hoose a suitable set of fun
tions to be applied to the nodes of thetree de
omposition. We use the following heuristi
. For ea
h node s, we 
ompute thevalue of the bound asso
iated with ea
h fun
tion of our initial set F and we re
ord thefun
tion that leads to the best value. This strategy may not be optimal but it leads tofast bounds.If this te
hnique is applied to an instan
e with the graph of Figure 2.3, sin
e thegraph is triangulated, the optimal tree-de
omposition uses the six maximal 
liques ofthe graph. Only one DFF is applied to items 1, 2, 3 and 4. Sin
e item 10 belongs tofour 
lusters (four maximal 
liques), four fun
tion will be applied to its size (one per
luster), and the minimum will be kept.2.5.2.3 Pra
ti
al usefulnessThese fun
tions helped improving the results for the two-dimensional 
ase of BPC. Forthe one-dimensional 
ase, the bounds were already tight. The results are somehowdisappointing, sin
e the fun
tions are not su�
ient to obtain 
ompetitive results (evenif they improved the previous best 
ombinatorial lower bounds). More 
ompli
atedbounds (involving the resolution of a transportation problems) were used after theappli
ation of the DFF.Considering the fa
t that the 
olumn-generation method returns good results forthis problem, we think that there is room for improvement for this variant of bin-pa
king. Note that �nding a DDFF for this problem is equivalent to �nding a heuristi
solution for the dual problem. This would require using te
hniques from both 
ontin-uous and dis
rete optimization �elds.2.5.3 DFF for the bin-pa
king problem with fragile items (BPFI-DFF)In this se
tion, we propose DFF for the bin-pa
king problem with fragile items (seeChapter 1). Re
all that the fragility of an item i is denoted ψi.The only lower bound previously dedi
ated to this problem is the so-
alled "fra
-tional lower bound". This bound is obtained by pa
king iteratively the items by in-
reasing fragility, allowing several parts of an item to be pa
ked in two 
onse
utive bins(see [5℄). It is a dire
t adaptation of the linear lower bound for the 
lassi
al bin-pa
kingproblem.2.5.3.1 De�nition and propertiesWe �rst de�ne formally the notion of dual-feasible fun
tions for BPFI (BPFI-DFF).De�nition 2.5.2 A mapping g de�ned from I to [0, 1] is a BPFI-DFF if
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∑

i∈S⊆I

ci ≤ min
j∈S
{ψj} =⇒

∑

i∈S

g(i) ≤ 1 (2.16)When a BPFI-DFF is 
omputed, it 
an be dire
tly used to derive a lower boundfor BPFI.Proposition 2.5.5 If g is a BPFI-DFF and I a set of items to pa
k in a BPFI instan
e
D, Lg = ⌈∑i∈I g(i)⌉ is a valid lower bound for the minimum number of bins to use for
D. The following proposition dire
tly follows from Equation (2.16) and the de�nitionof a CS-DFF.Proposition 2.5.6 If λ is a CS-DFF and g and BPFI-DFF, λ ◦ g is a BPFI-DFF.This means that a CS-DFF 
an be applied as a postpro
essing when a BPFI-DFFis applied to the original instan
e, and may improve the results obtained.The following results show a relation between superadditive fun
tions and BPFI-DFF. Note that without loss of generality, we 
onsider that the fragilities are stri
tlygreater than 0.Proposition 2.5.7 Let λ be a superadditive and in
reasing fun
tion su
h that λ(0) =
0. The following fun
tion g is a BPFI-DFF.

g : i 7→ λ(ci)/λ(ψi) (2.17)Note that all maximal CS-DFF des
ribed in this 
hapter are superadditive andin
reasing. Consequently, all useful fun
tions de�ned for the 
utting-sto
k 
an be usedfor the bin-pa
king with fragile items. If they are de�ned independently of a size ofbin, they 
an be applied in a straightforward way. However some CS-DFF a de�neda

ording to a size of bin. In this 
ase, ψmax 
an be used as a �
tive size of bin, orhand-tailored te
hniques 
an be applied to improve this value.The result of Proposition 2.5.7 
an be improved by in
reasing the image of the largeitems (i ∈ I, ci > ψi/2) to the largest possible size that is allowed when the small itemshave been transformed using fun
tion λ.Proposition 2.5.8 Let λ be a superadditive and in
reasing fun
tion su
h that λ(0) =
0. The following fun
tion ḡ is a BPFI-DFF.

ḡ : i 7→




1− max

ρ=0,...,ψi−ci
{ λ(ρ)
λ(ci+ρ)

} if ci > ψi/2

λ(ci)
λ(ψi)

if ci ≤ ψi/2
(2.18)



2.5. EXTENSIONS OF DFF FOR VARIOUS BIN-PACKING PROBLEMS 552.5.3.2 A spe
i�
 family of BPFI-DFFCreating BPFI-DFF from 
lassi
al CS-DFF 
an be done using the results of Propo-sitions 2.5.6,2.5.7 and 2.5.8. We now give an appli
ation of these theoreti
al resultsto a simple superadditive fun
tion: ⌊.⌋. We also show a way of using two di�erentBPFI-DFF to a given instan
e by using a de
omposition method.Corollary 2.5.1 Let k be a given parameter (1 ≤ k < minj∈I{ψj}), the followingfun
tion is a BPFI-DFF.
gk2 : i 7→

⌊ci/k⌋

⌊ψi/k⌋
(2.19)Note that using gk2 yields bounds that are better than L0 and L1, sin
e taking k = 1leads to the same value as L1. It 
an also be stri
tly greater than L2. Take n items ofwidth C/2 + ε and fragility C. In this 
ase, L2 = n/2 − 1, while the bound obtainedfrom g

C/2+ε
2 is equal to ∑

i∈I 1/1 = n (whi
h is the optimal result).Fun
tion gk2 
an be improved by in
reasing the image of the large items (i ∈ I,
ci > ψi/2) to the largest possible remaining spa
e when the other items have beentransformed using gk2 .Corollary 2.5.2 Let k be a given parameter (1 ≤ k < minj∈I{ψj}), the followingfun
tion is a BPFI-DFF.

ḡk2 : i 7→




1− max

ρ=1,...,ψi−ci
{ ⌊ρ/k⌋
⌊(ci+ρ)/k⌋

} if ci > ψi/2

⌊ci/k⌋
⌊ψi/k⌋

if ci ≤ ψi/2
(2.20)Let us give an example to illustrate the improvements that 
an be a
hieved usingBPPFO-DFF.Example 2.5.2 Take an instan
e with 100 items of width 5 and fragility 8 and 100items of width 2 and fragility 7. Let L2 be the fra
tional bound.

L2 = 92 (the 28 �rst bins are used to pa
k the 98 �rst items of size 2, then one bin
ontains two items of size 2 and 3 units of an item of size 5. Finally, the remainingitems of size 5 are fra
tionally pa
ked in 63 bins.
Lgk

2
with k = 2 : ⌈100 ∗ ⌊5/2⌋

⌊8/2⌋ + 100 ∗ ⌊2/2⌋
⌊7/2⌋⌉ = ⌈100 ∗ 1/2 + 100 ∗ 1/3⌉ = 84

Lḡk
2
with k = 2 : ⌈100 ∗ (1− ⌊2/2⌋

⌊(5+2)/2⌋
) + 100 ∗ ⌊2/2⌋

⌊7/2⌋
⌉ = ⌈100 ∗ 2/3+ 100 ∗ 1/3⌉ = 1002.5.3.3 Knapsa
k-based BPFI-DDFFOn
e again, fun
tion g1 de�ned in Proposition 2.5.2 
an be used. In this 
ase, theknapsa
k problems to solve to 
ompute the size of the bin and the size of the largeitems is a knapsa
k problem with fragile items. A dynami
 programming method forthis problem is des
ribed in Chapter 1.
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ti
al usefulnessThe fun
tions proposed lead to bounds that are 
lose to the value returned by themodel of Gilmore and Gomory. However, they are also 
lose to the simple fra
tionallower bound. The small gap between this latter bound and the 
olumn-generation oneleaves small room for improvements for the DFF.2.5.4 DFF for two-dimensional bin-pa
king problems (2BPP-DFF)We now 
onsider the two-dimensional bin-pa
king problem with and without rotation.We show that CS-DFF 
an be used to derive new 2BPP-DFF. The result for theoriented 
ase is due to Fekete and S
hepers [44℄ (we just rewrite their result to �t ourformalism). Our main 
ontribution here is the improvement for the 
ase with rotation.Problem 8 (Two-dimensional Bin-Pa
king Problem (2BPP)) Given a set I ofre
tangular items i of size (wi, hi), what is the minimum number of bins of size (W,H)needed to pa
k all the items of I in su
h a way that in ea
h bin, the items 
an be pa
kedinside the boundaries of the bin without overlapping? If the rotation of the items isallowed, we have a 2BPP with rotation (2BPP-R), otherwise, we have a 2BPP with�xed orientation (2BPP-O).We avoid the repetitive formal de�nition of a 2BPP-O-DFF and 2BPP-R-DFF.Just re
all the fa
t that, using su
h a DFF, for any valid pattern P for 2BPP, the sumof the images of the items in P is smaller than 1.2.5.4.1 DFF for the oriented 
ase [44℄ (2BPP-O-DFF)Fekete and S
hepers [44℄ have shown that two DFF 
ould be applied to ea
h dimensionof an instan
e of 2BPP-O to obtain a lower bound. Using our formalism, their result
an be written as follows.Proposition 2.5.9 Let f and g be two dis
rete CS-DFF respe
tively de�ned from
{0, . . . ,W} to [0, 1] and {0, . . . , H} to [0, 1]. The following fun
tion is a 2BPP-O-DFF.

ϕ : i 7→ f(wi) ∗ g(hi) (2.21)If the identity fun
tion is used for f and g, the bound based on the surfa
e of thebins is obtained. Note that the value of the image depends on the two dimensionsindependently. No a
tual two-dimensional DFF were derived in the literature. This
an be explained by the fa
t that 
hara
terizing the set of feasible patterns is hard.Even verifying that a pattern is feasible is NP-
omplete (see Chapter 3).
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hniques for 2BPP that do not relyon te
hniques dedi
ated to the one-dimensional 
ase. However, they have shown theire�e
tiveness on hard two-dimensional instan
es. This has been 
on�rmed by Capraraet al. [17℄. In this paper, the authors have proposed a bilinear programming methodfor �nding the best pair of DFF to apply to a bin-pa
king instan
e. This method leadsto results that are 
lose to those obtained by 
olumn-generation algorithms.2.5.4.2 DFF for the 
ase with rotation (2BPP-R-DFF)The two following results are rewritings of those proposed in [33℄. The �rst is a gener-alization of a bound of [14℄, the se
ond is a truly original result.The �rst result derives from a simple fa
t. For two given CS-DFF f and g, if alower bound for the oriented 
ase based on these two fun
tions is run for all possibleorientations of the items, and if the minimum is re
orded, a valid lower bound isobtained. Of 
ourse, the bound obtained would need an exponential time, sin
e it wouldlead to 2n lower bounds to 
ompute. Nevertheless a lower bound 
an be 
omputed by
onsidering the following relaxation: for ea
h item i, keep the smallest image that it
an have for its possible orientations. This leads to the following result.Proposition 2.5.10 (impli
itly used in [14℄) Let f and g be two dis
rete CS-DFF re-spe
tively de�ned from {0, . . . ,W} to [0, 1] and from {0, . . . , H} to [0, 1]. The followingfun
tion is a 2BPP-R-DFF.
ϕ1 : i 7→ min{f(wi) ∗ g(hi), g(wi) ∗ f(hi)} (2.22)A better DFF, that dominates the previous one (if f and g are in
reasing andsuperadditive), is now des
ribed.Proposition 2.5.11 Let f and g be two CS-DFF de�ned as above. The followingfun
tion is a 2BPP-R-DFF.
ϕ2 : i 7→

f(wi) ∗ g(hi) + g(wi) ∗ f(hi)

2
(2.23)The result is not intuitive, but is be
omes obvious when the following relaxation is
onsidered. From a 2BPP−R, 
onstru
t a 2BPP−O instan
e I ′ of size 2 ∗ n whereea
h item is repeated on
e for ea
h of its orientation. Clearly, the value of an optimalsolution for this new problem 
annot be more than twi
e the value of an optimalsolution for the original 2BPP−R instan
e. Take an optimal solution for 2BPP−Rwith z bins, keep the z bins and 
reate z new bins by rotating the z �rst bins. Youobtain a feasible solution for the new 2BPP−O instan
e with 2 ∗ z bins (see Figure2.4).The last result only holds when the bin is a square. It 
an be adapted for the 
asewhere the bin is a re
tangle by introdu
ing dummy items (and thus 
onstru
ting an
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9Figure 2.4: An optimal solution for 2BP−R with z bins (the two upper bins) and a solution for the 2BP−O relaxationusing 2 ∗ z bins (the two lower bins)instan
e where the bins are square). Unfortunately, doing so breaks the dominan
eresult between ϕ2 and ϕ1. Note that the fa
t that some items 
an only have oneorientation is not taken into a

ount in this result.2.5.4.3 Pra
ti
al usefulnessFor the two-dimensional 
ases, the DFF lead to surprisingly good results when thenumber of bins is large. When the number of bins de
reases, the geometri
 
onstraintbe
omes more important and the DFF are weaker. However, the results remain ofgood quality (see Chapter 3 for a dis
ussion on the redu
tion of the 
omputing timeobtained using DFF). For the 
ase with rotations, the bounds are rather simple, butdominate the other bounds from the literature and are pra
ti
ally tight when the binis a square. However, in some 
ases, 
onsidering a re
tangular bin 
an de
rease thequality of the bound by a wide range.2.6 Con
lusions, future worksIn this 
hapter, we fo
used on lower bounding te
hniques for bin-pa
king problem usingthe 
on
ept of dual-feasible fun
tions. It is important to note that the link betweenthe theory of superadditive fun
tions and dual-feasible fun
tions also helps improving
utting planes algorithms by enfor
ing some 
uts with maximal fun
tions. Therefore,we give a tool for improving many previous methods in a straightforward manner.Su

essfully generalizing the 
on
ept of dual-feasible fun
tion for several pa
kingproblems hints that this methodology 
an be applied to problems that lie outside the�eld of C&P problems. We plan to study and analyze su
h solutions for new prob-lems. We will fo
us on problems for whi
h set-
overing models and 
olumn generationgive good lower bounds (variants of vehi
ule routing or sta� s
heduling problems forexample). An interesting fa
t is that the de�nition of SC-DFF 
an dire
tly be appliedto a large variety of problems. One of the main di�
ulties is to handle the set of
onstraints de�ned in the subproblem, whi
h 
an be mu
h more 
ompli
ated than the
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k problem involved in the 
utting-sto
k problem. Chara
ter-izing the set of feasible patterns is also a 
hallenging issue.





Chapter 3Mixing 
onstraint-programming andOR te
hniques for solving re
tanglepla
ement problems
The work of this 
hapter has been published in an international journal [32℄ and in aninternational 
onferen
e [34℄ (an extended version is submitted to INFORMS Journalon Computing).3.1 Re
tangle pla
ement problemsWhen the two-dimensional bin-pa
king problem is addressed, verifying if a given subsetof items 
an be pa
ked into a bin is NP-
omplete (whereas for the one-dimensional 
asethe answer is straightforward). This problem has been addressed under several names.In the following, we will use the term re
tangle pla
ement problem. Figure 3.1 is anexample of solution for an instan
e of RPP with 12 items.Problem 9 (Re
tangle Pla
ement Problem (RPP)) Given a list of re
tangularitems, and a unique large re
tangle, is it possible to pa
k all the items into the re
tanglewithout overlapping?RPP not only o

urs as a subproblem in two-dimensional pa
king problems (bin-pa
king or knapsa
k problems), but also alone when re
tangular pie
es of steel, wood,or paper have to be 
ut from a larger re
tangle, and in many industrial appli
ations(VLSI design for example).When RPP has to be repeatedly solved in a more general optimization problem,resear
hers have fo
used on avoiding to solve this problem (see [19℄ for the knapsa
kproblem or [30℄ for the bin-pa
king problem). For example, bounds based on DFF 
anbe useful to dete
t non-feasible problems. As we will see in this 
hapter, 
onsiderablepra
ti
al di�
ulties arise in 
ases where solving RPP is unavoidable.Di�erent variants of RPP have been studied in the literature. In this do
ument, wefo
us on the regular ("un
onstrained" re
tangle pa
king problem), and on a 
lassi
alvariant 
alled guillotine-
utting problem. In this spe
i�
 
ase of RPP, the re
tangles61
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1 28 394 511 106 12

7
Figure 3.1: A solution for an instan
e of RPP321 4 56 7 89 1011Figure 3.2: A guillotine patternhave to be 
ut using guillotine 
uts only. A guillotine 
ut is parallel to one of thesides of the re
tangle, and must go from one edge all the way to the opposite edge ofa 
urrently available re
tangle.Problem 10 (Guillotine Cutting Problem (GCP)) Given a list of re
tangular items,and a large re
tangle, is it possible to 
ut the items from the large re
tangle withoutoverlapping, and using only guillotine 
uts?Figure 3.2 pi
tures an example of guillotine pattern. A �rst 
ut separates items1, 2 and 3 from the others, then a 
ut separates 4 and 5 from items 6 to 11 and soon. Note that the pattern of Figure 3.1 is not guillotine, sin
e no set of items 
an beseparated from the others without 
utting an item.Although GCP is 
onsidered as a "
utting" problem, the guillotine 
onstraint 
analso be relevant when one needs to pa
k items on shelves. A
tually we have met thisparti
ular problem during an industrial 
ontra
t on an automati
 storage devi
e.Surprisingly enough, although its 
ombinatorial stru
ture seems easier (with a ni
ere
ursive pattern), GCP is harder to solve in pra
ti
e than RPP for both heuristi
and exa
t methods. For the former, most of the resear
hers have restri
ted the sear
hspa
e to so-
alled two-stage patterns, where the re
ursive stru
ture is limited to a depthof two (strips are 
ut from the large re
tangles, and then ea
h strip is 
ut to obtainthe �nal items). There are also works about three-stage patterns. These variants arepopular be
ause they are relevant from a pra
ti
al point of view, and 
an be modelled
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tive ILP (see [76℄ for example). In our work we do not restri
t our patterns tobe two-stage.RPP has been the topi
 of many resear
h papers, in the OR literature under thename of feasibility problem [79,82℄, or orthogonal pa
king problem (in [43�45℄ for exam-ple), and in the 
onstraint programming 
ommunity [9,10,54,67℄. In the CP 
ommunity,RPP is mu
h more addressed than GCP. This 
an be explained by the fa
t that thestru
ture of GCP is far to be straightforward to 
apture in a CP model, and that mostof the propagation algorithms are only e�e
tive when many re
tangles have alreadybeen pa
ked.For both versions (RPP and GCP), our 
ontributions are twofold: they 
on
ernnew models and hybridization of CP and OR te
hniques based on these models. Ournew models are able to 
apture e�e
tively the stru
ture of the problems addressed, butit transpires that an e�e
tive use of OR te
hniques is mandatory to be able to prunesolutions and fasten the sear
h.For RPP (Se
tion 3.3), we have exploited the fa
t that the problem is tightlylinked to a 
lassi
al 
umulative s
heduling problem. Our model 
reates two s
hedulingproblems in addition to the original problem. This allows us to adapt several methodsfrom the s
heduling �eld to the pa
king �eld (energeti
 reasoning, ...).For GCP (Se
tion 3.4), we have proposed a brand new graph model, whi
h 
apturesthe re
ursive stru
ture of a guillotine pattern. This model leads to a CP algorithm,whi
h uses the graph to 
he
k the guillotine 
onstraint, and our RPP model to verifythat the items are pa
ked into the boundaries of the large re
tangle.3.2 Constraint programmingConstraint programming is a paradigm aimed at solving 
ombinatorial problems that
an be des
ribed by a set of variables, a set of possible values for ea
h variable, and aset of 
onstraints between the variables.The set of possible values of a variable V is 
alled the variable domain, denoted as
D(V ). It might be, for example, a set of numeri
 or symboli
 values {v1, v2, . . . , vk}, oran interval of 
onse
utive integers [α..β]. In the latter 
ase the lower bound of D(V )is denoted as V − = α and the upper bound is denoted as V + = β.A 
onstraint between variables expresses whi
h 
ombinations of values for the vari-ables are allowed. The question is whether there exists an assignment of values tovariables, su
h that all 
onstraints are satis�ed. The power of the 
onstraint program-ming method lies mainly in the fa
t that 
onstraints 
an be used in an a
tive pro
esstermed �
onstraint propagation� where 
ertain dedu
tions are performed, in order toredu
e 
omputational e�ort. Constraint propagation removes values from the domains,dedu
es new 
onstraints, and dete
ts in
onsisten
ies.Constraint propagation alone is rarely su�
ient to solve hard problems. The
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Figure 3.3: Modeling a re
tangle pla
ement with two interval graphs
onstraint propagation algorithms are generally run at ea
h node of an enumerativemethod.3.3 The re
tangle pla
ement problem (RPP)The �rst OR methods for the re
tangle pla
ement problem 
onsist in pa
king itemsone by one in the bin [55, 79℄. They rely on the so-
alled bottom-left dominan
e rule(see [26℄), whi
h states that ea
h item 
an be pa
ked in a leftmost and downward
orner. Ea
h item is either adja
ent to another item, or a side of the bin.In [43,45℄, Fekete et al. propose a new model for the feasibility problem. They showthat a pair of interval graphs 
an be asso
iated with any pa
king 
lass (i.e., a set ofpa
kings with 
ommon properties). The interest of this 
on
ept is that a large numberof symmetries are removed, sin
e only one pa
king is enumerated per 
lass. A graph
Gd = (I, Ed) is asso
iated with ea
h dimension (I is the set of items) and d ∈ {w, h} isthe dimension 
onsidered. An edge is added in the graph Gw (respe
tively Gh) betweentwo verti
es i and j if the proje
tions of items i and j on the horizontal (respe
tivelyverti
al) axis overlap (see Figure 3.3). They also provide a bran
h-and-bound [45℄to seek a pair of interval graphs with suitable properties, and then dedu
e a feasiblepa
king. In 
omparison with 
lassi
al methods, this method avoids a large number ofredundan
ies, and outperforms the best previous OR method [79℄.The model of Fekete and S
hepers has been improved by 
onsidering a betterrepresentation of interval graphs (using so-
alled 
onse
utive 1 matri
es [62℄ or PQ-trees [63℄). Note that, even with these re�nements, the methods based on intervalgraphs are still outperformed by state-of-the-art CP methods. The CP 
ommunity hasstudied the RPP with several di�erent models. In the �rst, the de
ision variables are
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ement of ea
h pair of items i and j (see [67,82℄ for example). Beldi
eanuand Carlsson [9℄ have shown that with a good propagation (performed by the SWEEPalgorithm), the non-overlapping 
onstraints alone 
an lead to good results [11℄. Thebran
hing s
heme 
onsists in testing ea
h possible position in the bin for ea
h item inturn.Our work on re
tangle pla
ement lies between the OR and CP 
ommunities. Weuse a 
onstraint-programming s
heme, whi
h is based on s
heduling te
hniques, andadd several pruning pro
edures based on OR te
hniques (resolution of small knapsa
kproblems, and original appli
ations of dual-feasible fun
tions).3.3.1 A 
onstraint-based s
heduling model for RPPWe now des
ribe our 
onstraint-based s
heduling model for RPP. We �rst re
all a
lassi
al model for the non-overlapping 
onstraint, and then explain how it 
an berelaxed into a s
heduling problem. This leads to a model that uses so-
alled 
umulative
onstraints in addition to the non-overlapping 
onstraints.3.3.1.1 A basi
 
onstraint programming modelIn 
onstraint programming, RPP 
an be 
lassi
ally en
oded in terms of variables and
onstraints. Two variables Xi and Yi are asso
iated with ea
h item i. They representthe 
oordinates of i in the bin. We denote as D(Xi) = [Xmin
i , Xmax

i ] and D(Yi) =

[Y min
i , Y max

i ], respe
tively the domains of variables Xi and Yi, in whi
h Xmin
i , Xmax

i ,
Y min
i and Y max

i are the lower and upper bounds of the domains. Initially, the domainsof these variables are respe
tively set to [0, . . . ,W − wi] and [0, . . . , H − hi]. For ea
hpair of items i and j, we asso
iate the following 
onstraint: [Xi+wi ≤ Xj] or [Xj+wj ≤

Xi] or [Yi+hi ≤ Yj] or [Yj+hj ≤ Yi], whi
h expresses the fa
t that items i and j 
annotoverlap in the bin.This model is su�
ient to ensure that the solution is valid, on
e the domains ofvariables have been redu
ed to only one value su
h that all 
onstraints are satis�ed.We will refer to this model as the �basi
 model�. Generally, this model is pra
ti
allyine�e
tive to solve the problem. However, note that the use of the �sweep� algorithmof Beldi
eanu and Carlsson [9℄, whi
h propagates e�
iently the above-des
ribed 
on-straint, gives 
ompetitive results.3.3.1.2 A new relaxation into a s
heduling modelIn a previous work, we 
onsidered a new relaxation for the RPP. We remove the 
on-straints related to the height of the items and repla
e them by a 
lassi
al 
umulative
onstraint. Pra
ti
ally speaking, it means that several horizontal strips of an item areallowed not to be 
ontiguous on the verti
al axis. Ea
h solution of the relaxed problem
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Figure 3.4: A relaxation of RPP into a CuSP
orresponds with a set of patterns for RPP. If there is no solution for the relaxed prob-lem, there is no solution for RPP. A partial solution of the relaxed problem is pi
turedin Figure 3.4. This problem is known in the s
heduling 
ommunity as the 
umulatives
heduling problem (CuSP).Problem 11 (Cumulative s
heduling problem (CuSP)) We are given a set of na
tivities {A1, . . . , An} and a set of resour
es {R1, . . . , Rm}. Ea
h a
tivity Ai has apro
essing time, requires a parti
ular amount of a resour
e Rk and has to be exe
utedwithin a time window [esti, leti). Resour
es have a given 
apa
ity that 
annot be ex-
eeded at any point in time. The resour
e 
an exe
ute several a
tivities, provided thatthe resour
e 
apa
ity is not ex
eeded. The problem to be solved 
onsists in de
idingwhen ea
h a
tivity is exe
uted, while respe
ting the resour
e 
onstraints, and withoutinterruption.In the following, we show how this relaxation is used to enfor
e our CP model, andhow 
onstraint-based s
heduling algorithms 
an be adapted to our models.3.3.1.3 A 
onstraint-based s
heduling modelThe relaxation des
ribed above 
an be applied to the width instead of the height. Inthis 
ase, another CuSP is obtained. A
tually, our method uses both CuSP (one forea
h dimension) to strengthen the original model.We now des
ribe formally the two CuSP addressed. The two 
onsidered resour
esare termed Rw and Rh. The resour
e 
apa
ity of Rw is equal to H and the resour
e
apa
ity of Rh is equal to W . We de�ne a set {Aw1 , . . . , Awn}. Ea
h a
tivity Awi has apro
essing time wi, requires an amount hi of the resour
e Rw, and has to be exe
utedwithin the time window [0,W ). Similarly, we de�ne a set {Ah1 , . . . , Ahn} of a
tivities.Ea
h a
tivity Ahi has a pro
essing time hi, requires an amount wi of the resour
e Rhand has to be exe
uted within the time window [0, H).We introdu
e a variable start(A) for ea
h a
tivity A, representing the start time of

A. Initially, the domain of variables start(Awi ) is set to [0, . . . ,W −wi] and the domain
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e 
onstraints represent the fa
tthat a
tivities require some amount of a resour
e throughout their exe
ution. In ournon-preemptive 
umulative 
ase, the resour
e 
onstraints 
an be expressed as follows:
∀t ∈ [0, . . . ,W ],

∑

Aw
i /start(A

w
i )≤t<start(Aw

i )+wi

hi ≤ H.

∀t ∈ [0, . . . , H ],
∑

Ah
i /start(A

h
i )≤t<start(A

h
i )+hi

wi ≤W.In other words, the sum of resour
e requirement of a
tivities Awi (respe
tively Ahi )exe
uted at time t has to be lower than or equal to the resour
e 
apa
ityH (respe
tively
W ) of resour
e Rw (respe
tively Rh).Finally, the s
heduling problem is linked to the 
onstraint programmingmodel of theoriginal RPP (see above) with the following 
onstraints: for ea
h item i, [start(Awi ) =
Xi] and [start(Ahi ) = Yi]. It is easy to see that on
e the variables start(Awi ) and
start(Ahi ) are instantiated in su
h a way that all 
onstraints are satis�ed, the 
orre-sponding solution is valid.To des
ribe our bran
h-and-bound algorithm, we use the start(Awi ) and start(Ahi )variables. We use a s
hedule-or-postpone method, whi
h works as follows: at ea
hstep of the pro
edure, we 
hoose an uns
heduled a
tivity and we s
hedule it as earlyas the previous a
tivities s
heduled on the same resour
e will allow. We obtained thebest experimental results by working �rst on a given resour
e ex
lusively and then onthe other. Note that our work has now been extended by [54℄, who used the samemodel, with an improved bran
hing s
heme based on the same ideas (in fa
t they usedi
hotomy instead of testing ea
h value of X in turn).Sin
e RPP has been modeled as a s
heduling problem, it is now possible to use pow-erful 
onstraint-based s
heduling propagation te
hniques spe
i�
 to non-preemptives
heduling problems (see for instan
e [6℄). These te
hniques allow us to tighten thedomains of variables and to dete
t in
onsisten
ies during the pro
edure. However, notethat edge-�nding propagation te
hniques [6℄ were not useful for our problem.3.3.2 Two-dimensional energeti
 reasoningWe now des
ribe the 
on
ept of energeti
 reasoning, originally developed by Ers
hleret al. [41, 74℄ to solve 
umulative s
heduling problems. We suggest a generalization ofenergeti
 reasoning, whi
h allows the feasibility of orthogonal pa
king patterns to betested, and new adjustments to be found.3.3.2.1 Feasibility tests and bounds adjustmentsFor s
heduling problems, dedu
tions made using energeti
 reasoning are based on the
onsumption of resour
es by a
tivities during given time intervals. For a given time



68 RECTANGLE PLACEMENT PROBLEMSinterval [α, β), α < β, energy is supplied by a resour
e and 
onsumed by an a
tivity.The energy supplied by a resour
e of 
apa
ity C in this interval is equal to (β−α)×C,and the energy 
onsumed by an a
tivity of demand ci is equal to ci × ∆i, where ∆iis the part of a
tivity i s
heduled in [α, β). If the starting time of the a
tivity isnot yet �xed, we determine the mandatory energy 
onsumption in interval [α, β). It isobtained by 
onsidering the positions in whi
h the pro
essing of the a
tivity is minimalin [α, β). By 
onsidering the quantities of energy supplied and 
onsumed within givenintervals, the energeti
 approa
h aims at developing satis�ability tests and time-boundadjustments to ensure that either a given s
hedule is not feasible or to derive somene
essary 
onditions that any feasible s
hedule must satisfy.Unlike a
tivities in s
heduling problems, the position of an item has to be �xedwith respe
t to both the horizontal and verti
al dimensions. We therefore suggest thefollowing generalization of energeti
 reasoning. Instead of 
onsidering an interval [α, β),we 
onsider a re
tangular window. We de�ne the re
tangular window [α, β, γ, δ), α < βand γ < δ, in whi
h [α, β)× [γ, δ) is the area under 
onsideration.Energy is now supplied by the bin and 
onsumed by items. Energy supplied by thebin in window [α, β, γ, δ) is equal to (β − α) × (δ − γ). The energy 
onsumed by anitem 
an be 
omputed 
onsidering the bottom left and top right positions a

ordingto the domains of its 
oordinate variables, in whi
h the item's 
onsumption is minimal(see Figure 3.5). Let ŵi(α, β) and ĥi(γ, δ) be respe
tively the width and the height ofthe mandatory part of item i in the window [α, β, γ, δ) (see Figure 3.5). We have:
ŵi(α, β) = max (0,min {wi, β − α,X

min
i + wi − α, β −X

max
i })and

ĥi(γ, δ) = max (0,min {hi, δ − γ, Y
min
i + hi − γ, δ − Y

max
i }).Energy 
onsumed by item i in window [α, β, γ, δ) is then Êi(α, β, γ, δ) = ŵi(α, β) ×

ĥi(γ, δ). Therefore, the total energy 
onsumed by all items in window [α, β, γ, δ) is
Ê(α, β, γ, δ) =

∑
i∈I Êi(α, β, γ, δ). As in basi
 energeti
 reasoning, the following propo-sition holds.Proposition 3.3.1 If there is a feasible pa
king, then ∀α, β ∈ [0,W ), ∀γ, δ ∈ [0, H),su
h that α < β and γ < δ, we have Ê(α, β, γ, δ) ≤ (β − α)× (δ − γ).This means that for every possible window, energy supplied by the bin has to beat least as large as minimal energy 
onsumed by items. To perform feasibility tests,we 
an test this inequality at ea
h node of the sear
h tree algorithm for all relevantwindows in the bin. If there exists a window for whi
h the inequality does not hold,then the 
onsidered node 
annot lead to a feasible solution and 
an 
onsequently bepruned.The values of Ê(α, β, γ, δ) 
an also be used to adjust domain variable bounds of Xiand Yi. Let i be an item and let [α, β, γ, δ) be a window su
h that β < Xmax

i +wi. We
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Figure 3.5: Mandatory part of item i in the re
tangle [α, β, γ, δ) by 
onsidering its two extreme positions.verify whether i 
an be fully pa
ked before β, i.e., if i 
an be pa
ked at a 
oordinate
Xi su
h that Xi + wi ≤ β. If i is fully pa
ked before β, then its energy 
onsumptionis obtained by 
onsidering its leftmost position. If this total energy 
onsumption isgreater than (β − α)× (δ − γ), it means that item i 
annot be fully pa
ked before β.In this 
ase, we update the domain of Xi to take into a

ount this fa
t.Baptiste et al. [7℄ studied the 
umulative s
heduling problem and showed that it issu�
ient to 
al
ulate energies for intervals belonging to a 
hara
terized set in order to�nd all possible dedu
tions. We generalized their result to the two-dimensional 
ase.Pra
ti
ally speaking, only a subset of possible intervals are used, sin
e using all of themis too time-
onsuming.3.3.3 Using DFF in feasibility testsDFF have been de�ned in details in Chapter 2. In this se
tion, we fo
us on thetransformations applied to the partial instan
es of RPP to allow an e�e
tive usage ofDFF. The bounds applied on these instan
es are des
ribed in details in Chapter 2.Note that when DFF are applied to the instan
e, a lower bound for the bin-pa
kingproblem is obtained. If this value is greater than one, then the instan
e has no solution.The problem with 
lassi
al DFF is that they 
annot take into a

ount the fa
t thatsome items are already pa
ked. If DFF are applied on a partial solution, the valuereturned will be the same as initially. Consequently, we operate some modi�
ations onthe instan
e, based on the position of the pa
ked items, to allow the DFF to produ
e



70 RECTANGLE PLACEMENT PROBLEMSbetter pruning methods.In the �rst te
hnique, we use DFF to improve the feasibility test based on energeti
reasoning. It relies on the fa
t that a small 2OPP instan
e is 
reated when energeti
reasonings are used. In the se
ond te
hnique, we merge items that have been pa
kedto 
reate a more 
onstrained instan
e for whi
h DFF may be able to show that thereis no solutions.3.3.3.1 Using BP-DFF in Energeti
 ReasoningConsider virtual items (ŵi(α, β), ĥi(γ, δ)) obtained from the widths and the heights ofitems in window [α, β, γ, δ). The set of items 
orresponding to the mandatory parts ofthe items of I in [α, β, γ, δ) is denoted by Î(α, β, γ, δ).Proposition 3.3.2 Let (I, B) be a RPP. For four integer values α, β, γ and δ, and adomain variable for the x- and y-
oordinates of the items of I, if the 2OPP problemde�ned by Î(α, β, γ, δ) and B̂ = (β−α, δ−γ) has no solution, then there is no solutionfor the original RPP with the 
urrent domain variables.Several methods 
an be used to show that a parti
ular 2OPP problem obtainedis not feasible, the qui
kest being to 
he
k that the 
ontinuous lower bound does notex
eed one. This 
orresponds to the feasibility test des
ribed in previous se
tion. Inour 
ase, we use the lower bounds based on DFF and des
ribed in Chapter 2. We
ould use prepro
essing methods or an exa
t method. Nevertheless, experimentationhas shown that the 
omputation time required for this latter method is too great withrespe
t to the redu
tion of the sear
h spa
e.3.3.3.2 Using BP-DFF on a 
onstrained instan
eThe idea is to aggregate the items whi
h are pa
ked side-by-side to 
reate new instan
eswhi
h are more 
onstrained than the initial instan
e (Figure 3.6). The lower boundsand the redu
tion pro
edures are applied to these instan
es to obtain better results.The method is based on a geometri
 observation. Consider the polygon ψ formed bythe set I1 of items pa
ked in the bin. If I1 is repla
ed in the initial instan
e D byanother set I ′1 su
h that items of I ′1 
an be pa
ked in ψ, the following property holds:Proposition 3.3.3 If there is no feasible solution for I \ I1 + I ′1 in B, then there isno feasible solution for I in B su
h that items of I1 are pa
ked in ψ.Given a set of pa
ked items I1, we 
reate a set I ′1 whi
h is more 
onstrained than
I1. The idea is to maximize the height or the width of the 
reated items to obtain twoinstan
es (Figure 3.6). If several transformed items whi
h are pa
ked side by side areshallow they 
an be pa
ked one above the other in the new instan
e. To avoid thissituation we operate a se
ond modi�
ation on the items. If the pa
ked items have been
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Figure 3.6: Computing suitable instan
es for applying the DFF
ut into verti
al strips, we add to the new items a height equal to H and the heightof the bin is updated to 2H . So the bounds 
an take into a

ount the fa
t that theseitems 
annot be pa
ked one above the other. If the pa
ked items do not �t the widthof the bin a dummy item with size (w∗, H) is 
reated, w∗ being the free width to theright of the pa
ked items (Figure 3.6). Note that after the se
ond transformation, item
3′ 
annot be pa
ked above item 2′. The same operation 
an be realized when the widthis 
onsidered. We denote the new instan
e obtained as D′′. The results are improvedbe
ause the problem is more 
onstrained as the number of large items in
reases.3.3.4 Knapsa
k-based feasibility testsWe now show how reasoning 
an be done for pruning the sear
h tree using the solutionof subset-sum problems. The subset-sum problem is a parti
ular 
ase of the knapsa
kproblem (Problem 2), where the size of ea
h item is equal to its pro�t. It has been usedby Bos
hetti and Mingozzi [13℄ in a prepro
essing, and by Fekete and S
hepers [44,45℄in their exa
t method.In our method, the main idea is to make use of the information that is givenby the domains of the variables in our 
onstraint programming model. Similarly toenergeti
 reasoning, our algorithm allows to prune partial solutions, but also to realizeadjustments on the domains of the variables. An important part of our work is to avoid
omputing non-ne
essary information to realize our tests, using dominan
e rules.Let P be a partial solution for a RPP instan
e, and x a given x-
oordinate. Wedenote by Hx the sum of the heights of the items whose variable has been �xed (Xmin

i =

Xmax
i ) and su
h that x ∈ [Xi, Xi + wi). If Hx < H , additional items 
an be pa
kedin [x, x + 1). However, if there is no unpa
ked item j su
h that hj < H − Hx, thenne
essarily some area has been lost. Consequently, the value H −Hx 
an be added tothe total area of the items to strengthen any reasoning based on the remaining area.This idea 
an be generalized when items 
an be pa
ked in [x, x + 1) without thepossibility of perfe
tly �tting the free spa
e. Let Ix be the subset of items i whosevariable Xi has not been �xed (Xmin

i < Xmax
i ) and su
h that x ∈ [Xmin

i , Xmax
i + wi),i.e., a pie
e of i 
ould be pa
ked in [x, x + 1). We want to determine the minimum



72 RECTANGLE PLACEMENT PROBLEMSheight loss in interval [x, x+1). This 
an be done by solving a 
lassi
al one-dimensionalknapsa
k problem, where the size of the bin is H−Hx, the set of items Ix, ea
h of sizeand pro�t hi.We �nely tuned this method by: 1) 
onsidering intervals instead of all 
oordinates(time optimization); 2) performing all possible dedu
tions; 3) taking into a

ount themandatory parts of the items.3.3.5 Computational experiments: a synthesisThe main 
on
lusions that 
an be drawn from our 
omputational experiments is thatin
luding the 
umulative 
onstraints in the model and giving a priority in the bran
hings
heme for one of the two dimensions is su�
ient to lead to 
ompetitive results. These
on
lusions have been 
on�rmed later by [54℄ in their 
omputational experiments.The two-dimensional energeti
 reasoning allows some additional dedu
tions, butthe 
omputing time is in general too large 
ompared to its e�e
tiveness. This is duein part to our bran
hing s
heme, whi
h �rst works on one dimension. However, forsome instan
es, the 
omputing time is redu
ed, in parti
ular instan
es for whi
h somesolutions of CuSP do not have a 
orresponding RPP solution.All our new feasibility tests redu
e both the number of explored states and the
omputing time. The best 
ompromise between the redu
tion of the sear
h spa
eand the time required seems to be the method used with one-dimensional energeti
reasoning and subset-sum reasoning. The size of the bin is small in the instan
es weused. For larger bins, the subset-sum based methods have to be avoided, sin
e their
omputing time be
omes too large.We have 
ompared the best previous algorithms in the literature with our method[9,45℄. For this purpose, we used di�
ult ben
hmarks with up to 20 items. Our method,using improving te
hniques, dramati
ally redu
es the sear
h spa
e in 
omparison withall previous algorithms. Even in the absen
e of improving te
hniques, we are almost
ompetitive with the previous approa
hes. All instan
es 
an now be solved in lessthan seven se
onds, unlike the previous results, where some instan
es 
annot be solvedwithin one hour.3.4 The guillotine-
utting problem (GCP)In the literature to date we �nd two alternative methods for solving the guillotine
utting problem (see [59℄). The �rst approa
h [25℄ 
onsists in iteratively 
utting thebin into two re
tangles, using horizontal or verti
al 
uts, until all the required re
tanglesare obtained. The se
ond approa
h [88℄ re
ursively merges items into larger re
tangles,using so-
alled horizontal or verti
al builds [89℄. The most re
ent work on the subje
tis by Bekrar et al. [8℄, and provides an adaptation of the bran
h-and-bound method of



3.4. THE GUILLOTINE-CUTTING PROBLEM (GCP) 73Martello et al. [77℄. An adaptation of an RPP algorithm to the GCP is also proposedby Amossen and Pisinger [3℄.To our knowledge, the only existing CP pro
edures are based on methods that 
he
kalgorithmi
ally at ea
h node if the pa
ked re
tangles violate the guillotine 
onstraint.Our implementation of this method did not lead to interesting results.In this do
ument, we use another approa
h. We propose a new graph-theoreti
almodel for GCP. A �rst idea is to use a tree to represent a pattern. When a solution isfound, it 
an indeed be modeled as a tree, where the leaves 
orrespond with items andthe inner verti
es to 
uts. This is a suitable representation for a �nal solution, but we
onsidered that it was not suitable for building a solution, sin
e the number of verti
esis not known in advan
e, and represent di�erent kinds of obje
ts (
uts or items).Another way of modeling a guillotine pattern with a graph would be to adapt themodel of [43℄, using algorithms to dete
t whether the guillotine 
onstraint is satis-�ed. This is not how we have 
hosen to pro
eed. Instead, we propose a novel graph-theoreti
al model that takes into a

ount the spe
i�
 
ombinatorial stru
ture of theguillotine-
utting problem.We �rst des
ribe the new 
on
ept of guillotine-
utting 
lasses, whi
h models equiva-lent patterns for the GCP. Then we des
ribe our new ar
-
olored oriented graph model,and show the equivalen
e between �nding a suitable graph and �nding a feasible so-lution for GCP. Finally, we study the 
ombinatorial stru
ture of our model, obtainedby removing 
olors and dire
tions of the ar
s. These non-dire
ted multi-graphs havea spe
ial stru
ture, whi
h is used to design e�
ient algorithm to re
ognize them and
omputing the patterns asso
iated with them. Finally, we des
ribe roughly the CPapproa
h based on our model, and 
omment our 
omputational experiments, whi
hshow that our model allows to improve previous results by a wide range.3.4.1 Guillotine-
utting 
lassesIn order to avoid equivalent patterns in the RPP, Fekete and S
hepers [43℄ proposedthe 
on
ept of pa
king 
lass. Pa
king 
lasses are general, and 
an model any pattern.When only guillotine patterns are sought, pa
king 
lasses may not be suited to theproblem, sin
e two di�erent pa
king 
lasses may give rise to patterns having the same
ombinatorial stru
ture. We introdu
e the 
on
ept of guillotine-
utting 
lass to in
ludeall guillotine patterns. This takes into a

ount the fa
t that ex
hanging the positionsof two re
tangular blo
ks of items does not 
hange the 
ombinatorial stru
ture of thesolution. The de�nition uses the notion of builds that we de�ne below.A build [89℄ involves 
reating a new item by 
ombining two other items (see Figure3.7). The result of a horizontal build of two items i and j, denoted build(i, j, horizontal),is an item labeled min{i, j}, of width wi+wj and height max{hi, hj}. A verti
al buildis de�ned similarly.
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al and horizontal builds of two items 1 and 2.
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Figure 3.8: A guillotine-
utting 
lassDe�nition 3.4.1 Two solutions belong to the same guillotine-
utting 
lass if they 
anbe obtained from a same sequen
e of horizontal and verti
al builds.Figure 3.8 shows a guillotine-
utting 
lass. Clearly, if one member of a guillotine-
utting 
lass is feasible, then so are the other members. In this 
ase we say that theguillotine-
utting 
lass is feasible. This 
on
ept redu
es dramati
ally the number ofequivalent patterns in 
omparison with a dire
t appli
ation of the model of [43℄. This ishardly surprising, sin
e the 
on
ept of pa
king 
lasses was not designed for this spe
i�
problem.Note that there still remain redundan
ies. Two di�erent sequen
es of builds maylead to solutions with the same 
ombinatorial stru
ture, for example when there is apartial pattern that 
an be obtained with either a horizontal or a verti
al �rst 
ut.This means that a given pattern may belong to several guillotine-
utting 
lasses.3.4.2 A new graph-theoreti
al modelWe study a new 
lass of dire
ted and ar
-
olored graphs, and show that su
h graphs 
anbe asso
iated with guillotine-
utting 
lasses. We 
all these graphs guillotine graphs.In order to de�ne this new 
lass, we introdu
e the 
on
ept of 
ir
uit 
ontra
tion,analogous to the 
lassi
al 
on
ept of ar
 
ontra
tion used in graph theory.
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(a) initial graph (b) after 
y
le-
ontra
tionFigure 3.9: Cy
le-
ontra
tionDe�nition 3.4.2 Let G = (V,E) be a graph, and µ = [vi1 , vi2, . . . , vik , vi1 ] a 
y
le of

G. Contra
ting µ is equivalent to iteratively 
ontra
ting ea
h edge of µ.When referring to an undire
ted graph we use the term 
y
le-
ontra
tion. Thesame 
on
ept 
an be applied to dire
ted graphs, in whi
h 
ase we use the term 
ir
uit-
ontra
tion. In Figure 3.9, 
ontra
ting the bla
k 
y
le in the left-hand graph leads tothe right-hand graph. The index of the vertex obtained by 
ontra
ting a 
ir
uit µ isthe smallest index of an item in µ.In our new model, a vertex is asso
iated with ea
h item i, and a 
ir
uit is asso
iatedwith a list of horizontal or verti
al builds. Let G = (I, A) be a dire
ted graph. We usea 
on
ept of ar
 
oloring de�ned as follows. An ar
 
oloring of a graph G is a mapping
ξ from A to a set of k 
olors. In order to distinguish between horizontal and verti
albuilds, we equate horizontal builds with the 
olor red, and verti
al builds with the
olor green. Thus in this do
ument we fo
us on bi
oloring (and ar
-bi
olored graphs),i.e., we 
onsider a mapping from A to {red, green}.We say that a 
ir
uit is mono
hromati
 if all ar
s of the 
ir
uit have the same 
olor.In the graph, 
ir
uit-
ontra
ting a red (resp. green) 
ir
uit 
orresponds to a list ofhorizontal (resp. verti
al) builds. When a 
ir
uit µ is 
ontra
ted, the size asso
iatedwith the residual vertex is the size of the item built, and its label is the smallestvertex label in µ. We now give a de�nition of guillotine graphs, whi
h model guillotinepatterns.De�nition 3.4.3 Let G be an ar
-bi
olored dire
ted graph. G is a guillotine graph if G
an be redu
ed to a single vertex x by iterative 
ontra
tions of mono
hromati
 
ir
uitswith the following properties:1. there are no steps in whi
h a vertex belongs to two di�erent mono
hromati
 
ir-
uits2. when a 
ir
uit µ is 
ontra
ted, either the 
urrent graph is a 
ir
uit, or exa
tlytwo verti
es of µ are of degree stri
tly greater than two.
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Figure 3.10: Modeling the pattern in Figure 3.2 with a dominant guillotine graphNote that the de�nition 
an be dire
tly generalized for higher dimensions (just by
onsidering k 
olors instead of two).Many equivalent graphs 
an be asso
iated with a given guillotine-
utting 
lass, andso we introdu
e di�erent levels of dominan
e for these graphs.In a normal guillotine graph, the two verti
es xi and xj of degree greater than twoin a mono
hromati
 
ir
uit µ are su
h that xj follows xi in µ, xi 
annot be the tail ofany ar
 outside µ, and xj 
annot be the head of any ar
 outside µ.De�nition 3.4.4 Let G be a guillotine graph. G is a normal guillotine graph ifat any step of the iterative 
ontra
tion pro
ess, in ea
h mono
hromati
 
ir
uit µ =

(x1, x2), . . . , (xk−1, xk), if there are two verti
es xi and xj of degree stri
tly greater thantwo, then (xi, xj) ∈ µ and |N+(xi)| = 1 and |N−(xj)| = 1.In dominant guillotine graphs, verti
es have to be sorted by in
reasing index in any
ir
uit.De�nition 3.4.5 Let G be a normal guillotine graph. G is a dominant guillotinegraph if in all graphs obtained by applying 
ir
uit-
ontra
tions to G, verti
es in amono
hromati
 
ir
uit are ordered by in
reasing index.Figure 3.10 shows the dominant graph that models the 
on�guration of Figure 3.2.Theorem 3.4.1 If G is a dominant guillotine graph, G 
an be asso
iated with a uniqueguillotine-
utting 
lass. Moreover, for ea
h normal sequen
e of builds, there is exa
tlyone dominant guillotine graph.If several normal sequen
es of builds lead to the same guillotine pattern, then severalgraphs will be asso
iated with the same pattern. This o

urs in 
ases where a verti
aland a horizontal 
ut produ
e items of the same size, irrespe
tive of the order in whi
hthe two 
uts are performed. Handling these symmetries is an issue that 
an only bedone using algorithmi
 methods. However, it has to be noted that from a pra
ti
alpoint of view, these 
utting patterns are a
tually di�erent, sin
e they are related totwo di�erent sequen
es of 
uts for an automati
 
utting devi
e.
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Figure 3.11: A 
y
le-
ontra
table graph3.4.3 Cy
le-
ontra
table graphsWe now look at the 
ombinatorial stru
ture of our model when 
olors and orientationsare removed. This non-dire
ted and un
olored version of guillotine graphs helps �ndinglinear algorithms for re
ognizing guillotine graphs, and may be easier to use in heuris-ti
s or meta-heuristi
s. We name 
y
le-
ontra
table graphs these undire
ted un
oloredguillotine graphs.We �rst de�ne the 
y
le-
ontra
table graphs, and show that they are undire
tedun
olored guillotine graphs.Let G = (V,E) be an undire
ted multigraph. If there is a Hamiltonian 
y
le
µ = [v1, v2, . . . , vn, v1], a 
orresponding ordering σ 
an be asso
iated with the verti
esof V (σ(vk) = k) for k = 1, . . . , n. Hereafter, when a graph G has a Hamiltonian 
y
le,we shall refer to any edge that is not in
luded in the 
y
le as a ba
kward edge.De�nition 3.4.6 Let G = (I, E) be an undire
ted multigraph. G is a 
y
le-
ontra
tablegraph if G 
ontains a Hamiltonian 
y
le µ with a 
orresponding ordering σ su
h that1. G does not in
lude two equivalent ba
kward edges [i, j] and [i, j]2. G does not in
lude two ba
kward edges [i, j] and [k, l] su
h that σ(i) < σ(k) ≤

σ(j) < σ(l)The graph in Figure 3.11 is a 
y
le-
ontra
table graph. It 
an be depi
ted as a
ir
le of verti
es and non-
rossing 
hords.In the following, we show that dominant guillotine graphs and 
y
le-
ontra
tablegraphs are similar. A �rst important property is that guillotine graphs 
ontain aHamiltonian 
ir
uit. This result will be used throughout this 
hapter.Lemma 3.4.1 If G is a guillotine graph, it 
ontains a Hamiltonian 
ir
uit.This allows us to show that dominant guillotine graphs have the stru
ture of 
y
le-
ontra
table graphs. For this purpose we 
onsider the graph obtained by removing the
olor and the orientation of the ar
s of the 
onsidered guillotine graph.
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y
le in a 
y
le-
ontra
table graphData: G = (V,E): multigraph;
µ← ∅;1
L← ∅;2 forall edge that appears twi
e in E do delete one of the two edges [vi, vj];3 forall i su
h that |N(vi)| = 2 do L← L ∪ {vi};4 repeat5 Let vi be a vertex in L and let vj and vk be its two neighbors;6

L← L \ {vi};7 if [vi, vj] is not ba
kward then µ← µ ∪ {[vi, vj]};8 if [vi, vk] is not ba
kward then µ← µ ∪ {[vi, vk]};9
G← G \ {vi};10 if [vj , vk] 6∈ G then G← G ∪ {[vj, vk]};11 mark [vj , vk] as ba
kward ;12 if |N(vj)| = 2 then L← L ∪ {vj};13 if |N(vk)| = 2 then L← L ∪ {vk};14 until n = 3 or L is empty ;15 if n > 3 then exit with the FAIL status;16 add ea
h remaining edge in µ if it is not ba
kward;17 return µ;18Theorem 3.4.2 An ar
-un
olored undire
ted guillotine graph is a 
y
le-
ontra
tablemultigraph.3.4.4 Computing the patterns asso
iated with a 
y
le-
ontra
tablegraphWe now propose an algorithm to re
ognize 
y
le-
ontra
table graphs. When su
hgraphs are 
onsidered, the �rst step is to determine whi
h edges belong to the Hamil-tonian 
y
le µ, and whi
h edges are ba
kward (i.e. edges that do not belong to µ).Algorithm 2 �nds the 
y
le µ in linear time.The validity of Algorithm 2 below is based on the two following lemmas, whi
hdire
tly indu
e a re
ursive algorithm for �nding the Hamiltonian 
y
le if the graph is
y
le-
ontra
table. The idea is to remove all "double edges" and then to iterativelydelete the verti
es of degree two. If there is only one vertex at the end of the pro
ess,then the graph is 
y
le-
ontra
table.Lemma 3.4.2 The graph G′, obtained from the 
y
le-
ontra
table graph G by perform-ing one of the two following modi�
ations,1. removing an edge [vj , vk] that appears twi
e in G;
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ident edges [vi, vj ] and [vi, vk],and adding an edge [vj , vk] if it is not already in the graph.is a 
y
le-
ontra
table graph. Moreover, any edge belonging to the Hamiltonian 
y
leof G′ and to G also belongs to the Hamiltonian 
y
le of G.Lemma 3.4.3 Let G be a 
y
le-
ontra
table graph. If G has at least three verti
es andno 
y
le of size two, it has at least one vertex of degree two.Proposition 3.4.1 Algorithm 2 �nds the Hamiltonian 
y
le of G if and only if G is
y
le-
ontra
table.We have shown that a given dominant guillotine graph leads to a unique 
y
le-
ontra
table graph. In this se
tion we show that a given 
y
le-
ontra
table graphleads to exa
tly two guillotine-
utting 
lasses. The �rst step is to dedu
e the onlypossible valid orientation of the edges. Then a 
hoi
e remains for the 
oloring of thear
s. The two possible ar
-
olorings lead to two possible guillotine graphs, and thus totwo possible guillotine patterns.Depending on the ordering of the verti
es in the 
y
les, not all 
y
le-
ontra
tablegraphs give rise to dominant guillotine graphs. In order to avoid non-dominant so-lutions we introdu
e the dominant 
y
le-
ontra
table graphs, whi
h yield dominantguillotine graphs.De�nition 3.4.7 Let G be a 
y
le-
ontra
table graph. If for one of the two possibleorientations, for all obtained ar
s (xi, xj) of the Hamiltonian 
ir
uit (j 6= 1), theneither i < j, or there is a ba
kward ar
 (xl, xi) su
h that l < j, G is a dominant
y
le-
ontra
table graph.Proposition 3.4.2 A 
y
le-
ontra
table graph yields a dominant guillotine graph ifand only if it is a dominant 
y
le-
ontra
table graph.Algorithm 3 returns true if and only if the input 
y
le-
ontra
table graph is domi-nant (
he
ked using Proposition 3.4.2). In this 
ase, the algorithm visits the verti
es vof the obtained dire
ted graph following the Hamiltonian 
ir
uit σ. Ea
h time a new
ir
uit is entered or leaved, the 
urrent 
olor is 
hanged.Proposition 3.4.3 Algorithm 3 
olors the ar
s of a dominant 
y
le-
ontra
table graph
G in su
h a way that the bi
olored graph H obtained is a dominant guillotine graph.Corollary 3.4.1 Given the 
olor of one ar
, there is only one valid 
oloring for a
y
le-
ontra
table graph.Theorem 3.4.3 Ea
h dominant 
y
le-
ontra
table graph is related to two guillotine-
utting 
lasses, and every dominant sequen
e of builds is related to one dominant 
y
le-
ontra
table graph.
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oloring a 
y
le-
ontra
table graphData: G = (V,E): a 
y
le-
ontra
table graph;Use Algorithm 2 to determine the ba
kward edges;1 Choose an orientation for the edges that is 
onsistent with the hamiltonian 
y
le;2
test← true;3 forall ar
 (vi, vj) of the Hamiltonian 
ir
uit do4 if j < i and ∄k < j s.t. (vk, vi) is a ba
kward edge then test← fail;5 if test = fail then6 
hoose the other orientation for the edges;7 forall ar
 (vi, vj) of the Hamiltonian 
ir
uit do8 if j < i and ∄k < j s.t. (vk, vi) is a ba
kward edge then return false;9 
ompute the 
orresponding ordering σ;10 
hoose a 
olor;11 for i : 1→ n do12

v ← σ(i);13 Let S+ be the set of ba
kward ar
s a su
h that a = (u, v);14 forall a ∈ S+ do 
hange the 
urrent 
olor;15 Let S− be the set of ba
kward ar
s a su
h that a = (v, u);16 forea
h ba
kward ar
 a of S− by de
reasing value of label do17 
olor a with the 
urrent 
olor;18 
hange the 
urrent 
olor;19
u = σ(i+ 1);20 
olor the ar
 (v, u) with the 
urrent 
olor;21 return true;22 Algorithm 4 
omputes the width and the height of the guillotine pattern asso
iatedwith the guillotine graph G. First the ordering σ is 
omputed using Algorithm 2. Thenthe verti
es are 
onsidered following σ. Initially a dummy build b is 
reated, with the
urrent item only. When there is a ba
kward ar
, the new build asso
iated with the
orresponding 
ir
uit is 
omputed and stored in b, and then pushed onto the top of S.At the end of the algorithm, S 
ontains only one element, whi
h 
orresponds to theguillotine pattern.Proposition 3.4.4 For a given initial 
olor, Algorithm 4 
omputes the size of thepattern asso
iated with the guillotine graph G.The following theorem summarizes the di�erent 
omplexity results related to 
y
le-
ontra
table graphs and guillotine graphs.Proposition 3.4.5 Let G be a guillotine graph with at least two verti
es. The number

m of ar
s in G is in [n, 2n− 2], and the bounds are tight.



3.4. THE GUILLOTINE-CUTTING PROBLEM (GCP) 81Algorithm 4: Computing the size of the guillotine pattern related to a guillotinegraphData: G: a valid guillotine graph;
σ: the 
orresponding ordering on the verti
es (σ(1) = 1);Let S be an initially empty sta
k of builds bk;1 for i : 1→ n do2

vj ← σ(i);3 Let bj be a new build of size wj × hj and of label j;4 forea
h ba
kward ar
 (vj , vk) of 
olor 
 by de
reasing value of σ−1(vk) do5 repeat6 remove from S its top element bt;7
bj ← build(bj , bt, c);8 until bj has for label vk;9 push bj on the top of S;10 Let bj be the iterative build of all elements of the sta
k;11 return bj ;12 Using this property, we dedu
e that the algorithms des
ribed above take O(n) timeand spa
e.Theorem 3.4.4 Re
ognizing a 
y
le-
ontra
table graph, and 
omputing the two guillotine-
utting 
lasses related to this graph takes O(n) time and spa
e.Note that our exa
t approa
h below uses the 
olored and dire
ted version of ourmodel. However, we are planning to use our model in a meta-heuristi
 and in this
ase, we will use the un
olored undire
ted version. Indeed when an ar
 is added to thegraph, it may 
hange the 
olor of many other ar
s. When the un
olored version of ourmodel is 
onsidered, one just has to use the 
oloration algorithm des
ribed above to
ompute the new set of 
olors.3.4.5 A 
onstraint-programming approa
hWe designed an exa
t approa
h based on our new model for the guillotine-
uttingproblem. The basi
 idea of the method is to seek a guillotine graph 
orresponding to a
on�guration that �ts within the boundary of the input bin. Our model is embeddedinto a 
onstraint-programming s
heme, whi
h seeks a suitable set of ar
s. The modelis 
omposed of two parts: a graph part, whi
h veri�es the guillotine 
onstraint, anda re
tangle pla
ement part, whi
h veri�es that the re
tangles 
an be pa
ked into thebin. For the latter, we use the model des
ribed for the RPP.
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ribe how the guillotine-
utting problem 
an be modeled in terms of twosets of variables and 
onstraints. The �rst variable set is related to the graph underlyingthe pattern, to ensure that the 
on�guration is guillotine, while the se
ond is relatedto geometri
 
onsiderations, to ensure that the re
tangles 
an be pla
ed within theboundaries of the large re
tangle.The �rst set of variables is related to the ar
s of the guillotine graph to be built.It spe
i�es the state of ea
h ar
. The state of an ar
 is determined by its existen
e, itsorientation (ba
kward or forward) and its dire
tion (horizontal or verti
al).Re
all that a guillotine graph 
an be redu
ed to a single vertex by iterative 
ontra
-tions of mono
hromati
 
ir
uits. Thus, ea
h time su
h a mono
hromati
 
ir
uit µ isfound in the graph under 
onstru
tion, µ is 
ontra
ted. In order to prevent 
ontra
tedverti
es from being revisited, a state is asso
iated with ea
h vertex, spe
ifying whetheror not it has been 
ontra
ted, and giving its 
urrent dimensions. Thus, a vertex irepresents an item or an aggregation of items. Its dimensions are either the dimensionsof the original re
tangle i, or the dimensions of a build of items 
orresponding to the
ontra
tions in the graph.A valid dominant guillotine graph may lead to a guillotine-
utting 
lass that doesnot �t within the boundaries of the bin. Consequently we use a se
ond set of vari-ables whi
h represent the 
oordinates of a spe
i�
 member of the guillotine-
utting
lass under 
onstru
tion. We use the model designed for the un
onstrained re
tanglepla
ement problem (see Se
tion 3.3.1.3).3.4.5.2 Exploration of the sear
h spa
eIn our method, the bran
hing s
heme modi�es only the graph variables dire
tly: thevalues of the geometri
 variables X and Y are dedu
ed from 
onstraint propagation.At ea
h node of the sear
h tree an ar
 must be 
hosen for possible in
lusion inthe graph. We use a depth-�rst strategy giving priority to the in
lusion of ba
kwardar
s in the 
urrent partial Hamiltonian path σ = σ1, . . . , σk. The ba
kward ar
 (σj, σi)is sele
ted from among all the possible ba
kward ar
s, with j and i respe
tively thesmallest and the largest index. If no ba
kward ar
 is possible in σ, then σ is expandedby adding a forward ar
 between σk and another vertex.3.4.5.3 Constraint-propagation te
hniquesDuring the sear
h, 
onstraint-propagation te
hniques are used to redu
e the sear
hspa
e by eliminating non-relevant values from the domain of the variables. Thesete
hniques perform di�erent dedu
tions: they eliminate potential ar
s that 
annotlead to a dominant guillotine graph or to a valid solution; they eliminate potential
oordinates that 
annot lead to a valid solution; they add some ar
s that are mandatory



3.5. CONCLUSIONS, FUTURE WORKS 83for obtaining a dominant guillotine graph and a valid solution; they update the possibleorientations or the ba
kward status of ar
s. These te
hniques are used to adjust thedomains of graph variables to the domains of 
oordinate variables, and vi
e versa.3.4.6 Computational experiments: a synthesisWe have 
ompared our methods for GCP with algorithms in the literature, using 25instan
es [59℄ derived from strip-
utting problems. In this problem, the width of thebin is �xed and the minimal feasible height for the bin must be determined. Thereforethis problem leads to a set of feasible or unfeasible de
ision problems. The number ofitems in these instan
es is less than 25.A �rst remark is that the 
omputing time required by the algorithms is large 
om-pared to the time required by our methods to solve the non-guillotine version. In many
ases, it is even more interesting to run the RPP solver before. We found that solvingthe feasibility problems by in
reasing value of height led to the fastest results. Thissuggests that our method is better at proving that a problem has no solutions than at�nding a feasible solution.We also 
ompared our methods to the best method of the literature [59℄. Wewere able to solve ea
h test 
ase in less than three se
onds. For several instan
es, thedi�eren
e in terms of nodes in the sear
h tree is large. For example the IMVB methodof [59℄ needs 40909 bran
hing points to solve an instan
e, whereas our method needsonly 293. On average, our method needs 15 times fewer nodes that the best approa
hBMVB of [59℄. These results show that the additional information added by our modelenhan
es the exploration of bran
hes in a tree sear
h.3.5 Con
lusions, future worksOur experimentations on RPP and GCP 
on�rm that CP te
hniques 
annot be ignoredfrom the OR 
ommunity when 
ompetitive results are sought. Moreover, methodology-wise, we have shown that 
oupling OR and CP, pa
king and s
heduling te
hniques wasof great interest.Another strong 
on
lusion is that even if CP models may be e�
ient for small ormedium sizes of problems, they may fail to �nd a solution for large instan
es. Clearly,good heuristi
s and lower bounding pro
edures (based on DFF for example) remain
ru
ial to avoid running an expensive exa
t RPP or GCP pro
edure.In our future works, we will fo
us on GCP. It transpires from our experiments thateven for medium size instan
es, exa
t methods 
an take a large 
omputing time to �nda solution. Another issue is that our CP-based exa
t method for this problem is hardto implement. Many 
onstraints have to be hand-tailored and 
annot be integrated"out of the shelf" in a CP algorithm. We plan to work on a more CP-oriented methodbased on the same ideas, whi
h would mostly use 
onstraints implemented in most CP
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al model for designing heuristi
 methods is alsoa work in progress. The �rst works in this dire
tion are already promising.



Con
lusions and future work
In this do
ument we have des
ribed new models and methods that we applied tovarious pa
king problems. The main feature of our work is to use in a 
ollaborativeway te
hniques from the mathemati
al programming, 
onstraint programming, graphs,dynami
 programming and meta-heuristi
 
ommunities.Our work on de
omposition methods has 
on�rmed the fa
t that these methods,when applied e�e
tively, are helpful to solve hard 
ombinatorial problems. We �rstshowed that tree-de
omposition 
an be applied su

essfully on some pa
king problems.It leads to a generi
 framework that 
an be used in many hybrid methods. For example,taking into a

ount the stru
ture and the size of the subproblems, a di�erent exa
t orapproximated method 
ould be used for ea
h 
luster of the de
omposition. We alsostudied di�erent ways of helping 
olumn generation using heuristi
s (for generating aninitial set of 
olumns and for solving the pri
ing subproblem). Another 
on
lusion isthat strategi
 os
illation is a suitable tool for solving pa
king problems in whi
h somepatterns are ex
luded. It allows our meta-heuristi
s to travel from good solutions togood solutions in a fast manner by relaxing some 
onstraints.We now plan to fo
us our work on hybrid methods. A �rst perspe
tive is a tighter
ollaboration between 
olumn-generation methods and meta-heuristi
s. It has beenshown that re-optimization and multiple 
olumn generation redu
ed the 
omputinge�ort by a wide range. Several questions arise from this statement. What are the wishedproperties of an initial pool of 
olumns? How meta-heuristi
s 
an help applying suitablesets of dual 
uts to stabilize 
olumn generation? Can multi-obje
tive optimization helpgenerating a suitable set of 
olumns in the pri
ing phase? Another resear
h path is todesign a 
olumn-generation s
heme based on the tree-de
omposition, where the masterproblem would 
onsist of assigning items to 
lusters. For pa
king problems, a dire
tappli
ation would lead to a better linear relaxation, but the pri
ing subproblem wouldbe harder to solve.A se
ond perspe
tive on hybrid methods is to study heuristi
s based on math-emati
al programming (so-
alled matheuristi
s). We are now designing su
h amethod for the quadrati
 knapsa
k problem of Chapter 1, where the role of the lo
alsear
h is played by a mathemati
al programming based method. We are also workingon generi
 matheuristi
s based on pseudo-polynomial formulations, whi
h are im-proved in an iterative pro
ess. The �rst experiments on time-dependent formulationsare already promising. 85



86 CONCLUSIONS AND FUTURE WORKOur work on dual-feasible fun
tions and their extensions 
learly shows that this
on
ept is useful for many di�erent pa
king problems. It transpires that the e�e
-tiveness of the DFF depends on the 
onstraints added to the original stru
ture of thepa
king problem. If these 
onstraints weaken the quality of the linear relaxation ofthe model of Gilmore and Gomory, the bounds obtained using DFF are expe
ted to beweak. Another 
on
lusion is that the di�
ulty to handle the additional 
onstraints alsohas a large impa
t on the e�
ien
y of the method. For the bin-pa
king with 
on�i
ts,for example, the 
olumn generation lower bound is strong, but our heuristi
s are notable to approximate this bound e�e
tively. This is due to the fa
t that ea
h optimaldual solution is highly data-dependent (be
ause of the graph stru
ture). For the otherproblems we addressed, the lower bounds are mu
h more e�e
tive.Up to now, te
hniques based on DFF are only used for 
omputing an initial lowerbound (at the root node of a bran
h-and-pri
e method for example). When additional
uts are added, their results are weakened, and thus no e�e
tive exa
t methods 
anbe based on DFF only. Fo
using on 
onstraints related to 
uts and bran
hing
onstraints seems to be one of the most 
hallenging and useful resear
h path (thiswould avoid solving repeatedly huge linear programs). Studying 
on�i
ts involvingmore than two items is the main issue to handle. An e�e
tive solution would be todesign the bran
hing s
heme in su
h a way that the underlying 
on�i
t graph hassuitable properties.Another di�
ult 
hallenge is to generalize the DFF to other problems, su
has vehi
le routing problems, where the stru
ture of the "patterns" (routes) is more
ompli
ated. Our �rst experiments tend to show that this issue needs a large amountof work before any useful result is sought.For re
tangle pla
ement problems, our work has 
on�rmed that 
onstraint program-ming is one of the most useful te
hniques to solve this family of highly 
ombinatorialproblems. We stressed the fa
t that OR te
hniques, su
h as DFF, are helpful to qui
klydetermine that a pattern is not feasible, and to prune nodes in a sear
h method. Ourgraph-theoreti
al model for the guillotine 
utting problem has also proved to be usefulin the design of an exa
t method. It allows to represent and gather patterns in a waythat fa
ilitates dedu
tions and pruning during the sear
h.As a �rst perspe
tive for this work, we plan to exploit our graph model in heuristi
and meta-heuristi
s frameworks. Our �rst experiments tend to show that this is aviable approa
h, when the un
olored undire
ted model is used. A more CP-orientedimplementation, using 
lassi
al implemented 
onstraints, would also help our work tobe used and extended.We are also studying real-life pla
ement problems, and it transpires from our expe-rien
e that fo
using on the initial pla
ement is not su�
ient. One has to be aware thatitems will be pa
ked and removed repeatedly, deeply modifying the stru
ture of theinitial pa
king pattern. Thus we plan to deal with the dynami
 versions of theseproblems, where robustness and real-time re-optimization have to be studied. Exa
t
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ult to apply. However, we believe that hybrid methodsbased on our pa
king models will be useful. We are also interested in an extensionof our models into a bi-level 
ontext. We are now 
ondu
ting a preliminary studyon this subje
t, fo
using on reformulations, graph models and dynami
 programmings
hemes.More generally, we are now applying our optimization te
hniques to problems thatlie outside the �eld of C&P problems. We have already obtained results on a variant ofthe vehi
le routing problem, �ight s
heduling, and sta� s
heduling problems.In parti
ular, we are studying spe
ial 
ases of multi-obje
tive problems, where addi-tional 
onstraints or obje
tives added by the de
ision maker involve hard subproblemsfor whi
h we expe
t our hybrid resolution te
hniques to be useful.
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omposition methods and meta-heuristi
s based on so-
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 os
illation. We apply these te
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ept of dual-feasible fun
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