Skip to Main content Skip to Navigation

Caractérisation analytique et optimisation de codes source-canal conjoints

Abstract : Joint source-channel codes are codes simultaneously providing data compression and protection of the generated bitstream from transmission errors. These codes are non-linear, as most source codes. Their potential is to offer good performance in terms of compression and error-correction for reduced code lengths.The performance of a source code is measured by the difference between the entropy of the source to be compressed and the average number of bits needed to encode a symbol of this source. The performance of a channel code is measured by the minimum distance between codewords or sequences of codewords, and more generally with the distance spectrum. The classic codes have tools to effectively evaluate these performance criteria. Furthermore, the design of good source codes or good channel codes is a largely explored since the work of Shannon. But, similar tools for joint source-channel codes, for performances evaluation or for design good codes remained to develop, although some proposals have been made in the past.This thesis focuses on the family of joint source-channel codes that can be described by automata with a finite number of states. Error-correcting quasi-arithmetic codes and error-correcting variable-length codes are part of this family. The way to construct an automaton for a given code is recalled.From an automaton, it is possible to construct a product graph for describing all pairs of paths diverging from some state and converging to the same or another state. We have shown that, using Dijkstra's algorithm, it is possible to evaluate the free distance of a joint code with polynomial complexity. For errors-correcting variable-length codes, we proposed additional bounds that are easy to evaluate. These bounds are extensions of Plotkin and Heller bounds to variable-length codes. Bounds can also be deduced from the product graph associated to a code, in which only a part of code words is specified.These tools to accurately assess or bound the free distance of a joint code allow the design of codes with good distance properties for a given redundancy or minimizing redundancy for a given free distance. Our approach is to organize the search for good joint source-channel codes with trees. The root of the tree corresponds to a code in which no bit is specified, the leaves of codes in which all bits are specified, and the intermediate nodes to partially specified codes. When moving from the root to the leaves of the tree, the upper bound on the free distance decreases, while the lower bound grows. This allows application of an algorithm such as branch-and-prune for finding the code with the largest free distance, without having to explore the whole tree containing the codes.The proposed approach has allowed the construction of joint codes for the letters of the alphabet. Compared to an equivalent tandem scheme (source code followed by a convolutional code), the codes obtained have comparable performance (rate coding, free distance) while being less complex in terms of the number of states of the decoder.Several extensions of this work are in progress: 1) synthesis of error-correcting variable-length codes formalized as a mixed linear programming problem on integers, 2) Explore the search space of error-correcting variable-length codes using an algorithm such as A* algorithm.
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Monday, November 5, 2012 - 2:37:10 PM
Last modification on : Sunday, June 26, 2022 - 11:57:20 AM
Long-term archiving on: : Wednesday, February 6, 2013 - 3:55:01 AM


Version validated by the jury (STAR)


  • HAL Id : tel-00748545, version 1



Amadou Tidiane Diallo. Caractérisation analytique et optimisation de codes source-canal conjoints. Autre [cond-mat.other]. Université Paris Sud - Paris XI, 2012. Français. ⟨NNT : 2012PA112205⟩. ⟨tel-00748545⟩



Record views


Files downloads