
HAL Id: tel-00748064
https://theses.hal.science/tel-00748064v1
Submitted on 4 Nov 2012 (v1), last revised 20 Dec 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-scale Feature-Preserving Smoothing of Images and
Volumes on GPU

Nassim Jibai

To cite this version:
Nassim Jibai. Multi-scale Feature-Preserving Smoothing of Images and Volumes on GPU. Image
Processing [eess.IV]. Université de Grenoble, 2012. English. �NNT : �. �tel-00748064v1�

https://theses.hal.science/tel-00748064v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques et Informatique

Arrêté ministérial : 7 Août 2006

Présentée par

Nassim Jibai

Thèse dirigée par Nicolas Holzschuch
et codirigée par Jean-Philippe Farrugia

préparée au sein du Laboratoire Jean Kuntzmann
dans l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Multi-scale Feature-Preserving
Smoothing of Images and Volumes
on GPU

Thèse soutenue publiquement le 24 mai 2012,

devant le jury composé de :

Laurent Desbat
Université Joseph Fourier - Grenoble 1, Président

Wilfrid Lefer
Université de Pau et des Pays de l’Adour, Rapporteur

Charles Hansen
University of Utah, Rapporteur

Tamy Boubekeur
Télécom Paristech, Examinateur

Nicolas Holzschuch
INRIA Grenoble - Rhône-Alpes, Directeur de thèse

Jean-Philippe Farrugia
Université Claude Bernard - Lyon 1, Co-Directeur de thèse

Summary

Two-dimensional images and three-dimensional volumes have found their way into
our life and became a staple ingredient of our artistic, cultural, and scientific ap-
petite. Images capture and immortalize an instance such as natural scenes, through
a photograph camera. Moreover, they can capture details inside biological sub-
jects through the use of CT (computer tomography) scans, X-Rays, ultrasound, etc.
Three-dimensional volumes of objects are also of high interest in medical imaging,
engineering, and analyzing cultural heritage. They are produced using tomographic
reconstruction, a technique that combine a large series of 2D scans captured from
multiple views. Typically, penetrative radiation is used to obtain each 2D scan: X-
Rays for CT scans, radio-frequency waves for MRI (magnetic resonance imaging),
electron-positron annihilation for PET scans, etc.

Unfortunately, their acquisition is influenced by noise caused by different fac-
tors. Noise in two-dimensional images could be caused by low-light illumination,
electronic defects, low-dose of radiation, and a mispositioning tool or object. Noise
in three-dimensional volumes also come from a variety of sources: the limited num-
ber of views, lack of captor sensitivity, high contrasts, the reconstruction algorithms,
etc. The constraint that data acquisition be noiseless is unrealistic. It is desirable to
reduce, or eliminate, noise at the earliest stage in the application. However, remov-
ing noise while preserving the sharp features of an image or volume object remains
a challenging task.

We propose a multi-scale method to smooth 2D images and 3D tomographic
data while preserving features at a specified scale. Our algorithm is controlled
using a single user parameter — the minimum scale of features to be preserved.
Any variation that is smaller than the specified scale is treated as noise and
smoothed, while discontinuities such as corners, edges and detail at a larger scale
are preserved. We demonstrate that our smoothed data produces clean images and
clean contour surfaces of volumes using standard surface-extraction algorithms.
Our method is inspired by anisotropic diffusion within the volume. We compute
our diffusion tensors from the local continuous histograms of gradients around each
pixel in images and around each voxel in volume. Since our smoothing method
works entirely on the GPU, it is extremely fast.

Keywords: Feature-preserving smoothing, multi-scale, GPU.

Résumé

Les images et les données volumiques prennent une place de plus en plus impor-
tante dans notre vie quotidienne que ce soit sur le plan artistique, culturel, ou
scientifique. Les données volumiques ont un intérêt important dans l’imagerie médi-
cale, l’ingénierie, et l’analyse du patrimoine culturel. Ils sont créées en utilisant la
reconstruction tomographique, une technique qui combine une large série de scans
2D capturés de plusieur points de vue. Chaque scan 2D est obtenu par des methodes
de rayonnement : Rayons X pour les scanners CT, ondes radiofréquences pour les
IRM, annihilation électron-positron pour les PET scans, etc.

L’acquisition des images et données volumiques est influencée par le bruit provo-
qué par différents facteurs. Le bruit dans les images peut être causée par un manque
d’éclairage, des défauts électroniques, faible dose de rayonnement, et un mauvais po-
sitionnement de l’outil ou de l’objet. Le bruit dans les données volumiques peut aussi
provenir d’une variété de sources : le nombre limité de points de vue, le manque de
sensibilité dans les capteurs, des contrastes élevé, les algorithmes de reconstruction
employés, etc. L’acquisition de données non bruitée est iréalisable. Alors, il est
souhaitable de réduire ou d’éliminer le bruit le plus tôt possible dans le pipeline. La
suppression du bruit tout en préservant les caractéristiques fortes d’une image ou
d’un objet volumique reste une tâche difficile.

Nous proposons une méthode multi-échelle pour lisser des images 2D et des
données tomographiques 3D tout en préservant les caractéristiques à l’échelle
spécifiée. Notre algorithme est contrôlé par un seul paramètre—la taille des
caractéristiques qui doivent être préservées. Toute variation qui est plus petite que
l’échelle spécifiée est traitée comme bruit et lissée, tandis que les discontinuités
telles que des coins, des bords et des détails à plus grande échelle sont conservés.
Nous démontrons les données lissées produites par notre algorithme permettent
d’obtenir des images nettes et des iso-surfaces plus propres. Nous comparons
nos résultats avec ceux des methodes précédentes. Notre méthode est inspirée
par la diffusion anisotrope. Nous calculons nos tenseurs de diffusion à partir des
histogrammes continues locaux de gradients autour de chaque pixel dans les images
et autour de chaque voxel dans des volumes. Comme notre méthode de lissage
fonctionne entièrement sur GPU, il est extrêmement rapide.

Keywords: Lissage en préservant les caractéristiques, multi-échelle, GPU.

Acknowledgments

The decision to do a PhD is never quite a simple one. Specially when it necessitate
to travel abroad and away from ones family. It is an adventure full of surprises and
discoveries involving sciences, cultures, and one-self. More importantly, it requires
passion, courage, and lots of sacrifices specially from the parents.

To my parents, I want to present my unlimited gratitude for their constant
and unconditional continuing supports, encouragements, and sacrifices. I want to
thank them for supporting my long absence away from them and for their constant
presence and advices whenever I needed them.

I want to express my appreciation to my advisor, Prof. Nicolas Holzschuch, for
his help and encouragements throughout my PhD work and specially during the
writing of my manuscript. I also would like to reserve a special thanks to Prof. Cyril
Soler as the idea of this project was initiate by him. I also like to thanks him for
allowing me to discover the environment of volumes filtering and for his help and
explanation whenever I needed it.

I would like to thank the Artis team for the wonderful three years I spent among
you. It was a great pleasure to have met each one of you and a great experience to
have worked and shared ideas with you. These moments will forever be engraved
in my memory. I would like to specially thanks my friend and colleague, Pierre
Landes, for his support and advices during this thesis. Moreover, for his help
in proofreading and correcting my French translation of this manuscript. To
Olivier and Pierre B., thank you for the wonderful roadtrip we had together in the
Californian state. It was my first roadtrip and it was a great one. I also would like
to thanks Imma for her great work, perseverance, and help. Finally, I would like to
thank: Manu, Laurent, Éric, Mahdi, J-D, Fabrice, Joelle, Hed, Frank, and Charles
for their pleasant company.

Last but not least, I would like to thank my friends. A special thanks to Marie
Guillard for her repeated help with the French translation of my manuscript. I
would like to extend this thanks to the Grillet family, specially Jean-François and
Alex, who made me part of their family and made my séjour in Grenoble smooth
and pleasant. I would like to thank the girls of the African dance group that I am
part of directed by Marielle for the memorable moments I shared with you which
will hopefully continue to be. Finally, I would like to thanks my neighbor Antoine
for all the pleasant evenings we spent talking around a nice a hot dish.

Contents

1 Introduction 1

1.1 Objective . 1
1.2 Noise and Filtering . 1
1.3 Noise in 2D Images . 3
1.4 Noise in 3D Images . 3
1.5 Motivation and Challenges . 4
1.6 Contributions . 5

2 Introduction 7

2.1 Objectif . 7
2.2 Bruit et filtrage . 7
2.3 Bruit dans des images . 9
2.4 Bruit dans les images 3D . 10
2.5 Motivation et défis . 11
2.6 Contributions . 12

3 Theoretical Background and Review of Previous Work 15

3.1 Introduction . 15
3.2 Signal Processing . 16
3.3 Signal Processing and Smoothing in 1D Signal 16

3.3.1 Convolution . 17
3.3.2 Fourier Transform . 21
3.3.3 Bilateral Filter . 22

3.4 Smoothing Images . 24
3.4.1 Statistical Methods . 24
3.4.2 Weighted Average . 25
3.4.3 Convolution in 2D . 26
3.4.4 Fourier Transform in 2D . 28
3.4.5 Bilateral Filter in 2D . 29

3.5 Smoothing Images using PDE . 31
3.5.1 Linear Heat Diffusion . 32
3.5.2 Non-linear Heat Diffusion . 32
3.5.3 Diffusion and Time Step ∆t 37
3.5.4 Anisotropic Diffusion Tensor 38

3.6 Smoothing Volumetric Data . 42
3.6.1 Bilateral Filter on Volumetric Data 43
3.6.2 EED and CED on Volumetric Data 44

viii Contents

4 Fast Multi-Scale Feature-Preserving Smoothing of Images 49

4.1 Introduction . 49
4.2 Theoretical Background . 51

4.2.1 Anisotropic Diffusion . 52
4.2.2 Local Continuous Histogram 54

4.3 Feature Preserving Smoothing in 2D Images 55
4.3.1 Objectives . 55
4.3.2 Scale-space Local Gradient Distributions 57
4.3.3 Computation of Adaptive Diffusion Tensors 59
4.3.4 Examples . 62
4.3.5 Diffusion . 62

4.4 Implementation . 63
4.5 Results and Comparison . 65

4.5.1 Noise and Preservation of Sharp Features 68
4.5.2 Feature Size . 72
4.5.3 Computation Time . 75
4.5.4 Scalability . 75
4.5.5 Comparison with Existing Algorithms 78

4.6 Analysis and Limitations . 81

5 Fast Multi-Scale Feature-Preserving Smoothing of Volumetric

Data 83

5.1 Introduction . 83
5.2 Volumetric Data and Noise . 85
5.3 Theoretical Background . 86

5.3.1 Anisotropic Diffusion . 86
5.3.2 Local Continuous Histogram 89

5.4 Feature Preserving Smoothing in Volumes 89
5.4.1 Objective . 89
5.4.2 Scale-space Local Gradient Distributions 90
5.4.3 Computation of Adaptive Diffusion Tensors 92
5.4.4 Diffusion . 93

5.5 Implementation . 94
5.6 Results and Comparison . 95

5.6.1 Noise and Connected Components 96
5.6.2 Preservation of Sharp Features 99
5.6.3 Feature Size . 99
5.6.4 Computation Time . 103
5.6.5 Scalability . 103
5.6.6 Computing on the GPU . 106
5.6.7 Comparison with Existing Algorithms 106

Contents ix

6 Conclusion 107

6.1 Summary of Contributions . 107
6.2 Perspectives . 108

7 Conclusion 111

7.1 Résumé des contributions . 111
7.2 Perspectives . 112

Bibliography 115

List of Figures

1.1 A clean signal and a perturbed signal. 2
1.2 A sine wave plus a random values results in a noisy sine wave. 2
1.3 MRI slices of a brain. 3
1.4 Noisy images: Lena and Knee . 4
1.5 CT slice of original model inhaler with mesh 5

2.1 Un signal net et un signal perturbé. 8
2.2 L’addition d’une onde sinusoïdale et de valeurs aléatoires résulte en

une onde aléatoire bruitée. 8
2.3 Images IRM d’un cerveau. 9
2.4 Images bruitées : Léna et un genou. 10
2.5 Visualisation d’une section tomographique d’un inhalateur via maillage 11

3.1 One-dimensional signal . 17
3.2 One-dimensional signal with random noise 17
3.3 Convolution of two discrete functions. 18
3.4 Convolution of two rectangle pulses. 19
3.5 Convolution with the Sinc function. 19
3.6 Gaussian distribution with various values of σ. 20
3.7 Convolution with a Gaussian function. 21
3.8 An input signal with noise filtered by the bilateral filtering algorithm. 23
3.9 Weighted average of neighboring pixels. 24
3.10 Okada’s weighted averaging algorithms. 26
3.11 The pixels representation for the G-neighbors algorithm. 27
3.12 Lena image with noise convolved with the Gaussian function (σ = 2

and 8). 28
3.13 The image of Lena in the space of Fourier. 30
3.14 Lena image with noise filtered by the bilateral filtering algorithm. . . 31
3.15 Image of Lena with noise filtered by linear heat diffusion. 33
3.16 ξη coordinate for geometric diffusion. 33
3.17 Lena image with noise filtered by geometric heat diffusion. 35
3.18 Lena image with noise filtered by Perona-Malik diffusion. 39
3.19 Lena image filtered by Perona-Maliks’ type 1 diffusion. 39
3.20 The EED-CED diffusion behavior on a noisy cube image. 41
3.21 The EED-CED diffusion on a cube. 46

4.1 Continuous local gradient histogram and kernels on the MRI brain. . 50
4.2 Isotropic diffusion in xy-axis, x-axis, and y-axis. 52
4.3 Orthonormal 2D basis. 53
4.4 Continuous smooth histogram. 54

xii List of Figures

4.5 2D kernels on wave like structure. 56
4.6 2D kernels at close-up view of wave like structure. 56
4.7 2D Von Mises distribution. 57
4.8 Continuous histogram examples. 58
4.9 Gradient display of a the image of Lena with noise. 59
4.10 Smooth gradients of the image of Lena with noise. 60
4.11 Example of the sum of two kernels. 61
4.12 Feature size and gradients on an edge. 62
4.13 Procedure for computing the sum of kernel. 63
4.14 Continuous local gradient histogram and kernels on the image of Lena. 64
4.15 Pseudocode for the computation of diffusion tensors. 65
4.16 GPU computation pipeline . 67
4.17 Noisy Lena image filtered by our algorithm at s = 5 and d = 40. . . . 68
4.18 Noisy knee MRI filtered by our algorithm at s = 2 and d = 20. . . . 69
4.19 Noisy knee MRI filtered by our algorithm at s = 10 and d = 40. . . . 70
4.20 Noisy brain MRI filtered by our algorithm at s = 2 and d = 24. . . . 70
4.21 Scanned text filtered by our algorithm at s = 5 and d = 24. 71
4.22 Scaling example with different feature size on wave like structure. . 72
4.23 Image of Lena at various feature sizes. 73
4.24 Close-up views of the feature of Lena at various feature sizes. 74
4.25 GPU computation time for diffusion (seconds vs diffusion steps). . . 74
4.26 kernel processing time (dataset size vs time (in seconds)). 75
4.27 Plot of memory size vs dataset size. 76
4.28 Close-up views of the noisy Lena image filtered by our algorithm. . . 77
4.29 Close-up views of the noisy Lena image filtered by Perona-Malik. . . 77
4.30 Close-up views of the noisy Lena image filtered with bilateral filtering. 78
4.31 Close-up views of an MRI of a knee filtered by our algorithm. 79
4.32 Close-up views of an MRI of a knee filtered by Perona-Malik. 80
4.33 Close-up views of an MRI of a knee filtered with bilateral filtering. . 80
4.34 Our 2D method diffusion behavior on a noisy cube. 81
4.35 Wave artifact on Lena image due to large feature size 82

5.1 CT slices of the original and filtered model of inhaler. 84
5.2 Isotropic diffusion in all axis in 3D 87
5.3 An orthonormal 3D basis. 88
5.4 3D diffusion kernel examples. 90
5.5 3D continuous histogram with diffusion kernels. 91
5.6 GPU computation pipeline on volumes. 94
5.7 Pseudocode for computing 3D diffusion tensors. 95
5.8 Original inhaler model: contour surface with close up. 97
5.9 Filtered inhaler model: contour surface with close up. 98
5.10 Mechanical part: contour surfaces of original and smoothed. 98
5.11 Original shells: CT slice and contour surfaces. 99
5.12 Filtered shells: CT slice and contour surfaces. 100

List of Figures xiii

5.13 Mechanical part: Contour surfaces of original and smoothed with
close up. 100

5.14 Internal thread from mechanical part at various feature sizes. 101
5.15 CT slice of thread of mechanical part: original and smoothed. 101
5.16 GPU computation time for diffusion (seconds vs diffusion steps). . . 102
5.17 Kernel processing time in GPU (dataset size vs seconds). 102
5.18 Mechanical part divided into eight pieces. 103
5.19 Pieces of mechanical part spread apart. 104
5.20 Mechanical part filtered by EED-CED hybrid methods. 105
5.21 Mechanical part filtered by bilateral filtering. 105

List of Tables

3.1 Lists of spatial differences for first and second order derivatives. . . . 34
3.2 Linear and non-linear PDE. 37
3.3 A list of equations for various diffusion schemes. 38
3.4 Diffusion time step condition. 38
3.5 The behavior of EED and CED on different regions of an image. . . 42
3.6 The behavior of discrete EED-CED hybrid on different regions of a

cube. 45
3.7 The behavior of EEDs and CED individually on different regions of

a volume. 47

4.1 GPU computation time of 2D bilateral filtering. 81

5.1 GPU computation time of bilateral filtering. 106

List of Algorithms

4.1 Computing 2D diffusion tensors on GPU 66
4.2 Computing 2D diffusion on GPU . 67
5.1 Computing 3D diffusion tensors on GPU 96
5.2 Computing 3D diffusion on GPU . 97

Chapter 1

Introduction

Contents

1.1 Objective . 1

1.2 Noise and Filtering . 1

1.3 Noise in 2D Images . 3

1.4 Noise in 3D Images . 3

1.5 Motivation and Challenges . 4

1.6 Contributions . 5

1.1 Objective

Two-dimensional images and three-dimensional volumes have become a staple ingre-
dient of our artistic, cultural, and scientific appetite. Images capture and immortal-
ize instances such as natural scenes. They can also capture details inside biological
subjects such as the liver. Three-dimensional volumes of objects are also of high
interest in medical imaging, engineering, and analyzing cultural heritage. They are
produced using tomographic reconstruction. Unfortunately, the acquisition of both,
images and volumes, is unavoidably polluted by noise from a variety of sources.
We propose two effective and efficient methods for filtering these unwanted noise.
However first, we need to define the notions of noise and filtering.

1.2 Noise and Filtering

Noise in everyday life can be define as a sound that is loud, unpleasant, and occa-
sionally causes disturbance. Dogs barking, loud music, mechanical engine running,
and road traffic sounds are such examples.

A signal in general is an act to convey a message. Mathematically, it is made
from a collection of data that defines a certain phenomenon. Noise is unwanted
data over-imposed on the signal. In analog and digital electronics, unwanted data
is random perturbation to a wanted signal such as the snow display on television
sets. In signal processing, unwanted data is meaningless data such as the "hiss"
sound in a recording and radio broadcast produced of unwanted by-product of other
activities. Figure 2.1(a) shows a clean signal and Figure 2.1(b) shows a perturbed
signal.

2 Chapter 1. Introduction

Figure 1.1: (a) a clean signal and (b) a noisy signal generated from the clean signal.

(a) Clean sine wave (b) Random noise value (c) Noisy sine wave

Figure 1.2: (c) shows a sine wave (a) with random noise (b) added.

It is possible to add or remove noise from signals—adding noise is easy and can
be done for various reasons, e.g. to block or alter data transmission. Noise can also
be added to encrypt messages or for artistic reasons such as in digital paintings and
photos. A simple way to add noise is adding a random or computed signal to the
signal transmitted. Figure 2.2(c) shows a sine wave jammed with noise—the result
of adding random values (Figure 2.2(b)) to a sine wave (Figure 2.2(a)).

Removing noise from a signal is more difficult as some information about the
original signal has been lost. It is usually done using filtering methods. Filtering is a
technique used to separate mixture of different substances from one another such as
separating the sand from its mixture with water and removing contaminants from
engine oil. The concept of filtering can be migrated onto signal analysis where the
incoming signal is processed by mathematical operations with transfer functions.
In signal processing, noise is most often the high frequencies in the signal and the
wanted data is the low frequencies. Thus, filtering out the high frequencies removes
the noise and keeps the data needed.

1.3. Noise in 2D Images 3

(a) (b) (c)

Figure 1.3: MRI scans of a brain at different slices level. (a) is a slice of the head.
(b) is a deeper slice of the brain showing the eyeballs. (c) is a slice showing the
cortex of the brain.

1.3 Noise in 2D Images

Although the concept of pictures covers a broad range of entities, such as pho-
tographs, drawings or medical images, all these type of images can suffer from noise
issues. Photos of natural scenes and family reunions are instances captured by film
or digital cameras. Medical images capture details inside biological subject such as
the brain and knee. Such images are acquired through the use of CT (computer
tomography) scans, echography, X-Rays, ultrasound, MRI (Magnetic Resonance
Imaging), etc. The use of those instruments is not limited to only biological sub-
jects but also to industrial objects such as mechanical parts for analysis. Figure 2.3
shows MRI slices of the brain at different level.

Unfortunately, all type of images are prone to have noise during their acquisition;
regardless of the means employed:

• Images produced from cameras are subject to noise due to low-light envi-
ronment, high exposure index (ISO) setting, high temperature in sensors, or
electronic defect such as fluctuation of the electric signal.

• Images acquired through penetrative radiation instruments are also influenced
by noise for multiple reasons: lack of sensor sensitivity, high contrasts, non-
monochromaticity of the X-Ray source, pixel defects on the sensors, etc.

1.4 Noise in 3D Images

Three-dimensional volumes of objects are of high interest in medical imaging, en-
gineering, and analyzing cultural heritage. They can be constructed by techniques
such as tomographic reconstruction that combine a large series of 2D scans captured

4 Chapter 1. Introduction

(a) (b)

Figure 1.4: (a) Noisy image of Lena. (b) Noisy MRI of a knee.

from multiple views. Each 2D scan is obtained by typical penetrative radiation in-
struments: X-Rays for CT scans, radio-frequency waves for MRI, electron-positron
annihilation for PET (positron emission tomography) scans, gamma-rays, sonar, etc.

Scanned volumes are generally explored as 2D slices of the volume, as 3D vol-
umetric data, or as 3D meshes after extracting iso-surfaces form the volume data.
Similarly to the acquisition of 2D images, there is noise in the reconstructed density
data. The sources of noise are numerous: the limited number of views, lack of cap-
tor sensitivity, high contrasts, non-monochromaticity of the X-Ray source, imperfect
stability of the radiation source, pixel defects on the captor, errors in the reconstruc-
tion algorithms, non-uniformity of the absorption process across wavelengths, etc.

1.5 Motivation and Challenges

Noise is a universal problem in signals, images, and volumes. They are unavoidable
and produce a layer of obscurity over the wanted data making it sometimes hard
to interpret them. In images, noise is seen as an artifact made from grains of sand
like structure (see Figure 2.4). They make images unpleasant to look at and more
importantly, could hide vital features for analysis such as veins in medical images.
In volumes, noise is similarly observed when explored as 2D slices (images) of the
volume. But when explored as 3D meshes, noise shows itself as crude surfaces
contaminated by artifacts such as disconnected components, bridges and multiple
holes in the surface. Figure 2.5 shows a CT slice of an inhaler model along its
extracted iso-surfaces composed of ∼ 2500 components.

1.6. Contributions 5

(a) (b)

Figure 1.5: (a) CT slice of an inhaler model. (b) The extracted iso-surfaces of (a)
composed of ∼ 2500 components.

Images and volumes have become an essential part of our daily life be it cul-
turally, socially, or scientifically. Therefore, it is useful to remove the noise from
them for several reasons. From a social and cultural point-of-view, the images and
reconstructed objects would be better appreciated. And from a scientific point-of-
view, noiseless samples can be studied, analyzed, and understood more effectively
and diagnosed correctly be it for medical cases or elsewhere. However, using naive
methods, such as averaging, to remove noise would destroy important information.
Thus, it is important to filter the noise in an intelligent manner to keep the signif-
icant information of the images and volumes. This is not a simple task but rather
challenging. In addition to, scalability to large dataset is a problem and the filtering
computation costs are expensive.

We are interested in removing noise in images and volumes while preserving the
significant information, i.e. the sharp features, of their subjects. Furthermore, we
want to do so effectively and efficiently since the sizes of images and volumes are con-
stantly growing as the instruments capturing them evolve and larger memory space
is created. Today, images and volumes are composed of sizes > 40962 (∼ 17 million)
pixels and > 10003 (10K million) voxels respectively.

1.6 Contributions

In this thesis, we address the problem of smoothing noisy two-dimensional images
and three-dimensional volumes to improve their quality while preserving their sharp

6 Chapter 1. Introduction

features. We propose a new fast multi-scale smoothing kernel that adapts to the
local features of images and volumes. Then, we apply anisotropic diffusion using
the computed kernels. The results are smooth images and volumes where the high
frequency variation below a user-specified threshold is cancelled. Our algorithm
consistently preserves sharp features such as edges and corners. It runs efficiently
on parallel processors (such as GPUs) and is scalable to large datasets. Tuning is
simple, with only one parameter we call feature size—the threshold for the size of
features to be preserved.

Our main contributions in this thesis are:

• In Chapter 3, we describe the previous approaches for removing noise in two-
dimensional and three-dimensional images. In addition to, we present a detail
analysis of two methods very similar to our work and highlight their weaknesses
and differences with respect to ours. We start the chapter by explaining what
filtering is and its application in one-dimension. Along this, we present the
theoretical tools we need and use for filtering. Then, we extend the explanation
to two-dimensional and three-dimensional images.

• In Chapter 4, we present the theory of our multi-scale smoothing method for
two-dimensional images. We review two tools we use to build our method—
anisotropic diffusion and local continuous histogram. Then, we show how we
compute the adaptive diffusion tensors and filter the images using these tools.
Finally, we analyze the behavior of our method and compare our results on
different types of noisy images to other smoothing methods.

• In Chapter 5, we extent our smoothing method from two-dimensional space
presented in Chapter 4 to three-dimension to smooth three-dimensional im-
ages (volumes). We also extend the anisotropic diffusion and local continuous
histogram from their two-dimensional space to three-dimensional space to use
for computing 3D adaptive diffusion tensors and smoothing noisy volumes.
Finally, we present results of smoothed volumes and compare them to other
smoothing methods.

• We filter images and volumes very fast as we take advantage of the massively
parallel processing power of GPU. Its single-instruction-multiple-data (SIMD)
architecture allows us to compute the diffusion tensors and anisotropic dif-
fusion in parallel for entire blocks of pixels and voxels since both operations
are embarrassingly parallel. The GPU implementation of our method gains in
performance by a large factor compared to a CPU run-time.

Chapter 2

Introduction

Contents

2.1 Objectif . 7

2.2 Bruit et filtrage . 7

2.3 Bruit dans des images . 9

2.4 Bruit dans les images 3D . 10

2.5 Motivation et défis . 11

2.6 Contributions . 12

2.1 Objectif

Les images 2D et volumes 3D prennent une place de plus en plus importante dans
notre vie quotidienne que ce soit au niveau artistique, culturel, ou scientifique. Les
images 2D capturent et immortalisent des instants comme les paysages naturels en
utilisant des appareils photographiques. Elles peuvent également capturer des dé-
tails dans des sujets biologiques en utilisant des outils comme la tomographie aux
rayons X, ultrasons, etc. Les volumes 3D des objets ont aussi un intérêt impor-
tant dans l’imagerie médicale, l’ingénierie, et l’analyse du patrimoine culturel. Ils
sont créés en utilisant la reconstruction tomographique, une technique qui combine
une large série de scans 2D capturés de plusieurs points de vue. Malheureusement,
l’acquisition des images et des volumes est affectée par le bruit provoqué par dif-
férents facteurs. Nous proposons deux méthodes effectives et efficaces pour filtrer
ces bruits indésirables. En premier lieu, il est nécessaire de définir les notions de
"bruit" et de "filtrage".

2.2 Bruit et filtrage

Le bruit peut être défini comme un son bruyant, désagréable, et parfois comme une
source de dérangement. L’aboiement des chiens, la musique forte, un moteur en
marche, et le son de la circulation routière sont quelques exemples de bruits.

Un signal est, en général, un acte pour transmettre un message. Mathéma-
tiquement, un signal est composé à partir d’une collection de données qui définit
un phénomène. Le bruit correspond á des données indésirables ajoutées au signal.

8 Chapter 2. Introduction

Figure 2.1: (a) un signal net et (b) un signal bruité généré à partir du signal net.

(a) Onde sinusoïdale nette (b) Bruit aléatoire (c) Onde sinusoïdale bruitée

Figure 2.2: (c) montre une onde sinusoïdale (a) additionnée avec des valeurs de
bruit aléatoires (b).

Dans l’analogique et l’électronique numérique, le bruit correspond á des perturba-
tions aléatoires sur un signal comme l’affichage de neige sur une chaîne de télévision.
En traitement du signal, les données indésirables sont sans signification comme le son
de "sifflement" dans une radio. Figure 2.1(a) montre un signal net et Figure 2.1(b)
montre un signal perturbé.

Il est possible d’ajouter et de supprimer du bruit á partir des signaux. Ajouter
du bruit est facile et peut être fait pour de multiples raisons comme par exemple
pour bloquer ou changer la transmission des données. Le bruit peut aussi être ajouté
pour crypter des messages ou pour des raisons artistiques comme dans les dessins
et photographies numériques. Afin d’ajouter du bruit il suffit simplement d’insérer
un signal aléatoire au signal transmis. Figure 2.2(c) montre une onde sinusoïdale
bruitée qui est le résultat de la somme d’un signal composé de valeur aléatoire
(Figure 2.2(b)) et d’une onde sinusoïdale (Figure 2.2(a)).

En revanche, il est plus difficile d’enlever le bruit dans un signal car des in-
formations du signal original peuvent être perdues. La suppression du bruit dans

2.3. Bruit dans des images 9

(a) (b) (c)

Figure 2.3: Images IRM d’un cerveau à différents niveaux. (a) est un scan IRM d’un
cerveau. (b) correspond à un niveau plus profond et montre les globes oculaires. (c)
dévoile une partie du cortex.

les signaux est habituellement faite par des méthodes de filtrage. Le filtrage est
une technique utilisée pour séparer le mélange de différents éléments comme par
exemple la séparation du sable mélangé à de l’eau. Le concept de filtrage peut
être utilisé dans le traitement du signal en agissant sur le signal d’entrée avec des
fonctions de conversions mathématiques. Le bruit dans un signal est la plupart
du temps représenté par les hautes fréquences et les données importantes du signal
sont représentées par les basses fréquences. En conséquence, en enlevant les hautes
fréquences du signal on enlève le bruit et préserve les données nécessaires.

2.3 Bruit dans des images

Les images sont utilisées dans une grande variété de domaines comme la photogra-
phie, le dessin, et l’imagerie médicale. Cependant, leur qualité est très souvent
altérée par des problèmes de bruit. Les photos de paysages naturels et de réunions
familiales sont des instants capturés par des appareils photographiques. Les images
médicales capturent les détails intérieurs de sujets biologiques comme le cerveau ou
le genou. Ce genre d’images est acquis par des scanners tomographiques, échogra-
phie, rayon-X, ultrasons, IRM, etc. Ces instruments sont non seulement utilisés sur
les sujets biologiques mais aussi sur les objets industriels pour l’analyse des pièces
mécaniques. Figure 2.3 montre des tranches IRM d’un cerveau à différents niveaux.

Malheureusement, tout type d’image peut être affecté par du bruit pendant son
acquisition quelle que soit la manière avec laquelle elle a été génée :

• Les images produites par des appareils photographiques peuvent avoir du
bruit à cause de la faible luminosité de l’environnement, de la sensibilité de
l’appareil, de la température élevée des capteurs, ou encore de défauts élec-
troniques.

10 Chapter 2. Introduction

(a) (b)

Figure 2.4: (a) Image bruitée de Léna. (b) Image IRM bruitée d’un genou.

• Les images acquises par des instruments de radiation sont eux aussi influencés
par du bruit pour plusieurs raisons : manque de sensibilité ou défauts des
capteurs, contraste élevé, etc.

2.4 Bruit dans les images 3D

Les volumes 3D des objets sont très importants dans l’imagerie médicale, l’ingénierie,
et l’analyse du patrimoine culturel. Ils peuvent être créé en utilisant la reconstruc-
tion tomographique, une technique qui combine une large série de scans 2D capturés
à partir de plusieurs points de vue. Chaque scan 2D est obtenu par des appareils
à radiations : des rayons X pour les scans CT, des fréquences radio pour l’IRM,
sonar, rayons gamma, etc.

Les volumes scannés sont généralement explorés via des sections 2D du volume,
via les données 3D du volume, ou via des maillages obtenus après l’extraction des
iso-surfaces des données du volume. Comme dans les images 2D, la construction des
données volumiques est affectée par du bruit généré par de nombreuses sources : le
nombre limité de points de vue, le manque de sensibilité des capteurs, des contrastes
élevés, des problèmes avec la source du rayon-X, des erreurs dans les algorithmes de
reconstruction, etc.

2.5. Motivation et défis 11

(a) (b)

Figure 2.5: (a) Section tomographique d’un inhalateur. (b) Iso-surface extraite de
(a) et composée de ∼ 2500 composantes.

2.5 Motivation et défis

Le bruit est un problème universel et inévitable dans les signaux, images, et vol-
umes. Il produit une couche d’obscurité sur les données importantes qui rend parfois
difficile l’interprétation de ces données. Dans les images, le bruit apparaît comme
des grains de sable (voir Figure 2.4). Il rend les images désagréables à regarder et
plus important encore, le bruit peut cacher des caractéristiques vitales comme des
veines dans des images médicales. Dans les volumes, le bruit peut être observé de la
même façon que dans les images quant ils sont explorés via des sections 2D. Cepen-
dant, quand le volume est regardé en tant que maillages 3D, le bruit est visible sur
le maillage par la rudesse de sa surface ou la présence d’artefacts comme des com-
posantes déconnectées, des ponts, ou des trous. Figure 2.5 montre une tranche CT
d’un modèle d’inhalateur dont l’iso-surface est composée de ∼ 2500 composantes.

Les images et les volumes constituent une partie essentielle de notre vie quoti-
dienne que ce soit au niveau artistique, culturel, ou scientifique. Par conséquent, il
est utile d’enlever le bruit dans les images et les volumes pour de multiples raisons.
D’un point de vue social et culturel, les images et les objets reconstruits seront plus
appréciés. D’un point de vue scientifique, les échantillons sans bruit seront mieux
étudiés et analysés pour des raisons médicales ou autres. Cependant, l’utilisation de
méthodes naïves pour enlever le bruit peut détruire des informations importantes.
Ainsi, il est important de filtrer le bruit d’une façon intelligente afin de garder les
informations significatives des images et volumes. Cela n’est pas une tâche facile
mais plutôt un défi. De plus, le passage à l’échelle vers des données plus larges est

12 Chapter 2. Introduction

un probléme et le filtrage est très coûteux d’un point de vue calculatoire.
Il est intéressant d’enlever le bruit dans les images et volumes tout en préser-

vant les informations significatives du sujet, c’est-à-dire ses lignes caractéristiques.
Par ailleurs, il est important que les méthodes utilisées soient effectives et efficaces
puisque les tailles des images et volumes grandissent constamment avec l’évolution
des instruments qui les capturent. Aujourd’hui, les images et volumes peuvent être
de taille > 40962 (∼ 17 million) pixels et > 10003 (10K million) voxels respective-
ment.

2.6 Contributions

Dans cette thèse, on s’intéresse au problème de lissage des images et volumes bruités
pour améliorer leur qualité tout en préservant leurs caractéristiques significatives.
Nous proposons un nouveau noyau de lissage qui est rapide, multi-échelle et s’adapte
aux caractéristiques locales des images et des volumes. Ensuite, on utilise d’autres
noyaux calculés pour appliquer une diffusion anisotrope. Les résultats sont des im-
ages et volumes lissés, dont les hautes fréquences en-dessous d’une valeur spécifiée
par l’utilisateur sont éliminées. Notre algorithme tourne efficacement sur processeur
parallèle (comme les GPUs) et peut être appliqué à des données plus larges. Le
réglage est relativement facile, avec un seul paramètre que l’on appelle taille carac-

téristique—la taille minimale des caractéristiques que l’on souhaite préserver.
Nos principales contributions présentées dans cette thèse sont:

• Dans le Chapitre 3, nous décrirons les approches antérieures sur la suppression
du bruit appliquée à des images et des volumes. De plus, nous présenterons
une analyse détaillée de deux méthodes très proches de la nôtre en surlignant
leurs faiblesses et différences par rapport à cette dernière. Nous commencerons
le chapitre par expliquer le filtrage et ses applications à une dimension. Puis,
nous présenterons les outils théoriques relatifs au filtrage de signaux. Enfin,
nous expliquerons le filtrage d’images 2D et 3D.

• Dans le Chapitre 4, nous présenterons la théorie de notre méthode multi-
échelle pour lisser les images 2D. Nous rappellerons deux outils utilisés ensuite:
la diffusion anisotrope et l’histogramme continu local. Ensuite, nous mon-
trerons comment sont calculés les tenseurs adaptifs de diffusion et de filtrage
en utilisant ces outils. Enfin, nous analyserons les comportements de notre
méthode et comparerons nos résultats sur différents types d’images bruitées
avec d’autres méthodes de lissage.

• Dans le Chapitre 5, nous prolongerons notre méthode de lissage de l’espace
2D à l’espace 3D pour lisser des volumes 3D. Nous étendrons aussi la diffusion
anisotrope et l’histogramme continu au cas 3D pour calculer les tensors de
diffusion adaptifs nécessaires au filtrage de volumes bruités. Finalement, nous
présenterons les résultats des volumes filtrés et nous comparerons ces résultats
à d’autres méthodes de filtrage.

2.6. Contributions 13

• Nous filtrons les images et volumes très rapidement car nous tirons avantage de
la puissance de calcul parallèle du GPU. L’architecture du GPU nous permet
de calculer les tensors de diffusion et d’ appliquer la diffusion anisotrope à
des blocs entriers de pixels ou voxels en parallèle. L’implémentation de notre
méthode sur GPU nous donne une performance accrûe par rapport à une
implémentation sur CPU.

Chapter 3

Theoretical Background and

Review of Previous Work

Contents

3.1 Introduction . 15

3.2 Signal Processing . 16

3.3 Signal Processing and Smoothing in 1D Signal 16

3.3.1 Convolution . 17

3.3.2 Fourier Transform . 21

3.3.3 Bilateral Filter . 22

3.4 Smoothing Images . 24

3.4.1 Statistical Methods . 24

3.4.2 Weighted Average . 25

3.4.3 Convolution in 2D . 26

3.4.4 Fourier Transform in 2D . 28

3.4.5 Bilateral Filter in 2D . 29

3.5 Smoothing Images using PDE 31

3.5.1 Linear Heat Diffusion . 32

3.5.2 Non-linear Heat Diffusion . 32

3.5.3 Diffusion and Time Step ∆t 37

3.5.4 Anisotropic Diffusion Tensor 38

3.6 Smoothing Volumetric Data 42

3.6.1 Bilateral Filter on Volumetric Data 43

3.6.2 EED and CED on Volumetric Data 44

3.1 Introduction

Digital data such as television, photography images, medical imaging, and meshes
have become a significant part of daily life. However, their acquisition is prone to be
contaminated by parasites. These parasites also known as noise can be generated
from several different sources such as low light environment, thermal variation, and
the processing and discretization of the data.

16 Chapter 3. Theoretical Background and Review of Previous Work

In this chapter, we describe the previous approaches for removing noise in two-
dimensional and three-dimensional images. We start by explaining what filtering is
and its application in one-dimension. Along this, we present the theoretical tools we
need and use for filtering. Then, we extend the explanation to 2D and 3D images.

Introduction

Les données numériques, télévisuelles, photographiques ou médicales, constituent
une partie importante de notre vie quotidienne. Cependant, leur acquisition est
contaminée par des signaux parasites. Ces parasites, aussi connus comme du bruit,
sont produits par de nombreuses sources différentes, comme la faible luminosité de
l’environnement, la variation thermique, et le traitement et la discrétisation des
données.

Dans ce chapitre, nous décrirons les approches antérieures permettant d’enlever
le bruit dans les images 2D et 3D. Nous commencerons par expliquer le filtrage
et ses applications dans le cas unidimensionnel. Puis, nous présenterons les out-
ils théoriques relatifs au filtrage de signaux. Enfin, nous expliquerons le filtrage
d’images 2D et 3D.

3.2 Signal Processing

A signal is an abstract, symbolic, or physical representation of information such as
communication, audio, music, speech, language, images, graphics, sonar, radar, etc.
Signal processing is essential for converting information from one format to another
as well as design complex systems to interact with human and environment. These
include generating, transforming, transmitting the signal as well as interpreting it
with the aid of software and hardware.

3.3 Signal Processing and Smoothing in 1D Signal

Figure 3.1 shows an example of a one-dimensional signal. This signal is free from
noise and has sharp discontinuities. The sharp discontinuities, zero-to-one and one-
to-zero values, of the signal signify a change of region and thus can be used to
identify areas separating these regions.

Figure 3.2 shows the one-dimensional signal of Figure 3.1(a) with random noise.
Noise is present by the bright and dark spots added in the black and white regions
respectively. Figure 3.2(b) shows the signal graphically. The noise in the signal can
be removed by filtering out the signal from the rapid fluctuating values.

Two of the most well known filtering methods are convolution and bilateral
filtering. We discuss them next.

3.3. Signal Processing and Smoothing in 1D Signal 17

(a) (b)

Figure 3.1: (a) A one-dimensional signal and (b) its respective plot. The signal is
free from noise and has sharp discontinuities separating regions.

(a) (b)

Figure 3.2: (a) A one-dimensional signal with random noise and (b) its respective
plot.

3.3.1 Convolution

A convolution [Funkhouser 1995] is a mathematical operation applied on two func-
tions f and g; an original function and a mask function also known as a filter
function. The operation produces a third function h which is a modified version of
the original one altered by the mask:

h(y) = (f ⊗ g)(y) =

∫ +∞

−∞
f(x)g(y − x) dx. (3.1)

where f is the input function, g is the filter function, and ⊗ denotes the convo-

18 Chapter 3. Theoretical Background and Review of Previous Work

n

3
4

5

0 1 2

(a) Input function f

n

2
1

0
0 1 2

(b) Filter function g

n

6

11

0 1 2

14

3

5

4
0

(c) Output of f ⊗ g

Figure 3.3: Convolving an input function (a) and a filter function (b). (c) The result
output function.

lution operator. If the signal is discrete rather than continuous, each output value
of a convolution is the sum of the product of the two functions over a finite range:

h[n] = (f ⊗ g)[n] =
ω
∑

m=−ω

f [m]g[n−m] (3.2)

where −ω and ω define the domain range of f . Figure 3.3 shows an example of
discrete convolution.

Convolution is a very powerful concept and a fundamental tool in signal process-
ing and analysis. It can be seen as centering the filter function at each point along
the input function, multiplying the filter everywhere by the value of the function,
and then summing them up. This is visualized in Figure 3.4 where we convolve two
rectangle pulses. The input signal, in green, is stationary, centered at the origin.
The filter function, in red, slides along the horizontal axis from left to right. As the
functions overlap, the output value of the point centered by the filter function is
equal to their intersected area; shown in grey. The output function starts with an
area of zero as they are disjoint. This value increases linearly as the functions start
to overlap reaching a maximum when they superimpose. It then decreases linearly
till they separate again. The result is a triangle function shown on the bottom line
of Figure 3.4.

Noise in signals consists mostly of high frequencies. Removing, or smoothing the
high frequencies from the signal reduces the noise. This can be done by convolving
an input signal with a low-pass filter. Low-pass filters reduce the amplitude of high
frequencies and pass the lower ones. The sinc function is an ideal low-pass filter
(Figure 3.5(b)). It has the general form: sin(x)/x and is given by:

3.3. Signal Processing and Smoothing in 1D Signal 19

Result

Figure 3.4: Convolution of two rectangle pulses. The result is a triangle shown at
the bottom line.

(a) Input function f (b) Sinc function g (c) Convolution Output

Figure 3.5: Convolving a noisy input function (a) with a Sinc function (b). (c)
the result function of the convolution. Note how the perturbed data is reduced while
maintaining the sharp discontinuities in the data.

20 Chapter 3. Theoretical Background and Review of Previous Work

sinc(x) =
sin(2πfcx)

xπ
(3.3)

The sinc function blocks all frequencies above the cutoff frequency fc and passes
other frequencies below it. Figure 3.5 shows a noisy input signal (a) convolved
with a sinc function (b). The result function (Figure 3.5(c)) shows a reduction
in the high frequencies and the preservation of the sharp discontinuities (i.e. low
frequencies).

Figure 3.6: Gaussian distribution with various values of σ.

Another popular low-pass filter for removing noise from a signal is the Gaussian

function. The Gaussian distribution has a symmetric bell shape where its width is
defined by a parameter σ. Its mathematical equation is:

f(x) =
1

σ
√
2π

e−
x2

2σ2 (3.4)

The Gaussian distribution describes a vast variety of physical and probabilistic
phenomena. It emphasizes what happens on nearby points over more distant ones
when centered at the point of interest. Moreover, its extremities fall as fast as
possible to nearly zero making it a great low-pass filtering candidate. The width
of the distribution, defined by σ, also defines the nearby sampling points that
will contribute to the point of interest (in 2D, the σ variable represents an area).
A small σ value results in a steep distribution covering a small region. As its
value increases the distribution flattens covering a larger region (see Figure 3.6).
Figure 3.7 shows a noisy input signal f (a) convolved with a Gaussian function
with σ = 0.8 (b); the result is shown in (c).

3.3. Signal Processing and Smoothing in 1D Signal 21

3.3.2 Fourier Transform

Convolution is a great way to filter signals. However, its computation is expensive;
roughly O(n2) where n is the number of sampling points in the signal. Its process
can be accelerated by computing it in the frequency domain. This is done by first
converting the signal to a frequency domain where its manipulation corresponds to
attenuating the frequency coefficients. Thus, convolution is applied on the frequency
coefficients. Finally, the filtered signal is then converted back to its original domain.
This conversion is done using Fourier transforms [Bracewell 1999, Yoo 2001].

(a) Input function f (b) Gaussian function g (σ2
= 0.8) (c) Convolution Output

Figure 3.7: Convolving a noisy input function (a) with a Gaussian function (b). (c)
the result function of the convolution. Note how the perturbed data is filtered away.

The Fourier transform is composed of two components; forward Fourier and
inverse Fourier. Forward Fourier converts a signal from its spatial domain to a
frequency domain. Its mathematical definition in a continuous one-dimensional
space is:

F (u) =

∫ +∞

−∞
f(x)e−i2πux dx where u is the frequency variable (3.5)

f(x) is the input signal and F (u) are the coefficients of each sine and cosine. F (u)

is called the spectrum of the function f(x) and contains the frequency information.
The signal can be converted back; if it is invertible, to the spatial domain by applying
the inverse Fourier transform:

f(x) =
1

2π

∫ +∞

−∞
F (u)ei2πux du (3.6)

These two equations convert to and from the frequency domain using a simple
sum of products. Notice that the only difference between the forward and inverse
equation is the negation in the exponential. The term 1

2π in the inverse Fourier
delimits the range domain to that of the input signal in its spatial domain.

The Fourier transform is involved in all sorts of applications which can be repre-
sented as signals such as television and radio transmission. It can identify periodic

22 Chapter 3. Theoretical Background and Review of Previous Work

components in a signal and as such can separate and block regular unwanted pat-
tern. More importantly is its property with respect to convolution. In Fourier space,
the convolution of two signals is equal to the product of their Fourier transforms:

F (f ⊗ g) = F (f)F (g) where f and g are two functions. (3.7)

F (f) and F (g) are their respective Fourier transform. In particular, the Fourier
transform of a Gaussian distribution is also a Gaussian distribution.

The discrete equations of the forward Fourier (Equation 3.5) and inverse

Fourier(Equation 3.6) in one-dimensional are respectively:

F (u) =
N−1
∑

x

f(x)e
−i2πux

N (3.8)

for u = 0, 1, 2, ..., N − 1 and

f(x) =
1

N

N−1
∑

u=0

F (u)e
i2πux

N (3.9)

for x = 0, 1, 2, ..., N −1. The discrete Fourier transform is very easy to compute
on the computer but is of complexity O(N2).

The fast Fourier Transform (FFT) [Brigham 1974, Brigham 1988] efficiently
computes the discrete Fourier transform and its inverse. FFT decomposes the
components of the Equations 3.8 and 3.9 to reduce the complexity from O(N2)

to O(N log2N).

3.3.3 Bilateral Filter

Bilateral Filtering [Tomasi 1998] is a non-linear filtering method that preserves the
sharp changes in a signal. It is also considered as a low-pass filter. It extends
the Gaussian concept by taking into account both the closeness and similarity of
neighboring sampling points to that of the central point. More weight is put on
points that are close to the central point; either in distance or in value. A point
with a value very different from that of the central point contributes less to the
overall averaging value even if it is spatially near the central point. Mathematically,
bilateral filtering is composed of two Gaussian filters: one that weights in the spatial
domain known as the domain filter and the other weights in the value domain known
as the range filter. Its continuous definition in one-dimension is:

h(x) = k(x)−1

∫ +∞

−∞
f(u)c(u, x)s(f(u), f(x))du (3.10)

with the normalization

k(x) =

∫ +∞

−∞
c(u, x)s(f(u), f(x))du

3.3. Signal Processing and Smoothing in 1D Signal 23

The output and input functions are h and f respectively. x is the central point
over which the bilateral filter is computed and u is a neighbor point of x in f . The
closeness function c(u, x) and the similarity function s(f(u), f(x)) are Gaussian
functions of the Euclidean distance between their arguments:

c(u, x) =
1

σd
√
2π

e
−

‖|u−x‖|

2σ2
d

and

s(f(u), f(x)) =
1

σr
√
2π

e
−

‖|f(u)−f(x)‖|

2σ2
r

The geometric spread σd defines the bandwidth of the filter. A large σd will
combine values of more distant points. Similarly, the range spread σr defines the
desired value of points to be combined. Sampling points with value difference smaller
than or equal to σr are included in the overall averaging. Larger ones are excluded.

(a) Input function f (b) BF: σd = 10, σr = 0.4 (c) BF: σd = 20, σr = 0.4

Figure 3.8: An input signal with noise (a) is filtered twice by the bilateral filter with
different parameters (b) and (c). Notice (c) is smoother as the region considered is
double from that of (b); σd = 20 and σd = 10 respectively. Sharp discontinuities are
preserved.

Figure 3.8 shows a noisy input signal filtered twice by bilateral filtering. The
rapid perturbation data in Figure 3.8(a) is attenuated in (b) while the sharp dis-
continuities remain. The large spatial domain chosen in (c) suppresses the high
frequencies by involving distant points in the overall averaging value.

In discrete space, bilateral filtering is expressed by the sum of the product of the
two Gaussian functions and the value of the neighboring point:

h(x) = k(x)−1
N−1
∑

u=0

f(u)c(u, x)s(f(u), f(x)) (3.11)

where N is the number of sampling points of input function f with

24 Chapter 3. Theoretical Background and Review of Previous Work

k(x) =
N−1
∑

u=0

c(u, x)s(f(u), f(x))

3.4 Smoothing Images

Image acquisition is influenced by noise caused by different factors such as low-light
illumination and electronics defects. The challenging goal is removing this noise
while preserving the details and features defining the image. Many techniques and
algorithms were devised and evolved over the years to address this issue. There is
still no ideal solution for simultaneously smoothing and preserving details of the
images. In this thesis, we will present the most well known techniques relative to
our contributions.

A digital image is discretized into a two-dimensional grid of intensity value pixels
defining the content of the image. Detail features, or edges, in an image define the
characteristics of the subject of the image. They can be identified by the high
difference in intensity values or gradients between neighboring pixels. Smoothing
images results in modifying the pixels intensity values.

P(i, j)

(a)

P(i, j)

(b)

P(i, j-2)

P(i+2, j)

P(i, j)

P(i-2, j)

P(i, j+2)

P(i-2, j-2) P(i-2, j+2)

P(i+2, j+2)P(i+2, j-2)

P(i, j-1)

P(i+1, j)

P(i, j+1)

P(i-1, j)P(i-1, j-1) P(i-1, j+1)

P(i+1, j+1)P(i+1, j-1)

(c)

Figure 3.9: Given the center pixel P (i, j). (a) 4 connected neighbor pixels: considers
only the non-diagonal pixels, (b) 8 connected neighbor pixels: considers all surround-
ing pixels, and (c) 16 connected neighbor pixels: including the 8 directly connected
pixels, it also considers 8 pixels from the second ring of pixels away from P (i, j).

3.4.1 Statistical Methods

The intensity value of pixels can be attenuated using statistical techniques. Sta-
tistical quantities are computed over a defined neighborhood of the pixel being
modified. Mean-filtering [Gonzalez 2001] is a method that replaces the value of
each pixel by the mean of its surrounding neighbor pixels. Median-filtering replaces
the value of each pixel by the median intensity value of its local neighborhood

3.4. Smoothing Images 25

(see [Tukey 1977, Narendra 1981, Huang 1979, Gallagher 1981]). These methods
do smooth images, however they blur out the details of the characteristics of the im-
ages. Davis and Rosenfeld [Davis 1978] proposed the K-means method to preserve
details. In a local neighborhood, the replacing mean value is computed on selective
pixels that are bounded by precise criteria. It selects K neighbors pixels closest in
pixel intensity value. The method gives image dependent neighborhoods, but they
are not symmetric and require more computation.

3.4.2 Weighted Average

Smoothing images can also be achieved by associating weights to neighboring pix-
els before replacing the center pixel by their weighted average. The weights are
determined from the local information of pixels; such as gradient [Wang 1981], sec-
ond derivatives [Graham 1962] or local mean and variance information [Lee 1980,
Lee 1981], and generally from a 4-8-16 connected neighbor pixels. Figure 3.9 high-
lights in grey the pixels considered to each of the pixel neighboring scheme. Weight-
ing pixels was designed with the objective of preserving edges in the image by
emphasizing pixels over others. However, most of the time they fail to do so.
Okada [Okada 1985] weights the intensity value of neighboring pixels on a window
kernel of 3 x 3 and 5 x 5 (see Figure 3.10) and proposes three algorithms:

• Algorithm 1: Given a pixel P (i, j) in a 3x3 pixels area (Figure 3.10(a)), re-
places its value by the following:

Pi,j = (Pi−1,j + Pi,j−1 + Pi+1,j + Pi,j+1)/4

if this condition is satisfied.

(|Pi−1,j − Pi,j | < k) ∧ (|Pi,j−1 − Pi,j | < k)∧
(|Pi+1,j − Pi,j | < k) ∧ (|Pi,j+1 − Pi,j | < k)

where k is constant and determined empirically. It is chosen to exclude bound-
ary between two regions as the difference between their intensity value is larger
than k.

• Algorithm 2: In a 5x5 pixels area (Figure 3.10(b)), the value of pixel P (i, j)

is replaced by

Pi,j = (Pi−2,j + Pi,j−2 + Pi+2,j + Pi,j+2)/4

if the condition

26 Chapter 3. Theoretical Background and Review of Previous Work

(|Pi−2,j − Pi,j | < k) ∧ (|Pi,j−2 − Pi,j | < k)∧
(|Pi+2,j − Pi,j | < k) ∧ (|Pi,j+2 − Pi,j | < k)

is satisfied.

• Algorithm 3: first applies algorithm 2 and then compute averages of eight
pairs of pixels {P (i− 2, j− 2), P (i− 1, j− 1)}, {P (i− 2, j), P (i− 1, j)},etc. as
shown in Figure 3.10(c) by the arrows. Out of the eight pairs, it finds the pair
with its average closest to P (i, j). The value of P (i, j) is then replaced by the
mean value computed from the three pixels, the pair pixels, and P (i, j).

P(i, j) P(i, j+1)P(i, j-1)

P(i-1, j)

P(i+1, j)

(a) 3x3 boxes

P(i, j-2) P(i, j)

P(i-2, j)

P(i, j+2)

P(i+2, j)

(b) 5x5 boxes alg2

P(i, j-2)

P(i+2, j)

P(i, j)

P(i-2, j)

P(i, j+2)

P(i-2, j-2) P(i-2, j+2)

P(i+2, j+2)P(i+2, j-2)

P(i, j-1)

P(i+1, j)

P(i, j+1)

P(i-1, j)P(i-1, j-1) P(i-1, j+1)

P(i+1, j+1)P(i+1, j-1)

(c) 5x5 boxes alg3

Figure 3.10: Okada’s [Okada 1985] different selection of pixels for the weighted av-
eraging algorithms.

Boult and Melter [Boult 1993] generalize Okada’s concept by proposing G-
neighbors. The idea is simple. One can chose any smoothing technique. However,
its application is done only on pixels where their difference satisfies a predicate.
This selected group of pixels is called G-neighbors. Two pixels with values A and
B are considered in G-neighbors if |A− B| < G. The value of G has an impact on
either tightening or loosening the requirement for pixels to be G-neighbors. A low G
value will tighten up the requirement and a higher one will loosen it up. Figure 3.11
shows a grid of pixels with their intensity value. Pixel connected with dash lines are
G-neighors with G = 30.

3.4.3 Convolution in 2D

Images can be filtered by convolving them with a 2D mask function. The 2D mask
is centered at each pixel. Then, the value of each pixel is modified by computing a
weighted sum of the product of the mask and local neighboring pixels of the centered

3.4. Smoothing Images 27

180

200

170

190

150

200 110

120140

Figure 3.11: The number inside each pixel represents the intensity value for that
pixel. Pixels that are G-neighbors when G=30 are shown with dashed lines. (figure
taken from G-Neighbor article)

pixel. Convolution has a significant role in image processing. The concept of convo-
lution in images is simply an addition of an extra dimension to its one-dimensional
space presented in Section 3.3. The mathematical equation of a continuous 2D con-
volution is defined by the integrals over both dimensions of the product of the input
data and filter function:

h(u, v) = (f ⊗ g)(u, v) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)g(u− x, v − y) dxdy (3.12)

where f is the 2D input data, g is the filter function, and ⊗ denotes the convo-
lution operation. Note again that f is multiplied by a time-shifted g.

In discrete space, each output value of a convolution is the sum of the product
of the two functions over a delimit defined range in both dimensions. The discrete
convolution equation is:

h[m,n] = (f ⊗ g)[m,n] =
i=ω
∑

i=−ω

j=ω
∑

j=−ω

f [i, j]g[m− i, n− j] (3.13)

where −ω and ω define the domain ranges of f .
Convolving an image with a filter function can either blur or denoise it. The

Gaussian distribution is a well known smoothing operator. It filters out high fre-
quencies and keeps low frequencies. The Gaussian distribution in two-dimension is
simply the multiplication of two Gaussian functions each representing a dimension:

g(x, y) = g(x)g(y) = (
1

σ
√
2π

e−
x2

2σ2)(
1

σ
√
2π

e−
y2

2σ2) =
1

σ22π
e−

x2+y2

2σ2 (3.14)

The σ parameter defines the area over the sampling pixels which will contribute

28 Chapter 3. Theoretical Background and Review of Previous Work

(a) Noisy Lena image (b) Gaussian blur σ = 2.0 (c) Gaussian blur σ = 8.0

Figure 3.12: Smoothing a noisy Lena image(a) by convolving with the Gaussian
function of σ = 2.0 (b) and σ = 8.0. As the σ value increases the image is blurrier
and the edges fade away.

to the overall weighted average of the central pixel. Figure 3.12 shows a noisy Lena
image smoothed by convolving it with a 2D Gaussian function of σ values 2.0 and 8.0.
The image is much more smoother as the value of σ increases. Moreover, the detail
features such as the edges are blurred away which is a disadvantage of Gaussian
smoothing. It does not differentiate between pixels that should be attenuated and
those that shouldn’t. It only favors nearby pixels over those farther away.

Two-dimensional Gaussian function is separable into two one-dimensional fac-
tors: g(x, y) = g(x)g(y). This is computationally important, it reduces the cost
of 2D convolution by separating it into two one-dimensional convolutions. Equa-
tion 3.13 becomes:

h[m,n] = (f ⊗ g)[m,n] =

x=ω
∑

x=−ω

g[m− x]

y=ω
∑

y=−ω

f [x, y]g[n− y] (3.15)

reducing its cost from O(2ω2) to O(2ω) respectively.
The concept of convolution can be generalized to higher dimensions, simply by

including the extra dimensions in the formulation. Convolution is very expensive to
compute, and including extra dimensions increases the computational cost linearly.
However, this process can be accelerated using the Fourier transforms.

3.4.4 Fourier Transform in 2D

Similarly as in one-dimensional, processing images in the frequency domain is sim-
pler than in the spatial domain. In frequency space, periodic signal components of
an image can be identified, then simple measurement can be applied to them that
would be difficult to do in spatial domain. Convolution is a simple multiplication
in frequency space. Images can be converted to and from the frequency domain by
applying two-dimensional Fourier transforms.

3.4. Smoothing Images 29

Fourier transforms can be extended from one-dimensional to n-dimensional
space. This is done by including the extra dimensions in both the forward and
inverse Fourier equations (Equations 3.5 and 3.6) through a set of n nested inte-
grals of one-dimensional Fourier transform:

F (u, v) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−i2π(ux+vy) dxdy (3.16)

where u and v are the frequency variables. f(x, y) is the input 2D image and
F (u, v) is the spectrum of f(x, y). The continuous inverse Fourier is:

f(x, y) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
F (u, v)ei2π(ux+vy) dudv. (3.17)

The discrete equations of the two-dimensional forward Fourier and inverse

Fourier are respectively:

F (u, v) =

M−1
∑

x=0

N−1
∑

y=0

f(x, y)e−i2π(ux
M

+ vy
N

) (3.18)

for u = 0, 1, 2, ...,M − 1 and v = 0, 1, 2, ..., N − 1 defining the dimensions of the
2D signal, and

f(x, y) =
1

MN

M−1
∑

u=0

N−1
∑

v=0

F (u, v)ei2π(
ux
M

+ vy
N

) (3.19)

for x = 0, 1, 2, ...,M − 1 and y = 0, 1, 2, ..., N − 1.
As mentioned earlier, discrete Fourier transform is ideal for digital computations.

We use the Fast Fourier transform (FFT) [Brigham 1974, Brigham 1988] algorithm
as it reduces significantly the conversion time to and from the frequency domain.
Furthermore, it can be configured and extended to any number of dimension. Fig-
ure 3.13 displays the FFT of the Lena image.

Filtering images in the frequency domain can decrease the sharpness of the edges
as high frequency components are also around the edges. Edges themselves could
be represented by high frequency. Thus, the images loses some of its sharp details.

3.4.5 Bilateral Filter in 2D

Smoothing images while preserving their edges can be accomplished using the non-
linear bilateral filter [Paris 2007, Tomasi 1998, Paris 2008, Paris 2009]. A filtered
image is obtained by replacing the intensity value of each pixel with a Gaussian av-
erage value weighted by the geometric and photometric similarities between neigh-
boring pixels within a spatial window [Tomasi 1998]. Bilateral filtering, presented
in Section 3.3.3 on one-dimensional signal, can be extended to and applied on n-
dimensional signals. This is achieved through a set of n nested summation of one-
dimensional bilateral filter:

30 Chapter 3. Theoretical Background and Review of Previous Work

(a) Lena image (b) Fourier space of (a)

Figure 3.13: (b) displays the frequency data of the Lena image(a) after converting it
with FFT.

h(x, y) = k(x, y)−1

∫ +∞

−∞

∫ +∞

−∞
f(u, v)c(puv, pxy)s(f(u, v), f(x, y))dudv (3.20)

with the normalization

k(x, y) =

∫ +∞

−∞

∫ +∞

−∞
c(puv, pxy)s(f(u, v), f(x, y))dudv.

The output and input functions are h and f respectively. (x, y) is the central
pixel over which we compute the bilateral filter and (u, v) is a neighbor pixel of (x, y)
in f . puv and pxy are respectively the pixels position of (u, v) and (x, y) respectively.
The closeness function c(puv, pxy) and the similarity function s(f(u, v), f(x, y)) are
Gaussian functions of the Euclidean distance between their arguments:

c(puv, pxy) =
1

σd
√
2π

e
−

‖puv−pxy‖

2σ2
d

and

s(f(u, v), f(x, y)) =
1

σr
√
2π

e
−

‖f(u,v)−f(x,y)‖

2σ2
r

The geometric spread σd defines the spatial window of the filter. A large σd will
combine values of more distant pixels. Similarly, the photometric spread σr defines
the desired intensity value of pixels to be combined. Pixels with value difference
smaller than σr are included in the overall averaging. Larger ones are excluded.

The discrete two-dimensional function of bilateral filtering is

3.5. Smoothing Images using PDE 31

h(x, y) = k(x, y)−1
M−1
∑

m=0

N−1
∑

n=0

f(m,n)c(pmn, pxy)s(f(m,n), f(x, y)) (3.21)

where M and N define the width and height of the input image f with

k(x, y) =
M−1
∑

m=0

N−1
∑

n=0

c(pmn, pxy)s(f(m,n), f(x, y))

(a) Noisy Lena image (b) BF: σd = 2, σr = 0.35 (c) BF: σd = 10, σr = 0.35

Figure 3.14: (a) A noisy image of Lena. (b) The image of Lena is smoothed by the
bilateral filtering. Most of the noise is filtered away and the edges are preserved.
(c) Edges start to fade away as the geometric spread σd increases and farther away
pixels are considered.

Figure 3.14 shows a noisy image of Lena smoothed by the bilateral filter with
different values of σd and σr. Note that with σd = 2 and σr = 0.35 the image is
smoothed while the edges are preserved. Increasing the value of σd (Figure 3.14(c))
blurs away the edges as the filter covers more distant pixels.

Bilateral filter is a great mean for denoising images. However, tuning its pa-
rameters, σd and σr, might be a source of problems as their selection is dependent
on a trial and error approach. Moreover, tuning their values to keep the edges and
features of the image also keep some of the noise. If we push the parameter until
the noise disappear, we start losing the features and details.

3.5 Smoothing Images using PDE

Partial differential equation (PDE) is an alternative technique to remove noise from
images. This approach processes images in the temporal domain. It exploits the
concept of heat diffusion where energy is dispersed from areas of high concentration
to areas of lower concentration. In images, this is accomplished iteratively: at each

32 Chapter 3. Theoretical Background and Review of Previous Work

time step, the intensity value of each pixel is attenuated by a fraction of an average
value computed over its local neighboring pixels. Mathematically, it is defined as

I(x, y, t+∆t) = I(x, y, t) + ∆t(It) (3.22)

where I(x, y, t) is an image at time t. The original image is found at t = 0. ∆t is
the time step and I(x, y, t+∆t) is the attenuated image after one time step. Finally,
It is the average computed value. It can be computed for various functionalities,
and it can be either linear or non-linear. Linear diffusion, or isotropic diffusion, car-
ries diffusion equally in all direction. Non-linear diffusion, or anisotropic diffusion,
controls the orientation of diffusion. Although the PDE technique of smoothing is
presented here on two-dimensional images, it can be generalized to any number of
dimensions. For notation clarification, we use Ix and Ixx to express the first and
second derivatives of I respectively; i.e. Ix = ∂I

∂x , It = ∂I
∂t , Ixx = ∂Ix

∂x , etc.

3.5.1 Linear Heat Diffusion

Linear heat equation (or linear heat diffusion) is a gradient descent PDE. It takes
advantage of the gradient (Ix,Iy) information of the image to equilibrate the intensity
values through out the image. More appropriately, it is defined as:

It = Ixx + Iyy = ∆I (3.23)

where ∆ is the Laplacian operator. The second derivative of a pixel in each
dimension is computed and summed up. A fraction of this value, depending on the
choice of ∆t, is added to the pixel at time t (Equation 3.22).

Linear heat diffusion is isotropic: diffusion is independent from orientation. In
images, high intensity values are diffused in all directions. This blurs away the edges
and characteristics of the image. Moreover, they are dislocated from their original
position. Figure 3.15 shows an image smoothed by the linear heat diffusion. The
sharpness of the edges have gradually diminished as the number of diffusion steps
increases.

Applying heat diffusion several times converges to Gaussian smoothing. How-
ever, unlike Gaussian smoothing (executed in one step) heat diffusion iterative ap-
proach gives the user control over the smoothing. Diffusion can be aborted at any
iteration step once the smoothing has reached a satisfying result.

3.5.2 Non-linear Heat Diffusion

In this section, we review the different non-linear heat diffusion schemes.

3.5.2.1 Geometric Heat Diffusion

Geometric diffusion diffuses only parallel to edges. This reduces the effect of blurring
edges caused by isotropic diffusion. Laplace operator is flexible: it produces the same
result regardless of the coordinates used to obtain ∆I. A coordinate for instance

3.5. Smoothing Images using PDE 33

(a) Noisy Lena image (b) d = 15 (c) d = 30

Figure 3.15: A noisy image of Lena (a) smoothed by linear heat diffusion at diffusion
steps: (b) 15 and (c) 30. Diffusion is spread uniformly in all direction. The intensity
values are spread over all the image as more diffusion steps is applied.

edge

Figure 3.16: ξη coordinate is a flexible coordinate system used as a typical xy coor-
dinate.

representing an edge and its orthogonal orientation can be used in the same way
as a typical xy coordinate. Figure 3.16 illustrates this where ξ and η represent
respectively the directions tangent to the edge and normal to the edge.

This generalizes Equation 3.23 into It = Ixx + Iyy = Iξξ + Iηη = ∆I. Hence,
making Iηη = 0 restricts a diffusion that is tangent to the edge. Then Equation 3.23
becomes:

It = Iξξ + Iηη − Iηη = ∆I − Iηη (3.24)

This can be further generalized by letting η be the gradient; the direction the
image intensity increases. The gradient (∇I) is always orthogonal to the edge. Thus,
η = ∇I

‖∇I‖ and Equation 3.24 becomes:

34 Chapter 3. Theoretical Background and Review of Previous Work

Differential Terms Difference Equations

Ix(x, y) Ix(x, y) =
I(x+1,y)−I(x−1,y)

2

Iy(x, y) Iy(x, y) =
I(x,y+1)−I(x,y−1)

2

Ixx(x, y) Ixx(x, y) = I(x+ 1, y)− 2I(x, y) + I(x− 1, y)

Iyy(x, y) Iyy(x, y) = I(x, y + 1)− 2I(x, y) + I(x, y − 1)

Ixy(x, y) Ixy(x, y) =
I(x+1,y+1)−I(x+1,y−1)+I(x−1,y−1)−I(x−1,y+1)

4

Table 3.1: Lists of spatial differences for first and second order derivatives.

It = ∆I −
(∇I
‖∇I‖

)T

(∇2I)

(∇I
‖∇I‖

)

(3.25)

where ∇I =

[

Ix

Iy

]

and ∇2I =

[

Ixx Ixy

Ixy Iyy

]

is the Hessian. By simple substitution,

we get

It = Ixx + Iyy −

[

Ix Iy

]

[

Ixx Ixy

Ixy Iyy

][

Ix

Iy

]

I2x + I2y

which simplifies to the geometric heat equation:

It =
I2xIyy − 2IxIyIxy + I2yIxx

I2x + I2y
(3.26)

[

Ix Iy
]

Ixx Ixy

Ixy Iyy

Ix

Iy

I2x+I2y
computes the contribution of the diffusion in the

[

Ix

Iy

]

direction. Excluding this value from ∆I makes the diffusion uniquely tangent to the
edge.

Figure 3.17 illustrates geometric heat diffusion. The edges are well preserved
even when the diffusion steps is increased. Only the interior regions are smoothed.

3.5. Smoothing Images using PDE 35

(a) Lena with noise (b) d = 15 (c) d = 60

Figure 3.17: A noisy image of Lena(a) smoothed by geometric heat diffusion at
diffusion steps: (b) 15 and (c) 60. Notice the edges are well preserved even as the
number of diffusion steps increases. This can be seen in (c). The interior regions
are blurred but the edges are preserved.

At higher diffusion steps (Figure 3.17(c)), the image tends to give the impression of
a water painting image.

3.5.2.2 Perona and Malik Diffusion

Scale-space heat diffusion smoothes images at different resolution levels by intro-
ducing a constant value C in Equation 3.23; i.e. It = C∆I. Different values of C
define different scale levels at which the image will be smoothed. However, such a
configuration has a cost, as it blurs away the edges of the image.

Motivated by the concept of scale-space [Witkin 1983] and its limitation, Perona
and Malik [Perona 1990] proposed a scale-space anisotropic diffusion. They argue
that C does not need to be constant. They proposed to replace it by a function
that takes as parameter the magnitude of the gradient; i.e. C(‖∇I‖). Injecting this
function in Equation 3.23 gives:

It =
∂

∂x

(

∂C(‖∇I‖)
∂Ix

)

+
∂

∂y

(

∂C(‖∇I‖)
∂Iy

)

=
∂

∂x

(

∂C(‖∇I‖)
∂‖∇I‖

∂‖∇I‖
∂Ix

)

+
∂

∂y

(

∂C(‖∇I‖)
∂‖∇I‖

∂‖∇I‖
∂Iy

)

=
∂

∂x

(

∂C(‖∇I‖)
∂‖∇I‖ Ix

)

+
∂

∂y

(

∂C(‖∇I‖)
∂‖∇I‖ Iy

)

By substituting the math notation, this gives the Perona-Malik diffusion PDE:

It = div

(

C ′(‖∇I‖) ∇I‖∇I‖

)

(3.27)

36 Chapter 3. Theoretical Background and Review of Previous Work

The diffusivity function C(‖∇I‖) regulates how diffusion is processed. It favors
diffusion along the edges rather than across them; i.e. diffusion is done inside
the regions. They proposed monotonically decreasing functions and suggest the
following two types:

• Type 1: C(‖∇I‖) = K2

2 ln

(

1 +
(

‖∇I‖
K

)2
)

which after substituting and eval-

uating its derivative gives:

It = div

(

1

1 + (‖∇I‖/K)2
∇I
)

(3.28)

• Type 2: with C(‖∇I‖) = −K2

2 e
−
(

‖∇I‖
K

)2

which similarly after substituting
and evaluating its derivative gives:

It = div

(

e
−
(

‖∇I‖
K

)2

∇I
)

(3.29)

Notice that the constant K in both equations acts as the scale level or contrast
parameter to which the image is smoothed. A gradient of magnitude lower than K

converges the function to a unit value, allowing diffusion in the gradient direction.
Inversely, a gradient of magnitude higher than K converges the function to zero,
blocking the diffusion in this particular gradient direction. Thus, as ‖∇I‖ increases
the function value decreases and the opposite is also true. The value of K is quite a
guess work to achieve an ideal smoothing with edge preservation. Yet, different K

estimators were proposed by practical application found in [Hy 2006, Canny 1986,
Black 1998].

Although the Perona-Malik diffusion preserves edges, it is ill-posed [Perona 1990,
Weickert 1998], due to its strict binary diffusion condition; diffuse parallel to edges
and none across. Noise around edges remains. In addition, these edges are enhanced
temporarily before being blurred away as the number of diffusion steps increases.

Figure 3.18 shows images smoothed with type 1 and type 2 of Perona and Malik
scheme. Although the edges are preserved, noise can be seen around them. Applying
a couple of extra diffusion steps above the satisfied number of diffusion steps acts like
a Gaussian smoothing blurring away the enhanced edges (Figure 3.19(a)). Moreover,
increasing the threshold value K considers more distant pixels which also blurs away
the edges (Figure 3.19(b)).

The Perona and Malik algorithm can be numerically expressed as:

I(x, y, t+∆t) = I(x, y, t) +∆t[fNDNI + fEDEI + fWDW I + fSDSI](x,y,t) (3.30)

where

3.5. Smoothing Images using PDE 37

Equations Gradient Descent PDEs

Linear heat equation It = Ixx + Iyy

Geometric heat equation It =
I2xIyy−2IxIyIxy+I2yIxx

I2x+I2y

Perona-Malik diffusion equation: Type 1 It = div
(

1
1+(‖∇I‖∇I

)

Perona-Malik diffusion equation: Type 2 It = div

(

e
−
(

‖∇I‖
K

)2

∇I
)

Table 3.2: The partial differential equations of the linear, geometric, Perona-Malik
diffusion [Perona 1990].

DNI(x, y) = I(x, y − 1)− I(x, y)

DSI(x, y) = I(x, y + 1)− I(x, y)

DEI(x, y) = I(x+ 1, y)− I(x, y)

DW I(x, y) = I(x− 1, y)− I(x, y)

are the intensity differences between the center pixel I(x, y) and its four non-
diagonal neighbor pixels and

fN = f(DNI(x, y))

fS = f(DSI(x, y))

fE = f(DEI(x, y))

fW = f(DW I(x, y))

are the results of the tensor diffusion for each of DNI, DSI, DEI, and DW I.

3.5.3 Diffusion and Time Step ∆t

Table 3.2 summarizes the PDE of the linear, geometric, and Perona-Malik diffusion
scheme. Table 3.3 summarizes their numerical schemes. The time step ∆t value is
chosen in such a way that the diffusion is stable. Table 3.3 gives the limit values of

38 Chapter 3. Theoretical Background and Review of Previous Work

Diffusion Schemes Numerical Schemes

Linear heat diffusion I(x, y, t+∆t) = I(x, y, t) + ∆t(Ixx + Iyy)

Geometric heat diffusion I(x, y, t+∆t) = I(x, y, t) + ∆t
(

I2xIyy−2IxIyIxy+I2yIxx
I2x+I2y

)

Perona-Malik diffusion I(x, y, t+∆t) = I(x, y, t) + ∆t (f(‖∇I‖)∇I)

Table 3.3: A list of equations for the various diffusion schemes. f(‖∇I‖) is an
increasing function.

Diffusion Schemes Time Step Condition

Linear heat diffusion 0 ≤ ∆t ≤ 1
4

Geometric heat diffusion 0 ≤ ∆t ≤ 1
2

Perona-Malik diffusion 0 ≤ ∆t ≤ 1
4

Table 3.4: List of the time step condition values for the various diffusion schemes.

∆t for the various diffusion schemes discussed.

3.5.4 Anisotropic Diffusion Tensor

Since its introduction, the Perona-Malik algorithm has inspired researchers to pro-
pose numerous nonlinear diffusion filters [Weickert 1998, Romeny 1994]. Most of
them introduce new or modified edge-stopping functions to remedy the limits of the
Perona-Malik algorithm and adapt to different applications. The proposed meth-
ods revolve around applying spatial regularization, temporal regularization, and
manipulation of the gradient [Black 1998, Mayer 2007, Bajla 1993]. For instance,
[Mayer 2007] computes a new edge-stopping function based on two variables; corre-
lation and noise variance, from two input images. [Bajla 1993] computes a function
based on a histogram of gradients. A histogram for each gradient in the image is
computed. Gradient of frequency higher than a computed threshold is considered
as an interior region encouraging smoothing. However, gradient of frequency less
than the threshold defines a region of edges hereby reducing the smoothing.

The Perona-Malik algorithm and its derivatives use either scalar-diffusivity or
matrix functions that adapt to the underlying image structure. Thus, only the
magnitude of the gradient flux can be controlled rather than the direction in which
to diffuse. This limits the efficiency in reducing noise especially near edges while

3.5. Smoothing Images using PDE 39

(a) Noisy Lena image (b) PM type 1 (c) PM type 2

Figure 3.18: Smoothing with Perona-Malik diffusion: (a) A noisy Lena image. (b)
The image of Lena smoothed by type 1 of Perona-Malik diffusion. (c) The image of
Lena smoothed by type 2 of Perona-Malik diffusion. Both (b) and (c) were smoothed
with 9 diffusion steps and K = 0.1. Edges are well preserved but one can notice
noise around edges.

(a) d = 15 k = 0.1 (b) d = 9 k = 0.9 (c) d = 15 k = 0.9

Figure 3.19: Images are smoothed with Perona-Maliks’ type 1 diffusion. Details of
the image can be blurred away for multiple factors. (a) Applying more diffusion
steps, (b) increasing the value K includes large gradients (i.e. edges) in the over all
average, and (c) increasing both these values.

preserving the detail structures. Diffusion tensors provide control on the mobility of
diffusion. Through it, diffusion can be steered in the necessary orientation. Weick-
ert [Weickert 1994, Weickert 1997, Weickert 1999b] proposed the following diffusion
tensor Jρ:

Jρ(∇Iσ) = Kρ ⊗ J0 (3.31)

where J0 = ∇Iσ∇IσT . Image I is first smoothed by the Gaussian Kσ with
scale size σ; Iσ = Kσ ⊗ I. The tensor product (∇Iσ∇IσT) makes the structure

40 Chapter 3. Theoretical Background and Review of Previous Work

favor orientation rather than direction. Thus, opposite directions do not cancel
each other. The orientation can be averaged over a neighboring size of O(ρ) by
applying a component-wise convolution with a Gaussian Kρ. Jρ is a two-dimensional
symmetric positive semidefinite matrix with an orthonormal basis of eigenvectors v1
and v2 along their corresponding eigenvalues µ1 ≥ µ2 ≥ 0. The eigenvalues measure
the average of contrast in the eigenvector direction within the scale ρ. v1 corresponds
to the orientation with the highest fluctuation; i.e. parallel to the average gradient
orientation. v2 corresponds to the orientation with the lowest fluctuation. Thus, if
we want to remove noise from images while keeping the edges, diffusion should be
done along v2. The orientation of the diffusion is controlled by λ1 and λ2 in the
matrix:

G =
[

v1 v2

]

[

λ1 0

0 λ2

]

[

v1 v2

]T
(3.32)

where v1 and v2 are the eigenvectors of the Jρ. G is positioned in the classical
diffusion equation It = div(G∇I). Choosing λ1 > λ2 produces a diffusion favorable
in the orientation of v1. The case is true for λ2 > λ1 where diffusion is done in the
orientation of v2. If λ1 = λ2, this results in an isotropic diffusion.

3.5.4.1 Edge-Enhancing Diffusion and Coherence-Enhancing Diffusion

Weickert proposed two schemes, edge-enhancing diffusion (EED) and coherence-
enhancing diffusion (CED), for the use of the diffusion tensor depending on the fea-
tures of the image [Weickert 1994, Weickert 1997, Weickert 1999b, Weickert 1999a].
EED enhances and sharpens the edges by smoothing along them. Since, µ1 repre-
sents the highest gradient orientation; i.e. an edge, λ1 and λ2 are chosen based on
the Perona-Malik model and set as:

λ1 = g(µ1)

λ2 = 1
(3.33)

and

g(s) =

{

1 (s ≤ 0)

1− exp
(

−C
(s/λ)

)

(s > 0)
(3.34)

where C is a threshold and λ is the contrast parameter. The λi, for i =< 1, 2 >,
configuration makes the diffusion parallel to v2 if µ1 ≫ 0. Otherwise, if µ1 ≤ 0 it
diffuses isotropically with λ1 = λ2 = 1. G is constructed based on the eigenvectors
of the non-average diffusion tensor J0.

CED enhances flow-like structures such as wood, fabrics, and fingerprints. It
fills in gaps and completes interrupted lines. It averages gradient orientation over a
large field. G is constructed based on the eigenvectors of Jρ and its λi are:

3.5. Smoothing Images using PDE 41

(a) CED method (b) EED method

Figure 3.20: The diffusion orientation of the CED and EED methods at specified
regions; Pa, Pb, and Pc, of a noisy square image is illustrated by the respective arrows
on location. < v1, v2 > are the eigenvectors. The length of the arrows expresses the
emphasis and amount of applied diffusion; longer arrow signifies more diffusion. (a)
the behavior of CED: it is not equipped to smooth noise on regions free noise (Pa)
as such very little diffusion is applied along v1 and v2. (b) the behavior of EED: it is
not equipped to smooth noise at junctions (Pb); it always favors one direction over
the other. This deforms details at junctions.

λ1 = α

λ2 =

{

α if µ1 = µ2

α+ (1− α)exp
(

C
(µ1−µ2)2

)

otherwise

(3.35)

where C > 0 serves as a threshold and (µ1−µ2) measures the local coherence. A
large difference signifies the presence of flow-like structure due to the high variance
in one direction. If the local coherence ≫ C then λ2 converges to 1 diffusing more
along v2 than v1; v2 is also called the coherence orientation in CED. Otherwise, if
the local coherence ≪ C then λ2 converges to α, where α ∈ (0, 1) and mainly a
small value is chosen (α = 0.001).

These methods smooth well noisy images made up only of edges and flow-like
structures. However, they are handicapped when they are applied on noisy images
containing edgeless regions and corners. Their limits are illustrated by smoothing
the noisy square displayed in Figure 3.20 at two locations: Pa– inside the square and
Pb– at the corner. At Pa, the region is free of edges and the eigenvectors < v1, v2 >

are parallel to the x and y-axis respectively with eigenvalues µ1 ≃ µ2 ≃ 0. Filtering

42 Chapter 3. Theoretical Background and Review of Previous Work

Smoothing Method
Regions

no edges edge corner
µ1 ≃ µ2 ≃ 0 µ1 ≫ µ2 µ1 ≃ µ2 ≫ 0

EED λ1 = λ2 = 1 λ1 ≃ 0, λ2 = 1 λ1 ≃ 0, λ2 = 1

(good) (good) (not good)
CED λ1 = λ2 = α λ1 = α, λ2 = 1 λ1 = λ2 = α

(not good) (good) (good)

Table 3.5: The behavior of the methods EED and CED at specified regions of an
image. EED works well on regions with and without edges but not on corners; it
deforms them as more diffusion is applied in v2 (see Pb in Figure 3.20(b)). CED
works well on regions with edges and corners but performs poorly on edge free regions;
filtering is very slow (see Pa in Figure 3.20(a)).

out noise at Pa requires an isotropic diffusion along the x and y-axis. Using CED,
λ2 converges to α resulting in an isotropic diffusion in the v1 and v2 orientation as
λ1 = λ2 = α. However, since α is chosen as a very small value; filtering will be
very slow. Many iterations of diffusion will be needed before removing the noise
which might blur details of the image. This constrains the use of CED on regions
free of edges such as Pa. The CED diffusion orientation is illustrated with arrows
in Figure 3.20(a) where the length signifies the emphasis and amount of diffusion;
more diffusion is applied in the orientation of longer arrows.

At the corner Pb, the eigenvectors < v1, v2 > are also parallel to the x and y-axis
respectively however their eigenvalues are ≫ 0; µ1 ≃ µ2 ≫ 0. This indicates no
smoothing is needed as it is surrounded by edges. Using EED, diffusion is applied
only in the v2 orientation as λ1 converges to 0 (Figure 3.20(b)). This deforms the
corners of the image. Table 3.5 summarizes the behavior of the EED and CED
methods on regions without edges, with edges, and with corners.

The above diffusion tensors proposed by Weickert is very similar to ours. We
propose a multi-scale method that smoothes images that contains all sorts of shapes;
including edges and corners, and preserve them. Our technique, presented in Chap-
ter 4, unifies the above methods in the following way: instead of explicitly forming
the diffusion tensor using specific eigenvalues, we build the diffusion tensor based
on a local histogram of gradient, in a continuous and consistent manner.

3.6 Smoothing Volumetric Data

Volumetric scans of objects are of high interest in medical imaging, engineering
and analysing cultural heritage. They are produced using tomographic reconstruc-

tion, a technique that combine a large series of 2D scans captured from multiple
views. Typically, penetrative radiation is used to obtain each 2D scan: X-Rays for
CT scans, radio-frequency waves for MRI (magnetic resonance imaging), electron-

3.6. Smoothing Volumetric Data 43

positron annihilation for PET scans, etc. Noise in the voxelised density data come
from a variety of sources: the limited number of views, lack of captor sensitivity,
high contrasts, the reconstruction algorithms, low-dose radiation, etc. Such data are
constantly acquired with noise. Therefore, we want to reduce, or eliminate, noise
as early as possible in the application. However, we want to remove the noise while
preserving the sharp features of the volume object. This remains a challenging task.
We explore next two main approaches for smoothing volumetric data: bilateral filter
and the CED-EED methods.

3.6.1 Bilateral Filter on Volumetric Data

Bilateral filter is a very effective tool for smoothing noise in images. Therefore,
it seems natural to choose it to filter out noise in volumes. However, we found
little experiments on this subject. Fernandez et al. [Fernandez 2003] investigated
bilateral [Tomasi 1998] and mean shift filtering [Comaniciu 2000, Comaniciu 1998,
Comaniciu 2002] on 3D CT images. They extended the bilateral filter to three-
dimensional space by adding an extra dimension to its two-dimension configuration
and compared its application on 2D slices of the volume and on the complete 3D
dataset. They’ve concluded that results are slightly better on the 3D dataset al-
though its run-time is much more costly. Moreover, they found that the smoothing
results of their mean shift implementation are better than the bilateral filter. Both
algorithms were implemented on the CPU. Thus, their execution time are very ex-
pensive: 5 hours for the bilateral filter to process a volume of roughly 23 million
voxels.

Jiang et al. [Jiang 2003] investigated the effectiveness of bilateral filter for de-
noising various biological electron microscopy subjects such as molecular complexes
and segmented protein. They found that it effectively suppresses the noise without
blurring the high resolution details. However, it is not without some potential prob-
lems. The values of its domain and range parameters are choices that depend on
a trial and error approach. Thus, an inappropriate choice of these parameters may
smooth the noise but also smooth the fine details of the model. To overcome the
slow speed of the algorithm on large volumes, they parallelized the bilateral filter
using the message passing interface (MPI) standard [Snir 1998, Gropp 1998]. Then,
they segmented the volume into small pieces and processed them independently by
different processors before gathering the results.

In Chapter 5, we compare our method with the bilateral filter. We have reached
similar conclusions to that of [Jiang 2003]. For some values of the parameters, it
keeps the sharp features but also keeps the noise and extending these parameters
until the noise is filtered blurs away the features and details of the model. We
implemented the bilateral filter in 3D on a GPU using CUDA [Sanders 2010]. Thus,
its run-time is very fast. Moreover, our implementation is scalable to dataset of
arbitrary size. We can process dataset of 27 million voxels in a manner of few
minutes (see Chapter 5 for results).

44 Chapter 3. Theoretical Background and Review of Previous Work

3.6.2 EED and CED on Volumetric Data

The edge-enhancing diffusion (EED) and coherence-enhancing diffusion (CED)
methods introduced in Section 3.5.4.1 were extended from their two-dimensional
counterpart to three-dimensional space to be applied on volumes or 3D images.
However, their configuration are again tailored to specified applications. They are
mainly applied on 3D tomography reconstruction models consisting of homogeneous
features such as spherical and tubular forms. For instance, [Achilleas 2001] use them
on pleomorphic biological objects and [Meijering 2002] use them on blood vessels.

[Achilleas 2001] proposed a hybrid between the EED and CED methods, with
numerous conditions to follow and several parameters to tune to achieve the best
result. It uses (µ1−µ3); the difference between the first and third eigenvalues of Jρ
(Equation 3.31), as a switch condition. EED is applied when the difference value is
lower than a chosen threshold otherwise CED is applied. The threshold is computed
ad hoc from the variance calculated over only a noisy area. They configure the two
methods as follow:

• for EED, λi are:
λ1 = λ2 = g(µ1)

λ3 = 1
(3.36)

• for CED, λi are:

λ1 = λ2 = α

λ3 =

{

α if µ1 = µ3

α+ (1− α)exp
(

C
(µ1−µ3)2

)

otherwise

(3.37)

where µ1 and µ3 are the highest and lowest variance respectively.

• The diffusion tensor G is:

G =
[

v1 v2 v3

]

λ1 0 0

0 λ2 0

0 0 λ3

[

v1 v2 v3

]T
(3.38)

where < v1, v2, v3 > are the eigenvectors of J0 and Jρ for EED and CED
respectively.

As their two-dimensional counterparts, the three-dimensional CED and EED are
tailored for smoothing 3D images that consist of only flow-like and edges structures.
They are not equipped for smoothing models consisting of noisy surfaces and corners.
Consider the two points, A on the surface and B on the corner of the noisy cube
illustrated in Figure 3.21 at which smoothing will be exercise.

At point A, the eigenvectors <v1, v2, v3> are parallel to the x, y, and z-axis
respectively with eigenvalues µ1 ≫ µ2 = µ3. Smoothing out noise on the surface of

3.6. Smoothing Volumetric Data 45

Smoothing
Regions

Method surface with no edges edge corner
µ1 ≫ µ2 ≃ µ3 µ1 ≃ µ2 ≫ µ3 µ1 ≃ µ2 ≃ µ3 ≫ 0

EED-CED (µ1 − µ3)≫ 0 (µ1 − µ3)≫ 0 (µ1 − µ3) ≃ 0

discrete hybrid ⇒ CED is chosen and ⇒ CED is chosen and ⇒ EED is chosen
λ1 = λ2 = α, λ3 = 1. λ1 = λ2 = α, λ3 = 1. λ1 ≃ λ2 ≃ 0, λ3 = 1

Diffusion is applied only Diffusion is applied Diffusion is applied
along v3 rather than only along v3, along v3 rather than
along v2 and v3. the edge, As we want. none at all.
(see pt. A (see pt. C (see pt. B
in Figure 3.21) in Figure 3.21) in Figure 3.21)

Table 3.6: The behavior of the discrete EED-CED hybrid at specified location of a
volume cube (Figure 3.21). The hybrid chooses correctly only on the edge location.
On the surface and corner, it chooses the CED method which diffuses in the v3
orientation. This will create artifact in that orientation rather than removing the
noise.

point A requires diffusing along the yz-plane and none or very little in the x-axis
orientation. This is not the case if the hybrid EED-CED method is applied. Since
the local coherence, (µ1 − µ3), is very large, CED will be applied with λ1 = λ2 = α

and λ3 = 1. Thus, diffusion will only be applied along the z-axis orientation where
noise will be removed and create a horizontal artifact. For the sake of clarification,
if EED was chosen a similar scenario would occur with λ1 = λ2 = g(µ1) and λ3 = 1.
The diffusion orientation is illustrated with arrows in Figure 3.21 where the thickness
and length signify the emphasis and amount of diffusion; more diffusion is applied
in the orientation of thicker arrows.

At the corner B, the eigenvectors < v1, v2, v3 > are also parallel to the x, y,
and z-axis respectively however unlike at point A the eigenvalues are equivalent;
µ1 ≃ µ2 ≃ µ3 ≫ 0. This indicates no smoothing is needed as it is surrounded by
edges. However, in the hybrid method EED is applied since the local coherence
is zero. Thus, diffusion is rather applied in the orientation of v3 (Figure. 3.21).
This deforms the model. Choosing CED is logically more correct as diffusion along
each orientation is limited to a small quantity with λ1 = λ2 = λ3 = α. Table 3.6
summarizes the behavior of the discrete EED-CED hybrid of [Achilleas 2001] on
noisy volumes consisting of corners, edges, and surfaces.

Applying the EED and CED methods separately on volumes such as the noisy
cube have also their disadvantages. EED works well only on edges. CED works
well only on edges and corners; both are not applicable on regions free of edges.
Table 3.7 summarizes their behavior individually.

The λi parameters of EED and CED can be handcrafted freely to match the
need of a particular application. For instance, [Meijering 2002] use only EED on 3D

46 Chapter 3. Theoretical Background and Review of Previous Work

Figure 3.21: The EED-CED diffusion orientation on a noisy surface (point A) and
a corner (point B) is illustrated by the respective arrows on location. < v1, v2, v3 >
are the eigenvectors of the EED-CED diffusion kernel. The thickness and length of
the arrows expresses the emphasis and amount of applied diffusion; thicker arrow
signifies more diffusion. According to the EED-CED condition, at both points, A
and B, diffusion is carried in the v3 orientation; i.e. z-axis.

reconstructed blood vessels and configure their eigenvalues as follow:

λ1 = g(µ1)

λ2 = λ3 = 1
(3.39)

Thus, diffusion is always applied along the v2v3-plane with minimal diffusion
along v1. As the hybrid EED-CED, it has its limits when applied to volumes with
edges and corners. Table 3.7 summarizes its behavior on the surface, edge, and
corner of the noisy cube (Figure 3.21). At point A, it behaves as we wish smoothing
along the yz-plane as λ ≃ 0 and λ2 = λ3 = 1. However, on the edge (point C) it
diffuses along v2 in addition to diffusing along the edge (v3). This blurs away the
edge in the direction of v2. The same scenario is repeated on the corner (point B);
deforming the corner where diffusion is not required.

As we have seen, the EED and CED methods are not applicable on general
models consisting of different shapes and structures. This is also true for the discrete
hybrid proposed by [Achilleas 2001]. To deal with the intermediate geometries not
covered by these methods, Mendrik et al. [Mendrik 2009] proposed a continuous
hybrid of the EED-CED methods by explicitly forging the two methods. They use a
linear combination of the methods respective eigenvalues λ of their diffusion tensor
G:

λhi
= (1− ε)λci + ελei (3.40)

3.6. Smoothing Volumetric Data 47

Smoothing Method
Regions

surface with no edges edge corner
µ1 ≫ µ2 ≃ µ3 µ1 ≃ µ2 ≫ µ3 µ1 ≃ µ2 ≃ µ3 ≫ 0

EED in [Achilleas 2001] λ1 ≃ λ2 ≃ 0 λ1 ≃ λ2 ≃ 0 λ1 ≃ λ2 ≃ 0

λ3 = 1 λ3 = 1 λ3 = 1

(not good) (good) (not good)
EED in [Meijering 2002] λ1 ≃ 0 λ1 ≃ 0 λ1 ≃ 0

λ2 = λ3 = 1 λ2 = λ3 = 1 λ2 = λ3 = 1

(good) (not good) (not good)
CED λ1 = λ2 = α λ1 = λ2 = α λ1 = λ2 = λ3 = α

λ3 = 1 λ3 = 1

(not good) (good) (good)

Table 3.7: The behavior of the methods EEDs and CED individually at specified
locations of a volume cube (Figure 3.21). The EED method of [Achilleas 2001] works
well only on regions with edges. At other regions it introduces artifact. The EED
method of [Meijering 2002] works well only on regions free of edges and corners.
CED is applicable only on regions with edges and corners.

where λhi
is the eigenvalue of the continuous hybrid diffusion tensor. λci and λei

are the eigenvalues of CED (Equation 3.37) and EED (Equation 3.39) respectively.
ε regulates the amount of value needed from each of λc and λe, where CED is used
when ε→ 0 and EED is used when ε→ 1. The ε fraction is:

ε = exp

µ2(λ
2
h
(ξ−|ξ|)−2µ3)

2λ4
h (3.41)

where λh is the contrast threshold and ξ is:

ξ =

(

µ1

α+ µ2
− µ2

α+ µ3

)

(3.42)

The continuous hybrid of [Mendrik 2009] generalizes the use of the EED-CED
methods on objects of different shapes and structures. For instance, it works well
on the different location of the noisy cube of Figure 3.21. However, to achieve the
best result there are 8 parameters to tune including the conditions to follow in the
EED-CED methods (see Section 3.5.4.1). This makes things tedious for the user.

The objective of [Mendrik 2009] is very similar to ours. However, we propose a
different approach for smoothing volumes while preserving the sharp features. Our
technique, presented in Chapter 5, unifies the above methods in the following way:
instead of explicitly forming the diffusion tensor using specific eigenvalues, we build
the diffusion tensor based on a local histogram of gradients, in a continuous and
consistent manner. Moreover, we have only one parameter to tune — the threshold
for the size of features to be preserved.

48 Chapter 3. Theoretical Background and Review of Previous Work

Further extension of EED-CED were proposed: Frangakis et al. [Achilleas 2001],
combines the diffusion hybrid and the wavelet transform to reconstruct biomedical
data while preserving edges. Schaap et al. [Schaap 2008] construct an importance
map indicating the degree of significance of all voxels at any arbitrary scale by
considering their total curvature, which is computed as the L2-norm of their Hessian
matrix’s eigenvalues. The result is interpolated with the smoothed volume by EED.

Chapter 4

Fast Multi-Scale

Feature-Preserving Smoothing of

Images

Contents

4.1 Introduction . 49

4.2 Theoretical Background . 51

4.2.1 Anisotropic Diffusion . 52

4.2.2 Local Continuous Histogram 54

4.3 Feature Preserving Smoothing in 2D Images 55

4.3.1 Objectives . 55

4.3.2 Scale-space Local Gradient Distributions 57

4.3.3 Computation of Adaptive Diffusion Tensors 59

4.3.4 Examples . 62

4.3.5 Diffusion . 62

4.4 Implementation . 63

4.5 Results and Comparison . 65

4.5.1 Noise and Preservation of Sharp Features 68

4.5.2 Feature Size . 72

4.5.3 Computation Time . 75

4.5.4 Scalability . 75

4.5.5 Comparison with Existing Algorithms 78

4.6 Analysis and Limitations . 81

4.1 Introduction

Inspired by the Perona-Malik [Perona 1990] anisotropic diffusion algorithm, we pro-
pose a new multi-scale smoothing kernel that adapts to the local features of two-
dimensional images. The result is a smooth 2D image where high frequency vari-
ations below a user-specified threshold is cancelled. Our algorithm consistently
preserves sharp features such as edges and corners. It runs efficiently on parallel

50Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

Histogram &
Diffusion kernel

Figure 4.1: Continuous local gradient histogram with their respective diffusion ten-
sors at two different locations of a noisy MRI brain. The top figure shows a histogram
(in green) with one dominant direction computed at the edge of the brain. Its diffu-
sion tensor (in red) is parallel to the edge. The bottom figure shows the histogram
computed between two hemispheres resulting in two dominant directions. To preserve
the edges of the hemispheres diffusion should be done parallel to them. As such, the
diffusion tensor is parallel to the edges.

processors (such as GPUs) and is scalable to large datasets. Tuning is simple, with
only one parameter—the threshold for the size of features to be preserved.

First, we compute local continuous histograms of gradients of the image. Then
we compute diffusion tensors using these histograms. Finally, we apply anisotropic

diffusion in the 2D data using the computed tensors. Since the diffusion at each
pixel is guided by the local distribution of gradients, the smoothing respects local
features. These operations are done in parallel, on the GPU, for entire blocks of
pixels.

Figure 4.1 shows examples of continuous local histograms (in green) and their
respective diffusion tensors (in red) that we have computed at two different locations
on a noisy MRI brain. The top figure shows a histogram with one dominant direction
computed at the boundary of the brain. Regions, covered by the specified feature
size, having a single edge have uniform oriented gradients. Thus, a single lobe
continuous histogram. Its diffusion tensor is orthogonal to the histogram lobe; i.e.

we perform diffusion along the edge. The bottom figure shows a histogram with two
dominant directions where we compute over a region with two different gradient
distribution. Once more, the diffusion tensor is orthogonal to both lobes of the
histogram performing the diffusion along the edges. Hence, removing the noise and
preserving the edges.

4.2. Theoretical Background 51

In this chapter, we present a detail explanation of the theory behind our algo-
rithm and our implementation. Then, we analyze our results and compare with
other smoothing methods.

Introduction

Inspirés par l’algorithme de diffusion anisotrope de Perona-Malik [Perona 1990],
nous proposons un nouveau noyau de lissage multi-échelle qui s’adapte aux carac-
téristiques locales des images 2D. Le résultat est une image lisse où les variations
hautes fréquences en-dessous d’une valeur spécifiée par l’utilisateur sont supprimées.
Notre algorithme préserve régulierement les lignes caractéristiques comme les arrêts
et les coins. Notre algorithme tourne efficacement sur processeur parallèle (comme
les GPUs) et peut être appliqué à des données plus larges. Le réglage est relative-
ment facile, avec un seul paramètre que l’on appelle taille caractéristique—la taille
minimale des caracteristiques que l’on souhaite préserver.

Dans un premier temps, nous calculons l’histogramme continu local des gradi-
ents de l’image. Ensuite, nous calculons les tenseurs de diffusion en utilisant les
histogrammes calculés. Finalement, nous appliquons la diffusion anistrope sur les
donn’ees 2D en utilisant les tenseurs ainsi obtenus. Le lissage respecte les lignes
caractéristiques puisque la diffusion à chaque pixel est guidée par la distribution
locale des gradients. Le calcul des tenseurs et la diffusion sont faits en parallèle sur
le GPU par blocs entiers de pixels.

Figure 4.1 montre des exemples d’histogrammes continus locaux (en vert) et
leur tenseur respectif de diffusion (en rouge) que l’on a calculés à deux différentes
positions d’une image IRM bruitée d’un cerveau. La figure du haut montre un
histogramme dominé par une direction calculée au bord du cerveau. Les regions
d’une taille caracteristique donnée et qui ne rencontrent qu’une seule arrête, ont une
orientation de gradient uniforme. Par conséquent, elles présentent un histogramme
continu avec seul lobe. Leur tenseur de diffusion est orthogonal à la direction du lobe
de l’histogramme afin que la diffusion soit appliquée le long de l’arrête. La figure
en bas montre un histogramme avec deux directions dominantes qui a été calculé à
partir d’une région qui abrite une distribution de deux différents gradients. Encore
une fois, le tenseur de diffusion est orthogonal aux deux lobes du histogramme. Cela
enlève le bruit et préserve les arrêtes.

Dans ce chapitre, nous présenterons une expliquation détaillée de la théorie de
notre algorithme ainsi que notre implementation. Ensuite, nous analyserons les
resultats et nous les comparerons avec d’autres méthodes de filtrage.

4.2 Theoretical Background

We review two tools that are key to our method: anisotropic diffusion and local
continuous histogram.

52Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

(a) C1 = C2 (b) C1 ≫ C2 (c) C1 ≪ C2

Figure 4.2: (a) Isotropic diffusion is performed as C1 = C2. (b) C1 ≫ C2: Diffusion
is applied more in the x-axis than the y-axis. This is illustrated by the transformation
of the circle into a cigar oriented in the x-axis. (c) C1 ≪ C2: Diffusion is applied
more in the y-axis.

4.2.1 Anisotropic Diffusion

The general form of anisotropic diffusion introduced by Perona and Ma-
lik [Perona 1990] for smoothing images is

It = div(M∇I)
= M∆I +∇M∇I

(4.1)

where I is an image of intensity or density values and M is the diffusion tensor,
a symmetric matrix. If M consists of equal constant values C, then Equation 4.1
reduces to an isotropic heat equation:

It = M∆I

= tr

([

C1 0

0 C2

][

Ixx Ixy

Ixy Iyy

])

= tr(MH(I))

(4.2)

where C1 = C2 are the scales of the diffusion and H(I) is the Hessian matrix
of image I. This is illustrated by the circle in Figure 4.2(a). Diffusion is processed
equally in all directions demonstrated by the outward directed arrows. Moreover,
diffusion is applied proportionally to C1 and C2. Assigning different value to C1

and C2 where C1 6= C2 results in sort of anisotropic diffusion; it alters the balance
of diffusion in the direction of the largest of C1 and C2. If C1 > C2, more diffusion
is applied along the x-axis; i.e. Ixx, than the y-axis; i.e. Iyy. From Figure 4.2(b),
when C1 ≫ C2 the circle is transformed into a cigar shape oriented in the x-axis.
It’s the inverse for C2 ≫ C1; shown in Figure 4.2(c).

The above configuration limits our control of diffusion to only two orientations;

4.2. Theoretical Background 53

edge

Figure 4.3: An orthonormal 2D basis formed over an edge. It consists of the gradient
vector ∇I and the vector v1. ∇I is orthogonal to the edge. v1 is parallel to the edge
and orthogonal to ∇I.

the x-axis and y-axis. We can remove this limitation by expressing Equation 4.2
using the eigen decomposition of M . Since M is symmetric, it can be written
as M = V TDV where D is a diagonal matrix with eigenvalues λi and V contains
the eigenvectors vi of M :

It = tr(V TDVH(I))

= tr(DVH(I)V T)

=
∑

i λiv
T
i H(I)vi.

(4.3)

In this form, we achieve anisotropic diffusion. It uses the Hessian matrix as a
quadratic form to measure the directional second derivatives along vectors vi, and
applies diffusion proportionally to the eigenvalues λi. Through this expression, we
have the freedom to steer the diffusion process in any direction by simply choosing
the suitable vi and λi. For instance, geometric diffusion corresponds to diffusing
only orthogonally to the gradient ∇I, using the diffusion tensor:

Mg = V T

[

ε 0

0 1

]

V with V =

[∇I
‖∇I‖ , v1

]

(4.4)

where v1 is a vector that completes ∇I into an orthonormal 2D basis (see Fig-
ure 4.3). Choosing a very small ε value reduces the diffusion in the ∇I direction to
almost nothing and diffuses only in the v1 direction. Strictly speaking, geometric
diffusion corresponds to ε = 0. In practice, it is better to have 0 < ε ≪ 1 to keep
Mg invertible. An invertible tensor M signifies that applying a geometric diffusion
into an image is equivalent to applying a Gaussian filter of covariance M to this
image:

I(v, t+ 1) =

∫

e−uTM−1uI(v + u, t)du (4.5)

where v is the central pixel (x, y) and u is a neighboring pixel of v. We will use

54Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

this Gaussian property to derive a feature preserving diffusion tensor.

For clarity, the Gaussian e−uTM−1u simplifies to its classic form e−‖u2‖ and e−
‖u2‖

σ2

if M is respectively an identity matrix and a diagonal matrix with σ2. This is
achieved by expanding:

e−uTM−1u = e

−
[

x y
]

M−1

x

y

and replacing M by the identity matrix and diagonal σ2 matrix.

• For an identity matrix M , we get:

e−uTM−1u = e

−
[

x y
]

1 0

0 1

x

y

= e−(x2+y2) = e−‖u2‖

(4.6)

• and for a diagonal matrix of σ2:

e−uTM−1u = e

−
[

x y
]

σ2 0

0 σ2

−1

x

y

= e

−
[

x y
]

1
σ2 0

0 1
σ2

x

y

= e−
(x2+y2)

σ2 = e−
‖u2‖

σ2 .

(4.7)

We invert the diffusion tensor M to simplify the calculation. It is reversed to its
original state at the end of the calculation.

4.2.2 Local Continuous Histogram

Figure 4.4: A continuous smooth histogram based on a Gaussian distribution.

Local continuous histograms are extensions of discrete histograms. Each value in
the data contributes to neighboring bins—proportionally to a weight function such
as a Gaussian—in addition to the histogram bin that it falls into. Local continuous

4.3. Feature Preserving Smoothing in 2D Images 55

histograms allow robust estimation of histogram properties such as modes and ex-
trema. They work well for edge-aware smoothing operations of images, as pointed
out by Kass and Solomon [Kass 2010].

The following definitions hold for histograms both in 2D and 3D. Let F be a
2D or 3D dataset, and f(x) be the data value at point x. The local continuous
histogram at bin b is defined as a function of point x over the entire dataset by:

hb(x) =

∫

F
Kb(f(y))gσ(x− y)dy (4.8)

with gσ(x) =
1

σ
e−

‖x‖2

σ2

the histogram kernel Kb represents how much the value f(y) contributes to the
histogram bin at b. It is usually a Gaussian. The sharper this Gaussian, the more
local the histogram is. The other Gaussian gσ is a spatial kernel that rules the
influence of neighboring points to the local histogram at x. Using a pulse function
(of the size of the bin) for Kb and a spatial pulse function for gσ results in a local
discrete histogram. Figure 4.4 illustrates a continuous smooth histogram based on
a Gaussian distribution.

Using Equation 4.8, we can compute local continuous histograms hx for all values
x at once in a very efficient way, using only two Fourier transforms. First, we rewrite
Equation 4.8 as a convolution over x:

hb(x) = (gσ ⊗x (Kb ◦ f))(x)

Then, from the convolution theorem, and noting the Fourier transform with F ,
we have:

F(hb) = F(gσ)×ωx F(Kb ◦ f)

where the product is performed over the spatial spectral variable ωx. The spec-
trum of the Gaussian gσ is also a Gaussian, g 1

σ
, therefore:

hb = F−1(g 1
σ
×ωx F(Kb ◦ f)) (4.9)

4.3 Feature Preserving Smoothing in 2D Images

4.3.1 Objectives

We apply anisotropic diffusion within the image. We compute adaptive diffusion
tensors at each pixel, such that noise is smoothed up to a specified scale and features
larger than this scale are preserved.

In Figure 4.5, we provide an intuition of how this diffusion tensor is constructed.
It shows an image of a square with a wave-like structure on its top and bottom
sides. On the wave-like structure, when the user specifies a fine scale, we would like

56Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

Feature size

2d diffusion kerne

Figure 4.5: We adapt the diffusion tensors to local variation by respecting the speci-
fied scale. For example, in the wave-like structure, a choice of fine scale smoothing
requires diffusion along tensor a1 while coarse smoothing requires tensor a2 to smooth
the thread.

Feat
re size

2d diff
sion kernel

Figure 4.6: Close-up view of the wave structure of Figure 4.5. For a small feature
size, we produce diffusion tensors that adapts locally to the structure and diffuse
parallel to it a1 to preserve the structure. For a large feature size, we would like to
filter out the thread as such we produce a diffusion tensor a2 parallel to the whole
structure rather than locally.

to preserve the wave and must diffuse locally parallel to each of the wave (using
kernel a1). At a larger scale, however, we would like to smooth the wave to produce
a flat line, which requires a different kernel a2. These are better visualized at the
close-up view in Figure 4.6. At other locations in the image, the smoothing kernel
may be the same across multiple scales such as b1 and b2 where the result is a circle.

We construct the diffusion tensor at each pixel using the local distribution of
gradients, filtered at the user-specified scale. Filtered gradient distribution are com-
puted by building local continuous histograms in the space of directions. To account

4.3. Feature Preserving Smoothing in 2D Images 57

Figure 4.7: The Von Mises distribution. As k increases the distribution becomes
sharper and more local. Courtesy from wikipedia.

for the feature size, we compute gradients on a blurred version of the image, ob-
tained using an isotropic Gaussian of variance equal to half the requested feature
size. We then use the filtered gradient histogram to build a diffusion kernel, at each
pixel, that preserves the requested feature size.

4.3.2 Scale-space Local Gradient Distributions

Let s be the specified feature size and f the image data. The continuous histogram
of gradients has value hω(x) at point x in direction ω, defined by:

hω(x) =

∫

‖y−x‖<2s
gs(x− y)Kω(∇f(y))dy (4.10)

where Kw is the normalized Von Mises kernel [Jammalamadaka 2001] defined
by

Kω(ω
′) =

k

2π
ekω·ω

′
(4.11)

and ω · ω′ is the dot product between directions ω and ω′. Larger values of k
correspond to sharper kernels Kω (see Figure 4.7). A continuous gradient histogram
of each pixel is discretized and constructed as follow:

• We create n directional bins. They are oriented in a circular style and are
equiangular. The greater the number of bins the smoother is the histogram.
Figure 4.8(a) illustrates a histogram with n directional bins.

• We compute a weight for each gradient of the image; to estimate its contribu-
tion, relative to each of the directional bin. This is accomplished via the Von
Mises kernel (Equation 4.11).

58Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

(a) (b)

Figure 4.8: (a) Continuous histogram with n equiangular directional bins oriented in
a circular fashion. (b) Shows an image of two concentric square; a black one and a
white one. It also displays two examples of local continuous gradient histograms—h1
taken at a corner pixel Pa and h2 at a side pixel Pb. The yellow arrows represent the
gradients at the boundaries of the black square and the circles represent the smooth
scale—they have the same feature size s. At Pa, histogram h1 is produced. It has two
distinct lobes directed upward and to the right as s encircles an equal distribution of
gradient oriented upward and to the right. At Pb, s encircles only gradients directed
to the right producing a one lobe histogram h2 directed to the right.

• Finally, we apply a spatial Gaussian gs weight of variance s over the image.
This excludes all pixels that falls outside the scope of the user-defined feature
size s from the central pixel.

Figure 4.8(b) shows two examples of continuous gradient histograms taken at two
locations; Pa—a corner and Pb—a side, of the concentric black and white squares
image. The yellow arrows express the gradients at the boundaries of the black
square and the red circles represent the feature size s. The circle centered at Pa

encircles an equal number of gradients upwards and rightwards. This produces
histogram h1 with two distinct lobes smoothly directed upwards and to the right
relative to the gradient distribution. The second circle positioned at Pb encircles
only gradients directed to the right. This however produces a single lobe histogram,
h2, also directed to the right. Note, only gradients that falls inside the user-defined
feature size are considered in the building of a histogram. Gradients outside the
feature size scope are disregarded.

We use two Fourier transform to compute the local continuous gradient his-
togram. Furthermore, note that we compute the continuous gradient histogram on

4.3. Feature Preserving Smoothing in 2D Images 59

(a) (b)

Figure 4.9: (a) Noisy Lena image. (b) Gradient display of (a).

the gradients of a blurred image of f rather than the gradients of f itself. Blurring
an image sharpens the gradients by filtering out small scale variation of the data.
We apply a 2D Gaussian g s

2
of variance s

2 on the image data f using a convolution
or equivalently two Fourier transform:

f b = g s
2
⊗ f (4.12)

or

f b = F−1(g 2
s
×F(f))

where f b is the resulted blurred image. Thus, ∇f b(y) replaces ∇f(y) in Equa-
tion 4.10.

We use the Gaussian g twice in the process. First to filter out small scale varia-
tions of the data (Equation 4.12), then to spread the contribution of each gradient
to the histogram of nearby pixels (Equation 4.10). The variance is half the scale of
the requested feature size in Equation 4.12 and equal to the feature size in Equa-
tion 4.10. Figure 4.9 shows a noisy Lena image (a) and its gradient distribution (b).
The small scale variation is represented by the bright spots dispersed over the image.
Figure 4.10(a) and Figure 4.10(b) show the gradients blurred at feature size s = 5

and s = 15. Note that the small variations diminished and gradients of the image
have sharpened.

4.3.3 Computation of Adaptive Diffusion Tensors

Having the local distribution of gradients ω → hω(x) at a scale s for all point x in
the image, we define the diffusion tensors as:

60Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

(a) (b)

Figure 4.10: The gradients of noisy Lena image (Figure 4.9) blurred at feature size 5
and 15. Note that the dispersed gradient in Figure 4.9(b) have been filtered out.

M(x) =

(

1

H(x)

∫

Ω
hω(x)M

−1
g (ω)dω

)−1

(4.13)

with H(x) =
∫

Ω
hω(x)dω

where Mg(ω) is the geometric diffusion tensor defined in the direction ω (see
section 4.2.1); i.e. :

Mg(ω) = V T

[

ε 0

0 1

]

V with V = [ω, v1] (4.14)

where we use ε = 1
1000 . We compute a geometric diffusion tensor Mg(ω) for each

directional bin and then sum them up. However, its contribution to the overall dif-
fusion tensor M(x) is weighted by hω(x) (Equation 4.10). M(x) is then normalized
by H(x)—the sum of the local distribution of gradients in each of the histogram
directional bins. Note that the matrix inversion involved is always well defined since
we sum up positive definite matrices.

Equation 4.13 is justified as diffusing using the geometric diffusion tensor is
equivalent to smoothing the data with a Gaussian kernel g defined by its covariance
matrix Mg:

g(x) = e−xtM−1
g x

To account for multiple directional constraint, Gaussian kernels corresponding to
different directions are multiplied. Consider two main directions ω1 and ω2 orthog-

4.3. Feature Preserving Smoothing in 2D Images 61

Figure 4.11: Mg1 and Mg2 are the diffusion tensors of direction ω1 and ω2 respec-
tively. They are orthogonal to each other. Their geometric mean is a circle.

onal to one another. Multiplying the Gaussian kernels g1 and g2 is an appropriate
solution since each Gaussian will cancel out the parts of the support that is not
wanted in the other Gaussian. For a proper normalization, we actually need a
geometric mean, which in the example above is:

g12 = (g1g2)
1
2 = e−xt

M
−1
g1

+M
−1
g2

2
x

The geometric mean of Gaussians results in an harmonic mean of their covariance
matrices as in Equation 4.13. We provide a visual description of the example above
in Figure 4.11. We show the diffusion tensors Mg1 and Mg2 of directions ω1 and ω2

respectively. They are orthogonal to one another and their geometric mean Mg12 is
a circle. Note that the result is not the intersection of Mg1 and Mg2.

To illustrate the procedure for computing adaptive diffusion tensors, consider
the edge in Figure 4.12 along its gradients represented by the yellow arrows. We
would like to build a continuous gradient histogram and its diffusion tensor at point
P with the feature size s presented by the red circle. Figure 4.13 provides a visual
aid. For the sake of simplicity, we create a histogram with only eight directional
bins—a1. a2 shows the eight directional bins separated and spread. b2 displays the
contribution of the gradients within s to each of the directional bins in a2. The
length of the arrow is used as an estimator of the amount of gradients contributing
to the respective directional bin. Note that no gradient contribute to the four right-
most directional bins as they are directed away from the gradients. The continuous
gradient histogram b1 is the product of the gathered contributed bins and adding it
to a1. c2 displays the diffusion tensors relative to each of the directional bins. They
are all orthogonal to their respective directional bins and scaled to their contributed
gradients. Thus, they adapt to the gradients distribution and orientation. The geo-
metric mean of all eight diffusion tensors is displayed by c1. It is orthogonal to the
continuous gradient histogram b1.

62Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

Figure 4.12: An edge along with its gradient represented by the yellow arrows. The
red circle represents a feature scale of size s.

4.3.4 Examples

Figures 4.1 and 4.14 provide examples of continuous gradient histogram (in green)
with their respective diffusion tensors at different positions (in red). Regions with
a single edge produce continuous histograms with one dominant orientation. Its
diffusion tensor is flat and parallel to the edge. Regions with junctions (two or more
edges) produce continuous histogram with two or more dominant orientations. In
this situation, the diffusion tensor has a circle-like shape as diffusion is done in all
direction with very low eigenvalues. Thus, diffusion has little effect which preserves
the junctions.

4.3.5 Diffusion

Following the computation of the diffusion tensor of each pixel, we apply anisotropic
diffusion iteratively in the orientation of the respective tensors. Since the diffusion
at each pixel is guided by the local distribution of gradients, the smoothing re-
spects and preserves the local features of the image. We compute the eigenvalues
and eigenvectors of each diffusion tensor. Then, we diffuse in the orientation of
the eigenvectors proportionally to their respective eigenvalues. Mathematically, we
define it as

It =
2
∑

i=0

(V T
i H(I)Vi)λ

2
i

V T
i Vi

(4.15)

where I is an image of intensity or density values with Vi =

[

vxi

vyi

]

and λi are the

4.4. Implementation 63

Figure 4.13: Visual procedure for computing the continuous gradient histogram and
the diffusion tensor of Figure 4.12 at point P . For simplicity, we create a histogram,
a1, of eight directional bins. They are separated and spread in a2. b2 illustrates the
contribution of the distributed gradients within the red circle; i.e. the feature size, to
each of the directional bins in a2. The contributed amount is estimated by the length
of the arrow. The four rightmost directional bins have zero contribution as they are
directed away from the gradients. b1 displays the overall continuous histogram of b2.
The diffusion tensors relative to their directional bins are shown in c2. They are
orthogonal to their respective directional bin and scale to their contributed gradient.
As such, the four rightmost diffusion tensors are scaled to nearly zero. c1 is the
diffusion tensor resulted from the geometric mean of the eight diffusion tensors in
c2. Note that in our code, we create a histogram of 256 directional bins scattered
uniformly on the unit circle.

two eigenvectors and eigenvalues respectively. H(I) =

[

Ixx Ixy

Ixy Iyy

]

is the Hessian

matrix of image I. The Hessian matrix is used as a quadratic form to measure the
directional second derivatives along the vectors Vi. It is iteratively added to I by a
time step ∆t = 0.2:

I(x, y, t+∆t) = I(x, y, t) + ∆t(It). (4.16)

4.4 Implementation

We compute the diffusion tensors and perform anisotropic diffusion almost entirely
on GPU using NVIDIA’S CUDA model [Sanders 2010]. Computing diffusion tensors
and performing anisotropic diffusion can be categorized as embarrassingly parallel

64Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

Histogram &
Diffusion kernel

Figure 4.14: Continuous local gradient histogram with their respective diffusion ten-
sors at distinct locations. The green colored loop represents the histogram and the
red represents the diffusion tensor. The top figure shows a histogram computed over
a region containing a junction resulting with two dominant directions. Its respective
diffusion tensor results in a elliptic shape. The bottom figure shows a histogram
computed over a region containing an edge resulting with one dominant direction.
Its respective diffusion tensor is flat and orthogonal to the dominant direction.

problems since we process blocks of pixels at a single time step. See Figure 4.15 for
the pseudo code, and Figure 4.16 for an overview of the graphics pipeline.

• First, we blur the image using a convolution with gs, as in (Equation 4.12),
using two Fast Fourier Transforms (FFT). We transform f into the Fourier
domain (FFT-forward), multiply the spectrum by the spectrum of gs, and
finally transform back into the primal using the second FFT (FFT-inverse).
We use the FFT standard function provided by NVIDIA’s CUDA software
development kit.

• For each histogram direction ωi, and for all pixels x at once, we compute the
directional histogram hωi

(x) using (Equation 4.9). This involves two FFT
calls and a product in Fourier space.

• As we compute histogram values, we accumulate the inverse of the geometric
diffusion matrix Mg for each pixel in a buffer using Equation 4.13. This
operation is also done in one time step.

• Finally, we invert the matrices for all pixels and use them for smoothing the
volume using diffusion.

4.5. Results and Comparison 65

for all pixels x do

init tensor M(x) to 0
compute gs ⊗ f using 2 FFT + product
for all histogram directions ωi do

for all pixels x do

compute Kωi
(∇(gs ⊗ f))

convolve with gs using 2 FFT + product
for all pixels x do

accumulate hωi
(x)Mg(ωi)

−1 into M(x)−1

for all pixels x do

invert M(x)−1

diffuse at x according to M(x)

Figure 4.15: Pseudocode for the computation of diffusion tensors in the 2D image.
All operations are done on the GPU, using CUDA.

Algorithms 4.1 and 4.2 sketch in details the algorithms for computing the diffu-
sion tensors of 2D images and performing anisotropic diffusion. In this implemen-
tation, directional gradient histograms are never stored explicitly, their values are
used directly to compute the integral in Equation 4.13. We discretize the directions
into 256 directions scattered uniformly on the unit circle.

The GPU memory footprint of our algorithm is proportional to the number
of pixels in the dataset. The largest GPU memory cost needed at once during our
algorithm execution is 52 × n2 bytes; where n is the number of pixels in the dataset.
It is composed of:

• intensity or density value and cumulated histogram weight (2 floats),

• cumulated diffusion tensor (3 floats),

• Cuda-FFT plan (8 floats per pixel for precomputed cosines)

This memory footprint can be halved at the expense of a little more computation
cost, if using an explicit computation of cosines in the FFT algorithm.

4.5 Results and Comparison

We tested our algorithm on several different images:

• Lena(Figure 4.17). This famous image was taken by a camera. It consists of
curves, edges, junctions, and small details such as the feathers on the rear of
the hat. To test our algorithm, we added to the picture random noise of high
frequency.

66Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

Algorithm 4.1: Computing 2D Diffusion Tensors for images on GPU

input : f , 2D noisy data. s, feature size.
output: M , vector of diffusion tensors

// Initialize tensors M(x)
forall pixels x in f do1

M(x) ← 02

// Initialize continous histogram

Ω ← new histogram()3

// Blurring f using Gaussian g s
2
and CUDA FFT (using Eq. 4.12).

F ← CudaFFT(f , FFT-forward)4

F ← F × g 2
s

5

f b ← CudaFFT(F , FFT-inverse)6

// Computing directional histogram

forall histogram directions ωi in Ω do7

forall pixels x in f do8

hωi
(x) ← Kωi

(∇f b)9

// convolve wih gs using 2 CUDA FFT (using Eq. 4.9).

Hωi
← CudaFFT(hωi

, FFT-forward)10

Hωi
← Hωi

× g 1
s

11

hωi
← CudaFFT(Hωi

, FFT-inverse)12

// Accumulate the diffusion tensors for each pixel using

// Eq. 4.13

forall pixels x do13

V ←
[

ωi vi

]

14

ε ← 1
100015

Mg(ωi) ← V T

[

ε 0

0 1

]

V
16

// Computing geometric mean

M(x)−1 += hωi
(x)Mg(ωi)

−1
17

H(x) += hωi
(x)18

// Normalize the tensors M(x)−1 and inverse to M(x)
forall pixels x do19

M(x)−1 ← M(x)−1

H(x)20

M(x) ← invert(M(x)−1)21

return M22

• An MRI image of a knee (Figures 4.18 and 4.19). A knee is made from a
mixture of skins (on the surface), muscle tissues, bones, cartilages, veins, and

4.5. Results and Comparison 67

Algorithm 4.2: Computing 2D Diffusion on GPU

input : f , 2D noisy data. M , vector of diffusion tensors
output: fs, smooth 2D data at feature size s.

fs ← new 2D-data()1

∇t ← 0.22

for n diffusion steps do3

forall pixels x do4

[V1, V2] ← eigenvectors (M(x))5

[λ1, λ2] ← eigenvalues (M(x))6

ft ←
∑2

i=0
(V T

i H(f(x))Vi)λ
2
i

V T
i Vi7

fs(x) ← f(x) +∇tft8

f ← fs9

return fs10

Input Noisy
2D image

FFT-based
Gaussian
Blurring

Gradient
Computation

Directional
Histogram

Computation

Kernel
Estimation

Computation
Anisotropic
Diffusion

Output Filtered
2D image

Parameter:
Feature Size For all pixels

Our GPU-based filtering algorithm

Figure 4.16: GPU computation pipeline. All computations are done on the GPU.
The input are the original volume and the feature size.

ligament tissues with different density and thickness. This produces different
permeability to magnetic resonance machines. Thus, it results in a large range
of contrast. The image is made up of density values.

• An MRI image of a brain (Figure 4.20). The dataset is made of soft tissues
and bones.

• A scanned text (Figure 4.21). A text consists of mainly edges. Texts, written
or printed, deteriorate over time introducing cracks and noise in the text. To
test our algorithm on text, we added random noise to it.

68Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

(a) (b)

Figure 4.17: Image of Lena (5122 pixels): (a) random noise is added to the image
and (b) the image after smoothing by our algorithm at feature size s = 5 and 40
diffusion steps (processing time = 0.26 sec). Note how our algorithm reduces the
noise while preserving the sharp and detail features such as the junctions, curve of
the hat and the feathers on the hat.

4.5.1 Noise and Preservation of Sharp Features

Noise is clearly visible on all five images. See images (a) of Figures 4.17, 4.18,
4.19, 4.20, and 4.21. Our algorithm smoothes out this noise while preserving the
sharp features. Figures 4.17(b), 4.18(b), 4.19(b), 4.20(b), and 4.21 show the images
smoothed by our algorithm. The reduction of the noise is clearly visible as well as
the preservation and enhancement of the sharp and detail features. In the image of
Lena the edges and feathers are well preserved (see Figure 4.28 for close up views).
Our algorithm also closes cracks and makes it easier to identify and separate different
components in the image. For example, in the smooth MRI knee (Figure 4.18(b)) the
cracks on the skin are closed, the bones and muscle tissues are sharper and clearer.
Similar results are achieved in Figure 4.19(b). The sand like noise is reduced and
reveals the knee components without losing its main components and sharp details.
In the brain image, the soft tissue has been reconstructed from its noisy dataset
making it easier to identify the different parts of the brain. The noise in the scanned
text has significantly reduced while preserving the edges of the letters. Moreover,
the cracks within the letters are closed and the text is sharper.

4.5. Results and Comparison 69

(a) (b)

Figure 4.18: MRI of a knee (5122 pixels): (a) a noisy MRI of a knee and (b) the
image after smoothing by our algorithm at feature size s = 2 and 20 diffusion steps
(processing time = 0.26 sec). Note how the crack on the skin are closed. Moreover,
the bones and muscle tissues are sharpen and clearer. This filtered image has not
been accepted medically.

70Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

(a) (b)

Figure 4.19: MRI of a knee (5122 pixels): (a) original MRI, it is full of sand like
noise. (b) The image after smoothing by our algorithm. We processed (a) at fea-
ture size s = 10 and 40 diffusion steps. This filtered image has not been accepted
medically.

(a) (b)

Figure 4.20: MRI of a brain (5122 pixels): (a) original MRI brain and (b) the brain
image after smoothing with our algorithm. It is easier to identify the soft tissue
of the brain after reconstruction. We processed (a) at feature size s = 2 and 24
diffusion steps. This filtered image has not been accepted medically.

4.5. Results and Comparison 71

(a) (b)

(c) (d)

Figure 4.21: Scanned text (10242 pixels): (a) original text scanned with noise added,
(b) the text after smoothing with our algorithm. We processed (a) at feature size
s = 5 and 24 diffusion steps (processing time = 0.67 sec). Note how our algorithm
smoothes the noise while preserving the letters. Moreover, it fills in the cracks and
enhances the visibility of the letters.

72Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

(a) (b)

(c) (d)

Figure 4.22: A square encircle by a wave feature (10242 pixels) at various feature
sizes: (a) original data, (b), (c) and (d): filtered data with increasing feature size of
20, 50, and 100 respectively. With a feature size of 20, our algorithm removes the
noise but preserves the waves feature. When we increase the feature size to 100, our
algorithm blurs the waves, but keeps the contour of the square structure.

4.5.2 Feature Size

The key parameter of our algorithm is the size of the feature we are interested
in. Filtering removes details smaller than this feature size, while preserving surface

4.5. Results and Comparison 73

(a) (b)

(c) (d)

Figure 4.23: Image of Lena (5122 pixels) at various feature sizes: (a) original data,
(b), (c) and (d): filtered data with increasing feature size of 20, 50, and 100 respec-
tively. Note how our algorithm smoothes out details of the feathers on hat as the
feature size increases while the preserving the edges greater than the specified feature
size.

details that are larger.
In Figures 4.22 and 4.23, we show the effect of increasing the feature size on a

wave structure and on the detail features of the image of Lena. For a small value of
the parameter, our algorithm smoothes while preserving the wave structure on the

74Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

(a) (b) (c) (d)

Figure 4.24: Close-up views of the feathers on the hat Lena from its respective (a-d)
images of Figure 4.23 at feature size 20, 50, and 100. As we increase the feature
size, the details of the feathers are removed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50 60 70 80 90 100

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

Number of diffusion steps

4096
2

1024
2

256
2

Figure 4.25: Computation time on the GPU (in seconds) as a function of the number
of diffusion steps, for different size of the dataset.

square for a large number of diffusion steps. The same is true on the features of Lena
most notably the feathers on the hat. As we increase the feature size, our algorithm
smoothes out these features. Figure 4.24 shows close-up views of the feathers as the
feature size increases. On the image of Lena, note that the edges larger in size than
the feature size are preserved such as the edges on the hat, face, and background
structures.

4.5. Results and Comparison 75

 0.001

 0.01

 0.1

 1

 10

 100

64
2

256
2

512
2

1024
2

2048
2

4096
2

T
im

e
 (

s
)

Number of pixels

Linear approx
Computation time

Figure 4.26: Logscale plot of the processing time (in seconds) of the diffusion tensors,
as a function of the number of pixels. The computation time increases linearly with
the increase of the number of pixels.

4.5.3 Computation Time

Computation times for our algorithm depend on two parameters: the number of
pixels in the dataset and the number of diffusion steps. It does not depend on the
feature size.

The number of diffusion steps has a minimal impact on computation time. Fig-
ure 4.25 displays the computation time for 1, 10, 50, and 100 diffusion steps, of
different dataset sizes. The time measurements include a constant initializing time,
which explains the afine—rather than linear—behavior of the curve. After this first
step, computation time increases linearly with the number of steps, as expected.
Note how fast it is. It takes only 1.5 sec. to execute 100 diffusion steps on an image
made of 40962 pixels (∼ 17 million pixels).

4.5.4 Scalability

The computation time of the diffusion tensors increases linearly with the total num-
ber of pixels n2. Figure 4.26 shows the computation time as a function of the total
number of pixels. It takes ∼ 10 sec. to compute the diffusion tensors of a dataset
of 40962 pixels.

The memory footprint of our algorithm is equal to 52n2. On a graphics card
with 1 GB of memory, roughly 354 MB are reserved by the card itself for its own
use, leaving 669 MB available for our algorithm. This means that the maximum
size for a dataset to be processed in a single chunk is roughly 40962 corresponding

76Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

 0.1

 1

 10

 100

 1000

64
2

256
2

512
2

1024
2

2048
2

4096
2

s
iz

e
 (

M
B

)

Number of pixels

Linear approx
Computation time

Figure 4.27: Logscale plot of the memory size (in MB), as a function of the number
of pixels. Datasets of size below 2562 pixels take very little memory space. Above
this size, the memory space requirement increases linearly with the increase of the
number of pixels.

to 576 MB of memory.
Datasets that are larger than this limit can be segmented into smaller pieces,

which are processed separately by the GPU, before we combine the results together.
For a continuous stitching, we keep an overlap between the data pieces. Using this
division and stitching method, we can process datasets of arbitrary size.

Figure 4.27 shows a plot of the memory size requirement in MB as a function of
the number of pixels. Our algorithm requires very little memory space for datasets
of size below 2562 pixels. Above this size, the memory requirement of our algorithm
increases linearly with the increase of the number of pixels in the dataset.

4.5. Results and Comparison 77

(a) (b) (c) (d)

Figure 4.28: Image of Lena (5122 pixels): (a) high frequency noise is added to the
image, (b) the image after filtering with our algorithm (s = 5, diffusion steps = 40).
(c) and (d) close-up on specific details from (a) and (b).

(a) (b) (c) (d)

Figure 4.29: Image of Lena (5122 pixels) using the Perona-Malik algo-
rithm [Perona 1990], with different parameter values: (a) k = 0.1, diffusion steps =
10, (b) k = 0.3, diffusion steps = 10. (c) and (d) close-up on specific details from
(a) and (b).

78Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

(a) (b) (c) (d)

Figure 4.30: Image of Lena (5122 pixels), using bilateral filtering with different
parameter values: (a) σd = 2, σr = 1.5, (b) σd = 2, σr = 0.48. (c) and (d)
close-up on specific details from (a) and (b).

4.5.5 Comparison with Existing Algorithms

For comparison, we implemented the Perona-Malik [Perona 1990] and bilateral fil-
tering [Tomasi 1998] algorithms. We tested these algorithms on the noisy image of
Lena (Figure 4.17(a)) and the MRI of a knee (Figure 4.19(a)). Figures 4.29 and 4.30
show the results of these algorithms on the image of Lena dataset compare with Fig-
ure 4.28 for our own algorithm on the same dataset. Both algorithms exhibit the
same behavior: for some values of the parameters, they keep the edges and features,
but they also keep some of the noise. This is seen in the close-up views of Fig-
ures 4.29(c) and 4.30(c) where grain like and crystallize noise remain. If we push
the parameters until the point where the noise disappears, we start losing features
and details. This is better illustrated in the close-up view of the feathers on the hat
of Lena (see Figures 4.29(d) and 4.30(d)) where they are blurred way compare to
our own algorithm shown in Figure 4.28(d). We observe similar results on the MRI
of the knee shown in Figures 4.32 and 4.33 compare with Figure 4.31 for our own
algorithm. For each algorithm, we display the best results we could find.

Bilateral filtering was also implemented on the GPU, resulting in computation
times similar to those of our algorithm. Please refer to Table 4.1 for computation
time (in seconds), for several values of the parameters and image sizes. It is faster
than our algorithm when σd is reasonably small. However, as σd increases so does

4.5. Results and Comparison 79

(a) (b) (c) (d)

Figure 4.31: MRI of a knee (5122 pixels): (a) original image, (b) the image after
filtering with our algorithm (s = 10, diffusion steps = 40). (c) and (d) close-up on
specific details from (a) and (b).

its computation time which can become slower than ours.
We did not implement the EED and CED methods for comparison because of the

lack of time. Nevertheless, based on the thorough analysis we provided in Chapter 3,
we can give a theoretical comparison. Our method adapts the diffusion tensors to
any shape and diffuses accordingly to preserve the sharp features. We reconsider
the noise square of Figure 3.20 to illustrate that our method behaves as expected
(shown in Figure 4.34) at Pa, Pb, and Pc and compare with that of the behavior of
EED and CED.

At Pa, our diffusion tensor is a circle; i.e. diffusion is carried isotropically as
is required to smooth out the noise. At Pb, no or very little diffusion is applied
because of the presence of a junction of edges. Finally at Pc, we diffuse only along
the y-axis because our diffusion tensor is an ellipsoid parallel to the y-axis. Unlike
our method, EED and CED behave differently and does not filter the noise. EED
works well on regions with and without edges but not on corners (see Figure 3.20(b))
and CED works well on regions with edges and corners but performs poorly on edge
free regions; filtering is very slow (see Figure 3.20(a)).

80Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

(a) (b) (c) (d)

Figure 4.32: MRI of a knee (5122 pixels), using Perona-Malik, with different param-
eter values: (a) k = 0.08, diffusion steps = 10, (b) k = 0.15, diffusion steps = 10.
(c) and (d) close-up on specific details from (a) and (b).

(a) (b) (c) (d)

Figure 4.33: MRI of a knee (5122 pixels), using bilateral filter, with different param-
eter values: (a) σd = 2, σr = 0.11, (b) σd = 2, σr = 0.15. (c) and (d) close-up on
specific details from (a) and (b).

4.6. Analysis and Limitations 81

Figure 4.34: The diffusion orientation of our method at specified regions; Pa, Pb,
and Pc, of a noisy square image is illustrated by the respective arrows on location.
< v1, v2 > are the eigenvectors. The length of the arrows expresses the emphasis and
amount of applied diffusion; longer arrow signifies more diffusion. The red circle
and ellipse represent the diffusion tensors. Our method adapts well to the different
regions as expected compare to the EED and CED methods (see Figure 3.20).

Parameter Values
Image Size

5122 10242 40962

σd = 2, σr = 0.11 0.11 s 0.16 s 1.02 s
σd = 4, σr = 0.15 0.14 s 0.27 s 1.97 s
σd = 8, σr = 2 0.28 s 0.71 s 11.27 s
σd = 12, σr = 2 0.49 s 1.62 s ∼ 65 s

Table 4.1: Computation time for 2D bilateral filtering (in seconds), on the GPU, as
a function of image size and parameter values.

4.6 Analysis and Limitations

As shown along this chapter, our technique works well on various types of noisy
images. Our diffusion tensor adapts effectively and efficiently to the shapes of the
image content and filters the noise below the specified feature size while preserving
the sharp details. In addition to, we do so very fast as we take advantage of the
massively parallel processing power of the GPU. Its single-instruction-multiple-data
(SIMD) architecture [Flynn 1972] allows our filtering method to process blocks of
pixels simultaneously at a time step. Compared to a CPU implementation, the GPU
has the upper hand by roughly a factor of 1000. For instance, filtering an image

82Chapter 4. Fast Multi-Scale Feature-Preserving Smoothing of Images

of size 10242 pixels using our method on CPU would take ∼ 428secs. compared to
0.8secs. on the GPU.

During our testing, we witnessed a single major limitation in our two-dimensional
smoothing method. Choosing a large feature size to smooth out large details in a
very noisy image create a smoke or flow like artifact in the image; specially in
homogeneous regions. Figure 4.35 shows such artifact on the Lena image after
smoothing its noisy image (Figure 4.17(a)) at feature size 100. The explanation
behind such a behavior is simple. For a large feature size value, we compute a
diffusion tensor that account for the majority of gradients in the area covered by
the feature size. In a dense noisy image, the method may identify patterns in
the noise and misinterpret them for sharp details and attempts to preserve them.
As we increased the diffusion steps on the image, we noticed a reduction of this
artifact but at the cost of maybe smoothing real details on the image. From another
point of view, we can use this artifact as an artistic effect on an image. Note that
such a phenomenon is created or observed by the CED method [Weickert 1994,
Weickert 1997, Weickert 1999b, Weickert 1999a].

In the next chapter, we present our three-dimensional method for filtering vol-
umes where the method performs better. Moreover, we do not find any of the
behaviors observed and described above.

Figure 4.35: Smoke like artifact on the Lena image (5122 pixels) after smoothing its
noisy image (Figure 4.17(a)) with our method at feature size 100.

Chapter 5

Fast Multi-Scale

Feature-Preserving Smoothing of

Volumetric Data

Contents

5.1 Introduction . 83

5.2 Volumetric Data and Noise 85

5.3 Theoretical Background . 86

5.3.1 Anisotropic Diffusion . 86

5.3.2 Local Continuous Histogram 89

5.4 Feature Preserving Smoothing in Volumes 89

5.4.1 Objective . 89

5.4.2 Scale-space Local Gradient Distributions 90

5.4.3 Computation of Adaptive Diffusion Tensors 92

5.4.4 Diffusion . 93

5.5 Implementation . 94

5.6 Results and Comparison . 95

5.6.1 Noise and Connected Components 96

5.6.2 Preservation of Sharp Features 99

5.6.3 Feature Size . 99

5.6.4 Computation Time . 103

5.6.5 Scalability . 103

5.6.6 Computing on the GPU . 106

5.6.7 Comparison with Existing Algorithms 106

5.1 Introduction

In this chapter, we extend our multi-scale smoothing algorithm presented in Chap-
ter 4 from 2D images to 3D images (volumes). We address the problem of smoothing
noisy tomographic reconstructions to improve the quality of level set surfaces that
are extracted from the 3D datasets. As with 2D images, our algorithm adapts the

84

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Slices of (a) the original CT reconstruction of the inhaler model, (b)
close-up view of an area of (a) squared in red and (c) the extracted surface of (a).
(d) CT slice of the inhaler model after smoothing by our method, (e) close-up view
of the smooth CT (d) square in red, and (f) extracted surface from smoothed data.
We raised the gamma level in the CT images to better visualize the details of the
volumes.

smoothing kernel to local features. The result is a smooth volume density field where
we cancel high frequency variations below a user-specified threshold. Our algorithm
consistently preserves sharp features such as edges and corners. It runs efficiently
on parallel processors (such as GPUs) and is scalable to large datasets. We use the
feature size s parameter to tune the level of features to preserve.

Our algorithm works in the following way: First, we compute 3D local continu-

ous histograms of gradients of the volume density field. Then we compute diffusion
tensors using these histograms. Finally, we apply anisotropic diffusion in the 3D
data using the computed tensors. Since the diffusion at each voxel is guided by the
local distribution of gradients, the smoothing respects local features. These opera-
tions are done in parallel, on the GPU, for entire blocks of voxels. We demonstrate
that using dual contouring to extract level-set surfaces from our filtered data results
in high-quality surfaces with sharp feature (such as edges and corners).

5.2. Volumetric Data and Noise 85

Introduction

Dans ce chapitre, nous prolongerons notre algorithme de lissage multi-échelle
présenté dans le Chaptire 4 de l’espace 2D à l’espace 3D pour lisser des volumes
3D. On s’intéresse au problème de lissage de données tomographiques bruitées afin
d’améliorer la qualité des surfaces extraites de celles-ci. Comme dans les images,
notre algorithme adapte le noyau de lissage aux caractéristiques locales. Le résultat
est un champs de densités lisse où les variations de hautes fréquences en-dessous
d’une valeur spécifiée sont annulées. Notre algorithme tourne efficacement sur pro-
cesseur parallèle (comme les GPUs) et peut être appliqué à des données plus larges.
Le réglage est relativement facile, avec un seul paramètre que l’on appelle taille

caractéristique—la taille minimale des caracteristiques que l’on souhaite préserver.
Notre algorithme fonctionne de la façon suivante: dans un premier temps, nous

calculons les histogrammes continus locaux 3D des gradients du volume de champs
de densités. Ensuite, nous calculons les tenseurs de diffusion en utilisant ces his-
togrammes. Finalement, nous appliquons la diffusion anisotrope sur les données
3D en accord avec leurs tenseurs obtenus. Le lissage respecte les caractéristiques
locales puisque la diffusion à chaque voxel est guidée par la distribution locale des
gradients. Nous démontrons des résultats de surfaces de haute qualité extraits des
données 3D lissées qui néanmoins préservent arrêtes et coins.

5.2 Volumetric Data and Noise

Volumetric scans of objects are ubiquitous in medical imaging, engineering and
analyzing cultural heritage. Computer tomography is a class of techniques that
produce such volumetric representations of objects by combining a large series of
2D scans, captured from multiple views. Typically, penetrative radiation is used to
obtain each 2D scan: X-Rays for CT (computer tomography) scans, radio-frequency
waves for MRI (magnetic resonance imaging), electron-positron annihilation for PET
(positron emission tomography) scans and so on. The process used to amalgamate
multiple 2D scans to produce a single voxelized density field is called tomographic

reconstruction.
Unfortunately, the voxelised density data is typically polluted by noise from

a variety of sources: the limited number of views [Herman 2009], lack of captor
sensitivity, high contrasts, non-monochromaticity of the X-Ray source, imperfect
stability of the X-Ray source, pixel defects on the captor and non-uniformity of the
absorption process across wavelengths. The constraint that data acquisition should
be noiseless is unrealistic. We want to reduce, or eliminate, noise as early as possible
in the application pipeline.

The scanned volume is typically explored as 2D slices (images) of the density
field, as 3D volumetric data or after extracting iso-surfaces (level sets) from the
density field. The effect of noise is particularly frustrating when 3D iso-contour
(level-set) surfaces are extracted from the volume density field. Typical algorithms
for extracting surfaces, such as marching cubes [Lorensen 1987] and dual contour-

86

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

ing [Ju 2002] are sensitive to noise. The noise ultimately manifests itself as crude
surfaces plagued by artifacts such as disconnected components, bridges and multiple
holes in the surface.

Three broad strategies are typically adopted for smoothing noise: 2D smooth-
ing of the sliced views of the density field; surface smoothing of the surfaces ex-
tracted as level-sets of the density data; and smoothing of the volume density
before surface extraction. 2D smoothing is efficient, but not applicable when
3D models are required from the data. Surface smoothing is popular, but with
the disadvantage that certain artifacts such as topological inconsistencies are ex-
tremely challenging, if not impossible, to eliminate. Methods potentially use-
ful to contour surface of tomographic data include bilateral filtering based ap-
proaches [Jones 2003, Vialaneix 2011], spectral mesh processing [Bruno 2009], and
anisotropic surface-based diffusion [Tasdizen 2002, Clarenz 2000]. All these meth-
ods aim at preserving the topology of the original surface, and therefore do not
entirely tackle our problem.

When the goal is to extract 3D models, filtering the volumetric data before level-
set extraction alleviates such inconsistencies. Avoiding to blur sharp features and
to decimate fine elements remains a challenge.

5.3 Theoretical Background

In Chapter 4, we introduced and took advantage of two tools: anisotropic diffusion
(Section 4.2.1) and local continuous histogram (Section 4.2.2). In this chapter, we
make use of the same tools but in three-dimension. Here, we present their extension
from two-dimensional to three-dimensional.

5.3.1 Anisotropic Diffusion

Smoothing using diffusion is a well-studied technique, introduced by Perona and
Malik for image smoothing [Perona 1990]. The general form of anisotropic diffusion
of a density field f is represented variationally as:

ft = div(M∇f)
= M∆f +∇M∇f

(5.1)

where M is a symmetric matrix called the diffusion tensor. If M consist of equal
constant values C, then Equation 5.1 reduces to an isotropic heat equation:

ft = M∆f

= tr

C1 0 0

0 C2 0

0 0 C3

fxx fxy fxz

fxy fyy fyz

fxz fyz fzz

= tr(MH(f))

(5.2)

5.3. Theoretical Background 87

(a) C1 = C2 = C3 (b) C1 = C2 ≫ C3 (c) C1 ≪ C2 = C3 (d) C2 ≪ C1 = C3

(e) C1 ≫ C2 = C3 (f) C2 ≫ C1 = C3 (g) C3 ≫ C1 = C2

Figure 5.2: (a) Isotropic diffusion is performed. Illustrated by the transformation
of the sphere to a plane: diffusion is applied more in (b) the x and y-axis than the
z-axis, (c) the y and z-axis than the x-axis, and (d) the x and z-axis than the y-axis.
The sphere is transformed into a cigar as diffusion is applied more in the (e) x-axis,
(f) y-axis, and (g) z-axis.

where C1 = C2 = C3 are the scales of the diffusion which form a sphere (Fig-
ure 5.2(a)) and H(f) is the Hessian matrix of dataset f . Diffusion is processed
equally in all direction of the sphere. Assigning different value to C1, C2, and C3

results in sort of anisotropic diffusion where diffusion is applied proportionally to C1,
C2, and C3. If C3 ≪ C1 = C2, the sphere is transformed into a plane of dimension
proportional to C1 and C2 (see Figure 5.2(b)). Thus, more diffusion is applied in the
x and y-axis orientations than the z-axis. Figures 5.2(c) and 5.2(d) show the cases
when C1 ≪ C2 = C3 and C2 ≪ C1 = C3 respectively. If C1 ≫ C2 = C3, the sphere
is transformed into a cigar shape oriented in the x-axis signifying that diffusion is
applied more in the x-axis than the y and z-axis (see Figure 5.2(e)). Figures 5.2(f)
and 5.2(g) show the cases when C2 ≫ C1 = C3 and C3 ≫ C1 = C2 respectively.

The above configuration limits our control of diffusion to only three orientation
the x-axis, y-axis, and z-axis. We can remove this limitation by expressing Equa-
tion 5.2 using the eigen decomposition of M . Since M is symmetric, it can be
written as M = V TDV where D is a diagonal matrix with eigenvalues λi and V

contains the eigenvectors vi of M :

88

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

Figure 5.3: An orthonormal 3D basis formed over a surface. It consists of the
gradient vector ∇f and the vectors v1 and v2. ∇f is orthogonal to the surface. v1
and v2 are parallel to the surface but orthogonal to each other and to ∇I.

ft = tr(V TDVH(f))

= tr(DVH(f)V T)

=
∑

i λiv
T
i H(f)vi.

(5.3)

In this form, we achieve anisotropic diffusion. It uses the Hessian matrix as a
quadratic form to measure the directional second derivatives along vectors vi, and
applies diffusion proportionally to the eigenvalues λi. Through this expression, we
have the freedom to steer the diffusion process in any orientation by simply choosing
the suitable vi and λi. For instance, geometric diffusion corresponds to diffusing only
orthogonally to the gradient ∇f , using the diffusion tensor:

Mg = V T

ε 0 0

0 1 0

0 0 1

V with V =

[∇f
‖∇f‖ , v1, v2

]

(5.4)

where v1 and v2 are two vectors that complete ∇f into an orthonormal 3D basis
(see Figure 5.3). Choosing a very small ε value reduces the diffusion in the ∇f
direction to almost nothing and diffuses only in the directions v1 and v2. strictly
speaking, geometric diffusion corresponds to ε = 0. In practice, it is better to have
0 < ε ≪ 1 to keep Mg invertible. An invertible tensor M signifies that applying
a geometric diffusion into an image is equivalent to applying a Gaussian filter of
covariance M to this volume:

f(v, t+ 1) =

∫

e−uTM−1uf(v + u, t)du (5.5)

where v is the central voxel (x, y, z) and u is a neighboring voxel of v. We will
use this Gaussian property to derive a feature preserving diffusion tensor.

5.4. Feature Preserving Smoothing in Volumes 89

5.3.2 Local Continuous Histogram

Local continuous histograms are extensions of discrete histograms. Each value in
the data contributes to neighboring bins—proportionally to a weight function such
as a Gaussian—in addition to the histogram bin that it falls into. Local continuous
histograms allow robust estimation of histogram properties such as modes and ex-
trema. They work well for edge-aware smoothing operations of images, as pointed
out by Kass and Solomon [Kass 2010].

Let F be a 3D dataset, and f(x) be the data value at point x. The local
continuous histogram at bin b is defined as a function of point x over the entire
dataset by:

hb(x) =

∫

F
Kb(f(y))gσ(x− y)dy (5.6)

with gσ(x) =
1

σ
e−

‖x‖2

σ2

the histogram kernel Kb represents how much the value f(y) contributes to
the histogram bin at b. It is usually a Gaussian. The sharper this Gaussian, the
more local the histogram is. The other Gaussian gσ is a spatial kernel. Figure 4.4
illustrates a continuous smooth histogram based on a Gaussian distribution.

Using Equation 5.6, we can compute local continuous histograms hx for all values
x at once in a very efficient way, using only two Fourier transforms. First, we
rewrite Equation 5.6 as a convolution over x:

hb(x) = (gσ ⊗x (Kb ◦ f))(x)

Then, from the convolution theorem, and noting the Fourier transform with F ,
we have:

F(hb) = F(gσ)×ωx F(Kb ◦ f)

where the product is performed over the spatial spectral variable ωx. The spec-
trum of the Gaussian gσ is also a Gaussian, g 1

σ
, therefore:

hb = F−1(g 1
σ
×ωx F(Kb ◦ f)) (5.7)

5.4 Feature Preserving Smoothing in Volumes

5.4.1 Objective

We apply anisotropic diffusion within the volume. We compute adaptive diffusion
tensors at each voxel, such that noise is smoothed up to a specified scale and features
larger than this scale are preserved, when contour surfaces are extracted.

In Figure 5.4, we provide an intuition of how this diffusion tensor is constructed.

90

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

���������	A�

BC�D	EE��	F��������

Figure 5.4: We adapt the diffusion tensors to local variation by respecting the spec-
ified scale. For example, in the internal thread, choice of fine scale smoothing re-
quires diffusion along tensor b1 while coarse smoothing requires tensor b2 to smooth
the thread.

In the internal thread, when the user specifies a fine scale, we would like to preserve
the thread and must diffuse parallel to it (using kernel b1). At a larger scale, however,
we would like to smooth the thread to produce a clean cylinder, which requires a
different kernel b2. At some locations in the volume, the smoothing kernel may be
the same across multiple scales such as c1 and c2 where the result is flat.

We construct the diffusion tensor at each voxel using the local distribution of
gradients, filtered at the user-specified scale. For computing filtered gradient distri-
butions, we build local continuous histograms in the space of directions. To account
for the feature size, we compute gradients on a blurred version of the volume, ob-
tained using an isotropic Gaussian of variance equal to half the requested feature
size. We then use the filtered gradient histogram to build a diffusion kernel, at each
voxel, that preserves the requested feature size.

5.4.2 Scale-space Local Gradient Distributions

Let s be the specified feature size and f the volumetric data. The continuous
histogram of gradients has value hω(x) at point x in direction ω, defined by:

hω(x) =

∫

‖y−x‖<2s
gs(x− y)Kω(∇f(y))dy (5.8)

where Kw is the normalized Von Mises kernel [Jammalamadaka 2001] defined
by

Kω(ω
′) =

k

2π(ek − e−k)
ekω·ω

′
(5.9)

and ω · ω′ is the dot product between directions ω and ω′. Larger values of k

5.4. Feature Preserving Smoothing in Volumes 91

(a)

Histogram Kernel

(b)

Figure 5.5: (a) A sphere histogram with n directional bins. (b) Continuous local gra-
dient histogram with their respective diffusion tensors at distinct locations. The top
figures show a histogram computed over a continuous region resulting with one dom-
inant direction. Its respective diffusion tensor is flat and orthogonal to the dominant
direction. The bottom figures show a histogram computed over a region containing
an edge resulting with two dominant directions. Its respective diffusion tensor results
in a cylinder shape orthogonal to the dominant directions and parallel to the edge.

correspond to sharper kernels Kω. Figure 4.7 shows the kernel distribution with
various values of k. A continuous gradient histogram of each voxel is discretized
and constructed as follow:

• We create n directional bins. They are discretized and scattered uniformly
on the unit sphere, using a fixed subdivision of the icosahedron. The greater
the number of bins the smoother is the histogram. Figure 5.5(a) illustrates a
histogram with n directional bins.

• We compute a weight for each gradient of the volume; to estimate its contri-
bution, relative to each of the directional bin. This is accomplished via the
Von Mises kernel in Equation 5.9.

• Finally, we apply a 3D spatial Gaussian gs weight of variance s over the volume.
This excludes all voxels that falls outside the scope of the user-defined feature
size s; i.e. the radius s, from the central voxel.

Figure 5.5 shows two examples of continuous gradient histograms and their as-
sociated computed kernel taken at two locations; Pa on the surface and Pb on an
edge, in the model of Figure 5.4. At Pa all gradients are orthogonal to the surface.
This produces a single lobe histogram oriented orthogonally to the surface. At Pb,

92

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

there are an equal number of gradients directed downwards and leftwards. This
produces a histogram with two distinct lobes smoothly directed downwards and to
the left relative to the gradients distribution. Note, we disregard gradients outside
the user-defined feature size scope the construction of the histogram.

We use two Fourier transform to compute the local continuous gradient his-
togram. Furthermore, note that we compute the continuous gradient histogram on
the gradients of a blurred volume of f rather than the gradients of f itself. Blurring
the volume sharpens the gradients by filtering out small scale variation of the data.
We apply a 3D Gaussian g s

2
of variance s

2 on the volume data f using a convolution
or equivalently two Fourier transform:

f b = g s
2
⊗ f (5.10)

or

f b = F−1(g 2
s
×F(f))

where f b is the result blurred volume. Thus, ∇f b(y) replaces ∇f(y) in Equa-
tion 5.8.

We use the Gaussian g twice in the process. First to filter out small scale
variations of the data (Equation 5.10), then to spread the contribution of each
gradient to the histogram of nearby voxels (Equation 5.8). The variance is half the
scale of the requested feature size in Equation 5.10 and equal to the feature size in
Equation 5.8. We refer the reader to Figures 4.9 and 4.10 for a visual illustration
of the Gaussian effect on gradients. Although the effect is shown on 2D images, it
has the same effect on volumes.

5.4.3 Computation of Adaptive Diffusion Tensors

Having the local distribution of gradients ω → hω(x) at a scale s for all voxel x in
the volume, we define the diffusion tensors as:

M(x) =

(

1

H(x)

∫

Ω
hω(x)M

−1
g (ω)dω

)−1

(5.11)

with H(x) =
∫

Ω
hω(x)dω

where Mg(ω) is the geometric diffusion tensor defined in the direction ω (see
section 5.3.1); i.e:

Mg(ω) = V T

ε 0 0

0 1 0

0 0 1

V with V = [ω, v1, v2] (5.12)

where we use ε = 1
1000 . We compute a geometric diffusion tensor Mg(ω) for

5.4. Feature Preserving Smoothing in Volumes 93

each directional bin and then sum them up. However, its contribution to the overall
diffusion tensor M(x) is weighted by hω(x). M(x) is then normalized by H(x)—
the sum of the local distribution of gradients in each of the histogram directional
bins. Note that the matrix inversion involved is always well defined since we sum
up positive definite matrices.

Equation 5.11 is justified as diffusing using the geometric diffusion tensor is
equivalent to smoothing the data with a Gaussian kernel g defined by its covariance
matrix Mg

g(x) = e−xtM−1
g x

To account for multiple directional constraint, Gaussian kernels corresponding to
different directions are multiplied. Consider two main directions ω1 and ω2 orthog-
onal to one another. Multiplying the Gaussian kernels g1 and g2 is an appropriate
solution since each Gaussian will cancel out the parts of the support that is not
wanted in the other Gaussian. For a proper normalization, we actually need a
geometric mean, which in the example above is:

g12 = (g1g2)
1
2 = e−xt

M
−1
g1

+M
−1
g2

2
x

The geometric mean of Gaussians results in an harmonic mean of their covariance
matrices as in Equation 5.11. We provide a visual description of the example above
in Figure 4.11. We show the diffusion tensors Mg1 and Mg2 of directions ω1 and ω2

respectively. They are orthogonal to one another and their geometric mean Mg12 is
a circle. Note that the result is not the intersection of Mg1 and Mg2.

In Section 4.3.3, we provided a visual illustration (Figures 4.12 and 4.13) of the
procedure for computing adaptive tensors. Although we presented it in 2D, the
concept is the same in 3D.

5.4.4 Diffusion

Following the computation of the diffusion tensor of each voxel, we apply anisotropic
diffusion iteratively in the orientation of the respective tensors. Since the diffusion
at each voxel is guided by the local distribution of gradients, the smoothing re-
spects and preserves the local features of the volume. We compute the eigenvalues
and eigenvectors of each diffusion tensor. Then, we diffuse in the orientation of
the eigenvectors proportionally to their respective eigenvalues. Mathematically, we
define it as

ft =

3
∑

i=0

(V T
i H(f)Vi)λ

2
i

V T
i Vi

(5.13)

where f is a volume of density value with Vi =

vxi

vyi
vzi

and λi are the three

94

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

Input Noisy
Volume

FFT-based
Gaussian
Blurring

Gradient
Computation

Directional
Histogram

Computation

Kernel
Estimation

Computation
Anisotropic
Diffusion

Output Filtered
Volume

Parameter:
Feature Size For all voxels

Our GPU-based filtering algorithm

Figure 5.6: GPU computation pipeline. All computations are done on the GPU. The
input are the original volume and the feature size.

eigenvectors and eigenvalues respectively. H(f) =

fxx fxy fxz

fxy fyy fyz

fxz fyz fzz

is the Hessian

matrix of volume f . The Hessian matrix is used as a quadratic form to measure the
directional second derivatives along the vectors Vi. ft is iteratively added to f by a
time step ∆t = 0.025:

f(x, y, z, t+∆t) = f(x, y, z, t) + ∆t(ft). (5.14)

5.5 Implementation

We compute the diffusion tensor almost entirely on GPU using NVIDIA’s CUDA
model [Sanders 2010]. See Figure 4.15 for the pseudo code, and Figure 5.6 for an
overview of the graphics pipeline.

• First, we blur the volume using a convolution with gs, as in Equation 5.10,
using two Fast Fourier Transforms (FFT). We transform f into the Fourier do-
main (FFT-forward), multiply the spectrum by the spectrum of gs, and finally
transform back into the primal using the second FFT (FFT-inverse). FFT is
a standard function provided by NVIDIA’s CUDA software development kit.

• For each histogram direction ωi, and for all voxels x at once, we compute the
directional histogram hωi

(x) using Equation 5.7. This involves two FFT calls
and a product in Fourier space.

• As we compute histogram values, we accumulate the inverse of the geometric
diffusion matrix Mg for each voxel in a buffer using Equation 5.11.

• Finally, we invert the matrices for all voxels and use them for smoothing the
volume using diffusion.

5.6. Results and Comparison 95

for all voxels x do

init tensor M(x) to 0
compute gs ⊗ f using 2 FFT + product
for all histogram directions ωi do

for all voxels x do

compute Kωi
(∇(gs ⊗ f))

convolve with gs using 2 FFT + product
for all voxels x do

accumulate hωi
(x)Mg(ωi)

−1 into M(x)−1

for all voxels x do

invert M(x)−1

diffuse at x according to M(x)

Figure 5.7: Pseudocode for the computation of diffusion tensors in the volume. All
operations are done on the GPU, using CUDA.

Algorithms 5.1 and 5.2 sketch in details the algorithms for computing the dif-
fusion tensors of volumes and performing anisotropic diffusion. In this implemen-
tation, directional gradient histograms are never stored explicitly, their values are
used directly to compute the integral in Equation 5.11. We discretize the directions
into 642 directions scattered uniformly on the unit sphere, using a fixed subdivision
of the icosahedron.

5.6 Results and Comparison

We tested our algorithm on several data sets. These datasets all correspond to
difficult cases for tomography:

• An inhaler (Figure 5.8 and 5.9). This object is an assembly of plastic and
metallic parts, having different permeability to X-ray, resulting in a large
range of contrast.

• A mechanical part (Figure 5.10), made from aluminum. The thickness of
this object changes with its orientation, resulting again in contrast issues for
tomography. This object also contains large smooth areas (the outer cylinder)
as well as sharp continuous features (such as the internal threads and the
letters at the top).

• An archaeological artifact (Figure 5.11 and 5.12). This object is a wooden
box which can not be opened because it is too fragile. The Museum uses
tomography to observe the interior of the box in a non-destructive way. The
dataset is made of softer materials with a large range of permeability to X-rays:
tree leaves, wood and sea shells.

96

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

Algorithm 5.1: Computing 3D Diffusion Tensors for volumes in GPU

input : f , 3D noisy data. s, feature size.
output: M , vector of diffusion tensors

// Initialize tensors M(x)
forall voxels x in f do1

M(x) ← 02

// Initialize continous histogram

Ω ← new histogram()3

// Blurring f using Gaussian g s

2
and CUDA FFT (using Eq. 5.10).

F ← CudaFFT (f , FFT-forward)4

F ← F × g 2

s
5

f b ← CudaFFT (F , FFT-inverse)6

// Computing directional histogram

forall histogram directions ωi do7

forall voxels x in f do8

hωi
(x) ← Kωi

(∇f b)9

// convolve wih gs using 2 CUDA FFT (using Eq. 5.7).

Hωi
← CudaFFT (hωi

, FFT-forward)10

Hωi
← Hωi

× g 1

s
11

hωi
← CudaFFT (Hωi

, FFT-inverse)12

// Accumulate the diffusion tensors for each voxel using

// Eq. 5.11.

forall voxels x do13

V ←
[

ωi v1 v2

]

14

ε ← 1
100015

Mg(ωi) ← V T

ε 0 0

0 1 0

0 0 1

V

16

// Computing geometric mean

M(x)−1 += hωi
(x)Mg(ωi)

−1
17

H(x) += hωi
(x)18

// Normalize the tensors M(x)−1 and inverse to M(x)
forall voxels x do19

M(x)−1 ← M(x)−1

H(x)20

M(x) ← invert(M(x)−1)21

return M22

5.6.1 Noise and Connected Components

Surface extraction, using dual contouring on the original datasets results in a large
number of separated connected components (several thousands in our experiments),
some of them having a high topological genus (many holes), and with visible surface
noise. See Figures 5.8, 5.10(a) and 5.11. In these pictures, each color corresponds

5.6. Results and Comparison 97

Algorithm 5.2: Computing 3D Diffusion on GPU

input : f , 3D noisy data. M , vector of diffusion tensors
output: fs, smooth 3D data at feature size s.

fs ← new 3D-data()1

∇t ← 0.0252

for n diffusion steps do3

forall voxels x do4

[V1, V2, V3] ← eigenvectors (M(x))5

[λ1, λ2, λ3] ← eigenvalues (M(x))6

ft ←
∑3

i=0
(V T

i
H(f(x))Vi)λ

2

i

V T

i
Vi

7

fs(x) ← f(x) +∇tft8

f ← fs9

return fs10

(a) (b)

Figure 5.8: Inhaler model (2563 voxels): (a) contour surface extracted from the raw
data and (b) close up. Note the large number of disconnected components, holes and
surface noise. This example has 4978 different connected components.

to a different connected component.

Our algorithm smoothes the volumetric datasets so that surface extraction re-
sults in a smaller number of connected components, with less holes and smoother
surfaces. See Figures 5.9, 5.10(b) and 5.12 for comparison. The reduction in surface
noise is clearly visible. Numerically, the number of separate connected components
was reduced from 4978 to 218 for the inhaler dataset, and from 1406 to 468 for the
shells in a box dataset.

Figures 5.12 and 5.15 show the volumetric dataset after filtering. The noise
reduction is also visible on this volumetric data. Our algorithm makes it easier to

98

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

(a) (b)

Figure 5.9: Inhaler model (2563 voxels): (a) contour surface extracted after volume
smoothing with our algorithm and (b) close up. Our algorithm reduced the surface
noise as well as the number of connected components and holes. Computation time
for this example was 79.8 s, and the number of connected components was reduced
to 218.

(a) (b)

Figure 5.10: Mechanical part (3003 voxels): (a) surface extracted from original data
and (b) surface extracted after smoothing by our algorithm. Note how our algorithm
removes the surface noise while preserving the sharp features such as the internal
threads or the letters on top of the model. See Figure 5.14 for close-ups on the
internal thread region.

5.6. Results and Comparison 99

(a) (b)

Figure 5.11: Shells in a box (2563 voxels): (a) slice from the original volume data
and (b) contour surfaces extracted. Note the large number of connected components
(1406 in this example) and the surface noise.

identify the different components of the objects. It also provides a better separation
between different elements. For example, in the shells dataset, the filtered dataset
separates clearly between the two shells on the right, unlike the unfiltered dataset.

5.6.2 Preservation of Sharp Features

Figure 5.10 compares the surface extracted from the mechanical part dataset after
filtering with the surface extracted from the unprocessed dataset.

Figure 5.13 shows close-up details of the extracted surface: the internal thread,
the letters engraved at the top of the model, and a combination of sharp and smooth
edges at the end of the model. Notice how our method preserves the sharp edges,
including the thread and the letters, while smoothing out the surface noise.

5.6.3 Feature Size

The key parameter of our algorithm is the size of the feature we are interested
in. Filtering removes surface details smaller than this feature size, while preserving
surface details that are larger.

Figure 5.14 shows the effect of increasing the feature size on the internal thread
of the mechanical part dataset. For a small value of the parameter, our algorithm
preserves the thread while removing the noise. As we increase the feature size, our
algorithm smoothes the threads. Note that the edges of the cylinder are preserved,
since they are larger in size.

100

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

(a) (b)

Figure 5.12: Shells in a box (2563 voxels), after filtering with our algorithm: (a) a
slice from the volumetric data and (b) contour surfaces extracted. Note how subtle
structures, such as the thin internal walls of the central shell, are well preserved in
the volume data. Our algorithm removed the surface noise as well as many erro-
neous surface components, and provided the (correct) separation between the right
two shells. The number of connected components was reduced to 468. Compare with
Figure 5.11 for the unfiltered data.

(a) (b) (c) (d)

Figure 5.13: Mechanical part (3003 voxels): (a) contour surface extracted from the
raw data, (b) contour surface extracted from the data after filtering with our algo-
rithm (s = 20, diffusion steps = 40). (c) and (d) close-up on specific details from
(a) and (b).

5.6. Results and Comparison 101

(a) (b) (c) (d)

Figure 5.14: Internal thread from the mechanical part at various feature sizes (Fig-
ure 5.10): (a) original data, (b) (c) and (d): filtered data with increasing feature
size of 20, 50 and 100 respectively. With a feature size of 20, our algorithm removes
the noise but preserves the internal threads. When we increase the feature size to
100, our algorithm removes the threads, but keeps the contours of the cylinder. The
filtering takes 79.8 s to compute.

(a) (b) (c)

Figure 5.15: Slices from the mechanical part dataset (see (a)): (b) original data and
(c) data filtered by our algorithm, s = 100. Note how our algorithm removed the
noise inside the part volume, as well as the threads. Compare with Figure 5.14 for
the extracted surfaces.

102

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

Number of diffusion steps

100
3

256
3

300
3

Figure 5.16: Computation time on the GPU (in seconds) as a function of the number
of diffusion steps, for different size of the dataset.

 0.1

 1

 10

 100

 1000

32
3

64
3

128
3

256
3

P
ro

c
e

s
s
in

g
 t

im
e

Size of the dataset

Our algorithm
 α x

3

Figure 5.17: Logscale plot of the processing time (in seconds), as a function of the
number of voxels (measured as the edge length of the dataset). The total number of
voxels is the cube of this edge length, and the computation time increases linearly
with it.

5.6. Results and Comparison 103

Figure 5.18: Mechanical part (3003 voxels) divided into eight pieces. Each piece
is processed separately by the GPU, before we combine the results together. The
different colored areas highlight the overlap required data from adjacent pieces for a
smooth stitching after filtering.

5.6.4 Computation Time

Computation times for our algorithm depend on two parameters: the number of
voxels in the dataset and the number of diffusion steps. It does not depend on the
feature size.

The number of diffusion steps has an impact on computation time. Figure 5.16
displays the computation time for 1, 50 and 80 diffusion steps, for different dataset
sizes. The time measurements include a constant initializing time, which explains
the afine—rather than linear—behavior of the curve. After this first step, compu-
tation time increases linearly with the number of steps, as expected.

5.6.5 Scalability

The computation time increases with the total number of voxels n3. Figure 5.17
shows the computation time as a function of the total number of voxels. We observe
sharp variations in computation time, related to data alignment issues. For example,
computing on a 1283 voxels dataset is faster than for 1203 or 1303 voxels.

The memory footprint of our algorithm is equal to 64n3. On a graphics card
with 1 GB of memory, roughly 354 MB are reserved by the card itself for its own
use, leaving 669 MB available for our algorithm. This means that the maximum
size for a dataset to be processed in a single chunk is roughly 4003, corresponding
to 550 MB of memory.

We segment datasets that are larger than this limit into smaller pieces, which
are processed separately by the GPU, before we combine the results together. For
a continuous stitching, we keep an overlap between the data pieces. Figure 5.18
shows the mechanical tool divided into eight pieces. In addition to, it highlights

104

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

Figure 5.19: The segmented pieces of Figure 5.18 are spread apart to appreciate the
different components of the tool. The different colored areas represent the overlap
data from adjacent pieces. The arrows helps visualize the connected areas. Note that
each green region is shared by four adjacent pieces.

with different color the overlap required data from the adjacent pieces for a smooth
stitching after filtering. In Figure 5.19, we spread the pieces apart from one another
to appreciate the different components of the tool. The arrows connect the shared
overlap data. Note that the each green region is shared by four adjacent pieces of
the mechanical tool.

Using this division and stitching method, we can process datasets of arbitrary
size. Since dividing the dataset into smaller pieces does not increase the number
of voxels (except for the overlap), and since computation times depend linearly on
the number of voxels, the division and stitching does not have a significant impact
on computation time. The rightmost three points on the curve of Figure 5.17 were
computed using this data division. Note that all the datasets pictured in this thesis
have been processed in multiple chunks of size 2003, and were thus processed using
data division.

5.6. Results and Comparison 105

(a) (b) (c) (d)

Figure 5.20: Mechanical part (3003 voxels), using the EED-CED algo-
rithm [Achilleas 2001], with different parameter values: (a) K = 50, α = 0.5, C = 0,
(b) K = 100, α = 3, C = 2000. (c) and (d) close-up on specific details from (a) and
(b).

(a) (b) (c) (d)

Figure 5.21: Mechanical part (3003 voxels), using bilateral filtering, with different
parameter values: (a) σd = 4, σr = 1.5, (b) σd = 4, σr = 2. (c) and (d) close-up on
specific details from (a) and (b).

106

Chapter 5. Fast Multi-Scale Feature-Preserving Smoothing of

Volumetric Data

Parameter Values
Volume Size

1003 2563 3003

σd= 4, σr=1.5 0.72 s 8.21 s 13.9 s
σd= 4, σr=2 0.72 s 8.21 s 13.9 s
σd= 8, σr=2 4.09 s 52.41 s 89.47 s
σd= 10, σr=2 7.46 s 75.4 s 167.8 s

Table 5.1: Computation time for bilateral filtering (in seconds), on the GPU, as a
function of volume size and parameter values.

5.6.6 Computing on the GPU

Similar to our 2D method (see Chapter 4), we make use the massively paral-
lel processing power of the GPU to compute the adaptive diffusion tensors and
the anisotropic diffusion. Its single-instruction-multiple-data (SIMD) architec-
ture [Flynn 1972] allows us to compute the diffusion tensors and anisotropic diffusion
in parallel for entire blocks of pixels and voxels since both operations are embar-

rassingly parallel. Using the GPU, we gain in efficiency by roughly a factor of 1000
compared to the use of a CPU. For instance, filtering a volume of size 3003 (27 mil-
lions) voxels on the CPU would take ≫ 24 hours compared to 2 mins on the GPU.

5.6.7 Comparison with Existing Algorithms

For comparison, we implemented the hybrid algorithm, EED-CED (Edge Enhancing
Diffusion, Coherence Enhancing Diffusion) [Achilleas 2001] and 3D bilateral filter-
ing [Tomasi 1998, Paris 2007]. Both algorithms were implemented on the GPU using
NVidia CUDA.

Figures 5.20 and 5.21 show the results of these algorithms on the mechanical
part dataset. Compare with Figure 5.13 for our own algorithm on the same dataset.
Both algorithms exhibit the same behavior: for some values of the parameters, they
keep the edges and features, but they also kept some of the noise. If we push
the parameters until the point where the surface noise disappears, we start losing
features and details. For each algorithm, we display the best results we could find.

The EED-CED is basically a diffusion algorithm, and we implemented it on
the GPU (only the computation of the kernel changes with our algorithm). As a
consequence, it has the same computation time as our algorithm.

Bilateral filtering was also implemented on the GPU, resulting in computation
times similar to those of our algorithm. Please refer to Table 5.1 for computation
time (in seconds), for several values of the parameters and volume size. It is faster
than our algorithm when σd is reasonably small. However, as σd increases so does
its computation time which can become slower than ours.

Chapter 6

Conclusion

Contents

6.1 Summary of Contributions . 107

6.2 Perspectives . 108

6.1 Summary of Contributions

We have addressed the problem of noise in two-dimensional images and three-
dimensional volumes that is unavoidably added during the acquisition of images
and volumes. We have presented two new fast multi-scale smoothing methods that
adapt to the local features of the subjects of the images and volumes. Moreover, we
made use of anisotropic diffusion and continuous histogram to build our adaptive
diffusion tensors.

First, we presented our multi-scale smoothing method in two-dimensional space
to tackle the noise in two-dimensional images. To take into account the sharp
features, we compute the local continuous histograms of gradients of the image.
Then, we compute the adaptive diffusion tensors using these histograms. Finally,
we apply anisotropic diffusion in the image using the computed tensors. Since the
diffusion at each pixel is guided by the local distribution of gradients, the smoothing
respects and preserves the local features.

We then extended the concept of our two-dimensional smoothing method to
three-dimensional space to remove noise in volumes improving the quality of their ex-
tracted iso-surfaces. To achieve that, we also extended the anisotropic diffusion and
local continuous histogram from their two-dimensional space to three-dimensional
space to use for computing 3D adaptive diffusion tensors and remove the noise
without removing the sharp features.

Our algorithms filter images and volumes extremely fast since their embarrass-

ingly parallel nature fits them nicely on parallel machines especially GPU. In addi-
tion to, GPU’s SIMD architecture allows us to compute the diffusion tensors and
anisotropic diffusion in parallel for entire blocks of pixels and voxels in one time step.
This makes the run-time of our methods significantly faster compared to a sequen-
tial implementation. Furthermore, our technique can process datasets of arbitrary
size by applying our division and stitching method.

Despite their simplicity, our algorithms unify previous methods, such as CED
and EED, that crafted diffusion tensors, based on a set of special cases, striving

108 Chapter 6. Conclusion

to detect potential edges and corners in the datasets. Our diffusion tensors auto-
matically adapt to the features’ shape and diffuse along them to preserve them.
Furthermore, we only have one parameter to tune—the feature size—compared to
the numerous conditions to follow and parameters to calibrate in other methods.

Finally, we have, along this thesis, demonstrated through concrete examples
that our algorithms smooth noise effectively while preserving the sharp features.
Our two-dimensional method was tested on several images such as scanned text,
photographs, and medical images. In addition to preserving edges and corners, we
showed that it repairs cracks and helps better distinguish between different com-
ponents of the image especially in medical images. Our three-dimensional method
was tested on three-dimensional reconstructed mechanical parts and cultural her-
itage items. Through them, we showed that crude surfaces were eliminated and
topological complexes were reduced making the reconstruction objects identifiable.

6.2 Perspectives

In this thesis, we tackled the problem of smoothing noise in two-dimensional im-
ages and three-dimensional volumes while keeping the important information of the
datasets. As we have demonstrated, our smoothing methods have potential prac-
tical applications. The 2D method could be used to smooth scanned noisy texts,
medical, and noisy images. And the 3D method is used on (but not limited to) 3D
volumes of biological subjects, mechanical parts, and cultural heritage. We hope we
have paved the way for additional future research. We see three main directions for
possible improvement and extension:

• Currently, anisotropic diffusion is applied iteratively until the user is satisfied
with the result. This is problematic because the result might not be optimal
since it is based on the user visual interpretation. In addition to, it might be a
source of frustration for the user specially when smoothing three-dimensional
volumes of objects. In that case, iso-surfaces of the volumes need to be ex-
tracted each time several steps of anisotropic diffusion is applied to check if
the effect is satisfying. If it’s not, then the user might decide to apply more
diffusion steps or start over to apply less. Thus, it would be of great utility
to have a system that determines the optimal number of diffusion steps that
needs to be applied to have optimal smoothing datasets.

• The functionality of our tree-dimensional smoothing method can be extended
to smooth noisy meshes acquired by the means of laser scans and their likes.
This can be done by first converting the mesh into a three-dimensional volume
of distance field [Jones 2006]. Then, apply our three-dimensional multi-scale
smoothing method on the distance field volume. Finally, extract the iso-surface
of the smooth mesh from the smoothed volume.

• We want to extend our program with an interactive user-friendly interface
where users can select specific areas on images, volumes, and meshes to

6.2. Perspectives 109

smooth. Such a software would be useful for passionate users and experts
in the domains cited above.

Chapter 7

Conclusion

Contents

7.1 Résumé des contributions . 111

7.2 Perspectives . 112

7.1 Résumé des contributions

Nous nous sommes intéressés au problème du bruit dans les images 2D et les vol-
umes 3D qui est inévitablement ajouté durant leur acquisition. Nous avons présenté
deux nouvelles méthodes de filtrage multi-échelle qui s’adaptent aux caractéristiques
locales des images et des volumes. De plus, nous avons utilisé la diffusion anisotrope

et l’histogramme continu pour construire nos tenseurs de diffusion adaptive.
Dans un premier temps, nous avons présenté notre méthode de lissage multi-

échelle dans l’espace 2D pour traiter le bruit dans des images. Afin de respecter
les lignes caractéristiques, nous calculons l’histogramme continu local des gradients
de l’image. Ensuite, en utilisant ces histogrammes nous calculons les tenseurs de
diffusion adaptive. Finalement, nous appliquons la diffusion anisotrope sur l’image
en utilisant les tenseurs calculés. Le lissage respecte et préserve les caractéristiques
locales puisque la diffusion à chaque pixel est guidée par la distribution locale des
gradients.

Ensuite, nous avons prolongé le concept de notre méthode de lissage 2D à l’espace
3D pour enlever le bruit dans les volumes afin d’améliorer la qualité des iso-surfaces
extraites de ceux-ci. Pour atteindre cela, nous avons étendu les concepts de diffusion
anisotrope et d’histogramme continu à l’espace 3D. A nouveau, la méthode proposée
calcule des tenseurs de diffusion adaptifs 3D et enlève le bruit sans enlever les lignes
caractéristiques.

Nos algorithmes sont efficaces en temps de calcul grâce a leur implémentation
parallèle (GPU) comparativement à une implémentation séquentielle. L’architecture
du GPU nous permet de calculer et d’appliquer en parallèle les tenseurs de diffu-
sion pour des blocs entiers de pixels et de voxels. De plus, nos méthodes peuvent
traiter des données de taille aléatoire en segmentant les données en plusieurs petits
morceaux.

Le contexte théorique développé dans cette thèse unifie celui de méthodes an-
térieures comme les méthodes CED et EED qui prennent en compte des conditions

112 Chapter 7. Conclusion

spéciales lors du calcul des tenseurs, afin de détecter les arrêtes et les coins des
données. Nos tenseurs de diffusion s’adaptent aux formes des caractéristiques et
diffusent le long de ces formes pour les préserver. Nos méthodes reposent sur un
seul paramètre permettant de règler la taille du descripteur, là où les méthodes
précedentes nécessitent l’ajustement de nombreux paramètres.

Finalement, nous avons démontré par des exemples concrets que nos algorithmes
lissent le bruit tout en préservant les lignes caracteristiques. Nous avons testé notre
méthode 2D sur une grande variété d’images : textes scanné, photographies, et im-
ages médicales. En plus de préserver les arrêtes et les coins, nous avons montré que
notre méthode comble les trous et aide à mieux distinguer entre les différentes com-
posantes de l’image, en particulier dans les images médicales. Nous avons également
testé notre algorithme sur des pièces mécaniques 3D et des objets liés au patrimoine
culturel. Nous avons montré que notre algorithme élimine les surfaces rudes et ré-
duit les erreurs de topologie dans les volumes qui rendent les objets difficilement
identifiables.

7.2 Perspectives

Dans cette thèse, nous avons abordé le problème du lissage de bruit dans les images et
volumes tout en préservant les informations importantes des données. Ces méthodes
de lissage ont des applications pratiques. La méthode 2D peut être utilisée pour
lisser des scans de textes bruités et des images bruitées en général. La méthode
3D peut être utilisée sur entre autres des volumes d’objets biologiques, des pièces
mécaniques et des objets liés au patrimoine culturel. Nous voyons trois directions
principales pour de possibles améliorations à ces methodes:

• Actuellement, la diffusion anisotrope est appliquée itérativement jusqu’à que
l’utilisateur soit satisfait du résultat. Le résultat n’est peut-être pas idéal car
basé sur l’interprétation visuelle. Il peut s’agir aussi d’une source de frustra-
tion pour l’utilisateur pendant le lissage des volumes 3D des objets. Dans
ce cas, les iso-surfaces des volumes doivent être extraites après chaque étape
de diffusion anisotrope pour vérifier le niveau de satisfaction. Si l’utilisateur
n’est pas satisfait, il devra peut-être décider de diffuser plus ou recommencer
du début et diffuser moins. Par conséquent, il serait plus intéressant d’avoir
un système adaptatif qui détermine a priori le nombre d’étapes idéales de
diffusion nécessaires afin d’obtenir des résultats satisfaisants.

• Notre méthode de lissage 3D peut être utilisée pour lisser des maillages
bruitées acquis par des moyens de scan comme le laser. Cela peut être obtenu
en convertissant dans un premier temps le maillage en un champs de dis-
tances [Jones 2006]. Dans un deuxième temps, il faut appliquer notre méthode
3D sur celui-ci. Enfin, l’iso-surface du maillage est extraite du volume lissé.

• Nous souhaitons enfin ajouter à notre logiciel une interface interactive et intu-
itive qui donnera aux utilisateurs des options supplémentaires permettant de

7.2. Perspectives 113

choisir des régions spécifiques sur des images, volumes, et maillages à lisser.
Un tel logiciel serait utile pour des utilisateurs amateurs et experts.

Bibliography

[Achilleas 2001] S. F. Achilleas and H. Reiner. Noise Reduction in Electron Tomo-

graphic Reconstructions Using Nonlinear Anisotropic Diffusion. Journal of
Structural Biology, vol. 135, no. 3, pages 239 – 250, 2001. (Cited on pages 44,
45, 46, 47, 48, 105 and 106.)

[Bajla 1993] I. Bajla, M. Marusiak and M. Srámek. Anisotropic Filtering of MRI

Data Based upon Image Gradient Histogram. In Proceedings of the 5th In-
ternational Conference on Computer Analysis of Images and Patterns, CAIP
’93, pages 90–97, London, UK, 1993. Springer-Verlag. (Cited on page 38.)

[Black 1998] M. J. Black, H Sapiro, D. H. Marimont and D. Heeger. Robust

Anisotropic Diffusion. IEEE Transaction Image Processing, vol. 7, pages
421–432, 1998. (Cited on pages 36 and 38.)

[Boult 1993] T. E. Boult and R. A. Melter. G-neighbors. SPIE, 1993. (Cited on
page 26.)

[Bracewell 1999] R. N. Bracewell. The fourier transform and its applications.
McGraw-Hill Science/Engineering/Math; 3 edition, 1999. (Cited on page 21.)

[Brigham 1974] E. O. Brigham. The Fast Fourier Transform. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1974. (Cited on pages 22 and 29.)

[Brigham 1988] E. O. Brigham. The Fast Fourier Transform and its Applications.
Prentice-Hall, Englewood Cliffs, New Jersey, 1988. (Cited on pages 22
and 29.)

[Bruno 2009] L Bruno and H. Zhang. Spectral Mesh Processing. In ACM SIG-
GRAPH ASIA 2009 Courses, pages 17:1–17:47, 2009. (Cited on page 86.)

[Canny 1986] J. Canny. A Computational Approach to Edge Detection. IEEE Trans-
action Pattern Analysis Machine Intelligence, vol. 8, pages 679–698, June
1986. (Cited on page 36.)

[Clarenz 2000] U. Clarenz, U. Diewald and M. Rumpf. Anisotropic Geometric Dif-

fusion in Surface Processing. In Visualization ’00, 2000. (Cited on page 86.)

[Comaniciu 1998] D. Comaniciu and P. Meer. Distribution Free Decomposition of

Multivariate Data. Pattern Analysis and Applications, vol. 2, pages 22–30,
1998. (Cited on page 43.)

[Comaniciu 2000] D. I. Comaniciu. Nonparametric Robust Methods for Computer

Vision. PhD thesis, New Brunswick, NJ, USA, 2000. AAI9958400. (Cited
on page 43.)

116 Bibliography

[Comaniciu 2002] D. Comaniciu and P. Meer. Mean Shift: A Robust Approach

Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, pages 603–619, 2002. (Cited on page 43.)

[Davis 1978] L.S. Davis and A. Rosenfeld. Noise Cleaning by Iterated Local Aver-

aging. IEEE Transactions on Systems, Man, and Cybernetics, vol. 8, pages
705–710, 1978. (Cited on page 25.)

[Fernandez 2003] G. Fernandez, H. Bischof and R. Beichel. Nonlinear Filters on 3D

CT Imaging - Bilateral Filter and Mean Shift Filter. In Proceedings of the
8th CVWW, pages 21–26, Valtice, Czech Republic, 2003. (Cited on page 43.)

[Flynn 1972] M. Flynn. Some Computer Organizations and Their Effectiveness.
IEEE Transaction on Computers, vol. C-21, pages 948+, 1972. (Cited on
pages 81 and 106.)

[Funkhouser 1995] T. Funkhouser. Basic Signal Processing. 1995. (Cited on
page 17.)

[Gallagher 1981] N. Gallagher and G. Wise. A Theoretical Analysis of the Proper-

ties of Median Filters. IEEE Transactions on Acoustics Speech and Signal
Processing, vol. ASSP-29, no. 6, pages 1136–1141, 1981. (Cited on page 25.)

[Gonzalez 2001] R. C. Gonzalez and R. E. Woods. Digital image processing.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd édi-
tion, 2001. (Cited on page 24.)

[Graham 1962] R. Graham. Snow Removal–A Noise-Stripping Process for Picture

Signals. Information Theory, IRE Transactions, vol. 8, pages 129–144, 1962.
(Cited on page 25.)

[Gropp 1998] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg,
W. Saphir and M. Snir. MPI - the complete reference: Volume 2, the MPI-2
extensions. MIT Press, Cambridge, MA, USA, 1998. (Cited on page 43.)

[Herman 2009] G. T. Herman. Fundamentals of computerized tomography: Image
reconstruction from projections. Springer, 2nd édition, 2009. (Cited on
page 85.)

[Huang 1979] T. Huang, G. Yang and G. Tang. A Fast Two-Dimensional Median

Filtering Algorithm. IEEE Transactions on Acoustics Speech and Signal
Processing, vol. 27, no. 1, pages 13–18, 1979. (Cited on page 25.)

[Hy 2006] K. Hy. Gradient Histogram-Based Anisotropic Diffusion. Personal Com-
munication, 2006. (Cited on page 36.)

[Jammalamadaka 2001] S. R. Jammalamadaka and A. Sengupta. Topics in circular
statistics. World Scientific Publishing Company, 2001. (Cited on pages 57
and 90.)

Bibliography 117

[Jiang 2003] W. Jiang, M. L. Baker, Q. Wu, C. Bajaj and W. Chiu. Applications of

a Bilateral Denoising Filter in B electron Microscopy. Journal of Structural
Biology, vol. 144, no. 1-2, pages 114–122, 2003. (Cited on page 43.)

[Jones 2003] T. R. Jones, F. Durand and M. Desbrun. Non-Iterative, Feature-

Preserving Mesh Smoothing. ACM Trans. Graph., vol. 22, no. 3, pages
943–949, July 2003. (Cited on page 86.)

[Jones 2006] Mark W. Jones, J. Andreas Baerentzen and M. Sramek. 3D Distance

Fields: A Survey of Techniques and Applications. IEEE TRANSACTIONS
ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 12, pages 581–
599, July 2006. (Cited on pages 108 and 112.)

[Ju 2002] T. Ju, F. Losasso, S. Schaefer and J. Warren. Dual Contouring of Hermite

Data. ACM Trans. Graph., vol. 21, no. 3, pages 339–346, July 2002. (Cited
on page 86.)

[Kass 2010] M. Kass and J. Solomon. Smoothed Local Histogram Filters. ACM
Trans. Graph., vol. 29, no. 4, pages 100:1–100:10, July 2010. (Cited on
pages 55 and 89.)

[Lee 1980] J. S. Lee. Digital Image Enhancement and Noise Filtering by Use of Local

Statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 2, no. 2, pages 165–168, 1980. (Cited on page 25.)

[Lee 1981] J.-S. Lee. Refined Filtering of Image Noise Using Local Statistics. Com-
puter Graphics and Image Processing, vol. 15, no. 4, pages 380–389, 1981.
(Cited on page 25.)

[Lorensen 1987] W. E. Lorensen and H. E. Cline. Marching cubes: A High Resolu-

tion 3D Surface Construction Algorithm. Computer Graphics, vol. 21, no. 4,
pages 163–169, July 1987. (Cited on page 85.)

[Mayer 2007] M. Mayer, A. Borsdorf, H. Köstler, J. Hornegger and U. Rüde. Non-

linear Diffusion Noise Reduction in CT Using Correlation Analysis. In 3rd
Russian-Bavarian Conference on Biomedical Engineering, volume 1, pages
155–159, Erlangen, 2007. (Cited on page 38.)

[Meijering 2002] E. Meijering, W.J. Niessen, J. Weickert and M. Viergever.
Diffusion-Enhanced Visualization and Quantification of Vascular Anomalies

in Three-Dimensional Rotational Angiography: Results of an In-Vitro Eval-

uation. Medical Image Analysis, vol. 6, no. 3, pages 215–233, 2002. (Cited
on pages 44, 45 and 47.)

[Mendrik 2009] A. Mendrik, E.-J. Vonken, A. Rutten, M. Viergever and B. Gin-
neken. Noise Reduction in Computed Tomography Scans Using 3-D

Anisotropic Hybrid Diffusion With Continuous Switch. IEEE Transactions

118 Bibliography

Medical Imaging, vol. 28, no. 10, pages 1585–1594, 2009. (Cited on pages 46
and 47.)

[Narendra 1981] P. M. Narendra. A Separable Median Filter for Image Noise

Smoothing. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 3, no. 1, pages 20–29, 1981. (Cited on page 25.)

[Okada 1985] M. Okada. Noise Evaluation and Filter Design in CT Images. IEEE
Transactions on Biomedical Engineering, vol. 32, no. 9, pages 713 –719,
September 1985. (Cited on pages 25 and 26.)

[Paris 2007] S. Paris, P. Kornprobst, J. Tumblin and F. Durand. A Gentle Introduc-

tion to Bilateral Filtering and its Applications. In ACM SIGGRAPH 2007
courses, New York, NY, USA, 2007. ACM. (Cited on pages 29 and 106.)

[Paris 2008] S. Paris, P. Kornprobst, J. Tumblin and F. Durand. Bilateral Filtering:

Theory and Applications. Foundations and TrendsÂ R© in Computer Graphics
and Vision, vol. 4, no. 1, pages 1–75, 2008. (Cited on page 29.)

[Paris 2009] S. Paris, P. Kornprobst and J. Tumblin. Bilateral filtering. Now Pub-
lishers Inc., Hanover, MA, USA, 2009. (Cited on page 29.)

[Perona 1990] P. Perona and J. Malik. Scale-Space and Edge Detection Using

Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 12, no. 7, pages 629–639, July 1990. (Cited on pages 35,
36, 37, 49, 51, 52, 77, 78 and 86.)

[Romeny 1994] H. Romeny. Geometry-driven diffusion in computer vision. 1994.
(Cited on page 38.)

[Sanders 2010] J. Sanders and E. Kandrot. Cuda by example: An introduction
to general-purpose GPU programming. Addison-Wesley Professional, 1st
édition, 2010. (Cited on pages 43, 63 and 94.)

[Schaap 2008] M. Schaap, A. Schilham, K.J. Zuiderveld, M. Prokop, E.-J. Vonken
and W.J. Niessen. Fast Noise Reduction in Computed Tomography for Im-

proved 3D Visualization. IEEE Transactions on Medical Imaging, vol. 27,
no. 8, pages 1120 –1129, August 2008. (Cited on page 48.)

[Snir 1998] M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra. MPI-
the complete reference, volume 1: The MPI core. MIT Press, Cambridge,
MA, USA, 2nd. (revised) édition, 1998. (Cited on page 43.)

[Tasdizen 2002] T. Tasdizen, R. Whitaker, P. Burchard and S. Osher. Geometric

Surface Smoothing Via Anisotropic Diffusion of Normals. In Visualization
’02, pages 125–132, 2002. (Cited on page 86.)

Bibliography 119

[Tomasi 1998] C. Tomasi and R. Manduchi. Bilateral Filtering for Gray and Color

Images. In International Conference on Computer Vision, pages 839 –846,
January 1998. (Cited on pages 22, 29, 43, 78 and 106.)

[Tukey 1977] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.
(Cited on page 25.)

[Vialaneix 2011] G. Vialaneix and T. Boubekeur. SBL Mesh Filter: A Fast Sep-

arable Approximation of Bilateral Mesh Filtering. In Vision, Modeling and
Visualization (VMV) 2011, 2011. (Cited on page 86.)

[Wang 1981] D.C.C. Wang, A.H Vagnucci and C.C Li. A gradient inverse weighted
smoothing scheme and the evaluation of its performance., volume 15. Com-
puter Vision, Graphics, and Image Processing, 1981. (Cited on page 25.)

[Weickert 1994] J. Weickert. Scale-Space Properties of Nonlinear Diffusion Filtering

with a Diffusion Tensor. Rapport technique, Laboratory of Technomathe-
matics, University of Kaiserslautern, P.O, 1994. (Cited on pages 39, 40
and 82.)

[Weickert 1997] J. Weickert and E. Heidelberglaan. A Review of Nonlinear Diffusion

Filtering, 1997. (Cited on pages 39, 40 and 82.)

[Weickert 1998] J. Weickert. Anisotropic diffusion in image processing. Teubner-
Verlag, 1998. (Cited on pages 36 and 38.)

[Weickert 1999a] J. Weickert. Coherence-Enhancing Diffusion Filtering. Int. J.
Comput. Vision, vol. 31, pages 111–127, April 1999. (Cited on pages 40
and 82.)

[Weickert 1999b] J. Weickert. Coherence-Enhancing Diffusion of Colour Images.
Image Vision Comput., vol. 17, no. 3-4, pages 201–212, 1999. (Cited on
pages 39, 40 and 82.)

[Witkin 1983] A. P. Witkin. Scale-Space Filtering. In Proceedings of the Eighth
international joint conference on Artificial intelligence - Volume 2, IJCAI’83,
pages 1019–1022, San Francisco, CA, USA, 1983. Morgan Kaufmann Pub-
lishers Inc. (Cited on page 35.)

[Yoo 2001] Y. Yoo. Tutorial on Fourier Theory, 2001. (Cited on page 21.)

	Introduction
	Objective
	Noise and Filtering
	Noise in 2D Images
	Noise in 3D Images
	Motivation and Challenges
	Contributions

	Introduction
	Objectif
	Bruit et filtrage
	Bruit dans des images
	Bruit dans les images 3D
	Motivation et défis
	Contributions

	Theoretical Background and Review of Previous Work
	Introduction
	Signal Processing
	Signal Processing and Smoothing in 1D Signal
	Convolution
	Fourier Transform
	Bilateral Filter

	Smoothing Images
	Statistical Methods
	Weighted Average
	Convolution in 2D
	Fourier Transform in 2D
	Bilateral Filter in 2D

	Smoothing Images using PDE
	Linear Heat Diffusion
	Non-linear Heat Diffusion
	Diffusion and Time Step t
	Anisotropic Diffusion Tensor

	Smoothing Volumetric Data
	Bilateral Filter on Volumetric Data
	EED and CED on Volumetric Data

	Fast Multi-Scale Feature-Preserving Smoothing of Images
	Introduction
	Theoretical Background
	Anisotropic Diffusion
	Local Continuous Histogram

	Feature Preserving Smoothing in 2D Images
	Objectives
	Scale-space Local Gradient Distributions
	Computation of Adaptive Diffusion Tensors
	Examples
	Diffusion

	Implementation
	Results and Comparison
	Noise and Preservation of Sharp Features
	Feature Size
	Computation Time
	Scalability
	Comparison with Existing Algorithms

	Analysis and Limitations

	Fast Multi-Scale Feature-Preserving Smoothing of Volumetric Data
	Introduction
	Volumetric Data and Noise
	Theoretical Background
	Anisotropic Diffusion
	Local Continuous Histogram

	Feature Preserving Smoothing in Volumes
	Objective
	Scale-space Local Gradient Distributions
	Computation of Adaptive Diffusion Tensors
	Diffusion

	Implementation
	Results and Comparison
	Noise and Connected Components
	Preservation of Sharp Features
	Feature Size
	Computation Time
	Scalability
	Computing on the GPU
	Comparison with Existing Algorithms

	Conclusion
	Summary of Contributions
	Perspectives

	Conclusion
	Résumé des contributions
	Perspectives

	Bibliography

