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Introduction

Celui qui sait s’arrêter ne périclite jamais.
(proverbe chinois)

Since my arrival at FAST laboratory in December 1999, I have conducted
some numerical and theoretical researches in fluid mechanics.
The aim of this memoir is to present a synthesis of this work. This task

looks to me quite difficult. My principal concern is a persistent feeling
of vanity and failure. I feel sorry for those attempting a perusal of this
document.

I have worked on the field of interfacial “long wave” instabilities using
an asymptotic approach that I have initially developed during my PhD
1. I have improved this approach and made use of it to study (a little)
(i) Kelvin-Helmholtz instability in a Hele-Shaw cell, and to study (a lot)
falling film instabilities: (ii) Kapitza (or “roll wave”), (iii) Marangoni and
(iv) Rayleigh-Plateau instabilities.

Today my research activities are devoted to the dynamics of falling
films in the presence (v) of non-Newtonian fluids (pseudoplastic,
shearthinning, viscoplatic fluids) (vi) of a porous substrate (vii) and
finally when sheared by a gas flow.

I only present in this memoir the main lines of these works gathered
in five chapters. Each of this chapter is followed by some selected publi-
cations (in bold faces in the lists below). However, each chapter is written
so as to preserve its self-consistency. The appended publications are only
there to invite the reader to deepen his knowledge of the subject and their
perusal is not required for an understanding of the matter at hand.

The first chapter presents in an exhaustive way some low-dimensional
modeling approaches: long-wave expansion, weighted residual methods
and center manifold analysis applied to inertial flows in a Hele-Shaw cell.
Below are listed some publications I have co-authored on this subject:

• C. Ruyer-Quil, Inertial corrections to the Darcy law in a Hele-Shaw
cell, C. R. Acad. Sci. Paris, 329, Série IIb, pp. 337-342 (2001)

• L. Meignin, P. Gondret, C. Ruyer-Quil and M. Rabaud, Subcritical
Kelvin-Helmholtz instability in a Hele-Shaw cell, Phys. Rev. Lett.
90, pp. 234502 (2003)

The second chapter presents a review of the Kapitza instability or “roll-
wave” instability of a Newtonian film down an inclined plane.

1“Dynamique d’un film mince s’écoulant le long d’un plan incliné” under the guidance
of Paul Manneville (LadHyX, 1996–1999)
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2 Introduction

• C. Ruyer-Quil and P. Manneville, Further accuracy and convergence
results on the modeling of flows down inclined planes by weighted-
residual approximations, Phys. of Fluids 14, pp. 170-183 (2002)

• C. Ruyer-Quil and P. Manneville, Comment on “Low-dimensional
models for vertically falling viscous films”, Phys. Rev. Lett. 93, pp.
199401 (2004)

• C. Ruyer-Quil and P. Manneville, On the speed of solitary waves

running down a vertical wall. J. Fluid Mech. 531, pp. 181-190

(2005)

• B. Scheid, C. Ruyer-Quil and P. Manneville, Wave patterns in film

flows: Modelling and three-dimensional waves, J. Fluid Mech. 562,

pp. 183-222 (2006)

The third chapter is devoted to the influence of a temperature gradient
on a falling liquid film (Marangoni effect).

• S. Kailladasis, E.A. Demekhin, C. Ruyer-Quil and M.G. Velarde,
Thermocapillary instability and wave formation on a film falling
down a uniformly heated plane, J. Fluid Mech. 492, pp. 303-338

(2003)

• B. Scheid, C. Ruyer-Quil, U. Thiele, O.A. Kabov, J.-C. Legros and
P. Colinet, Validity domain of the Benney equation including the
Marangoni effect for closed and open flows, J. Fluid Mech. 527, pp.
303-335 (2005)

• C. Ruyer-Quil, B. Scheid, S. Kailladasis, M.G. Velarde, R. Kh. Zey-
tounian, Thermocapillary long waves in a liquid film flow. Part I.
Low-dimensional formulation, J. Fluid Mech. 538, pp. 199-222 (2005)

• B. Scheid, C. Ruyer-Quil, S. Kailladasis, M.G. Velarde, R. Kh. Zey-

tounian, Thermocapillary long waves in a liquid film flow. Part II.

Linear and nonlinear waves, J. Fluid Mech. 538, pp. 223-244 (2005)

• P. Trevelyan, B. Scheid, S. Kalliadasis and C. Ruyer-Quil, Heated
Falling Films, J. Fluid Mech. 592, 295-334 (2007)

• B. Scheid, S. Kalliadasis,C. Ruyer-Quil and P. Colinet, Spontaneous
channeling of solitary pulses in heated film flows, Europhys. Lett.
84, 64002 (2008)

• B. Scheid, S. Kalliadasis, C. Ruyer-Quil and P. Colinet, Interaction of
three-dimensional hydrodynamic and thermocapillary instabilities
in film flows, Phys. Rev. E 78, 066311 (2008)

The fourth chapter presents my work on the dynamics of an axisymmet-
rical film down a fiber where the Kapitza and Rayleigh plateau instabilities
interplay.

• C. Duprat, C. Ruyer-Quil, S. Kalliadasis and F. Giorgiutti-Dauphiné,
Absolute and convective instabilities of a film flowing down a verti-
cal fiber, Phys. Rev. Lett. 98, 244502 (2007)
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• C. Ruyer-Quil, P. Treveleyan, F. Giorgiutti-Dauphiné, C. Duprat

and S. Kalliadasis, Modelling film flows down a fibre, J. Fluid

Mech. 603, 431-462 (2008)

• C. Duprat, C. Ruyer-Quil and F. Giorgiutti-Dauphiné, Spatial evolu-
tion of a film flowing down a fiber, Phys. Fluids 21, 042109 (2009)

• C. Ruyer-Quil and S. Kalliadasis, Wavy regimes of film flow down a
fiber, Pys. Rev E, 85 046302 (2012)

The fifth chapter presents my recent work on the influence of a non-
Newtonian rheology, of a porous substrate and of a gas flow. (2008–up to
now).

• A. Samanta, C. Ruyer-Quil and B. Goyeau, A falling film down a
slippery inclined plane. J. Fluid Mech. 684, 353-383 (2011)

• A. Samanta, B. Goyeau and C. Ruyer-Quil, Falling film on a porous
medium. submitted to J. Fluid Mech.

• C. Ruyer-Quil, S. Chakraborty and B.S. Dandapat, Wavy regime of

a power-law film flow. J. Fluid Mech. 692, 220-256 (2012)

• G.F. Dietze and C. Ruyer-Quil, Wavy liquid films interacting with a
confined laminar gas flow. submitted to J. Fluid Mech.

There is no “Conclusion” chapter in this memoir: Let the reader draw
his own conclusions. Each chapter contains a “Perspectives” section sug-
gesting some possible follow-ups. In chapter 5, some more perspectives
can be found. However, an exhaustive list of suggestions for future studies
is offered at chapter 10 of the recent monograph I have co-authored with
S. Kalliadasis, B. Scheid and M. G. Velarde (Kalliadasis et al. 2012).





1Low-dimensional modeling
of a flow in a Hele-Shaw
cell

This chapter is based on the work I have done during my ATER one-
year non-permanent teaching position in the academic year 2000-2001

corresponding to my arrival at FAST laboratory within the Paris Sud uni-
versity.

At that time Philippe Gondret and Marc Rabaud were running an ex-
periment where a liquid was sheared by a co-current gas flow in a Hele-
Shaw cell. They thus observed the development of surface waves as a
result of the classical Kelvin-Helmholtz instability induced by the shear
exerted by the gas flow onto the liquid one.

Their motivation (as far as I can say) was the study of a well-defined
one-dimensional open flow in presence of an instability. Figure 1.1
presents a sketch of the experiment by Gondret and Rabaud. The Hele-
Shaw cell consisted of two glass plates separated by a constant sub-
millimetric gap. A silicon oil and a nitrogen gas were introduced at inlet
at the same pressure and exited the cell at the atmospheric pressure.

This experiment is probably one of the best controlled and rich open-
flow system. First of all, the base flow is perfectly parallel, which promises
a good agreement between the classical stability analysis and the experi-
ments. (Yet this prospect has later been unconfirmed because of the pres-
ence of meniscus regions which singularly complexes the treatment of this

Figure 1.1 – Sketch of the experiment by Gondret and Rabaud (reproduced from Gondret
and Rabaud (1997)). The liquid consists of silicon oil and the gas is nitrogen.
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6 Chapter 1. Flow in a Hele-Shaw cell

Figure 1.2 – (a) Geometry of the Hele–Shaw cell; (b) the shear flow studied by Gondret
and Rabaud [from Ruyer-Quil (2001)].

problem.) Secondly, a transition from a convective to an absolute instabil-
ities was easily observed (Gondret et al. 1999). Thirdly, this system also
exhibits a conditional stability with a subcritical onset of the instability
(Meignin et al. 2003) 1 .

In this chapter, I present my contribution to this problem which con-
sists in a mere modification of the averaged equations which govern the
evolution of the velocity field averaged across the cell. The material of
Ruyer-Quil (2001) is presented somewhat differently than it was initially.
The exposure of the weighted residual method benefits from the later de-
velopment over the years. The emphasis is put here on a description of the
gradient expansion and weighted residual averaging techniques which I
have applied in the context of long-wave instabilities of falling films and
that are discussed in the subsequent chapters.

I contrast these low-dimensional modeling techniques with the cen-
ter manifold analysis introduced by Roberts (1997). The exposure of the
different methods is as thorough as possible. My hope is that this chap-
ter may benefit interested readers in the low-dimensional modeling tech-
niques. However, this chapter might be skipped without impediment, and
readers which are uninterested by technicalities might be willing to move
directly to the next chapter.

1.1 Gradient expansion approach (lubrication theory)

Let us consider a cell made of two plates separated by a constant gap 2h
(cf. figure 1.2). Here g is the gravitational acceleration; the horizontal,
vertical and cross-stream coordinates are respectively denoted by x, y and
z, and accordingly the unit vectors are i, j and k. The viscosity is denoted
by µ. p is the pressure, ρ is the density. u == ui + vj + wk is the velocity
field. I further denote by uxy = ui + vj the in-plane velocity projection.
The symbol ∇xy ≡ i∂x + j∂y corresponds to the two-dimensional gradient
operator. For convenience, let us introduce length and time scales based
on the half gap h and the characteristic speed U so that inertia effects are
measured by the Reynolds number Re = ρUh/µ and gravitational forces
by the Froude number Fr = U/(gh)1/2.

This configuration has been studied at length leading to the derivation

1Throughout this memoir I have emphasized publications that I have co-authored
whenever my participation to the said publications is not conspicuous.



1.1. Gradient expansion 7

of the well known Darcy law (Darcy 1856) which reads

〈uxy〉(x, y) = −Re
3

(

∇xy p(x, y) +
1

Fr2

)

, (1.1)

where 〈uxy〉 = 1
2

∫ 1
−1 uxydz is the averaged velocity. Since inertia plays

a crucial role in the Kelvin-Helmholtz instability, Gondret and Rabaud
(1997) proposed the following extension which reads in its dimensional
form

∂t〈uxy〉+
6
5
〈uxy〉 · ∇xy〈uxy〉 = −∇xy p − 1

F2 j − 3
Re

〈uxy〉 . (1.2)

Gondret and Rabaud heuristically derived (1.2) assuming a parabolic ve-
locity profile and averaging the momentum balance across the cell. My
(very small) contribution to this problem is the consistent derivation of an
averaged momentum equation similar to (1.2). The approach is based on
a classical perturbative technique lying on the existence of a basic state to
which small deviations are applied. This basic state corresponds to a sta-
tionary two-dimensional flow which is uniform in the x and y directions,
so that the velocity field is a function of z only and w = 0. Thus I simply
consider the usual Poiseuille flow with a constant pressure gradient ∇xy p.

p ≡ p(0)(x, y) , uxy ≡ u
(0)
xy = −Re

2

(

∇xy p(0) +
1

Fr2 j

)

(1 − z2) (1.3)

In the following, I consider slow space and time evolutions of the ve-
locity field, that is on space and time scales much longer than the gap
2h and the viscous relaxation time ρh2/µ. Therefore, I introduce a small
formal parameter ǫ ∼ h/L where L refers to the typical length scale of the
in-plane spatial modulations. The continuity equation reads

∂xu + ∂yv + ∂zw = 0 , (1.4)

so that the cross-stream velocity w is formally ∝ ǫ and can be written as a
function of u and v

w = −
∫ z

−1
∇xy · uxy dz , (1.5)

since the no-slip boundary condition implies w(z = ±1) = 0.
Neglecting terms formally of order ǫ2 and higher in the Navier–Stokes

equation I obtain

∂tuxy + uxy · ∇xyuxy + w∂zuxy = −∇xy p − 1
Fr2 j +

1
Re

∂zzuxy , (1.6)

0 = −∂z p +
1
Re

∂zzw , (1.7)

which is completed by (1.5) and the boundary conditions at the plates

u = v = w = 0 at z = ±1 . (1.8)

Integration of Eq. (1.7) between −1 and z gives p = p
∣

∣

z=−1 +(1/Re)(∂zw−
∂zw

∣

∣

z=−1). Moreover, ∂zw
∣

∣

−1 = −∂xu
∣

∣

−1 − ∂yv
∣

∣

−1 which can be seen to be
zero with the help of the no-slip condition (1.8). Then, ∇xy∂zw is a sec-
ond order term so that ∇xy p = ∇xy p

∣

∣

−1 + O(ǫ) = ∇xy p(0) at first order



8 Chapter 1. Flow in a Hele-Shaw cell

and is uniform along the z-direction. The system to solve thus reduces to
(1.6), where w is given by (1.5), completed by the no-slip boundary condi-
tions. Note that this set of equations is similar to the Prandtl equations in
boundary layer theory (Schlichting 1979) with the difference that there is
no outer flow but boundary conditions at the edges of the Hele-Shaw cell.

The solution to (1.6) can be sought by expanding the velocity profile
into

uxy = u
(0)
xy (x, y, z, t) + u

(1)
xy (x, y, z, t) (1.9)

where the O(ǫ0)) terms corresponds to the base flow

u
(0)
xy (x, y, z, t) = a0(x, y, t)(1 − z2) (1.10)

and the O(ǫ) corrections u(1) are induced by the inertia of the flow.
Substitution of the ansatz (1.9) and (1.10) into (1.5) gives

w =
1
3
(z − 2)(1 + z)2∇xy · a0 + O(ǫ2) , (1.11)

so that the no-slip boundary condition at z = 1 yields

∇xy · a0 = 0 . (1.12)

and w = O(ǫ2). Next, substitution (1.9) and (1.10) in the momentum
balance (1.6), truncation at order ǫ and integration with respect to z using
the boundary conditions (1.8) straightforwardly gives

u
(1)
xy = −

(

Re
2
∇xy p(0) +

Re
2Fr2 j + a0

)

(1 − z2)

+Re
1

12

(

−5 + 6z2 − z4
)

∂ta0

+Re
1

30

(

−1 + z2)
(

11 − 4z2 + z4
)

a0 · ∇xya0 . (1.13)

However a gauge condition must be introduced to make unique the
decomposition (1.9). The introduction of such a condition enables also to
give a physical meaning to the amplitude vector a0. The simplest choice
is to demand that the average of u

(1)
xy is zero, i.e.

∫ 1
−1 u

(1)
xy dz = 0. As a

result, the mass flux within the cell is all contained in u(0) and a0 can be
identified with the average velocity 〈uxy〉 = 1

2

∫ 1
−1 udz = 2

3 a0. From (1.13)
the gauge condition reads

6
5

∂t〈uxy〉+
54
35

〈uxy〉 · ∇xy〈uxy〉 = −∇xy p − 1
Fr2 j − 3

Re
〈uxy〉 , (1.14)

which is an averaged momentum equation completed by the averaged
continuity equation

∇xy · 〈uxy〉 = 0 . (1.15)

Equation (1.14) is thus a compatibility condition for the decomposition
(1.9) of the velocity field into the zeroth order base state and a perturba-
tion which results from the specific choice of the ansatz (1.10) with the
request that the amplitude vector is the averaged velocity field. In Ruyer-
Quil (2001), I derived (1.14) starting with a projection of the velocity field
on polynomial functions. The above discussion shows that it is not neces-
sary and that the procedure is not hampered by some necessity to employ
polynomials.



1.2. Weighted residual approach 9

1.2 Weighted residual approach

In this section, I introduce the weighted residual approach that I have
extensively employed to solve falling film long-wave stability problems as
summarized in the rest of this memoir.

Written formally, primitive governing equations read E(U ) = 0 for
some set of variables U , typically the pressure and the velocity field. So-
lution is looked after in the form of a series expansion U = ∑

N
j=0 AjFj on

test functions Fj. Weight functions, Wj , are next chosen as ingredients of
a projection rule defining N + 1residuals: Rj = 〈Wj|E(AjFj)〉. Canceling
the residuals Rj thus yields a system to be solved for the amplitudes Aj.
Weighted residual methods (WRMs) differ generally by the definition of
the weights Wj. Dirac functions are used in the collocation, whereas hat
functions identify the method of subdomains. The most popular weighted
residual method is the Galerkin method because of its equivalence with
variational methods once variational principle holds (Finlayson 1972). In
essence, weighted residual methods belong to the general class of spec-
tral methods and benefit from the quick convergence properties of such
methods. For instance, the application of WRMs to boundary layers has
shown that increasing the number of functions and adding boundary con-
ditions at the plate to the averaging condition improves the accuracy of
the computed solution (Schlichting 1979).

Here, the projection rule is simply the integration across the gap
〈·|·〉 =

∫ 1
−1(·)dz. The primitive equations are the boundary-layer-like mo-

mentum balance (1.6) where w is given by (1.5) completed by the conti-
nuity equation (1.4) and the no-slip boundary conditions (1.8). The set of
variables U = uxy consist in the in-plane velocity vector.

The fact that (i) the basic Poiseuille flow is a parabola, (ii) polynomials
constitute a close set of functions with respect to the differentiations and
products, make the choice of polynomial test functions appropriate. The
test functions Fj = f j(z) fulfill the no-slip boundary conditions and are
defined as

f j(z) = zj(1 − z2) (1.16)

The velocity field is thus expanded as

uxy =
N

∑
j=0

f j(z)aj(x, y, t) . (1.17)

From now on, I take advantage of the decomposition (1.9) of the velocity
field into a zeroth order term –the Poiseuille flow– and a O(ǫ) correction
induced by long modulations. As a consequence a0 = O(1) and aj = O(ǫ)
for j ≥ 1. Time and space derivatives of the corrective variables ∂x,taj,
j ≥ 1, are second order terms that can be dropped out. The residuals thus
read

Rj =
∫ 1

−1

(

∂tu
(0)
xy + u

(0)
xy · ∇xyu

(0)
xy +∇xy p +

1
Fr2 j − 1

Re
∂zzuxy

)

wj(z) dz .

(1.18)
One thus obtains a linear system of N + 1 equations for the unknowns aj,
j ≥ 1 whose inversion yields the N correction velocities as functions of a0
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and its time and space derivatives, plus one compatibility condition which
can be recast as an evolution equation for a0. Next, the averaged velocities
〈uxy〉 can substituted for a0 using their definition

a0

∫ 1

−1
f0 dz = 2〈uxy〉 −

N

∑
1

aj

∫ 1

−1
f j dz (1.19)

The result is an averaged momentum equation which is similar to (1.14)

6
5

K1 ∂t〈uxy〉+
54
35

K2 〈uxy〉 · ∇xy〈uxy〉 = −∇xy p − 1
Fr2 j − 3

Re
〈uxy〉 . (1.20)

As shown in Ruyer-Quil (2001), if the number of test functions N is suffi-
cient (that is N ≥ 4), the process must necessarily converge to the solution
(1.14) with K1 = K2 = 1. Indeed, substitution of (1.17) in (1.6) and trunca-
tion at O(ǫ) yields

1
Re

N

∑
j=1

aj∂yy f j = ∂tu
(0)
xy + u

(0)
xy · ∇xyu

(0)
xy +∇xy p +

1
Fr2 j ≡ P(z) (1.21)

where P is a polynomial in z of degree 4 since u
(0)
xy is of degree 2. Equating

the two sides of (1.21) monomial after monomial yield N + 1 relations that
are similar to the residuals Rj. Since the l.h.s. of (1.21) is of degree N and
the r.h.s of degree 4, I get aj = 0 for j ≥ 5. The residuals Rj and the N + 1
relations from (1.21) form equivalent systems of equations for N ≥ 4.

As an example, table 1.1 illustrates the convergence of (1.21) to (1.14)
in the case of the collocation method.
Table 1.1 – Convergence of the collocation method to Eq. (1.14). The weight functions
are Wj = δ(zj) where zj = (2j − N)/(N + 2).

N 0 1 2 3 4

K1
3
2

5
6 =1.25 4

3
5
6 ≃1.11 1 1 1

K2
9
4

35
54 ≃1.46 16

9
35
54 ≃1.15 117

80
35
54 ≃0.95 936

625
35
54 ≃0.97 1

Every WRM ultimately leading to (1.14), it is interesting to find the one
which is the most efficient, i.e. bringing the result with the least algebra.
In any residual R the only place where the corrections u

(1)
xy are involved

is the viscous drag term.

〈Lu
(1)
xy |w〉 ≡

∫ 1

−1
− 1

Re
∂zzu

(1)
xy w dz = 〈u(1)

xy |L†w〉 (1.22)

where the adjoint operator L† is obtained by two integrations by part. One
finds L† = L with w fulfilling the no-slip boundary conditions w(±1) = 0
and the linear operator L is self-adjoint. The viscous drag term (1.22) can
thus be easily canceled out using the gauge condition 〈u(1)

xy |1〉 = 0 and
looking for the solution to

L†w = cst (1.23)
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The operator L being self-adjoint and the Poiseuille flow being solution
to Lu

(0)
xy = Re(∇xy p + Fr−2j where the r.h.s. is independent of z, one gets

w ∝ f0.
As a consequence choosing w = f0 brings the looked-after averaged

momentum equation (1.14) with the computation of only one residual
(N = 0) ! Selecting the weights equal to the test functions defines the
Galerkin method. It is then clear that the Galerkin method is the most ef-
ficient WRM. The efficiency of the Galerkin method is here directly related
to the self-adjoint property of the linear operator L.

1.3 Center manifold analysis

Both the gradient expansion (§ 1.1) and the weighted residual approach
(§ 1.2) assume a slow time evolution, i.e. ∂t = O(ǫ). This assumption
holds in the case of the Kelvin-Helmholtz instability studied by Gondret
and Rabaud. Indeed experimental observations show that waves travel at
a speed which is close to two times the speed of the liquid velocity. Since
the pressure drop in the two phases is equal, Ug/Ul = µl/µg. The gas flow
sees a quasi-static interface and is quasi-stationary whereas the relevant
time scale in the liquid is the advection time ta = L/Ul where L refers
here to the typical length of the waves. The ratio of the typical advection
time and viscous relaxation time thus reads ta/tν = µL/(ρh2) = 1/(ǫRe).
The slow evolution assumption ta ≫ tν thus holds whenever Re is O(1) or
smaller and the long-wave assumption L ≫ h holds.

However, such an argument cannot be generalized and the reliability
of the averaged momentum equation (1.14) can be argued in other situa-
tions. Indeed, considering slow spatial modulations (L ≫ h), the advec-
tion terms present in the momentum balance (1.6) are small O(ǫ) terms
and the relevant timescale is a priori prescribed by the viscous relaxation.

I will show in that section that (1.14) is still acceptable even if the slow
evolution assumption does not hold. The idea of the argument developed
below is to apply a low-dimensional modeling method, which does not
assume ∂t = O(ǫ), and to show that this method yields an averaged mo-
mentum equation which is almost identical to (1.14).

The center manifold analysis has been employed by A.J. Roberts to
model the long space and time evolutions of solutions to partial differen-
tial equations (Roberts 1997) 2. The idea comes from the center manifold
analysis of dynamical systems of finite dimension (Carr 1981, Gucken-
heimer and Holmes 1983) which is useful in order to consider the dynam-
ics around equilibria. A center manifold is an invariant manifold that is
tangent to the subspace of the linearized dynamical system corresponding
to the eigenvalues of zero real part. When the corresponding eigenvalue
is exactly zero, the center manifold is called a slow manifold. Further, if
the equilibrium is a center (every eigenvalue has a negative or zero real
part), all orbits arriving in the vicinity of the equilibrium is attracted to
the slow manifold, in which case the long-time dynamics is governed by
the slow manifold.

2 A detailed description of the method can be found at
http://www.maths.adelaide.edu.au/anthony.roberts/modelling.php.
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Center manifold analysis may be sketched as follows. Consider the
evolution of a set of physical variables u governed by a dynamical system
of finite dimension:

d
dt

u = Lu + N(u, ǫ), (1.24)

where ǫ is a vector of parameters, L is a linear operator that describes the
flow dynamics close to the origin, (u, ǫ) = (0, 0), and N is a nonlinear
functional of u and ǫ.

Let us assume that the linear operator L has n eigenvalues with zero
real part and all other eigenvalues have negative real parts. u can be
projected onto the eigenmodes of L. If a is the vector of the amplitudes
of the eigenfunctions of L with zero real part in the projection for u,
the dynamics of the “flow" in a small neighborhood of the origin in the
(u, ǫ)-space is governed by the n modes, i.e. by a. This means that the
n-dimensional vector a = (aj) of the associated amplitudes satisfies in the
small neighborhood of the origin

d
dt

a = G(a, ǫ) such that u = U(a, ǫ) , (1.25)

where the“hypersurface" C of equation u = U(a) is the center manifold
and d

dt a = G is the n-dimensional model of the dynamics. The existence of
the center manifold is then assured by the convergence of the solution to
C: suppose a solution u(t0) of (1.24) lies at time t0 in a small neighborhood
at the origin in the (u, ǫ) space. Then there exists a trajectory U(a) on the
center manifold that verifies

‖u(t0 + t)− U(a(t0 + t))‖ = O(exp(−αt)) , for t > 0 (1.26)

where ‖ · ‖ is an appropriately chosen norm and −α is some upper bound
on the negative real part of the eigenvalues of L.

Using the chain rule ∂tU = (∂U/∂a)∂ta, one gets

LU =
∂U

∂a
G −N (U) . (1.27)

Solving (1.27) defines the center manifold. Yet, (1.27) is ill-posed since L

is a singular operator whose kernel is not empty. A crucial compatibility
condition is that the r.h.s. of (1.27) lies within the range of L. This con-
dition can be transposed mathematically by introducing a scalar product
〈·|·〉 and the adjoint operator defined by :

〈Lu|w〉 = 〈u|L†w〉 (1.28)

L and L† have the same rank and therefore their kernels have the same
dimension n. Let us denote by vj and v†

j the 2n eigenvectors of the direct
and adjoint operators. The compatibility condition thus read:

〈LU|vj
†〉 = 〈U|L†vj

†〉 = 0 (1.29)

which defines the n dimension G vector and yields (1.25).
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The center manifold C can be constructed iteratively by means of an
expansion in powers of the parameters. A parametrization is initially cho-
sen to define the amplitudes a. The process starts by imposing that the
center manifold is tangent to the kernel of L†

U = ∑ ajvj
d
dt

a = 0 . (1.30)

Extending this procedure to dynamical system of infinite dimension
provides a powerful tool to derive low-dimensional models in a variety of
situations. For instance, A.J. Roberts applied this method in the context of
falling films (Roberts 1996), of thin film flows (Roberts and Li 2006, Roberts
2006), turbulent geophysical floods and roll waves (Mei et al. 2002). In this
section, I apply this method to the problem at hand and derive an aver-
aged momentum equation, similar to (1.14), which governs the flow dy-
namics on the slow manifold. To my knowledge, this is the first time this
approach is used in the context of the modeling of a flow in a Hele-Shaw
cell. Though the adopted procedure is very similar to the one developed
in Roberts (1996) in the context of falling films (see chapter 2), I will use a
slightly different formulation and check that the result is not modified.

Let us consider each point on the (x,y) plane of the Hele-Shaw cell as
a dynamical system in time t of infinite dimension parametrized by the z
coordinate (discretizing the problem in the z coordinate generates a series
of phase coordinates, say zj, with associated variables u(x, y, zj, t), which
form a countable infinite set). Each dynamical system is coupled to its
neighbors through long-range spatial modulations (the order O(ǫ) terms
in the momentum balance (1.6)). The Poiseuille flow (1.3) is an equilibrium
of the considered dynamical system and I look after the long-time dynam-
ics in the vicinity of this equilibrium and an associated invariant manifold
on which the dynamics of the flow is one-dimensional (elimination of the
dependence on the coordinate z).

Linearizing around this equilibrium gives

∂tuxy = L1uxy ≡ ∂yyuxy , uxy(z = ±1) = 0 (1.31)

The linear operator L1 (the reasons for the introduction of the subscript 1
will be given in a moment) admits a spectrum whose eigenvectors vn

1(z)
and eigenvalues λn

1 are given by

vn
1(z) = sin(ln

1 (z+ 1)) , λn
1 = − (ln

1 )
2 and ln

1 =
(2n + 1)Π

2
, for n ∈ N .

(1.32)
All eigenvalues are negative and there is no center manifold in the vicin-
ity of the Poiseuille flow. However, there exists a large spectral gap
between the first eigenvalue λ0

1 = −π2/4 ≈ −2.47 and the next ones
λ1

1 = −9π2/4 ≈ −22.2, λ2
1 = −25π2/4 ≈ −61.7. The eigenmodes are

therefore rapidly damped except for the first one. One therefore expects
that any perturbation around the equilibrium (Poiseuille flow) is quickly
aligned with the first eigenmode. This very idea can be mathematically
expressed by slightly modifying the momentum balance (1.6):

∂tuxy = −uxy · ∇xyuxy − w∂zuxy − γ2
(

∇xy p − 1
Fr2 j

)

+
1
Re

(

∂zzuxy + (1 − γ)∂zuxy|z=−1
)

, (1.33)
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A new parameter γ is introduced, the primitive equation being retrieved
at γ = 1. In the limit γ = 0, the modified dynamical system admits an
equilibrium at the origin uxy = 0 (bringing the equilibrium at the origin
greatly simplifies the required algebra). The corresponding linearized dy-
namical system at the origin thus reads

∂tuxy = L0uxy ≡ 1
Re

(

∂zzuxy + ∂zuxy|z=−1
)

, uxy(z = ±1) = 0 (1.34)

(where the subscript 0 refers to the value of γ, which also justifies the
introduction of the notation L1 above). The operator L0 has a nonzero
kernel:

v0
0 = 1 − z2 , λ0

0 = 0 . (1.35)

The other eigenmodes of L0 have been numerically computed by varying
γ starting from γ = 1 using the continuation software Auto07p (Doedel
2008). The first eigenvalues are graphically depicted in figure 1.3 as func-
tions of γ showing the gradual deformation of the spectrum of L1 to the
spectrum of L0.
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Figure 1.3 – Discrete eigenvalues of the linear operator Lγ as function of γ

We are then in a position to construct the slow manifold around the
equilibrium at the origin (uxy = 0) with a linearized dynamics governed
by L0 as perturbed by the small long-range spatial modulations (ǫ ≪ 1)
and by the small adjustable terms (the dummy parameter is supposed
small, i.e. γ ≪ 1). A double expansion in ǫ and γ is thus introduced with
the hope that the obtained series in γ have radii of convergence that are
greater than 1, in which case the slow manifold tangent to v0

1 is obtained.
The kernel of L0 is one-dimensional and therefore the slow manifold

is a hyper-surface with an equation of the type uxy(x, y, z) = U (f(x, y), z).
We can then introduce the averaged velocity field 〈uxy〉 as a parametriza-
tion of the slow manifold, which leads to the ansatz:

uxy(x, y, z, t) = V(〈uxy〉, γ, z) ∼
1

∑
m=0

∞

∑
n=1

ǫmγnVm,n(〈uxy〉, z) . (1.36)

The evolution in time along the slow manifold is thus given by an evo-
lution equation for 〈uxy〉 that can also be expanded in powers of ǫ and
γ.

∂t〈uxy〉 = G(〈uxy〉, γ, z) ∼
1

∑
m=0

∞

∑
n=1

ǫmγnGm,n(〈uxy〉, z) , (1.37)
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and which I rewrite formally as ∂tuxy = L0uxy +N (uxy). Defining a scalar

product (here again 〈 f |g〉 =
∫ 1
−1 f gdz), and the adjoint operator L†

0 reads

L†
0g =

1
Re

g′′ , (1.38)

where the adjoint space is spanned by the integrable real functions on the
interval z ∈ [−1, 1] verifying the boundary conditions

∫ 1

−1
gdz − g(−1) = 0 and g(1) = 0 . (1.39)

The kernel of L†
0 is spanned by g0 = 1 − z.

Multiplying (1.27) with the scalar real function g0, integrating across
the cell thus gives the looked-after scalar compatibility condition

〈 ∂V

∂〈uxy〉
G −N (V)|g0〉 = 0 . (1.40)

In practice, solving equation (1.40) gives G and defines the evolution along
the slow manifold (∂t〈uxy〉). The first term of the series (1.36) must belong
to the kernel of the linear operator L0 which corresponds to a Poiseuille
flow

V0,1 =
3
2
〈uxy〉(1 − z2) (1.41)

Equation (1.27) is solved iteratively, order after order in ǫ and γ. The shear
rate at the boundary ∂zuxy|z=−1 is determined with the help of the choice
of the parametrization by the averaged velocities 〈uxy〉 which provides
the constraint 〈Vm,n|1〉 = 2δm,1δn,0〈uxy〉 where δi,j stands for the Kronecker
symbol. Since polynomials constitute a closed set with respect to products
and differentiations, the terms Vm,n of the series are necessarily polyno-
mials. One gets for instance

V0,2 =
1

40
(1 − 6z2 + 5z4)(3〈uxy〉+ Re∇xy p +

Re
Fr2 j) , (1.42)

V1,2 =
3

1400
(z2 − 1)[11 + 35z2(z2 − 2)]Re〈uxy〉 · ∇xy〈uxy〉 . (1.43)

The convergence of the series at γ = 1 has been checked bringing an
approximation of the looked-after invariant slow manifold.

Truncating (1.33) at the lowest order ǫ0 gives an affine equation. As
a consequence, the slow manifold is not different from the eigenspace
spanned by the sinus function v0

1(z) which gives

∞

∑
n=1

V0,n(〈uxy〉, z) = u
(0)
xy +

l0
1
3

v0
1(z)

(

3〈uxy〉+ Re∇xy p +
Re
Fr2 j

)

(1.44)

where u
(0)
xy is the Poiseuille flow defined in (1.3). (Note that l0

1
2

∫ 1
−1 l1v0

1dz =
1 as requested by the definition of the averaged velocity 〈uxy〉.) At the
lowest order ǫ0, the center manifold analysis thus reduces to a mere pro-
jection on the sine function v0

1(z) of the deviations from the Poiseuille flow
solution.
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At order ǫ, the dynamics along the slow manifold is given by

∂t〈uxy〉 ≈ π2

12

(

−∇xy p − 1
Fr2 j − 3

Re
〈uxy〉

)

− 1.346〈uxy〉 · ∇xy〈uxy〉

−10−3 ×
[

14.1Re
(

(〈uxy〉 · ∇xy)∇xy p +∇xy p · ∇xy〈uxy〉
)

−4.90Re∇2
xy p〈uxy〉 − 0.80Re2(∇xy p · ∇xy)∇xy p

−0.18Re2∇2
xy p∇xy p

]

(1.45)

Coefficient π2/12 ≈ 0.822 is dictated by the first eigenvalue λ0
1 = −π2/4.

Equation (1.45) should be contrasted to (1.14) which reads

∂t〈uxy〉 ≈ 0.833
(

−∇xy p − 1
Fr2 j − 3

Re
〈uxy〉

)

− 1.286〈uxy〉 · ∇xy〈uxy〉 (1.46)

The most important terms, namely the advection by the flow and the vis-
cous drag appear with very close coefficients (0.822 as compared to 0.833
and 1.346 as compared to 1.286). The difference between the two equa-
tions lies in the inertia terms in the second to fourth lines of (1.45). All
these terms are associated to small coefficients and should not influence
significantly the result. (This is still to be verified though.)

I conclude that the center manifold approach leads to a result that is in
fact very similar to the gradient expansion approach. Yet (1.45) contains
complex terms that are not present in (1.14), and, though I suspect that
the two equations should bring close results, the former is much more
difficult to handle than the latter.

The closeness of the coefficients in the two averaged equations results
from the closeness of the Poiseuille parabolic velocity profile f0 = 1 − z2

and of the sine first eigenmode v0
1 = sin(π(z + 1)/2) tangent to the slow

manifold. Indeed the ratio of the coefficients of the viscous drag terms in
the two averaged equation corresponds to

〈 f0|v0
1〉

〈 f0| f0〉
=

π2/12
5/6

≈ 1.013 . (1.47)

The normalized Poiseuille parabolic profile and the first sine eigenmode
are compared in figure 1.4.

The unexpected agreement between the weighted residual approach
and the center manifold analysis is fortunate. However, as compared to
the former, the latter does not bring a “better” result. In other words,
equation (1.45) cannot be assumed to behave any better than (1.14) when
the long-time assumption (∂t ∼ ǫ) holds.

Indeed, the center manifold analysis relies on the assumption of a dy-
namics that is essentially governed by the first viscous relaxation mode.
This assumption cannot hold at times that are much longer than the vis-
cous time tν = h2/ν, all viscous modes having relaxed to the Poiseuille
equilibrium. In other words, the assumption of small perturbations of the
advection terms on the first viscous eigenmode is unacceptable at t ≫ tν.
The dynamics of the flow is then governed by inertia which perturbs this
equilibrium (the mathematical transposition of this very idea is the de-
composition (1.9)).
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Figure 1.4 – Comparison of the normalized first sine eigenmode v0
1/〈v0

1|1〉 with the
normalized parabola f0/〈 f0|1〉.

Stated still otherwise, the approach of the Poiseuille equilibrium flow
along the first viscous relaxation mode is meaningful only when the in-
ertial time, ta = L/U gets close to the viscous time tν. Yet, ta = O(tν)
yields ǫRe = O(1) so that inertia and viscous diffusion have the same or-
der of magnitude and the whole idea of small perturbations induced by
long spatial modulations becomes meaningless.

Some remarks

In this chapter, I have considered a laminar flow in a Hele-Shaw cell and
and the consistent extension (1.14) of the classical Darcy law (1.1) to ac-
count for inertia effects.

Because of its straightforwardness for this specific problem, I have de-
scribed at length the methodology that I have developed and applied on
long-wave instabilities (falling film flows essentially). The methodology
relies on the assumption of slow evolutions in time and space (∂t = O(ǫ)
and ∂x,y = O(ǫ) which enables to eliminate the dependence on the ’fast’
variable (here the normal coordinate z). I have tried to be as clear as possi-
ble in order to help interested readers to apply this method to other (more
difficult) problems. For that purpose, the presentation of the approach is
here limited to a required consistency at O(ǫ) only. However, extension to
second order is possible (and was the subject of a short paper I wrote and
which was rejected for publication in Phys. Fluids as “uninteresting”.)

The approach combines a gradient expansion (§ 1.1) —lubrication
theory— to the classical methods of weighted residuals (§ 1.2). A proper
choice of the weight functions enables to dramatically reduce the neces-
sary algebra and, in the present case, the Galerkin method is the most
straightforward method. (This is not always the case though.) In the next
chapters, I shall not go to that level of description of the methodology any
more. A thorough description of the gradient expansion and weighted
residual approach in the context of falling film flows can be found in the
chapters 5 and 6 of the monograph by Kalliadasis et al. (2012).

The weighted residual approach is compared to the center manifold
analysis developed by A.J. Roberts, where the evolution of the flow is con-
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sidered to be driven by the first viscous relaxation mode. Fortunately, the
two approaches bring very similar results, which is a consequence of the
closeness of the Poiseuille flow and the sine eigenfunction of the viscous
relaxation mode with the largest eigenvalue. This demonstrates that the
assumption of slow time evolution (∂t = O(ǫ)) is not very stringent. How-
ever, the center manifold analysis cannot be said to be any “better” than
the weighted residual method. As stressed in § 1.3, the two approaches
should bring noticeably different results only when ǫRe = O(1), in which
case the long-wave approximation of small spatial modulations is no more
sustainable anyway.

Finally, the usefulness of a low-dimensional modeling strategy can be
measured not only by the accuracy of the results it yields, but also by the
straightforwardness of its application and the simplicity of the models it
brings. The weighted residual approach is much more straightforward
than the center manifold analysis, which always requires the help of sym-
bolic mathematics and computer algebra software. The former approach
also brings more manageable systems of equations than the latter. As a
matter of fact, the center manifold analysis does not seem to have been
much employed by the thin film community, A.J. Roberts and his group
apart. The weighted residual approach has somewhat more diffused, be-
ing used for instance by Amaouche and coworkers in Algeria (Amaouche
et al. 2004; 2009; 2012), by J.-P. Pascal and his group in Canada (D’Alesio
et al. 2010) , Häcker and Uecker in Germany (Haecker and Uecker 2009)
and recently by Alba et al. (2011) (Canada and France).



2Kapitza instability of a
falling liquid film

After my arrival at FAST, I have gone on working on the problem of a
falling film on an inclined plane with Paul Manneville and later on

with Benoit Scheid and Serafim Kalliadasis. This chapter is an attempt to
summarize my work with them, to put it in perspective and to address
the challenges and numerous issues that still require answers. Most of the
material presented in this chapter is detailed in the chapters 5, 6 and 7 of
a recent monograph (Kalliadasis et al. 2012). However, I have endeavored
to update the presentation of the phenomenology (§ 2.1) and of the differ-
ent low-dimensional modeling attempts (§ 2.3). Methodologies have been
introduced and detailed in chapter 1 on the more simpler (but not less
interesting) problem of the modeling of a flow in a Hele-Shaw cell. They
are simply sketched in this chapter.

2.1 Phenomenology

Several experimental studies have been devoted to the wavy regime of
film flows since the seminal work by Kapitza (1948) and Kapitza and
Kapitza (1949). They have been reviewed by Alekseenko et al. (1994),
Chang et al. (1994), Chang and Demekhin (2002) and more recently by
Craster and Matar (2009) and Kalliadasis et al. (2012). Gollub and cowork-
ers have performed an extensive study of water-glycerin mixtures flowing
down weakly inclined planes, see Liu et al. (1993), Liu and Gollub (1993;
1994), Liu et al. (1995). The relatively small inclination of the plane had
several advantages: (i) for a given flow rate, the film is thicker and moves
more slowly. As a consequence, the waves are more easily detectable. (ii)
On an inclined plane, the film primary instability presents a threshold
Fr−2 = cot β/(3Re) = 2/5 (Benjamin 1961), which enables to control eas-
ily the wave regime by varying the distance of the control parameter to
the threshold (either Reynolds or Froude number). In any case, the wave
dynamics reported by Liu and Gollub does not seem to present signifi-
cantly different features from what is observed on a vertical wall by e.g.
Alekseenko et al. (1985; 2005).

Controlling the entrance flow rate, Liu and Gollub applied a periodic
forcing at the inlet and observed the response of the film at given fre-
quency. Their experiments give the clearest picture of the phenomenology
of interacting waves on film flows (see figure 2.1). Four stages correspond-
ing each to a different region on the plane can be identified by following
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(a) low frequency

(b) high frequency

Figure 2.1 – Phenomenological sketch of the spatial evolution of film flows, after Chang
et al. (1994), Liu et al. (1995), reproduced from Kalliadasis et al. (2012)

the flow along the inclined plane.These four stages correspond to the same
number of symmetry breaking, or bifurcations, all new solutions branch-
ing from the previous ones supercritcally The inception region is the do-
main close to the inlet where the primary linear instability of the flat film
develops in space. Squire’s theorem stipulating that the most dangerous
perturbations are spanwise-independent has been shown to apply to free
surface flows by Yih (1955), which theoretically backs the fact that ob-
served primary waves are two-dimensional (2D).

The amplitude of the waves next saturates and their shape remains un-
changed over distances corresponding to a few wavelengths (Region II).
These waves are slow and present wide bumpy crests and deep thin
troughs. They belong to the γ1 family in the terminology introduced by
Chang et al. (1993a). The rest of the story depends on the forcing fre-
quency f as compared to the cut-off frequency fcand the frequency fm of
maximum spatial growth rate.

At low frequency, fc/2 / f ≪ fc, (figure 2.1, top) the slow γ1 waves
experience a secondary instability which, close to the threshold, remains
2D ending in large amplitude solitary waves in the form of fast humps
preceded by small capillary ripples (Region III). Such waves belong to the
γ2 family. They are generally unstable against transverse perturbations
which leads to the last stage of secondary three-dimensional instabilities
(Region IV). Figure 2.2 displays an example of modulated γ2 waves.

At larger frequencies, fc/2 ≪ f / fc, (figure 2.1, bottom), the slow γ1
2D waves undergo a secondary 3D instability. Liu et al. reported two dif-
ferent scenarios that are strongly reminiscent of what happens in bound-
ary layers (Schmid and Henningson 2001). The first one, referred to as
a synchronous mode, is characterized by wave crests deformed in phase
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Figure 2.2 – Secondary 3D instability of a fast γ2 wavetrain. Re = 70, β = 5◦

(Re/Rec = 7.4), f = 3.1 Hz, Γ = 4978. Aqueous solution of butanol, 1.0 % by weight,
at 19.4◦ C. The real size of the image is 29.4 × 22.0 cm. Courtesy of Nicolas Kofman and
Sophie Mergui.

in the spanwise direction. The second one, less commonly observed, ap-
pears when two successive crests are deformed with a phase shift of π.
This leads to checkerboard (or herringbone) patterns characteristic of a
streamwise subharmonic instability combined to a spanwise modulation.
At high enough forcing frequency, the flow becomes disordered before
the 2D solitary waves have a chance to appear because 3D instabilities are
stronger than the 2D mode, which explains the absence of Region III in the
corresponding picture. Both 3D secondary instability modes of the slow
γ1 waves generate modulations of the troughs of the waves. The modula-
tions tend to form trains of isolated depressions which detached from the
back of the γ1 waves and interact with the next γ1 front (cf. figure 2.3).
At the end of the process, γ1 slow wavetrains are removed and replaced
with γ2 quasi-2D waves that are strongly modulated and disordered in
the transverse direction.

Finally, at very low forcing frequencies, fm / f < fc/2, saturated γ1
waves(Region II) do not show up while solitary waves of the γ2 family
emerge directly. At still lower frequency, f ≪ fm, the film does not re-
spond any more to the inlet forcing and the film dynamics is said to be
natural, that is triggered by the ambient noise which is sufficient to gen-
erate the wavy regime of the film.

When the wall is vertical, Liu and Gollub’s portrait of successive pri-
mary and secondary 2D and 3D instabilities is somewhat more difficult to
discern even in the presence of inlet forcing. Indeed, hydrostatic pressure
stabilizing mechanism is absent and the Kapitza instability is always trig-
gered. Because at low flow rates, waves have an amplitude that is nearly
unnoticeable (which thus wrongly induced Kapitza to think that the insta-
bility presented a threshold (Kapitza and Kapitza 1949)), experiments are
conducted at Reynolds numbers equal to a few decades at least, a situa-
tion that is already far from threshold (Re = 0). The experiments of Park
and Nosoko (2003), consisting of water films running down a vertical wall,
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Figure 2.3 – Secondary 3D instability of a slow γ1 wavetrain. Re = 70, β = 5◦

(Re/Rec = 7.4), f = 8.7 Hz, Γ = 2239. Aqueous solution of glycerin, 29.1 % by weight,
at 19.3◦ C. The real size of the image is 23.7 × 17.1 cm. Courtesy of Nicolas Kofman and
Sophie Mergui.

give a detailed account of the 3D instability of the quasi-solitary fast γ2
waves. Park and Nosoko generate controlled perturbations in the trans-
verse direction by means of regularly dispatched needles. They observe
two types of structures. At low Reynolds number quasi-2D fronts pre-
senting rugged modulations (cf. figure 2.4), made of nearly flat backs and
rounded fronts, are observed. At higher Reynolds number, they reported
arrays of quasi-3D solitary waves presenting a horseshoe-like shape (see
figure 2.5).

In the absence of inlet forcing, the observed flow pattern is very noisy
as the primary instability of the flow is always convective (Brevdo et al.
1999) and amplifies all frequencies below the cut-off frequency fc. Noise
driven falling films are thus an example of active, dissipative and disper-
sive non-linear media displaying the onset of spatio-temporal disordered
chaos, characterized by particle-like structures in interaction, a state re-
ferred to as weak turbulence by Manneville (1990). The instability (activity)
of the film promotes structures (either slow γ1 or fast γ2 waves) which re-
sult from the balance of inertia, non-linearity and surface tension, the lat-
ter being the dissipative (or damping) mechanism which enables to turn
back to the primary flow at short length scale, the energy supplied by the
Kapitza instability at long length scale and transferred from short to long
scales by the nonlinearities. The essential role of dissipation —again, dis-
sipation is here synonymous to surface tension— explains the christening
dissipative structures that has been introduced by Paul Manneville (though
it was in the context of Rayleigh–Bénard convection) (Manneville 1990).

It is useful to stress that the spatio-temporal disordered state that char-
acterizes the noise-driven evolution of the film is in fact always observed
even if a well-controlled signal applied at inlet is able to synchronize the
flow at the forcing frequency f . The synchronization of the wave pattern
is always lost at some distance sufficiently far from the inlet, leading way
to a disordered state organized around quasi-2D solitary waves presenting
noisy modulations, or 3D horseshoe-like solitary waves in interaction. For
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Figure 2.4 – Quasi-2D fronts presenting rugged modulations. Re = 70, β = 17.9◦

(Re/Rec = 260), f = 7.5 Hz, Γ = 4962. Water at 20.3◦ C , 1.0 % by weight. Courtesy
of Nicolas Kofman and Sophie Mergui.

Figure 2.5 – Wave patterns on a water film at 23◦ C running down a vertical plane;
(a) forcing at f = 13 Hz and (b) f = 45 Hz. Re = 69, ρ = 994.3 kg/m3, ν =
0.93 × 10−6 m2/s, σ = 69 mN/m (Γ = 3650). Reproduced from Miyara (2000), Nosoko
et al. (1996).
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instance, the regularity of the 2D solitary waves that are generated by the
inlet forcing in the experiment by Nosoko reported in figure2.5 is rapidly
lost through secondary instability leading way to 3D horseshoe-like waves
whose pattern is not different from the one triggered by the excitation of
the ambient noise.

The selection between a pattern made of noisy quasi-2D solitary waves,
and a gas of 3D horseshoe-like waves seems to strongly depend on the
inclination angle, or perhaps more adequately on the distance Re/Rec to
the threshold. The former quasi-2D disordered state has been observed
by Liu et al. (1995) for a moderately inclined plane, whereas the later,
organized around isolated 3D structures, and sometimes referred to as
“surface turbulence” has been reported in film flows over vertical walls
(Tailby and Portalski 1960, Demekhin et al. 2007a;b).

2.2 Geometry and parameters

Let us consider the flow of a Newtonian liquid down a plane making
an angle β with the horizontal. Coordinate x defines the streamwise di-
rection, y denotes the direction normal to the plane, and z is along the
spanwise direction. u ≡ ui + vj + wk is the velocity field, p is the pressure
and i, j and k are the unit vectors. Surface tension σ, viscosity µ, and den-
sity ρ, are assumed to remain constant. ν = µ/ρ is the kinematic viscosity,
and g refers to the gravity acceleration.

Two reference length scales can be defined by balancing viscosity, sur-
face tension and the streamwise gravity acceleration g sin β, the capillary
length lc =

√

σ/(ρg sin β), and lν = ν2/3(g sin β)−1/3 referred hereinater
as the viscous-gravity scale. A first set of pertinent dimensionless groups
arises from these scales and the thickness h̄N of the Nusselt flat-film so-
lution, namely the dimensionless thickness hN = h̄N/lν and the Kapitza
number Γ = (lc/lν)2 completed with the inclination anagle β. The dimen-
sionless thickness hN is related to the Reynolds number, defined as the
ratio of the inlet flow rate per unit length q̄N and the kinematic viscosity,
through Re = q̄N/ν = h3

N/3. The advantage of the set of parameters Re,
Γ and β is that when the geometry and the working fluid are fixed, the
inclination angle β and the Kapitza number Γ are constant and the only
free control parameter is the Reynolds number Re.

The Kapitza number compares the capillary length, that is the length
below which surface tension is effective on the gravity-driven flow, and
the viscous gravity length, below which viscosity becomes also effective.
As a consequence, at large Kapitza numbers, short waves are efficiently
damped by surface tension before the elongational, or streamwise viscos-
ity, may act. In practice, usual fluids such as water or alcohol correspond
to high Kapitza numbers. Neglecting the damping action of the elon-
gational viscosity on the waves —an effect that is dispersive and can be
referred to as viscous dispersion— at high Kapitza numbers, the set of
parametrs should be reduced from three to only two by a rescaling. This
idea was introduced by Shkadov (1977) who made apparent the separa-
tion of scales in the streamwise and spanwise directions with respect to
the cross-stream one by introducing a scaling ratio κ that is adjusted by
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balancing the gravitational acceleration ρg sin β with the capillary pres-
sure gradient ∝ σ∂xxxh which gives κ = [σ/(ρg sin βh̄2

N)]
1/3 = (lc/h̄N)

2/3.
The length scale in the cross-stream direction is thus the Nusselt thickness
h̄N, whereas the length scale in the streamwise and spanwise directions is
chosen as κh̄N.

Shkadov’s scales introduce three new dimensionless groups: a ‘re-
duced Reynolds number’ (Chang 1994),

δ ≡ 3Re/κ (2.1a)

which compares inertia and the viscous drag at the scale κh̄N introduced
by the balance of gravity and capillarity, a streamwise ‘viscous dispersion
parameter’,

η ≡ 1/κ2 = (h̄N/lc)
4/3 (2.1b)

and a reduced slope
ζ = cot β/κ (2.1c)

Shkadov’s approximation of neglecting the damping of the waves by vis-
cosity corresponds to setting η to zero, in which case one is left with
only two parameters. It is also seful to introduce the Froude number
Fr2 = 3Re/ cot β = δ/ζ ad the threshold of the primary instability corre-
sponds to a constant value of the Froude number Fr2

c = 5/2 (Benjamin
1961, Kalliadasis et al. 2012).

2.3 Low dimensional modeling

The Kapitza instability of a falling liquid film is a long-wave instability,
i.e. the linear instability threshold corresponds to a zero wavenumber and
frequency. This peculiarity introduces a separation of scales between the
cross-stream y coordinate and the in-plane coordinates (x and z) similar to
the one we have encountered in chapter 1 in the context of the modeling
of a flow in a Hele-Shaw cell.

This separation of scales is expressed by the introduction of a film pa-
rameter ǫ ∼ ∂x,z,t. In the linear regime, it is easily related to the wavenum-
ber k of an infinitesimal harmonic perturbation as ǫ ∼ kh/(2π). When the
wave is nonlinear, the film parameter is a measure of the local slope of the
film elevation ǫ ∼ |∂xh| which can vary significantly along the wave. As
a consequence, it is generally difficult to give a value to ǫ and we think
of it a s a formal parameter which expresses an ordering in terms of the
derivatives in space and time.

Every modeling strategy applied to falling liquid film flows is based
on the assumption of a separation of scales with the aim at an elimination
of the dependence on the ’fast’ cross-stream variable y. Low-dimensional
models thus consist in sets of evolution equations for carefully chosen
variables, or degrees of freedom, which characterize locally the flow at a
given location on the (x,z) plane. The in-depth coherence of the flow,
which is ensured by the viscosity of the fluid, enables to turn from a flow
description in terms of the motion of fluid particles of infinitesimal size
at any location in the fluid, to a description in terms of the motion of an
entire fluid column of infinitesimal cross-section which extends from the
wall to the upper interface.
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In the remainder of this section, the different modeling strategies
are presented and discussed for spanwise-independent two-dimensional
flows (∂z = 0, w = 0), their extension to three-dimensional flows being
generally straightforward.

2.3.1 Gradient expansion: the long-wave theory

The gradient expansion approach —or long-wave expansion in the context
of falling films— was first applied by Benney (1966) who derived an evo-
lution equation for the film thickness h. Considering slow evolutions in
time en space ∂x,t ∼ ǫ, Benney introduced an expansion of the flow vari-
ables (velocity field and pressure) with respect to the film parameter ǫ.
Benney showed that the velocity field u can be written as a series of poly-
nomials in y, i.e. u = ∑n An(h)Pn(ȳ), where ȳ = y/h(x, t) is a reduced
normal coordinate, and the coefficients An are functions of the thickness
h and its space-time derivatives, meaning that, in this limit, the velocity
field is completely enslaved to the dynamics of h. The film elevation h is
thus the sole degree of freedom retained by the long-wave theory. Ben-
ney’s work was followed by several others (Lin 1974, Nakaya 1975, Roskes
1970, Gjevik 1970; 1971, Panga and Balakotaiah 2003; 2005) which mostly
differ one from the other by their degree of consistency, the order of mag-
nitude of the surface tension or viscous terms and the 2D or 3D nature
of the flow. In all cases, an evolution equation for the film thickness h is
obtained which can be recast in the form

∂th + ∂xq = 0 , (2.2a)

q = Q(h) , (2.2b)

where Q(h) is a function of the film thickness and its derivatives. Equa-
tion (2.2a) is the (exact) mass balance of a liquid column obtained after
the integration of the continuity equation over the film thickness (for de-
tails see for instance Ruyer-Quil and Manneville (1998)). This equation is
equivalent to the kinematic boundary condition stated that the interface
is a material line, and relates the mass (h) of a liquid column to the flux
of liquid q =

∫ h
0 udy entering that column. For that reason, (2.2) is the

generic format of kinematic wave equations (Whitham 1974).
The so-called Benney equation (Gjevik 1970; 1971)

∂th +
1
3

∂x

{

h3 +
2

15
δh6∂xh − ζh3∂xh + h3∂xxxh

}

= 0 . (2.3)

is the prototype of the evolution equations for the film height h, or surface
equation, that have been derived within the long-wave gradient expansion.
This equation is consistent at first order, meaning that all dropped-out
terms are of O(ǫ2) or higher. The Benney equation (BE) is well known for
the singular behavior of its solutions when the reduced Reynolds number
δ becomes large enough. Pumir et al. (1983) showed that the finite-time
blow-up of time-dependent solutions closely corresponds to the loss of
one-hump solitary waves, i.e. homoclinic orbits in the terminology of the
dynamical systems theory. The occurrence of the finite-time blow-ups
of the time-dependent solutions depend on the flow conditions and espe-
cially on the range of frequencies of the inlet excitation (Scheid et al. 2005b).



2.3. Low dimensional modeling 27

 0

 10

 20

 30

 40

 50

 0  0.5  1  1.5  2  2.5  3  3.5  4

m=2

m=3

m=4

m=5

m=6

Φ

c

Figure 2.6 – Branches of single-hump solutions to (2.4) in the plane speed c versus
parameter Φ for different values of the index m

However, it is clear that the Benney equation becomes useless when δ is
above a few units.

The occurrence of spurious finite-time blow-up is a direct consequence
of the high-nonlinearities that are contained in (2.3) and especially in the
inertial term ∂x(δh6∂xh). In fact, (2.3) is a specific case of a general evolu-
tion euation of the form

∂th + ∂x
(

h3 + Φ hm∂xh + h3∂xxxh
)

= 0 , (2.4)

where m is a positive integer and Φ a positive parameter. Figure 2.6 shows
that the solitary-wave branch exhibits a turning point, say at Φ = Φ⋆, and
branch multiplicity (with two branches, a lower branch and an upper one)
for m > 3. It means that for Φ > Φ⋆, (2.4) does not allow for solitary
wave solutions. Numerical evidence suggests that the deviant finite blow-
up behavior of BE occurs in the region where solitary waves do not exist.
Bertozzi and Pugh (1998) showed that nonlinearities with powers m < 5
can allow for bounded solutions under certain conditions. With m = 2,
(2.4) is encountered when the thermocapillary instability of a thin film is
considered [equation (3.18) and chapter 3]. This equation admits solitary-
wave solutions for all values of Φ and time-dependent simulations do not
present any unphyscial finite-time blow-up beavior.

With m = 3, equation (2.4) is equivalent to the Frenkel equation
(4.12) and applies to the problem of thin film flowing down a vertical
fiber (Frenkel 1992, Kalliadasis and Chang 1994) (see. chapter 4). The
solitary-wave branch of solution presents a limiting point Φ⋆ ≈ 1.4 which
is pushed to infinity (c → ∞). Numerical simulations at m = 3 do show an
accelerated growth of the amplitude of solitary waves that was associated
with the drop-formation process on the film (Kalliadasis and Chang 1994,
Chang and Demekhin 1999), but not a true finite-time blow-up.

Unfortunately, raising the consistency of the models does not improve
the situation as the order of the nonlinearities also rapidly increases. In
their study of the second-order Benney equation, Oron and Gottlieb (2004)
even found the occurrence of a spurious subcritical Hopf bifurcation ! The
gradient expansion has poor convergence properties indeed.
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A brilliant attempt to remedy to the drawbacks of the Benney expan-
sion has been proposed by Ooshida (1999). His approach is inspired
from the use of Padé approximant technique to improve the radius of
convergence of a power series Q = ∑k Qkxk by expressing Q as a ratio
F/G of two series F and G where the zeros of G are supposed to cap-
ture the causes of the divergence. Adjusting the coefficients introduced
in F = F0 + F1x + F2x2 . . . and G = 1 + G1x + G2x2 + . . . so that the
terms in the series Q are reproduced exactly up to some given degree
is the essence of the approximation, the ratio F/G being used in place
of Q. Ooshida translated this idea by introducing a regularization oper-
ator G = I + G(1) + G(2), where I is the identity, G(1) = G(1)(h)∂x, and
G(2) = G(2)(h)∂xx, so that the expansion of q as a function of h and its
derivatives from the long wave expansion, formally written as q ≡ Q(h),
is rewritten as G−1F . He obtained

∂th+
1
3

∂x

{

h3 − 3η h2∂xth − 2
7

δ ∂t(h5)− 36
245

δ∂x(h7)− 1
4

ζ∂x(h4) + h3∂xxxh
}

= 0 ,

(2.5)
which is consistent up to O(ǫ2). No loss of the one-humped solitary wave
branch of solutions to (2.5) can be found and time-dependent computa-
tions do not lead to spurious finite-time blow-ups. However, Ooshida’s
regularization of Benney’s long-wave expansion is not sufficient to obtain
quantitative agreement with experiments and DNS results. As already rec-
ognized by Ooshida (1999), the amplitudes of solitary waves are indeed
grossly underestimated by (2.5).

The Ooshida equation (2.5) allows for some flexibility in the slaving of
the velocity field to the kinematics of the free surface by introducing time
derivatives in the expression of the flow rate q = Q(h). This gives the idea
that some freedom should be given back to the velocity field. As a matter
of fact, the Benney long-wave approach is now practically abandoned and
there is now a widespread agreement that low-dimensional modeling of
film flows should be based on two or more degrees of freedom and other
variables than the film thickness must be considered, e.g. the local flow
rate q, the stress at the wall, etc.

Since the mass balance (2.2a) is exact, a natural step forward is to con-
struct two-equation models for the film thickness h and the flow rate q.
This can be introduced by the decomposition

u = u(0) + u(1) , (2.6a)

u(0) ≡ 3q
h

(

ȳ − 1
2

ȳ2
)

with ȳ = y/h , (2.6b)

u(1) stands for the O(ǫ) corrections to the parabolic profile u(0). The
Nusselt flat film solution is recovered when u(1) = 0 and q = h3/3.
Notice that u(0) therefore also contains O(ǫ) deviations from the Nus-
selt flow by allowing q to differ from h3/3, thus relaxing the strict slav-
ing of the velocity field to the film thickness in the long-wave limit
∂x → 0. The definition of the flow rate q =

∫ h
0 udy is retained and

yields a gauge condition
∫ h

0 u(1)dy = 0 which singles out the decompo-
sition (2.6) among all possible ones. Inserting the ansatz (2.6) into the
streamwise momentum balance truncated at O(ǫ) yields after integration
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u(1) = U(1)(q(x, t), h(x, t), ȳ) + O(ǫ2) as a polynomial in ȳ of degree six
plus second order terms. The gauge condition

∫ h
0 U(1)dy = 0 then gives

δ ∂tq =
5
6

h − 5
2

q
h2 + δ

[

9
7

q2

h2 ∂xh − 17
7

q
h

∂xq
]

− 5
6

ζh∂xh +
5
6

h∂xxxh (2.7)

which is an averaged momentum equation consistent at O(ǫ). Cou-
pled with the mass balance (2.2a), (2.7) constitutes an alternative to the
Benney equation (2.3) which does not present spurious blow-up behav-
iors. The consistency at first order ensures that the instability threshold
Fr−2 = ζ/δ = 2/5 is correctly recovered. This procedure can be repeated
at the next orders to determine u(1) = ∑n U(n)(q(x, t), h(x, t), ȳ). Finally,
let us emphasize that (2.7) being derived within the long-wave approx-
imation, the flow rate remains formally slaved to the film thickness as
q = h3/3+O(ǫ). Making use of this zeroth order equivalence in (2.7) thus
immediately leads back to the Benney equation (2.3).

2.3.2 Weighted residual methods

During my PhD thesis under the supervision of Paul Manneville, I have
applied the weighted residual methods (WRMs) to obtain consistent mod-
els at O(ǫ) and O(ǫ2). Weighted residual methods are presented in § 1.2.

The velocity field is expanded on N + 1 polynomial test functions
(Ruyer-Quil and Manneville 2000).

u(x, y, t) = ũ(0) + ũ(1) =
N

∑
j=0

aj(x, t)gj(ȳ) with ȳ = y/h(x, t)

a0 = O(1) and aj = O(ǫ) for j > 0 (2.8)

The choice of polynomial test functions is motivated by the fact that
the Benney expansion leads to a representation of the velocity field as
a sum of polynomials. The first term of this expansion is necessarily
g0(ȳ) = ȳ − 1

2 ȳ2, the flat film parabolic velocity profile so that a0 is an
order one quantity and the aj, j > 0 are small corrections induced by
the deformations of the free surface. A Galerkin projection follows for
which the weights wj are chosen equal to the test functions gj. Writing
formally the streamwise momentum balance as BL(u) = 0, the residuals
read Ri(u) = 〈BL(u)| gi(ȳ)〉, where 〈 f | g〉 =

∫ h
0 f g dy refers to the scalar

product.

Derivation at O(ǫ)

Truncated at first order, the first residual R0(u) readily yields an O(ǫ)
evolution equation for a0. Substituting the flow rate q for a0 using its
definition q =

∫ h
0 udy, so that

a0 = 3q/h −
N

∑
j=1

aj

∫ 1

0
gjdȳ (2.9)

next leads to the averaged momentum equation (2.7). Indeed, assuming
that the velocity field can be projected on a series of polynomials (which
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is asymptotically true), the ansatz (2.8) is equivalent to (2.6) provided the
relation (2.9) holds. As detailed in § 1.2, substituting (2.6) for (2.8) and
computing R0, the only place where the corrections u(1) are involved is
the viscous drag term. This term can be dropped out using the gauge
condition 〈u(1)dy|1〉 = 0 if the weight w(y) verifies

L†w = cst (2.10)

where L = ∂yy and L† is the adjoint operator. One readily gets w = g0
which justifies that the Galerkin method is the most appropriate. It can
be shown indeed that, if the number N + 1 of test functions is sufficiently
large (N ≥ 4), every weighted residual method yields (2.7) (Ruyer-Quil
and Manneville 2002). Thus selecting w0 = g0, the derivation of (2.7)
does not necessitate the determination of the first order corrections u(1) as
realized by Amaouche et al. (2009), Luchini and Charru (2010a;b).

Derivation at O(ǫ2)

First-order corrections to the parabolic velocity distribution can be de-
scribed entirely with the help of only two more polynomials of degree
four and six, g1 and g2. The polynomials g1 and g2 are constructed us-
ing a Gram-Schmidt orthogonalization procedure in order to ensure an
orthogonality

∫ 1
0 gigjdȳ = δi,j of the polynomials and to reduce the re-

quired algebra. Setting the three residuals Ri(u) to zero formed a system
of three evolution equations for the three unknowns q, r and s. This sys-
tem is completed with the mass balance (2.2a) yielding a four-equation
model. Again, as shown in Ruyer-Quil and Manneville (2002), the use
of the Galerkin method is not necessary, the use of different weight (and
thus WR methods) leading to the answer if the number of test functions is
sufficiently large.

The theoretical analysis and the numerical integration of models such
as four-equation models are indeed simpler than the corresponding study
of the full Navier–Stokes problem, or even of the boundary-layer formu-
lation. Handling the four fields still remains a difficult task, and a reliable
two-field formulation consistent at order ǫ2 would be welcome. At this
stage setting r and s to zero in R0 lowers the order of the approximation.
This procedure leads to a simplified averaged momentum equation

δ ∂tq =
5
6

h − 5
2

q
h2 + δ

[

9
7

q2

h2 ∂xh − 17
7

q
h

∂xq
]

− 5
6

ζh∂xh +
5
6

h∂xxxh

+η

[

4
q
h2 (∂xh)2 − 9

2h
∂xq∂xh − 6

q
h

∂xxh +
9
2

∂xxq
]

. (2.11)

The set of equations to be solved is next closed by the mass conservation
equation (2.2a). The two-equation simplified model is consistent up to
O(ǫ) and O(ǫ2) for the viscous terms. This consistency ensures a correct
prediction of the linear stability threshold and cut-off wavenumber.

A consistent elimination of the O(ǫ) corrective fields r and s leads
from the four-equation model to a consistent two-equation model. Since
the WRM approach is consistent, this model is identical to the one ob-
tained by determining the O(ǫ2) corrections U(2)(q(x, t), h(x, t), ȳ) within
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the long-wave expansion with the ansatz (2.6) (see above § 2.3.1). How-
ever, this model is of no practical use since its solutions are not exempt of
the spurious finite-time blow-up behavior encountered with the Benney
equation (2.3). In order to solve this problem, (Scheid et al. 2006) intro-
duce a a algebraic Padé-like regularization approach The first residual
R0, obtained after averaging the momentum equation with the parabolic
weight g0, is searched in the form G−1F where G is now simply a func-
tion of h, q and their derivatives, and F = R0 − R(2),δ

0 is the residual
bereft of the second-order inertial terms. The factor G is next adjusted to
achieved consistency with the long-wave expansion at second-order with
the nonlinearities of lowest possible order making use of the zeroth-order
equivalence between the flow rate and the film thickness q = h3/3+O(ǫ),
which yields:

δ ∂tq = δ

[

9
7

q2
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q
h

∂xq
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q
h
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∂xxq
]

−5
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ζh∂xh +
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h∂xxxh
}

×
[

1 − δ

70
q∂xh

]−1

, (2.12)

(2.12) differs from (2.11) by the factor G = (1 − δ
70 q∂xh)−1. Completed

with (2.2a), (2.12) forms a two-equation model consistent at O(ǫ2).

2.3.3 Center manifold analysis

A possible alternative to the gradient expansion approach is the center
manifold analysis (CMA) introduced by Roberts (1996; 1997). Roberts’idea
is to extend to partial differential equations, the center manifold analysis
of solutions to an ordinary differential equation in the vicinity of an equi-
librium state (Carr 1981, Guckenheimer and Holmes 1983). The frame-
work of the center manifold analysis is developed in § 1.3 in the context
of the modeling of the flow in a Hele-Shaw cell.

Each column of fluid at a given location x in the plane is modeled as a
dynamical system of infinite dimension parametrized by the vertical coor-
dinate y, the long scale modulations of the film interface introducing some
coupling between neighboring fluid columns. The long time evolution of
the film is then governed by the dynamics on the invariant manifold, or
slow manifold, which is tangent to the eigenspace of zero eigenvalue.

In the long-wave limit (ǫ ∼ ∂x → 0), the linearized set of equations
reads

δ∂tũ = ∂ȳȳũ + 2h̃ ≡ L1ũ with ũ(0) = 0 and ∂ȳũ(1) = 0 (2.13)

where ȳ = y/h, and where ũ and h̃ are small perturbations to the ve-
locity field and free surface elevation. The operator L1 admits only one
eigenmode with a zero eigenvalue, ũ = 2h̃g0(ȳ) which is made possible
by the elasticity of the free surface. Indeed, from (2.2a) it is clear that the
displacement of the interface from h to h + h̃ is a neutral mode as ∂x → 0.
The slow manifold is one-dimensional, parametrized by the free surface
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elevation, i.e. θ(x, y, t) = Θ(h(x, t), ȳ) where θ refers to the unknowns ei-
ther velocity or pressure. In fact, one can readily see that the long-wave
expansion is equivalent to the center manifold analysis, the evolution on
the slow manifold being governed by (2.2) with u = ∑n An(h)Pn(ȳ).

In order to relax the strict slaving of the film dynamics to the kinemat-
ics of the free surface, Roberts (1996) assumed that the flow dynamics is
determined by the kinematic eigenmode associated to the zero eigenvalue
λ1

1 = 0 and by the viscous relaxation mode associated with the largest
eigenvalue λ1

1 = −π2/4 (all of them being negative, this is the one that is
closest to zero). These two eigenmodes are associated to the eigenvectors
v0

1 ∝ g0(ȳ) and v1
1 ∝ sin(πȳ/2) respectively. The invariant manifold, say

C1, that is tangent to the subspace spanned by the Poiseuille semi-parabola
g0 and by the sine function sin(πȳ/2). In order to proceed to the construc-
tion of C1, Roberts introduced a perturbation parameter γ which associate
the initial linear problem (2.13) (recovered at γ = 1) to a subsidiary one
whose spectrum admits a double zero eigenvalue (at γ = 0). The looked-
after invariant manifold is thus constructed as a double series in the long
wave parameter ǫ and in the dummy parameter γ. C1 is two-dimensional
defined as θ(x, y, t) = Θ(h(x, t), q(x, t), ȳ), the long-wave dynamics on C1
being governed by a two couple evolution equations for h and q.1

In the long-wave limit ǫ ∼ ∂x → 0, the system of equations to be solved
is affine, and therefore, in that limit, the invariant manifold coincides with
the linear subspace spanned by g0 and by the sine function sin(πȳ/2) :

u(x, y, t) ≈ h2g0

(y
h

)

+
π

6

(

3q
h

− h2
)

sin
(πy

2h

)

+ O(ǫ) . (2.14)

The long-time dynamics being driven by the neutral kinematic mode and
the first viscous relaxation mode

∂th = O(ǫ) and δ∂tq = −π2

4

(

q
h2 − h

3

)

+ O(ǫ) (2.15)

At O(ǫ2), the center manifold analysis of Roberts gives the following con-

1In fact Roberts (1996) used another equivalent parametrization based on h and the
averaged velocity ū = q/h. I chose to recast his results using h and q instead in order to
help the comparisons with the other modeling attempts.



2.3. Low dimensional modeling 33

sistent averaged momentum balance
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−0.4821 h3∂xxxxq
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, (2.16)

which forms a consistent second-order model with the mass balance (2.2a).
Roberts averaged momentum equation (2.16) must be contrasted with the
results of the gradient expansion. The simplified averaged momentum
equation (2.11) must be compared to (2.16) truncated to its two first lines.
The remaining terms are second-order terms of inertia origin, except for
the two terms 1

100 δ
[

1.727 hq∂xh + 0.7983 h2∂xq
]

at the third line which are
O(ǫ) terms. On can easily recognize in the first two lines of (2.16) all terms
present (2.11) but with slightly different coefficients. As detailed in § 1.3,
this is an effect of the closeness between the parabola g0(ȳ) and the sine
function π

6 sin(πȳ/2), which has been illustrated in figure 1.4. The ansatz
(2.6) is therefore very close to the projection (2.14).

The principal difference between CMA and WRM consists in the pro-
jection of the deviations from the Nusselt semi-Poiseuille solution on the
first sine viscous relaxation mode (2.14). As stressed in § 1.3, this decom-
position is meaningful only when the inertial time is comparable to the
viscous time (all viscous modes, including the first one, having relaxed
otherwise), i.e. when ǫRe = O(1), in which case the perturbations to the
balance of gravity and viscosity induced by inertia cannot be supposed
weak. Simply stated, Roberts CMA would be useful only if the gradient
expansion converges at ǫRe of order unity, which is far from being the
case.

2.3.4 Shallow-water approach

The study of the dynamics of waves that are long in comparison to the
thickness of the fluid layer has a long history in hydraulics and constitutes
the shallow-water theory (see e.g. Whitham (1974)). As early as 1871, A.-
J.-C. Barré de Saint-Venant formulated a set of evolution equations for the
free surface elevation h and the averaged velocity ū = q/h by depth-wise
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integrating the governing equations (Saint-Venant 1871). These shallow-
water equations are still commonly used for instance in oceanography.

The same idea has been applied to viscous fluids by Kapitza (1948) in
his seminal work and later on by Shkadov (1967). Depth-wise integration
of the momentum balance leads to the momentum balance of an associ-
ated column of liquid which reads at O(ǫ)

δ

[

∂tq +
∂

∂x

(

Υq2

h

)]

= h − ζh∂xh + h∂xxxh − τw , (2.17a)

where τw = ∂yu|0 is the shear at the wall and Υ is a shape factor defined
as Prokopiou et al. (1991),

Υ =
h
q2

∫ h

0
u2 dy , (2.17b)

which relates the “first moment" of u,
∫ h

0 u dy, to its “second moment",
∫ h

0 u2 dy. The set of two equations (2.2a) and (2.17a) is closed provided
that expressions of the shape factor Υ and the wall shear τw as functions
of h and q are known.

Kapitza and Shkadov proposed a closure based on the assumption that
the velocity profile remains parabolic and self-similar:

u = u(0) ≡ 3q
h

(

ȳ − 1
2

ȳ2
)

with ȳ = y/h (2.18)

so that q still verifies q =
∫ h

0 udy. The ansatz (2.18) ensures that the Nus-
selt flat film solution is correctly recovered by the model leading back to
the zeroth-order equivalence q = h3/3 + O(ǫ) between the flow rate and
the film thickness. However the Kapitza–Shkadov model does not cap-
tures adequately the threshold of instability, Fr−2

c = ζ/δ = 1/3 instead
of the correct answer 2/5 (a 20 % discrepancy). As a consequence, the
Kapitza–Shkadov model is generally used only in the vertical configura-
tion. A large number of studies have been devoted to falling film flows
based on (2.17) (see Chang et al. (1994) for a review and the most recent
works by Sisoev and Shkadov (1999), Shkadov and Sisoev (2004), Sisoev
et al. (2006), Demekhin et al. (2007a;b)). Some attemps have been made to
cure the deficiencies of the Kapitza–Shkadov model, most of them being
inconsistent (Prokopiou et al. 1991, Yu et al. 1995, Nguyen and Balakotaiah
2000). Because of the inability of (2.2a), (2.17a) to capture properly the on-
set of the Kapitza instability, the in-depth integration of a the momentum
equation with a uniform weight is now practically a thing of the past, a
more careful choice of the weight yielding far better results as shown in
the previous subsection.

Yet, the shallow-water equations (2.17) admit a conservative form

δ (∂tX + ∂xQ) = R (2.19a)

where X = (h, q) is the vector of unknowns, Q = (h, Υq2/h + ζh2/2) is the
vector of associated flux, and R = (0, h + h∂xxxh − τw) are source terms
(gravity acceleration, capillary forces and wall friction). The conservative
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form (2.19a) is particularly useful in the analytical treatment of shocks
and roll waves that arise when surface tension forces are too weak to pre-
vent the breaking of the waves (Dressler 1949, Brock 1970, Chang and
Demekhin 2000, Liu et al. 2005). Unfortunately, the O(ǫ) consistent aver-
aged momentum equation (2.7) does not admit a conservative form. Such
deficiencies motivated Vila, Noble and others to reconsider the long-wave
asymptotics and to formulate consistent models that retain the conserva-
tive form (2.19a) (Vila, Fernández-Nieto et al. 2010, Boutounet et al. 2008).
Vila’s approach is based on the asymptotic expression u = ∑n An(h)Pn(ȳ)
of the velocity field that is provided by the Benney long-wave expansion,
followed by a quest for admissible consistent expressions Q and R as
functions of q and h obtained by using the equivalence q = h3/3 + O(ǫ).
Boutounet (2011) in his PhD thesis thus proposed

Q =

(

h, C1
q2

h
+

(

1
5
− C1

9
− 2C2

75

)

h5 +
C2

6
ζh2
)

, (2.19b)

R =

(

0,
C2

3

(

h + h∂xxxh − 3
q
h2

)

)

. (2.19c)

Boutounet proved that, if the conditions C1 = 1 and 0 < C2 ≤ 10/3 are
verified, then the flux Q is hyperbolic and a quadratic entropy in q can
be found. The O(ǫ) model derived by Vila corresponds to C1 = 6/5 and
C2 = 3. Boutounet performed numerical simulations of an horizontal film
sheared by a co-current gas flow modeled by a Blasius boundary layer
taking C1 = 1 and C2 = 3. The film was modeled by an extension of
(2.19) accounting for the shear stress exerted by the gas. His simulations
show a great sensitivity on the coefficient C1, a mere variation of 6 % of
C1 yielding a 20 % variation of the wavelength of the observed waves !

2.3.5 Energy integral approach

To complete this short review of the different modeling attempts, let us
signal some modeling strategies based on the kinetic energy balance that is
obtained by a scalar product of the momentum equation with the velocity
field (Usha and Uma 2004, Novbari and Oron 2009, Luchini and Charru
2010a). Multiplying BL(u) by u and integrating it with a uniform weight
across the film depth yields at first order in ǫ

δ
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+
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0
(∂y(u(0) + u(1))2dy ≡ EK(u) = 0 . (2.20)

Using
∫ h

0 u(1)dy = 0 and the boundary condition u|0 = 0, ∂yu|h = O(ǫ),
we have

∫ h

0
(∂y(u(0) + u(1))2dy =

∫ h

0
u(0)∂yy

(

u(0) + 2u(1)
)

dy (2.21)

and it is then easy to show that

R0 = 〈BL(u(0))|g0〉 =
3h
q

EK(u) + O(ǫ2) (2.22)
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As a consequence, the WRM approach and the energy integral approach
are equivalent at O(ǫ).

2.4 Discussion

The modeling strategies sketched in the previous section are all based
on the long-wave approximation of small spatial variations. Consistent
models at a given order of approximation (generally O(ǫ) or O(ǫ2)) are
therefore all asymptotically equivalent. In the limit ǫ → 0, their solutions
must converge. Indeed, making use of the slaving of the velocity field to
the film thickness expressed by e.g. q = h3/3 +O(ǫ), one is led back from
every O(ǫ) consistent two-equation models to the Benney equation (2.3).

Inertia enters the gradient expansion at O(ǫ), as a perturbation of the
Nusselt flat-film equilibrium achieved as a balance between the gravity
acceleration and the viscous drag. Every modeling approach relies on the
cross-stream coherence enforced by the viscosity which makes possible an
elimination of the cross-stream variable y. Whenever inertia overcomes
viscous relaxation, the cross-stream coherence of the flow is lost and with
it any hope to reduce the dimensionality of the problem at hand. Yet,
the Kapitza instability mechanism has an inertial origin: it is precisely be-
cause the velocity field adjusts with a delay to a deformation of the free
surface that energy can be pumped from the base state to the perturba-
tions. Therefore, the very idea of small inertia effects is sustained only
when the instability mechanism is weak, that is whenever the amplitude
of the waves is small. As a matter of fact, Benney-like surface equations
are useful only in that case, yielding unrealistic or unphysical results for
large-amplitude waves (My personal experience with the Benney equation
is that unphysical finite-time blow-ups are observed when the amplitude
of the waves is larger than 20 % of the Nusselt film thickness.)

The difficulty lies precisely in the fact that, in the wavy regimes of
interest, the wave amplitude is not small (For solitary waves, the ratio
hmax/hs of the maximum height to substrate thickness can be as large as
seven !) and the assumption of small inertia effects is certainly not well
established. The different modeling strategies are thus attempts to extend
as far as possible in the parameter space the convergence properties of
the gradient expansion, that are valid only close to the instability thresh-
old. The ability of the models to capture the dynamics of the flow must
therefore be tested in the linear and nonlinear regime which demands to
establish a validation procedure with identified milestones, the question
being which features to be captured by the model and what is the required
degree of precision. For instance, it is clear that the instability thresh-
old must be retrieved with full precision, which is achieved whenever a
model is consistent at O(ǫ) due to the long-wave nature of the instabil-
ity. A reasonable reckoning of the range of unstable wavenumber and the
maximum growth rate of the instability cannot be achieved without tak-
ing into account the streamwise viscous dispersion effects —elongational
viscosity, or Trouton viscosity (Ribe 2001). Close to the instability thresh-
old, this requires to extend the consistency of the models up to O(ǫ2) for
viscous terms (Ruyer-Quil and Manneville 1998; 2002). A good agreement
in the linear regime is important not only to capture correctly the incep-
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tion of the waves but also to properly account for the interaction between
solitary waves which is governed by the linear superposition of their tails.
Among others, Ruyer-Quil and Manneville (2000; 2002) have shown that
the spatial stability of the film can be well approached by low-dimensional
models for a quite extended range of parameters (typically for Reynolds
numbers up to a few hundreds).

A much more demanding requirement is the reproduction of the non-
linear regime which is structured by solitary-like waves. It is particularly
important that low-dimensional models admit solitary wave solutions in
the whole parameter range of interest in order to avoid spurious blow-up
behaviors. This should be tested in the most severe situation correspond-
ing to negligible streamwise viscous dispersion at high Kapitza number
(for water films for instance) and in the vertical geometry where the sta-
bilizing hydrostatic pressure is absent, in which case one is left with only
one control parameter: the reduced Reynolds number δ since ζ = 0 and
η ≈ 0. Figure 2.7 presents the characteristics (speed and amplitude) of
one-hump solitary waves solutions to the WRM model (2.2a,2.7), to Vila’s
and Boutounet’s shallow-water formulations, i.e. (2.2a,2.19) with (C1, C2)
equal to (6/5, 3) and (1, 3) respectively, and to Roberts model truncated
at O(ǫ) which reads
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(2.23)

again completed with the mass balance (2.2a). The results of the low-
dimensional models must be contrasted with the DNS results obtained
by Chasseur (2011) using the Navier-Stokes solver Gerris2 developed by
Popinet (2003; 2009).

As first noticed by Ooshida (1999), two different regimes can be identi-
fied. At low values of δ, the amplitude of the waves is small, in which case
a weakly nonlinear analysis leads to the Kuramoto-Sivashinky equation,
from which the following power laws are derived (Ruyer-Quil et al. 2012)

c ≈ 1 + 0.102 δ3/2 and hmax ≈ 1 + 0.132 δ3/2 . (2.24)

This regime corresponds to the balance of gravity and viscous diffusion,
inertia playing only a perturbative role, which justifies the christening
drag-gravity regime introduced by Ooshida. An elimination of δ from (2.24)
provides a linear dependency of the amplitude of the waves to their speed
hmax − 1 ≈ 1.29(c − 1) which must be contrasted with the experimental
relation hmax − 1 ≈ 1.67(c − 1) reported by Tihon et al. (2006) in their
study of 2D solitary waves at moderate inclination angle (cf. figure 2.8).
Figure 2.7c indicates that the linear relationship between amplitude and
speed of the waves extends up to δ ≈ 2 and signals the transition to the
second regime.

This second regime corresponds to large values of δ. It is characterized
by highly non-symmetrical solitary waves with a steep front and a gentle
back tail that can be referred to as “capillary roll waves”. The formation

2http://gfs.sourceforge.net
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Figure 2.7 – Characteristics (speed and maximum height) of one-hump solitary waves
running down a vertical plane. ’Roberts’ and ’Roberts (modif)’ refer to (2.2a, 2.23)
with and without the small inertial terms 1

100 δ
[

1.727 hq∂xh + 0.7983 h2∂xq
]

. ’Vila’ and
’Boutounet’ refer to the shallow-water model (2.2a, 2.19) with (C1, C2) equal to (6/5, 3)
and (1, 3) respectively.

Figure 2.8 – Reproduction of figure 8 in Tihon et al. (2006) showing the phase velocity
as a function of the maximum film height for solitary waves running down an inclined
plane. The Reynolds number lies in the range 10 < Re < 60. The liquid was a 5 %
by weight aqueous solution of Emkarox HV45 (polyalkylene glycols) (ρ = 1007 kg/m3,
ν = 3.9× 10−6 m2/s. and σ = 60 mN/m). The inclination angle β = 5◦ and the Kaptiza
number is Γ = 1480.
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of these waves result from the balance of inertia, gravity and viscous drag
and Ooshida referred to this regime as the drag-inertia one. Ruyer-Quil and
Manneville (2005) (this publication is appended to this chapter) showed
that the speed of the waves go to an asymptote c∞ as δ goes to infinity that
can be determined using Thomas condition (Thomas 1939). The rate of
convergence to the asymptotic result is proportional to δ−3 which explains
that c is already close to c∞ at δ = 5.

As expected, all models provide close result in the drag-gravity regime
for δ / 1. Indeed, the long-wave asymptotic series converges in this
regime, and the discrepancies between the different models are O(ǫ2)
small terms owing to their consistency at first order of the film param-
eter. At larger values of δ, the differences between the model predic-
tions become important, which suggests that the convergence radius of
the long-wave gradient expansion is smaller than one for a vertical wall.
The branch of solitary-wave solutions to Vila’s model presents a turn-
ing point at δ ≈ 1.2 and unphysical finite-time blow-ups are expected
to occur in time-dependent simulations for δ above that value. In con-
trast, Boutounet’s model does not present a loss of the solitary-wave so-
lutions which emphasizes the great sensitivity of the shallow-water ap-
proach on coefficient C1. Roberts model (2.2a, 2.23) grossly overestimates
the speed and amplitude of the solitary waves. Surprisingly, dropping
out the ’small’ inertial terms at the second line of (2.23), as suggested
by Roberts and Li (2006), yields an accurate prediction of the asymptotic
speed c∞ ≈ 2.5 in good agreement with DNS results. However, this sim-
plification spoils the consistency of the model and brings an erroneous
prediction of the instability threshold (Fr−2

c = 0.384 instead of 2/5, a
4 % error). The weighted-residual approach seems to offer the best agree-
ment, the amplitude of the solitary wave being well capture whereas the
asymptotic speed c∞ ≈ 2.738 is slightly higher than the one predicted by
DNS (a roughly 10 % overestimate). Bearing in mind the almost constant
effort devoted to the modeling of falling film flows —there is hardly a year
without a paper on this subject— this is quite surprising.

As a whole, the sensitivity of the different models to seemingly ’small’
terms is appalling. Because of this sensitivity, the algebraic regularization
process yielding (2.12) from the four-equation second-order WRM model
was designed so that the asymptotic speed c∞ of solitary-wave solutions
to the model would not be different from the one corresponding to the
first-order or simplified WRM model.

A second test of the accuracy of low-dimensional models in the non-
linear regime is to evaluate the accuracy of their predictions of the velocity
field under the waves in both the laboratory frame or reference and the
moving frame of the waves. A large-amplitude solitary wave exhibits a re-
circulation zone located in its hump which transports the “trapped” fluid
mass downstream (and in that respect a solitary pulse carries mass) (Was-
den and Duckler 1989). These recirculation zones —which can be located
by drawing the streamlines in the moving frame— have a noticeable effect
on the transfer of mass at the film-gas interface (Yoshimura et al. 1996).

At the wall, a backflow phenomenon may significantly enhance the
the wall to fluid transfer of heat or mass (if the wall is permeable, see
for instance Samanta et al. (2012) and chapter 5). The possibility of such
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backflow at the thinnest part of the waves have been predicted early by
Kapitza and Kapitza (1949) and later on by Portalski (1964) and reported
by Dietze et al. (2008; 2009), Malamataris and Balakotaiah (2008). At the
front of large waves, where the wave breaking is arrested by surface ten-
sion, gradients of capillary pressure push the liquid from the ripple crests
to the ripple depressions. These pressure gradients may overcome the
gravitational forces, displace the liquid in the upward direction and pro-
mote separations of the flow near the wall. Backflow phenomena generate
inversion of the shear at the wall which locally affect heat and mass trans-
fers.

Scheid et al. (2006) have questioned the ability of the WRM models to
reproduce the velocity distribution computed by Malamataris et al. (2002)
in their DNSs of a solitary wave observed by Liu and Gollub (1994). Fig-
ure 2.9 is a reproduction of figure 4 in Scheid et al. (2006) showing the
velocity distribution at regularly spaced locations around the minimum of
thickness [panels (a) to (d)], the streamlines in the moving frame [panels
(e) and (f)]. The figure is completed with panels (g) and (h) where the
streamlines in the laboratory frame have been drawn. The streamwise ve-
locity distributions is computed using the three first polynomials g0 , g1
and g2 (see Appendix A in Scheid et al. (2006) reproduced at the end of
this chapter for details). The left part of figure 2.9 presents the results from
the two-equation regularized model (2.2a,2.12), which are contrasted with
the results of the four-equation second-order WRM model in the right part
of the said figure. The similarity with the DNS by Malamataris et al. (2002)
(not shown) is particularly convincing for the four-equation model both at
behind the first ripple and in front of the main hump (the reader is invited
to compare figure 2.9 to figure 7 in Malamataris et al. (2002); even the two
inflection points they observed are recovered). For the two-equation regu-
larized model, comparisons remain satisfactory everywhere except at the
front of the main hump where the gradients are the largest. A reconstruc-
tion of the velocity field based on the two-equation model is no longer
sufficient there. Panels (g) and (h) evince eddy-like loops referred to as
capillary separation eddies by Dietze et al. (2008; 2009). The flow reversal
extends from the wall up to the free surface and the streamlines remain
opened in the liquid phase in agreement with Dietze’s observations for
a vertical non slippery wall. The inaccuracy in the reconstruction of the
velocity by the two-equation model yields an exaggeration of the intensity
of the capillary separation eddies and an overestimation of the heat and
mass transfers at the wall. However, the streamlines in the moving frame
of the waves show little differences whether a four-equation or a two-
equation WRM model is employed. Indeed, at the thickness minimum
where the relative deviations away from the parabolic profile are notice-
able, the streamwise velocity u is also small, so that in the moving frame
at the speed c of the wave, the relative velocity u − c remains accurately
estimated by a single parabolic profile.

The accuracy of the WRM models is further put to the test in fig-
ures 2.10 and 2.11 corresponding to the simulation of the 2D solitary waves
of large amplitude reported by Nosoko et al. (1996) and reproduced in fig-
ure 2.5(a). The results from the WRM models are contrasted with the DNS
by Miyara (2000).
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Figure 2.9 – (a-d) Streamwise velocity profile at regularly spaced locations from the front
of the solitary hump to the back of the first capillary ripple. (e) and (f) Streamlines in the
moving frame; (g) and (h) streamlines in the laboratory frame. The left column, i.e. (a),
(c), (e) and (g) correspond to the solution to the regularized model (2.2a,2.12). The right
column, i.e. (b), (d), (f) and (h) correspond to the solution to the four-equation second-
order model. Extremal positions of the given velocity profiles are indicated by dashed lines
in panels (e) and (f). Panels (a) to (f) are taken from Scheid et al. (2006).



42 Chapter 2. Falling liquid films

 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20  25
h

x

(a) (2.2a,2.12), 3 tests functions

 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20  25

h

x

(b) (2.2a,2.12), 1 test function

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  5  10  15  20  25

h

x

(c) 4-equation model (d) DNS (Miyara 2000)

Figure 2.10 – Streamlines in the moving frame. (a) and (b) regularized two-equation
model (2.2a,2.12). (a) velocity profile computed with three polynomials; (b) velocity rep-
resented by a single test function (g0). (c) four-equation WRM model. (d) DNS from
Miyara (2000).

This test is a severe one: the wall is vertical, the Kapitza number is
high (Γ = 3650) and the Reynolds number is already quite large (Re = 69).
The solitary wave has a large amplitude (hmax ≈ 4.5 times the thickness
hs of the substrate liquid layer on which the wave sits). The reduced
Reynolds number based on the substrate thickness δs = δh11/3

s ≈ 6 and
the flow conditions clearly correspond to the drag-inertia regime. The
solitary wave reported by Nosoko et al. (1996) is therefore an example of
capillary roll wave.

Figure 2.11 reveals the wave profiles and streamlines in the moving
frame computed with the two-equation model (2.2a,2.12) and with the
four-equation WRM model. The results from the low-dimensional mod-
els are compared to the DNS by Miyara (2000). The four-equation model
gives a representation of the flow pattern in good agreement with DNS.
The intensity and location of the recirculation zone in the main hump
are both well captured even though the presence of small distortions of
the streamlines at the front of the wave suggest that the number of poly-
nomials used to reconstruct the velocity field becomes insufficient there.
The two-equation model (panel a) grossly overestimate the intensity of
the recirculation phenomenon when the velocity field is computed with
the three polynomials g0, g1 and g2. The flow pattern is better reproduced
assuming a parabolic velocity profile (only one test function g0).

The flow pattern in the laboratory frame is presented in figure 2.11

focusing on the accumulation of capillary ripples at the foot of the solitary
wave. A sequence of capillary separation eddies are revealed at each local
minimum of the film thickness suggesting an important effect on the heat
and mass transfers by alternatively sweeping back and forth the fluid at
the wall. The flow pattern predicted by the four-equation model is very
similar to the observations by Dietze et al. (2008; 2009), whereas the cor-
responding result from the two-equation model with a reconstruction of
the velocity field using three polynomials looks rather doubtful. Again, a
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(a) (2.2a,2.12), 3 tests functions (b) (2.2a,2.12), 1 test function

(c) 4-equation model

Figure 2.11 – Streamlines in the laboratory frame. (a) and (b) regularized two-equation
model (2.2a,2.12). (a) velocity represented by a single test function (g0); (b) velocity
profile computed with three polynomials. (c) four-equation WRM model.

reconstruction assuming a parabolic velocity profile yields a better result
in that case.

Some perspectives

It is by now generally well established that the qualitative features of the
falling film dynamics are well captured by one-equation models such as
the Benney equation (2.3) or by weakly-nonlinear equations such as the
Kuramoto-Sivashinsky (KS) equation or the Kawaharah equation

∂T H + H∂X H + ∂XX H + δK∂XXX H + ∂XXXX H , (2.25)

which can be obtained by means of an amplitude expansion considering
small deviations of the film height from the reference state, i.e. h = 1 + H
with H ≪ 1. The weakly nonlinear Kawaharah equation, also known as
the generalized Kuramoto-Sivashinsky (gKS) equation (since the later is
obtained when dispersion is absent, i.e. at δk = 0), is the prototype of ac-
tive, dissipative and dispersive media presenting a long-wave instability.
Because of its generality and simplicity the KS and gKS equations have
received a considerable interest in the recent past (Kawahara 1983, Kawa-
hara and Toh 1988, Toh et al. 1989, Chang 1986, Chang et al. 1993b; 1994;
1998, Tseluiko et al. 2010b).

Because of the identified drawbacks of surface equations, there is a
widespread consensus that any representative simulation of the dynamics
of a falling film requires a modeling in terms of several evolution equa-
tions. However, the number of equations and the complexity of a satisfy-
ing low-dimensional model is still a matter of debate. Comparisons of the
results from available models to DNSs suggest that a reliable description
of the nonlinear wave dynamics can be achieved even at already large val-
ues of the Reynolds number far in the drag-inertia regime. This last point
is particularly important for industrial applications, where the film is gen-
erally three-dimensional, evolves on a non-planar substrate over extended
domains, and where full DNS simulations are much too costly.
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The needed degree of complexity of the low-dimensional models is
determined by the required accuracy. Results from the two and four-
equation WRM models suggest that the speed, shape and dynamics of the
waves can be reasonably captured by two-equation models. However, a
faithful account of the heat and mass transfers from the fluid to the sur-
rounding gas or at the wall probably require a greater complexity. As
a consequence, it is probably desirable to design hierarchies of models,
the selection of one of them for a particular application being found on
a compromise between several factors, for instance the numerical cost,
the phenomenon to capture, the required accuracy etc. In that respect,
the shallow-water asymptotic approach introduced by Vila must be un-
derlined as the conservative format is appropriate for numerical schemes
adapted to hyperbolic systems presenting shocks, e.g. finite volume meth-
ods, Godunov methods etc.

Besides offering convenient substitutions to cumbersome DNS numeri-
cal experiments, low-dimensional modelings set up convenient mathemat-
ical frames for the analytical study of the physical phenomena at hand.
Considering this, the derivation of reliable two-equation models repre-
sent an important step forward. For instance, they offer a proper account
of the mechanisms of the primary instability in terms of Whitham wave
hierarchy (Ruyer-Quil et al. 2008, Kalliadasis et al. 2012). The coherent
structure theory that has been imitated by (Kawahara 1983, Kawahara and
Toh 1988), and recently amended by Tseluiko et al. (2010b) in the context
of the Kawaharah equation (2.25), is now extended to two-equation mod-
els (Chang and Demekhin 2002, Pradas et al. 2011). Pradas and coworkers
showed that the inclusion of the streamwise viscous effects —the elonga-
tional viscosity or Trouton viscosity— is paramount for the wave-to-wave
interaction processes.

As a rule of thumb, successful modeling strategies must be as sim-
ple as possible but not more simple. One can thus enunciate a kind of
’least-degeneracy principle’ stating that all relevant physical effects must
be accounted for at least at leading order. For instance, this justifies that
surface tension effects must be kept (though they formally enter the gradi-
ent expansion at O(ǫ3)), and that second-order streamwise viscous effects
are kept, e.g. in (2.11), since they govern the dispersion of the waves. The
fact that the center manifold analysis has been less employed than the
weighted residual methods does not stem from the fact that the latter may
bring better result than the former, the two leading to somewhat close
equations, but rather because the CMA is very cumbersome to apply as
compared to the WRMs.

It is my hope that low-dimensional modeling may bring some insights
into the open questions that are still offered by the complex dynamics of
falling films. In particular, the 3D secondary instabilities of 2D flows are
not well understood though a Rayleigh mechanism has been suggested
by Demekhin et al. (2007a;b). Benoit Scheid, Paul Manneville and myself
tried to investigate the mechanisms leading to the selection of the syn-
chronous or subharmonic 3D instabilities of the slow γ1 waves (see Scheid
et al. (2006) reproduced at the end of this chapter). Our Floquet analysis
showed that the 3D secondary instability is not very selective. The stabil-
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ity analysis of the γ2 waves is currently under study (Nicolas Kofman’s
PhD).

In particular, the effect of the channel width on the 2D waves require
some further understanding. In Liu and Gollub’s experiments, 2D soli-
tary waves present curved fronts due to the presence of sidewalls (cf. fig-
ure 2.12). This effect can be significant on the primary stability of the
film though the Nusselt flat film solution is only locally affected by the
presence of the sidewalls (Vlachogiannis et al. 2010). I conjecture that this
effect is also paramount when the stability of γ2 solitary waves is consid-
ered.

(a) (b)

Figure 2.12 – (a) curved 2D solitary wave; (b) spanwise instability of a 2D solitary wave
(from Émery & Brosse Émery and Brosse (1995), courtesy of Paul Manneville, reproduced
from Kalliadasis et al. (2012)).

But the most challenging problem probably consists in the long-time
evolution of three-dimensional flows, this spatio-temporal disordered
state that is characterized by the presence of three-dimensional coher-
ent structures, the horseshoe-like waves, which interact continuously with
each other as quasi-particles. The precise details of this weakly turbulent
regime still escape understanding. Open questions include the number
per area, or “density”, of the structures that organize the flow.

I have purposely put aside most of the difficulties which arise in prac-
tical applications, where heat and mass transfers are paramount, where
the geometry of the wall is never simple, where the fluid itself is scarcely
Newtonian and shear-thinning, viscoelastic or viscoplatic effects have to
be accounted for as well as the permeability of the substrate. Some of
these complex situations are further considered in the next chapters.
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Solitary-wave solutions to surface equations or two-equation models of film flows are
investigated within the framework of dynamical system theory. The limiting behaviour
of one-humped solitary waves (homoclinic orbits) at large Reynolds numbers is con-
sidered. Their predicted speed is in good agreement with numerical findings. The
theory also explains the absence of solitary-wave solutions to the Benney equation in
the same limit.

1. Introduction

Due to the widespread use of film flows in industrial applications, the stability
of thin-film flows has received much attention, starting with the seminal work by
Kapitza (Kapitza 1948; Kapitza & Kapitza 1949). From a theoretical viewpoint, the
interest of this system stems from the fact that the primary instability is spanwise-
independent (Yih 1955), of long-wavelength, and supercritical. In most relevant flow
regimes, the flow remains close to that of the flat-film solution, called the Nusselt flow,
with thickness h = hN and parabolic velocity profile.

We focus here on liquid films flowing along vertical walls. The usual control para-
meters are then just the Reynolds number R = gh3

N/3ν2 and the Weber number W =
σ/ρgh2

N, comparing inertia to viscous effects, and surface tension to gravity,
respectively. Here g is the gravity acceleration and ρ, ν and σ are the fluid’s density,
kinematic viscosity and surface tension. The proximity to the Nusselt flow is measured
by the so-called film parameter ǫ scaling the typical slope of the film. In flow regimes
of interest, the cross-stream coherence of the flow is ensured by viscosity whereas
the slope is maintained small enough thanks to surface tension effects. For thickness
fluctuations with wavelength ℓ, the order of magnitude of this parameter can be
obtained through the estimate ρg ∼ σ∂xxxh as hN/ℓ ∼ W −1/3. Following Shkadov
(1977), it is then advisable to rescale the streamwise and cross-stream directions
x and y differently, in order to make this slope of order unity, hence defining the
scale ratio κ =W −1/3. In this process the Reynolds number R is replaced by δ = 3R/κ

that compares inertia to surface tension and viscosity directly. (The reduced Reynolds
number originally introduced by Shkadov was δ/45 due to different numerical scaling
choices.) A second parameter η = W−2/3 measuring the intensity of the streamwise
viscous dispersion is then substituted for the Weber number. When surface tension
is strong, the Weber number is large, so that κ and η are small, making typical
instability wavelengths long and keeping viscous dispersion negligible.

The film’s dynamics is essentially that of isolated large-amplitude solitary waves in
the form of a main hump preceded by smaller capillary ripples, which travel much
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faster than linear waves (Alekseenko, Nakoryakov & Pokusaev 1994; Liu & Gollub
1994). Direct simulation of Navier–Stokes equations with a free surface remains
a formidable task, see e.g. Malamataris et al. (2002). This difficulty motivated the
search for reliable reduced models. The smallness of parameter ǫ allows a drastic
simplification of the primitive equations (Shkadov 1967, 1977) which, after elimination
of the pressure, yields the so-called boundary-layer (BL) equations. However this
simplification is still not sufficient since these equations retain the same physical
dimensionality as the primitive equations, which focuses the attention on even more
simplified models where the cross-stream dependence is eliminated through averaging
and/or long-wave expansion.

1.1. Surface equations

By performing a gradient expansion of the set of primitive equations, Benney (1966)
obtained a single evolution equation for the film thickness which, using Shkadov’s
notations, is

∂th + 1
3
∂x

{

h3 + 2
35

δ∂x(h
7) + h3∂xxxh

}

= 0. (1.1)

Benney’s equation is the prototype of so-called surface equations, solely involving the
local film thickness h(x, t) and its derivatives. They are derived by integrating the
(exact) continuity equation across the fluid layer:

∂th + ∂xq = 0, (1.2)

where q =
∫ h

0
u dy is the local flow rate. Approximations enter when truncated expres-

sions for q , obtained e.g. through a long-wavelength expansion, are inserted in (1.2).
Numerical simulations of (1.1) demonstrated the occurrence of non-physical blow-

ups of unsteady solutions at finite time and sufficiently large δ (Pumir, Manneville &
Pomeau 1983; Rosenau, Oron & Hyman 1992). Ooshida (1999) however showed that
the long-wavelength expansion could be regularized by applying techniques inspired
from the Padé approximation method, which lead him to

∂th + 1
3
∂x

{

h3 − δ
[

2
7
∂t (h

5) + 36
245

∂x(h
7)
]

+ h3∂xxxh
}

= 0. (1.3)

Comparing inertial terms (with factor δ) of (1.3) with that in (1.1), one can see the
introduction of a new term involving a time derivative and a change of the coefficient
of the original term from 2/35 to −36/245. Ooshida’s equation does not exhibit finite-
time blow-up and solitary-wave solutions can be obtained for all δ but the predicted
amplitudes and speeds differ from the observed values by a factor of order 2–3.†

1.2. Two-equation models

The validity of the formal expansion leading to (1.1) is restricted to δ ≪ 1, as derived
from the value of ǫ estimated from the cut-off wavenumber ∝ √

R/W , which yields
ǫR ∼ R3/2/W 1/2 ∼ δ3/2 (Ooshida 1999). That expansion further assumes that the velo-
city field remains strictly enslaved to the evolution of the thickness of the film. Surface
equations are thus not expected to describe wave motions at moderate δ accurately.
An alternative to the single-equation approach was proposed in the seminal work by
Kapitza (1948) and later by Shkadov (1967). Assuming that the velocity profile across
the fluid layer remains parabolic in the wavy regime and averaging the momentum
equation across the film, keeping terms up to order ǫ along with the dominant surface

† The equation originally derived by Ooshida contained an extra term −η∂x(h
2∂xth) that accounts

for streamwise dissipative effects, but was later shown to have little effect on the amplitude and
speed of the solitary waves (Ruyer-Quil & Manneville 2004).
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tension term, Shkadov obtained

δ ∂tq = h − 3
q

h2
+ δ

[

6

5

q2

h2
∂xh − 12

5

q

h
∂xq

]

+ h∂xxxh, (1.4)

closing the system in h and q by adding the mass conservation equation (1.2).
Shkadov’s model (1.2), (1.4) does not exhibit non-physical blow-ups of its solutions
but, whereas it works quite well for vertical walls, when adapted to moderately inclined
planes it leads to an incorrect prediction for the instability threshold. A refined deriva-
tion based on a systematic weighted-residual expansion of the velocity field on a poly-
nomial basis led us later to overcome this limitation (Ruyer-Quil & Manneville 2000).
An equation similar to (1.4) was obtained but with slightly different coefficients

δ∂tq =
5

6
h − 5

2

q

h2
+ δ

[

9

7

q2

h2
∂xh − 17

7

q

h
∂xq

]

+
5

6
h∂xxxh. (1.5)

When compared to equations (1.1) and (1.3), models (1.2), (1.4) and (1.2), (1.5) account
for inertial effects in a clearly novel way since the local flow rate q(x, t) now has its
own dynamics instead of being enslaved to h(x, t).

1.3. One-humped solitary waves

Experimentally observed solitary waves can travel without deformation at constant
speed for large distances. Such solutions are computed by changing to a moving
frame with coordinate ξ = x − ct , which transforms the partial differential problem
into an ordinary differential problem. Applying this to (1.1) or (1.3) immediately
leads to a single fourth-order differential equation which can be integrated once,
yielding a three-dimensional dynamical system. Within the two-equation formulation,
the same result is obtained but in two steps. First the mass conservation equation (1.2)
becomes −ch′ + q ′ = 0, where primes denote derivatives with respect to the moving
coordinate ξ . This equation can be integrated to yield

q = c h + q0, (1.6)

where q0 =
∫ h

0
(u − c) dy is an integration constant corresponding to the flow rate in

the moving frame. Next the second equation (1.4) or (1.5) is transformed. In all cases,
the following equation is obtained:

1
3
h3h′′′ + δG(h, c)h′ + 1

3
h3 − ch − q0 = 0. (1.7)

In practice, G – to be specified below – contains all the inertial effects (with factor δ),
while the third-order derivative arises from surface tension effects. The integration
constant q0 can be fixed by imposing h ≡ 1 as a solution to (1.7) since h(ξ ) = H

constant, often taken equal to the unperturbed film thickness hN, is indeed a solution
to the problem. Making the changes h �→ Hh, c �→ Cc, q �→ Qq , preserves the structure
of the equation provided that ξ is also rescaled as ξ �→ Ξξ and the control parameter
δ as δ �→ ∆δ. By substitution one is then led to Ξ =H 1/3 and ∆ =H −11/3, whereas
C = H 2 and Q =H 3. Measuring h in units of H , i.e. with the reference unperturbed
solution corresponding to h ≡ 1, leads to

q0 = 1/3 − c, (1.8)

which will be assumed in the following. Our starting point will thus be

1
3
h3h′′′ + δG(h, c)h′ + H(h, c) = 0, (1.9)

where

H(h, c) ≡ 1
3
h3 − ch − q0 = 1

3
(h − 1)(h2 + h + 1 − 3c), (1.10)
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Figure 1. (a) Speed c and (b) maximum height hm as functions of the reduced Reynolds
number δ for the one-hump homoclinic solutions to the Benney equation (solid line), and to
the Ooshida equation (dashed line). Dotted and dash-dotted lines correspond to the Shkadov
model (1.2), (1.4) and to the modified model (1.2), (1.5), respectively. Filled squares are from
simulations of the BL equations (Chang et al. 1996).

and the functions G(h, c) corresponding to the different cases are

Benney equation (1.1): G(h, c) = 2
15

h6,

Ooshida equation (1.3): G(h, c) = 10
21

ch4 − 12
35

h6,

Shkadov model (1.2), (1.4): G(h, c) = 2
5
q2 − 4

5
cqh + 1

3
c2h2

= 2
5
c2 − 4

15
c + 2

45
− 2

15
c2h2,

Model (1.2), (1.5): G(h, c) = 18
35

q2 − 34
35

cqh + 2
5
c2h2

= 1
35

[

18c2 + 2
3
ch − 12c − 2c2h(h + 1) + 2

]

.

The expression for q given by (1.6) using (1.8) has been used to expand G when
needed.

One-humped solitary wave solutions to (1.1), (1.3), (1.2), (1.4) and (1.2), (1.5) have
been computed within the dynamical-systems setting described in the next section
using the continuation software Auto97 and its package HomCont for the computa-
tion of homoclinic orbits (Doedel et al. 1997). The speed c and maximum height hm

of such waves are displayed in figure 1 as functions of δ.
The turning point of the branch corresponding to Benney’s equation signals the

loss of solution for δ greater than δ⋆ ≈ 0.986, a value that closely corresponds to
the occurrence of blow-ups of unsteady solutions mentioned previously. By contrast,
Ooshida’s equation (1.3) and models (1.2), (1.4) and (1.2), (1.5) possess a one-humped
solitary wave solution for all values of δ, in agreement with what was obtained
by Chang, Demekhin & Kalaidin (1996) through integration of the much more
cumbersome BL equations. While the asymptotic wave speed of order 2.5 reported in
Chang et al. (1996) should be taken with care† the outcome of Ooshida’s regularized

† The apparent good agreement between results from Shkadov’s model and BL equations is
probably fortuitous owing to limited streamwise resolution of the large-δ BL simulations (only 70
Fourier modes for strongly localized solitary waves).
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equation is clearly less satisfactory than the supposedly more reliable results from
the two-equation models. Indeed, in the three cases the speeds of the solitary waves
saturate but those obtained from (1.3) are a factor of more than 2 smaller than
those obtained from models (1.2), (1.4) and (1.2), (1.5) or the BL results. The waves’
maximum heights hm also grow rapidly in the transition region around δ ∼ 1.5–2 and
continue to increase beyond that range for the models and BL solutions, a trend
which is not reproduced by Ooshida’s solutions, suggesting that the shape of the
waves is also not properly approximated by solutions to (1.3) at large δ.

Two different flow regimes were distinguished by Ooshida (1999): the drag–gravity
regime, which takes place for δ ≪ 1 and where the dynamics is governed by a balance
between the viscous drag at the wall and gravity and surface tension, with inertia
playing the role of a perturbation, and the drag–inertia regime at δ ≫ 1, when inertia
effects are dominant. The rest of this note mainly focuses on the solitary-waves’
asymptotic behaviour in the drag–inertia regime, using the tools of dynamical system
theory.

2. Solitary waves and dynamical system theory

2.1. General setting and drag–gravity regime

Equation (1.9) can be recast as a three-dimensional dynamical system:

U1
′ = U2, U2

′ = U3, U3
′ = −3[δG(U1, c)U2 + H(U1, c)]/U 3

1 , (2.1)

in a phase space spanned by U = (U1, U2, U3) where U1 = h, U2 = h′, U3 =h′′, and
solutions to (1.9) are trajectories in that phase space.

Solitary wave solutions correspond to homoclinic orbits connecting fixed points to
themselves. The fixed points of (2.1) are given by U2 = U3 = 0 and

3H(U1, c) = (U1 − 1)
(

U 2
1 + U1 + 1 − 3c

)

= 0, (2.2)

from which it is seen that U1 =1 is a solution arising from the scaling convention
for h. Additional roots are given by

U 2
1 + U1 + 1 − 3c = 0. (2.3)

Accordingly, for c > 1/3, i.e. for waves travelling faster than the average speed of the
Nusselt flow as seen from (1.8), there is one supplementary positive solution:

hII ≡ −1/2 +
√

3(c − 1/4), (2.4)

so that (2.1) then admits two fixed points U I = (1, 0, 0) and U II =(hII, 0, 0). The study
below extends the analysis developed by Pumir et al. (1983) for the Benney equation
with δ ≪ 1 to the models introduced in § 1.1 and § 1.2. The case δ ≫ 1 is considered in
the next subsection.

Let us first consider fixed point U I. The dispersion relation governing infinitesimal
perturbations varying as exp(λξ ) is

λ
3 + 3δG(1, c)λ − 3(c − 1) = 0. (2.5)

Denoting the roots as λi , i = 1, 2, 3, we have λ1 + λ2 + λ3 = 0. Furthermore, one of
the roots λ1 is real and has the sign of the product λ1λ2λ3 = 3(c − 1), thus is positive
when c > 1 and negative when c < 1. The two others roots are complex conjugate
(real) when

∆I = 4δ3G(1, c)3 + 9(c − 1)2 (2.6)
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Figure 2. Locations of the fixed point height hfp and stability diagram as function of the
wave speed c in the case of the Benney equation (1.1).

is positive (negative). In the same way, at the second fixed point U II, we obtain

h3
IIλ

3 + 3δG(hII, c)λ − 3
(

c − h2
II

)

= 0, (2.7)

and the sum of the roots is again zero. One of roots is real and has the sign of c − h2
II,

hence negative when c > 1, since c >hII implies c − h2
II = c − (3c − 1 − hII) = (1 − c) +

(hII −c) < 0. By performing the transformation that allowed us to rescale the equation
in order to reset hII to one, it can be seen that the sign of

∆II = 4δ3G(hII, c)
3 + 9h3

II

(

c − h2
II

)2
(2.8)

is the same as that of ∆I, which finishes to link the properties of U II to those of U I,
just exchanging the dimensions of their stable and unstable manifolds.

The case of the Benney equation (Pumir et al. 1983) is the easiest one, thanks to
the simplicity of the corresponding expression G(h, c) = 2

15
h6, independent of c. Since

G is always positive, both fixed points have one real root and one complex pair for
all c. As shown in figure 2, they are both saddle-foci. An exchange of properties is
seen to take place at c = 1, which makes the case degenerate with hI =hII = 1. As
proven by Gaspard (1993), the existence of homoclinic trajectories for the Benney
equation with c ≈ 1 when δ ≪ 1 stems from the perturbation of conditions ∆I = 0 and
c =1 which define a codimension-two bifurcation at a double stationary-oscillatory
instability with eigenvalues 0, and ± iω. Since G(1, c) is positive, when c > 1 we have
λ1 > 0 while λ2,3 are complex conjugate with negative real values. The homoclinic orbit
thus starts from U I along the one-dimensional unstable manifold Wu

I in a monotonic
way and returns to the fixed point by spiralling along the two-dimensional stable
manifold Ws

I . At finite but small δ such an orbit can be understood as coming from
the homoclinic bifurcation of a limit cycle arising from the Hopf bifurcation of U II

for c > 1, then approaching and finally touching U I as its length is increased. Because
hII > hI = 1, the corresponding wave profile resembles a hump preceded by ripples
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Figure 3. Typical solitary wave solution to model (1.2), (1.5) at large δ, here δ = 10.
(a) Trajectory in the phase space spanned by U = (U1, U2, U3) ≡ (h, h′, h′′). The spiralling
behaviour towards the fixed point U I has been truncated in order to point out the monotonic
starting of the trajectory along Wu

I . (b) Profile of the wave h = h(ξ ) in the frame moving at
speed c, with an indication of the critical level hc to be defined in the text.

corresponding to the spiralling return to U I but the lack of homoclinic orbit for δ ∼ 1
remains unexplained by these considerations.

In the drag–gravity regime, the structure of homoclinic orbits corresponding to soli-
tary waves is easily seen to follow directly from the analysis developed for the Benney
equation since one can check that G(1, c) > 0 for the Ooshida equation, as well as for
the two-equation models (1.2,1.4) and (1.2,1.5). Accordingly, ∆I is positive and the
signatures of the fixed points are the same as for the Benney equation: fixed point
U I is again a saddle-focus with a one-dimensional unstable manifold. Homoclinic
orbits are then expected by continuity with the case of the Benney equation since
the structure of the latter is recovered from these more elaborate models in the long-
wavelength limit.

2.2. Asymptotic behaviour in the drag–inertia regime

As can be seen from figure 1, the speeds of the one-humped solitary wave solutions
to Ooshida’s equation (1.3) and to the two-equation models (1.2), (1.4) and (1.2),
(1.5) saturate as δ increases. This is precisely what we wish to predict from a direct
analysis of the dynamical system in the drag–inertia regime, δ ≫ 1, while attempting
to construct the corresponding homoclinic orbits. As seen in figure 3, these trajectories
have three different parts: two extend the linearized dynamics around U I to the weakly
nonlinear regime and the third, in-between, accounts for the strongly nonlinear region
away from U I where they bend back. In the course of our derivation, we will need
only two empirical results: (i) that apparently smooth one-hump solitary waves do
exist in the limit δ → ∞, with a monotonic rear and an oscillatory front, and (ii) that
their speeds are larger than 1.

In the limit δ → ∞, the linearized dynamics around U I is controlled by (2.5). Setting
λ1 = 2σ and λ2,3 = −σ ± ω, we obtain

ω2 − 3σ 2 = 3 δ G(1, c) and 2σ (σ 2 + ω2) = 3(c − 1).

Assuming c > 1 as suggested by the empirical results, and thus G(1, c) > 0, we have
ω ∼ δ1/2

√
3G(1, c) and σ ∼ δ−1(c − 1)/2G(1, c). Accordingly, the escape from U I along
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the one-dimensional unstable manifold Wu
I is slow and monotonic while the conver-

gence toward U I along its two-dimensional stable manifold Ws
I happens to be a slow

relaxation of fast oscillations, in full agreement with empirical results.
When the trajectory has left the immediate vicinity of U I, one must return to the

complete system. Focusing on the δ ≫ 1 range it may be preferable to rewrite (1.9) as

G(h, c) h′ = −1

δ

[

1
3
h3h′′′ + H(h, c)

]

, (2.9)

with H(h, c) given by (1.10). In the inviscid limit, δ = ∞, one finds G(h, c)h′ = 0, so
that one can define the ‘critical level’ as the root in h of

G(hc, c) = 0, (2.10)

at given c. This condition does not select the value of c, so let us return to the
complete equation for δ < ∞ in the vicinity of h = hc whatever its value.

The homoclinic trajectory starts along the one-dimensional unstable manifold of
U I, with linear eigenvalue 2σ ∼ δ−1 ≪ 1. The dynamics along the unstable manifold
can be studied by changing to the slow variable ξ̃ = ξ/δ, which leads to (2.9) being
rewritten as

G(h, c)h′ = −
[

H(h, c) + 1
3
δ−3h3h′′′], (2.11)

where the prime now denotes differentiation with respect to ξ̃ . The last term in (2.11) is
negligible along the first part of the trajectory corresponding to ξ (or ξ̃ ) coming from
−∞, i.e. the rear of the wave. So, let us develop the argument at dominant order in δ:

G(h, c)h′ = −H(h, c). (2.12)

At given c, G(1, c) > 0 and G(h, c) decreases as h increases, which is easily seen from
the expressions given earlier in the three cases of interest†. The dependent variable h

increases with ξ̃ as long as h′ > 0. Since H(h, c) < 0 for 1 < h < hII where hII is given
by (2.4), h′ is positive as long as h<hII and h < hc. If for the considered value of c,
hII < hc, no singularity occurs and h generically goes through a maximum, so that
it cannot reach hc at least in the rear part of the trajectory, which contradicts the
assumption that we are considering one-hump solitary waves. On the other hand, if
hc is reached first, then a singularity takes place with h′ diverging at ξ̃ = ξ̃c, which now
contradicts the assumption of smooth solitary waves derived from empirical evidence.
The only possibility to remove the singularity is thus that hII = hc, in which case G
and H are both zero for the same value of h, which selects the wave speed c at
dominant order in δ.

Solving

G(hII, c) = 0 (2.13)

for c with hII given by (2.4) yields the asymptotic values c∞ reached by c when the
limit δ → ∞ is taken. The values obtained for (1.3), (1.2), (1.4) and (1.2), (1.5) are

Ooshida’s equation (1.3): c∞ = 9
841

(83 + 5
√

141) ≈ 1.524,

Shkadov’s model (1.2), (1.4): c∞ = 1 + 1/
√

6 +
√

1/2 +
√

2/3 ≈ 2.556,

Model (1.2), (1.5): c∞ = 1
6
(9 +

√

43 + 2
√

37) ≈ 2.738,

in good agreement with the value obtained from the numerics (figure 1a). Considering
the Benney equation (1.1), condition (2.13) can never be achieved since c is not present

† The result is immediate for Shkadov’s model and straightforward for model (1.2), (1.5) since
c > 1 is assumed. For the Ooshida equation the decrease only occurs for h2 > 25

27
c but this does not

change the argument.
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Figure 4. Convergence of the speed of solitary waves toward their asymptotic values c∞ as
a function of δ. (a) Ooshida’s equation (1.3). (b) Shkadov’s model (1.2), (1.4). (c) Model (1.2),
(1.5).

in the expression for G, which explains the lack of solitary wave solutions at large
Reynolds numbers.

Now, when the limit δ → ∞ is not taken but δ just assumed to be large, the singu-
larity in (2.11) remains at h = hc defined by G(h, c) = 0. That singularity will be
avoided again provided that the right-hand side is zero when h = hc. In the region
h ∼ h∞ where h∞ = hII(δ → ∞) as determined above, the shape of the solution has no
reason to change rapidly as δ increases so that one can generically expect h′′′ ∼ h′′′

∞,
where h′′′

∞ 
= 0 is the asymptotic value of the third derivative of h in ξ̃ (the slow
variable). The condition replacing (2.13) is thus

G(hc(δ), c(δ)) = Kδ−3 (2.14)

where K is a numerical constant depending on h∞ and h′′′
∞. Looking for the solution

to equations (2.10) and (2.14) through their expansion around (h∞, c∞) yields

c − c∞ ∝ δ−3, (2.15)

a convergence rate which is verified well by the numerics as shown in figure 4.
While explaining the asymptotic behaviour of the speed of one-hump solitary

waves, the argument says nothing about how the trajectory bends back towards U I,
so it cannot justify their existence that has thus to be taken for granted. This existence
property is likely to be more difficult to prove than in the small-δ range where one
can make use of Gaspard’s result. In this respect, it should be noted that the critical
value hc introduced in the derivation makes sense only on the slow rear part of the
wave, i.e. for the value of ξ̃ which achieves the critical condition for the first time
when increasing from −∞, since h = hc also occurs at least once in the fast oscillating
front part when h decreases from its maximum value hm >hc. However the dominant
term in the equation is then h′′′ and to deal with it one has to turn to an expression
for the dynamics in terms of a fast variable ξ̂ = ξ

√
δ and no singularity occurs when

h ∼ hc. The third derivative term is far from singular as long as h is bounded away
from zero. Were this no longer the case, steady-state waves would no longer exist
and time-dependent solutions would experience blow-up, but this is irrelevant to the
models considered here, as inferred from computational evidence.

3. Summary and conclusion

We have considered one-humped solitary wave solutions to one-equation models
(1.1) and (1.3), and depth-averaged two-equation models (1.2), (1.4) and (1.2), (1.5)
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using the tools of dynamical system theory. These solutions all derive from similar
dynamical systems, differing one from another by the expression for the inertial terms.
Analytic expressions for their speed c∞ have been obtained for the three last models
and the expected cubic convergence c − c∞ ∝ δ−3 has been verified. The lack of one-
humped solitary waves at large δ for the Benney equation (1.1) has been attributed
to the absence of freedom in the expression for G to match condition (2.13).

In view of comparisons with experiments, the wave profile with fast oscillations
preceding the hump shown in figure 3 may seem unrealistic, while such oscillations
are known to be strongly damped by viscous dispersion effects. It is thus essential to
observe that the result obtained here in the restricted case of films over vertical planes
without viscous dispersion extends to the general case, provided that a single equation,
of possibly higher order in time, can be obtained through the procedure leading to
(1.9). Models derived by us (Ruyer-Quil & Manneville 2000) have been shown to yield
results in good agreement with experiments at moderate Reynolds numbers for which
two-dimensional solitary waves are indeed observed. This validation is therefore an
important supplementary step towards the theoretical understanding of the dynamics
of surface waves and the secondary patterning of flows over inclined planes.
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In a previous work, two-dimensional film flows were modelled using a weighted-
residual approach that led to a four-equation model consistent at order ǫ2. A two-
equation model resulted from a subsequent simplification but at the cost of lowering
the degree of the approximation to order ǫ only. A Padé approximant technique is
applied here to derive a refined two-equation model consistent at order ǫ2. This model,
formulated in terms of coupled evolution equations for the film thickness h and the
flow rate q , accounts for inertia effects due to the deviations of the velocity profile from
the parabolic shape, and closely follows the asymptotic long-wave expansion in the
appropriate limit. Comparisons of two-dimensional wave properties with experiments
and direct numerical simulations show good agreement for the range of parameters
in which a two-dimensional wavy motion is reported in experiments.

The stability of two-dimensional travelling waves to three-dimensional pertur-
bations is investigated based on the extension of the models to include spanwise
dependence. The secondary instability is found to be not very selective, which explains
the widespread presence of the synchronous instability observed in the experiments
by Liu et al. (1995) whereas Floquet analysis predicts a subharmonic scenario in
most cases. Three-dimensional wave patterns are computed next assuming periodic
boundary conditions. Transition from two- to three-dimensional flows is shown to be
strongly dependent on initial conditions. The herringbone patterns, the synchronously
deformed fronts and the three-dimensional solitary waves observed in experiments are
recovered using our regularized model, which is found to be an excellent compromise
between the complete model, which has seven equations, and the simplified model,
which does not include the second-order inertia corrections. Those corrections are
found to play a role in the selection of the type of secondary instability as well as of
the spanwise wavelength of the emerging pattern.

1. Introduction

Thin films flowing down inclines have a rich dynamics, extensively studied for a
long time since Kapitza’s experimental and theoretical pioneering work at the end of
the 1940s (Kapitza 1948; Kapitza & Kapitza 1949). Most of the experimental studies
devoted to this problem are referred to in the book by Alekseenko, Nakoryakov &
Pokusaev (1994). More recent experimental results are presented for example in
Nosoko et al. (1996), Vlachogiannis & Bontozoglou (2001), Park & Nosoko (2003),
Nosoko & Miyara (2004), and Argyriadi, Serifi & Bontozoglou (2004). At Haverford,
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Gollub and coworkers have performed an extensive study of water–glycerin mixtures
flowing down weakly inclined planes, see Liu & Gollub (1993), Liu, Paul & Gollub
(1993), Liu & Gollub (1994), and Liu, Schneider & Gollub (1995). Controlling the
entrance flow rate, they applied a periodic forcing at the inlet and observed the res-
ponse of the film at a given frequency. Their experiments give the clearest picture
of the phenomenology of waves on film flows. At frequencies close to but below the
cut-off frequency fc, the primary instability gives rise to saturated two-dimensional
waves.† These waves are slow and present wide bumpy crests and deep thin troughs.
They belong to the γ1 family in the terminology introduced by Chang, Demekhin &
Kopelevitch (1993). At low frequencies, large-amplitude solitary waves in the form
of fast humps preceded by small capillary ripples emerge from the inception region.
Such waves belong to the γ2 family. By identifying the different secondary instabilities
of the saturated two-dimensional waves leading to disorder, the observations of the
Haverford group complete the review by Chang (1994).

The purpose of this paper is to propose an accurate model able to account for
the experiments by Liu et al. (1995) and ultimately obtain a unified theoretical
understanding of the experimental data available in the literature. The separation
of scales implied by the long-wave character of the instability allows one to define
a small parameter ǫ, called the film parameter , basically measuring the slope of the
interface in order of magnitude, and to apply Prandtl’s simplification of the cross-
stream momentum equation, usual in boundary layer theory, which helps one to
eliminate the in-depth pressure distribution dominated here by surface tension and
gravity. This leads to so-called boundary-layer equations, see Chang et al. (1993) for a
detailed presentation. These equations can be viewed as the first step of the long-wave
expansion performed by Benney (1966). Modulations of the film thickness around
the flat-film solution being slow in space and time, the product of the film parameter
ǫ and the Reynolds number R is small as in classical lubrication theory. Inertia is
thus small and consequently the velocity field stays enslaved to the film thickness.
This leads to a single evolution equation for the film thickness h governing the
dynamics of the flow at the onset of the instability. Several one-equation models have
therefore been proposed to investigate the three-dimensional dynamics of film flows
(Roskes 1969; Atherton & Homsy 1976; Roy, Roberts & Simpson 2002; Saprykin,
Demekhin & Kalliadasis 2005). However, for the range of Reynolds numbers where
three-dimensional wavy regimes have been reported by Liu et al. (1995) and Park &
Nosoko (2003), one-equation models have been shown to fail, either leading to an
underestimation of the wave speeds and heights, or exhibiting unphysical behaviours
(Pumir, Manneville & Pomeau 1983; Ooshida 1999; Scheid et al. 2005b).

An alternative to the gradient expansion approach is to make use of the Kármán–
Polhausen averaging technique as in boundary-layer theory (Schlichting 1955). This
technique, which was first proposed by Kapitza (1948) and later re-investigated by
Shkadov (1967), leads to a two-field model involving the film thickness h and the
local flow rate q , for which the velocity field is not taken to be entirely enslaved to the
film thickness. In both cases, a reduction of the dimensionality of the basic equations
is achieved through the elimination of the cross-stream coordinate. The transition of
film flows to three-dimensional dynamics was first theoretically investigated in this

† Two- vs. three-dimensional refers to the fluid velocity dependence. Two-dimensional flow
means spanwise independent (coordinates x and y) while the surface elevation is one-dimensionally
modulated (along x). On the other hand, full three-dimensional flow (x, y, z) involves two-
dimensional thickness modulations (x, z).
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context by Trifonov (1989). Starting from two-dimensional solutions to the Kapitza–
Shkadov model computed at rest in a moving frame, he analysed their stability to
transverse modulations and showed that the subharmonic instability was always the
most dangerous one. The stationary three-dimensional waves bifurcating from the
two-dimensional waves of the γ1 family were shown to have transverse modulations
with troughs that deepen faster than the peaks grow, which eventually produced trains
of isolated depressions, as experimentally observed by Liu et al. (1995). Chang et al.
(1994) attempted to complete Trifonov’s study by using the boundary-layer equations.
Their stability analysis of the γ1 family predicted only the subharmonic instability,
hence a scenario different from the one reported by Liu & Gollub, i.e. not accounting
for the presence of the synchronous mode. Trifonov and Chang et al. both only
considered vertical walls whereas the experiments at Haverford were performed for
an inclined wall where hydrostatic pressure plays a significant role. To our knowledge,
there is as yet no thorough theoretical understanding of the full experimental results
and especially of the three-dimensional synchronous instability of the slow saturated
γ1 waves.

The basic set of equations and boundary conditions governing the problem is given
in § 2.1, followed by a presentation of the boundary layer approximation in § 2.2.
From § 3 to § 5, two-dimensional flows are considered, whereas three-dimensional
flows are investigated in § 6 to § 8. Section 3 is devoted to a short presentation of
the regularization method introduced by Ooshida (1999) to film flows. In § 4, we
start discussing our previous extension (Ruyer-Quil & Manneville 2000) of Shkadov’s
approach (Shkadov 1967) (§ 4.1). An adiabatic elimination of velocity corrections
(§ 4.2 and § 4.3) is next followed by an algebraic Padé-like approach (§ 4.4) aiming
at a model accurate at order ǫ2 that does not suffer from the previous limitations.
The quantitative validation of the models in the two-dimensional wavy regime is
considered in § 5. In § 6, we extend our models to three-dimensional flows. In § 7, we
develop a standard Floquet stability analysis of the γ1 waves corresponding to the
experiments by Liu et al. (1995). Section 8 is dedicated to the numerical simulations
of the models and a comparison with various experimental data existing in the
literature. We first concentrate on the selection of the different three-dimensional
wave patterns resulting from the streamwise-periodic forcing of γ1 waves reported by
Liu et al. (1995) (§ 8.1). The sensitivity to initial conditions is discussed and the results
of the different models are compared. We next use the regularized model to study the
three-dimensional instability of γ2 waves corresponding to the experimental work by
Park & Nosoko (2003) in § 8.2. Finally, the development of natural (i.e. noise-driven)
three-dimensional waves is investigated, from two-dimensional wave trains to three-
dimensional solitary waves, and compared to the experimental data by Alekseenko
et al. (1994) in § 8.3. Concluding remarks and perspectives are presented in § 9.

2. Governing equations

2.1. Primitive equations

The flow of a Newtonian liquid down a plane making an angle β with the horizontal
is considered. Coordinate x defines the streamwise direction, y denotes the direction
normal to the plane, and z is along the spanwise direction (unit vectors i, j , k

respectively); u ≡ u i + v j + w k is the velocity field and p is the pressure. Surface
tension σ , viscosity µ, and density ρ, are assumed to remain constant. The dimen-
sionless form of the governing equations is obtained with length and time scales based
on the kinematic viscosity ν = µ/ρ and the streamwise gravitational acceleration
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g sinβ so that they depend only on the physical properties of the fluid and the
inclination angle. They are

lν = ν2/3(g sinβ)−1/3 and tν = ν1/3(g sinβ)−2/3.

This scaling is appropriate provided that sinβ ∼ O(1), i.e. excluding near-horizontal
configurations, for which instabilities that set in are typical of wall flows, involving
Tollmien–Schlichting waves of shear-viscous origin, see e.g. Floryan, Davis & Kelly
(1987). The flow conditions can further be characterized by the dimensionless thickness
of the flat film solution (Nusselt flow), hN, the inclination B = cot β and the Kapitza
number Γ = σ/[ρν4/3(g sinβ)1/3] which compares the surface stress σ/lν to the viscous
stress µ/tν . Using these scales, the Navier–Stokes equation is

∂t u + u · ∇u = i − B j − ∇p + ∇2u. (2.1)

Above and in the following, ∂α denotes partial differentiation with respect to vari-
able α. The continuity equation for an incompressible flow is

∇ · u = 0. (2.2)

The evolution equations need to be supplemented with boundary conditions at the
bottom plane, y = 0, and at the free surface, y = h. A quantity β evaluated at y = ỹ

will be denoted by β|ỹ . The flow is thus subjected to the usual no-slip condition:

u|0 = 0. (2.3)

The interface is governed by the kinematic condition expressing that the free surface
is a material surface, that is

(∂t + u · ∇)(h(x, z, t) − y) = 0,

or

v|h = (∂t + u|h∂x + w|h∂z)h. (2.4)

Finally, the stress balance at the interface is

−pn + (∇u + ∇uT ) · n = −Γ (∇ · n)n, (2.5)

where n is the unit vector normal to the free surface oriented outwards.
Alternatively, Reynolds and Weber numbers based on the entrance flow rate are

often preferred though they do not clearly separate flow conditions from the fluid’s
physical constants. The relations between these dimensionless parameters are easily
obtained by noticing that, at the entrance, the interface is flat so that the Reynolds
number is related to the dimensionless Nusselt thickness hN through an integration
of the parabolic velocity profile u ≡ y(hN − 1

2
y2) over the depth. This gives

R ≡ qN = 1
3
hN

3, (2.6)

where qN is the dimensionless Nusselt flow rate. Similarly, the Weber number is
related to the Kapitza number through

W = Γ hN
−2. (2.7)

2.2. Lubrication approximation and Shkadov’s scaling

Considering slow space and time variation, the formal parameter ǫ is introduced along
with each derivation in space or time ∂x,z,t ∝ ǫ. The assumed slow space variation
implies that the velocity component normal to the plane v is much smaller than
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the streamwise and spanwise components u and w as derived from the continuity
equation (2.2). Consequently, the inertia terms in the y-component of the momentum
equation are of higher order and can be dropped out. The remaining equation is then
linear and can be integrated to give the pressure distribution up to order ǫ. After
substitution of the latter and some algebra detailed in Ruyer-Quil & Manneville
(1998), approximated streamwise and spanwise momentum equations are obtained.

At this stage it is convenient to proceed to the rescaling of space variables introduced
by Shkadov (1977). At a given inlet flow rate, the natural scale for y is the Nusselt flat
film thickness hN, which yields the changes (y, h) = (hNỹ, hNh̃). Then balancing gravity
forces and surface tension introduces the scale ratio κ =(Γ/h2

N)1/3 ≡ W 1/3. Shkadov
proceeded therefore to a compression of the streamwise and spanwise coordinates and
took the scale for x and z as κ times the scale for y, hence the changes x = κhNx̃ and
z = κhNz̃. Scaling time as t = (κ/hN)̃t and velocity components as u =h2

Nũ, w = h2
Nw̃

and v = (h2
N/κ)ṽ, and dropping tildes, the rescaled streamwise momentum equation is

δ[∂tu + ∂x(u
2) + ∂y(uv) + ∂z(uw)] = 1 + ∂yyu − ζ ∂xh + ∂xxxh + ∂xzzh

+ η[2∂xxu + ∂zzu + ∂xzw − ∂x(∂yv
∣

∣

h
)], (2.8)

where

δ = h3
N/κ = 3R W−1/3 (2.9)

is a reduced Reynolds number. The two other reduced parameters

ζ = B/κ = cot β W −1/3 and η = κ−2 = W −2/3 (2.10)

respectively measure the effect of the gravity component normal to the plane and the
viscous second-order effects. The reduced Reynolds number introduced by Shkadov
was δ/45; the present choice is preferred since it leaves all numerical coefficients in
the equations unchanged.

Except for the presence in (2.8) of the gravity term scaled to unity, the streamwise
and spanwise momentum equations are symmetric under the exchange {u ↔ w,
x ↔ z}. The rescaling of our set of equations leave the no-slip condition (2.3) and the
kinematic condition (2.4) unchanged, whereas the stress balance at the free surface
and in the x-direction is now at O(ǫ2)

∂yu = η [∂zh(∂zu + ∂xw) + 2∂xh(2∂xu + ∂zw) − ∂xv] at y = h. (2.11)

The set of boundary conditions is then closed by the stress balance in the z-direction
obtained from (2.11) through the exchange {u ↔ w, x ↔ z}. The set of equations
obtained are usually referred as the second-order boundary-layer equations since the
assumptions leading to them are essentially the same as those in the derivation of the
Prandtl equation of boundary-layer theory, see Schlichting (1955). Within our basic
assumptions, they are consistent at order ǫ2.

The set of reduced parameters δ, ζ and η is formally equivalent to the set R, B and
W (or hN, B , Γ ). An advantage of Shkadov’s scaling is that it collects all second-order
viscous terms into the sole parameter η. Since these terms are the only physical ones
of order ǫ2 in equations (2.8), (2.11), the truncation of the boundary-layer equations
at first order leaves δ as the only parameter, provided that the wall is vertical (ζ = 0),
as was the case in many studies.
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3. One-equation reduction and Padé-like regularization

Comparisons between existing models and the subsequent discussion about
improvements needed can be made simpler if the spanwise dependence of the fields
is disregarded. Accordingly, from this section up to § 6, we focus on two-dimensional
flows (∂z ≡ 0, w ≡ 0).

A gradient expansion of the basic equations or the boundary-layer equations leads
to identical results up to order ǫ2. Such an expansion of the basic equations was first
done by Benney (1966) and next completed by Lin (1974) and Nakaya (1975). Benney
showed that the velocity field u can be written as a series of polynomials in y, i.e.
u =

∑

n An(h)Pn(y), where the coefficients An are functions of the thickness h and its
space–time derivatives, which means that, in this limit, the velocity field is completely
enslaved to the dynamics of h. Integration of the continuity equation across the layer
leads to the exact mass balance equation:

∂th + ∂xq = 0, (3.1)

where q =
∫ h

0
u dy is the local flow rate. The gradient expansion of the momentum

balance equation next gives an approximate expression for the flow rate as function
of h and its derivatives. This expression can be further simplified by using the zeroth-
order relation q (0) = 1

3
h3 to exchange the time derivative of h with its space derivative

through

∂th = −h2∂xh, (3.2)

which is the equation governing kinematic waves at the interface (Whitham 1974).
Gjevik (1970, 1971) thus studied the following equation:

∂th + 1
3
∂x

{

h3 + 2
35

δ∂x(h
7) − 1

4
ζ∂x(h

4) + h3∂xxxh
}

= 0, (3.3)

generally called the Benney equation.
The relevance of this equation beyond a narrow neighbourhood of the threshold is

first limited by the fact that linear stability properties of the flat film solution rapidly
depart from those derived from the exact Orr–Sommerfeld (OS) equation, i.e. the
range of unstable wavenumbers predicted by (3.3) is much wider than that emerging
from the solution of the OS equation. This first limitation seems related to the neglect
of the second-order streamwise dissipative terms as shown by Panga & Balakotaiah
(2003). Taking only them into account, Panga & Balakotaiah obtained an equation
which, within current scalings, is

∂th + 1
3
∂x

{

h3 − 1
8
δ ∂t (h

5) − 9
280

δ∂x(h
7) − 1

4
ζ∂x(h

4) + h3∂xxxh

+ η[3h4∂xxh + 7h3(∂xh)2]
}

= 0. (3.4)

Panga & Balakotaiah avoided the exchange of the time and space derivatives through
(3.2) and showed that the exact OS results are then recovered with better accuracy.
Unfortunately, this correction does not cure the second well-known limitation of the
Benney equation (3.3), that is, the existence of finite-time blow-up of its solutions
beyond some limiting value of the Reynolds number not far beyond threshold (Pumir
et al. 1983; Scheid et al. 2005b) since (3.4) also suffers from finite-time blow-up of
solutions somewhat beyond threshold (Ruyer-Quil & Manneville 2004). Pumir et al.
(1983) showed in particular that the finite-time blow-up of time-dependent solutions
closely corresponds to the loss of one-hump solitary waves, i.e. homoclinic orbits in
the terminology of dynamical systems theory. Our experience with similar but more
complicated equations (Ruyer-Quil 1999) suggests this that loss of what is called the
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‘principal homoclinic orbit’ by Glendinning & Sparrow (1984) is accompanied by a
blow-up of time-dependent solutions.

In order to remedy this deficiency, Ooshida (1999) developed a resummation method
inspired by the Padé approximant technique. The latter relies on the idea that the
divergence of a power series Q =

∑

k Qkx
k is due to the hidden presence of poles. This

leads one to express Q in an approximate way as a ratio F/G of polynomials F and
G where the zeros of G are assumed to capture the causes of the divergence. Adjusting
the coefficients introduced in F = F0 + F1x + F2x

2 . . . and G =1 + G1x + G2x
2 + . . .

so that the terms in the series Q are reproduced exactly up to some given degree is
the essence of the approximation, the ratio F/G being used in place of Q. In this
algebraic implementation, the degrees of the polynomials F and G are open to free
choice, the number of coefficients to be determined remaining compatible with the
number of coefficients available in the series Q.

Ooshida translated this idea to the present case by introducing a regularization
operator G = I + G(1) + G(2), where I is the identity, G(1) =G(1)(h)∂x , and G(2) =
G(2)(h)∂xx , so that the expansion of q as a function of h and its derivatives from the
long-wave expansion, formally written as q ≡ Q(h), is rewritten as G−1F. Ooshida
chose to adjust ‘coefficients’ G(1) and G(2) in G so that GQ = F could be reduced to
q (0) + F(1), i.e. F(2) ≡ 0, which yielded

G = 1 − 10
21

δh4∂x − ηh2∂xx .

Computation of the regularized identity ∂x(GQ) ≡ ∂xF with the replacement of ∂xQ
by −∂th using (3.1) led him to the equation

∂th + 1
3
∂x

{

h3 − 3η h2∂xth − 2
7
δ ∂t (h

5) − 36
245

δ∂x(h
7) − 1

4
ζ∂x(h

4) + h3∂xxxh
}

= 0. (3.5)

Ooshida’s formulation remedies the possible blow-up of time-dependent solutions
observed with (3.3) but (3.5) grossly underestimates the amplitudes and speeds of the
solitary waves. Panga, Mudunuri & Balakotaiah (2005) attempted to apply Ooshida’s
idea to regularize equation (3.4) which led them to an expression for q as function of
h and ∂tq , which can be recast as an evolution equation for q:

δ ∂tq = 8
5
h − 24

5

q

h2
− 9

25
δh4∂xh − 8

5
ζh∂xh + 8

5
h∂xxxh + η

[

56
5
h(∂xh)2 + 24

5
h2∂xxh

]

. (3.6)

Equation (3.6) must be completed by the mass conservation equation (3.1) and is
referred to hereafter as the PMB model. As a consequence, the flow rate q is no
longer slaved to the evolution of the thickness h which indicates that q must be
recognized as an independent degree of freedom (Balakotaiah & Mudunuri 2004).

Once it is recognized that some freedom should be given back to the velocity
field, this idea should be implemented from the beginning, which calls for a different
approach if we require accurate modelling in the largest possible range of Reynolds
numbers and not only in the neighbourhood of the instability threshold, i.e. also in
what Ooshida called the ‘drag–inertia’ regime that takes place when inertia plays a
more significant role at large δ, as opposed to the ‘drag–gravity’ regime taking place
at small δ and corresponding to a balance between viscous drag on the wall and
gravitational acceleration, for which the classical long-wave expansion is expected to
be valid.
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4. Weighted residual modelling

4.1. General formulation

The difficulty with modelling in terms of a single equation is that keeping a single
dependent variable, namely h, is not sufficient to account for the dynamics of the film,
though the perturbations may well remain long wave. At every step of the asymptotic
expansion, the velocity profile is assumed to have no dynamics of its own but to be
strictly enslaved to h by equations where the time dependence only comes through
that of h. This is justified only as long as the evolution rate of velocity modes, of
order unity due to the viscous damping over the thickness, can be considered as large
when compared to the evolution rate of h, of order ǫ. Beyond threshold (ǫ finite) this
assumption fails, which can be interpreted as a sign of a revolt of enslaved degrees
of freedom. The dynamics of the flow can then no longer be described through
the evolution of a single field for the film thickness and other variables must be
considered, e.g. the local flow rate q , the stress at the wall, etc.

This discrepancy motivated two of us to re-investigate Shkadov’s approach
(Shkadov 1967) and pursue his original suggestion of expanding the velocity field
on a polynomial basis (Ruyer-Quil & Manneville 2000). The first term of this
expansion was taken to be g0(y) = y − 1

2
y2, the flat-film parabolic velocity profile.

We showed that first-order corrections to the parabolic velocity distribution could be
described entirely with the help of only two more polynomials of degree four and
six, g1 and g2, the definition of which are given in Appendix A. We next proceeded
to a Galerkin projection retaining terms up to order ǫ2. Writing the streamwise
momentum balance formally as BL(u) = 0, the residuals are Ri(u) = 〈BL(u), gi(y)〉,
where 〈f, g〉 =

∫ h

0
f g dy refers to the scalar product derived from the plain L2 norm.

Setting the three residuals Ri(u) to zero formed a system of three evolution equations
for the three unknowns q , r and s, whose extension to the three-dimensional case is
given in Appendix C as (C 1 a–c). System (C 1) is completed with the mass balance
(3.1), and referred hereafter as the complete second-order model.

The theoretical analysis and the numerical integration of models such as the
complete model are indeed simpler than the corresponding study of the full Navier–
Stokes problem, or even of the boundary-layer formulation. Handling the four fields of
(3.1), (C 1) still remains a difficult task, and a reliable two-field formulation consistent
at order ǫ2 would be welcome. At this stage setting r and s to zero in R0 lowers the
order of the approximation. This procedure leads to a simplified averaged momentum
equation

δ ∂tq =
5

6
h −

5

2

q

h2
+ δ

[

9

7

q2

h2
∂xh −

17

7

q

h
∂xq

]

−
5

6
ζh∂xh +

5

6
h∂xxxh

+ η

[

4
q

h2
(∂xh)2 −

9

2h
∂xq∂xh − 6

q

h
∂xxh +

9

2
∂xxq

]

. (4.1)

The set of equations to be solved is next closed by the mass conservation equation
(3.1). Our simplified model was shown to predict the correct linear stability threshold.
However, contrary to the gradient expansion of the complete model, the gradient
expansion of (4.1) failed to reproduce the exact expression of the flow rate q as
function of h at order ǫ2. As a matter of fact, results differ only through the
coefficient of the first inertia term, which is 212

525
instead of the exact value 127

315
(Ruyer-

Quil & Manneville 2000). One should not be fooled by the apparent smallness of
the differences between these coefficients. As shown in the next subsection, if small
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numerical coefficients are associated with the second-order inertia terms, they contain
nonlinearities of high order, the effects of which become noticeable for δ of order
unity or higher.

We develop below a consistent elimination strategy for r and s aimed at a two-
equation model taking an exact account of the gradient expansion up to order ǫ2.

4.2. Reduction of the full second-order model

A simple argument can be given here to justify the pertinence of the elimination of
the corrections to the parabolic velocity distribution, r and s. Since viscosity acts so
as to ensure the in-depth coherence of the flow, fluctuations of the flow field varying
rapidly in the wall-normal direction are efficiently damped by viscosity, so that r

and s corresponding to high-degree polynomials should relax rapidly towards the
values forced by the evolution of h and q . This can be observed simply by linearizing
system (C 1) around the Nusselt flow in the zero-wavenumber limit, that is, assuming
no spatial variations. The mass balance (3.1) thus implies a constant thickness. Writing
q =1/3 + εq̃ , r = εr̃ and s = εs̃ where ε ≪ 1, we obtain

δ
dṼ

dt
= M Ṽ , (4.2)

where Ṽ = (q̃, r̃, s̃)t and M is a 3 × 3 matrix whose eigenvalues λi are respectively
−2.47, −22.3, and −87.7. Because of the large gap between λ1 and (λ2, λ3), it is
obvious that, at low Reynolds number and provided that the long-wave assumption
is valid, the dynamics of the flow is governed by the neutral mode associated with
the free-surface elevation and the eigenmode corresponding to λ1, with eigenvector
(q̃, r̃, s̃)t = (1.00, −1.33 10−2, 1.38 10−4)t . Consequently and given that the associated
eigenvector is nearly aligned with the first vector of the natural basis, r and s are
truly slaved to the dynamics of the thickness h and the flow rate q , at least close to
the threshold.

Having justified the elimination of r and s, let us go back to its practical imple-
mentation. Fields r and s are corrections to the flat-film parabolic profile cor-
responding to g0. So, they are at least first-order terms produced by the deformation
of the free surface. In the first residual R0 associated with the weight g0, r and s appear
through inertia terms involving their space and time derivatives or through products
with derivatives of h and q , which are terms of order ǫ2. Indeed, the corrections to the
velocity field cannot appear in R0 at lowest order since the evaluation of the viscous

term
∫ h

0
g0(y/h)∂yyu dy yields 1

2
∂yu|y =h −q/h2, owing to the definition of q =

∫ h

0
u dy,

and that 1
2
∂yu|y =h is already of order ǫ2, as seen from (2.11) that expresses the stress

balance at the free surface.
At this stage, it remains to determine the expression for r and s as functions of

h, q and their derivatives truncated at order ǫ. Such relations can easily be obtained
by dropping all second-order terms from the two last residuals R1 and R2 and then
solving for r and s.

r = δ

[

1

210
h2∂tq −

19

1925
q2∂xh +

74

5775
hq∂xq

]

+ O(ǫ2), (4.3a)

s = δ

[

2

5775
q2∂xh −

2

17325
hq∂xq

]

+ O(ǫ2). (4.3b)
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Figure 1. (a) Speed c and (b) amplitude hm of the principal homoclinic orbits as functions
of the reduced Reynolds number δ. The wall is vertical and streamwise viscous dissipation
is omitted (ζ = η = 0). Curve 1: complete second-order model (3.1), (C 1); 2: simplified model
(3.1), (4.1); 3: (3.1), (4.4) with K given by (4.5); 4: with K given by (4.7); 5: with K given by
(4.8); 6: regularized model (3.1), (4.15); 7: PMB model (3.1), (3.6); filled squares: solutions to
the first-order boundary-layer equations after Chang et al. (1996).

Substitution of (4.3) into R0 finally gives

δ ∂tq =
5

6
h −

5

2

q

h2
+ δ

[

9

7

q2

h2
∂xh −

17

7

q

h
∂xq

]

+ δ2K(h, q)

+ η

[

4
q

h2
(∂xh)2 −

9

2h
∂xq∂xh − 6

q

h
∂xxh +

9

2
∂xxq

]

−
5

6
ζh∂xh +

5

6
h∂xxxh, (4.4)

where the additional terms arising from the elimination of r and s are second-order
inertia terms all collected in K:

K =
1

210
h2∂t tq −

1

105
q∂xh∂tq +

1

42
h∂xq∂tq +

17

630
hq∂xtq +

653

8085
q(∂xq)2

−
78

2695

q3

h
∂xxh −

26

231

q2

h
∂xh∂xq +

386

8085
q2∂xxq +

104

2695

q3

h2
(∂xh)2. (4.5)

4.3. Effective inertial correction terms

Obviously, these corrections are highly nonlinear. They also contain time derivatives
that are difficult to handle, at least in numerical simulations. Fortunately, the zeroth-
order relation between q and h

q = 1
3
h3, (4.6)

allows us to simplify the expression for K. Using also ∂th = −h2∂xh + O(ǫ2), we
obtain the more compact expression

K = − 1
630

h7(∂xh)2. (4.7)

The behaviour of the solutions to equation (4.4) where the inertia corrections K
are given by (4.5) or (4.7) have been tested in the drag–inertia regime by computing
the one-hump solitary-wave solutions for a vertical wall and neglecting second-order
viscous effects (η = 0) as explained at the beginning of § 5. Figure 1 displays the speed
and amplitude of the solitary waves as a function of the reduced Reynolds number δ.
They are compared to the solutions to the complete second-order model (3.1), (C 1)

2.6. B. SCHEID ET AL., J. FLUID MECH. (2006) 67



Wave patterns in film flows 193

as curves 1, to the simplified model (3.1), (4.1) as curves 2, to the PMB model (3.1),
(3.6) as curves 7, and to the results obtained by Chang, Demekhin & Kalaidin (1996)
with the first-order boundary-layer equations as filled squares.

The simplified model and the complete second-order model both exhibit unique
one-hump solitary-wave solutions at given δ and have speed in reasonable agreement
with the results of Chang et al. On the contrary, the branch of principal homoclinic
solutions is seen to turn back in the transition region between the drag–gravity and
the drag–inertia regimes (δ ∼ 1) with both expressions (4.5) and (4.7) for K (curves 3
and 4 in figure 1). This unphysical behaviour is similar to the one encountered with
the Benney equation (3.3) and is likely to be related to the high-degree nonlinearities
present in (4.5) and (4.7). The same difficulty as in the case of surface equations arises
and calls for a formulation in which inertia effects are accurately accounted for in the
widest possible range of reduced Reynolds numbers δ.

Other forms of the second-order inertia corrections K can be obtained by using
the flat-film relation (4.6). For example, Roberts (1996) has applied a centre manifold
analysis to the problem of a falling film and derived a second-order model in terms
of the film thickness h and the depth-averaged velocity equivalent to the flow rate q .
His approach relied on the linear viscous dissipating modes of the streamwise-
uniform film in the zero-wavenumber limit, which is basically a reduction of the
slow time and space evolution of the film to the two first eigenmodes (h, u) ∝ (1, 0)
and (h, u) ∝ (0, sin(πy/(2h))). His model is similar to those obtained using the
classical depth-averaged method with coefficients close to those appearing in (4.4).
As noticed by Ooshida (1999), this agreement can be understood from the fact that
the velocity profile urob ∝ sin(πy/(2h)) is very close to the parabolic profile since
〈urob, g0〉/

√

〈urob, urob〉〈g0, g0〉 ≈ 0.999. Inertia corrections obtained by Roberts are

K =
1

100

(

− 0.1961
q3

h2
(∂xh)2 − 1.78

q2

h
∂xh∂xq + 0.1226 q(∂xq)2

− 1.792
q3

h
∂xxh + 0.7778 q2∂xxq

)

. (4.8)

The results obtained with this expression for K are also displayed in figure 1 as
curves 5. A loss of solutions is once more observed at δ ≈ 2, a failure due to the fact
that K is obtained from a perturbation method which is strictly valid only in the
drag–gravity regime where inertia has a perturbative role only. Our derivations of
(4.4) with K given by (4.5) or (4.7) are also based on perturbative techniques applied
to the Nusselt flat-film solution. However, the presence of the principal homoclinic
solutions to the simplified model (3.1), (4.1) for all δ shows that it should be possible
to describe the drag–inertia regime at low cost in terms of a model including the
second-order inertial effects and involving h and q only.

4.4. Padé-like regularization

Here, we follow a procedure more closely inspired by the Padé approximant technique
than Ooshida’s, by looking for a kind of algebraic preconditioner able to remove the
dangerous second-order terms of inertia origin (in δ2). Instead of thinking in terms of
an expansion of the flow rate q , we consider the residual R0 obtained by averaging
the momentum equation (2.8) with weight g0, which can be written as a series in
ǫ, R(0)

0 + R(1)
0 + R(2),η

0 + R(2),δ
0 . In the second-order terms of this expansion, we have

isolated those having a viscous origin (superscript η) from those accounting for the
convective acceleration induced by the deviations of the velocity profile from the
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parabolic shape (superscript δ). The simplified equation (4.1) is recovered just by
neglecting R(2),δ

0 . So R0 is sought in the form G−1F where G is now simply a function

of h, q and their derivatives, and F is reduced to R(0)
0 + R(1)

0 + R(2),η
0 , i.e. the residual

that was obtained assuming a parabolic velocity profile. Setting F = GR0 to zero
gives

δ G(h, q)

∫ h

0

g0(y/h)[∂tu + u∂xu + v∂yu] dy

= G(h, q)

∫ h

0

g0(y/h)
{

1 + ∂yyu − ζ∂xh + ∂xxxh + η(2∂xxu − ∂x[∂yv|h])
}

dy, (4.9)

where inertia terms isolated on the left-hand side are

δG

∫ h

0

g0(y/h)[∂tu + u∂xu + v∂yu] dy

= δG

{[

2

5
∂tq −

18

35

q2

h2
∂xh +

34

35

q

h
∂xq

]

−
2

5
δK

}

≡ G
{

R(1),δ
0 + R(2),δ

0

}

, (4.10)

which we want to identify with

δ

[

2

5
∂tq −

18

35

q2

h2
∂xh +

34

35

q

h
∂xq

]

≡ R(1),δ
0 . (4.11)

This leads to taking the regularization factor as

G =

[

1 +
R(2),δ

0

R(1),δ
0

]−1

. (4.12)

An asymptotically equivalent expression for G can be found using q = h3/3 + O(ǫ),
and ∂th = − h2∂xh + O(ǫ2). We then obtain

R(1),δ
0 = −

2

15
δh4∂xh + O(ǫ2) and R(2),δ

0 =
δ2

1575
h7(∂xh)2 + O(ǫ3),

which, when substituted in (4.12), yields

G =

[

1 −
δ

210
h3∂xh

]−1

+ O(ǫ2). (4.13)

In order to lower the degree of nonlinearity as much as possible, G is finally
rewritten in terms of the local slope ∂xh and the local Reynolds number δ q:

G =

[

1 −
δ

70
q∂xh

]−1

. (4.14)

The resulting set of equations is

δ ∂tq = δ

[

9

7

q2

h2
∂xh −

17

7

q

h
∂xq

]

+

{

5

6
h −

5

2

q

h2
+ η

[

4
q

h2
(∂xh)2 −

9

2h
∂xq∂xh − 6

q

h
∂xxh +

9

2
∂xxq

]

−
5

6
ζh∂xh +

5

6
h∂xxxh

}[

1 −
δ

70
q∂xh

]−1

, (4.15)

along with the mass balance equation (3.1).
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Hereafter, the system (3.1), (4.15) will be referred to as the regularized model.
Homoclinic orbits corresponding to one-hump solitary-wave solutions to (3.1), (4.15)
have been computed and are displayed as curves 6 in figure 1. Non-physical turning
back of the curves has never been observed for all the values of δ studied. Moreover,
system (3.1), (4.15) is fully consistent at second order with the Benney expansion and
takes into account modifications of the momentum balance of the film induced by
the deviations of the velocity profile from the parabolic Nusselt solution.

5. Validation

Periodic waves at rest in their moving frame ξ = x − c t , where c is the wave
speed, have been computed by continuation using Auto97, which, together with its
package HomCont (Doedel et al. 1997) has been used extensively to obtain numerical
results. Their characteristics are then compared to available DNS results (Salamon,
Armstrong & Brown 1994; Ramaswamy, Chippada & Joo 1996; Malamataris,
Vlachogiannis & Bontozoglou 2002) and laboratory experiments (Liu & Gollub
1994). For stationary waves, the mass conservation equation (3.1) can be integrated
once to give

q = c h + q0, (5.1)

where q0 is an integration constant corresponding to the conservation of the flow

rate in the moving frame. Denoting by 〈·〉 =Λ−1
∫ Λ

0
(·) dξ the average operator over a

wavelength Λ in the moving frame, the constant q0 is adjusted at every step of the
continuation procedure to ensure either 〈h〉 =1 or 〈q〉 = 1/3. The constant-thickness
formulation corresponds to the periodic-boundary conditions often used in numerical
simulations, whereas the constant-flux formulation is encountered when the spatial
development of a time-periodic signal is considered (Scheid et al. 2005b).

5.1. Comparisons to direct numerical simulations

Salamon et al. (1994) have performed a systematic analysis of the two travelling-wave
branches of slow γ1 and fast γ2 solutions observed experimentally. Their numerical
scheme enforces a constant averaged thickness 〈h〉 = 1. In figure 2, we reproduce the
bifurcation diagrams in the parameter space (speed c, wavenumber k) for the largest
value of the reduced Reynolds number δ tested by these authors, δ = 2.79 (Salamon
et al. 1994, figures 15 and 17). For weak viscous diffusion η = 0.015, the γ1 family
emerges from a Hopf bifurcation of the Nusselt flat-film solution at the marginal
wavenumber kc ≈ 1.02, whereas the γ2 family bifurcates from the γ1 branch by period
doubling at a wavenumber close to kc/2. At a larger viscous diffusion η = 0.075,
the situation is reversed. Computations with our regularized model (3.1), (4.15) are
compared to findings by Salamon et al. in figure 2, showing excellent agreement.
Wave profiles and streamlines in the moving frame of reference are also displayed. As
can be observed from the DNS by Salamon et al. the capillary oscillations following
the γ1 waves or preceding the γ2 waves are damped by viscous diffusion (Salamon
et al. 1994, figures 16 and 18).

Travelling waves obtained by DNS when a periodical forcing is simulated at inlet
correspond to the constant-flux formulation 〈q〉 = 1/3. Our results are displayed in
figure 3 together with the corresponding numerical solution obtained by Malamataris
et al. (2002) and the results from the PMB model. Parameters are those of the
experiment by Liu & Gollub (1994) with β = 6.4◦, R =19.33, Γ = 526, and forcing
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Figure 2. Travelling-wave families γ1 and γ2. Dashed lines refer to solutions to the regularized
model (3.1), (4.15), whereas solid lines refer to the results from DNS (after Salamon et al.
1994). Left: speed c as function of the wavenumber k; right: wave profiles and streamlines
in the moving frame of reference for wave families γ1 (labels a to d) and γ2 (labels e to
h). (i) δ = 2.79, ζ = 0 and η = 0.015 (R =7.59 and Γ = 4374); (ii) δ = 2.79, ζ = 0 and η =0.075
(R =3.40 and Γ = 228.8).
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Figure 3. Travelling wave train approaching solitary waves corresponding to an experiment by
Liu & Gollub (1994). The forcing frequency is f =1.5 Hz. Parameters are β = 6.4◦, R =19.33
and Γ = 526 (δ = 17.7, ζ = 2.72 and η = 0.093). The thin solid line shows the numerical
computation by Malamataris et al. (2002). Results of the regularized (simplified) model
correspond to the thick solid (dashed) line. The solution to the complete second-order model
is the dotted line and the solution to the PMB model is the dashed-dotted line.
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frequency f =1.5 Hz. Results of our models are in excellent agreement with the DNS
results, predicting a wave amplitude that is slightly smaller than the one given by
the Navier–Stokes equations. The complete model gives the closest answer whereas
the amplitude of the solution to the simplified model is significantly lower. As could
be expected, the prediction of the regularized model lies somewhere in between.
Regarding wavelengths, the regularized model gives a value closer to that given
by Malamataris’ computation than the simplified and the complete second-order
models. Sharing the main characteristics of the solitary waves obtained by Ooshida,
unsurprisingly the solutions to the PMB model (3.1), (3.6) capture their properties
much less faithfully than those obtained from our regularization procedure.

Malamataris et al. (2002) questioned the similarity assumption of a parabolic
velocity profile. They showed that significant differences could be found in the case
of large solitary waves. Deviations from the parabolic profile were mostly located
in front of the main hump and behind the first capillary ripple, where gradients of
the film thickness are the largest. They also proved the occurrence of a counterflow
(u < 0) in the region bracketing the thickness minimum. This feature, confirmed in
the experiments by Tihon et al. (2003), is reproduced well in our models. We have
reconstructed the streamwise velocity distributions based on expansions truncated
beyond the three first polynomials g0, g1 and g2 (see Appendix A for details) at
regularly spaced locations around that minimum and for the wave train shown in
figure 3. Corresponding profiles are displayed in figure 4 for the complete second-
order model (b, d) and the regularized model (a, c). The presence of a counterflow
is recovered in both cases. The similarity with DNS results is particularly convincing
for the complete second-order model both at behind the first ripple and in front of
the main hump (figure 4 compared to figure 7 in Malamataris et al. (2002); even
the two inflection points they observed are recovered). For the regularized model,
comparisons remain satisfactory everywhere except at the front of the main hump
where the gradients are the largest. This implies that a reconstruction of the velocity
field based on the expressions at first order for r and s given by (4.3) is no longer
sufficient there, whereas the agreement is re-obtained once the slope of the interface
is less steep.

The streamlines in the moving frame of reference, i.e. the isocontours of the
streamfunction

∫ y

0
(u − c) dy, show little difference whether the complete or the

regularized model is considered (the streamlines computed with the regularized model
are shown in figure 4e). The reason is that, at the thickness minimum where the relative
deviations away from the parabolic profile are noticeable, the streamwise velocity u is
also small, so that in a reference frame moving at the speed of the wave, the velocity
u − c remains everywhere close to that corresponding to a parabolic profile.

5.2. Comparisons to experiments

To complete the validation of our models, we present results for the speeds and
amplitudes of solitary waves corresponding to experimental conditions considered by
Liu & Gollub (1994) for an inclined plane at a fixed angle β = 8◦ using a glycerin–water
mixture (Γ = 488), and at different Reynolds numbers. The experimental findings are
compared to the corresponding travelling-wave results in figure 5. Solutions to (4.1),
(4.15), and (C 1) completed with (3.1) were obtained by varying the wavelength and
imposing a constant average flow rate 〈q〉 = 1/3. In order to obtain the γ2 branch, we
proceeded by starting from the linear threshold for a vertical film and high viscous
second-order diffusion η (or low Γ ) since it is known that the γ2 waves then emerge
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Figure 4. Streamwise velocity profile at regularly spaced locations from the front of the
solitary hump (a, b) to the back of the first capillary ripple (c, d). (a, c) Solutions to the regu-
larized model (3.1), (4.15); (b, d) solutions to the complete second-order model (3.1), (C 1); (e)
wave profile and streamlines corresponding to the regularized model. Extremal positions of
the given velocity profiles are indicated by dashed lines.

from the flat-film solution through a Hopf bifurcation. We next adjusted the slope
(β) and surface tension (Γ ) to the desired values. The γ2 branch of solutions is
found to extend from high speed to low speed, where it terminates as a negative
solitary pulse. The curves globally have a linear shape in agreement with the linear
relation between maximum height and wave speed obtained by Chang (1986) for
solitary waves through a normal form analysis of the Kuramoto–Sivasinsky equation.
Both the regularized model and the complete second-order model predict maximum
heights larger than the experimental findings, which is in agreement with the DNS of
the primitive equations that also predicted larger amplitudes than the experimental
wave profiles observed by Liu & Gollub, see Ramaswamy et al. (1996); Malamataris
et al. (2002). This peculiarity could be a consequence of the neglect of the transverse
curvature of the humps, or else a slight smoothing of the wave crests linked to
the experimental measurement of the thickness. The near-perfect agreement between
experiments and the results from the simplified model (4.1) is therefore accidental.
For comparison, the results from the PMB model (3.1), (3.6) are also reported in
figure 5(a) showing again less convincing agreement than with our models.
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Figure 5. Phase speed of solitary-like wave trains as a function of their peak height compared
to the experimental data provided by Liu & Gollub (1994) (shown as symbols) at β =8◦,
Γ = 488. (a) R = 20.1, comparison to the corresponding travelling wave families computed
with the complete second-order model (3.1), (C 1) (solid line), the regularized model (3.1),
(4.15) (dashed line), the simplified model (3.1), (4.1) (dotted line) and the PMB model (3.1),
(3.6) (dashed-dotted line); (b) comparison to the solutions of the regularized model for different
Reynolds numbers, R = 11.9 (1, +), 13.6 (2, × ), 16.8 (3, ⊙), 18.7 (4, �) and 20.1 (5, �).

From the above comparisons, it can be concluded with some confidence that our
models predict correctly the shape, speed and maximum height of the solitary waves
at least in the range of parameters explored by Liu & Gollub.

6. Two-dimensional modelling of three-dimensional film flows

We now turn to the three-dimensional formulation of the problem, and look for
two-dimensional equations in the streamwise (x) and spanwise (z) coordinates that
mimic the full three-dimensional motion of the fluid. The flat-film solution is a parallel
flow with no spanwise component, i.e. w =0. A valid approach is therefore to consider
w of order ǫ, with the meaning that spanwise flows are triggered by the modulations of
the free surface. Ruyer-Quil & Manneville (2000) used this assumption to simplify the
cumbersome system of equations which models the three-dimensional flow dynamics.
However, considering the continuity equation (2.2), the least-degeneracy principle
suggests w be taken as an O(1) quantity like u and this is the approach we will take
below.

Following the same procedure as for the two-dimensional case, one finds that six
fields are needed to account for the velocity components at second order: q , r , s,

the spanwise flow rate qz =
∫ h

0
w dy, and the corrections rz and sz. For symmetry,

the streamwise flow rate and the corrections to the streamwise parabolic velocity
profile are hereafter denoted by qx ≡ q , rx ≡ r and sx ≡ s. The boundary-layer
equations are then averaged using the Galerkin method by writing residuals 〈Eα, gi〉

where 〈f, g〉 =
∫ h

0
f g dy, while α = x and α = z refer to the streamwise and spanwise

momentum balances, respectively. These residuals yield a system of six evolution
equations for h, qα , rα and sα completed with the mass balance obtained through
integration of (2.2) across the layer depth ∂th + ∂xqx + ∂zqz = 0. The full expression
of the complete model is very cumbersome and is provided in Appendix C as
equations (C 1). First-order expressions for the four fields rα , sα are readily obtained
from the truncation at order ǫ of the residuals corresponding to the weights g1 and
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g2. Substitution of these expressions in the first two residuals R0,α = 〈Eα, g0〉 produces

second-order inertia terms, formally written as R(2),δ
0,α . These terms contain high-

order nonlinearities that we next eliminate by adjusting algebraic preconditioners.
So residuals R0,α are sought in the form G−1

α Fα where the Fα correspond to the
expressions for the residuals R0,α when a parabolic velocity profile is assumed, i.e.
when corrections rα and sα are neglected. Isolating inertia terms, we thus set

Gα

(

R(1),δ
0,α + R(2),δ

0,α

)

= R(1),δ
0,α , (6.1)

where superscripts refer to first-order and second-order inertia terms. Zeroth-order
expressions for the flow rates qx = h3/3 + O(ǫ) and qz = O(ǫ), i.e. the gravity-oriented
(base) flow, are next invoked to reduce the degree of nonlinearity of the regularization
factors Gα . Consequently, the inertia terms R(2),δ

0,z induced by deviations of the spanwise

velocity field from the parabolic profile appear asymptotically at order ǫ3. So that
we merely obtain Gz =1 + O(ǫ2). Similarly, the asymptotic expression for R(2),δ

0,x

corresponds exactly to the one obtained for a spanwise-independent flow. Hence we
have Gz ≡ 1 and Gx ≡ G given in (4.14). The three-dimensional extension of the
regularized model, whose explicit expression is given in Appendix B, is formally
written:

∂th = −∂xqx − ∂zqz, (6.2a)

δ ∂tqx = δ I2D
x + Gx

{

5

6
h −

5

2

qx

h2
+ δ I3D

x + η
[

D2D
x + D3D

x

]

+
5

6
h∂xP

}

, (6.2b)

δ ∂tqz = δ I2D
z −

5

2

qz

h2
+ δ I3D

z + η
[

D2D
z + D3D

z

]

+
5

6
h∂zP, (6.2c)

where I and D stand for terms of inertia and viscous diffusion origin, easily identified
in (B 1b) and (B 1c). The two terms P = −ζh+(∂xx +∂zz)h stem from the gravitational
and capillary contributions to the pressure respectively. In (6.2b), we have also isolated
terms already present in the two-dimensional model (superscript 2D) from those
arising from the spanwise dependence (superscript 3D). Expressions collected into
terms with subscripts x are obtained from those with subscripts x by making the
exchanges {x ↔ z}.

Equations (6.2a), (6.2b), (6.2c) express mass conservation, and the averaged
momentum balance in directions x and z, respectively. The viscous drag corresponds
to the terms 5

2
qx/h2 in (6.2b) and 5

2
qz/h2 in (6.2c). In the boundary-layer equations,

gravity contributes only to the streamwise momentum balance through the term 5
6
h

in (6.2b).
The regularized model (6.2) is fully consistent with the Benney expansion at second

order, whereas the three-dimensional simplified model, corresponding to the averaging
of the momentum balance equations across the layer depth assuming both parabolic
velocity profiles and weights, is not. The latter can be recovered from the former by
replacing the factor Gx by 1.†

† Notice that the simplified model formulated by Ruyer-Quil & Manneville (2000) contains two
typing mistakes in their equation (54): terms − 97

56
qx∂zqz/h and 129

56
qxqz∂zh/h2 should be corrected

to read − 8
7
qx∂zqz/h and 9

7
qxqz∂zh/h2.
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7. Floquet analysis

In this section, the stability of two-dimensional waves to transverse perturbations
is investigated in the experimental conditions considered by Liu et al. (1995).
Experimental profiles indicate that the waves selected by the linear inception are
of type γ1, slow waves with deep troughs and bumped crests. Our efforts have
accordingly been concentrated on the stability analysis of the γ1 travelling waves.
These waves were computed using Auto97 (Doedel et al. 1997) by continuation.
The constant flux condition 〈qx〉 =1/3 was enforced (see § 5). We started from
infinitesimal sinusoidal waves at linear threshold, and increased the period. A standard
Floquet stability analysis of the wave to both streamwise and spanwise modulations
was performed next. Each unknown field X in the frame moving with the wave
ξ = x − c t was expressed as X(ξ, z, t) = X0(ξ ) + εX1(ξ, z, t) where ε ≪ 1 and X0 is
the basic two-dimensional travelling wave. The perturbation X1 was expanded as
∑

ϕ,kz
X̃ϕ,kz

(ξ ) exp{iϕkxξ + ikzz + s t} where X̃ϕ,kz
is periodic in ξ with period 2π/kx ,

kx is the wavenumber of the two-dimensional basic stationary wave, and kz is the
wavenumber of the transverse perturbation. The detuning parameter, ϕ, is the ratio
of the streamwise wavenumber of the perturbation to that of the base state, hence
ϕ ∈ [0, 1[. ϕ ∈Q signals a subharmonic mode, especially ϕ = 1/2, and ϕ /∈ Q an
incommensurate modulated mode. Denoting X0(ξ ) the vector formed by the different
components of the base state, and X̃ the vector formed by the amplitudes of the
perturbations, the linearized set of equations can be formally written as

ς X̃ = L(X0; c, q0, δ, ζ, η, ϕ, kz) X̃, (7.1)

where L is a linear operator and ς is the complex growth rate. The maximum real
part denoted ςM

r corresponds to the fastest growing perturbation of interest from the
experimental point of view. The parameter space ϕ × kz can be reduced by invoking
two symmetries: (i) reflection in the spanwise direction, which allows us to consider
only positive kz; (ii) invariance of (7.1) under the transformation (ϕ, kz, ς , X̃) →
(−ϕ, −kz, ς ⋆, X̃

⋆
), the star denoting complex conjugation. The parameter space ϕ × kz

can thus be limited to [0, 1
2
] × [0, ∞[. The eigenvalue problem (7.1) was solved in

Fourier space where 256 real modes have been used to represent the computed two-
dimensional waves and 128 complex modes to represent the perturbation (limited to
32 for the complete model owing to its complexity). Eigenvalues and eigenvectors
were computed using a QR algorithm implemented on an RS/6000 IBM workstation.

Liu et al. (1995) considered a falling film of a glycerol–water mixture
(ρ =1070 kg m−3, ν = 2.3 × 10−6 m2 s−1 and σ = 67 × 10−3 N m−1), with β =6.4◦ and
R = 56. They measured the wavelength of the two-dimensional base state λx as well as
the wavelength of the transverse modulations λz, obtained by varying the frequency
of the periodic forcing. Results of Floquet analysis using the complete, regularized
and simplified models are presented in figure 6 using dimensional units. In line with
the results discussed in § 5, the computed wavelengths λx of γ1 waves are of the same
order of magnitude as found experimentally, see figure 6(a). Our computations also
indicate relatively small variations of λz with the frequency, which is in agreement with
the results reported by Liu et al. (see figure 6b). The transverse wavelengths of the
most amplified perturbations for the regularized and the complete models agree with
each other, whereas the simplified model predicts larger wavelengths. This shows the
role of the second-order inertia terms arising from corrections to the velocity profile
in the mechanism of the three-dimensional secondary instability. At low frequency, λz

goes to infinity so that the most amplified perturbation is spanwise-uniform, while the
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Figure 6. (a) Streamwise wavelengths λx of two-dimensional waves and (b) spanwise
wavelengths λz of the fastest growing three-dimensional perturbations versus the forcing
frequency f , with β = 6.4◦, R = 56 and Γ = 2002. Down triangles are experimental findings
by Liu et al. (1995). Solid, dashed and dotted lines correspond to the complete model, the
regularized model (6.2) and the simplified model, respectively. In panel (a), solid and dashed
lines are nearly superimposed.

experimental λz remains finite. Another difference is that Floquet analysis predicts that
the detuning parameter for the fastest growing perturbation (not shown) corresponds
to a subharmonic secondary instability (ϕ = 1

2
, chequerboard pattern) rather than to

the synchronous transition (ϕ ≈ 0) reported by Liu et al.
Figure 7(a) summarizes the experimental findings by Liu et al. in the (R, f )-

plane for the same glycerol–water mixture and with β =4◦. Liu et al. reported two
different scenarios that are strongly reminiscent of what happens in boundary layers
(Schmid & Henningson 2001). The first one, referred to as a synchronous mode, is
characterized by wave crests deformed in phase in the spanwise direction. The second
one, less commonly observed, appears when two successive crests are deformed with
a phase shift of π. This leads to chequerboard (or herringbone) patterns characteristic
of a streamwise subharmonic instability combined with a spanwise modulation.
These two modes are reminiscent of aligned and staggered �-vortices developing in
transitional boundary layers, thus analogous to the type-K and type-H transitions,
respectively (Herbert 1988). Corresponding results for the stability of γ1 waves are
presented in figure 7(b–d), as obtained from the regularized model. The results for the
solutions to the complete and simplified models are very similar to those obtained
with the regularized model and thus not shown. We have computed the detuning
parameter (figure 7b) and the spanwise wavenumber (figure 7c, d) of the fastest
growing perturbation, with a Reynolds step of 1 and a frequency step of 1 Hz (the
lowest frequency considered is 4 Hz owing to the large number of modes necessary
to represent the solution in that case). Computations show that kz decreases steadily
as R is reduced and goes to zero in a region close to the neutral stability curve (see
figure 7d). This rapid decrease of kz corresponds to the boundary separating two- and
three-dimensional secondary instabilities, which agrees well with the results of Liu
et al. who reported two-dimensional flows mainly close to the threshold of the primary
instability (see figure 7a). In this small region, the γ1 waves undergo a subharmonic
two-dimensional instability (ϕ = 1

2
). At low frequency and large Reynolds number,

the instability is also found to be two-dimensional (kz = 0) but corresponds to an
incommensurate mode (ϕ ∈ ]0, 1

2
[). This provides an indication that the boundary
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Figure 7. Stability of the γ1 waves to three-dimensional modes as a function of the Reynolds
number R and the frequency f for β = 4◦ and Γ =2340 (Liu et al. 1995, figure 6).
(a) Experimental stability chart. Stability zones are bounded by thick lines: ‘two-dimensional’
where no three-dimensional instability was observed, ‘Sub’ for three-dimensional subharmonic
instability and ‘Syn’ for three-dimensional synchronous instability. The neutral stability curve
is represented by a thin solid line (Orr–Sommerfeld analysis). Crosses refer to parameter sets
reported in table 1. (b) Detuning parameter, where the synchronous (Syn) and subharmonic
(Sub) instability regions correspond to ϕ = 0 and 0.5, respectively. (c) Wavenumber kz of the
fastest growing transverse modulation (in cm−1). (d) Enlargement of (c): ‘SH’ subharmonic
two-dimensional instability (ϕ = 1

2 ), ‘IM’ incommensurate modulated two-dimensional mode
(0 < ϕ < 1

2 ). Dashed lines in (b, c) indicate the limit (4 Hz) of the computations. Results
presented in (b–d) have been obtained using the regularized model.

between two- and three-dimensional flows may exist and is not an experimental
artifact due to finite-size effects. At low frequency and large Reynolds number,
Floquet stability analysis of γ1 waves predicts a two-dimensional region wider than
reported in experiments, which can be understood if one keeps in mind that γ2 waves
are likely to develop in that region of the parameter plane in place of γ1 waves, the
stability of which is considered in this section.

As already mentioned, computations predict an overwhelming presence of the
subharmonic scenario (ϕ = 1

2
) whereas Liu et al. observed it only close to the

neutral stability curve at large frequencies and large Reynolds numbers. In fact,
our computations predict a region of synchronous three-dimensional instability at
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Set R β (deg.) Γ f (Hz) k c 〈h〉

1 40.0 4.0 2340 13 1.565 0.824 0.987
2 60.0 4.0 2340 13 1.494 0.689 0.970
3 42.7 4.0 2340 7 0.953 0.703 0.975
4 48.0 6.4 2002 10 0.980 0.628 0.965

Table 1. Dimensionless wavenumber k, phase speed c and averaged thickness 〈h〉 of the
computed γ1 waves corresponding to experimental conditions by Liu et al. (1995). Figures 7
and 11 in that reference correspond to sets 3 and 4, respectively. The constant mean flow rate
condition 〈q〉 = 1/3 was enforced. Parameters are the Reynolds number R, the inclination β ,
the Kapitza number Γ and the forcing frequency f .

1.0
(a)

� � �

(b) (c)

1.5

2.5

2.0

3.0

0  0.1  0.2  0.3  0.4  0.5

k z
 (

cm
–

1
)

6.66.5

1.0

1.5

2.0

2.5

3.0

0  0.1  0.2  0.3  0.4  0.5

7.2

7.1

7

1.0

1.5

2.0

2.5

3.0

0  0.1  0.2  0.3  0.4  0.5

5.1
4.8

Figure 8. Maximum growth rate in s−1 as function of the detuning parameter ϕ and the
transverse wavenumber kz in cm−1, computed with the different models for set 2 (kx = 3.2 cm−1):
(a) complete, (b) regularized, (c) simplified.

large Reynolds numbers only when using the regularized model. Figure 8 shows
the isocontours of the growth rate ςr of the fastest growing perturbation in the (ϕ,
kz)-plane for the three models, corresponding to the set 2 of table 1. Similar results
(not shown) have been obtained with parameter set 3. Again, the simplified model
predicts longer spanwise wavelengths than both the complete and the regularized
models. Moreover, figure 8(a, b) shows that ςr varies very little with the detuning
parameter ϕ. Indeed, for the complete and the regularized models, the growth rates
for ϕ = 0 and ϕ = 1

2
are close to each other so that the instability is not selective.

On the other hand, the simplified model is more selective (see figure 8c) and clearly
predicts a subharmonic instability. This result again shows the subtle role of the
second-order inertia terms in the pattern selection.

The direct correspondence between results from Floquet analysis and the
experiments is based on three assumptions. First, the γ1 waves emerge from the
primary instability. Second, a broadband white noise is assumed. As indicated by Liu
et al., the irregularities at the entrance section are time-independent and preferentially
trigger in-phase modulations of the evolving three-dimensional patterns. Therefore
experimental noise may contain a large amount of in-phase perturbation, which
may trigger the synchronous instability instead of the subharmonic mode, given that
they have growth rates close to each other. Third, Floquet analysis assumes that
two-dimensional waves saturate before the onset of the three-dimensional instability.
Precisely because inlet noise may contain significant spanwise perturbations, three-
dimensional instabilities may arise before the saturation of the two-dimensional
waves is achieved. Such a sensitivity to inlet conditions can only be checked by direct
numerical simulations of the models.
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8. Two-dimensional simulations of three-dimensional flows

In this section we perform time integrations of the complete model, the regularized
model (6.2) and the simplified model ((6.2) with Gx =1). Periodic boundary conditions
in both x- and z- directions are imposed. This allows us to take advantage of the
good convergence properties of spectral methods. A pseudo-spectral scheme has
been developed, with derivatives evaluated in Fourier space and nonlinearities in
physical space. The time dependence is accounted for by a fifth-order Runge–Kutta
scheme, which allows control of truncation errors by difference with an embedded
fourth-order scheme (Press et al. 1992). In practice, the time step is adapted to limit
the relative error on each variable to 10−4. The explicit character of the algorithm
makes it easy to implement the different models. The computational domain of
size Lx × Lz is discretized as a lattice of M × N regularly spaced grid points with
coordinates xi = iLx/M and zj = jLz/N . The three-dimensionality of the waves is
evaluated through

Ex(t) ≡
1

MN

N
∑

j=1

(

M/2−1
∑

m=1

|am(zj , t)|
2

)1/2

, (8.1a)

Ez(t) ≡
1

MN

M
∑

i=1

(

N/2−1
∑

n=1

|bn(xi, t)|
2

)1/2

, (8.1b)

where the spatial Fourier coefficients am and bn are defined by

am(z, t) =

M/2−1
∑

i=0

[h(x2i, z, t) + i h(x2i+1, z, t)] exp [2πi mi/(M/2)], (8.1c)

bn(x, t) =

N/2−1
∑

j=0

[h(x, z2j , t) + i h(x, z2j+1, t)] exp [2πi nj/(N/2)], (8.1d)

and where i stands for the imaginary unit. Ex and Ez are the streamwise and the
spanwise energy of deformations (Joo & Davis 1992; Press et al. 1992).

Owing to the spatial periodicity in the streamwise direction, our simulations
physically correspond to a closed flow for which the fluid leaving the downstream
border of the computational domain is reinjected at the upstream boundary. The
mass is therefore conserved in the domain so that the space-averaged film thickness
remains constant and is equal to the initial flat-film thickness. In experiments, the fluid
accelerates and film thinning is observed so that the time average of the thickness
decreases downstream, whereas the time average of the flow rate is conserved and is
equal to its value at the inlet, 1/3. Therefore in order to account for the acceleration
of the flow observed in experiments, in our simulations the uniform thickness at the
initial time is set to the mean thickness 〈h〉 < 1 of the two-dimensional travelling
waves at the forcing frequency, which are obtained using Auto97 when a constant
averaged flow rate 〈q〉 = 1/3 is enforced, which ensures that the amount of liquid
in our computational domain lying under the corresponding travelling waves is
appropriate. Since the local flow rate varies as the cube of the local film thickness,
this requirement can be crucial in recovering experimental results. The development
of two-dimensional waves undergoing three-dimensional instabilities is simulated by
enforcing the initial condition

h(x, z, 0) = 〈h〉 + Ax cos(2πnxx/Lx) + Az cos(2πnzz/Lz) + Anoiser̃(x, z), (8.2)
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(b)(a) (c)

Figure 9. Snapshots of free-surface deformations giving rise to a herringbone pattern,
computed for the parameter set 1 (see table 1) with the regularized model at different times:
(a) t = 150, (b) t = 175, (c) t = 195. Isothickness contours are separated by an elevation step
of 0.06. The numbers of grid points are M × N = 128 × 64 and L = 2nxπ/k. Amplitudes of the
initial periodic forcing are Ax = 0.1, Az = 0 and Anoise =10−3, with nx = 5. Dark and bright
zones stand for depressions and elevations, respectively.

where Ax, Az, Anoise are small amplitudes, nx, nz ∈ � represent the number of
sinusoidal waves in each direction, and r̃ is a random function with values in
the interval [−1, 1]. The last term of (8.2) accounts for ambient white noise. In the
following we take Anoise =10−3. In most cases, the aspect ratio of the computational
domain is set to unity and Lx = Lz ≡ L. The value of L must be taken large enough
to allow complex flow dynamics. The general form of (8.2) enables us to explore a
wide range of experimental results on three-dimensional waves emerging from two-
dimensional waves. In the following, we consider three-dimensional modulations of
γ1 waves, γ2 waves, and natural waves.

8.1. Three-dimensional modulations of γ1 waves

We first consider the transition from two-dimensional γ1 waves to three-dimensional
patterns, which corresponds to the experimental results by Liu et al. (1995). Their
well-controlled experiments will also serve as a benchmark for a systematic evaluation
of the accuracy and usefulness of the different models.

Liu et al. have imposed a spanwise-uniform time-periodic forcing at the inlet.
In order to mimic their experiments, we choose initial conditions corresponding to
sinusoidal two-dimensional waves plus small white noise (Az = 0 and Anoise ≪ Ax).
L is set equal to five times the wavelength 2π/k of the precursor two-dimensional
travelling wave, i.e. nx = 5. The values of the parameters for the different numerical
experiments are indicated in table 1. We start by considering flow conditions for an
inclination angle β = 4◦ and Kapitza number Γ =2340 (sets 1–3 in table 1 and in
figure 7a). Each chosen couple (frequency, Reynolds number) is indicated by a cross
in figure 7(a). Set 1 corresponds to the region of the plane (f , R) where herringbone
patterns were observed experimentally, i.e. subharmonic instability. Simulations of
the complete, regularized and simplified models agree with both the Floquet analysis
and the experimental data by showing the presence of staggered crests and troughs.
Isothickness contours of the wave patterns are shown at different times in figure 9
for the regularized model: at the final stage (figure 9c), the film evolves towards a
staggered arrangement of smooth and large bumps, and thin and deep depressions,
which agrees qualitatively with the experimental observations.
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(a) (b) (c)

Figure 10. Snapshots of free-surface deformations computed for parameter set 2 at Ez ≈ 0.05
for the three models: (a) complete, t = 125; (b) regularized, t = 125; (c) simplified, t = 155.
Isothickness contours are separated by a level difference of 0.08. See also the caption of
figure 9. The size of the computational domain is 9.8 × 9.8 cm. Note that the shading have
been removed for clarity.

Using parameter set 2, we move to the region in figure 7(a) where synchronous
secondary instability has been reported by Liu et al. (1995) whereas the Floquet
analysis predicts a subharmonic instability (compare figure 7a to figure 7b). Time
integrations of the different models, given in figure 10 for the same spanwise
deformation energy Ez, disagree: the complete model (panel a) shows a sideband
instability, ϕ ≪ 1, leading to a synchronous pattern while the simplified model (panel c)
gives staggered troughs and more deformed crests indicating a subharmonic instability,
ϕ = 1

2
. Solution to the regularized model (figure 10b) corresponds to a combination

of synchronous and staggered modulations, while appearing closer to the complete
model’s solution (and experimental observations) than to that of the simplified model:
spanwise and streamwise wavelengths have values close to each other (four spanwise
modulations for the complete and regularized model, in contrast with three for the
simplified one). This is in line with the fact that, as seen in figure 8(a, b), the secondary
instability is not selective for parameter set 2. On the other hand, as expected from
the linear prediction (figure 8c), the simplified model clearly selects the subharmonic
instability, ending in a staggered pattern (figure 10c). Similar behaviours of the three
models (not shown here) have been also found for parameter set 3.

Parameter set 4 of table 1 corresponds to a more pronounced inclination angle
(β = 6.4◦) and thus to a smaller Kapitza number (Γ = 2002). Our simulations
indicate that, if the initial excitation is spanwise uniform (Az = Anoise = 0), the two-
dimensional steady state corresponds to an oscillatory mode instead of a travelling
wave. This is illustrated in figure 11 by plotting in (a) the time evolution of the
streamwise deformation energy Ex and in (b) the wave profiles at two different times
corresponding to a maximum (label ‘1’) and a minimum (label ‘2’) of Ex during
one oscillating period. Such an oscillatory mode has been numerically observed by
Ramaswamy et al. (1996) who called this regime quasi-periodic. The direct numerical
simulations of the Navier–Stokes equations indicate that the quasi-periodic regime is
widely present in the case of a vertical plane when the Reynolds number becomes
large. This behaviour is generated by the destabilization of the existing limit cycle and
can be predicted by looking at the maximum growth rate of Floquet perturbations,
the imaginary part of which was also found to be positive.

The wave patterns for the different models are shown in figure 12. We see that
both the complete and the simplified models yield staggered patterns whereas the
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Figure 11. (a) Energy of streamwise deformations Ex computed for parameter set 4 as a
function of time; (b) corresponding two-dimensional wave profiles. The complete model has
been used for computations and Ax = 0.1, Az = 0, Anoise = 0, nx = 5, L = 2nxπ/k for the initial
conditions.

(a) (b) (c)

Figure 12. Free-surface deformations computed for parameter set 4 at Ez ≈ 0.05 for the three
models: (a) complete, t = 345; (b) regularized, t = 305; (c) simplified, t = 295. Isothickness
contours are separated by an elevation step of 0.06. Amplitudes of the initial forcing are
Ax = 0.2, Az =0 and Anoise = 10−3.

regularized model yields a synchronous pattern, in agreement with experimental
observations. In fact, it appears that the onset of the three-dimensional pattern is
strongly influenced by the presence of the two-dimensional oscillatory mode and then
by the exchange of energy between this mode and the three-dimensional instability
mode. This exchange depends on the initial conditions and in particular on the
amplitude Ax of the initial streamwise modulations. Figure 13 shows three-dimensional
wave patterns computed with the regularized model for two different values of Ax .
Significant qualitative differences can be noted when comparing them to figure 12(b):
at low initial amplitude Ax = 0.1, the final transverse modulations seem to have
longer wavelengths than at the larger values of Ax = 0.2 and Ax = 0.3. In addition,
crests display out-of-phase modulations whereas modulations are more in-phase
when the initial amplitude Ax is increased. Time evolution of the energies Ex and
Ez is displayed in figure 14. When Ax = 0.1, the system approaches the unstable
stationary wave solution and remains close to it for a long time. Therefore, the
Floquet analysis still applies and the staggered pattern obtained corresponds to
the predicted subharmonic instability. This is no longer the case for larger values
of Ax where the modulation of the two-dimensional wave train occurs prior to the
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(a) (b)

Figure 13. Free-surface deformations computed for parameter set 4 (regularized model) at
Ez ≈ 0.05 (Az = 0 and Anoise = 10−3): (a) Ax = 0.1 and t = 300, (b) Ax = 0.3 and t =220.
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Figure 14. Deformation energies computed for parameter set 4 using the regularized model
(6.2) and various values of Ax . Solid and dashed lines correspond to Ex and Ez, respectively.
Figures 13(a), 12(b) and 13(b) correspond to pictures taken at times when Ez crosses the level
0.05.

development of the three-dimensional instability. The observed synchronous pattern is
thus the complex result of two ingredients: the growth of two-dimensional oscillations
and the three-dimensional instability.

We have already noticed how pattern formation is sensitive to the initial conditions,
due to the poor selectivity of the secondary instability. In order to mimic the effect of
possible inlet inhomogeneities in our simulations, we have added an x-independent
noise r̃ ′(z) to the initial condition (8.2), whose amplitude A′

noise represents the
inlet roughness. A realistic estimate of about 1 µm roughness gives an amplitude
of A′

noise = 0.01 for a typical film thickness of 100 µm. Figures 15 and 16 display results
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Figure 15. (a, c) Snapshots of the film free surface obtained using the regularized model (6.2)
at two different times, along with (b) the experimental picture reused with permission from
Jun Liu, Physics of Fluids, vol. 7, p. 55 (1995). Copyright 1995, American Institute of Physics.
Parameters correspond to set 3 in table 1. Ax = 0.2, nx = 5, Az = 0, L =2nxπ/k, Anoise = 10−3:
an x-independent noise with amplitude A′

noise = 10−2 is added to mimic the effect of wall
roughness. The size of the computational domain is 148 × 148 mm. Isothickness contours are
separated by an elevation step of 0.06. The location of a saddle point in (c) (see text) is
indicated by a cross and two arrows.
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Figure 16. As figure 15 but with parameter set 4. The experimental picture in panel
(b) is reused with permission from Jun Liu, Physics of Fluids, vol. 7, p. 55 (1995). Copyright
1995, American Institute of Physics. The size of the computational domain is 118 × 118 mm.
Isothickness contours are separated by an elevation step of 0.08.
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obtained with the regularized model, compared to those obtained experimentally
(Liu et al. 1995, figures 7 and 11). They show the influence of such a perturbation,
which effectively biases the evolution in favour of the synchronous instability.
To facilitate comparisons with the experimental results, numerical snapshots are
separated in the vertical direction by the distance covered by the waves between the
two times at which the snapshots have been taken (roughly 14.2 cm and 5.8 cm
in the case of figures 15 and 16 respectively). The agreement with experiments is
now reasonable even though, mostly because of the choice of periodic boundary
conditions, some differences can still be noticed. The spanwise wavelength selected in
the simulation shown in figure 15 seems to be a little smaller than in the experiment
(37 mm in comparison to roughly 46 mm), whereas in the case of figure 16, the
simulation and the experiment give essentially the same answer (28 mm compared to
26 mm). However, experiments and simulations share common qualitative features.
Isothickness contours agree well with each other, and strong modulations of the
troughs are observed, whereas the crests remain nearly undeformed, which leads to
the formation of isolated depressions. In particular, as experimentally observed by
Liu et al., our numerical simulations indicate the formation of local saddle points on
the wave pattern corresponding to minima in the spanwise direction and maxima in
the streamwise direction (see figure 15(c) where one such saddle point is indicated by
a cross). Liu et al. have measured the difference in height between the minima of the
thickness at a trough and the height of the nearby saddle point. They called it ‘trough
transverse modulation amplitude’, denoted �hmin(x). From the measurement of
�hmin(x) at different locations for the experimental data corresponding to parameter
set 3, i.e. their figure 7 and our figure 15, they computed a spatial growth rate of
approximately 0.11 cm−1. Following a similar procedure, we define �hmin(t) as the
height difference between the minimum of the thickness in the entire computational
domain and the closest saddle point at a given time t . From the measurement of
�hmin(t) in our simulation, we found a temporal growth rate of approximately 2.6 s−1,
which is converted into a spatial growth rate, 0.125 cm−1, hence of the correct order
of magnitude, with the help of the speed of the corresponding two-dimensional γ1

waves, 20.8 cm s−1.
Despite differences between our numerical simulations and experimental conditions,

both the synchronous instability and the herringbone patterns observed by Liu et al.
(1995) were qualitatively recovered with the complete and the regularized models,
whereas the synchronous instability cannot be obtained using the simplified one. This
indicates the necessity of taking into account the second-order inertia corrections
to reproduce satisfactorily the experimental findings. The regularized model (6.2)
therefore seems to be a good compromise between accuracy and simplicity and
will be the only one used from now on to compare numerical simulations with
experimental findings.

8.2. Three-dimensional modulations of γ2 waves

In this section, we investigate the experimental conditions of Park & Nosoko (2003)
who observed three-dimensional wave patterns emerging from two-dimensional waves
of γ2-type for films of water on a vertical wall. Parameter sets corresponding to the
different numerical experiments are given in table 2. Controlling inlet perturbations,
Park & Nosoko (2003) have imposed a spanwise-uniform forcing at a given frequency
f and periodic modulations in the spanwise direction by means of regularly spaced
needles with period λz,ndl. At R below approximately 40, regular spanwise forcing
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Set R β (deg.) Γ f (Hz) λz,ndl (mm) k c 〈h〉 kz

5 20.7 90 3375 15.0 10 0.3461 0.900 0.899 0.699
6 40.8 90 3375 19.1 20 0.3845 0.714 0.912 0.377
7 59.3 90 3375 17 20 0.3126 0.630 0.955 0.393

Table 2. Parameters of the simulations corresponding to experiments on a vertical plane and
with pure water at 25◦C (Park & Nosoko 2003, figure 7). λz,ndl is the spanwise intervals of
the needle array and kz is the corresponding dimensionless wavenumber. The dimensionless
wavenumber k, phase speed c and averaged thickness 〈h〉 of the corresponding two-dimensional
γ2 waves are also given.
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Figure 17. (a, b) Snapshots of the film free surface at times t = 27 and t = 172 computed
with the regularized model and for set 5 in table 2 (R = 20.7). nx =3, nz = 6 and L =2nxπ/k.
The computational domain is 60 × 60 mm with 128 × 128 grid points. Bright (resp. dark) zones
correspond to elevations (resp. depressions). (c) two-dimensional wave profile of (b).

of the waves led to low-level spanwise modulations whereas at R above 40, the
waves broke into horseshoe-like solitary waves having curved fronts and long
oblique legs. The existence of stationary horseshoe-like waves has been demonstrated
experimentally by Alekseenko et al. (2005). The initial conditions (8.2) corresponding
to the inlet conditions imposed by Park & Nosoko and adapted to our simulations
are taken as: Ax = 0.2, Az = 0.05 and Anoise = 0.

Figure 17 shows snapshots for parameter set 5 with R =20.7. Initial spanwise
modulations of length λz,ndl = 10 mm (nz = 6) are quickly damped, i.e. Ez → 0, and
the pattern evolves to two-dimensional travelling waves, i.e. Ex → const, the profile
of which is given in figure 17(c). This corresponds to a γ2 wave with a large hump
preceded by capillary ripples, in accordance with the fact that when the forcing
frequency is small, the γ1 slow waves are not observed. The linear inception region
is thus immediately followed by the formation of fast γ2 waves, that are stable for a
while. This is in agreement with the experimental observations, where the inlet forcing
is quickly damped. Park & Nosoko then observed the downstream growth of another
mode leading to spanwise-modulated waves with a wavelength roughly equal to 3 cm.
Similar modulated γ2 waves (not shown here) are recovered by increasing the length
of the initial spanwise modulations λz,ndl to 30 mm (nz = 2). They also decay (with
Ez → 0) but at a much smaller rate indicating that the wavelength λz = 3 cm is close
to (but still below) the cut-off wavelength for spanwise instability with our regularized
model.
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Figure 18. (a) Experimental picture (real size 60 × 80 mm) for set 6 (R = 40.8) (Park & Nosoko
2003, figure 7c, with permission from John Wiley & Sons, Inc.) (b) Simulations with nx = 3,
nz = 3 and L = 2nxπ/k. The domain size is 60 × 60 mm with 256 × 256 grid points. Each of the
six wave fronts has been obtained at a different dimensionless time, in an interval of 22.

Simulation results for a larger Reynolds number R = 40.8 are presented in figure 18
(parameter set 6) and compared to experimental findings (Park & Nosoko 2003,
figure 7c). Like for R =20.7, we first observe sinusoidal spanwise modulations of
the two-dimensional waves. However, they rapidly evolve into rugged modulations,
made of nearly flat backs and rounded fronts. To facilitate qualitative comparisons
to the spatial evolution observed in experiments, snapshots of only a third of the
numerical domain, corresponding to one streamwise wavelength, are displayed in
figure 18 at increasing times. The interval of time separating each pair of snapshots
roughly corresponds to the travelling of the fronts over a distance equal to one
wavelength. Despite our use of periodic boundary conditions, the resemblance with
the experimental findings (Park & Nosoko 2003, figure 7c) is convincing. For instance
the chequerboard interference pattern of the capillary waves preceding the flat zones
is recovered.

Above R ≈ 40, Park & Nosoko (2003) observed a breaking of the modulated fronts
leading to horseshoe-like waves. Simulation results for R = 59.3 are presented in
figure 19 (parameter set 7) and compared to the experimental findings (Park & Nosoko
2003, figure 7d). Owing to computational limitations, the computational domain was
limited to only one and two wavelengths in the streamwise and spanwise directions
respectively (nx = 1 and nz = 2). Compared to R = 40.8, the rugged modulations
develop faster and do not saturate. Instead, the bulges of the wave front continuously
expand into horseshoe shapes, reducing the span of the flat parts at the back. As time
proceeds, the legs of the horseshoes extend and split off into dimples, in qualitative
agreement with experimental observations. The growth of the spanwise perturbations
in our simulation is however faster than in the experiment.

8.3. Three-dimensional natural waves

In this section, we study the formation of noise-driven three-dimensional waves
in the absence of periodic forcing. To match with the experiments by Alekseenko
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t = 47

(a) (b)

t = 77

t = 107

t = 137

Figure 19. (a) Experimental picture (real size 60 × 100 mm) for set 7 (R = 59.3) (Park &
Nosoko 2003, figure 7d , with permission from John Wiley & Sons, Inc.) (b) Snapshots of the
simulated free surface. The domain size is 40 × 25 mm with 256 × 256 grid points. Each of the
five wave fronts has been obtained at increasing dimensionless times, by interval of 30.

Set R β (deg.) Γ λx (mm) k c 〈h〉

8 8 75 1106 40 0.15 1.322 0.906
9 16 75 1106 30 0.21 1.062 0.876

10 45 75 1106 25 0.28 0.749 0.904

Table 3. Parameters of the simulations corresponding to experiments on an inclined plane
and with a 16% water–ethanol solution at 25◦C (ρ = 972 kg m−3, ν =1.55 × 10−6 m2 s−1

and σ = 40.8 × 10−3 N m−1) (Alekseenko et al. 1994, figure 1.6). The two-dimensional wave
characteristics k, c and 〈h〉 have been computed from the wavelength λx , which has been
estimated by the average streamwise separation of the three-dimensional waves observed in
the experimental pictures. See also the caption of table 1.

et al. (1994), the initial conditions (8.2) need to be chosen with white noise of
amplitude Anoise =10−3 and Ax = Az = 0. Parameter values for the different numerical
experiments are given in table 3. Snapshots of the free-surface deformation are
reported in figure 21 where the three columns correspond to different Reynolds
numbers (sets 8–10 of table 3). The experimental pictures obtained by Alekseenko
et al. (1994) are shown for reference in figure 20. Each row in figure 21 corresponds to
a particular transient regime: first, mostly two-dimensional waves; second, coalescence
processes, and finally three-dimensional solitary waves. Both the dimensionless time
t and the approximate location of the numerical domain on the experimental plane
are given in figure 21. The distance being again estimated from the phase speed c of
the two-dimensional waves (see table 3).

2.6. B. SCHEID ET AL., J. FLUID MECH. (2006) 89



Wave patterns in film flows 215

50 mm

(a) (b) (c)

Figure 20. Wave patterns obtained experimentally by Alekseenko et al. (1994) (see table 3),
courtesy of S. V. Alekseenko.

The large-amplitude waves travel faster, catch up the preceding slower ones and
finally absorb them, which explains the coarsening process leading to an increase
of the size of the flat zones that separate the waves. The development of capillary
ripples in front of the humps is observed and the waves therefore resemble the two-
dimensional γ2 waves. Panels (g, j) and (h, k) of figure 21 share features similar to the
experimental wave patterns. (For comparison, one should keep in mind that the grey
levels represent surface elevation in simulations but surface slope in experiments.)
The unsteady experimental pattern is characterized by interacting quasi-steady three-
dimensional solitary waves separated by portions of constant thickness of length
10 to 50 cm. For R = 8, the average distance between the solitary waves tends to
saturate for t > 890, which indicates either that solitary waves have reached a fully
developed regime, or that the streamwise-periodic conditions are felt. For R = 16,
no fully developed regime has been reached at the end of the simulation, which
was run for 1500 time units. In that case, the final stage corresponds to interacting
oblique fronts rather than three-dimensional horseshoe-like waves. For R = 45, the
three-dimensional waves tend to form localized structures rather than extended wave
fronts as observed for smaller values of R. This is in agreement with the results
of Alekseenko et al. (1994) and Park & Nosoko (2003) who observed V-shaped or
horseshoe-like solitary waves with a sharp curved front and long backwards tails
under similar conditions (see panels i and l).

9. Concluding remarks

In most cases, asymptotic expansions are poorly converging and the Benney
expansion is no exception to this rule (Oron & Gottlieb 2004). If an improvement
of the accuracy is achieved by increasing the order of the approximation, this is at
the cost of an increased complexity and a reduction of the range of parameters for
which comparisons with DNS and experiments are satisfactory. Padé approximant
techniques are well known for their ability to extend the radius of convergence of
algebraic series.
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(a) t = 105, l ~~ 13 cm

SET # 8 (R = 8) SET # 9 (R = 16) SET # 10 (R = 45)

(b) t = 120, l ~~ 13 cm (c) t = 185, l ~~ 16 cm

(d) t = 280, l ~~ 35 cm (e) t = 200, l ~~ 21 cm (f) t = 310, l ~~ 26 cm

(g) t = 480, l ~~ 59 cm (h) t = 370, l ~~ 40 cm (i) t = 375, l ~~ 32 cm

(j) t = 890, l ~~ 110 cm (k) t = 845, l ~~ 91 cm (l) t = 575, l ~~ 51 cm

Figure 21. Simulations of natural (noise-driven) three-dimensional wave patterns
corresponding to the experiments by Alekseenko et al. (1994) (see figure 20). The computational
domain is 100 × 100 mm2 with 256 × 256 grid points for set 8 and 9 and 512 × 256 for set 10
except for (i,l) where it corresponds to 50 × 50 mm2 and 256 × 256 grid points: the snapshot
obtained is repeated four times. l is the estimated distance from the inlet. The bright (dark)
zones correspond to elevations (depressions).
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In the case of two-dimensional flows, Ooshida’s application of this idea to the
Benney expansion remedies the unphysical occurrence of finite-time blow-up of
solutions to (3.3) but a quantitative agreement cannot be achieved with experiments
for δ of order unity or larger. We have shown elsewhere that a weighted residual
procedure based on a polynomial expansion of the velocity field leads to a two-
equation model at order ǫ in terms of the film thickness h and the flow rate q

(Ruyer-Quil & Manneville 2000). Augmenting the order of the approximation to ǫ2

again leads to a dramatic increase of the complexity yielding a four-equation model
in the two-dimensional case and seven equations in the three-dimensional case. A way
out can be found by dropping second-order inertial terms while retaining streamwise
viscous diffusion effects, thus leading to the simplified model (3.1), (4.1). However,
this simplification is done at the cost of a lowering of the order of the approximation.
Based on the Padé approximant approach, the first part of this study has been
devoted to the derivation of a two-equation model consistent at order ǫ2, aiming at
an agreement with DNS and experiments in the largest possible range of parameters.

Focusing on the treatment of inertia terms, our algebraic regularization procedure
enabled us to obtain a two-equation model (3.1), (4.15) which is fully consistent with
the Benney expansion up to second order. The approach developed here remedies
the lack of systemization of the derivations presented in Ruyer-Quil et al. (2005)
and Scheid et al. (2005a) where ad-hoc arguments were invoked to treat the case of
a film uniformly heated from below. The use of a kind of algebraic preconditioner
makes its application much simpler than Ooshida’s approach based on differential
operators. Our hope is that this Padé-like strategy might be useful for different related
problems in lubrication theory for which a careful treatment of inertial effects are
of importance, e.g. film flows where mass and heat transfer are involved, films down
fibres, and roll waves (Balmforth & Liu 2004).

Computations of the two-dimensional solitary wave branches of solutions and
two-dimensional periodic travelling waves agree quantitatively with laboratory and
DNS experiments for the whole range of parameters for which two-dimensional
wavy motion is observed. In particular, our models are able to capture the near-wall
counterflow observed in the DNS by Malamataris et al. (2002) and in the experiments
by Tihon et al. (2003), an effect that might be important when transfer of heat or
mass from the substrate are considered.

We have extended our models to include the spanwise dependence in order to study
the transition from two-dimensional to three-dimensional flows. A systematic Floquet
analysis of the stability of the two-dimensional slow γ1 waves has been performed,
followed by numerical simulations using periodic boundary conditions. Our focus is
the description of the three-dimensional wave patterns observed experimentally, with
three main objectives: (i) using experimental results as benchmarks for a validation
of our models; (ii) reproducing the synchronous and subharmonic transitions from
γ1 waves to three-dimensional patterns found by Liu et al. (1995); (iii) recovering
the wave dynamics observed by Park & Nosoko (2003) in the case of well-controlled
spanwise perturbations of fast γ2 waves, and by Alekseenko et al. (1994) in the case
of noise-driven instabilities.

Floquet analysis shows that the secondary three-dimensional instability is not
selective, since the maximum growth rate remains nearly unchanged over the whole
range 0 � ϕ � 1/2 of the detuning parameter. This property makes the three-
dimensional instability strongly dependent on the initial conditions, and thus prevents
one relating unequivocally the results of Floquet analysis to experimental findings. By
contrast, numerical simulations have shown good agreement with experimental results
by Liu et al. (1995), provided that initial conditions are appropriately tuned. The
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widespread observation of the synchronous instability in experiments could then be
attributed to the presence of spanwise non-uniformities at the inlet, favouring in-phase
modulations of the wave fronts. In some cases, the three-dimensional patterns emerge
from a two-dimensional oscillatory mode rather than from saturated travelling waves,
as also observed in direct numerical simulations by Ramaswamy et al. (1996). The
competition between the growing two-dimensional modulation and the secondary
three-dimensional instability makes the evolution of the film more sensitive to initial
conditions. Complex three-dimensional dynamics deep in the nonlinear regime, in
particular isolated synchronous depressions (figure 16), rugged-modulated waves
(figure 18) as well as horseshoe-like three-dimensional solitary waves (figures 19
and 21i,l) and oblique solitary waves (figure 21k) found in our simulations were
observed in experiments.

The application of a systematic strategy to the problem of film flows is shown
here to lead to systems of equations of reduced dimensionality that capture the
physical mechanisms quite faithfully, helping us to highlight the observed dynamics
by isolating the important physical effects. Having reliable low-dimensional models
at our disposal allows us to attack many questions still open for plain film flows
over inclined planes, but also in more difficult cases, for example when heat or mass
transfer are involved.

The authors wish to express their gratitude to N. A. Malamataris, M. Vlachogiannis
and V. Bontozoglou for providing them with the wave profile corresponding to the
full-scale numerical computation of the basic equations and shown in figure 3. C.R.-Q.
and B.S. would like to thank Serafim Kalliadasis for stimulating discussions during his
stay in Orsay. This study was partly funded by a grant from both French and Belgium
research agencies (CNRS/CGRI-FNRS cooperation agreement). B.S. acknowledges
funding from the European Commission through the Marie-Curie Training Centre.

Appendix A. Reconstruction of the velocity profile

Expressions for the polynomials g0, g1 and g2 used to expand the velocity field are
(Ruyer-Quil & Manneville 2000)

g0(ȳ) = ȳ − 1
2
ȳ2,

g1(ȳ) = ȳ − 17
6
ȳ2 + 7

3
ȳ3 − 7

12
ȳ4,

g2(ȳ) = ȳ − 13
2
ȳ2 + 57

4
ȳ3 − 111

8
ȳ4 + 99

16
ȳ5 − 33

32
ȳ6.

Streamlines and velocity profiles displayed in figure 4 were reconstructed from the
solutions to the complete and the regularized models using the projection of the
streamwise velocity on g0 = ȳ − 1

2
ȳ2, g1 and g2:

u = 3
q − r − s

h
g0

(y

h

)

+ 45 r g1

(y

h

)

+ 210 s g2

(y

h

)

. (A 1)

In the case of the regularized model (3.1), (4.15), expressions for the corrections r and
s were given by their first-order approximation (4.3).

Appendix B. Three-dimensional regularized model

∂th = −∂xqx − ∂zqz, (B 1a)

δ ∂tqx = δ

[

9

7

q2
x

h2
∂xh −

17

7

qx

h
∂xqx

]

+

{

5

6
h −

5

2

qx

h2
+ δ

[

−
8

7

qx∂zqz

h
−

9

7

qz∂zqx

h

2.6. B. SCHEID ET AL., J. FLUID MECH. (2006) 93



Wave patterns in film flows 219

+
9

7

qxqz∂zh

h2

]

+ η

[

4
qx(∂xh)2

h2
−

9

2

∂xqx∂xh

h
− 6

qx∂xxh

h
+

9

2
∂xxqx +

13

4

qz∂xh∂zh

h2

−
∂zqx∂zh

h
−

43

16

∂xqz∂zh

h
−

13

16

∂zqz∂xh

h
+

3

4

qx(∂zh)2

h2
−

23

16

qx∂zzh

h
−

73

16

qz∂xzh

h

+ ∂zzqx +
7

2
∂xzqz

]

−
5

6
ζh ∂xh +

5

6
h(∂xxx + ∂xzz)h

}(

1 −
δ

70
qx∂xh

)−1

, (B 1b)

δ ∂tqz = δ

[

9

7

q2
z

h2
∂zh −

17

7

qz

h
∂zqz

]

−
5

2

qz

h2
+ δ

[

−
8

7

qz∂xqx

h
−

9

7

qx∂xqz

h
+

9

7

qxqz∂xh

h2

]

+ η

[

4
qz(∂zh)2

h2
−

9

2

∂zqz∂zh

h
− 6

qz∂zzh

h
+

9

2
∂zzqz +

13

4

qx∂xh∂zh

h2
−

∂xqz∂xh

h

−
43

16

∂zqx∂xh

h
−

13

16

∂xqx∂zh

h
+

3

4

qz(∂xh)2

h2
−

23

16

qz∂xxh

h
−

73

16

qx∂xzh

h
+ ∂xxqz

+
7

2
∂xzqx

]

−
5

6
ζh ∂zh +

5

6
h(∂xxz + ∂zzz)h. (B 1c)

Appendix C. Complete second-order model

Writing εx = 1 and εz = 0, the complete second-order model consists of the evolution
equations for qx , rx and sx:
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along with a symmetrical set of equations for qz, rz and sz, obtained from equations
(C 1) through the exchanges {x ↔ z}. The set of equations is then completed by
the mass conservation ∂th = −∂xqx − ∂zqz. The complete two-dimensional model is
obtained by setting ∂z ≡ 0 and qz = rz = sz ≡ 0 in these equations.
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3
Heated falling films

In this chapter I quickly summarize the work I have done in the pe-
riod 2003–2008 in collaboration with Serafim Kalliadasis (University

of Leeds, now at Imperial college London), Philip Treveleyan (Univer-
sity of Leeds, now at University of Glamorgan, Cardiff), Benoit Scheid
(Université Libre de Bruxelles), Manuel Garcia Velarde (Universidad Com-
plutense, Madrid) and Radhyadour Kh. Zeytounian (Université des Sci-
ences et Technologies de Lille). This work was initiated by Manuel G.
Velarde who kindly invited me for the summertime in Madrid.

The question that was raised by Manuel G. Velarde at that time was
the coupling between the Kapitza instability of a falling film (see previ-
ous chapter 2) and the Marangoni instability of a free surface heated from
below. It is well known since the works by Pearson (1958), Scriven and
Sterling (1964), Smith (1966) that a fluid layer bounded by a deformable
upper surface and heated from below may develop a long-wave instabil-
ity mode, referred hereinafter as the S-mode following the terminology
adopted by Goussis and Kelly (1991). This long-wave instability is trig-
gered by the deformability of the free surface and by the dependence of
the surface tension on the temperature, the Marangoni effect. 1 As the
elevation of the free surface varies, the heat transfer across the film pro-
motes gradients of temperature, the surface of thick film being cooler than
the surface of thin film. As a result, gradients of surface tension build
up promoting stresses from spots of low surface energy towards spots of
high surface energy. Whenever surface tension decreases with tempera-
ture (which is the general case), an unstable situation is reached. The fluid
is dragged from the troughs to the crests and perturbations are promoted
by the Marangoni effect.

In our study of this problem, we have assumed some simplifications.
We assumed a dynamically and thermally passive gas. The ambient atmo-
sphere is at rest and no tangential shear stresses are exerted on the liquid
film by the gas flow (zero gas viscosity). Besides the heat transfer from the
liquid to the gas is modeled by a Robin mixed condition on the tempera-
ture using a single Biot number (that is a constant heat transfer coefficient).
Our study of this instability is therefore one-sided: the dynamics of the
flow being entirely piloted by the liquid phase. Real problems are much
more difficult: the heat transfer at the liquid-gas interface involves evapo-
ration processes —considered e.g. in Joo et al. (1991)— so that a constant
heat transfer coefficient is a rather crude assumption.

1A modern account of this instability mechanism can be found for instance in the
monographs by Colinet et al. (2001), Velarde and Zeytounian (2002).

99



100 Chapter 3. Heated falling films

Ta

Tw

h̄N

β

x

y

(a) specified temperature : ST case

Ta

φ0

φloss

h̄N

β
x

y

(b) specified flux : HF case

Figure 3.1 – Sketches of a film falling down a uniformly heated plane. h̄N is the Nusselt
flat film thickness. (a) ST case; (b) HF case.

Yet, this problem is a very rich one. Its interest stems mainly in the cou-
pling between a first instability that is oriented in the direction of the flow
and a second instability that is isotropic in nature. Indeed, the Kapitza
mode —K mode— of instability results from the inertia of the flow and is
thus oriented by the gravity acceleration which triggers the flow, whereas
the Marangoni S mode has no preferential direction in the (x,z) plane of
the wall.

Two cases have been considered. In the first once, christened ST case,
a constant temperature is specified at the wall. Yet, in practice, the tem-
perature at the wall is not controlled by the operator who instead specify
the amount of heat that is dissipated by means of a heater. This leads to
the second HF case where the heat generated in the wall is specified. Both
cases are sketched in figure 3.1

In the HF case, at the lower boundary of he wall a heat transfer coef-
ficient specify the heat flux φloss that is lost to a surrounding fluid. It is
important to note that the presence of such a loss of heat is paramount
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for the S-Marangoni instability mode. Indeed, without this heat loss, the
temperature at the free surface of a uniform film is independent of the
film thickness, and the Marangoni effect would be lost in the long-wave
limit (Scheid 2004).

Because the ST case is simpler than the HF case, we have studied
it much more thoroughly (Ruyer-Quil et al. 2005, Scheid et al. 2005a,
Trevelyan et al. 2007, Scheid et al. 2008a;b) than the HF case which is
first considered in Benoit Scheid’s PhD thesis (Scheid 2004) and later on
in Trevelyan et al. (2007) (to which I only slightly contributed). An ex-
tended review of our findings in the case of the ST case can be found in
the ninth chapter of the recent monograph by Kalliadasis et al. (2012). I
will give a short account of my contribution to this problem and I limit
myself to sketch the simpler ST case in the remainder of this chapter.

3.1 Notations and parameters

Geometry and notations are introduced in figure 3.1(a). A film falling
down a uniformly heated inclined plane with inclination angle β with re-
spect to the horizontal direction. The ambient gas phase is air at temper-
ature Ta . The wall is maintained at a constant and uniform temperature
Tw (> Ta). Density ρ, viscosity µ, thermal conductivity K of the liquid,
thermal diffusivity χ, heat transfer coefficient q0 at the liquid-gas interface
are all assumed constant. The reference Nusselt thickness of the film is
denoted by h̄N and the inlet flow rate per unit length is referred to as q̄N.
Taking for reference the temperature Ta of ambient air, the surface tension
varies linearly with temperature, i.e. σ = σ(Ta) + dσ/dT|Ta(T − Ta). Sur-
face tension is supposed to decrease with temperature dσ/dT|Ta < 0 (this
last assumption ensures that the Marangoni instability can be observed).

By contrast with the isothermal problem (see chapter 2), the set of
dimensionless groups, inclination angle β, Reynolds number Re = q̄N/ν =
h3

N/3 and Kapitza number Γ = σ(Ta)/[ρν4/3(g sin β)1/3] is completed by
a Marangoni number, a Biot number and a Prandtl number defined as

Ma =
−dσ/dT|Ta(Tw − Ta)

ρν4/3(g sin β)1/3 , Bi =
q0 ν2/3

K(g sin β)1/3 , Pr =
ν

κ
,

The Prandtl number compares viscous and thermal diffusivities, whereas
the Biot number is a dimensionless heat transfer and pilots the exchange
of heat at the free surface. The Marangoni number reckons the intensity
of the coupling at the free surface between the momentum balance and
the thermal diffusion. Finally, the product Pe = PrRe defines the Péclet
number which compares thermal conduction to the convection of heat by
the flow.

Similarly to the isothermal case (cf. § 2.2) the set of six indepen-
dent parameters (β, Re, Γ, Ma, Bi, Pr) can be reduced by one in the limit
of high Kapitza number by neglecting he viscous damping of the waves
—elongational Trouton viscosity. Following Shkadov (1977), let us use
a scale κh̄N in the x and z directions and the Nusselt thickness h̄N in
the cross-stream direction y. The aspect ratio κ is adjusted by balancing
streamwise gravity acceleration and capillary pressure gradient. A set of
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‘reduced’ parameters now appears

δ =
h̄3

N

κ
=

(3Re)11/9

Γ1/3 , ζ =
cot β

κ
=

cot β(3Re)2/9

Γ1/3 , B = Bi (3Re)1/3

η =
1
κ2 =

(3Re)4/9

Γ2/3 and M =
Ma
κh̄2

N
=

Ma
Γ1/3(3Re)4/9 , (3.1)

The number of parameters is thus reduced by one in the limit η → 0
(equivalent to Γ ≫ 1).

3.2 Low-dimensional modeling

As for isothermal falling films (cf. chapter 2), low-dimensional models
are based on the long-wave asymptotics with the introduction of a formal
film parameter ǫ ∼ ∂x,z,t. Each low-dimensional strategy thus aim at the
elimination of the ’fast’ cross-stream variable y, the flow being governed
by the ’slow’ variables x, z and t. We have applied the weighted residual
method that has been successful to treat the isothermal problem. The
strategy and a hierarchy of models, consistent at first and second order is
developed in the ninth chapter of the recent monograph Kalliadasis et al.
(2012). I thus only give a short account (limited to two-dimensional flows
and mostly to first-order models) of the peculiarities of the application of
the method to the non-isothermal case.

Obviously, the difference with the isothermal case originates from the
treatment of the energy balance and its coupling to the momentum equa-
tion through the interfacial Marangoni effect. The first degree of freedom
associated to the temperature field should be the temperature at the free
surface T(y = h) ≡ θ(x, t) which explicitly appears in the tangential stress
boundary condition (here truncated at second order) :

∂yu
∣

∣

h = η
(

4∂xh∂xu
∣

∣

h − ∂xv|h
)

− M∂x

[

T
∣

∣

h

]

+ O(ǫ3) (3.2)

Gradient expansion

Following Kalliadasis et al. (2003b), let us assume a linear temperature
distribution at O(ǫ0) and decompose the velocity field into a zeroth order
part and a O(ǫ) correction

T = T(0) + T(1) with T(0) = 1 + (θ − 1)ȳ where ȳ = y/h (3.3a)

As for the isothermal case, a similar ansatz is introduced for the velocity
field

u = u(0) + u(1) with u(0) ≡ 3q
h

(

ȳ − 1
2

ȳ2
)

(3.3b)

The unicity of the decomposition (3.3) is made unique by the gauge con-
ditions

∫ h

0
u(1)dy = 0 and T(1)(y = h) = 0 . (3.4)

which are consequences of the definitions of the adopted degrees of free-
dom. Substitution (3.3) into the energy balance truncated at first order

∂yyT = Prδ
(

∂tT + u∂xT + v∂yT
)

(3.5)
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followed by a double integration with the help of the boundary conditions

T|y=0 = 1 and ∂yT|y=h = −BT|y=h (3.6)

finally yields

T(1) = ȳ − (ȳ + Bhȳ)θ + δPr
[

1
6

ȳ(−3 + ȳ2)h2∂tθ

+
1

120
ȳ{−15 + ȳ2[20 + 3(−5 + ȳ)ȳ]}(θ − 1)∂xq

− 1
40

ȳ[25 + ȳ3(−10 + 3ȳ)]hq∂xθ

]

+ O(ǫ2) . (3.7)

The gauge condition T(1)(ȳ = 1) = 0 then leads to an evolution equation
for the free surface temperature

Prδ∂tθ = 3
[1 − (1 + Bh)θ]

h2 + Prδ

[

7
40

(1 − θ)

h
∂xq − 27

20
q
h

∂xθ

]

(3.8a)

which is consistent at O(ǫ) (Ruyer-Quil et al. 2005). From the above deriva-
tion it is obvious that the averaged energy balance (3.8a) is a direct conse-
quence of the specific choice of variables and the ansatz (3.3).

Proceeding similarly for the velocity profile (a computation that is sim-
ilar to the one discussed in § 2.3.1 and that is not repeated here), one
obtains

δ∂tq =
5
6

h − 5
2

q
h2 + δ

(

9
7

q2

h2 ∂xh − 17
7

q
h

∂xq
)

− 5
4

M∂xθ − 5
6

ζh∂xh

which is coupled to (3.8a) by the thermocapillary term − 5
4 M∂xθ. The

system of equations to be solved is completed by the mass balance

∂th = −∂xq . (3.8b)

The system (3.8) is a tree-equation consistent model.

Weighted residual method

The weighted residual method provides again a shortcut to the derivation
of equation (3.8a): Multiplying the energy balance (3.5) by a weight func-
tion w(ȳ) and integrating across the film layer to obtain a residual that
is set to zero, the only place where the correction T(1) to the linear tem-
perature distribution may enter the computation is the integral

∫ h
0 w∂yyT

which can be written
∫ h

0
w∂yyT dy = −Bw(1)T

∣

∣

h − w(0)∂yT
∣

∣

∣

0
+

1
h

[

wj
′(0)− wj

′(1)T
∣

∣

∣

h

]

+
1
h2

∫ h

0
w′′
(y

h

)

T dy , (3.9)

once the boundary conditions (3.6) have been invoked. Following exactly
the same approach as before, the weight is chosen in view of the gauge
conditions (3.4) which leads to the choice w(0) = 0, w′′ = 0 so that w ∝ ȳ
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(Kalliadasis et al. 2003a). As in the isothermal case, the Galerkin method
is the most efficient one bringing the result with the minimum of algebra.

In Ruyer-Quil et al. (2005) a second order model has been constructed
using the weighted residual method and introducing three supplementary
variables to represent the first-order deviations of the velocity field from
the Nusselt profile and three others for the O(ǫ) deviations of the temper-
ature field from the linear distribution. Tests functions have been chosen
so that to match the O(ǫ) distribution of velocity and temperature (3.7).
The result is a (cumbersome) nine equation model. As for the isothermal
case, the added O(ǫ) fields can be consistently eliminated yielding a con-
sistent three-equation model. A regularization procedure is also necessary
to avoid the finite-time blow-up behaviors, which leads to a three-equation
model consistent at O(ǫ2):

∂th = −∂xq , (3.10a)

δ∂tq = δ

[

9
7

q2

h2 ∂xh − 17
7

q
h

∂xq
]

+

[

1 − δ

70
q∂xh + M

5
56

∂xθ

h

]−1

×
{

5
6

h − 5
2

q
h2 + η

[

4
q
h2 (∂xh)2 − 9

2h
∂xq∂xh − 6

q
h

∂xxh +
9
2

∂xxq
]

−5
6

ζh∂xh +
5
6

h∂xxxh − M
[

5
4

∂xθ − δ

224
hq∂xxθ

]}

, (3.10b)

Prδ∂tθ = 3
(1 − θ − Bhθ)

h2 + Prδ

[

7
40

(1 − θ)

h
∂xq − 27

20
q
h

∂xθ

]

+η

[

(

1 − θ − 3
2

Bhθ

)(

∂xh
h

)2

+
∂xh∂xθ

h
+

(1 − θ)
∂xxh

h
+ ∂xxθ

]

. (3.10c)

Noteworthy is that the momentum equation (3.10b) with M = 0 reduces
to its isothermal version (2.12).

Some further modeling attempts

Noteworthy is that, contrary to the zeroth-order parabolic distribution
u(0) ∝ ȳ − 1

2 ȳ2 of the velocity, the zeroth-order linear distribution T(0)

fulfills the boundary conditions (3.6) only with the specific value θ =
1/(1 + Bh) corresponding to the base flow of uniform thickness. In fact,
in the weighted residual approach followed in Ruyer-Quil et al. (2005),
none of the test functions does fulfill the boundary condition for the tem-
perature at the free surface. This choice does not bring inconsistencies,
though, as the boundary conditions are used in the integration by parts
[in weighted residual terminology, this is equivalent to the ’tau’ method
(Gottlieb and Orszag 1977)]

This discrepancy with the classical Galerkin method motivate Trevelyan
et al. (2007) to introduce polynomial test functions that do fulfill the
boundary conditions irrespectively of the values of the associated vari-
ables. The starting point of the study is the primitive equations trun-
cated at first order of the film parameter, or the boundary-layer equations
(the naming ’boundary-layer’ originates from the similitude between the
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Prandtl equation in boundary-layer theory and the obtained set of equa-
tions (Chang et al. 1994, Schlichting 1979)). The Galerkin method is ap-
plied, i.e. the weights ware chosen to be the test functions themselves,
without taking into account the ordering of the variables with respect to
the film parameter. A sequence of models, christened GSST[m], is ob-
tained, m being the number of variables used. Owing to the good con-
vergence properties of spectral methods, the solution to the models then
converge to the solutions of the energy equation (3.5) as m is increased.

Truncated at m = 1, the approach by Trevelyan et al. (2007) introduces
a zeroth order temperature distribution than can be written

T(0) = 1 +
(

1
1 + Bh

− 1
)

ȳ +

(

θ − 1
1 + Bh

)

φ1(ȳ)

with φ1 =
3
2

ȳ − ȳ3

2
+ Bh(1 − ȳ2)

ȳ
2

. (3.11)

As announced, φ1(0) = 0 and φ′
1(1) + Bφ(1) = 0 ensures that the bound-

ary conditions (3.6) are fulfilled irrespectively of the value of θ. It is impor-
tant to note that the ansatz (3.11) is asymptotically equivalent to the linear
distribution T(0) = 1+ (θ − 1)ȳ introduced by Ruyer-Quil et al. (2005), the
difference between the two being an O(ǫ) small term. Indeed, one can play
with the zeroth order equivalence θ = 1/(1 + Bh) +O(ǫ) provided by the
solution to the base flow. There is thus an infinity of possible consistent
ansatz !

As an exercise, the reader can plug the decomposition (3.3) of the ve-
locity and temperature fields into the energy balance (3.5), where T(0) and
u(0) are given by (3.11) and (3.3b), take a linear weight w = ȳ and integrate
across the layer. The result is

Prδ∂tθ = A [1 − (1 + Bh)θ]
h2 + Prδ

[

(B − Cθ)

h
∂xq −D q

h
∂xθ − E qθ

h2 ∂xh
]

(3.12a)
where the coefficients A to E are functions of Bh and thus vary with the
free surface geometry

A =
15

6 + Bh
, B =

93
112(6 + Bh)

, C =
3(39Bh − 31)
112(6 + Bh)

,

D =
3(149 + 23Bh)

56(6 + Bh)
and E =

69Bh
(6 + Bh)

(3.12b)

Equation (3.12) is consistent at O(ǫ) and provides a possible alternative to
(3.8a). The evolution equation (3.12) is a direct consequence of the ansatz
(3.11) irrespectively of the form of the corrections T(1). This equation is
however more complex than (3.8a) since the coefficients are now functions
of the product Bh(x, t) which varies with space and time. The reader is
invited to contrast (3.12) with GST[1], equation (B1b) in Trevelyan et al.
(2007), that has been derived using the Galerkin method and yet is incon-
sistent at O(ǫ).

Turning from weighted residual method to Roberts center manifold
analysis (CMA), that is described at length in § 1.3, the fluctuations of
the temperature field around the base flow equilibrium are assumed to be
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governed by the linearized problem in the long-wave limit ∂x → 0. Con-
sidering a constant and uniform thickness h, Linearisation of the energy
balance around the conductive equilibrium T = 1 + [Bh/(1 + Bh)]ȳ + T̃,
T̃ ≪ 1 leads to

Prδh2∂tT̃ = ∂ȳȳT̃ ≡ LT̃ with T̃|ȳ=0 = 0 and ∂ȳT̃|1 + BhT̃|1 = 0
(3.13)

where again ȳ = y/h. The discrete spectrum of L, eigenfunctions vn(ȳ)
and eigenvalues λn are given by

vn = sin(lnȳ)/ sin(ln) , λn = − (ln)2 (3.14)

and where ln are solutions to

l cot l + Bh = 0 . (3.15)

All eigenvalues ln are real and negative. Roberts CMA is based on the
idea that all eigenmodes but the first one λ0 corresponding to the largest
eigenvalue are effectively damped. The looked-after invariant manifold
is thus tangent to the linear subspace spanned by v0(ȳ). In fact, nonlin-
earities being O(ǫ) terms in (3.5), the invariant manifold again coincides
with the linear subspace at leading order. Adopting a parametrization
based on the temperature θ at the free surface, the invariant manifold
T(x, y, t) = T (θ(x, t), y), is given at O(1) by

T (θ(x, t), y) = 1 +
(

1
1 + Bh

− 1
)

ȳ +

(

θ − 1
1 + Bh

)

v0(ȳ) + O(ǫ) , (3.16)

the evolution on the manifold being governed by

Prδ∂tθ = − λ0

1 + Bh
[1 − (1 + Bh)θ]

h2 + O(ǫ) . (3.17)

Equation (3.16) is another consistent ansatz for T(0) that must be con-
trasted with the linear distribution T(0) = 1+ (θ − 1)ȳ and (3.11) proposed
by Treveleyan et al. As a matter of fact, (3.16) and (3.11) differs only by the
choice of the functions φ1(ȳ) and v0(ȳ) that are graphically compared in
figure 3.2a. As it turns out that φ1(ȳ) and v0(ȳ) are close, one thus expects
that Roberts CMA would yied a O(ǫ) consistent evolution equation for θ
very similar to (3.12). Indeed, figure 3.2b compares the first coefficients
appearing in (3.8a), (3.12) and (3.17). The rate at which heat conduction
relaxes θ to its equilibrium state θ = 1/(1 + Bh) is similar for Roberts
CMA and (3.12) whereas the linear temperature distribution adopted in
Ruyer-Quil et al. (2005) overestimates it.

3.3 Discussion

3.3.1 Two-dimensional flows

Interestingly, at a given value of the heat transfer coefficient and for a given
fluid (Bi, Ma and Γ constant) all the reduced parameters (3.1) vanish as the
Reynolds number tends to zero except for the reduced Marangoni num-
ber which tends to infinity. At small flow rates, the Marangoni S mode
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Figure 3.2 – (a) Test function φ1 and eigenfunction v0 computed for Bh = 0.5 and
Bh = 1 ; (b) coefficient −λ0/(1 + Bh) (crosses) compared to A(Bh) (solid line) and
−3(1 + Bh) from (3.8a) (dashed line).

dominates over the Kapitza K instability mode. The Reynolds number be-
ing small, the dynamics of the film is slaved to the kinematics of the film.
Considering a 2D flow, Benney long-wave expansion yields the following
surface equation (Kalliadasis et al. 2003a)

∂th + ∂x

[

h3

3
(1 + ∂xxxh) +

MB
2

h2∂xh
]

= 0 (3.18)

where the leading order term involving B has been retained as MB ∝

(3Re)−1/9 becomes large at Re ≪ 1. Equation (3.18) must be contrasted
with the Frenkel equation (4.12) which models the Rayleigh-Plateau in-
stability of a axisymmetrical film coating a fiber. In this region of small
flow rates and hence small film thicknesses, the amplitude of the waves is
expected to be large as compared to the film thickness. However because
the order of the nonlinearity associated to the thermocapillary effect is
not large (cubic term), solitary-wave solutions can be found for all values
of the parameter M cot β (cf. figure 2.6 and the associated discussion in
§ 2.3.1): the flow advection is sufficient to arrest the growth of the waves
and 2D dry patches do not form. Yet, this argument is true only for a
spanwise-independent 2D flow. No mechanism can arrest the thermocap-
illary S mode in the transverse directions and film ruptures are indeed
observed between rivulets (Krishnamoorthy and Ramaswamy 1995, Ra-
maswamy et al. 1997), in which case van der Waals forces become impor-
tant. Such forces of non-hydrodynamic origin are expected to arrest the
singularity formation.

Inversely, if Re tends to infinity, both M and M cot β tend to zero and
the velocity and temperature fields are decoupled in this limit. Therefore,
at large Reynolds numbers, the shape of the waves should be unaffected
by the Marangoni effects and the Kapitza K mode predominates.

This situation is illustrated in the stability diagram presented in fig-
ure 3.3. The regions of linear stability (and instability) of the uniform film
are given in the plane Reynolds number Re versus wavenumber k. The
inclination of the plane is moderate (β = 15◦) and the fluid properties
are constant (and thus Γ and Bi). The movement of the neutral stability
curves is indicated as a result of the variation of the Marangoni number
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Figure 3.3 – Influence of the Marangoni number on the neutral stability for an inclined
plate forming an angle β = 15◦ with the horizontal direction with Γ = 250, Pr = 7 and
Bi = 1, and computed with the Orr–Sommerfeld eigenvalue problem (solid lines) and the
regularized model (3.10) (dashed lines). After figure 9.3 in Kalliadasis et al. (2012).

(which is monitored in the experiments by varying the temperature dif-
ference Tw − Ta). At values of Ma lower than ≈ 16, two unstable regions
are found corresponding to the predominance of the thermocapillary S-
mode (at low Reynolds numbers) and of the hydrodynamic K mode (at
large Reynolds numbers). Note that the critical Reynolds number of the
K mode decreases with Ma which indicates that the Marangoni effect am-
plifies the hydrodynamic instability (in fact the reverse is also true).

The neutral stability curves solutions to the Orr-Sommerfeld eigen-
value problem of the full Navier-Stokes linearized equations are compared
to the results from the three-equation model (3.10). An excellent agree-
ment is achieved which illustrates the good behavior of the WRM model
in the linear regime.

As emphasized in chapter 2, an important test of reliability of low-
dimensional models is the construction of solitary-wave branches of solu-
tions. We focus on positive-hump waves. In fact, much like the isothermal
falling film negative-hump waves are unstable in time-dependent compu-
tations. In figure 3.4 are presented the maximum amplitude and speed
of the single-hump solitary wave family of the regularized model (3.10) as
function of Re for two different values of Prandtl and Marangoni numbers.
The single-hump solitary wave solution branch obtained from seems to
exist for all Reynolds numbers, i.e. it does not present any turning points
with branch multiplicity connected to finite-time blow-up behavior.

Increasing the Marangoni number leads to larger amplitudes and
speeds showing that the thermocapillary S-mode reinforces the hydrody-
namic K-mode. This effect is more pronounced at low Reynolds numbers
(M being proportional to Re−4/9). By similitude to the isothermal case,
we shall refer to this regime as the drag-gravity regime (see § 2.4). On
the other hand, in the region of large Re, the different curves merge with
the isothermal one. In this region, the destabilizing interfacial Marangoni
forces are weaker compared to the dominant inertia forces and we shall
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Figure 3.4 – Characteristics of single-hump solitary wave solutions of the three-equation
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Figure 3.5 – Streamlines (above) and isotherms (below) of a solitary wave in its moving
frame, The wave is computed for the point (Re, Ma) = (0.01, 50) in figure 3.4 and for
Pr = 7. Interfacial temperature is denoted by a dashed line. After figure 9.6 in Kalliadasis
et al. (2012)

refer here to the drag-inertia regime. The speed of the waves saturates
similarly to what is observed in the isothermal case.

The effect of Prandtl number is more subtle. At low Reynolds num-
bers, Re . 0.5, larger values of Pr seem to slightly favor instability, whereas
for any larger Re, we have the opposite effect. This intricate effect can be
understood by plotting the streamlines and isotherms under the waves.

Figure 3.5 shows the streamlines and isotherms for Re = 0.01 of a
solitary-wave solution in its moving frame. The film flow evolution is well
approximated by the evolution equation for the free surface (3.18). The
Péclet number being small, the temperature field is nearly linear and the
isotherms are practically aligned with the wall. The wave presents a re-
circulation zone in its hump which creates a downward movement below
it. As a consequence, raising the Pr number (and thus the Péclet number)
promotes a cooling of the wave crest by downward convective heat flux
which enhances the Marangoni effect and promotes the instability.

At somewhat larger values of the Reynolds number, say Re = 1, the
Marangoni instability is less strong as BM ∝ (3Re)−1/9 and solitary waves
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Figure 3.6 – Streamlines (above) and isotherms (below) for (Re, Ma) = (1, 50) and for
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Figure 3.7 – Streamlines (above) and isotherms (below) for the point (Re, Ma) = (2, 50)
in Fig. 3.4. (a) Tmin = 0.591; (b) Tmin = 0.429 and Tmax = 1.26. After figure 9.8 in
Kalliadasis et al. (2012).

do not present recirculation zone (see figure 3.6). In the absence of a recir-
culation zone, the effect of convection is reversed. Isotherms are deflected
upwards by the movement of the fluid in the crest. Convection warms up
the fluid and the minimum of temperature is reduced which weakens the
Marangoni effect. The transport of heat by the motion of the fluid has a
stabilizing effect in this case.

For larger Reynolds numbers, e.g. Re = 2, corresponding to the drag-
inertia regime, inertia becomes increasingly dominant, and the speed and
amplitude of solitary waves increase substantially, as shown in Fig. 3.4. As
a consequence, a recirculation zone can now be present inside the main
solitary hump, much like at Re / 0.5, but there the large amplitude and
speed of the solitary wave and hence recirculation zone in the main hump
were due to the action of the Marangoni effect (see figure 3.7). One of
the stagnation points (in the frame moving with the wave) is shifted from
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the front of the wave to its crest. This is evinced in figure 3.8b where
the streamlines at Re = 3 when the thermocapillary effect is switched
off (Ma = 0) are compared to the flow pattern with Ma 6= 0. Thus, the
Marangoni effect enhances the recirculation in the crest and promotes a
strong downward flow there. As a consequence, the transport of heat
by the flow contributes to cooling down the crest and amplifying the
Marangoni effect. Nevertheless, this strong circulation and downward
flow create a strong shear and therefore increases the effect of viscous dis-
sipation which in turn reduces the amplitude and speed of the waves if the
Prandtl number is raised. These observations indicate that the interaction
of the hydrodynamic K-mode and the Marangoni S-mode is non-trivial
especially in the region of large-amplitude solitary waves.

Unfortunately, at some larger values of the Reynolds number, nega-
tive values of the dimensionless temperature appear in the fluid. Turning
back to dimensional quantities, this would lead to a temperature in the
fluid that can be locally higher than the temperature of the wall or lower
than the temperature of the air. This is physically unacceptable as the
temperature everywhere in the fluid should be bounded between the wall
and air temperatures.

To understand the appearance of this unphysical behavior when a re-
circulation zone is present, i.e. for large amplitude waves, let us consider
the influence of the heat transport convective effects in the high-Péclet
number limit, Pe = RePr ≫ 1. Cross-stream convection associated with
the recirculation zone dominates over diffusion, the temperature field in
the recirculation zone is simply transported by the flow and the stream-
lines are identical to the temperature contours (see e.g. Shraiman (1987),
Trevelyan et al. (2002)). This means that the temperature along each
streamline is constant due to the strong advection mixing. The temper-
ature field becomes a passive scalar and is simply transported by the flow.
Hence, within the recirculation zone the isotherms are closed curves, as
start to be visible in Fig. 3.7(b) Because of the inward orientation of the
streamline at the stagnation point located at the front of the wave, the
transport of heat tends to increase the gradient of temperature around
this stagnation point and to promote the formation of a thermal boundary
layer which develops from the front stagnation point around the recircu-
lation zone (Trevelyan et al. 2007). In this case, transport of heat via con-
duction can be neglected except in the (fully developed) boundary layer of
thickness (δPr)−1/2. Consequently, the hypothesis ∂yT ≫ ∂xT necessary
for the derivation of the models would be violated in these regions.

There are different possibilities to cure the limitation of the WRM mod-
els. One such possibility is to relax the assumption ∂yT ≫ ∂xT and use
instead the original energy equation without any approximations. In this
case the original energy equation should be solved numerically to obtain
the temperature distribution within the film. Another possibility explored
in Trevelyan et al. (2007) consists in the introduction of appropriately mod-
ified weight functions for the energy equation prior to averaging.
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Figure 3.8 – (a) Streamlines (above) and isotherms (below) for the point Re = 3. The
reduced parameter values are δ = 2.33, η = 0.067, M = 2.99 and B = 0.21 with
Tmin = 0.414. Black dots represent stagnation points; (b) same parameters values for δ, η
as in (a) but for the isothermal case. After figure 9.9 in Kalliadasis et al. (2012).

3.3.2 Three-dimensional flows

The study of 2D spanwise-independent flows was followed by numerical
simulations of 3D flows over extended domains using periodic boundary
conditions in both directions. This study revealed a very intricate inter-
play between the hydrodynamic K-mode whose action is oriented by the
direction of the flow, and the thermocapillary S-mode which is isotropic
in the plane of the film. A detailed phase portrait detailing the different
observed regimes can be found in Scheid et al. (2008a;b).

A typical example of the spatio-temporal evolution of the film is pre-
sented in figure 3.9. After the development of a parallel wave train (a),
drop-like accumulation breaks the two-dimensional wave structure into a
fully-developed three-dimensional pattern (b,c), prior to rivulet-like pat-
terns aligned with the flow (d,e). The liquid then accumulates into rivulets
which increases the local Reynolds number and fosters two-dimensional
solitary-like waves of larger amplitude and phase speed than in isothermal
conditions (f).

This spontaneous channeling process of the flow into localized struc-
tures in the spanwise direction —the rivulets— is a particularly nontrivial
effect. It is observed in a range of parameters for which neither the K-
mode or the S-mode are dominant, otherwise the Marangoni effect would
be ineffective to orientate the flow pattern or the development of spanwise
rivulets would overcome the growth of traveling waves. This interplay is
illustrated by the variety of observable patterns, some being reported in
figure 3.10. In the drag-gravity regime, quasi-regularly spaced rivulets
arise and grow up until rupture (a). Meanwhile, the rivulets confine the
flow in such a way that waves riding them behave like two-dimensional
solitary waves, but of higher flow rate because of the local increase of
the Reynolds number. On the contrary, no qualitative influence of the
Marangoni effect has been observed in the drag-inertia regime, at least
during the time of the computer simulations, showing that inertia fully
dominates the dynamics of the film (c). The transition between these two
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(a) t = 300 (b) t = 500 (c) t = 700

(d) t = 900 (e) t = 1100 (f) t = 1500

Figure 3.9 – Water film free surface at different times. Parameter values are Re = 2 for
Ma = 50, Bi = 0.1, Pr = 7, cot β = 0 and Γ = 3375. The domain size is 2π/kx ×
2π/kz where kx = kz = 0.05. Bright/dark zones correspond to elevations/depressions,
respectively. After figure 9.12 in Kalliadasis et al. (2012).

regimes for 4 < Re < 6 shows a complex cooperative behavior between
both hydrodynamic K- and thermocapillary S-modes, as illustrated for
Re = 5 in figure 3.10b

To end this section, let us emphasize that the spontaneous channeling
phenomenon should be particularly attractive from the experimental point
of view, especially as fluid flow settings where 2D waves can be stabilized
are quite rare. This patterning might be generic for systems exhibiting
a competition between monotonic and oscillatory (or wave) instabilities
with anisotropy (here, due to the direction of the basic flow).

Some perspectives

If the thermocapillary S-mode and the hydrodynamic K-mode are found
to always reinforce each other in the linear regime, the nonlinear regime
is far more intricate, especially when large-amplitude solitary waves are
considered. For instance, the coupling between the hydrodynamic K-
mode and the thermocapillary S-mode are far from being fully under-
stood, in particular when three-dimensional flows are considered. Indeed,
this chapter constitutes only a preliminary study, the “tip of the iceberg”
that underlines the richness of the problem. In fact, in most problems
involving heat transfer, phase changes through either evaporation or con-
densation or both have also to be taken into account. As far as mass trans-
port is concerned there is a large class of problems that involve transport
of a species from a gas to a falling film. An important question in these
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(a) Re = 2 - t = 1795 (b) Re = 5 -t = 2650 (c) Re = 10 - t = 442

Figure 3.10 – Wave patterns for Ma = 50, Bi = 0.1, Pr = 7 and Γ = 3375 for different
Re. Times given for (a, b) are close to rupture. After figure 9.13 in Kalliadasis et al.
(2012).

problems is the development of systematic ways for obtaining effective
heat/mass transport coefficients.

There is no doubt that falling films in presence of heat and mass trans-
fer will continue to attract a considerable interest in the coming years. In
addition to the purely theoretical interest, falling liquid films play a cen-
tral role in the development of efficient means for interfacial heat and mass
transfer in a wide variety of engineering and technological applications,
such as evaporators, heat exchangers, absorbers, scrubbers, rectification
columns, crystallizers, and falling film reactors. This is mostly due to the
large surface-to-volume ratio and to the small heat and mass transfer re-
sistance of a thin liquid film at relatively small flow rates. This resistance
is further decreased by the presence of wavy patterns at the interface of
the film which typically leads to a significant enhancement of heat and
mass transfer (Frisk and Davis 1972, Goren and Mani 1968). Yet, the pre-
cise mechanisms that leads to a considerable enhancement of the transfer
of heat by the wavy motion of the film is still beyond our comprehension.
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Thermocapillary long waves in a liquid film flow.
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We analyse the regularized reduced model derived in Part 1 (Ruyer-Quil et al. 2005).
Our investigation is two-fold: (i) we demonstrate that the linear stability properties of
the model are in good agreement with the Orr–Sommerfeld analysis of the linearized
Navier–Stokes/energy equations; (ii) we show the existence of nonlinear solutions,
namely single-hump solitary pulses, for the widest possible range of parameters.
We also scrutinize the influence of Reynolds, Prandtl and Marangoni numbers on
the shape, speed, flow patterns and temperature distributions for the solitary waves
obtained from the regularized model. The hydrodynamic and Marangoni instabilities
are seen to reinforce each other in a non-trivial manner. The transport of heat by the
flow has a stabilizing effect for small-amplitude waves but promotes the instability for
large-amplitude waves when a recirculating zone is present. Nevertheless, in this last
case, by increasing the shear in the bulk and thus the viscous dissipation, increasing
the Prandtl number decreases the amplitude and speed of the waves.

1. Introduction

The present study is devoted to the problem of long-wave instabilities – namely
hydrodynamic H- and thermocapillary S-modes (Goussis & Kelly 1991) – and
concomitant formation of solitary waves on the surface of a film falling down
a uniformly heated plane. In Part 1 (Ruyer-Quil et al. 2005), we developed a low-
dimensional model capable of capturing these phenomena in a wide range of Reynolds
numbers, i.e. in both drag–gravity and drag–inertia regimes (Ooshida 1999). The
model, which also takes into account the second-order dissipative effects that can
play an important role in the drag–inertia regime (Ruyer-Quil & Manneville 2000),
was referred to as the ‘second-order regularized reduced model’. It is rewritten here

† Present address: Department of Chemical Engineering, Imperial College, London SW7 2AZ,
UK.
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for ease of presentation:
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where the Kapitza, Marangoni, Biot and Prandtl numbers are defined as

Γ =
σ (T0)

ρν4/3(g sinβ)1/3
, Ma =

−dσ/dT |T0
(Tw − T0)

ρν4/3(g sinβ)1/3
, Bi =

q0 ν2/3

K(g sinβ)1/3
, Pr =

ν

κ
,

and where σ is the surface tension, ρ the density, ν the viscosity, g sinβ the streamwise
gravity component, q0 the heat transfer coefficient of the liquid–gas interface, K the
thermal conductivity of the liquid, κ the thermal diffusivity, Tw the wall temperature
and T0 a reference temperature, taken here as the ambient temperature Ta. This set
of parameters is completed by the flat-film thickness hN or equivalently the Reynolds
number

Re =
g sinβh3

N

3ν2
=

h̄3
N

3
(1.2)

while the product Pe= Pr Re defines the Péclet number. A bar in (1.2) has been
introduced to distinguish between dimensional and dimensionless quantities.

In § 2, the linear stability properties of (1.1) are examined and compared to results
from Orr–Sommerfeld analysis of the full Navier–Stokes/energy equations, the Benney
expansion, as well as the full-size model of reduced dimensionality (see Part 1), from
which (1.1) was derived through a regularization procedure. In § 3 we scrutinize
the effect of the Reynolds, Prandtl and Marangoni numbers on the shape, speed,
temperature distribution and flow patterns for the single-hump solitary waves obtained
from (1.1). We also explore the interaction between the S- and H-modes in the
nonlinear regime. Finally, a conclusion and discussion is offered in § 4.

2. Linear stability results

We now examine the linear stability of the basic Nusselt flow and we compare
the results obtained from the regularized reduced model to those obtained from
the Orr–Sommerfeld eigenvalue problem of the full Navier–Stokes/energy equations.
This eigenvalue problem was first formulated and solved by Goussis & Kelly (1991)
and the reader is referred to this study for details. It is also instructive here to
include the linear stability analysis obtained from the first-order model (§ 4.1 in
Part 1), boundary-layer equation (§ 3 in Part 1) and full-size second-order model
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(Appendix A in Part 1). The dispersion relation corresponding to (1.1) can be
obtained by introducing perturbations to the flat-film solution in the form of normal
modes with wavenumber k̃ and frequency ω̃ (here we focus on temporal stability so
that the wavenumber is real and the frequency complex)







h

q

θ






=







h̄N

h̄3
N/3

1/(1 + Bi h̄N)






+ ε







1

Aq

Aθ






exp{i(k̃x − ω̃t)} (2.1)

in (1.1) and then linearize for ε ≪ 1. For the resulting system of linear algebraic
equations to have non-trivial solutions, it is necessary and sufficient that its principal
determinant be equal to zero. Similarly, substituting (2.1), si = εAsi

exp{i(k̃x − ω̃t)}
and ti = εAti exp{i(k̃x − ω̃t)} in the full-size model (see Appendix A of Part 1) gives
its dispersion relation.

To compare our linear stability analysis with the one performed by Kalliadasis et al.
(2003), we must non-dimensionalize the length scales with the Nusselt film thickness
hN. Still utilizing bars to distinguish dimensional and dimensionless quantities
when needed, we are thus led to the transformation k̃ = k/h̄N and ω̃ = h̄Nω, where
h̄N = (3Re)1/3 from (1.2). The phase speed c̃ = ω̃/k̃ is transformed to c̃ = h̄2

Nc. The
averaged velocity of the flat-film solution is then 1/3 with this scaling. A different set
of parameters based on the Nusselt flat-film solution therefore appears:

Ma�T =
−dσ/dT |T0

�T

ρh2
Ng sinβ

, We =
σ (Ta)

ρgh2
N sinβ

, B =
q0hN

K
, (2.2)

where �T is the temperature difference across the uniform fluid layer of thickness
hN. This set is completed by the definition of the Reynolds number given in (1.2).
These are effectively the parameters adopted by Kalliadasis et al. (2003) except that
these authors expressed the Weber number as the ratio of surface tension over inertia
forces instead of surface tension over gravitational forces as in (2.2).

Performing a small-wavenumber expansion of the dispersion relation D(k, ω; Re,
cot β , We, Pr, Ma�T , B), similar to the one performed by Kalliadasis et al. (2003),
leads to the following expression for the complex phase velocity:

c = 1 + ik

(

2

5
Re − 1

3
cotβ +

Ma�T

2(1 + B)

)

− ik3 We

3
+ O(k2) (2.3)

where We is considered to be large such that We k2 = O(1). Note that the above
expansion only gives the root of the dispersion relation that can become unstable. As
was pointed out by Kalliadasis et al. (2003), the other two roots are always stable.
The neutral stability condition is now easily found to be

c = 1, k =

√

1

We

(

6

5
Re − cotβ +

3Ma�T

2(1 + B)

)

. (2.4)

Therefore, linear waves propagate with a velocity three times the averaged velocity
or twice the interfacial velocity of the flat film. From (2.4) we also notice that
increasing the Reynolds number or Marangoni number enlarges the range of unstable
wavenumbers while decreasing β or increasing the Weber number has a stabilizing
effect.
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The onset of instability is obtained by considering the zero critical wavenumber as
given by (2.4). This yields the critical condition

6

5
Re +

3Ma�T

2(1 + B)
= cotβ, (2.5)

which is identical to the one obtained by Goussis & Kelly (1991) by performing
a small wavenumber expansion of the Orr–Sommerfeld eigenvalue problem of the
full Navier–Stokes/energy equations. The expression (2.5) has the same functional
form as the one derived by Kalliadasis et al. (2003) for two-dimensional waves at
criticality, but some of the coefficients are different: 6/5 instead of 1 in front of
the Reynolds number, i.e. a 20% error, and 3/2 in front of the Marangoni number
instead of 1/2 due to a factor of 3 introduced in the definition of the Marangoni
number by Kalliadasis et al. (2003). Notice that here we try as much as possible
to avoid numerical factors in the definitions of the dimensionless groups – with an
exception to this rule being the definition of the Reynolds number – so that numerical
factors in the equations do not change with different scalings. The discrepancy now
for the coefficient in front of the Reynolds number corresponds exactly to the one
observed using the Shkadov model (Shkadov 1967) in the case of an isothermal flow
(Ma�T = 0). This inaccuracy has been eliminated by using a more complete description
of the velocity field (Ruyer-Quil & Manneville 2000), which fully corrects the critical
Reynolds number. Notice also that the Benney expansion for the heated falling film
yields the correct critical Reynolds number (see Joo, Davis & Bankoff 1991). This is
not surprising since this expansion is exact close to criticality (see our discussion in
Part 1, § 1).

Let us now consider a falling film whose inclination angle, temperatures at the wall
and air side and all physical quantities are fixed such that the sole control parameter
is the liquid flux at the inlet or equivalently the Reynolds number Re ∝ h̄3

N. From
(2.2), one has Ma�T ∝ 1/h̄N ∝ Re−1/3, We ∝ 1/h̄2

N ∝ Re−2/3 and B ∝ Re1/3. Therefore,
if the flow rate is large, inertia effects are large and the interfacial forces due to the
Marangoni effects are not important compared to the dominant inertia forces, so that
the H-mode dominates in this regime. Conversely, in the limit of vanishing Reynolds
number, inertia effects are negligible and the Marangoni effect is very strong. This
corresponds to the S-mode described by Scriven & Sternling (1964). In this region
of small film thicknesses, the destabilizing forces are interfacial forces due to the
Marangoni effect (capillary forces are always stabilizing). Since now Ma�T /We ∝ Re1/3,
the critical wavenumber tends to zero as the Reynolds number tends to zero. This
seems to contradict the results obtained by Goussis & Kelly (1991) which predict
that the wavenumber approaches infinity in this limit. This inconsistency is due to
the fact that Goussis & Kelly based the definition of their Marangoni number on the
temperature difference across the basic flat film instead of the temperature difference
between the wall and the ambient gas phase. As a consequence their Marangoni
number should also depend on B (which in turn depends on Re) but this dependence
was not taken into account in their study.

The Orr–Sommerfeld problem is a set of two complex ordinary differential equations
of degree four and two, for the amplitudes of the perturbed cross-stream velocity
and perturbed temperature, respectively, and subject to six boundary conditions. As
these differential equations are linear, an integral constraint must be added, e.g.
∫ 1

0
φ(y) dy = 1 with φ(y) the amplitude of the perturbed cross-stream velocity. The

Orr–Sommerfeld problem can then be recast in the form of a dynamical system of
dimension six and subject to the above integral constraint. To solve numerically this
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Figure 1. (a) Neutral stability curves in the (k̃,Re)-plane for Γ = 250, cotβ = 0, Pr = 7,
Ma = 50 and Bi= 1 from the different models. (b) Neutral stability curves in the (k,Re)-plane; k
is scaled with hN. Thick solid curve 1: Orr–Sommerfeld; dotted curve 2: full-size second-order
model; dot-dashed curve 3: first-order model; dashed curve 4: regularized reduced model
(1.1); solid curve 5: boundary-layer equations. The solid curve B corresponds to the Benney
long-wave expansion.

boundary-value problem, we utilized the long-wave nature of the instability. Indeed,
the zero-wavenumber mode is neutral, i.e. (k̃, ω̃) = (0, 0) is a solution of the eigenvalue
problem. Therefore the solution branches were constructed by continuation starting
from the trivial zero-wavenumber solution. For this purpose, we used the software
Auto97 developed by Doedel et al. (1997) and based on Keller’s pseudo-arclength
continuation method (Keller 1977). The same software was also used to obtain the
dispersion relations of the other systems, namely, first-order, full-size second-order,
boundary-layer and regularized reduced model.

In what follows, we fix the inclination angle β and all physical parameters – i.e.
we fix the liquid–gas system or, equivalently, cot β , Γ , Ma, Bi and Pr – as in a real
experiment where the inlet flow rate is the actual control parameter. Therefore, we only
vary the Nusselt film thickness hN, or equivalently, the Reynolds number Re. Figure 1
depicts the neutral stability curves in the wavenumber–Reynolds number plane for
Pr = 7, Γ = 250, cotβ =0, Ma= 50 and Bi =1 computed from the different models.
The figure also shows the stability map obtained from the full Orr–Sommerfeld
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stability analysis of the linearized Navier–Stokes/energy equations. The parameters
are chosen so that the differences between the various systems of equations can be
clearly identified. Hence the choice of an O(1) and therefore unrealistically ‘large’ Biot
number which would amplify the Marangoni effect. For the same reason, we choose
to plot in figure 1(a) the critical wavenumber k̃ defined through the length-scale
ν2/3(g sin β)−1/3 which only depends on the fluid parameters. Indeed as Re tends to
zero, the prediction for the critical wavenumber k given in (2.4) tends to zero as√

Ma�T /We ∝ h̄
1/6
N . Thus k̃ = k/h̄N ∝ h̄

−5/6
N approaches infinity in that limit and the

different curves are more easily separated.
The first-order model (curve 3) has already deviated from the other models at small

Reynolds numbers. This is due to the relatively ‘small’ Kapitza number indicating that
the second-order viscous effects are of primary importance in this regime. The full-
size second-order model (curve 2) compares very well with the exact Orr–Sommerfeld
solution (curve 1) even though at large Reynolds numbers it slightly underpredicts
the neutral wavenumber. However, this small discrepancy at large Reynolds numbers
cannot be attributed to the boundary-layer approximation (curve 5) since the trend
is inverted in this latter case and it is most likely due to the limited radius of
convergence of the perturbation scheme, as is the case with any approximate method.
Nevertheless, we note the excellent agreement between the full-size model (curve 2)
and the boundary layer equations (curve 5) for Re < 10. Notice also the saturation
of curves (1, 2, 5) for large Re: the critical wavelength 2π/k̃ remains constant in
this region and hence it is independent of the film thickness. On the other hand, at
low Reynolds numbers all models are in agreement with the solution of the Orr–
Sommerfeld eigenvalue problem. In this region, the dynamics of the flow is slaved to
its kinematics, i.e. both flow rate and interfacial temperature are adiabatically slaved
to the film thickness and they depend on time only through the dependence of the
film thickness on time. This is the region where the Benney long-wave expansion
applies.

Figure 1(b) depicts the marginal stability curves when the wavenumber is scaled
with the base-state film thickness hN. As expected, the curves approach the origin as
Re decreases. Figure 3(a) in the study by Kalliadasis et al. (2003) on the other hand,
indicates that for a vertically falling film with Ma �= 0 the neutral stability curves
intersect the wavenumber axis at finite values. However, this was due to the relatively
rough mesh in the computation of the neutral curves. A much smaller mesh shows
that for Reynolds numbers smaller than ∼ 10−4 (in terms of the scalings adopted by
Kalliadasis et al. 2003) and for the parameter values used in the figure, the neutral
curves turn sharply on themselves and approach the origin for very small Reynolds
numbers as in figure 1(b). Finally, notice that all curves in figure 1(b) approach a
plateau for Re ∼ 1.

By contrasting figures 1(a) and 1(b), it is evident that the principal advantage of
the scaling based on the length scale constructed from the kinematic viscosity and
gravitational acceleration, over the scaling based on the base-state film thickness, is
to enable a clear distinction between the H- and S-modes of instability identified by
Goussis & Kelly (1991). Indeed, the Orr–Sommerfeld neutral stability curve (curve 1)
has a minimum at R ≈ 5.6 in figure 1(a). This minimum corresponds to the transition
between the thermocapillary mode which predominates at low Reynolds numbers
and the classical hydrodynamic mode which prevails at larger Reynolds numbers.

Figure 2 shows the growth rate Imω̃ as function of k̃ for the long-wave instability
of the basic flat-film solution. For the ‘small’ value Re= 1, the growth rates predicted
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Figure 2. Growth rate Im ω̃ versus wavenumber k̃ for different Reynolds numbers obtained
from the Orr–Sommerfeld analysis (solid lines), the full-size model (dotted lines), the regularized
reduced model (dashed lines) and the Benney expansion (thin solid lines). Parameters are given
in the caption of figure 1.

by the regularized reduced model (1.1), the full-size model and the second-order
Benney expansion, are fairly close to the growth rate obtained by the exact
Orr–Sommerfeld stability analysis. For larger Reynolds numbers, the Benney expan-
sion no longer provides an accurate prediction for the growth rate, which increasingly
deviates from the exact solution as the Reynolds number increases. This divergence
is due to the fact that the Benney expansion assumes the dynamics of the flow
to be slaved to its kinematics which is obviously not true at large Reynolds numbers.
At Re= 50, where the H-mode is predominant, we note the good agreement of the
full-size model and the regularized reduced model with the exact Orr–Sommerfeld
analysis. At Re =10, the full-size model is in good agreement with the exact Orr–
Sommerfeld analysis while the regularized reduced model predicts a larger growth
rate (still, the agreement with Orr–Sommerfeld is qualitative for all wavenumbers).
This clearly shows the inability of the regularized reduced model to correctly take
into account the second-order convective terms in the heat equation and to describe
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Figure 3. Influence of the Biot number (a), the Marangoni number (b), the Prandtl number
(c) and the Kapitza number (d) on the marginal stability curves for a film falling down a
vertical plane: (a) Pr = 7, Ma = 50 and Γ =250; (b) Bi= 0.1, Pr = 7 and Γ = 250; (c) Bi= 0.1,
Ma = 50 and Γ = 250; (d) Bi= 0.1, Ma = 50 and Pr = 7. The solid lines correspond to the
Orr–Sommerfeld analysis and the dashed lines to the regularized reduced model (1.1).

the instability at large Péclet numbers where the S-mode is important. This issue will
be discussed in the next section.

Figure 3(a) depicts the marginal stability curves obtained from the regularized
reduced model (1.1) for a vertical plane and different Biot numbers. For Bi= O(1) the
influence of the Marangoni effect is large at small and moderate Reynolds numbers.
Indeed, if Bi tends to zero or infinity, the free-surface temperature of the undisturbed
solution, recalled in (2.1), becomes independent of hN and the Marangoni effect is
simply not an issue. For the other plots of figure 3, we choose a small Biot number,
Bi= 0.1, which is motivated by experiments on the problem of a film heated by a
local heat source (Kabov 1996; Kabov, Marchuk & Chupin 1996; Kabov et al. 2002)
indicating that the Biot number in experiments is indeed small.

We have also investigated the influence of the Marangoni, Prandtl and Kapitza
numbers and comparisons of the marginal stability curves obtained from Orr–
Sommerfeld and the regularized reduced model are given in figure 3. As expected, for
Ma= 0, we recover the classical hydrodynamic H-mode, with the corresponding curve
starting from the origin of the plane (k̃, Re) – see figure 3(b). For Pr =7, increasing
the Marangoni number increases the range of unstable wavenumbers, especially at
low Reynolds numbers where the Marangoni effect is predominant (S-mode). Again
the results obtained using the regularized reduced model compare very well with the
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Figure 4. Influence of the Marangoni number on marginal stability for an inclined plane
forming an angle β = 15◦ with the horizontal direction with Γ =250, Pr = 7 and Bi= 1. Solid
lines are for the Orr–Sommerfeld analysis and dashed lines for the regularized reduced model.

Orr–Sommerfeld eigenvalue problem. Note, however, that at large Reynolds numbers,
the marginal stability curves obtained from Orr–Sommerfeld merge into a single curve
while the ones obtained from the regularized reduced model do not. Clearly, if Re is
sufficiently large, the hydrodynamic H-mode predominates and the thermocapillary
effects as measured by Ma do not modify significantly the critical wavenumber.
The small disparity of the curves corresponding to the regularized reduced model is
therefore a consequence of the increased inaccuracy of this model in the region of
large Péclet numbers.

Figure 3(c) depicts the effect of Prandtl number on the marginal stability curves. The
results now are less intuitive. Indeed, since the instability is primarily an inertia-driven
instability, at least if the H-mode predominates, a larger value of Pr would imply a
larger range of unstable wavenumbers since the Péclet number, Pe= PrRe, measuring
the convective effects in the heat transport equation is also larger. Nevertheless, it is
found that the Prandtl number has little influence for large Re (H-mode) whereas
the curves are strongly affected by the Prandtl number for small Re (S-mode). If
the S-mode predominates, the origin of the instability is the gradient of temperature
at the interface. This gradient may be weakened by the transport of heat from the
troughs to the crests due to the motion of the fluid, a process which is intensified with
large Prandtl numbers. Note that the regularized reduced model agrees better with
Orr–Sommerfeld for Pr =1 than for larger values of Pr.

Finally, figure 3(d) shows the influence of Kapitza number on the marginal stability
curves. Note the excellent agreement with the Orr–Sommerfeld eigenvalue problem
for large values of Γ (Γ = 3175 corresponds to water at 18 ◦C). Now, decreasing the
value of Γ increases the range of unstable wavenumbers and a discrepancy between
the regularized reduced model and the Orr–Sommerfeld eigenvalue problem appears,
which increases with decreasing Γ . It is precisely for this reason, i.e. to emphasize the
differences between the different models, that we choose the worse case scenario in
which the Kapitza number is relatively small, Γ = 250, throughout this study.

For non-vertical planes and Marangoni numbers Ma of O(1), the critical condition
(2.5) can lead to two different values for the onset of the instability corresponding to
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the H- and S-modes, respectively. This is confirmed in figure 4 for a plane inclined
at an angle β =15◦ with respect to the horizontal direction. For moderate values
of Ma, two distinct unstable regions are observed, each corresponding to a different
instability mode as reported first by Goussis & Kelly (1991). Note the excellent
agreement of the curves corresponding to the regularized reduced model (1.1) with
Orr–Sommerfeld in the vicinity of the two thresholds. This agreement results from
taking into account the second-order dissipative terms in our formulation and from
a correct representation of the instability threshold. Noticeable discrepancies between
the two sets of curves can be observed if the Marangoni number is increased or at
larger Reynolds numbers. Finally, we have analysed the linear stability properties of
different second-order reduced models, but in all cases, the system in (1.1) offers the
best agreement with Orr–Sommerfeld.

3. Solitary waves

We now seek travelling wave solutions of (1.1). Here we restrict our attention to
single-hump solitary waves. It is well known that for isothermal films, the long-time
evolution is characterized by a train of soliton-like coherent structures each of which
resembles the infinite-domain solitary pulses (see e.g. Alekseenko, Nakoryakov &
Pokusaev 1994). Although time-dependent computations are beyond the scope of
the present study, by analogy with the isothermal case, we anticipate that for the
non-isothermal problem studied here, the long-time evolution is also dominated by
solitary waves.

Comparisons of the different shapes of solitary waves is made easier by using
a scaling based on the intrinsic length scales of the structures considered. For this
purpose we adopt the scalings suggested by Shkadov (1977). These scalings are
motivated by the observation that the largest slope of a solitary wave is at the
front of the main solitary hump where the breaking of the wave is promoted by
the stream wise gravity force ρg sinβ and balanced by the pressure gradient induced
by the surface tension ∝ σ∂xxxh. Therefore the characteristic slope 1/κ is given by
(ρgh2

N sinβ/σ )1/3 = We−1/3. This analysis is valid at least close to the threshold of
instability where the range of unstable wavenumbers is small. Thus introducing the
transformation x → κh̄Nx, y → h̄Ny, u → h̄2

Nu, t → tκ/h̄N in the boundary-layer
equations (see § 3 in Part 1) yields

δ(∂tu + u∂xu + v∂yu) − (∂yy + 2η∂xx)u − η∂x[∂xu|h] − 1 + ζ∂xh − ∂xxxh = 0, (3.1a)

Prδ
(

∂tT + u∂xT + v∂yT
)

− (η∂xx + ∂yy)T = 0, (3.1b)

completed by the continuity equation ∂xu + ∂yv = 0, the boundary conditions

∂yu|h = η(4∂xh∂xu|h − ∂xv|h) − M∂x[T |h], (3.2a)

∂yT |h = −B

(

1 +
η

2
(∂xh)2

)

T |h + η∂xh∂xT |h, (3.2b)

the kinematic condition at the free surface ∂th+u|h∂xh = 0 and the Dirichlet conditions
at the wall, u|0 = v|0 = 0 and T |0 = 1. A set of ‘reduced’ parameters is now obtained:

δ =
h̄3

N

κ
=

(3Re)11/9

Γ 1/3
, ζ =

cotβ

κ
=

cot β (3Re)2/9

Γ 1/3
,

η =
1

κ2
=

(3Re)4/9

Γ 2/3
, M =

Ma

κh̄2
N

=
Ma

Γ 1/3(3Re)4/9
,















(3.3)
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along with B = Bi (3Re)1/3 defined in (2.2); δ is the reduced Reynolds number†
and ζ the reduced slope. The parameter η appears in all second-order streamwise
dissipative terms in the momentum and heat transport equations. Similarly M is a
reduced Marangoni number. Since the long-wave approximation requires the slope
to be small, η must be small – or equivalently the Kapitza number large enough –
so that in many studies dealing with vertical isothermal film flows (ζ = 0, M = 0)
η is set to zero and the set of parameters is reduced to δ only (see e.g. Chang
1994). Again, considering isothermal vertical flows, another advantage of the above
set of parameters is that, using Shkadov’s scalings, the speed and maximal height
of the solitary waves depend strongly on the reduced Reynolds number δ and are
not affected much by the strength of the streamwise viscous terms as measured by
η, whereas the amplitude of the front-running capillary waves depends strongly on η

(see e.g. the direct numerical computations by Salamon, Armstrong & Brown 1994).
Still considering isothermal vertical flows, if the effect of inertia becomes dominant,
the maximum slope of the waves ceases to correspond to the equilibrium of the
streamwise gravity and surface tension but rather to the largest wavenumber triggered
by the instability which corresponds to the critical wavenumber kc ∝ √

Re/We (see
(2.4)). Therefore ǫRe ∼ kcRe ∼ δ3/2 and the transition from the drag–gravity regime
(ǫRe ≪ 1) to the drag–inertia regime (ǫRe = O(1)) corresponds to δ of order unity. As
already noticed by Ooshida (1999), this transition corresponds closely to the loss of
solitary wave solutions observed for the Benney equation for δ ≈ 0.986. Finally, the
reduced parameters (3.3) also give a good indication of the influence of the different
physical effects on these waves. Therefore, since Shkadov’s scalings are appropriate
for the study of the strongly nonlinear solitary waves, in the next section we shall
compare the main properties of the solutions obtained from the regularized reduced
model – namely phase speed c, maximum height and shapes – using these scalings
also.

Interestingly, all the reduced parameters (3.3) vanish as the Reynolds number tends
to zero except for the reduced Marangoni number which tends to infinity. Hence, for
small flow rates, δ ≪ 1, ζ ≪ 1 and η ≪ 1 and the corresponding terms multiplied by
these parameters can be neglected. Integrating (3.1) twice thus leads to

q =
h3

3
(1 + ∂xxxh) − M

2
h2∂xθ, θ =

1

1 + Bh
= 1 − Bh + O(B2), (3.4)

and the mass conservation equation ∂th + ∂xq = 0 then gives

∂th + ∂x

[

h3

3
(1 + ∂xxxh) +

MB

2
h2∂xh

]

= 0 (3.5)

where the leading-order term involving B has been retained. Apart from numerical
factors and different scalings, equation (3.5) is identical to the one obtained by
Kalliadasis et al. (2003). The reduced parameter proposed by Kalliadasis et al. (2003)
is ∝ 1/BM . These authors observed that homoclinic solutions to (3.5) tend to infinity
as their parameter tends to zero, that is when MB tends to infinity. Because we
have MB ∝ (3Re)−1/9, this limit corresponds to the zero Reynolds number limit. As
was pointed out by these authors, in this region of small flow rates and hence small
film thicknesses, the film is expected to form isolated drops separated by very thin

† The reduced Reynolds number defined initially by Shkadov (1977) was δShk = δ/45. The
numerical factor originates from a slightly different choice of variables.
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layers of fluid for which van der Waals forces become important. Such forces of
non-hydrodynamic origin are expected to arrest the singularity formation observed
for the homoclinic orbits in the region of small Reynolds numbers. Inversely, if Re
tends to infinity, both M and MB tend to zero and the velocity and temperature fields
are decoupled in this limit. Therefore, at large Reynolds numbers, the shape of the
wave should be unaffected by the Marangoni effects. These two limits will enable us
to elucidate the influence of Reynolds number on the shape of the waves for given
inclination angle and physical properties.

In what follows, we discuss in detail the properties of the solitary wave solutions of
the system (1.1) as well as the influence of the different physical effects and different
parameters, primarily Re, Pr and Ma, on these waves. In all cases the wall is taken
to be vertical – for the isothermal case vertical apparatus is most frequently used
in experiments (Alekseenko, Nakoryakov & Pokusaev 1994). Our main interest is
to decipher the coupling between the hydrodynamic H-mode and thermocapillary
S-mode in the nonlinear regime and particularly for large amplitude waves, that is in
the drag–inertia regime where inertia plays a dominant role.

Consider now travelling wave solutions propagating at constant speed c and hence
stationary in the moving frame ξ = x − ct . In this frame, the set of equations (1.1) can
be written in dynamical system form as

dU

dξ
= F(U; δ, ζ, η, B, M, Q), (3.6)

where U =(h, h′, h′′, θ, θ ′)t . The constant Q is the mass flux under the wave in
the moving frame of reference and is obtained after one integration of the mass
conservation equation −c h′ + q ′ = 0, Q = q − c h. For solitary pulses, the Nusselt flat-
film solution h = 1 should be approached far from the pulses which gives Q =1/3−c.
Since the speed of the waves is larger than the maximum velocity in the liquid, Q

is a negative constant. Note, however, that in experiments, the time-averaged film
thickness can be smaller downstream than at the inlet (the presence of the waves
usually accelerates the fluid motion). As a consequence, the local Reynolds number
varying with the third power of the thickness can be significantly smaller than the
Reynolds number based on the flow rate or the inlet Nusselt film thickness.

Singe-hump solitary wave solutions – also called ‘principal homoclinic orbits’ by
Gelndinning & Sparrow (1984) – are computed using the continuation software
Auto97 with the Homcont option for tracing homoclinic orbits (Doedel et al. 1997).
In figure 5 we present the maximum amplitude and speed of the single-hump solitary
wave family of the regularized reduced model as a function of Re for different values
of Prandtl and Marangoni numbers. For comparison purposes, we also show in the
same figure the wave family corresponding to isothermal flows (Ma = 0). In all our
computations in this section we take the values Γ = 250 and Bi =0.1 for the Kapitza
and Biot numbers, respectively. As already mentioned, the Kapitza number is chosen
much smaller than its value for common liquids in order to clearly isolate the role of
the second-order dissipative and inertia terms.

The single-hump solitary wave solution branch obtained from (1.1) seems to exist
for all Reynolds numbers, i.e. it does not present any turning points with branch
multiplicity connected to finite-time blow-up behaviour as for the Benney expansion
(Pumir, Manneville & Pomeau 1983; Oron & Gottlieb 2002; Scheid et al. 2005).
Different reduced second-order formulations – from the family of reduced models
developed in Part 1 – were also tested (not shown) and their solitary-wave solution
branches do exhibit turning points. This, along with the good agreement with the
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Figure 5. (a) Speed and (b) maximum height of single-hump solitary wave solutions computed
with the regularized reduced model (1.1) for different values of Ma and Pr with cot β = 0,
Bi= 0.1 and Γ = 250.

Orr–Sommerfeld eigenvalue problem shown in the previous section, confirms that
(1.1) is indeed a well-behaved low-dimensional model.

As expected, increasing the Marangoni number leads to larger amplitudes and
speeds since the two instability modes reinforce each other. This effect is more
pronounced at low Reynolds numbers (the reduced Marangoni number M defined in
(3.3) is proportional to Re−4/9). This is also consistent with our linear stability analysis
in the previous section which suggests that the Marangoni effect is amplified in the
region of small Reynolds numbers. On the other hand, in the region of large Re,
the different curves merge with the isothermal one. In this region of large Reynolds
numbers the destabilizing interfacial Marangoni forces are weaker than the dominant
inertia forces.

The effect of Prandtl number is more subtle. At low Reynolds numbers, larger
values of Pr seem to favour the instability, whereas at larger Re, we have the opposite
effect. To elucidate the influence of Prandtl number, we compute the streamlines and
isotherms in the moving frame by computing the velocity and temperature fields
from the polynomial expansions and by utilizing the first-order approximation of the
corrections si and ti (see Part 1 for details). Note that the second-order corrections for
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Figure 6. Streamlines (top) and isotherms (bottom) of a solitary wave in its moving frame
obtained for Pr = 7, Re= 0.01, cotβ =0, Γ = 250, Ma = 50 and Bi =0.1. The dashed line
represents the interfacial temperature θ . There are 12 isotherms separating 13 equally spaced
intervals, ranging from T = 1 on the wall to Tmin = 0.929.

both fields can also be computed from the residuals associated with the corresponding
test functions followed by an inversion of the resulting linear system. Nevertheless, due
to the complexity of this procedure, we assume here that the velocity and temperature
fields are described sufficiently accurately by their representation at first order, at
least for the purpose of a qualitative discussion. In all computations of this section
the Marangoni number is fixed at Ma =50.

Figure 6 shows the streamlines and isotherms for Re = 0.01. The reduced parameters
are δ = 0.0022, η =0.0053, M =37.6 and B = 0.031. With the product Prδ, η and B

being small, the film flow evolution is well approximated by the evolution equation
for the free surface (3.5). We also have ∂yyT ≈ 0 so that the temperature field is
nearly linear, T ≈ 1 − By. Therefore, the isotherms are nearly aligned with the wall.
Notice also from figure 6 that the interfacial temperature θ is nearly uniform since
B ≪ 1. For such a small Reynolds number, inertial effects are almost absent and the
Marangoni effect is free to form large-amplitude humps. Consequently, the phase
speed is sufficiently large – c =2.35 for the wave shown in figure 6 – to create a
recirculation zone at the crest of the wave along with the transport of fluid mass
downstream. Interestingly, this behaviour triggered by the Marangoni effect is very
similar to that triggered by inertia for larger Reynolds numbers (see below).

The streamlines and isotherms computed for Re= 1 and Pr= 1 and 7 are shown in
figure 7. The reduced parameters are now δ = 0.61, η = 0.041, M = 4.86 and B =0.14.
Again, at Pr = 1, the isotherms are nearly aligned (with both B and Prδ being still
relatively small). Conversely, at Pr = 7, the isotherms are deflected upwards by the
movement of the fluid in the crest. Therefore, the minimum of temperature (which
is achieved at the crest of the solitary wave) increases to Tmin = 0.8 – from 0.765
for Pr =1 – and consequently the Marangoni effect is reduced, and therefore the
amplitude and the phase speed of the wave are also reduced. The transport of heat
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Figure 7. Streamlines (top) and isotherms (bottom). Re= 1 and all other parameters are given
in the caption of figure 6. In (a) Pr = 1 and Tmin =0.765 and in (b) Pr = 7 and Tmin = 0.8.
In all cases, a total of 12 isotherms separating 13 equally spaced intervals between T = 1 and
T = Tmin is shown.
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Figure 8. Streamlines (top) and isotherms (bottom) for Re= 2. All other parameters are given
in the caption of figure 6. In (a), Pr = 1 and Tmin =0.591 and in (b), Pr = 7, Tmin = 0.429 and
Tmax = 1.26.

by the motion of the fluid has a stabilizing effect in this case. Nevertheless, at larger
Reynolds numbers, inertia dominates, the solitary wave amplitude and speed increase
dramatically and a recirculation zone appears inside the solitary wave. Streamlines
computed for Re= 2 and Re= 3 (δ = 1.42 and δ = 2.33) shown in figures 8 and 9 do
exhibit such recirculation zones, turning clockwise, and implying the existence of two
stagnation points at the free surface at the back and the front of the primary solitary
hump. In this case solitary waves transport the trapped fluid mass downstream.

Comparison with the streamlines at Re= 3 when the thermocapillary effect is
switched off (Ma = 0) indicate that the Marangoni instability shifts one of the
stagnation points from the front of the wave to its crest (see figure 10). Thus,
because thermocapillary stresses push the fluid from the rear to the top of the crest,
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Figure 9. Streamlines (top) and isotherms (bottom) for Re= 3 and Pr = 1. Here Tmin =0.414.
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Figure 10. Streamlines for Ma =0, Re= 3, cot β = 0 and Γ = 250.

they reinforce the clockwise circulation in the crest. Meanwhile, the transport of heat
by the downward fluid motion at the front of the recirculation zone cools down the
surface at its crest and the minimum of interfacial temperature is now located close to
the stagnation point at the front. Therefore the two mechanisms reinforce each other,
promoting the speed and amplitude of the wave. This explains the formation of a
recirculation zone at Re = 2 and Ma = 50 whereas it is not present if Ma = 0. Indeed,
the abrupt increase of amplitude and speed of the solitary waves corresponding to the
transition from the drag–gravity to the drag–inertia regime occurs for smaller values
of the Reynolds number if the Marangoni effect is present (see figure 5).

Comparison of figures 8(a) and 8(b) indicates that increasing the Prandtl number
from Pr= 1 to Pr =7 at Re =2 enhances the cooling process of the crest and reduces
the temperature minimum from Tmin ≡ θmin = 0.591 – which appears on the surface
and very close to the stagnation point – to Tmin = 0.429 somewhere in the bulk of
the wave, thus contributing to the Marangoni effect. Similarly, comparing figures 8(a)
and 9, Tmin ≡ θmin drops from to 0.591 to 0.414 when Re increases from 2 to 3 at
Pr= 1.
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However, if the H- and S- instability modes reinforce each other for Re =2
and Re = 3, the speed and amplitudes of the solitary waves do decrease as the
Prandtl number increases as indicated in figure 5. This apparent paradox can
be explained only by observing that on shifting one of the stagnation points to
the crest, thermocapillarity tightens the streamlines and isotherms at the front of
the recirculation zone. Moreover, the circulation in the hump is enhanced by the
Marangoni stresses at the surface. Therefore, large temperature and velocity gradients
appear in that region of the flow. As a consequence, the dissipation of heat and
momentum is increased, which contributes to stabilizing the growth of the instability
and to limiting the speed and amplitude of the solitary waves.

For R = 2 and Pr = 7, the maximum of temperature is Tmax = 1.216 and is no
longer located at the wall. Notice also that at larger values of the Reynolds number,
negative values of the dimensionless temperature appear in the fluid. Turning back
to dimensional quantities, this would imply that the temperature in the fluid can be
locally greater than the temperature of the wall or smaller than the temperature of
the air. This obviously has no physical basis as the temperature everywhere in the
fluid should be bounded between the wall and air temperatures. To understand the
appearance of this unphysical behaviour when a recirculation zone is present, i.e. for
large-amplitude waves, let us consider the high-Péclet-number limit Pe= PrRe ≫ 1.
In this case, transport of heat via molecular diffusion can be neglected except in a
diffusive boundary layer of thickness Pe−1/2 on the stagnation line and part of the
interface associated with the recirculation zone (see e.g. discussion by Shraiman 1987).
Hence, cross-stream convection associated with the recirculation zone dominates over
diffusion, the temperature field in the recirculation zone is simply transported by the
flow and the streamlines are identical to the temperature contours (see e.g. Trevelyan
et al. 2002). This means that the temperature along each streamline is constant due
to the strong advection mixing. The temperature field becomes a passive scalar and
is simply transported by the flow. Hence, within the recirculation zone the isotherms
are closed curves. Consequently, the temperature can vary locally in the horizontal
direction only and the hypothesis ∂yT ≫ ∂xT necessary for the derivation of our
models would be violated in these regions.†

At the same time we have neglected in the averaged heat balance (1.1c) the transport
of heat due to the Marangoni flow, Marθ (see § 5 in Part 1). Though these terms are
formally of second order, they could be quite significant due to the enhancement
of the Marangoni flow by the hydrodynamics. This might also contribute to the
appearance of negative temperatures. Different possibilities – not examined here –
exist to cure this strong limitation on the applicability of the three-equation model
(1.1). One such possibility would be to consider more unknowns, such as t1, for the
description of the heat transfer process in the flow. Another possibility would be to
relax the assumption ∂yT ≫ ∂xT and use instead the full energy equation without
any approximations. In this case the full energy equation would have to be solved
numerically to obtain the temperature distribution within the film.

The basic question here is whether the observed limitations are truly due to a
breakdown of the basic assumptions at large Péclet numbers and for large-amplitude
waves for which recirculation zones could be observed, or are spuriously caused by
the addition of the strongly nonlinear second-order terms appearing in the expansion

† Note however that the presence of recirculation zones does not invalidate the assumption
u ≫ v necessary for any boundary-layer approach since the computed streamlines correspond to the
envelopes of the velocity field in the moving frame (u − c, v)t .
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Figure 11. Streamlines (top) and isotherms (bottom) for Re= 2.5 and Pr =7 obtained from
the first-order model. Here Tmin = − 10 and Tmax = 4.

procedure. To check these possibilities, we have computed the single-hump solitary
wave solution branch corresponding to the first-order model (system (4.18) in Part 1)
for Γ =250, cot β = 0, Bi = 0.1 and two values of the Prandtl number, Pr = 1 and
Pr = 7. In both cases, a limit point, at which the branch of solutions terminates,
appears (at Re ≈ 2.4 for Pr = 1 and Re ≈ 2.7 for Pr =7). This loss of solutions follows
the formation of steep temperature gradients in the bulk of the flow as is evident
from the isotherms shown in figure 11 at Re= 2.5 and Pr= 7. In fact, the isothermal
first-order model, an improved representation of the Shkadov model, has no limit
points and so the limit points for the non-isothermal model must be due to the
treatment of the energy equation. Notice that, quite surprisingly, the loss of solutions
appears at smaller values of Re for Pr =1 than for Pr = 7. This unusual result can
be attributed to the fact that the transition between the drag–gravity and the drag–
inertia regimes is delayed by the upward displacement of the isotherms by the flow as
already observed in figure 7. Consequently, the second-order terms do contribute to
the delay of the breakdown of our formulation and hence the limitations of our model
are not caused by the added second-order terms. This effect is certainly due to the
fact that the second-order diffusion terms reduce the range of unstable wavenumbers
and smooth out temperature gradients (compare the amplitude of the front-running
capillary wave preceding the main hump in figures 9 and 11).

It is important to emphasize that unlike the first-order model, the second-order
regularized reduced model has no limit points at which the solution branches
terminate. This is due to an improved treatment of the energy equation by taking into
account the second-order dissipative terms in the streamwise direction as mentioned
above. The first-order model on the other hand has not taken into account these
terms – contrast (1.1c) with (4.18c) of Part 1. It is precisely the presence of diffusion
of heat in the streamwise direction for the regularized reduced model that smooths
out the large temperature gradients as was pointed out above and hence this model
has no limit points. Nevertheless, for sufficiently large Péclet numbers and as we
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have already pointed out, negative temperatures are observed somewhere in the bulk
of the wave. The Re value at which this happens depends on Pr, with the larger
Pr corresponding to smaller Re at which negative temperatures appear. After these
points, the bifurcation diagrams for the speed of the solitary waves c as a function of
Re can be continued to larger Re but the temperature will remain negative (in fact
continuation of the curves in figure 5 will eventually lead to negative temperatures).
The reason that this continuation is possible is that c is effectively determined by
the momentum equation which is treated accurately; it is the treatment of the energy
equation that needs to be improved and some suggestions for this have already been
discussed above.

4. Concluding remarks

We have analysed the linear and nonlinear regimes of the two long-wave instability
modes for a film falling down a uniformly heated plane by using the regularized
reduced model derived in Part 1. The linear stability properties of the model are in
good agreement with the Orr–Sommerfeld analysis for small and moderate Reynolds
numbers and for all Marangoni numbers (§ 2) while its single-hump solitary wave
solution branches do not exhibit the non-physical turning points encountered with
the Benney equation (§ 3). Therefore, time-dependent integrations of the regularized
reduced model (1.1) (not done here) should not lead to the finite-time blow-up
behaviour observed with the Benney expansion in the region of the parameter space
where solitary waves do not exist.

We also examined in detail the shape, streamlines and isotherms of single-
hump solitary waves obtained from the regularized reduced model and for different
Reynolds, Prandtl and Marangoni numbers. In the drag–gravity regime, the transport
of energy by the flow contributes to heating the crest of the solitary waves. In this
region, the inertial terms in the averaged heat transport equation have a stabilizing
effect. For Re ≪ 1, inertial effects are nearly absent and the Marangoni effect is free
to form large-amplitude humps and hence large phase speed so that a recirculation
zone at the crest of the wave appears. As far as we are aware, a recirculation zone has
never been obtained before for such small Reynolds numbers and is usually known
to exist only in the drag–inertia regime for large Reynolds numbers. In this regime,
the amplitudes and speeds of the solitary waves are also large. However, the effect
of the transport of heat by the flow is reversed. One of the stagnation points (in the
frame moving with the wave) is shifted from the front of the wave to its crest. Thus,
the Marangoni effect enhances the recirculation in the crest and promotes a strong
downward flow there. As a consequence, the transport of heat by the flow contributes
to cooling the crest and amplifying the Marangoni effect. Nevertheless, this strong
circulation and downward flow create a strong shear and therefore increase the effect
of viscous dissipation which in turn reduces the amplitude and speed of the waves
if the Prandtl number increases. These observations indicate that the interaction of
the hydrodynamic H-mode and the Marangoni S-mode is non-trivial especially in the
region of large-amplitude solitary waves.

With regard to experiments, comparisons with the theory developed here should
be facilitated by the fact that most fluids used in applications have high Kapitza
numbers. Note also that the heat transfer coefficient is generally small so that the Biot
number is also small. Thus considering the limit Bi ≪ 1, the basic-state temperature
gradient b⊥ = (T |y =0 −T |y = hN

)/hN = Bi/(1+BihN) can be assumed to be independent
of the film thickness h, b⊥ ≈ Bi. This basic-state temperature gradient is then uniquely
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defined by the heat transfer coefficient q0 and the diffusivity κ and not by the flow
rate. As a consequence, many studies on Marangoni instabilities have used explicitly
the gradient b⊥ to scale the temperature field (Takashima 1981; Davis 1987; Goussis &
Kelly 1991). Following this approach, one can define a reference temperature Ts0

corresponding to the surface temperature of a flat film of thickness equal to the
length scale ν2/3(g sin β)−1/3. A new dimensionless temperature T ⋆ is thus introduced
using the difference Tw − Ts0 such that T ⋆ = 1 at the wall and T ⋆ = 0 at the surface of
the film of thickness l0. T and T ⋆ are then related by

T =
1 + BiT ⋆

1 + Bi
, (4.1)

and the heat transfer condition at the interface becomes

−∇T ⋆ · n = BiT ⋆ + 1. (4.2)

The linear stability analysis of a thin film in the limit of a vanishing Biot number
was considered by Takashima (1981). Obviously, taking this limit is not consistent with
the problem in hand as Bi =0 implies that the transfer of heat through the fluid layer
vanishes and therefore the temperature at the free surface is constant. Nevertheless,
the product Ma Bi can be O(1) even if Bi is small and so the Marangoni effect can
be strong. Thus, Takashima’s limit corresponds in fact to a constant temperature
gradient q0(Tw − Ta)/κ , that is simply obtained by neglecting the term BiT ⋆ in (4.2)
which gives

∇T ⋆ · n = −1. (4.3)

In this limit, the change of variables from the dimensionless temperature T to
T ⋆ given by (4.1) is translated to the definition of the temperature at the free
surface as θ = (1 + Biθ ⋆)/(1 + Bi). The approximation of the heat transfer at the
interface leading from (4.2) to (4.3) can be readily applied in our formulation by
expanding θ ≈ 1 + Bi(θ ⋆ − 1). A modified system of equations is then obtained simply
by substituting θ ⋆ for θ in (1.1) and keeping the leading-order terms in Bi:

∂th = −∂xq, (4.4a)
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Pr∂tθ
⋆ = 3

(1 − θ ⋆ − h)

h2
+ Pr

[

7

40

(1 − θ ⋆)

h
∂xq − 27

20

q

h
∂xθ

⋆

]

+

(

1 − θ ⋆ − 3

2
h

)(

∂xh

h

)2

+
∂xh∂xθ

⋆

h
+ (1 − θ ⋆)

∂x2h

h
+ ∂xxθ

⋆. (4.4c)

Now the Marangoni and Biot numbers appear through their product only, which
reduces the number of relevant parameters by one and simplifies the parametric study
of the nonlinear waves.
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Another open question concerns large Péclet number flows. In this case the
assumption of a small temperature gradient in the cross-stream direction is violated
such that our three-variable model is no longer capable of describing accurately
the wave dynamics. Nevertheless, a suggestion can be made. Indeed, our linear
stability analysis and computations of solitary waves have suggested that more fields
in addition to θ are necessary to correctly represent the heat transport process. In
particular, we wish to overcome the spurious appearance of temperatures lower than
the temperature of air that we observed for large-amplitude waves for sufficiently
large Reynolds and Prandtl numbers. Hence, the aim would be to obtain reliable
models, e.g. in terms of h, q , θ and t1, compatible with the long-wave expansion up to
second order, and which would also enable us to extend the present study to larger
Péclet numbers. This and related issues will be addressed in a future study.

Despite the limitations of the regularized reduced model for large Péclet numbers,
the model has substantially extended the region of validity of the Benney long-wave
expansion which exhibits a turning point with branch multiplicity at an O(1) value
of Re, and for all Péclet numbers (see Kalliadasis et al. 2003), while in these regions
our model has no turning points and predicts the continuing existence of solitary
waves for all Reynolds numbers. Moreover, the appearance of unphysical negative
temperatures at large Prandtl numbers is connected to the formation of recirculation
zones in the solitary waves. Therefore, the regularized reduced model (1.1) should
give results in reasonable agreement with experiments for waves of smaller amplitude
for which no recirculation zones are observed.
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4Film flows down a fiber

In this chapter, I summarize a study of the linear and non-linear dynam-
ics of an axisymmetrical Newtonian film falling down a vertical fiber

that I conducted between 2006 and 2011 (Duprat et al. 2007, Ruyer-Quil
et al. 2008, Duprat et al. 2009b, Ruyer-Quil and Kalliadasis 2012). I present
here my personal contribution to this problem along with a collaborative
work with S. Kalliadasis (Imperial College, London).

The problem of the dynamics of a falling film don a fiber has attracted
a considerable interest since the experiments by Kliakhandler et al. (2001)
(see figure 4.1). Such a flow is interesting from a fundamental point of
view for at least two reasons: (i) the beads sliding down the fiber stay
axisymmetrical for a very large range of parameters and therefore the flow
is truly two-dimensional, independent from the azimuthal coordinate ; (ii)
the base flow (uniform film solution) is a parallel flow. As a consequence,
a film down a fiber is a prototype of an open-flow system exhibiting an
instability from a 2D parallel base flow, a situation that is very rarely
achieved in experiments. Besides the instability is of long-wave nature and
is observable even at very low Reynolds numbers for very viscous fluids
such as castor oil or silicon oils. These features considerably simplify the
analytical treatment of this problem.

Furthermore, as we shall see, this flow exhibits an easily tractable tran-
sition from an absolute instability to a convective one. This transition,
which is not observed in a falling film on an inclined plane (Brevdo et al.
1999), is a result of the curvature of the fiber which promotes another
instability mechanism besides the Kapitza one: the Rayleigh-Plateau insta-
bility.

A liquid layer coating uniformly a thin wire is known to be unstable
under the action of surface tension. The mechanism of this instability
was identified in the seminal work of Lord Rayleigh (1878). When the
wire is horizontal, the deformation of the film thickness rapidly leads
to rupture and to the formation of a regular array of standing droplets,
whereas in the vertical case, the flow induced by the gravity can pre-
vent the film rupture (Quéré 1990). Contrary to the Kapitza instability
mode, the Rayleigh-Plateau is not promoted by the flow but has a capil-
lary origin. As a result, the convection by the flow may then competes
with the growth of the instability with the possible occurrence of both ab-
solute and convective instabilities in that geometry. The occurrence of an
absolute–convective transition has been verified experimentally by Duprat
and Giorgiutti-Dauphiné based on theoretical predictions that are detailed
below (Duprat et al. 2007).
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Figure 4.1 – Experiments by Kliakhandler et al. (2001) with castor oil (q = 21 mg/s,
R = 0.25 mm, ν = 44010−6 m2s−1, ρ = 961 kgm−3 and σ = 3110−3 N2m−1).

In this chapter, I will first present the determination of the threshold of
the transition form convective to absolute instabilities based on an inertia-
less approximation (§ 4.2). I then turn to the low-dimensional modeling
of the film dynamics when inertia effects are included (§ 4.3). Finally, the
competition of the Kapitza and Rayleigh-Plateau instability are discussed
in § 4.4. The material presented here is taken from some (upublished) lec-
ture notes and two published articles: Ruyer-Quil et al. (2008) and Ruyer-
Quil and Kalliadasis (2012), one of which being appended to this chapter.

4.1 Geometry, governing equations and parameters

The geometry and notations of the annular falling film is described in
figure 4.2. The fluid properties, viscosity µ, density ρ and surface tension

R � yr

x

h

Figure 4.2 – Geometry and notations.

σ are all assumed to remain constant. Here x will denote the axial —
or stream-wise— coordinate, r the radial coordinate and θ the azimuthal
angle. The fiber radius is noted R whereas pa is the atmospheric pressure.

In what follows a bar decoration is introduced in order to distinguish
dimensional and dimensionless quantities unless the distinction is useless.

From simple physical considerations and without prior knowledge of
the specific details of the system, the following scales can be readily iden-
tified: The fiber radius R̄, the Nusselt thickness h̄N of the uniformly coated
film, the length and time scales, lν = ν2/3g−1/3 and tν = ν1/3g−1/3, based
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on gravity and viscosity (making explicit the balance between gravity and
viscous forces giving rise to the Nusselt flat-film solution) and the capil-
lary length lc =

√

σ/(ρg).

4.1.1 Natural set of parameters

A first set of pertinent dimensionless groups arises from these scales. The
aspect ratio

α̃ ≡ h̄N/R̄ (4.1a)

which assesses azimuthal curvature effects at the scale of the film, the
Goucher number (Quéré 1999),

Go ≡ R̄/lc , (4.1b)

that compares azimuthal and axial surface tension effects and the Kapitza
number,

Γ ≡ σ/(ρν4/3g1/3) = (lc/lν)
2 , (4.1c)

comparing surface tension and viscosity. Useful combinations of these
parameters are hN ≡ h̄N/lν and h̄N/lc. The former compares the film
thickness to the gravity-viscous length scale and, indirectly, inertia and
viscosity since the Nusselt base flow is the result of the balance of
gravity and viscosity. The latter, h̄N/lc is related to the Bond number
Bo = ρgh̄2

N/σ = (h̄N/lc)2 comparing surface tension and gravity at the
scale of the film.

The advantage of the set of parameters α̃, Go and Γ is that when the
geometry and the working fluid are fixed, the Goucher and the Kapitza
numbers Go and Γ are constant and the only free parameter is α̃. From
an experimental point of view, α̃ can be varied independently by varying
the inlet flow rate. The Kapitza number Γ is entirely defined by the fluid
properties independently of the flow characteristics, whereas the Goucher
number Go can be easily varied by replacing the fiber. Hence, the parame-
ters α̃, Go and Γ can therefore be viewed as ‘natural’ for the fiber problem.

Typical values of the the capillary length lc, viscous-gravity length lν

and Kapitza number are provided in table 4.1 showing the wide available
range of Kapitza numbers for the typical fluids used in experiments.

4.1.2 Reduced parameters

We now adapt Shkadov’s scaling (Shkadov 1977) and introduce different
length scales for the streamwise (axial) and radial directions. The length
scale in the radial direction is the Nusselt thickness h̄N, whereas the length
scale in the streamwise direction is chosen as κh̄N defined by the balance
of the streamwise pressure gradient induced by capillarity, ∝ σ∂xxxh, and
gravity acceleration, ρg, which gives κ = [σ/(ρgh̄2

N)]
1/3 = (lc/h̄N)

2/3. The
time scale is defined with reference to the Nusselt solution of uniform
thickness (a result of the balance of gravity and viscosity). The volumetric
flow rate per unit length of circumference, qN = R−1

∫ R+hN
R u rdr, of a film

of constant thickness h̄N is given by

q̄N ≡ gh̄3
N

3ν
φ(α̃) , (4.2)
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ν (mm2s−1) ρ (kgm−3) σ (mNm−1)
water 1 998 72.5
silicon oil v50 50 963 20.8
castor oil 440 961 31

silicon oil v1000 1000 980 21.1
lc (mm) lν (mm) Γ

water 2.7 0.047 3376

silicon oil v50 1.5 0.63 5.48

castor oil 1.8 2.7 0.45

silicon oil v1000 1.5 4.7 0.10

Table 4.1 – Fluid properties, capillary length lc, gravity-viscous length lν and Kapitza
number used in the present study. The data for silicon oil v50 and castor oil have been
taken from Duprat et al. (2007), Kliakhandler et al. (2001). This table is taken from
Ruyer-Quil and Kalliadasis (2012).

where φ is a geometric factor defined by

φ(α) ≡ 3
(

4(α + 1)4ln(α + 1)− α(α + 2)(3α(α + 2) + 2)
)

16α3 . (4.3)

which measures the deviation of the flow-rate-to-thickness relation from
the cubic dependency corresponding to the planar geometry (φ(0) = 1).
Similarly to the streamwise length scale, the time scale is stretched by a
factor κ and thus defined as 3κh̄2

N/q̄N = νκ/[gh̄Nφ(α̃)].
Shkadov’s scales introduce three new dimensionless groups besides

the aspect ratio α̃ = hN/R, a ‘reduced Reynolds number’,

δ ≡ 3q̄N/(νκ) = (α̃Go)11/3 φ(α̃)Γ3/2, (4.4a)

which compares inertia and the viscous drag at the scale κh̄N introduced
by the balance of gravity and capillarity, a streamwise ‘viscous dispersion
parameter’,

η ≡ 1/κ2 = (h̄N/lc)
4/3 = (α̃Go)4/3 , (4.4b)

and the dimensionless group,

β ≡ α̃2/η = α̃2/3Go−4/3, (4.4c)

which is a combination of α̃ and η and compares azimuthal to axial surface
tension effects. We have made explicit in (4.4) the relations of δ, η and β to
the ‘natural’ parameters α̃, Go and Γ. Finally, I recall the usual definition
of the Reynolds number based on the flow rate, Re = q̄N/ν = h3

Nφ(α̃)/3
where again hN = h̄N/lν.

The advantage of Shkadov’s scaling stems from (i) the direct reference
to the Nusselt uniform film flow that simplifies the comparisons between
solutions, with the Nusselt solution corresponding to constant values of
the film thickness and flow rates h = 1 and q = 1/3; (ii) the associa-
tion of a single parameter to each physical effect affecting the balance of
the different forces: Inertia (δ), azimuthal surface tension (β), extensional
“Trouton” viscosity or viscous dispersion (η) and geometry (α̃).
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4.1.3 Governing equations

Assuming axisymmetrical flows without any variation in the azimuthal
θ-direction, the equations of motion are:

∂tux + ux∂xux + ur∂rux = −1
ρ

∂x p + g + ν

[

∂rr +
1
r

∂r + ∂xx

]

ux ,(4.5a)

∂tur + ux∂xur + ur∂rur = −1
ρ

∂r p + ν

[

∂rr +
1
r

∂r + ∂xx

]

ur

− ν

r2 ur , (4.5b)

∂rur +
ur

r
+ ∂xux = 0 . (4.5c)

They are completed by the no-slip condition at the wall namely

ur = ux = 0 , at r = R , (4.5d)

the continuity of the stress at the free surface r = R + h(x, t)

p − pa =
2µ

1 + (∂xh)2

[

−∂xh(∂rux + ∂xur) + ∂xux(∂xh)2 + ∂rur
]

−σ [Kax(h) + Kaz(h)] , (4.5e)

0 = −(1 − (∂xh)2)(∂rux + ∂xur) + 2∂xh(−∂rur + ∂xux) , (4.5f)

where

Kax(h) =
∂xxh

[1 + (∂xh)2]3/2 and Kaz(h) = − 1
[1 + (∂xh)2]1/2

1
R + h

(4.5g)

denote the axial and azimuthal curvatures, and the kinematic condition
expressing the fact that the free surface is a material surface

∂th + ux∂xh − ur = 0 . (4.5h)

4.2 Spatial stability analysis

This section presents my contribution to a published article (Duprat et al.
2007), along with some material from (unpublished) lecture notes that I
have written at the occasion of a summer school organized during the
summer 2007 at the Indian Statistical Institute in Calcutta.

4.2.1 No inertia models

Two assumptions greatly simplify the analysis of this instability: (i) inertial
effects are negligible, (ii) the typical length of the free surface modulations
are much longer than the film thickness. As we shall see, the latter, long-
wave, assumption is supported by the fact that the instability onset occurs
at a zero wavenumber.

In the no inertia limit, the basic axisymmetrical equations equations
(4.5) simplify to

− ∂x p + ρg + µ

[

∂rr +
1
r

∂r + ∂xx

]

ux = 0 , (4.6a)

−∂r p + µ

[(

∂rr +
1
r

∂r + ∂xx

)

ur −
ur

r2

]

= 0 , (4.6b)
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The continuity equation (4.5c) and the boundary conditions (4.5d)–(4.5h)
remain unchanged. Integrating the continuity equation (4.5c) across the
film, one obtains

0 =
∫ R+h

R
([∂r(rur)]/r + ∂xux) r dr

= (R + h)ur
∣

∣

R+h − Rur
∣

∣

R + ∂x

[

∫ R+h

R
uxr dr

]

− ux
∣

∣

h∂xh(R + h) ,

where evaluations at the wall r = R or at the free surface r = R + h(x, t)
are denoted by ·

∣

∣

R and ·
∣

∣

h respectively. Making use of the no-slip condition
(4.5d) and the kinematic condition (4.5h), we get

(R + h)∂th + ∂x

[

∫ R+h

R
uxr dr

]

= 0 . (4.7)

It is easy to recognize in (4.7) the mass conservation equation of the film.
Let us now make use of the long-wave assumption and introduce for-

mal film parameter ǫ ∼ |∇h|/h. Stream-wise modulations are thus as-
sumed to remain slow in space and time ∂x,t ∼ ǫ. Integrating the conti-
nuity equation (4.5c) yields ur = −(

∫ r
R ∂xuxξ dξ)/r so that the radial com-

ponent of the velocity is formally of order ǫ. Therefore the radial momen-
tum balance reads at first order −∂r p = O(ǫ). The pressure distribution is
therefore uniform across the film, a usual assumption in lubrication the-
ory, and therefore imposed by the Laplace law at the free surface (4.5e).
The streamwise momentum equation then reads

µ

r
∂r(r∂rux) = −ρg +

d
dx

(

p
∣

∣

h

)

+ O(ǫ2) ,

The no-slip condition at the wall (4.5d) and the continuity of the stress at
the free surface (4.5f) yield ux|R = 0 and ∂rux|h = O(ǫ2). After integration
one then obtains

ux =
1
µ

[

ρg − d
dx

(

p
∣

∣

h

)

] [

1
2
(R + h)2ln

( r
R

)

− 1
4
(r2 − R2)

]

+O(ǫ2) , (4.8)

which gives the flow rate per unit length of the fiber perimeter

q ≡ 1
R

∫ R+h

R
uxr dr =

[

ρg − d
dx

(

p
∣

∣

h

)

]

h3φ(h/R)
3µ

+ O(ǫ2) (4.9)

where φ, defined (4.3), measures the departure of the flow rate depen-
dence to the film thickness from the planar case (q = 1

3 h3). Viscous dis-
sipation terms in the normal stress balance at the free surface (4.5f) are
second order terms so that p|h = −σ[Kax(h) + Kaz(h)].

After substitution of (4.9) for the flow rate in the mass balance (4.7),
a single evolution equation for the film thickness is finally obtained (Kli-
akhandler et al. 2001):

∂t

(

h +
h2

2R

)

+ ∂x

{

h3φ(h/R)
3µ

[ρg + σ∂x(Kax(h) + Kaz(h))]
}

= O(ǫ2) ,

(4.10)
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Equation (4.10) is referred to as the Kliakhandler, Davis and Bankoff (KDB)
equation. Craster and Matar derived an evolution equation analogous to
(4.10) but retain only the main contributions to the axial and azimuthal
curvatures, Kax ≈ ∂xxh and Kaz ≈ (R + h)−1 (Craster and Matar 2006).

Equations can be made dimensionless with reference to a film of con-
stant thickness hN by setting h = hNh̃, x = κhN x̃, and t = Tt̃. The ratio
κ of the length scales in the cross-stream and streamwise coordinates is
adjusted such that the gravity acceleration ρg equilibrates the pressure
gradient induced by the main contribution to the axial curvature gradi-
ent σ∂x3 h. Thus κ =

[

γ/(ρgh2
N)
]3

= (lc/hN)
2/3 where lc =

√

σ/(ρg) is
the capillary length. The time scale T = κh2

N/(3qN) is one third of the
advection time where qN = gh3

Nφ(hN/R)/(3ν) is the flow rate of a film
of constant thickness hN. Dropping the tildes, the Craster–Matar (CM)
equation reads

∂t

(

h +
α̃

2
h2
)

+ ∂x

{

h3

3
φ(α̃h)
φ(α̃)

[

1 +
β

(1 + α̃h)2 ∂xh + ∂xxxh
]}

= 0 , (4.11)

with two dimensionless parameters: an aspect ratio α̃ = hN/R of the film
thickness to the fiber radius and a parameter β = (κhN/R)2 that expresses
the relative importance of azimuthal and axial curvatures (Kalliadasis and
Chang 1994).

In the limit of small aspect ratio h/R, i.e. α̃ → 0, the KDB and the CM
equations reduces to

∂th + ∂x

[

h3

3
(1 + β∂xh + ∂x3 h)

]

= 0 . (4.12)

derived initially by Frenkel (1992). The Frenkel equation can also be ob-
tained in another context: the Rayleigh-Taylor instability of a film flowing
down an inverted plane (Lin and Kondic 2010). This equation must also
be contrasted with (3.18) which governs a falling film flow in the presence
of a long-wave thermocapillary instability (see chapter 3).

4.2.2 Analysis in the complex planes

A normal mode decomposition of infinitesimal perturbations around the
uniform film h = 1 in the KDB or the CM equations leads to the same
dispersion relation

k ck(α̃)− ω +
i k2

3(1 + α̃)

(

β

(1 + α̃)2 − k2
)

= 0 , (4.13)

where

ck =
1

1 + α̃

[

1 +
α̃φ′(α̃)
3φ(α̃)

]

=
8(b − 1)

(

2ln(b)b2 − b2 + 1
)

3 (4ln(b)b4 − 3b4 + 4b2 − 1)
, (4.14)

with b = 1 + α̃, is the speed of the linear kinematic waves of (4.13) for
k → 0.

In the limit of small film thicknesses as compared to the fiber radius,
the dispersion relation corresponding to the Frenkel equation reads

k − ω +
i k2

3

(

β − k2) = 0 , (4.15)
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Equation (4.15) can be recovered from (4.13) through the transformation
k → k [ck(1 + α̃)]1/3, ω → ωc4/3

k (1 + α̃)1/3 and β → β c2/3
k (1 + α̃)8/3. Con-

sequently, the linear stability analysis of the three KDB, CM and Frenkel
equations reduces to a single problem.

Neutral stability (k ∈ R and ω ∈ R) is achieved when ω = k and β −
k2 = 0, i.e. for perturbations traveling at the speed of the kinematic waves
at a wave length for which the stabilizing axial capillary pressure gradient
∝ k4 equilibrates the destabilizing azimuthal one ∝ βk2, which defines the
cut-off wavenumber kc =

√

β. The instability onset corresponds to β = 0
hence a uniform film is always unstable.

Let me recall the basics of the linear spatio-temporal analysis of an
open flow (Huerre and Monkewitz 1990, Huerre and Rossi 1998). Writing
formally

D(k, ω) = 0 (4.16)

the dispersion relation (4.15) which relates the wavenumber to the angular
frequency ω of a given normal mode, the stability of the basic state is de-
termined by the temporal modes, ωj(k), defined as the zeroes of the disper-
sion relation for k real. In general, there is a countable number of temporal
modes and the index j may take several integer values. Conversely, one
can define spatial modes, k j(ω) as the solutions to (4.16) for real angular
frequencies ω. For complex wavenumber and complex angular frequen-
cies, the concept of temporal and spatial modes can be extended with the
introduction of generalized temporal ωj,Fk

(k) and spatial k j,Lω
(ω) modes

defined by the integration paths Lω and Fk in the ω and k-planes.

D(k j,Lω
(ω), ω) = 0 , and ω ∈ Lω , (4.17a)

D(k, ωj,Fk
(k)) = 0 , and k ∈ Fk . (4.17b)

The long-time response of the flow to a localized perturbations can be
found using Briggs collision criterion. The process starts with a Lω path in
the complex ω-plane that lies above all temporal modes. This path defines
generalized spatial modes in the complex k-plane. The integration path is
then lowered until generalized spatial modes originating from different
half planes of the k-space collide and pinch. The obtained saddle point
gives the complex absolute angular frequency ω0 which governs the long-
time response of the flow. If the imaginary part ω0i < 0, then the flow is
convective and behaves as a noise amplifier, otherwise the flow is absolute
and admits a global mode.

The simplicity of (4.15) enables to illustrate all this. Dispersion rela-
tion (4.15) admits one temporal mode and four spatial modes (see fig-
ures 4.3a and 4.4d for β = 2). Following Briggs collision criterion, the
generalized temporal and spatial modes have been searched for starting
from an integration path in the complex ω-plane located above the max-
imum ωi,max of the temporal growth rate. The result of this process is
displayed in figures 4.3 and 4.4 for β = 2.

The temporal mode is shown if figure 4.3a. The maximum growth rate
is ωi,max = 0.331 so that Lω,0 is chosen to lay at the level ωi = 0.5. A first
non relevant pinching of two k+(ω) modes is observed in figure 4.3d. The
pinching of two k+(ω) and k−(ω) branches occur at k0 = ±1.12 + 0.29i
defining the absolute angular frequency ω0 = ±1.05 + 0.17i (figures 4.4a
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Figure 4.3 – Generalized temporal and spatial modes solutions to the dispersion relation
(4.15) with β = 2.
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Figure 4.4 – Generalized temporal and spatial modes solutions to the dispersion relation
(4.15) with β = 2.

and 4.4b). Since ωi,0 > 0, the instability is absolute in that case. Notice
that the extension to kr ±∞ of Fk by the steepest descent path was possible
in that case so that the corresponding generalized temporal mode present
a very sharp drop in the ω-plane.

4.2.3 C/A transition

The nature of the linear response of open flows to inlet perturbations is de-
termined by the convective or absolute nature of the instability. An impor-
tant problem is therefore the determination of this nature and of possible
transitions between absolutely unstable and convectively unstable situa-
tions. The transition from absolute to convective instabilities (C/A transi-
tion) corresponds to ωi,0 = 0. A necessary condition is to show that

ω ∈ R verifying D(k, ω) = 0 and ∂kD(k, ω) = 0 (4.18)

admits solutions (Huerre and Monkewitz 1990). For simple relation dis-
persions, solving (4.18) can be done analytically.

Differentiating the dispersion relation (4.15) with respect to k gives

dω

dk
= 1 +

ik
3
(2β − 4k2) (4.19)

Setting dω/dk to zero and eliminating k from (4.19) and (4.15) yields a
polynomial of degree three in ξ = iω

81
256

+
β3

192
+

(

9β

16
+

β4

144

)

ξ +
β2

16
ξ2 + ξ3 = 0
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This polynomial can be reduced to the classical form P(y) = y3 + py+ q =
0 by the change of variables ξ = y − β2/18, where

p =
9β

16
− β4

432
and q =

81
256

− 5β3

192
− β4

23328

The number of real roots depends on the sign of 4p3 + 27q2 = (β3 +
243/8)3 which is always positive. One root is therefore real, λ1 say, and
the other two λr ± iλi are complex conjugate. Since the sum of the roots
is zero, λr = −λ1/2. P(β2/18) > 0 and then λ1 < β2/18 so that the
corresponding value of ω, i(β2/18 − λ1), is an imaginary number. The
other two roots give ω = ±λi + i(λ1 + β2/9)/2. A sufficient and necessary
condition for the existence of a real root ω solution to (4.19) and (4.15) is
then λ1 = −β2/9 or equivalently

0 = P
(

−β2

9

)

=
81
256

− 17
192

β3 − 1
864

β6

which admits only one positive root

β = βca ≡
[

(9/4)
(

−17 + 7
√

7
)]1/3

≈ 1.507 (4.20)

When β > βca, P(−β2/9) < 0, then λ1 > −β2/9 and the corresponding
growth rate is positive. The instability is absolute when β > βca and
conversely convective for β < βca.

With β = α̃2/3(lc/R)4/3, where α̃ = hN/R, the inequality β > βca reads

α̃ > β3/2
ca (R/lc)

2 . (4.21)

A localized disturbance may therefore invade the spatial domain when-
ever the Rayleigh-Plateau instability is stronger than the advection of the
main flow, as reflected by the threshold βca. The threshold has been
checked independently by Lin and Kondic (2010) whose numerical ob-
servations yields a value of the A/C threshold βca ≈ 1.51.

It is quite remarkable that the threshold βca of the C/A transition from
a convective to an absolute instability (C/A transition) is close to the value
βc ≈ 1.413 above which a catastrophic growth of the speed and amplitude
of the nonlinear solitary-wave solutions to (4.12) occurs as shown by Kalli-
adasis and Chang (1994).

The threshold above which the instability governed by the dispersion
relation (4.13) becomes absolute can be readily obtained from the analysis
of (4.15). The C/A transition then occurs at

α̃

ck(α̃)(1 + α̃)4 > β3/2
ca

(

R
lc

)2

. (4.22)

The C/A boundaries (4.21) and (4.22) are compared to the experimen-
tal observations by Duprat and Giorgiutti-Dauphiné in figure 4.5. Primary
sinusoidal wavetrains of constant frequencies and healing lengths are re-
ported as crosses. Wavetrains displaying significant fluctuations of the
frequency or the healing length are indicated by dots. The limit of small
film thicknesses compared to the fiber radius, α̃ → 0, corresponds to the



150 Chapter 4. Film flows down a fiber

 0.3

 0.2

 0.1

 0

 0.3 0.2 0.1 0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

α̃̃α
AA

CC

R/lcR/lc

Figure 4.5 – Absolute (AI) and convective (CI) instability regions in the parameter plane
α̃ = hN/R versus R/lc. Dashed and thin solid lines correspond to Eqs. (4.22) and
(4.21), respectively. Regular and irregular primary wavetrains reported in the experiment
by Duprat and Giorgiutti-Dauphiné are indicated by crosses and dots respectively. The
insert is a blow-up of the diagram for small values of α̃.

case of a film flowing down a vertical wall for which the instability is al-
ways convective (Brevdo et al. 1999). In the case of thick films, i.e. α̃ large,
the Rayleigh-Plateau instability is weakened by the decrease of the free-
surface azimuthal curvature, 1/(R + hN). This effect is not compensated
by the lower speed of the kinematic waves relative to the mean flow as α̃
increases, and the instability is again convective. As a consequence, at a
given value of the radius R, there exists an intermediate range of α̃ values
for which the Rayleigh-Plateau mechanism dominates over the advection
of the waves, the instability being therefore absolute. On the other hand,
the instability is always convective for fibers of larger radii, i.e. R > 0.28lc.
For highly viscous liquids, such as silicon oils, the locus of the C/A tran-
sition (thick line labeled 1 in figure 4.5) is close to the zero-inertia limit
(4.22).

It is possible to interpret the onset of transition from convective to
absolute instabilities through the definition of the advection time τa of an
interfacial structure over its length and the definition of a typical time of
growth of the structure τg as the inverse of the maximum temporal growth
rate.

Based on (4.15) the ratio τa/τg reads:

τa/τg = ωi/ωr|k=√β/2 =
β2

12

√

2
β
=

√
2

12
β3/2 (4.23)

the maximum temporal growth rate being obtained at kmax =
√

β/2 (see
Ruyer-Quil et al. (2008) for details). Therefore, β compares τa to τg. For,
β < βc, the instability growth is slower and thwarted than the advection
by the flow. The same mechanism is also in play in the saturation of the
drops though it is then strongly nonlinear. For these reasons, we refer to β
as a saturation number, a term that was first coined by Duprat et al. (2009a).

From the CM equation (4.11), we get

τa/τg = ωi/ωr|k=kRP/
√

2 =
β2

12(1 + α̃)5

√
2(1 + α̃)

ck
√

β
=

√
2

12
(β⋆)3/2 (4.24)
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Figure 4.6 – Simulation of the film dynamics corresponding to an experiment by Kli-
akhandler et al. (2001) with castor oil (q = 21 mg/s, R = 0.25 mm, ν = 44010−6 m2s−1,
ρ = 961 kgm−3 and σ = 3110−3 N2m−1). Parameters are α̃ = 2.92, β = 28.7. (a)
space-time diagram; (b) film thickness at the end of the simulation.

where kRP ≡
√

β/(1 + α̃) corresponds to the marginal stability condition
and the composite parameter β⋆ is defined as (Duprat et al. 2007, Ruyer-
Quil et al. 2008):

β⋆ = βc−2/3
k (1 + α̃)−8/3 . (4.25)

To conclude this section, it may be useful to stress that a linear sta-
bility analysis may not be sufficient to account for the development of
global modes that follows an absolute instability [see for instance Chomaz
(2005)]. As an example, I present in figure 4.6a the simulation of an exper-
iment by Kliakhandler et al. (2001) based on the nonlinear KDB equation
(4.11). The wavepacket initially created by a small hydraulic jump rapidly
invade the whole numerical domain. However, only the waves close to in-
let have a frequency in agreement with the linear analysis as a secondary
instability rapidly destabilizes the flow by period doubling so that the
global mode that sets in has a lower frequency.

4.3 Low-dimensional modeling

In this section, I sketch the derivation of a weighted-residual boundary-
layer low-dimensional model made of two evolution equations for the film
thickness h and the local flow rate q. The derivation and study of this
model have been presented in a published article appended to this chapter
(Ruyer-Quil et al. 2008).
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4.3.1 Boundary layer approximation

Assuming slow space and time modulations of the flow allows to intro-
duce the film parameter ǫ and to perform a ‘gradient expansion’ of the
governing equations (4.5) in ǫ. The smallness of ǫ means that the ratio
between the film thickness and the characteristic length-scale of the free-
surface modulations is assumed to be small which then implies a separa-
tion of scales between x and r which in turn dictates a different treatment
of the streamwise and cross-stream momentum equations as in boundary-
layer theory in aerodynamics.

The formulation of the boundary-layer equations starts by determining
the order of magnitude of the inertia terms in the left-hand side of the
cross-stream momentum equation (4.5b). The continuity equation (4.5c)
indicates that the radial component of the velocity is formally of O(ǫ). As
a consequence the inertia terms in the left-hand side of the cross-stream
momentum equation (4.5b) are of O(ǫ2). Neglecting these terms, utilizing
the relation obtained by differentiating the continuity equation (4.5c) once
with respect to r,

∂rrur +
1
r

∂rur −
ur

r2 = −∂xrux ,

and dropping the stream-wise viscous term ∂xxur = O(ǫ3), yields the
simplified cross-stream momentum equation, ∂r p = −∂xrux , which can
be integrated once with respect to r to give:

p = p
∣

∣

h + µ
(

−∂xux + ∂xux
∣

∣

h

)

, (4.26)

where terms of O(ǫ2) have been neglected.
The first term p

∣

∣

h in the approximation for the pressure in (4.26) must
be evaluated from the normal stress balance in (4.5e) that gives the pres-
sure drop across the free surface. The contribution of the streamwise cur-
vature due to surface tension must be kept in our formulation as it is well
known from the planar case that this is the principal physical effect that
prevents the waves from breaking. However, this term is formally of O(ǫ2)
and should be neglected. One thus obtains:

p = pa + µ
(

−∂xux + ∂xux
∣

∣

h + 2∂rur
∣

∣

h

)

− σ
[

∂xxh + K̃az
]

, (4.27)

where terms of O(ǫ2) are neglected, and where

K̃az = − 1
R + h

(

1 − 1
2
(∂xh)2

)

(4.28)

is the approximation of the azimuthal curvature of the free surface.
Substituting now (4.27) into the stream-wise momentum equation

(4.5a) then leads to O(ǫ2),

ρ (∂tux + ux∂xux + ur∂rux) = g + µ

[

∂rr +
1
r

∂r + 2∂xx

]

ux

−µ∂x

[

∂xux
∣

∣

h + 2∂rur
∣

∣

h

]

+ σ
{

∂xxxh + ∂xK̃az
}

, (4.29a)
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where terms of O(ǫ3) and higher have been neglected. (4.29a) is completed
by the no-slip boundary condition (4.5d), the kinematic condition (4.5h)
and the continuity of tangential stress at the interface truncated at O(ǫ2)

∂rux
∣

∣

h = 2∂xh
(

∂xux
∣

∣

h − ∂rur
∣

∣

h

)

− ∂xur
∣

∣

h . (4.29b)

The system of equations (4.29) is consistent ar O(ǫ2) and will be referred
to as the second-order boundary-layer equations because of its similitude with
the Prandtl equations in boundary-layer theory (Schlichting 1979).

4.3.2 Averaging

This section details the derivation of a two-equation model based on the
weighted residual method introduced in § 1.2 and § 2.3.2.

Let us first consider the case of the Nusselt uniform layer: assuming
no modulations of the free surface, ∂x = ∂t = 0, the basic Nusselt flow
satisfies

νL(ux) = −g with ux
∣

∣

R = 0, ∂rux
∣

∣

h = 0 , (4.30)

where L denotes the (friction) linear differential operator, L ≡ ∂rr + r−1∂r.
The solution of (4.30) is simply

ux =
g
ν

[

1
2
(R + h)2ln

( r
R

)

− 1
4
(r2 − R2)

]

≡ ux,0 , (4.31)

which is also the inertia-less velocity profile obtained in (4.8).
I consider small departures of the streamwise velocity component ux

from the Nusselt uniform film solution (4.31) induced by the deformation
of the free surface. Let us thus introduce the ansatz:

ux =
3q

h3φ(h/R)
ux,0(r; h(x, t)) + ux,1 (4.32)

where ux,1 stand for the O(ǫ) corrections to the velocity profile induced
by the wavy interface. φ(h/R) is the geometric factor introduced in (4.3).
The choice of the ansatz (4.32) stems form the fact that the mass balance
(4.7) is exact. As a consequence, the film thickness (or more precisely
Rh + h2/2 which corresponds to the mass of fluid contained between two
annular sections at coordinate x and x + dx) is naturally the first degree
of freedom form the problem at hand, the mass balance (4.7) being an
evolution equation for h. The second degree of freedom is the associated
flux q =

∫ R+h
R uxrdr (which can also be identified with the momentum of

the mass of liquid in between the two sections separated by the distance
dx).

The decomposition (4.32) is made unique after introducing a gauge
condition which requires that the variable q truly stands for the local flow
rate which reads

∫ R+h

R
ux,1r dr = 0 . (4.33)

An evolution equation for q is necessary to obtain a closed system, or
two-equation model mimicking the dynamics of the film. This evolution



154 Chapter 4. Film flows down a fiber

equation will be provided by integrating the momentum balance (4.29a).
Two remarks must be stated before proceeding: First, note that the Nus-
selt uniform film solution is retrieved when q = (g/ν)h3φ(h/R)/3 and
the Poiseuille velocity distribution in a film down an inclined plane is
recovered in the limit R → ∞ as limR→∞ ux,0 = h(r − R)− (r − R)2/2.

Second, h and q can readily be identified with modes of zero-
wavenumber perturbations to the Nusselt steady state. A uniform move-
ment of the free surface from h to h + δh is a first kinematic mode. A per-
turbation of the body force, or dynamic mode, from g to g + δg leads back
to the Nusselt solution (4.31) with δq = (δg/ν)h3φ(h/R)/3 being propor-
tional to the perturbation of the body force. A third mode can be thought
of: it is the one that is triggered by a perturbation of the the tangential
stress. However, this mode will be disregarded because of the passive gas
approximation: the shear exerted by the gas on the film is neglected. How-
ever, in some applications it must be accounted for (Gruenig and Kraume
2009).

Monomials and powers of r and ln(r) constitute a closed set of func-
tions with respect to differentiations, products and integrations involved
in the momentum balance. Substituting (4.32) into (4.29a), where ur is
given by

ur = −1
r

∫ r

R
∂xux(x, ζ, t)ζ dζ , (4.34)

leads to an equation to be solved to obtain ux,1. As a consequence the
correction ux,1 is necessarily a polynomial in r and ln(r) of the form

ux,1 =
mmax

∑
m=1

nmax

∑
n=0

am,n(x, t)gm,n(r) , with gm,n ≡ [(r − R)m] [ln(r/R)]n .

(4.35)
ux,1 can thus be determined by identification. Multiplying the momentum
balance ((4.29a) by r2 gives a polynomial in r and lnr, say P(r, ln(r)) that
is uniformly equal to zero. Canceling all its monomials in r and ln(r)
thus yields a number of independent relations equal to the number of un-
knowns am,n if mmax and nmax are chosen sufficiently large. The gauge con-
dition (4.33) then provides a compatibility condition which can be recast
as an evolution equation for q, or equivalently, an averaged momentum
balance which formally reads

∂tq = −F(h/R)
q
h

∂xq + G(h/R)
q2

h2 ∂xh

+I(h/R)
[

gh − 3ν

φ(h/R)
q
h2 +

σ

ρ
h
{

∂xxxh + ∂xK̃az
}

]

+ν

[

J(h/R)
q
h2 (∂xh)2 − K(h/R)

∂xq∂xh
h

− L(h/R)
q
h

∂xxh

+ M(h/R)∂xxq
]

+K(h, q, R) . (4.36)

First order inertial terms are gathered in the first row of (4.36). The second
row contains the gravity acceleration, the wall friction and the gradient
of capillary pressure. The second-order elongational viscosity terms, or
Trouton viscosity terms are found. These terms are referred here as the
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viscous dispersion terms because of their role in the dispersion of the
linear waves. K(h, q, R) stand for the second-order terms arising from the
deviations ux,1 from the Nusselt velocity profile.

In practice the determination of ux,1 (and thus of K) is a hardly
tractable task requiring tedious algebra. Although the inclusion of the
inertial terms K ensures that (4.9, 4.36) is consistent at O(ǫ2), the nonlin-
earities involved in K may drastically restrict the range of parameters for
which solutions to (4.9, 4.36) exist and can be favorably compared to ex-
perimental data. Indeed, in the planar case (cf. § 2.3.2), a ‘regularization’
procedure was necessary to avoid the presence of non-physical blow-ups
of the time-dependent solutions due to second-order inertial terms even
at moderate Reynolds numbers (Scheid et al. 2006). In fact, in the planar
case dropping out the second-order inertial corrections leads to a sim-
plified formulation which satisfactorily captures all physical mechanisms
(Ruyer-Quil and Manneville 2000). For these reasons and to reduce the
complexity of our second-order model, it is preferable to neglect second-
order inertial effects and set K = 0.

Since it is advisable to disregard the second-order terms arising from
ux,1, one can think of the weighted residual technique as a useful short-
cut for the derivation of (4.36). Let us introduce the inner product 〈·|·〉 =
∫ R+h

R · · r dr. Such a choice is suggested by the definition of q and the
gauge condition (4.33) which then reads 〈ux,1|1〉 = 0. Weighted residuals
are constructed by choosing weight functions wm,n(r) and averaging the
momentum balance across the fluid layer, i.e. Rm,n = 〈wm,n|P〉. Setting
the residuals Rm,n equal to zero thus yields a system to be solved for the
amplitudes am,n. Let me show that the choice of only one weight function,
say w, is sufficient to yield (4.36).

Dropping out second-order inertial terms in P , the only term where
ux,1 is involved in the residual R = 〈w|P〉 arises from the evaluation of
the friction terms

〈L(ux,1)|w〉 =
[

r
(

w∂rux,1 − ux,1w′)]R+h
R + 〈ux,1|L(w)〉 (4.37)

ux,1 verifies ux,1|R = 0 and ∂rux,1|R+h = 0. Demanding that w fulfills the
same boundary conditions, i.e. w(r = R) = 0 and w′(r = R + h) = 0, one
gets

〈L(ux,1)|w〉 = 〈ux,1|L(w)〉 (4.38)

which shows that the operator L is self-adjoint. On can then make use of
the gauge condition 〈ux,1|1〉 = 0 to cancel out the friction terms involving
ux,1 by demanding that w satisfies

L(w) = A with w(R) = 0 , w′(R + h) = 0 , (4.39)

where A is a constant, so that the integral
∫ R+h

R ux L(w) rdr is proportional
to the flow rate q. The system (4.39) is similar to (4.30) when A = −1,
which reflects the fact that the operator L is self-adjoint with respect to
the chosen inner product. Consequently, w ≡ u0 which corresponds pre-
cisely to the Galerkin method (as for the planar case, see Ruyer-Quil and
Manneville (2000)).

The expressions of the coefficients F to M are provided in the Ap-
pendix A of Ruyer-Quil and Kalliadasis (2012) (Note that a misprint error
can be found in Appendix B of Ruyer-Quil et al. (2008)).
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4.4 Wavy regimes

In that section we will consider the different wavy regimes that can be ex-
pected on the film and generated by the competition between the Kapitza
and Rayleigh instability and the viscous dispersion of the waves. These
findings are detailed in Ruyer-Quil and Kalliadasis (2012).

Les me now introduce the Shkadov’s scaling Using the transformation
T : [x 7→ κh̄Nx, (y, h) 7→ (h̄Ny, h̄Nh), t 7→ tκh̄N/(3q̄N)„ q 7→ (3q̄N)q], the
mass conservation equation (4.9) and the averaged momentum balance
(4.36) read:

∂th = − 1
1 + α̃h

∂xq , (4.40a)

δ∂tq = δ

[

−F(α̃h)
q
h

∂xq + G(α̃h)
q2

h2 ∂xh
]

+
I(α̃h)
φ(α̃)

[

−3φ(α̃)

φ(α̃h)
q
h2

+h
{

1 + ∂xxxh +
β

(1 + α̃h)2 ∂xh − 1
2

∂x

(

α̃

1 + α̃h
(∂xh)2

)}]

+η

[

J(α̃h)
q
h2 (∂xh)2 − K(α̃h)

∂xq∂xh
h

− L(α̃h)
q
h

∂xxh + M(α̃h)∂xxq
]

,

(4.40b)

Note that the viscous dispersion parameter η appears along with stream-
wise dissipative terms which contribute to the dispersion of the waves.

Contrary to the model obtained by Trifonov (1992) – see also Sisoev
et al. (2006) – and to the model by Novbari and Oron (2009), (4.40) is
consistent up to O(ǫ) for the inertia terms and up to O(ǫ2) for the re-
maining contributions (and accounts for viscous dispersion). Indeed, both
Trifonov’s and Novbari and Oron’s approaches assume a self-similar ve-
locity distribution and do not account for the deviations of the veloc-
ity profile induced by the free-surface deformations. For this reason,
their two-equation formulations lack consistency even at first order in the
film parameter. Furthermore, the energy-integral approach employed by
Novbari and Oron (2009) is not consistent with the kinetic energy bal-
ance of the flow. Indeed, writing formally the axial momentum equation
as M(ux) = 0, Novbari and Oron’s averaged momentum equation reads
∫ R+h

R M(ux)ux dr = 0 whereas the kinetic energy balance of a section of

the liquid corresponds to
∫ R+h

R M(u)u d(r2) = 0. Truncating then M(u)
at O(ǫ2) is tantamount to the Galerkin approach that can be used to re-
duce the algebra leading to (4.40b) (Ruyer-Quil et al. 2008). Noteworthy
is that the two-equation model (4.40) is not limited to small aspect ratios
unlike, e.g. the model by Roberts and Li (2006).

4.4.1 Validation

Model (4.40) has been validated in Ruyer-Quil et al. (2008), Duprat et al.
(2009a) through direct comparisons to the experiments in Kliakhandler
et al. (2001), Duprat et al. (2007; 2009a) [for both very viscous and less vis-
cous liquids (castor oil and silicon oil) and a wide range of the parameters
(0.15 ≤ Go ≤ 1, 0.5 ≤ α̃ ≤ 4.5 and 0.05 ≤ δ ≤ 4)].
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Figure 4.7 – Profiles and streamlines in the moving frame of the TW solutions of model
(4.40) (panels (a), (c) and (e)) and of the CM equation (4.11) (panels (b), (d) and (f)).
(a-b), (c-d) and (e-f) correspond to the regimes ’a’, ’b’ and ’c’ reported by Kliakhandler
et al. (2001). (Compare with figure 4.1). Distances are given in dimensional units (mm).
After Ruyer-Quil et al. (2008).

The characteristics of the traveling-wave solutions of(4.40) are com-
pared to the solutions to the CM equation in table 4.2 for the three regimes
reported by Kliakhandler et al. (2001) and illustrated in figure 4.1.

At high flow rate corresponding to regime ‘a’ , these authors, they
observed long and isolated waves moving rapidly and irregularly on a
relatively thick substrate. At lower flow rate (termed regime ‘b’ by these
authors), the wave pattern is highly organized with drops of smaller size
moving at constant speed and periodicity. At even lower flow rate (regime
‘c’), the regularity of the wave pattern is again lost with larger waves
separated by long and irregular substrates. Comparisons of the results
from the CM equation and model (4.40) show an excellent agreement.

Table 4.2 presents a comparison of the wave characteristics (ampli-

Model qN λ cexpt c hexpt
max hmax hexpt

min hmin
(mg/s) (mm) (mm/s) (mm/s) (mm) (mm) (mm) (mm)

(4.40) 21 30 25 22.4 1.47 1.34 0.50 0.44
(4.11) 24.7 1.26 0.45
(4.40) 11 6.2 5.4 7.22 1.02 0.92 0.20 0.17
(4.11) 6.98 0.97 0.14
(4.40) 5.3 36 12.0 12.1 1.20 1.09 0.25 0.26
(4.11) 12.6 1.10 0.25

Table 4.2 – Comparisons of the characteristics of TW solutions at a given wavelength λ
with the experimental values reported by Kliakhandler et al. (2001). From Ruyer-Quil
et al. (2008).
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fluid R (mm) ffor (Hz) hN (mm) hs (mm) hmax (mm)
exp exp num exp num
±0.01 ±0.05 ±0.05

v100 0.2 9 0.84 0.414 0.410 1.12 1.21
– – 8 – 0.42 0.435 1.16 1.27
– – 6 – 0.47 0.49 1.28 1.40
– – sol sol 0.54 0.54 1.54 1.54

v50 0.475 7 0.62 0.4 0.41 0.925 0.91
– – – 0.76 0.54 0.51 1.325 1.30
– – – 0.86 0.61 0.56 1.7 1.64
v50 1.5 10 0.87 0.66 0.63 1.17 1.18
– – 4 0.87 0.7 0.69 1.7 1.68
– – sol sol 0.95 0.78 2.66 2.66

Table 4.3 – Comparisons of the experimental measurements of the substrate thickness hs,
maximum thickness hmax to the data obtained by integration of the model (4.40. In the
case of the two solitary waves labeled ’sol’, the numerical solution has been selected by
adjusting the maximum height (boldface in the table). After (Duprat et al. 2009b).

tude and speed) obtained from the models with the experimental data
by Duprat et al. (2009b). Fluid are less viscous silicon oils than the castor
oil employed by Kliakhandler et al. (2001) (cf. table 4.1). The Reynolds
number is thus non-negligible. Again, an excellent agremment between
experimental data and the solutions of model (4.40) is evidenced.

Experimental studies Kliakhandler et al. (2001), Craster and Matar
(2006), Duprat et al. (2007; 2009a) reported the formation of axisymmetri-
cal traveling waves (TWs) propagating without deformations and at con-
stant speed over long distances. Solitary waves, that is, TWs separated
by constant-thickness layers of fluid, or substrates, much longer than the
characteristic length of the waves, were commonly observed sufficiently
far downstream. Theoretically, solitary waves can be viewed as periodic
TWs with an infinitely long wavelength. It is possible to distinguish three
different regimes by examining the properties of the solitary-wave solu-
tions.

Drop-like regime

This regime is observed on thin fibers for which the Rayleigh-Plateau (RP)
instability is dominant, i.e. at small Goucher numbers (Go ≪ 1), of more
exactly when the saturation number β⋆ is large. In that case, the RP insta-
bility mechanism predominates over the advection by the flow.

The drop-like regime is characterized by the presence of very large
bead-like nearly front-to-back symmetrical structures separated by regions
of very thin films. Large recirculation regions can be found in the cores of
these waves (see for instance figure 4.7) which contain and transport most
of the fluid. These structures thus resemble axisymmetrical drops sliding
down a coated fiber. The instability being promoted by the curvature if the
fiber and the velocity of the beads resulting from the balance of viscosity
and gravity acceleration, it is advisable to adopt then a scaling based on
the radius R̄ of the fiber, which gives the time scale ν/(gR̄). This scaling
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Figure 4.8 – Wave profiles corresponding to the solutions to the CM equation (solid lines)
and static drop shape (thin dashed lines). Labels correspond to the Goucher number. After
Ruyer-Quil and Kalliadasis (2012).

introduces a Galilei number, Ga ≡ gR̄3/ν2 = Go3Γ3/2, which is thus small
and inertia effect are negligible.

Wave profiles are contrasted in Fig. 4.8. Their front-to-back symmetry
shows that gravity does not affect the wave profile, as expected, since the
typical size of the wave R̄ is much smaller than the capillary length lc.
Therefore, solitary waves in this regime resemble isolated drops sliding
under the action of gravity on a wettable fiber, which is precisely why
one refers to this regime as the drop-like regime. It corresponds to the
observation by Quéré Quéré (1990), Quéré (1999) in the coating of wires
or thin fibers drawn out of a bath of viscous liquids that the thin annular
film deposited on the wires/fibers breaks up into drops.

This analogy is checked by computing the shape of static drops with
zero contact angles sitting on a fiber coated with a base liquid film ,or
substrate film, of the same liquid (details of the calculation are given in
the appendix B of Ruyer-Quil and Kalliadasis (2012)). The agreement is
remarkable. The adopted modeling approach is accurate in the drop-like
regime even if the long-wave approximation does not hold any more. This
underlines the robustness of the long-wave approximation of the curva-
ture terms Kax ≈ ∂xxh and Kaz ≈ (R + h)−1. Following Kalliadasis and
Chang (1994), an analytical estimate of the amplitude and speed of the
drop-like waves in the limit Go → 0 may be obtained via matched asymp-
totic expansions. The appropriate small parameter is the dimensionless
speed of the drops. By balancing viscous and capillary forces at the back
of the waves, one can easily extend to sliding drops the Landau-Levich-
Derjaguin law obtained by Quéré Quéré (1999) in the case of fibers drawn
out of a bath. The result compares favorably to the results from the CM
equation.

The drop-like regime is also characterized by the possibility to find
traveling-wave solutions when the Nusselt uniform film is still linearly
stable (Novbari and Oron 2011). This subcritical situation must be con-
trasted with the planar case for which the onset of TWs is always su-
percritical. This phenomenon arises from capillary effects and depends
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only on the geometry and thus on the aspect ratio α̃ for sufficiently small
Goucher numbers. It can be understood using thermodynamical argu-
ments as slowly moving beads are slightly out-of-equilibrium drops. Sub-
critical onset of the TW solutions are thus associated with a energetically
favorable reduction of the interfacial area.

Drag-inertia regime

The drag-inertia regime corresponds to the predominance of the Kapitza
instability mode. This regime corresponds to thick fibers and large reduce
Reynolds numbers δ for which the wave dynamics is not different from
what is observed on a falling film down a vertical plane. It is characterized
by highly non-symmetrical solitary waves with a steep front and a gentle
back tail, whose speed and amplitude are close to the ones of ’roll-waves’,
i.e. shocks, or hydraulic jumps, periodically connected by laminar flows.
This regime can also be referred to as a “capillary roll wave” regime, the
formation of shock at the fronts being arrested by surface tension. The
speed of the waves in the asymptotic limit δ → ∞ can be determined using
Thomas condition (Thomas 1939) and the convergence to the asymptotic
result is governed by η/δ2 ∝ Re−2 as in the planar case.

Drag-gravity regime

The ‘drag-gravity’ regime corresponds to the predominance of the flow
advection over the instability mechanisms, either when inertia effects are
weak, i.e. for δ / 1 or when the azimuthal curvature effects are non-
dominant, β⋆ / 1. In both cases it is possible to interpret the ‘drag-
gravity’ regime as one where the instability growth is arrested by the flow.
The amplitude of the waves can be thus assumed small which enables
a weakly nonlinear analysis. The flow is governed in that limit by the
Kuramoto-Sivashinky equation and one is thus led to the following power
laws fro the speed and amplitude of the waves:

c/ck ≈ 1 + 0.405 Υ3/2 hmax ≈ 1 + 0.523 Υ3/2 , (4.41)

where Υ = 2
5 δ + β From (4.41) a linear relation between the speed and

amplitude can be derived:

hmax − 1 ≈ 1.29
(

c
ck

− 1
)

(4.42)

A linear dependence of the speed as a function of amplitude was initially
found by Chang (1986) by utilizing a normal form analysis of the TW
solutions of the Kuramoto-Sivashinsky equation. This linear dependence
is a characteristic of the drag-gravity regime and must be contrasted with
the experimental relation

hmax − 1 ≈ 1.67
(

c
ck

− 1
)

(4.43)

obtained by Tihon et al. Tihon et al. (2006) for solitary waves running down
a plane inclined at an angle 5◦. A linear dependence of hmax with respect to
c/ck has also been found experimentally Duprat et al. (2009a) for solitary
waves on a relatively thick fiber with a slope closer to 1.5.
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Soliton-like regime

A fourth regime may be found for very viscous fluids and thick films
α̃ = O(1)), for which both K and RP instability mechanisms are weak
(δ / 1 and β⋆ / 1) and viscous dispersion is significant (η = O(1)). This
‘soliton-like’ regime corresponds to the balance of the nonlinearities with
the dispersion induced by second-order viscous effects, with the speed
and amplitude of the solitary waves being functions of the logarithm of
the aspect ratio α̃. This regime (only predicted in numerical experiments)
is similar to the dynamics of the solitons governed by the Korteweg-de-
Vries equation.

However, even in the drag-gravity regime, the influence of the second-
order viscous terms (the Trouton viscous terms) is noticeable. By lowering
the speed of kinematic waves, the advection time τa is increased. The sat-
uration of the instability by the flow is therefore attenuated by viscous
dispersion which thus raises the time of advection of the structures. The
waves having more time to grow before reaching saturation, their ampli-
tude becomes larger.

Regime map

The onset of the ‘drop-like’ regime and the ‘drag-inertia’ regime corre-
sponds roughly to β⋆ ≈ 1 and δ ≈ 1. The ‘soliton-like’ regime arises
when the instability mechanisms are weak (δ / 1 and β⋆ / 1), the film is
thick, α̃ = O(1), and viscous dispersion is strong, η = O(1). Finally, the
‘drag-gravity’ regime is observed when all other effects are weak (δ / 1
and β⋆ / 1 and η ≪ 1). Therefore, a phase diagram can be obtained
for a given fluid, thus a given Kapitza number Γ, by drawing the curves
δ = 1, η = 1 and β⋆ = 1 in the plane (α̃, Go). Since η = (α̃Go)4/3 and
β⋆ = {α̃ck(α̃)/[Go2(1 + α̃)4]}2/3 are functions of α̃ and the Goucher num-
ber only, the corresponding curves β⋆ = 1 and η = 1 are independent of
the working fluid considered. Thus, δ = 1 is the only boundary that moves
in the plane (α̃, Go) when Γ is varied. Figure 4.9 is a tentative representa-
tion of the phase diagrams for the four working fluids considered in this
study, from weakly viscous fluids like water with a high Kapitza number,
Γ = 3376, to highly viscous fluids like silicon oil v1000 corresponding to a
small Kapitza number, Γ = 0.10.

Some perspectives

A film flowing down a vertical fiber is probably one of the most simple and
intriguing open flow. It is the archetype of a long-wave one-dimensional,
dispersive, dissipative, active nonlinear medium. The ’activity’ of this
flow, that is its ability to generate structures, is sustained by two long-wave
competing instability mechanisms, the Kapitza and the Rayleigh-Plateau
instability. The ’dissipation’ of the system originates not from viscosity
but rather from surface tension and the axial curvature. ’Dispersion’ has
a viscous origin being triggered by the second-order viscous terms, or
extensional ’Trouton’ viscosity. The principal nonlinearity of this system
is the flow-to-thickness third-order relation (4.2).
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Figure 4.9 – Maps of the different regimes in the Go − α̃ parameter space for fluids of
increasing viscosity. The different curves are the loci of δ = 1, η = 1 and β⋆ = 1.
‘DI’ refers to the ‘drag-inertia’ regime, ‘DL’ to the Rayleigh-Plateau regime, ‘SOL’ to the
‘soliton-like’ regime and ‘DG’ to the ‘drag-gravity’ regime.

Since the Rayleigh-Plateau mode can be triggered even in the absence
of flow, the instability is observable at very low Reynolds number and
for very viscous fluids which makes its study particularly easy both ex-
perimentally and numerically. Moreover, contrary to the Kapitza K mode
which is triggered by the flow itself, the RP instability mode can com-
pete with the flow advection and a convective–absolute transition is easily
observable.

The most simple equation that presents all these features is the Kawa-
harah equation (Kawahara 1983, Kawahara and Toh 1988, Elphick et al.
1988),

∂th + h∂xh + ∂xxh + δK∂xxxh + ∂xxxxh , (4.44)

also called ’generalized Kuramoto-Sivashinsky’ equation since the
Kuramoto-Sivashinsky equation is retrieved when the dispersive terms
are dropped out, i.e. for δK = 0. This equation has been extensively stud-
ied as a prototype of the development of spatio-temporal chaos (Chang
et al. 1998, Chang and Demekhin 2002). In particular, a great deal of
work has recently been devoted to the construction of coherent-structure
theory based on wave-to-wave interaction of solitary pulses based on the
Kawaharah equation (Tseluiko et al. 2010b). Kalliadasis and coworkers
have noticed the strong analogy between the dynamics of beads down
a fiber and the spatio-temporal chaos modeled by (4.44). Duprat and
Giorgiutti-Dauphiné have reported the formation of bound states, made
of several solitary waves moving as a whole and separated with constant
distances, as predicted by the theory based on (4.44) (Duprat et al. 2009a,
Tseluiko et al. 2010a).

However, a systematic and statistical analysis of the spatio-temporal
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evolution of the flow along the fiber is still lacking. Hitherto, an open
question remains: does the disordered dynamics of the wavy flow reaches
a permanent state, characterized by a number of structures per unit of
time (or ’density’) independent of the spatial location, or is the coarsening
process, that is the emergence of fewer and larger beads as a result of
coalescence events, goes on for ever ?

This question can be answered only by constructing a coherent-
structure theory in qualitative and quantitative agreement with the ex-
periments. The two-equation model (4.40) is a good candidate for the
construction of such a theory. This model has been checked to satisfacto-
rily capture the linear and nonlinear dynamics of the film. The different
wave regimes have been deciphered underlining the competitions between
the two instability mechanisms, viscous dispersion and the advection by
the flow. FollowingPradas et al. (2011), a straightforward extension of
the coherent-structure theory for a film on a vertical plane based on two-
equation model is a first step to answer that question.

The absolute instability of the film triggered a well-defined global
mode (observable in the middle panel of figure 4.1), it would be inter-
esting to see how such a global mode respond to a spatial perturbation
at a wavelength that does not correspond to its selected wavelength. One
may expect to generate phase soliton as in the Thorpe experiment of a tilt-
ing tube filled with two immiscible fluids of different density (Pouliquen
et al. 1992; 1995).

In many industrial applications, the fluid is non-Newtonian. The pres-
ence of shear-thinning and normal forces may modify significantly the
instability of the film and its dynamics. Some preliminary experimental
reports can be found in the recent work by Boulogne et al. (2012). How-
ever, a consistent theory is still lacking for this flow. Liquid film down
wires are also encountered in the design of new structure packings to op-
timize distillation and absorption columns in chemical engineering. The
idea is that the liquid will be more easily distributed over bundles of wires
(Hattori et al. 1994, Gruenig and Kraume 2009, Gruenig et al. 2012). To
tackle this industrial problem, the model (4.40) can be extended by taking
into account the shear exerted by the surrounding gas flow.
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Consider the gravity-driven flow of a thin liquid film down a vertical fibre. A model
of two coupled evolution equations for the local film thickness h and the local flow
rate q is formulated within the framework of the long-wave and boundary-layer
approximations. The model accounts for inertia and streamwise viscous diffusion.
Evolution equations obtained by previous authors are recovered in the appropriate
limit. Comparisons to experimental results show good agreement in both linear and
nonlinear regimes. Viscous diffusion effects are found to have a stabilizing dispersive
effect on the linear waves. Time-dependent computations of the spatial evolution of
the film reveal a strong influence of streamwise viscous diffusion on the dynamics of
the flow and the wave selection process.

1. Introduction

A liquid film flowing down a vertical fibre is an unstable open-flow hydrodynamic
system that exhibits a rich variety of wave phenomena and transitions, ranging
from the classical spatio-temporal disorder prompted by the Kapitza instability
mode of films falling down vertical planes – hereinafter referred to as ‘K mode’–
and characterized by the presence of continuously interacting solitary waves, to the
emergence of very regular drop-like wave patterns resulting from the Rayleigh–
Plateau instability mode of a liquid layer coating a cylinder – hereinafter referred to
as ‘RP mode’ (Kliakhandler, Davis & Bankoff 2001; Duprat et al. 2007).

The experimental investigation of flows down fibres was initiated by the studies of
Quéré in the context of drawing of wires from liquid baths (Quéré 1990, 1999). Quéré
observed the formation of axisymmetric drops, and showed that this break-up process
may be arrested by mean flow. Kliakhandler et al. (2001) examined experimentally the
dynamics of a film flowing down a fibre and reported several wavy regimes, consisting
of isolated large-amplitude drops moving at constant speed and shape on a nearly
flat substrate, regular periodic wavetrains or interaction events between large drops
with smaller ones on the residual film separating the large drops.

The arrest by the mean flow of the drop formation process observed by Quéré was
analysed in detail by Kalliadasis & Chang (1994). They computed the solutions to a
lubrication-type evolution equation for the film thickness h derived by Frenkel (1992)
assuming it to be much smaller than the radius R of the fibre and neglecting inertia.
They observed a catastrophic growth of the speed and amplitude of the solitary-wave
solutions that closely corresponds to the onset of drops in Quéré’s experiments.

Roy, Roberts & Simpson (2002) extended Frenkel’s equation by including higher-
order terms in the small aspect ratio h/R (e.g. in Frenkel’s equation only the
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leading contribution of the azimuthal curvature to the capillary pressure is retained).
Kliakhandler et al. (2001) examined the case of film thicknesses of the order of
the fibre radii corresponding to their experiments. Their derivation is based on the
lubrication approximation but contains an ad-hoc step within the framework of this
approximation, namely the retention of the full curvature term. Craster & Matar
(2006) derived a film-thickness evolution equation very similar to that obtained by
Kliakhandler et al. (2001) based on the assumption that the total radius of the
fluid ring R + h is small compared to the capillary length. However, unlike the
Kliakhandler et al. (2001) equation, the Craster–Matar equation retains the lower-
order approximation of the curvature and is consistent at its level of truncation.
Moreover, the time-dependent computations of the Craster–Matar equation show
reasonable agreement to the experiments performed by these authors as well as to
the study by Kliakhandler et al.

All modelling attempts described above assumed negligible inertia effects. Therefore
they cannot account for the K hydrodynamic instability mechanism. A decisive
first step towards accounting for inertia effects for moderate Reynolds numbers
was undertaken by Trifonov (1992) who applied the Kàrmàn–Polhausen averaging
technique for a film falling down a planar substrate, introduced first by Shkadov
(1967), to formulate a system of two evolution equations for the film thickness h

and the flow rate q . Trifonov demonstrated the presence of at least two families of
travelling-wave solutions leading to ‘negative’ or ‘positive’ solitary waves in the limit
of small wavenumbers. Sisoev et al. (2006) carried out transient numerical simulations
of Trifonov’s model with periodic forcing at the inlet. The spatial evolution of the
waves is then characterized by the selection of the fastest travelling wave having the
same frequency with the forcing at the inlet. However, the Kármán–Pohlhausen aver-
aging technique is known to lead to an erroneous estimate of the instability threshold
for a film falling down a planar inclined substrate, a direct consequence of neglecting
the contribution of the streamwise viscous dissipation (Ruyer-Quil & Manneville
2000). More recently, Roberts & Li (2006) obtained a two-equation model based on a
centre-manifold approach by taking into account both inertia and streamwise viscous
diffusion, but assumed a small aspect ratio h/R, whereas the reported experimental
conditions correspond to h/R ∼ 1 (Kliakhandler et al. 2001; Duprat et al. 2007).

In this study we develop a generic modelling approach based on first principles
to formulate a two-equation model for the film thickness h and flow rate q . The
model overcomes the limitations of the Trifonov and the Roberts & Li models, i.e. it
accounts for inertia, streamwise viscous diffusion, both small and O(1) aspect ratios
h/R as well as small and large surface tension fluids and is consistent with the above
cited lubrication equations in the appropriate limit. In addition, we investigate the role
of viscous streamwise effects in the experimental conditions of the Kliakhandler et al.
and Duprat et al. studies and we demonstrate good agreement with these experiments.
We also clearly demarcate regions in the parameter space where previous models are
valid.

The different tests used for the validation of our model are as follows. (i) The
linear stability characteristics of the base flow and their comparison with an Orr–
Sommerfeld analysis of the full Navier–Stokes equations and wall and free-surface
boundary conditions. A related test here is the analysis of the response of the
base flow to a localized perturbation and the ability of the model to capture the
absolute/convective instability transition as predicted by Orr–Sommerfeld. (ii) Direct
comparisons with experiments of different features of the flow such as travelling-wave
characteristics (speed, maximum amplitude).
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Figure 1. Sketch of the profile geometry for a thin liquid film falling down a vertical fibre.
A cylindrical coordinate system (r, θ) is chosen at the fibre centreline r = 0. R is the fibre
radius and h is the local film thickness. (x, y) is a Cartesian coordinate system with x the
axial/streamwise coordinate along the fibre centreline and y = r − R an outward pointing
coordinate normal to the fibre surface and such that y = 0 corresponds to the fibre surface
and y = h to the film surface.

The paper is organized as follows. The governing equations for a film flowing down
a vertical fibre and their non-dimensionalization are given in § 2. The boundary-layer
approximation is outlined in § 3. A two-equation model is next formulated using a
weighted residuals procedure in § 4 which is validated and compared to available
experimental data in the linear and nonlinear regimes in § 5 and § 6, respectively.
Time-dependent simulations of the spatial evolution of the flow along the fibre are
presented in § 7 followed by concluding remarks in § 8.

2. Governing equations

Consider a film falling down a vertical fibre as illustrated in figure 1. The fluid
properties, namely viscosity µ, density ρ and surface tension σ , are all assumed to
remain constant. Our non-dimensionalization is based on the viscous–gravity time and
space scales, tν = ν1/3g−2/3, lν = ν2/3g−1/3, built from the kinematic viscosity ν = µ/ρ

and the acceleration due to gravity g. Assuming axisymmetric flows without any
variation in the azimuthal θ-direction, the equations of motion are:

∂tux + ux∂xux + ur∂rux = −∂xp + 1 +

[

∂rr +
1

r
∂r + ∂xx

]

ux, (2.1a)

∂tur + ux∂xur + ur∂rur = −∂rp +

[

∂rr +
1

r
∂r + ∂xx

]

ur − 1

r2
ur , (2.1b)

∂rur +
ur

r
+ ∂xux = 0 . (2.1c)

They are subject to the no-slip/no-penetration boundary condition at the wall

ur = ux = 0 at r = R, (2.1d)

the normal and tangential stress balances at the free surface, r = R + h(x, t)

p =
2

1 + (∂xh)2
[

−∂xh(∂rux + ∂xur ) + ∂xux(∂xh)2 + ∂rur

]

(2.1e)

− Γ

[1 + (∂xh)2]3/2

[

∂xxh − 1

R + h
(1 + (∂xh)2)

]

,

0 = (1 − (∂xh)2)(∂rux + ∂xur ) + 2∂xh(∂rur − ∂xux), (2.1f)
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where without loss of generality the pressure of the ambient gas phase has been set
equal to zero and the kinematic boundary condition:

∂th + ux∂xh − ur = 0 . (2.1g)

The Kapitza number Γ = σ/(ρν4/3g1/3) = (lc/lν)
2 compares the surface stress σ/lν

to the viscous stress µ/tν , or equivalently the capillary length lc =
√

σ/(ρg) to lν .
By integrating the continuity equation (2.1c) across the film and using the no-slip
condition (2.1d), the kinematic condition (2.1g) can be written as a mass conservation
equation,

(1 + αh)∂th + ∂xq = 0, (2.2)

where q ≡ R−1
∫ R+h

R
uxr dr is the flow rate per unit circumference length and α ≡ 1/R

is the dimensionless curvature of the cylinder.
Therefore the flow is characterized by the dimensionless Nusselt uniform film

thickness hN, the dimensionless radius R and the Kapitza number Γ , or equivalently
the Reynolds number Re = qN which appears implicitly through hN with qN the
dimensionless flow rate of the Nusselt uniform film solution (qN and Re will
be defined in § 4), the dimensionless fibre curvature α and the Weber number
We = Γ/h2

N = σ/(ρgh̄2
N) = (lc/h̄N)2 where h̄N is the dimensional Nusselt uniform

film thickness (hereinafter bars are introduced to distinguish dimensional from
dimensionless quantities when necessary).

Note that the classical planar case can be recovered when α = 0. This can easily be
seen by performing the change of variables (x, r) → (x, y) and thus measuring the
cross-stream variation from the wall, and by defining (u, v) ≡ (ux, ur ), corresponding
to the usual notations for the streamwise/cross-stream velocity components in the
planar case. The dimensionless fibre curvature α then appears in the equations of
motion (2.1a–c) and the normal stress balance (2.1e). The transformed equations
simplify the comparison between the annular geometry and the planar one: the effect
of the annular geometry appears through the terms containing the fibre curvature α

and it is easy to verify that setting α = 0 gives the governing equations for the planar
case.

3. Boundary-layer equations for thin-film flow down a fibre

3.1. Orders of magnitude assignments

Assuming slow space and time modulations of the flow allows us to define a formal
parameter ǫ ∼ ∂x,t ≪ 1 and to perform a ‘gradient expansion’ of the governing
equations (2.1a–2.1g) in ǫ. The smallness of ǫ implies a separation of scales between
x and r which in turn dictates a different treatment of the streamwise and cross-
stream momentum equations as in boundary-layer theory in aerodynamics. Further
we assume that αh ∼ αhN is at most O(1) or hN is at most O(R) (in the experiments
by Kliakhandler et al. (2001) and Duprat et al. (2007), αhN = O(1)). We thus exclude
the possibility of large αhN, in which case the film does not really ‘see’ the fibre and
resembles more a vertical falling free jet (and it is quite likely that the flow will be
non-axisymmetric in this case).

The formulation of the boundary-layer equations starts by determining the order
of magnitude of the inertia terms in the left-hand side of the cross-stream momentum
equation (2.1b). Since h̄ ∼ h̄N, ux ∼ ūN/(lν/tν) with ūN the dimensional Nusselt
uniform film velocity whose scaling can be easily obtained by balancing viscous
diffusion in the r-direction with gravity, ūN ∼ gh̄2

N/ν. We then have ux ∼ h2
N. The
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continuity equation (2.1c) now indicates that the radial component of the velocity
is formally of O(ǫh2

N). Since x, y ∼ hN, from ux ∼ h2
N ∼ hN/t , t ∼ 1/hN and the

inertia terms in the left-hand side of the cross-stream momentum equation (2.1b) are
of O(ǫ2h3

N). Neglecting these terms, using the relation obtained by differentiating the
continuity equation (2.1c) once with respect to r , and dropping the streamwise viscous
term ∂xxur =O(ǫ2ǫh2

N/h2
N) ≡ O(ǫ3), yields the simplified cross-stream momentum

equation, ∂rp = − ∂xrux, which can be integrated once with respect to r to give

p = p|h − ∂xux + ∂xux |h, (3.1)

where terms of O(ǫ3hN, ǫ2h4
N) have been neglected. This is indeed the case provided

that ǫ3/2 ≪ hN ≪ ǫ−1/4 and α ≫ ǫ9/4, from a detailed examination of the orders of
magnitude of the retained over the neglected terms.

The first term p|h in the approximation for the pressure in (3.1) must be evaluated
from the normal stress balance in (2.1e) that gives the pressure drop across the free
surface. The contribution of the streamwise curvature Γ ∂xxh due to surface tension
must be kept in our formulation as it is well known from the planar case that this is
the principal physical effect that prevents the waves from breaking. However, this term
is formally of O(Γ hNǫ2/h2

N) ≡ Γ ǫ2/hN and should be neglected, if for example Γ is
at most of O(1) and hN = O(1), as in this case terms of O(ǫ2) and higher are neglected
in our approximation for the pressure in (3.1). Unless the streamwise curvature is
sufficiently large in certain regions/boundary layers of a free-surface deformation
such as the steep front edge of a solitary hump: it contains the highest derivative of h

multiplied by ǫ2 and in these boundary layers this derivative is sufficiently large and
cannot be neglected. However, proceeding via inner/outer asymptotic expansions is
cumbersome if not impossible. It is more convenient to avoid any boundary layers
and to stipulate that the streamwise curvature is important throughout a solitary
hump and not just in certain regions.

The contribution of the streamwise curvature in (2.1a) is Γ ∂xxxh with formal order:

Γ ∂xxxh ∼ Γ
hN

h3
N

ǫ3 ≡ Γ

h2
N

ǫ3. (3.2)

To proceed further we need to assign a relative order between Γ and ǫ. Two
cases of particular interest here are large Γ and Γ = O(1). The case of large Γ is
representative of liquids with high surface tension and small kinematic viscosity such
as water (Γ ∼ 3000 at 25◦C) while the second case corresponds to liquids with surface
tension smaller than that of water and kinematic viscosity much larger than that of
water such as silicone oils.

(i) Γ large, ‘the strong surface tension limit’. This is quite frequently the case in
inertia-driven films on planar substrates where water is used as the working fluid. A
convenient order-of-magnitude assignment is Γ = O(ǫ−2). For simplicity let us also
assume that hN = O(1) (a sufficiently large Γ /surface tension is required for ‘thick’
films in order to prevent the waves from breaking). From (3.2), Γ ∂xxxh is formally of
O(ǫ) and must be retained since terms of O(ǫ3) and higher are neglected. However,
at the steep front edge of a solitary pulse and by analogy with the planar case, the
pressure gradient Γ ∂xxxh due to surface tension and the gravitational acceleration
equal to unity in (2.1a) balance. Hence, Γ ∂xxxh has its formal order, O(ǫ), throughout
except at the front where it increases to O(1). Let us introduce in this region the
transformation x = κhNxS due to Shkadov (1977) – we shall return to it in § 4. We
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then have:

Γ ∂xxxh = Γ ∂xSxSxS
h

1

κ3h3
N

∼ Γ hN

κ3h3
N

≡ Γ

κ3h2
N

∼ 1 ⇒ κ =

(

Γ

h2
N

)1/3

≡ We1/3. (3.3)

In terms of dimensional variables, (3.3) corresponds to the balance ρg ∼ σ∂x̄x̄x̄ h̄ or
ρg ∼ σ h̄N/l3S where lS is the length scale over which the pressure gradient due to
streamwise surface tension and gravitational acceleration balance – it corresponds
effectively to the characteristic length of the steep front of a solitary wave. We then
have h̄N/lS ∼ We−1/3 = 1/κ ∼ ǫ2/3 so that lS is much larger than the film thickness h̄N

and the long-wave assumption is not violated. Equivalently, the long-wave assumption
is sustained at the front of a solitary wave if ∂xh ≪ 1 there. Indeed,

∂xh = ∂xS
h

1

κhN

∼ hN

κhN

≡ 1

κ
∼ ǫ2/3. (3.4)

This estimate also shows that ∂xh at the front of a solitary wave is much larger than
its formal order, O(hNǫ/hN) ≡ O(ǫ). However, ∂xh is never larger than unity at the
front consistent with our stipulation that we do not have a singular perturbation
problem since Γ ∂xxxh is important throughout a solitary wave.

(ii) Γ = O(1). It is now clear that the order of magnitude of hN with respect to
ǫ is crucial for the validity of the boundary-layer approximation. For example, if
hN =O(1), from, (3.2), Γ ∂xxxh ∼ ǫ3 and must be neglected. On the other hand if hN ∼
ǫ−1/5, which satisfies the requirement hN ≪ ǫ−1/4 given earlier, then Γ ∂xxxh ∼ ǫ17/5 ≪
ǫ3h4

N ∼ ǫ11/5 and the contribution of the streamwise curvature must be neglected.
Hence hN must be small (‘thin’ films do not require large Γ /surface tension to prevent
the waves from breaking): in order to maintain Γ ∂xxxh in our perturbation expansion,
it must be much larger than the neglected terms, i.e. (Γ/h2

N)ǫ3 ≫ ǫ4hN, ǫ3h4
N or

hN ≪ ǫ−1/3, 1 which are satisfied simultaneously if hN ≪ 1.
Again, Γ ∂xxxh has its formal order throughout except at the front of a solitary

pulse where it must be increased to Γ ∂xxxh ∼ 1. As in case (i), in order to sustain
the long-wave approximation we require κ ≫ 1 which is indeed the case since
κ = (Γ/h2

N)1/3 ≫ 1 for hN ≪ 1 but now κ can be much smaller than that in
equation (3.4) for case (i) if a tighter lower bound is imposed on hN, e.g. hN ≫ ǫ

instead of hN ≫ ǫ3/2 we obtained earlier: with Γ =O(1) and hN ≫ ǫ, κ ≪ ǫ−2/3

which then implies that in case (ii) the front of a solitary pulse must have a larger
slope than in case (i) (and Γ ∂xxxh is formally ≪ ǫ, the formal order of this term in
case (i)). On the other hand this is always the case when the condition hN ∼ 1 in case
(i) is relaxed: κ−1

i ∼ ǫ2/3h
2/3
N and κ−1

ii ∼ h
2/3
N . Physically, in case (ii) surface tension is

not strong enough to prevent the slope from increasing but again the slope ∂xh is
never larger than unity, which is consistent with our stipulation that we do not have
a singular perturbation problem. Equivalently, for a given hN, increasing Γ decreases
the slope at the front.

3.2. Boundary-layer approximation for large Γ

We now return to the evaluation of the term p|h in the approximation for the
pressure in (3.1) in case (i) with Γ = O(ǫ−2) and hN =O(1). In the first instance let
us neglect terms of O(ǫ3) and higher associated with the viscous part of the pressure
in the normal stress balance (2.1e). Note that independently of the order of hN,
1/(R + h) ≡ α/(1 + αh) = O(α): α/(1 + αh) ∼ α for αh ≪ 1 and ∼ α for αh= O(1).
Hence by neglecting terms O(ǫ2, ǫ2α) = O(ǫ2), since in the particular case we are
considering hN = O(1) which with αhN at most of O(1) implies that α is at most of
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O(1), the pressure on the free surface is given by:

p|h = −2∂xh∂rux |h + 2∂rur |h − Γ

[

∂xxh − 1

R + h

(

1 − 1

2
(∂xh)2

)]

. (3.5)

This expression can be further simplified by considering the tangential stress
boundary condition (2.1f) where terms of O(ǫ3) and higher are neglected:

∂rux |h = 2∂xh
(

∂xux |h − ∂rur |h
)

− ∂xur |h + (∂xh)2∂rux |h. (3.6)

All terms in the right-hand side of this equation are of O(ǫ2) and hence the
contribution of the term ∂xh∂rux |h in (3.5) is of O(ǫ3) and can be neglected so
that the pressure field is

p = −∂xux + ∂xux |h + 2∂rur |h − Γ [∂xxh + Kaz] , (3.7)

where terms of O(ǫ2, ǫ2α) = O(ǫ2) are neglected, which is indeed the case provided
that ǫ2 ≪ α and α at most of O(1) (again from a detailed examination of the orders
of magnitude of the retained over the neglected terms), and where

Kaz = − 1

R + h

(

1 − 1

2
(∂xh)2

)

≡ − α

1 + αh

(

1 − 1

2
(∂xh)2

)

(3.8)

is the approximation of the azimuthal curvature of the free surface obtained by
neglecting terms of O(ǫ4α) = O(ǫ4) and higher. Note that with α → 0, α/(1+αh) → 0
and Kaz → 0 corresponding to the planar limit. Also, since hN = O(1), α → 0 is
equivalent to αh → 0. In the general case, however, when αh → 0, α/(1 + αh) → α

corresponding to a very thin film compared to the fibre radius but we still have the
azimuthal curvature effect: αh → 0 does not necessarily imply the planar limit when
the condition hN =O(1) is relaxed – see also our discussion at the end of § 2.

Substituting (3.7) into the streamwise momentum equation (2.1a) then leads to the
following consistent equation up to O(ǫ2),

∂tux + ux∂xux + ur∂rux −
[

∂rr +
1

r
∂r + 2∂xx

]

ux

= 1 − ∂x

[

∂xux |h + 2∂rur |h
]

+ Γ {∂xxxh + ∂xKaz} , (3.9)

where terms of O(ǫ3) and higher have been neglected.
Case (ii) is treated in Appendix A. By analogy now with the planar case where

quite frequently Γ = O(ǫ−2) as noted earlier, equation (3.9) where terms of O(ǫ3) and
higher are neglected will be referred to as the ‘second-order boundary-layer equation’
for the problem of film flow down a fibre and for simplicity our analysis in § 4 is based
on case (i). The set of equations to be solved at O(ǫ2) (this refers to the truncation
of the ǫ-expansion if for example case (ii) is considered), the ‘second-order boundary-
layer equations’, consists of the streamwise momentum equation in the boundary-
layer approximation (3.9), the continuity equation (2.1c), the no-slip/no-penetration
condition at the wall (2.1d), the tangential stress balance at the free surface (3.6)
and the mass conservation (2.2) or equivalently (2.1g). Notice that, when truncated
at O(ǫ) as in the approach followed by Trifonov (1992) and Sisoev et al. (2006), the
boundary-layer equations do not account for the streamwise viscous diffusion terms
−∂x[∂xux |h + 2∂rur |h] in (3.9) and 2∂xh(∂xux |h − ∂rur |h) − ∂xur |h + (∂xh)2∂rux |h at the
right-hand side of the tangential stress boundary condition in (3.6).
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4. Formulation of a low-dimensional model

We now develop a low-dimensional model with a systematic reduction procedure
based on a combination of the long-wave approximation and a projection of the
velocity field on an appropriately chosen set of test functions. Our approach is not
limited to a small ratio of the film thickness to the fibre radius and does not require
precise and overly restrictive stipulations on the order of magnitude for this ratio –
recall for example from our analysis in § 2 that in case (i) with hN =O(1), ǫ2 ≪ α

and α at most of O(1) so that αhN could be small or O(1). As pointed out earlier, for
simplicity we present in this section the formulation of the model for case (i). Case
(ii) can be treated similarly; the final equations are the same for both cases.

4.1. First-order model

Let us first consider the case of the Nusselt uniform layer: assuming no modulations
of the free surface, ∂x = ∂t =0, the basic/Nusselt flow satisfies

L(ux) = −1 with ux |R = 0, ∂rux |h = 0, (4.1)

where L denotes the (friction) linear differential operator, L ≡ ∂rr + r−1∂r . The
solution of (4.1) is simply

ux =
1

2
(R + h)2 ln

( r

R

)

− 1

4
(r2 − R2) ≡ ux,0, (4.2)

which can also be written as

ux = h2fαh(ŷ), fαh(ŷ) ≡ −1

4
ŷ2 − 1

2αh
ŷ +

1

αh

[

1 +
1

2
αh +

1

2αh

]

ln(1 + αh ŷ), (4.3)

where ŷ = y/h ≡ (r − R)/h is a reduced cross-stream coordinate. Therefore, the effect
of the curvature of the cylinder on the velocity profile of the uniform film solution
is measured by the local aspect ratio αh= h/R. Notice that in the limit αh → 0,
which without specifying the order of hN corresponds either to the planar limit or to
a very thin film compared to the fibre radius (recall, however, from § 3 that due to
the condition hN = O(1) in case (i), the limits α → 0 and αh → 0 are equivalent), the
velocity profile is parabolic,

f0 ≡ lim
αh→0

fαh = ŷ − 1

2
ŷ2,

as expected.
Let us now use for the x-velocity a projection of the form,

ux = a0,0(x, t)g0,0(r; h(x, t)) +

mmax
∑

m=1

nmax
∑

n=0

am,n(x, t)gm,n(r) (4.4)

while the radial component is obtained by integrating the continuity equation (2.1c):

ur = −1

r

∫ r

R

∂xux(x, ζ, t)ζdζ. (4.5)

g0,0 ≡ ux,0 is precisely the Nusselt velocity profile so that (4.4) simply reduces
to ux,0(r; h(x, t)) and a0,0 = 1 if the film remains uniform. Consequently, the test
functions gm,n account for the deviations of the velocity field from the Nusselt profile
and their amplitudes are at most O(ǫ) quantities. Concerning the particular choice
of test functions, we notice that monomials/powers of r and ln(r) constitute a
closed set of functions with respect to differentiations and products involved in the
momentum balance (3.9) and the linear operator L. A plausible choice therefore
is gm,n ≡ [(r − R)m] [ln(r/R)]n which satisfy the no-slip/no-penetration condition on

172 CHAPTER 4. FILM FLOWS DOWN A FIBER



Modelling film flows down a fibre 439

the wall, (2.1d). Note that it can easily be shown that the above expressions for ux, ur

are consistent with their order-of-magnitude assignments in § 3 obtained from simple
scaling arguments.

After multiplication now of the momentum balance (3.9) by r2, truncation at O(ǫ)
and substitution of the projection (4.4) for the streamwise component of the velocity
ux , we are led to a polynomial in r and ln(r), say P(r, ln(r)), that is uniformly equal to
zero. Cancelling all its monomials in r and ln(r) thus yields a number of independent
relations equal to the number of unknowns am,n if mmax and nmax are chosen
sufficiently large. Further, since am,n, m + n � 1 are O(ǫ) corrections to the Nusselt
velocity profile, their derivatives can be neglected at that order, and a linear system
is obtained. Inversion of this linear system gives the amplitudes am,n, m + n � 1, as
functions of a0,0 and h, and an evolution equation for a0,0 coupled to the evolution
of the film thickness h through the mass conservation equation (2.2). The number of
non-zero coefficients am,n, i.e. of amplitudes that are of O(ǫ), can be estimated from the
degrees in r and ln(r) of the advection terms and by parity arguments. Finally, the
corrections to the Nusselt velocity profile induced by the deformations of the film
surface can be accounted for at O(ǫ) with seven test functions gm,n.

The actual determination of the amplitudes am,n requires some cumbersome
algebraic manipulations that can be substantially simplified with the use of a weighted
residuals approach such as the Galerkin or collocation method. With these methods,
appropriate weights wm,n(r) are chosen and residuals Rm,n = 〈wm,n|P〉 are evaluated
where 〈·|·〉 is an inner product defined over the depth of the film R � r � R + h(x, t).
Setting the residuals Rm,n equal to zero, or equivalently projecting the polynomial
P(r, ln(r)) onto zero, thus yields a system to be solved for the amplitudes am,n. If
the number of test functions is chosen sufficiently large, the number of residuals
is equal to the number of independent relationships obtained by setting P(r, ln(r))
uniformly to zero, so that equivalent systems of equations are found leading to the
same system of evolution equations for h and a0,0. We look for the best choice for
the scalar product and the weighting functions wm,n that leads to the final result with
a minimum of algebra.

The mass conservation equation (2.2) is exact and can be kept in a straightforward
manner if the flow rate q is substituted with the amplitude of the Nusselt profile a0,0

which can easily be done through the definition q = R−1
∫ R+h

R
uxr dr given in § 2,

a0,0 =
q

R−1

∫ R+h

R

g0,0(r; h)r dr

−
∑

m>1,n>1

am,n

∫ R+h

R

gm,n(r)r dr

∫ R+h

R

g0,0(r; h)r dr

≡ 3q

h3φ(αh)
+ O(ǫ),

(4.6)

where φ is a measure of the departure of the flow-rate dependence on the film

thickness from the planar case q ≡ 1
3
h3, φ(α) ≡

∫ 1

0
fαh(ξ )(1 + αξ ) dξ/

∫ 1

0
f 0(ξ ) dξ (the

explicit functional dependence on α can be obtained from (B 1) in Appendix B with
b → 1 + α). The derivation of (2.2) through integration of the continuity equation

(2.1c), suggests the use of the inner product 〈·|·〉 =
∫ R+h

R
· · r dr .

Considering next the streamwise momentum balance truncated at first order, the
residual corresponding to a given weight function w(r) is

∫ R+h

R

(

∂tux + ux∂xux + ur∂rux − L(ux) − 1 − Γ {∂xxxh + ∂xKaz}
)

rw (r) dr = 0 .

(4.7)
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Substituting for ux the projection (4.4) and truncating (4.7) at order ǫ, the fields am,n,
m, n � 1, corresponding to the corrections to the uniform-film profile fαh, may enter
into the calculation only through the evaluation of the zeroth order terms:

∫ R+h

R

[L(ux) + 1] rw (r) dr = [r(w∂rux −uxw
′)]R+h

R +

∫ R+h

R

[ux L(w) + w] r dr. (4.8)

The evaluation of these terms can be drastically simplified by demanding that the
weight function satisfies

L(w) = A with w(R) = 0, w′(R + h) = 0, (4.9)

where A is a constant, so that the integral
∫ R+h

R
ux L(w) rdr is proportional to the

flow rate q . The system (4.9) is similar to (4.1) when A= − 1, which reflects the
fact that the operator L is self-adjoint with respect to the chosen inner product.
Consequently, the choice w ≡ ux,0 is the most appropriate, which corresponds
precisely to the Galerkin method.

After truncation at O(ǫ) and use of the mass balance (2.2), which enables the
substitution of −∂xq/(1 + αh) for ∂th, equation (4.7) becomes:

∂tq = −F (αh)
q

h
∂xq + G(αh)

q2

h2
∂xh + I (αh)

×
[

h − 3

φ(αh)

q

h2
+ Γ h {∂xxxh + ∂xKaz(αh, α)}

]

. (4.10)

Coefficients F , G and I are positive functions of αh defined in Appendix B,
equation (B 1). The Nusselt solution is recovered in the uniform thickness limit,
∂t → 0, ∂x → 0, where

q =
h3

3
φ(αh) . (4.11)

Notice the dependence of the azimuthal curvature Kaz on both the aspect ratio αh

and α. Nevertheless, the product h∂xKaz depends on αh only, a consequence of the
averaging procedure across the film and the elimination of the pressure from the
cross-stream component of the momentum equation. Hence, the planar geometry
now corresponds to both limits α → 0 and αh → 0, when the condition hN = O(1) is
relaxed (in both cases the azimuthal curvature vanishes), unlike the full Navier–Stokes
equations in (2.1).

The integral momentum balance (4.10) is similar to that obtained by Trifonov
(1992) by averaging the first-order boundary-layer equation with a uniform weight
and assuming a self-similar velocity distribution, ux = a0,0ux,0. The coefficients F , G

and I obtained by Trifonov are given in Appendix B, equation (B 2). However, the
Trifonov model is not consistent at O(ǫ) since it does not account for the deviations
of the velocity profile from the Nusselt profile ux,0.

4.2. Second-order model

Although the first-order model (2.2), (4.10) is consistent at O(ǫ), it does not take into
account important physical features such as the dispersion induced by the streamwise
second-order viscous dissipative terms. These effects can be taken into account by
extending the derivation process to O(ǫ2). Starting from the second-order momentum
balance (3.9), averaging with the weight ux,0 and replacing −∂xq/(1 + αh) with ∂th,
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we obtain

∂tq = −F (αh)
q

h
∂xq + G(αh)

q2

h2
∂xh

+ I (αh)

[

h − 3

φ(αh)

q

h2
+ Γ h {∂xxxh + ∂xKaz(αh, α)}

]

+ J (αh)
q

h2
(∂xh)2 − K(αh)

∂xq∂xh

h
− L(αh)

q

h
∂xxh

+ M(αh)∂xxq + K(h, q, α) . (4.12)

Comparing (4.12) to (4.10) shows that the additional terms taking into account the
second-order effects have been collected in the last line row of (4.12). The first four
terms in this line arise from the streamwise viscous dissipation, whereas K contains
second-order inertial terms corresponding to the first-order corrections to the Nusselt
velocity profile and is a rather complex function of q , h and their derivatives.
Although the inclusion of these inertial terms ensures that the system (2.2), (4.12)
is consistent at O(ǫ2), the nonlinearities involved in K may drastically restrict the
range of parameters for which solutions to (2.2), (4.12) exist and can be favourably
compared to experimental data. Indeed, in the planar case, a ‘regularization’ procedure
was necessary to avoid the presence of non-physical blow-ups of the time-dependent
solutions due to second-order inertial terms even at moderate Reynolds numbers
(Scheid, Ruyer-Quil & Manneville 2006). In fact, in the planar case, dropping the
second-order inertial corrections leads to a simplified formulation which satisfactorily
captures all physical mechanisms (Ruyer-Quil & Manneville 2000). For these reasons
and to reduce the complexity of our second-order model, we neglect hereinafter the
second-order inertial effects and set K = 0.

The expressions of the (positive) functions J , K , L and M accounting for the
second-order streamwise viscous effects are given in Appendix B, equation (B 3).
For α ≪ 1 (which as pointed out earlier in our average model is equivalent to
αh ≪ 1), (B 1) and (B 3) give at O(α2):

F (αh) ≈ 17

7
− 1873

1344
αh +

425623

564480
α2h2 ≈ 2.43 − 1.39 αh + 0.75 α2h2, (4.13a)

G(αh) ≈ 9

7
− 9

448
αh − 27423

62720
α2h2 ≈ 1.29 − 0.02 αh − 0.44 α2h2, (4.13b)

3I (αh)

φ(αh)
≈ 5

2
− 25

24
αh +

1391

2016
α2h2 ≈ 2.5 − 1.04 αh + 0.69 α2h2 (4.13c)

I (αh) ≈ 5

6
+

35

72
αh +

47

6048
α2h2 ≈ 0.83 + 0.49 αh + 0.0078 α2h2, (4.13d)

J (αh) ≈ 4 +
7

12
αh − 1679

1008
α2h2 ≈ 4 + 0.58 αh − 1.67 α2h2, (4.13e)

K(αh) ≈ =
9

2
+

21

8
αh − 5641

1120
α2h2 ≈ 4.5 + 2.62 αh − 5.04 α2h2, (4.13f)

L(αh) ≈ 6 − 1

4
αh +

259

240
α2h2 ≈ 6 − 0.25 αh + 1.08 α2h2, (4.13g)

M(αh) ≈ 9

2
− 15

8
αh +

559

224
α2h2 ≈ 4.5 − 1.87 αh + 2.50 α2h2, (4.13h)
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which can be contrasted with the result obtained by Roberts & Li (2006). These
authors also eliminated the cross-stream variable dependence through a ‘centre
manifold’ approach that led to a system of two evolution equations for the film
thickness h and an averaged axial velocity 〈u〉 = q/h. However, the procedure is
cumbersome and was limited to αhN = O(ǫ) (unlike the experiments by Kliakhandler
et al. (2001) and Duprat et al. (2007) where αhN =O(1)). Recasting this model
(referred to hereinafter as the ‘RL model’) in terms of the film thickness h and flow
rate q leads to a set of equations similar to (4.12) with

F = 2.504, G = 1.356, 3I/φ = π
2/4 − αh + 0.647 α2h2

I = π
2/12 + 0.4891 αh, J = 3.459, K = 3.353,

L = 4.676, M = 4.093.

⎫

⎪

⎬

⎪

⎭

(4.14)

The coefficients of the expansion (4.13) are close to those of the RL model (4.14) in
spite of the differences between the two approaches.

Finally, in the planar limit, α = 0, the second-order simplified model derived by
Ruyer-Quil & Manneville (2000) is recovered from (4.12) with coefficients given by:

F = 17
7
, G = 9

7
, I = 5

6
, 3I/φ = 5

2
, J = 4, K = 9

2
, L = 6, M = 9

2
. (4.15)

4.3. Shkadov scaling

Comparisons of the waves appearing on the surface of the film can be greatly
simplified by introducing a scaling based on the uniform film thickness hN and the
average velocity of the uniform flow uN = qN/hN = h2

Nφ(αhN)/3. However, to avoid
the introduction of a numerical coefficient 3, we shall use 3uN = h2

Nφ(αhN) instead.
Our analysis is further simplified with the scaling first introduced by Shkadov for a
film falling down a vertical plane (Shkadov 1977) which was used in § 3.1 (with this
scaling, the number of parameters reduces to only one in the case of our first-order
model as for the Trifonov model (Sisoev et al. 2006)): we introduce different length
scales for the streamwise and cross-stream direction, κhN (or in terms of dimensional
variables lS ∼ κh̄N introduced in § 3.1) and hN, respectively. The parameter κ was
defined in § 3.1.

Using the transformation T : [x �→ κhNx, (y, h) �→ (hNy, hNh), t �→ tκ/[hNφ(αhN)],
(u, v) �→ (h2

Nφ(αhN)u, h2
Nφ(αhN)v/κ), q �→ (h3

Nφ(αhN)q], the mass conservation
equation (2.2) and the averaged momentum balance (4.12) are

∂th = − 1

1 + α̃h
∂xq, (4.16a)

δ∂tq = δ

[

−F (α̃h)
q

h
∂xq + G(α̃h)

q2

h2
∂xh

]

+
I (α̃h)

φ(α̃)

[

−3φ(α̃)

φ(α̃h)

q

h2

+h

{

1 + ∂xxxh +
β

(1 + α̃h)2
∂xh − 1

2
∂x

(

α̃

1 + α̃h
(∂xh)2

)}]

+η

[

J (α̃h)
q

h2
(∂xh)2 − K(α̃h)

∂xq∂xh

h
− L(α̃h)

q

h
∂xxh + M(α̃h)∂xxq

]

, (4.16b)

where the parameter set (hN, Γ , α) has been replaced by (δ, η, α̃) corresponding to a
reduced Reynolds number,

δ ≡ h3
Nφ(αhN)

κ
=

3Re

κ
, (4.17)
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a viscous dispersion parameter (this term will be clarified in § 5.3),

η ≡ 1/κ2 = We−2/3 = (h̄N/lc)
4/3, (4.18)

and the aspect ratio,

α̃ ≡ αhN = hN/R . (4.19)

The parameter η appears along with streamwise dissipative terms which contribute
to the dispersion of the waves as discussed later on.

Besides the introduction of the parameters δ, α̃ and η in equation (4.16b), the
transformation T modifies the coefficient I to I/φ(α̃), which results from our choice
of the time scale h2

Nφ(αhN). Similarly, the expression (4.11) of the flow rate at O(1)
becomes

q =
h3

3

φ(α̃h)

φ(α̃)
, (4.20)

so that h = 1 corresponds to q = 1/3 with this scaling. Finally, we have isolated the
main contribution from the azimuthal curvature gradient, where the parameter

β = α̃2/η = (h̄N/R̄)2/3(lc/R̄)4/3 (4.21)

defined by Kalliadasis & Chang (1994) appears. This parameter expresses the relative
importance of axial and azimuthal curvature effects. Note that the planar geometry is
recovered from the rescaled boundary-layer equations (4.16) in the limit α̃ → 0 which
also makes β → 0 (the azimuthal curvature term vanishes in this limit).

4.4. Inertialess limit

For highly viscous fluids or very thin films and since α̃ is at most O(1) (for very thin
films α̃ = O(1) implies that the fibre is very thin also) so that φ(α̃) is at most of O(1),
Re → 0 or equivalently δ → 0. Further, by neglecting the viscous second-order terms,
η =0, (4.16b) gives an expression for q in terms of h which when substituted into
(4.16a) leads to a single evolution equation for h written in conservative form:

∂t

(

h +
α̃

2
h2

)

+ ∂x

[

h3

3

φ(α̃h)

φ(α̃)

(

1 +
β

(1 + α̃h)2
∂xh + ∂xxxh

)]

= 0 . (4.22)

h + (α̃/2)h2 corresponds to the volume of fluid contained in a sector of angle dθ

and axial length dx, that is the ratio of the surface of a planar section to the
perimeter of the fibre. Equation (4.22) is very close to the evolution equation derived
by Kliakhandler et al. (2001) and was studied numerically by Craster & Matar (2006).
However, the derivation of Kliakhandler et al. (2001) contains an ad-hoc step, i.e. the
retention of the full curvature term, [1+(∂xh)2]−3/2[∂xxh−{α̃/[η(1+α̃h)]}(1+η(∂xh)2)],
instead of its lower-order expression, ∂xxh − α̃/[η(1 + α̃h)] . Hereinafter we refer to
equation (4.22) as the ‘CM equation’ ((4.22) differs from the Craster–Matar equation
only in the choice of scalings) and to (4.22) with the full curvature term as the ‘KDB
equation’.

For thick enough fibres, that is α̃ → 0, equation (4.22) reduces to

∂th + ∂x

[

h3

3
(1 + β∂xh + ∂xxxh)

]

= 0, (4.23)

which is the equation derived initially by Frenkel (1992) and used by Kalliadasis &
Chang (1994).
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5. Linear stability analysis

5.1. Dispersion relations

We now examine the linear stability of the Nusselt flow. We first present the simplest
dispersion relations obtained in the inertialess limit and studied by Kliakhandler et al.
(2001) and Duprat et al. (2007).

The normal mode decomposition h = 1 + εh1 exp[i(kx−ωt)], ε ≪ 1, of both the
KDB equation and CM equation (4.22) where k and ω the wavenumber and wave
frequency, respectively, leads to the dispersion relation,

ω = k ck(α̃) +
i k2

3(1 + α̃)

(

β

(1 + α̃)2
− k2

)

, (5.1)

where ck is the speed of the linear kinematic wave solutions of (4.22) for small
wavenumbers, i.e. in the limit k → 0,

ck =
1

1 + α̃

[

1 +
α̃φ′(α̃)

3φ(α̃)

]

=
8(b − 1)

(

2 log(b)b2 − b2 + 1
)

3
(

4 log(b)b4 − 3b4 + 4b2 − 1
) , (5.2)

with b = 1 + α̃.
For α̃ ≪ 1, in which case the Frenkel evolution equation (4.23) applies, we obtain

ω = k +
i k2

3

(

β − k2
)

. (5.3)

Notice that the dispersion relation (5.3) can be recovered from (5.1) through the
transformation (Duprat et al. 2007)

k → k [ck(1 + α̃)]1/3 , ω → ωc
4/3
k (1 + α̃)1/3, β → β c

2/3
k (1 + α̃)8/3, (5.4)

which leads to the definition of the composite parameter β⋆ = β c
−2/3
k (1 + α̃)−8/3.

The parameters β and β⋆ can be related to the ratio of the characteristic time of
advection of a structure over its length and the characteristic time of growth of this
structure. Considering the dispersion relation (5.3), the RP instability selects structures
whose length closely corresponds to the wavenumber with the maximum temporal
growth rate, i.e. k =

√
β/2. The ratio of the characteristic time of advection of these

structures τa to their characteristic time of growth τg is

τa/τg = ωi/ωr |k=
√

β/2 =
β2

12

√

2

β
∝ β3/2 . (5.5)

Similarly, in the case of dispersion relation (5.1), the maximum of the temporal growth
rate corresponds to k =

√
β/[

√
2(1 + α̃)] and we have

τa/τg = ωi/ωr |k=
√

β/[
√

2(1+α̃)] =
β2

12(1 + α̃)5

√
2(1 + α̃)

ck

√
β

∝ (β⋆)3/2, (5.6)

and therefore β and β⋆ compare the advection process at the speed of the kinematic
waves to the growth of the RP instability.

The dispersion relations (5.1) and (5.3) cannot account for the K-instability
mechanism prompted by inertia. Turning back to the two-equation model (4.16),
close to the Nusselt solution we set h = 1+ h̃ and q =1/3+ q̃ where h̃ ≪ 1 and q̃ ≪ 1
and we obtain a single equation for h̃ after elimination of q̃ that we purposely split
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into two parts by separating odd and even derivatives,

3(1 + α̃)
I

φ
[∂t + ck∂x] h̃ − η

[

L

3
∂xxx + (1 + α̃)M∂txx

]

h̃ = λ, (5.7a)

{

δ(1 + α̃)

[

∂t t +
F

3
∂tx

]

+

[

δ
G

9
+

β

(1 + α̃)2
I

φ

]

∂xx

}

h̃ +
I

φ
∂xxxx h̃ = −λ, (5.7b)

where the coefficients F , G, I , L, M and φ are evaluated at α̃. The symbol ck again
denotes the speed (5.2) of the kinematic waves in the limit k → 0. The normal mode
decomposition h̃ = h1 exp[i[k x − ω t] in (5.7), leads to the dispersion relation:

D(k, ω) ≡ i

{

3(1 + α̃)
I

φ
[ckk − ω] + ηk2

[

k
L

3
− ω(1 + α̃)M

]}

+δ(1 + α̃)

[

−ω2 +
F

3
ωk

]

− k2

[

δ
G

9
+

β

(1 + α̃)2
I

φ

]

+ k4 I

φ
= 0 . (5.8)

The reason now for splitting (5.7) into two parts becomes clear: the split corresponds
to a phase shift of π/2 in (5.8) between two parts of this equation. The marginal
stability of the film is then achieved when the two parts are set to zero independently.

5.2. Influence of viscous dissipation on the RP-instability

The instability mechanism of a liquid layer coating a cylinder is similar to the
instability of a liquid jet as explained by Rayleigh (1878) in his seminal work.
Considering the inertialess limit δ → 0, (5.8) reduces to the dispersion relation (5.1) of
both the KDB and CM evolution equations augmented with the second-order viscous
effects ∝ ηk2. Since in the absence of these effects, linear wave solutions to (5.1) travel
at the speed ck of the kinematic waves, the effect of second-order viscous terms can
be estimated by substituting kck for ω except for the ‘critical term’ ckk − ω (Whitham
1974). We obtain

ω = k ck(α̃) − ηΥη(α̃)k3 +
i k2

3(1 + α̃)

(

β

(1 + α̃)2
− k2

)

, (5.9)

where Υη = φ[(1 + α̃)Mck − L/3]/[3(1 + α̃)I ] is a positive function of α̃.
The marginal stability of the film is therefore still given by kRP =

√
β/(1 + α̃) which

corresponds to the classical result for the RP instability that the neutral dimensional
wavelength 2π(R + h̄N ) is proportional to the maximum diameter of the liquid
layer. However, second-order viscous terms have a dispersive effect on the waves by
decreasing the speed of the linear waves from ck to ck − ηΥη(α̃)k2.

5.3. Mechanism of the K instability mode

We now consider the limit of non-dominant RP instability mode (β/δ and α̃ sufficiently
small). In this case the instability results from the K hydrodynamic mechanism.

First, let us extend to our problem the arguments given by Ooshida (1999) in
the framework of Whitham wave-hierarchy theory (Whitham 1974) for the planar
geometry, and let us consider small wavenumbers, k → 0, for which both surface
tension and second-order viscous effects can be neglected. The linear operator of
(5.7b) can be thus factorized corresponding to waves propagating at speeds cd±:

cd± =
F

6
±

√
� with � =

F 2

36
− 1

9

G

1 + α̃
− β

δ(1 + α̃)3
I

φ
. (5.10)
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Figure 2. (a) Speeds ck of kinematic and cd± of dynamic waves as functions of the aspect
ratio α̃ = hN/R in the limit of negligible viscous dispersion and large Reynolds number (η → 0
and β/δ → 0). The interfacial velocity Uh = fα̃(1)/φ(α̃) of the uniform thickness base flow is
also displayed. (b) Comparison of the speeds of the kinematic waves in the limit η → 0 and
η → ∞.

In this limit, system (5.7) has a two-wave structure that can be recast into a second-
order wave equation,

3
I

φ
[∂t + ck∂x] h̃ + δ [∂t + cd−∂x] [∂t + cd+∂x] h̃ = 0, (5.11)

a situation that corresponds precisely to the wave hierarchy considered by Whitham.
The lower-order waves propagating at speed ck are kinematic waves whose origin is
the response to a deformation of the interface to satisfy the kinematic condition (2.1g),
or equivalently the mass balance (2.2), when the velocity distribution is governed by
the balance of the acceleration due to gravity and the wall friction, which in turn
leads to the explicit dependence (4.20) of the flow rate q on the film thickness h.
Propagating at speed cd±, the higher-order waves are dynamic waves corresponding
to the response of the film to the variation of momentum induced by a deformation
of the free surface. Alekseenko, Nakoryakov & Pokusaev (1985) and Ooshida (1999)
have similarly derived equations presenting a ‘two-wave’ structure for the vertical-
planar wall geometry. However, these authors did not consider the influence of the
streamwise viscous diffusion that is taken into account in (5.7).

Whitham has shown that when a multi-speed equation such as (5.11) holds, an
instability occurs whenever the constraint,

cd− � ck � cd+, (5.12)

is violated, in other words, whenever the speed of the kinematic waves is outside
the speed interval allowed to dynamic waves. Figure 2(a) compares the speed of the
kinematic and dynamics waves given by (5.2) and (5.10) as a function of the aspect
ratio α̃ in the limit of dominating inertia (β/δ → 0). Kinematic waves always travel
faster than dynamic waves and the stability criterion (5.12) is never satisfied in that
case. Small but finite values of β/δ lower the speed of the faster dynamic waves,
cd+. Therefore, azimuthal surface-tension effects are destabilizing and the Nusselt
constant-thickness solution is always unstable in the limit k → 0. The speeds of
kinematic and dynamic waves are compared to the interfacial velocity of the base
flow Uh = fα̃(1)/φ(α̃) in figure 2(a). The fastest dynamic waves travel at a speed which
is close to the maximum velocity of the base flow, which indicates that perturbations
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of the momentum are basically advected by the flow. Consequently, as in the planar
case, the K mode of instability results from the ability of the kinematic waves to
move much faster than any fluid particle (Smith 1990).

For finite wavenumbers, second-order viscous terms must be accounted for and the
speed of kinematic waves is modified into:

ck,η =

ck + ηk2 φ

9(1 + α̃)

L

I

1 + ηk2 φ

3

M

I

. (5.13)

The dispersive effect of second-order viscous effects on kinematic waves is evident
as ck,η is a function of ηk2 (contained in two terms, one in the numerator due to
transport of momentum and one in the denominator due to transport of mass). This
justifies the term ‘viscous dispersion parameter’ introduced for η in § 4.3 and we shall
also refer to second-order viscous effects as ‘viscous dispersion effects’. Considering
real wavenumbers, the limit η → ∞ gives

ck,∞ ≡ lim
η→∞

ck,η =
L

3(1 + α̃)M
, (5.14)

which is compared to the small-wavenumber limit ck in figure 2(b). Since ck,∞ < ck,η <

ck , viscous dispersion lowers the speed of the kinematic waves, as observed when the
RP mode is dominant (cf. § 5.2), and is therefore stabilizing.

Similarly, axial surface tension modifies the speed of dynamic waves into

cd±ST =
F

6
±
√

�ST with �ST =
F 2

36
− 1

9

G

1 + α̃
+

1

δ(1 + α̃)

I

φ

[

k2 − β

(1 + α̃)2

]

.

(5.15)
Hence, axial surface tension effects accelerate the fastest dynamic waves and tend to
stabilise the constant-thickness Nusselt flow.

5.4. Marginal stability

Having considered the two limiting cases of dominant RP and K instability modes,
let us turn to the marginal stability of the Nusselt flow (ω and k real) as a test
of the validity of our modelling approach in comparison with the solutions to the
linearized primitive equations. Linearization of the Navier–Stokes equations (2.1)
leads to the Orr–Sommerfeld (OS) equation, i.e. a fourth-order ordinary differential
equation for the complex streamfunction ψ(r) completed with the linearized stress
balances and the no-slip/no-penetration condition at the fibre. The OS equation was
solved numerically by using the continuation software Auto97 (Doedel et al. 1997).
The starting points for the continuation are the analytical expressions of the solutions
in the limit k → 0.

In figure 3, the marginal stability curves corresponding to model (4.16) (upper
dashed lines) are compared to those obtained from the Trifonov model (upper
thin solid lines) and the OS equation (upper thick solid lines) in the (kr , δ)-
plane. The fluids are Rhodorsil silicon oil v50 (ρ = 963 kg m−3, ν = 50 × 10−6 m2 s−1

and σ = 20.8 × 10−3 Nm−1; water: ρ = 998 kg m−3, ν = 10−6 m2 s−1 and σ = 72.5 ×
10−3 Nm−1), corresponding to Kapitza numbers Γ =5.48 and 3376, respectively. Two
radii R have been chosen so that they correspond to the same ratio R/lc =0.24 (for
water, lc = 2.7 mm, and for silicon oil v50, lc = 1.5 mm).

As surface tension damps short waves, the regions of stability (labelled ‘S’) are
located above the marginal stability curves. At small values of δ, the RP instability
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Figure 3. Neutral stability curves (upper lines) and loci of the spatially most amplified
harmonic perturbations (for convectively unstable flows, C) and of the absolute wavenumber
(in the absolutely unstable case, A). The real part of the wavenumber kr is shown as a function
of the reduced Reynolds number δ. Linear stable regions are labelled S. Fluid parameters
correspond to (a) Rhodorsil silicon oil v50 (Γ = 5.48) and R = 0.35 mm, (b) water (Γ = 3376)
and R = 0.64 mm. Thick solid and dashed lines refer to OS analysis and to dispersion relation
(5.8), respectively (nearly superimposed except for the largest values of δ). Thin solid lines refer
to the linear stability analysis of the Trifonov model. The neutral wavenumber kRP and the

temporally most amplified wavenumber kRP/
√

2 of the RP instability (see text) are indicated
by dashed-dotted lines.

dominates and all marginal stability curves collapse with kr = kRP (dashed-dotted
lines). Noticeable differences are observed only at δ above 0.1 for which the
hydrodynamic K mode starts to take over. At large values of δ, the marginal
curve corresponding to (4.16) remains remarkably close to the OS results, whereas
the Trifonov model overestimates the range of unstable wavenumbers. This large
discrepancy is mainly a consequence of neglecting the streamwise dissipation terms.
As the Kapitza number increases, hence the viscous dispersion parameter η decreases,
the marginal stability curve predicted by the Trifonov model is closer to the OS
results (compare figures 3a and 3b). The same trend can be observed with the speed
of neutral infinitesimal waves displayed in figure 4(a). Neutral wave solutions to the
Trifonov model and to (4.16) are kinematic waves travelling at speeds ck and ck,η

defined in (5.2) and (5.13), respectively. The agreement of ck,η with the speeds of
neutral waves solutions of the OS equations is again remarkable.

5.5. Spatial stability analysis

Another test of the accuracy of model (4.16) consists of the analysis of the response
of the base flow to a localized perturbation. If the resulting wavepacket is advected
by the flow, the instability is said to be convective and the flow behaves much like
a signal amplifier: at a fixed point in the laboratory frame of reference, the signal
eventually dies out if it is not sustained continuously. When the wavepacket is able to
move upstream, a self-sustained intrinsic dynamics or ‘global mode’ can be observed
and the flow behaves like an ‘oscillator’ (Huerre & Rossi 1998). At a given location,
the long-time evolution of the wavepacket is dominated by the part of the signal
whose energy remains stationary, hence by the wave corresponding to a zero group
velocity, vg = ∂ω/∂k = 0, which defines the absolute wavenumber k0 and frequency
ω0. In the complex k-plane, the condition vg = 0 occurs at a saddle point that must
result from the collision of two spatial branches coming from opposite sides of the
real axis in order to fulfil the causality condition (Huerre & Rossi 1998).
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Figure 4. (a) Wave speed c of linear neutral waves normalized with the speed of the kinematic
waves ck and (b) spatial growth rate of the most amplified perturbations (convective case, C)
and of the absolute wavenumber (absolutely unstable region, A) as function of δ. Thick solid
and dashed lines refer to the OS analysis and to dispersion relation (5.8) whereas thin solid
lines are obtained from the Trifonov model. Labels 1 and 2 correspond to Rhodorsil silicon
oil v50 (Γ = 5.48 and R = 0.35 mm) and to water (Γ = 3376 and R = 0.64 mm), respectively.
See also the caption of figure 3. The increased deviation of the wave speed in (a) from unity
is a dispersive effect.

The wavenumber kr of the most spatially amplified perturbation in the convective
case and the absolute wavenumber k0r are shown in figure 3(a) and are compared
to kRP/

√
2 which corresponds to the most temporally amplified perturbation for

dispersion relation (5.1). The corresponding growth rates −ki and −k0i are shown in
figure 4(b). In the limit δ → 0, all curves converge to kr = kRP/

√
2, which is unexpected

since the latter corresponds to a temporal stability analysis instead of a spatial one.
This limit corresponds to a vanishingly small film thickness, for which both the
group velocity vg and the phase velocity ck are nearly equal to one and dispersion

effects from inertia and viscosity are negligible since η ∝ Γ h
4/3
N . As hN ≪ R, the

growth rate is also small and the Gaster transformation, vg ≈ −ωi/ki , between
temporally and spatially increasing disturbances applies (Gaster 1962). Surprisingly,
the wavenumbers kr of the most amplified spatial perturbations stay close to kRP/

√
2

even at large values of δ. A remarkable agreement is again observed between results
from the model (4.16) and the OS analysis, whereas the Trifonov model, which
neglects the stabilizing second-order viscous effects, overestimates the spatial growth
rate at large δ for silicon oil.

The RP instability mechanism results from the competition of axial and azimuthal
surface-tension effects, irrespective of the presence of a flow. Instead, the K mode
results from the competition of dynamic and kinematic waves whose existence is
strongly linked to the flow. This explains the fact that the RP mode may trigger an
absolute instability (Duprat et al. 2007), whereas a film falling down an inclined planar
wall can only be convectively unstable (Brevdo et al. 1999). The C/A transition from
a convective to an absolute instability corresponds to a real absolute frequency. In
the inertialess limit, the C/A transition occurs at β = βca ≈ 1.507 for the dispersion
relation (5.3) to the Frenkel equation (4.23). Based on the transformation (5.4) from
dispersion relation (5.1) to (5.3), we can infer that the C/A transition predicted by the
CM equation (4.22) occurs at β⋆ =βca . At a given value of R/lc, β⋆ which compares
axial and azimuthal curvatures to the advection by the kinematic waves, reaches a
maximum at α̃ ≈ 0.44 and tends to zero as α̃ → ∞. Figure 5(a) shows the contour line
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Figure 5. (a) Absolute A and convective C instability regions in the (α̃, R̄/ lc) parameter plane
for silicon oil v50 (Γ = 5.48, labelled 1), water (Γ =3376, labelled 2) and castor oil (Γ = 0.45,
labelled 3). The dashed-dotted line corresponds to the C/A boundary β⋆ = βca ≈ 1.507 for
the CM equation (4.22). It is not affected by changing the fluid properties and hence it is
the same for the three fluids. The inset is an enlargement of the upper end of the curves.
(b) Spatial branches in the complex k-plane for silicon oil v50, qN = 0.01 g s−1, R̄ = 0.2 mm
and ω0i =0.126 (indicated by a + in (a): δ = 0.1874, α̃ = 1.72, η =0.143). Thick solid, thick
dashed and thin solid lines refer to the OS analysis, to the dispersion relation (5.8) and to the
dispersion relation of the Trifonov model respectively. Values of α̃ and R̄/ lc corresponding to
the experiments by Kliakhandler et al. (2001) are indicated by crosses. All three experiments
and the example shown in (b) and indicated by a + in (a) are absolutely unstable flows.

β⋆ = βca in the (R/lc, α̃)-plane along with the C/A transition loci obtained from OS
and the dispersion relation (5.8). For R > 0.28lc, the instability is always convective,
whereas for R < 0.28lc, there is an intermediate range of aspect ratios α̃, or film
thicknesses, for which an absolute instability can be observed. As we pointed out
in § 4, for our low-dimensional models the limit of very small thicknesses hN ≪ R

corresponds to the planar case (the same is not true for full Navier–Stokes, however,
the linear stability characteristics for hN ≪ R obtained from OS are the same to those
of the planar limit) for which it is well known that the instability is always convective,
and the RP instability is weakened at large thicknesses hN ≫ R by the decrease of the
total curvature (R + hN)−1. C/A boundaries predicted by the dispersion relation (5.8)
nearly coincide with the OS results, discrepancies being noticeable only for water and
for large thicknesses (α̃ ≫ 1).

For less viscous fluids and higher Kapitza numbers, for example water (Γ = 3376),
the C/A boundaries are shifted significantly downwards, a direct consequence of the
higher influence of the hydrodynamic K mode since large values of the aspect ratio
α̃ correspond also to large values of the reduced Reynolds number δ. However, the
C/A boundary β⋆ = βca given by the CM equation remains unchanged as this equation
does not account for the hydrodynamic K mode and hence it is the same when the
working fluid changes, for example from a highly viscous liquid, such as silicone oil, to
a relatively inviscid liquid, such as water. The influence of the K mode on the absolute
instability can also be noted in figure 3(b) where the wavenumber kr corresponding
to the maximum growth rate −ki of spatially amplified perturbations (real ω) in the
convective case and to k0r in the absolute case are depicted. The Nusselt flow is
absolutely unstable for relatively high values of δ for which a significant discrepancy
between the OS marginal curve and the inertialess limit k = kRP is observed, thus
indicating the influence of the K mode.
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Figure 6. Spatial branches in the complex k-plane for castor oil qN = 0.021 g s−1, R̄ = 0.25 mm
and ωi = 0.006 (δ = 0.052, α̃ = 2.91 and η = 0.30). (a) Model (2.2), (4.12); (b) CM equation (4.22).
Solid lines refer to the OS analysis. Dashed lines in (a) and (b) refer to the dispersion relations
(5.8) and (5.1), respectively.

Let us now focus on the details of the branches of solutions in the complex k-plane.
Figure 5(b) shows an example of pinching of branches of solutions for the model
dispersion relation (5.8) compared to the OS result for a moderately viscous fluid.
Chosen parameters correspond to a flow of silicon oil v50 (Γ = 5.48) on a fibre of
radius R = 0.2 mm. At small values of |k| the curves are practically indistinguishable.
Solutions to (5.8) start to deviate from OS as |k| increases. This remarkable agreement
can be understood by considering the derivation of the momentum balance (4.12).
Since the neglected second-order inertial corrections K(h, q, α) are all nonlinear
terms, the corresponding dispersion relation (5.8) is exact up to O(|k|2). For highly
viscous fluids and small Kapitza numbers, such as the castor oil used by Kliakhandler
et al. (2001) (ν = 440 × 10−6 m2 s−1, ρ = 961 kg m−3 and σ = 31 × 10−3 Nm−1 hence
Γ = 0.45), an excellent agreement between the results of the OS analysis and the
dispersion relation (5.8) is again achieved (see figure 6(a) where an example of
pinching of k-branches is given). This could have been expected since in that case
the inertialess limit δ → 0 is perfectly admissible. However, the spatial branches of
solutions to the dispersion relation (5.1) corresponding to the CM evolution equation
(4.22) show large discrepancies with the results to the OS analysis (compare figure 6b
to figure 6a). These topological differences must be attributed to the second-order
viscous dispersion terms that are also neglected in the derivation of the CM equation
(η → 0).

6. Travelling waves

The experimental response of the flow to a periodic inlet perturbation remains
periodic in time at each location in space. Consequently, the integration in time of
the mass balance (2.2) gives ∂x〈q〉 = 0 where the brackets denote averaging over a
temporal period. 〈q〉 is thus conserved all along the fibre and is equal to its value
at the inlet which gives the condition 〈q〉 = 1/3. Travelling waves (TW) of (4.16)
are computed with the continuation software Auto97 (Doedel et al. 1997) enforcing
the above integral condition on the flow rate at each step of the continuation.
The bifurcation diagrams of TW solutions to the two-equation model (4.16) and to
the CM equation (4.22) are compared in figure 7(a). The parameters in the figure
correspond to ‘regime b’ reported by Kliakhandler et al. (see table 1). Figure 7(b)
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Figure 7. (a) Speed c of TW solutions as function of their wavenumber k. Parameters
correspond to the experimental conditions of Kliakhandler et al. (2001) (regime ‘b’ in table 1,
δ = 0.024, η = 0.24, α̃ =2.47). Solid and dashed lines refer to (4.16) and to the CM equation
(4.22), respectively. (b) Wave profiles and streamlines in the moving frame for solutions
indicated by crosses in (a); left: solutions to (4.16); right: solutions to (4.22).

qN hN λ cexpt c hexpt
max hmax h

expt
min hmin

Model Regime (mg s−1) (mm) (mm) (mm s−1) (mm s−1) (mm) (mm) (mm) (mm)

(4.16) a 21 0.73 30 25 22.4 1.47 1.34 0.50 0.44
(4.22) 24.7 1.26 0.45
(4.16) b 11 0.62 6.2 5.4 7.22 1.02 0.92 0.20 0.17
(4.22) 6.98 0.97 0.14
(4.16) c 5.3 0.51 36 12.0 12.1 1.20 1.09 0.25 0.26
(4.22) 12.6 1.10 0.25

Table 1. Comparisons of the characteristics of TW solutions at a given wavelength λ with
the experimental values reported by Kliakhandler et al. (2001).

shows corresponding wave profiles with regularly spaced streamlines in the moving
frame. Only one branch of TW solutions has been found emerging from the marginal
linear stability conditions (it does so through a Hopf bifurcation). Since inertia is
small here (δ = 0.024) and the RP mode is dominant (β = 25.7), the TW branch of
solutions of (4.16) bifurcates at k ≈ kRP. However, weakly nonlinear TW solutions
of (4.16) travel at a lower speed than the TW solutions of the CM equation (4.22)
since the speed of linear kinematic waves is significantly affected by the streamwise
viscous terms (ck,η < ck). At small wavenumbers, TW accelerate, become more and
more localized and terminate in single-humped solitary waves. The speed, amplitude
and shape of the solutions (4.16) and (4.22) are comparable in this limit, though our
model predicts solitary waves of larger amplitude and speed than the CM equation.

The characteristics of the TW solutions of model (4.16) are compared to the
solutions to the CM equation in table 1 for the three regimes reported by Kliakhandler
et al. (2001). At high flow rate, corresponding to ‘regime a’ reported by these authors,
they observed long and isolated waves moving rapidly and irregularly on a relatively
thick substrate. At lower flow rate (termed ‘regime b’ by these authors), the wave
pattern is highly organised with drops of smaller size moving at constant speed
and periodicity. At even lower flow rate (‘regime c’), the regularity of the wave
pattern is again lost with larger waves separated by long and irregular substrates.
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Figure 8. Profiles and streamlines in the moving frame of the TW solutions of model (4.16)
(a, c, e) and of the CM equation (4.22) (b, d , f ). (a, b), (c,d) and (e, f ) correspond to the
regimes a, b and c reported by Kliakhandler et al. (2001). Distances are given in dimensional
units (mm).

The wavelength λ has been adjusted to its experimental value. Model (4.16) and
CM equation (4.22) give comparable results, in good agreement with the experimental
observations. Wave profiles and streamlines in the moving frame of reference are
shown in figure 8. Dimensions have been chosen to enable a direct comparison
with the experimental snapshots (Kliakhandler et al. 2001, figure 1). The agreement
between both models is again very good. The sole noticeable difference is the presence
of capillary ripples in front of the beads observed with the CM equation. Capillary
ripples are almost absent from the solutions of model (4.16), in agreement with
experimental observations. We note that the streamlines in the moving frame reveal
large recirculation zones inside the beads in regime b and c. As in the moving frame
the fluid moves upwards underneath the waves, the presence of recirculation zones
proves that the beads carry mass. In fact, in regime b, the beads carry nearly all the
fluid and the waves resemble drops sliding on a liquid substrate.

7. Time-dependent computations and wave selection

We now examine the spatio-temporal dynamics of a flow down a fibre. For
this purpose we employed a second-order finite-differencing quasi-linearized Crank–
Nicolson scheme. We impose simple soft boundary conditions at the outlet: the
integral momentum balance (4.16b) is replaced at the last two nodes of the discretized
domain with a simple linear hyperbolic (wave) equation ∂tq + vf∂xq = 0 where vf is
set to unity in most simulations. A similar methodology is followed for the Trifonov
and RL models. In the case of the CM equation, the high-order spatial derivatives
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were set equal to zero at the last two nodes while the parameter β was artificially set
to zero in a ‘damping layer’ of typically 100 nodes. This simple procedure turns out to
be sufficient and without any spurious backwards reflections of the waves. Following
Chang, Demekhin & Kalaidin (1996), we have chosen a random-phase formulation
of the noise applied at the inlet. The Fourier spectrum of the zero-mean perturbation
F (t) of the inlet flow rate contain frequencies of equal Fourier coefficients but with
different phases obtained through a random-number generator. The coefficients of
frequencies higher than a few times the linear critical frequency are set to zero to
avoid instabilities of our numerical scheme.

We first present time-dependent simulations for the three regimes reported by
Kliakhandler et al. (see table 1). All of them correspond to linearly absolutely unstable
flows (indicated by crosses in figure 5a). The initial condition – a small hydraulic
jump connecting two regions of different uniform thicknesses – therefore gives way to
a regular wavetrain invading the whole computational domain. Snapshots of the film
thickness at the end of the simulations for regimes a and b are displayed in figures 9
and 10. In regime a, model (4.16) shows that the regular global mode is disorganized
downstream by a secondary instability. Intermittent coalescence events (one such event
can be seen occurring at x ≈ 210 mm) widen the spacing between the waves: the waves
become more and more localized. At the final stage, we observe a train of solitary-like
coherent structures (that resemble the infinite-domain solitary pulses computed in the
previous section). These pulses are separated by portions of flat films of small but
irregular thicknesses. The amplitudes and distances between the solitary pulses are in
reasonable agreement with the experimental observations (hexpt

max = 1.47 mm and ap-
proximately 30 mm between pulses). In regime b, a stable regular global mode invades
the entire computational domain. The wave characteristics compare well to the exper-
imental observations (wavelength λ = 5.84 mm, speed c = 7.2 mms−1, maximum and
minimum heights 0.90 mm and 0.17 mm) and correspond to a frequency, 1.23 Hz, close
to the linear absolute frequency, 1.34 Hz. However, we have been unable to reproduce
the irregular regime c reported in the experiments by Kliakhandler et al. (2001). In our
simulations, a stable global mode (not shown) is again observed in the entire domain.

Time-dependent computations of the CM equation (4.22) show a radically different
dynamics. In regime a, a slowly modulated wavetrain rapidly invades the entire
computational domain whereas intermittent coalescence events are not observed. The
average separation between neighbouring pulses, around 10 mm, is three times smaller
than reported in experiments. The waves tend to group themselves in ‘bound states’
of two or three pulses as observed by Craster & Matar (2006).

In regime b, the global mode that sets in has a frequency 0.9 Hz which is
approximately half the linear absolute frequency, 1.81 Hz. The wave length, ≈14 mm,
is therefore approximately twice the experimental one, 6.2 mm. This selection of wave
patterns different to that observed in the experiments might explain why Craster
& Matar were unable to find TW solutions corresponding to the experimental
wavelength for regime b. A growing modulation of the wave amplitude can be
observed in figure 9(b) leading eventually to a disorganization of the wave pattern.
As noted by Craster & Matar, it turns out that the periodic wavetrain solutions to
the CM equation are unstable in regime b. In regime c (not shown) the resulting wave
patterns are similar to those in regime b but more irregular.

Let us now present some time-dependent computations for the experimental
conditions reported in the recent study by Duprat et al. (2007). Figure 11 shows
the corresponding spatio-temporal diagrams. Duprat et al. used a fluid less viscous
than Kliakhandler et al. (2001) and Craster & Matar (2006) so that inertia plays
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Figure 9. Computed film thickness as a function of the distance from the inlet. Parameters
correspond to regime a in table 1. (a) Solution of model (4.16). (b) Solution of
CM equation (4.22).

0.4

0.8

1.2

(a)

(b)
0 200 400 600

h (mm)

h (mm)

0.4

0.8

1.2

0 200

x (mm)

400 600

Figure 10. Computed film thickness as function of the distance from the inlet. Parameters
correspond to regime b in table 1. (a) Solution of model (4.16). (b) Solution of
CM equation (4.22).

a non-negligible role. We therefore compare simulations of model (4.16) and the
Trifonov model.

The spatio-temporal diagrams depicted in figure 11 correspond to the ‘permanent’
wave regimes obtained at the end of the simulations to be contrasted with the
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Figure 11. Spatio-temporal diagrams showing the response of the film to a coloured noise
(see text). (a, b) Solutions of the second-order model (4.16). (c, d) Solutions to the Trifonov
model. Parameters correspond to the experimental conditions (Duprat et al. 2007, figure 2,
silicon oil v50 and R =0.32 mm): (a–c) qN = 24 mgs−1 (δ = 0.3, α̃ = 1.32, η = 0.19), (b–d)
qN = 77 mgs−1 (δ = 1.3, α̃ = 1.80, η = 0.28). Dark (light) regions correspond to small (large)
elevations. Vertical and horizontal ranges are 4 s and 10 cm, respectively.

spatio-temporal diagrams reported in Duprat et al. An absolutely unstable flow
(figures 11a and 11c) and a convectively unstable one (figures 11b and 11d) are
shown. A small-amplitude coloured noise been has again been applied at the inlet,
therefore sustaining the structures observed in the convectively unstable regime.

For the absolutely unstable flow, model (4.16) gives results in reasonable agreement
with experimental observations (cf. figure 11a). A very regular wavetrain develops
from the inlet but it is quickly destroyed. As in the experiment, this disorganization
process looks irregular and is probably promoted by a secondary sideband instability.
Waves of larger amplitudes and travelling at greater speeds emerge through
intermittent coalescence events in a fashion that is comparable to the noise-
driven transitions observed in the case of film falling down a planar vertical wall
(Chang, Demekhin & Saprikin 2002). The simulation of the Trifonov model shows a
different scenario. The wavetrain that emerges from the primary instability undergoes
a subharmonic instability that doubles its frequency (cf. figure 11c). No further
bifurcations are observable downstream.

The differences between the two spatio-temporal evolutions illustrated in
figures 11(a) and 11(c) may be better understood by looking at the snapshots of
the film thickness at the end of the simulations (cf. figure 12). In the case of
model (4.16), solitary-like coherent structures emerging from the secondary instability
of the primary regular wavetrain are again separated by portions of nearly flat films.
The capillary oscillations/ripples preceding the solitary humps are small. In contrast,
the snapshot of the film at the end of the simulation for the Trifonov model is
quite different. The waves are not localized and the main humps are separated by
secondary ones resembling the capillary oscillations/ripples preceding the γ2 solitary
waves. This observation suggests that the selection of either a subharmonic or a
sideband secondary instability is responsible for the localisation of the waves, which
in turn is strongly dependent on the streamwise viscous terms.
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Figure 12. Film thickness as function of the distance from the inlet at the end of the
simulations presented in figures 11(a) and 11(c); (a) Solution of model (4.16). (b) Solution of
Trifonov model.

For the convectively unstable flow, the irregular motion of the ‘healing length’,
i.e. the distance from the inlet at which the waves are first noticeable, resembles the
experimental observations. The time-dependent computations of model (4.16) show
some coalescence events as observed in the experimental spatio-temporal diagram
(cf. figure 11b). It is, however, difficult to conclude that this is always the case since
the number of coalescence events strongly depends on the amplitude and spectrum of
the inlet experimental perturbation which is unknown. Simulations with the Trifonov
model show again a tendency to period doubling not observed in the experiments but
also a series of coalescence events are observed as in the experiment (cf. figure 11d).
We note that in general the Trifonov model gives a larger number of coalescence
events compared to (4.16) owing to the larger band of unstable wavenumbers, a
consequence of neglecting streamwise viscous dissipation, which in turn leads to a
larger susceptibility to noise.

Finally, we note that we have attempted to simplify our second-order model (4.16)
by using polynomial expansions of the coefficients in the form of (4.13). Non-physical
blow-ups in time-dependent computations were generally observed even at quite low
values of the aspect ratio α̃. This drawback is probably a manifestation of the poor
convergence properties of the coefficients of our model due to the presence of the
logarithmic function log(α̃) in these coefficients. This poor convergence is illustrated
in figure 13(a) where we display the speed of linear kinematic and dynamic waves
in the limit of negligible viscous dispersion (η → 0) and large Reynolds numbers
(β/δ → 0) corresponding to the O(α̃2) expansion (4.13). For aspect ratios α̃ above 1.2,
the speed ck of the kinematic waves lies in the interval [cd−, cd+] which implies linear
stability, in contradiction with the results from model (4.16) (compare figure 13(a) to
figure 2(a)).

A similar drawback is observed with the RL model (see figure 13b). The spatial
dynamics of the film predicted by this model is shown in figure 14 for the flow
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Figure 13. Speeds ck (5.2) of kinematic waves and cd± (5.10) of dynamic waves as functions
of the aspect ratio α̃ = hN/R in the limit of negligible viscous dispersion (η → 0) and large
Reynolds numbers (β/δ → 0). (a) Expansion (4.13); (b) RL model (4.14).
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Figure 14. Spatio-temporal diagrams showing the response of the film to a coloured noise
simulated with RL model (4.14). Parameters are δ = 0.3, α̃ = 1.32 and η = 0.19 (a), and δ = 1.3,
α̃ = 1.80 and η = 0.28 (b). Vertical and horizontal ranges are 4 s and 10 cm, respectively. See
also the caption of figure 11.

conditions corresponding to the experiments by Duprat et al. (2007). For the two
simulations shown in the figure, the aspect ratio α̃ is O(1) as in the experiments
and the RL model unphysically stabilises the hydrodynamic K mode (the RL model
always suppresses the K mode for α̃ � 0.6). As a consequence, the base flow is less
unstable, and for similar inlet noise, the spatial development of the waves is delayed
in the convective case (compare figures 14b and 11b). In the absolute case, a very
regular wavetrain is observed in disagreement with the experimental observations.

8. Summary and conclusions

We have formulated, within the framework of the boundary-layer approximation, a
low-dimensional model that consists of two coupled evolution equations for the film
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thickness h and the flow rate q . The model is rather general: it accounts for both
inertial and streamwise viscous effects, it is not limited to small aspect ratios h/R

and is applicable even if Γ = O(1). Previous one-equation models are recovered in the
appropriate limit. The key steps of our approach are: (i) elimination of the pressure
by integrating the cross-stream momentum balance; (ii) projection of the velocity
field onto an appropriately chosen set of test functions assuming small departures
from the Nusselt uniform film velocity distribution. As in the planar case (Ruyer-Quil
& Manneville 2002), we have shown that the use of the Galerkin weighted residual
method is the optimum one leading to the desired formulation with a minimum of
algebra.

In the linear regime, an excellent agreement with the Orr–Sommerfeld analysis of
the primitive equations is attained. Streamwise viscous diffusion was shown to have
a dispersive effect. The role of the K instability has been understood within the
Whitham wave hierarchy framework (Whitham 1974). Streamwise viscous diffusion
was shown to play a stabilising role by decreasing the speed of the kinematic waves.

In the nonlinear regime, TW branches of solutions have been obtained by
continuation and have been favourably compared to the experiments by Kliakhandler
et al. (2001). Time-dependent computations show that our second-order model
recovers the regimes observed experimentally by Kliakhandler et al., except for the
irregular motion of large waves at very small flow rate (‘regime c’). Good agreement
has also been obtained with the recent experiments by Duprat et al. (2007) for
which the wave dynamics in the absolute and convective regimes are recovered. In
contrast, by neglecting streamwise viscous diffusion, the CM evolution equation (4.22)
overestimates the speed of linear waves. Our simulations of the spatial evolution of
the flow then reveal that the wave selection observed with the CM equation does not
correspond to the experimental observations. Therefore, the CM equation should be
used with caution and certainly not to describe the spatio-temporal dynamics. The
Trifonov model suffers from similar limitations. In the linear regime, it overestimates
the range of unstable wavenumbers. Time-dependent computations in the nonlinear
regime reveal a subharmonic secondary instability that was not observed in the
experiments by Duprat et al.

In conclusion, despite its apparent ‘complexity’, the model in equation (4.16)
performs well in both linear and nonlinear regimes and captures the dynamics for the
largest possible range of parameters.

C.R.-Q. would like to thank S. Ndoumbe and F. Lusseyran with whom a preliminary
study was undertaken, and Y. Bardoux for a careful reading of the manuscript. We
acknowledge financial support through a travel grant supported by the Franco-
British Alliance Research Partnership Programme. S.K. thanks Laboratoire FAST for
hospitality.

Appendix A. Boundary-layer approximation for Γ =O(1)

Here we consider the more involved case (ii) with Γ = O(1) and ǫ3/2 ≪ hN ≪ 1.
In the first instance we neglect terms O(ǫ3hN) and higher associated with the viscous
part of the pressure in the normal stress balance (2.1e) and approximate the pressure
as,

p|h = {right-hand-side of (3.5)} + O

(

(∂xh)2∂xxh,
ǫ4

R + h

)

, (A 1)

4.5. C. RUYER-QUIL ET AL., J. FLUID MECH (2008) 193



460 C. Ruyer-Quil and others

where the neglected terms are of O(ǫ4/hN, ǫ4α). As a result p|h is identical to that
in (3.5). The tangential-stress boundary condition (2.1f) up to of O(ǫ2hN) yields
equation (3.6). Hence the contribution of the term ∂xh∂rux in (A 1) is of O(ǫ3hN)
and must be neglected. As a result p is identical to that in (3.7) but now terms
of O(ǫ4/hN, ǫ4α, ǫ3hN, ǫ2h4

N) are neglected which is indeed the case provided that

max{ǫ3/hN, ǫhN, h4
N, ǫ5/h3

N, ǫ9/4} ≪ α ≪ min{1/(ǫ2hN), hN/ǫ3, h
3/2
N /ǫ2, 1/ǫ3/2, hN/ǫ5}

and ǫ4/5 ≪ hN ≪ 1 (once again through a detailed examination of the orders of
magnitude of the retained over the neglected terms). As an example, with hN ∼ ǫ1/2,
ǫ3/2 ≪ α ≪ ǫ−5/4 and α is allowed to take both small and large values, for example
α ∼ ǫ±1/2 which also satisfies the requirement αhN at most of O(1). Kaz is also
identical to (3.8) but now terms of O(ǫ4α) and higher are neglected (moreover,
αh → 0 now does not imply the planar limit as in case (i)). Hence the final streamwise
momentum equation for case (ii) is identical to (3.9) for case (i).

Finally, we note that the order-of-magnitude assignment hN ∼ 1 in case (i) can be
relaxed, allowing α and hN to be both small and large (and so that the requirement
αhN at most of O(1) is still satisfied). For this purpose we would have to repeat
the analysis for case (ii) to obtain lower/upper bounds on hN and α but now with
Γ =O(ǫ−2) instead of Γ = O(1).

Appendix B. Coefficients of models (4.10) and (4.12)

The coefficients of the first-order momentum balance (4.10) consist of ratios of
polynomials in b and log(b) where b = 1 + αh:

φ = {3[(4 log(b) − 3)b4 + 4b2 − 1]}/[16(b − 1)3], (B 1a)

F = 3Fa/[16(b − 1)2φFb], (B 1b)

Fa = −301b8 + 622b6 − 441b4 + 4 log(b){197b6 − 234b4 + 6 log(b)

×[16 log(b)b4 − 36b4 + 22b2 + 3]b2 + 78b2 + 4}b2 + 130b2 − 10, (B 1c)

Fb = 17b6 + 12 log(b)[2 log(b)b2 − 3b2 + 2]b4 − 30b4 + 15b2 − 2, (B 1d)

G = Ga/[64(b − 1)4φ2Fb], (B 1e)

Ga = 9b{4 log(b)[−220b8 + 456b6 − 303b4 + 6 log(b)(61b6 − 69b4

+4 log(b)(4 log(b)b4 − 12b4 + 7b2 + 2)b2 + 9b2 + 9)b2 + 58b2 + 9]b2

+(b2 − 1)2(153b6 − 145b4 + 53b2 − 1)}, (B 1f)

I = 64(b − 1)5φ2/[3Fb] . (B 1g)

Expressions (B 1) can be contrasted to the corresponding ones for the first-order
averaged momentum balance obtained by Trifonov (1992) with a uniform weight:

F =
6 − 45b2 + 90b4 − 51b6 − 36b4 log(b)[2 − 3b2 + 2b2 log(b)]

32(b − 1)5φ
, (B 2a)

G = Ga/{512(b − 1)7φ3}, (B 2b)

Ga = 9b{(b2 − 1)2(1 − 26b2 + 37b4) − 8b2 log(b)[2 + 12b2 − 36b4 + 22b6

+3b2 log(b)(3 + 4b2 − 9b4 + 4b4 log(b))]}, (B 2c)

I = (b + 1)/2 . (B 2d)

The coefficients of the second-order corrections in (4.12) are:

J = Ja/[128(b − 1)4φ2Fb], (B 3a)
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Ja = 9{(490b8 − 205b6 − 235b4 + 73b2 − 3)(b2 − 1)3

+4b2 log(b)[2b4 log(b)(72 log(b)(2 log(b)b4 − 6b4 + b2 + 6)b4

+(b − 1)(b + 1)(533b6 − 109b4 − 451b2 + 15))

−3(b2 − 1)2(187b8 − 43b6 − 134b4 + 17b2 + 1)]}, (B 3b)

K = 3Ka/[16b3(b − 1)2φFb], (B 3c)

Ka = 4b4 log(b)(233b8 − 360b6 + 12 log(b)(12 log(b)b4 − 25b4 + 12b2 + 9)b4

+54b4 + 88b2 − 15) − (b2 − 1)2(211b8 − 134b6 − 56b4 + 30b2 − 3), (B 3d)

L = La/[8b(b − 1)2φFb], (B 3e)

La = 4b2 log(b){6 log(b)(12 log(b)b4 − 23b4 + 18b2 + 3)b4 + (b − 1)(b + 1)

×(95b6 − 79b4 − 7b2 + 3)} − (b2 − 1)2(82b6 − 77b4 + 4b2 + 3), (B 3f)

M = 3 + [24 log(b)b8 − 25b8 + 48b6 − 36b4 + 16b2 − 3]/[2b2Fb]. (B 3g)
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5
Recent works and
perspectives

The first part of this chapter summarizes the work that has been
achieved by Symphony Charaborty and Arghya Samanta during their

PhDs theses from 2009 to 2012. I have participated to the supervision of
these two PhDs along with Neil Ribe (CNRS, FAST) and Benoit Goyeau
(École Centrale Paris). I shall also provide some perspectives for possi-
ble follow-ups based on their works and write a few words about Nicolas
Kofman PhD thesis that has started in October 2011 under the guidance
of Sophie Mergui (UPMC, FAST) and Béatrice Guerrier (CNRS, FAST). Fi-
nally, I will end this chapter with a few preliminary results obtained by
Georg Dietze (initially DAAD PostDoc, now CNRS researcher at FAST).

Up to now, Arghya’s and Symphony’s works have led to two publica-
tions (Samanta et al. 2011, Ruyer-Quil et al. 2012). A third one is submitted
(Samanta et al. 2012) and there is matter for at least a fourth manuscript.
A manuscript has been submitted based on Georg’s work (Dietze and
Ruyer-Quil 2012).

5.1 Falling film on a porous medium

In many environmental problems involving falling films, the solid sub-
strate is in fact permeable, for instance when erosion, surface water and
soil systems are encountered. Leaving aside the difficult problem of ero-
sion processes and transport of material by the flow, the porous nature of
the substrate makes the study of the flow in the substrate and at the liquid-
substrate boundary already a formidable difficulty by itself. The very
complex geometry of even the simplest porous material makes impossible
any attempt to solve the primitive equations in the porous medium. Our
study is therefore based on a modeling of the porous medium. The upscal-
ing process leading from the primitive microscopic problem to the macro-
scopic governing equations of the equivalent continuous porous medium is
a difficult task by itself, requiring a high level of technicalities and applied
mathematics.

5.1.1 Macroscopic modeling

The considered geometry is sketched in figure 5.1. A Newtonian and in-
compressible fluid flows on a planar substrate under the action of gravity.
The above gas is passive. The porous medium is saturated and bounded
from below by a solid planar wall. Notations are introduced in the sketch.
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Figure 5.1 – Sketch of a falling film on a saturated inclined porous medium

Three approaches have been considered. They differ one from the
other by the treatment of the liquid-substrate interface. In the first ap-
proach, the porous medium is assumed passive and its action on the liquid
film is modeled by a liquid-substrate boundary condition. In the second
one, the fluid and porous media are governed by different equations and
coupled by macroscopic boundary conditions. In the third approach, the
liquid and porous media are replaced by a single composite medium.

One-sided approach: the slip approximation

The porous medium can be assumed to play a passive role on the dynam-
ics of the film when the characteristic superficial (or Darcian) velocity in
the porous medium is small as compared to the characteristic velocity of
the film, which is the velocity at the free interface.

Considering that a small momentum diffusion layer at the liquid-
porous interface introduces a macroscopic discontinuity of tangential ve-
locity Beavers and Joseph (1967) postulate a jump of the tangential velocity

u − ũ = ls∂yu (5.1)

where u is the velocity in the liquid layer, ũ refers to the Darcian velocity
in the porous region and ls is a slip length.

Pascal (1999) first realized that whenever the Darcian velocity up is
small in comparison to the typical velocity in the fluid region, i.e. up ≪ u,
then (5.1) reduces to a Navier slip boundary condition

u = ls∂yu . (5.2)

Similarly the normal velocity ṽ is neglected and an impermeable wall is
substituted for the permeable porous region. With this slip approxima-
tion, the problem becomes one-sided and entirely piloted by the liquid
medium.

Pascal’s initial work has been followed by several ones (Sadiq and Usha
2008, Usha et al. 2011) which all have concluded to an amplification of the
Kapitza instability mechanism by the slip at the liquid-porous interface
with a lowering of the critical Reynolds number signaling the onset of the
Kapitza long-wave instability. In Samanta et al. (2011) this problem has
been revisited and reviewed.
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It is important to give some figures to sustain the slip-approximation.
Since the flow is driven by gravity and the Darcy equation applies in the
bulk of the porous medium, up ≈ g sin βκH/ν where κH is the (homoge-
neous) permeability and ν = µ/ρ is the apparent kinematic viscosity in the
porous medium which is assumed to be equal to the fluid kinematic vis-
cosity. The typical velocity of the fluid ŪN is the free surface velocity which
is determined by the balance of viscosity and gravity ŪN ∼ gh̄2

N sin β/ν.
The ratio up/ŪN ∼ κH/h̄2

N and Pascal’s slip approximation holds when-
ever the permeability of the porous region is small compared to the square
of the film thickness. Typical thicknesses of water films range from 0.1 to
1 mm, whereas permeabilities of porous media in geophysical applica-
tions range from 10−5 cm2 (sand and gravel) to 10−11 cm2 (layered clay)
(Bear 1988). Therefore κH/h̄2

N ranges from 10−9 up to 0.1. There are there-
fore many geophysical problems for which the slip approximation does
not hold.

Two-domain approach

Obviously, the slip approximation is a rather crude one as it does not al-
low to account for the transfer of mass at the liquid-porous interface, the
porous medium being replaced by a solid impermeable one. This draw-
back motivates Thiele et al. (2009) to reconsider this problem and to adopt
a modeling based on a two-sided approach The porous and liquid me-
dia are considered as two different homogeneous regions connected by an
interface of negligible thickness. Thiele et al. macroscopic model of the
porous medium relies on the Darcy-Brinkman equation and a stress jump
condition at the fluid-porous interface (Ochoa-Tapia and Whitaker 1995,
Goyeau et al. 2003). The difficulty of the two-domain approach stems
from the modeling of the boundary conditions at the porous-liquid in-
terface whose expressions are still a matter of active research. Besides,
similarly to the slip length in the velocity jump (5.1), these boundary con-
ditions involve coefficients that need to be computed by direct numerical
simulations. Some discussions on the two-domain approach can be found
in Samanta (2012).

One-domain approach

A third alternative approach is the following : the porous and liquid media
are modeled by a single composite medium characterized by a continuous
distribution of the permeability and porosity. In this one-domain macro-
scopic model (Beckermann et al. 1988), a mesoscopic thin layer accounts
for the rapid variations of porosity and permeability in the porous-liquid
interfacial region. This one-domain approach relaxes the main difficulties
of the two-domain approach since interfacial boundary conditions do not
need to be introduced. However, this approach introduces a large separa-
tion of scales between the film height and the thickness of the transitional
layer, and numerical simulations require a sufficiently fine mesh or a mesh
refinement at the porous-liquid interface. This approach has been adopted
in Samanta et al. (2012).
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5.1.2 Salient features

In this section a short presentation of the findings of Samanta et al. (2011;
2012) are given. Interested readers are invited to read these two papers.

Film on a slippery plane

All previous studies devoted to the problem of a falling liquid film on a
slippery wall have concluded to an amplification of the Kapitza mecha-
nism due to an acceleration of the flow (Pascal 1999, Sadiq and Usha 2008,
Usha et al. 2011). However, these studies suffer from several flaws: (i) they
are generally based on O(ǫ) approximations and focus on the instability
threshold, (ii) they generally adopt definitions of dimensionless parame-
ters that do not take into account the effect of the slip on the base flow.
For instance, the Reynolds number is defined as Re = g sin βh̄3

N/(3ν2) as
in the no-slip case. Yet, the free surface velocity, which characterizes the
flow, and the relation between the film thickness and the flow rate per unit
length are both affected by the modifications of the base flow introduced
by a slip at the wall.

We have therefore reviewed this problem by taking into account the
second-order streamwise viscous terms —contributions from the elonga-
tional viscosity or Trouton viscosity, and by adopting a scaling based on
the free surface velocity (which depends on the slip length).

Our study of the primary stability of the film is summed up in fig-
ure 5.2 where the marginal stability curves are displayed and separate the
region of stability (above the curves) from the instability region (below the
curves). The results are also presented using experimentally controlled
parameters to avoid any bias from the choice of the scaling. We thus in-
troduce the forcing frequency f = kc/(2π) and the flow rate per unit
channel width at inlet qN. Figure 5.2 compares the cut-off frequency fc

corresponding to marginal stability conditions when plotted with respect
to the Reynolds number Re (panel a) and with respect to the dimensionless
flow rate per unit length qN (panel b), which offers another definition of
the Reynolds number based on the averaged velocity instead of the free
surface velocity. The same qualitative behavior is observed in both panels
of figure 5.2. In agreement with Pascal (1999), Sadiq and Usha (2008), the
Navier slip condition lowers the critical Reynolds number (and the crit-
ical flow rate) and promotes the instability close to its onset. However,
at large Reynolds number, the Navier slip conditions tends to reduce the
range of unstable wavenumbers and is therefore stabilizing. This effect
is observable whether the Kapitza number is large or not which suggests
that it does not result from the competition of the capillary and viscous
damping of the short waves.

Close to threshold, the stability of the film on a slippery inclined plane
is nearly tantamount to the stability of a film on a non-slippery wall with
a thickness augmented with the slip length ls characterizing the Navier
slip boundary condition (Samanta et al. 2012). A film falling on a slippery
wall has an effective flow rate augmented by the flow in the porous region
that is modeled by the Navier slip condition, which explains a lowering of
the critical inlet flow rate at the threshold of instability.
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Figure 5.2 – Marginal stability curves. The experimental results of Liu et al. (1995) are
indicated by crosses. Solid, dashed and dotted lines stand for α1 = 0.0, α1 = 0.04 and
α1 = 0.08 respectively. Parameters correspond to water-glycerin mixture (Γ = 2431.0).
The inclination angle is β = 4◦. After figure 3 in Samanta et al. (2011).

The unexpected attenuation of the primary instability far from its
threshold can be explained as follows: In presence of a slip, the base flow
accelerates, the film thickness decreases and consequently the surface ten-
sion damping becomes more effective.

Following the weighted residual approach detailed in § 1.2 and § 2.3.2,
a closed set of coupled evolution equations has been obtained for the local
flow rate q(x, t) and the local film thickness h(x, t). The model is consis-
tent up to first-order with respect to the film parameter ǫ. This consis-
tency holds at order ǫ2 for the streamwise viscous diffusion effects. As
for the problem of a film on a non-slippery wall (Ruyer-Quil and Man-
neville 2002), this level of consistency is sufficient to accurately capture
the primary stability (both threshold and marginal stability curves).

In the nonlinear regime, a slippery substrate contributes to increase
the amplitude of the waves. One-humped solitary waves, which structure
the flow at the last stages of its evolution, are accelerated and amplified
by a slip at the wall. Capillary separation of streamlines and backflow
phenomena have been found to be intensified. This effect is quite large,
even at relatively small values of the slip length, and an enhancement of
the mass and heat transfer between the wall and the liquid is very likely.

Nonlinear solutions to the model have been compared to DNSs ob-
tained with Gerris using VOF method (Popinet 2003; 2009) demonstrating
a convincing agreement for all tested parameters.

Film on a saturated porous medium

A priori, this problem is a difficult one : the choice of a continuous distri-
bution of permeability κ(y) and porosity ε(y) implies that even the base
flow has no analytical solutions. Worse, solving the primitive equations is
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numerically costly because of the necessary refinement of the mesh at the
transitional layer in order to capture the rapid variations of porosity and
permeability in that region. I shall demonstrate that the weighted residual
method provides a welcome simplification, the detail of the transitional
layer geometry being embedded in the computations of the coefficients of
the model. Because of the technical novelties brought to the treatment of
this problem, I give a somewhat detailed account of them in what follows
(More details can be found though in Samanta et al. (2012)).

Governing equations and parameters
The geometry of the flow is sketched in figure 5.1. The thicknesses of
the porous layer and of the transitional layer are denoted by d and D re-
spectively. The characteristic scales for velocity, length and pressure are
denoted by ŪN, H̄N and ρŪ2

N respectively, where H̄N is the thickness of the
entire layer. The velocity scale ŪN stands for the free surface velocity of the
uniform film as it characterizes the wavy motion of the interface. (Again,
this choice is different from the previous studies on the subject, e.g. Pas-
cal (1999), where the velocity scale was based on the impermeable non-
slippery problem, which biased their conclusions.) These scales introduce
the following dimensionless groups: Reynolds number Re = (ŪNH̄N/ν),
Froude number Fr2 = Ū2

N/(g sin βH̄N), Weber number We = σ/(ρŪ2
NH̄N)

and Darcy number Da = κH/H̄N
2. Two geometrical aspect ratios com-

plete the set of parameters: δ = d/H̄N and ∆ = D/H̄N, namely the di-
mensionless thicknesses of the porous layer and the transitional layer at
the porous-liquid interface.

As usual, length and time scales can also be defined with refer-
ence to viscosity and gravity acceleration as lν = ν2/3(g sin β)−1/3 and
tν = ν1/3(g sin β)−2/3. These scales introduce the Kapitza number Γ =
(lc/lν)2 = σ/[ρν4/3(g sin β)1/3], which compares lν to the capillary length
lc =

√

σ/(ρg sin β), and a modified Darcy number Daν = κH/l2
ν. The

interest of the dimensionless groups Γ and Daν stem from the fact that
they are functions of the liquid and porous media physical and effective
properties only. As a consequence, they remain constant once the fluid
and porous medium are specified and for a given inclination angle.

The dimensionless 2D governing equations for the liquid and the
porous medium under the basis of continuum approach can be written
as (Beckermann et al. 1988, Whitaker 1996, Bousquet-Melou et al. 2002,
Hirata et al. 2009)

∂xu + ∂yv = 0, (5.3a)

ε−1Re
[

∂tu + ε−1u∂xu + ε−1v∂yu + uv∂yε−1
]

= −Re∂x p + ε−1(∂xxu + ∂yyu)

−u
κ
+

Re
Fr2 , (5.3b)

ε−1Re
[

∂tv + ε−1u∂xv + ε−1v∂yv + v2∂yε−1
]

= −Re∂y p + ε−1(∂xxv + ∂yyv)

−v
κ
− cot β

Re
Fr2 , (5.3c)

where porosity ε(y), permeability κ(y) are both continuous and differen-
tiable functions of the transverse co-ordinate y. The distributions of ε(y)
and κ(y) follow a tangent hyperbolic profile across the transition layer of
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Figure 5.3 – One-domain approach: (a) porosity distribution ; (b) base flow.

typical thickness ∆ such as

ε(y) =
(1 + εH)

2
+

(1 − εH)

2
tanh [(y − δ)/∆] , (5.4)

1
κ(y)

=
1

Da

(

1
2
− 1

2
tanh [(y − δ)/∆]

)

(5.5)

i.e. porosity and permeability change from their constant values εH, κH

in the homogeneous porous layer to the values 1 and ∞ in the liquid
layer respectively. The conclusions of this study are not affected by the
specific choice of a hyperbolic tangent profile. The distribution of porosity
is illustrated in figure 5.3a.

In (5.3), u and v stand for the superficial Darcian velocities on the
porous medium side and the true fluid velocities on the fluid side. The
difference between the definitions of the Darcian and intrinsic velocities
result in the introduction of the porosity in the inertial terms at the l.h.s.
of the momentum balance (5.3b), (5.3c) and in the Brinkman momentum
diffusion terms at their r.h.s. The reader can easily check that setting ε = 1
and κ−1 = 0 in (5.3) leads back to the classical Navier-Stokes equations for
an incompressible fluid flow. (5.3) contain the specific Darcy terms −u/κ
and −v/κ that account for the viscous friction exerted by the solid phase
on the liquid phase.

By combining the governing equations in the porous and fluid media,
the boundary conditions at the porous–liquid interface are satisfied auto-
matically. Boundary conditions at the lower boundary y = 0 and at the
free surface y = H are therefore sufficient to close the system of equations
to be solved.

Base flow
Let us first consider the steady Nusselt solutions of (5.3) corresponding
to a film of constant thickness H = 1. The streamwise velocity satisfies
U = (Re/F2) f (y) where f is solution to

L f = −ε , f (0) = f ′(1) = 0 , (5.6)

and L ≡ ∂yy − ε/κ is a linear differential operator which accounts for the
viscous diffusion and the viscous drag at the solid phase in the porous
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medium. Figure 5.3b presents the velocity profile f (y) corresponding to
the solutions of (5.6). The reference velocity scale ŪN being chosen so that
U(1) = 1, the ratio Fr2/Re is equal to f (1) which varies with the properties
of the porous medium and the geometry of the flow.

For intermediate values of Da, two boundary layers develop at the
porous-liquid interface and lower boundary respectively. Apart from these
boundary layers, the velocity in the porous medium is nearly constant and
given by the Darcy law, i.e. up = DaRe/Fr2 ≪ 1. The typical thickness dB

of the momentum boundary layer near the porous-liquid interface can
be found by balancing the Darcy drag and the Brinkman diffusion terms
which gives the dimensional value dB =

√

κH/εH. It is important to note
that whenever up is small the flow is located in the film layer augmented
with the upper momentum diffusion layer.

Low-dimensional modeling
Because of the absence of analytical expressions of the base flow velocity
distribution, the weighted residual strategy has to be adapted. As usual,
the streamwise velocity component is decompose as an O(1) term and an
O(ǫ) correction induced by the deformations of the free surface :

u(x, t) =
q(x, t)
φ(H)

f (y; H) + u(1), (5.7)

where φ(H) =
∫ H

0 f (y; H)dy and f corresponds to the base flow velocity
profile, For any values of the total height H, f satisfies

L f = −ε , f (0; H) = ∂y f (H; H) = 0 , (5.8)

u(1) stands for the O(ǫ) corrections to the velocity profile induced by the
deformations of the free surface. The decomposition (5.7) is made unique
by imposing the gauge condition

∫ H
0 u(1)dy = 0 which ensures that q still

corresponds to the local flow rate. Solutions to (5.8) for H = 1 are shown
in figure 5.3b.

The flat-film solution is dependent on the film thickness and there-
fore on H and this dependence is underlined in the notation f (y; H).
Its variation with respect to the total height is denoted by g = ∂H f ≡
limδH→0 f (y; H + δH)− f (y; H)/δH which is a solution to

Lg = 0 , g(0; H) = 0 and ∂yg(H; H) = 1 , (5.9)

It is easy to show that ∂HH f = ∂H g are solutions to L∂H g = 0 with
∂H g(0; H) = 0 and ∂yg(H; H) = 0, and therefore that ∂H g = 0.

We next proceed to the averaging of the momentum balance with the
usual inner product 〈u|v〉 =

∫ H
0 uvdy and an appropriate weight w(y).

Leading order contribution of the corrections u(1) comes from the O(ǫ)
friction terms. These terms can be eliminated by using the gauge condition
〈u(1)|1〉 = 0. and adjusting the weight w which is then defined by

Lw = − Re
Fr2 , w(0; H) = ∂yw(H; H) = 0 , (5.10)

where the constant −Re/Fr2 = −1/ f (1; 1) has been chosen for conve-
nience and ensures that w is positive.
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Integration of the momentum balance with the weight w(y; H) yields
a residual, which set to zero and divided by H2 is recast into a depth-
averaged momentum balance written below as an evolution equation for
the local flow rate q:

S(H)∂tq = −F(H)
q
H

∂xq + G(H)
q2

H2 ∂x H +
1

Fr2

[

I(H)H b(H)− q
H2

]

+
1
Re

[

J(H)
q

H2 (∂x H)2 − K(H)
∂xq∂x H

H
− L(H)

q
H

∂xx H + M(H)∂xxq
]

(5.11)

where b(H) = 1 − cot β∂x H + WeF2∂xxx H is the body force corresponding
to the gravity acceleration and the gradient of hydrostatic and capillary
pressures. The coefficients S(H) to M(H) in (5.11) are integrals of the base
flow profile f , the weight w and their derivatives (see the appendix, § 5.4).
The averaged momentum equation (5.11) and the (exact) mass balance

∂th + ∂xq = 0 (5.12)

form a two-equation model in terms of the flow rate q(x, t) and the entire
layer thickness H(x, t) that is consistent at first order in the long-wave pa-
rameter ǫ. Consistency up to O(ǫ2) is achieved for the streamwise viscous
diffusion terms at the last row of (5.11). Again, this consistency require-
ment is sufficient to capture the primary stability correctly. In practice,
the coefficients S(H) and M(H) are computed by solving simultaneously
(5.8) and (5.10) and then tabulated. As a result, solving (5.12, 5.11) can be
done very efficiently.

Interestingly, even though the linear operator L is self-adjoint, the pe-
culiar weighted residual approach, that we made use of, does not reduce
to the usual Galerkin method. The origin of this discrepancy lies in the
non-homogeneous distribution of the porosity, which introduces a differ-
ence between the viscosity of the liquid and the effective viscosity in the
porous medium.

Besides, in the usual WRMs detailed in (2.3.2), the reduced coordinate
ȳ = y/H(x, t) is introduced. This choice stems from the presence of a
self-similar semi-parabolic uniform-film solution. In the present problem,
such a self-similar solution is not found because of the introduction of two
supplementary lengthes, namely the thicknesses δ and ∆ of the porous and
transitional layers. An ansatz in terms of the reduced coordinate ȳ yields
two local aspect ratios δ/H and ∆/H that are functions of the time and the
spatial coordinate, which needlessly complicate the derivation process.

Whitham wave hierarchy
Let us linearise the two-equation system (5.12, 5.11) around the base state
by writing H = 1 + H̃ and q = I(1) + q̃ where H̃ ≪ 1 and q̃ ≪ 1. After
elimination of the flow rate, decomposition in normal modes, i.e. H̃ ∝

exp[ik(x − ct)] where k and c are respectively the complex wavenumber
and complex phase speed, we are led to a dispersion relation that can be
written into the form:

i[c − ck(k)] + kΩ(Re, k)[c − cd+(k)][(c − cd−(k)] = 0 , (5.13)

The dispersion relation (5.13) has a two-wave structure and was initially
introduced by Whitham (1974). First-level kinematic waves propagate at
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a speed ck, whereas second-level dynamic waves travel at two possible
speeds cd±. Kinematic waves arise from the response of the velocity dis-
tribution to a free surface deformation. This response is driven by the
kinematic condition at the free surface, or equivalently, by the mass bal-
ance (5.12). Dynamic waves correspond to the response of the momentum
balance to a disturbance at the free surface, which is governed by the tan-
gential and normal stress continuity conditions. Whitham (1974) studied
the stability of hyperbolic two-equation systems that are described by a
two-wave hierarchy of the kind given in (5.13) and obtained a simple sta-
bility condition

cd− ≤ ck ≤ cd+ , (5.14)

The origin of the condition (5.14) stems from the evolution of a wavepacket
originating from a localized initial perturbation. Since kinematic waves
tend to emerge from the wavepacket at long times, whereas the short-
term dynamics is dominated by dynamic waves, the only stable situation
is one where the back and front of the wavepacket are made of dynamic
waves, which implies the condition (5.14). In practice, the instability arises
when ck = cd+

The instability mechanism can thus be reasoned in terms of the com-
petitions of kinematic and dynamic waves. Kinematic waves travel at two
times the velocity ŪN of the liquid at the free surface whereas dynamic
waves propagate approximately at speed ŪN plus or minus the speed of
gravity waves. The onset of the instability can then be rationalized as the
balance between the propagation of gravity waves and the advection by
the flow at the free surface velocity. The speed of gravity waves in the
shallow-water limit is determined by the requirement that the normal ve-
locity component must vanish at the wall (see for instance Guyon et al.
(2001)). For a sufficiently deep porous substrate (d > 2dB) and a suffi-
ciently small permeability, so that the Darcy velocity up is small, the flow
in the porous medium is localized in the momentum boundary layer close
to the interface. Therefore, the bottom of the boundary-layer acts as an
equivalent solid surface and gravity waves sit on an effective liquid layer
made of the film augmented with the upper momentum diffusion layer
in the porous medium. As a consequence, gravity waves travel at a speed
that is close to

√

g(H̄N − d + dB) cos β and with a length that is scaled by
the thickness H̄N − d + dB.

The above reasoning is supported by the fact that the difference
c̄d+ − c̄d− ≈

√

g(H̄N − d + dB) cos β and the sum c̄d+ + c̄d− ≈ 1.6ŪN,
so that dynamic waves are effectively gravity waves moving on a liquid
film whose thickness is augmented by the thickness of the momentum
diffusion layer dB and advected by the flow. Kinematic waves moves at
ck ≈ 2ŪN. We thus introduce a modified Froude number

F̃r2
=

Ū2
N

g(H̄N − d + dB) cos β
=

Fr2

cot β
(1 − δ + δB)

−1 (5.15)

which compares the velocity of the flow and the phase speed of gravity
waves. Here δB = dB/H̄N refers to the dimensionless thickness of the
boundary layer.

Absence of significant effects



5.1. Falling film on a porous medium 207

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.5  1  1.5  2  2.5  3  3.5  4

k̃
→

F̃r
2 →

Daν = 0.1

Daν = 0.01

Daν = 0.001

(a)

 0

 5

 10

 15

 20

 25

 30

 10  15  20  25  30  35  40  45  50

f c
(H

z
)
→

qN →

Daν = 0.1
Daν = 0.01

Daν = 0.001

(b)

Figure 5.4 – Marginal stability curves for different values of the Darcy number. (a) mod-

ified dimensionless wavenumber k̃ versus modified Froude number F̃r2; (b) dimensional
cut-off frequency fc versus flow rate qN. Γ = 769.8, β = 4.6◦, δ = 0.1, ∆ = 0.001 and
εH = 0.78.

The linear stability of the film based on the linearized governing equa-
tions (a Orr-Sommerfeld problem) has been compared to the solutions of
the dispersion relation (5.13) showing a good agreement. Marginal stabil-
ity curves are presented in figure 5.4 in the parameter plane consisting of
the dimensional cut-off frequency fc (Hz) versus the dimensionless flow
rate qN. The choice of such a parameter plane stems from experimental
conditions where the forcing frequency and flow rate are both monitored
at the inlet. A collapse of the different curves on a single master one is
observed. An experimental study of the influence of the substrate perme-
ability on the primary stability of the film would conclude to the absence
of significant effects. This surprising absence can be understood by ob-
serving that the base-flow velocity profiles shown in figure 5.3b are not
far from an equivalent Poiseuille flow in the flow region made of the liq-
uid medium and the momentum boundary layer of the porous medium.
Therefore, since at a given flow rate and inclination, that is a given grav-
itational acceleration, corresponds only one uniform film solution on an
impermeable substrate, the free-surface velocity and effective thickness of
a uniform film flowing on a porous medium does not vary significantly
with the permeability of the porous medium, which explains the absence
of effects observed in figure 5.4b.

Our investigation in the nonlinear regime concludes to the same ab-
sence of effects. As an example, figures 5.5 displays the wave profiles
obtained at the end of the numerical experiments at three different loca-
tions taken at increasing distance from the inlet. These profiles can be
contrasted to the experimental ones provided by Liu and Gollub (1994) in
the case of an impermeable substrate (figure 7 in that reference).

The same qualitative responses of the film is observed for the two
tested Darcy numbers. At the relatively high frequency f = 4.5 Hz,
an inlet forcing generates a spatially modulated wavetrain. Waves are
initially single-peaked with a hollow-like shape. Further downstream,
they become multi-peaked as a result of the growth of secondary depres-
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Figure 5.5 – Simulations of the spatial response of the film to an inlet forcing in the
experimental conditions of Liu and Gollub (1994). Left: Da = 10−5 (dB = 0.037 mm),
Re = 29 and A = 0.08 ; right: Da = 1 (dB = 0.14 mm), Re = 26.2 and A = 0.06.
Glycerin-water mixture flowing on metal foam. A = 0.03, δ = 0.1, εH = 0.78, d =
0.14 mm, f = 4.5 Hz, β = 6.4◦, and Γ = 526. Snapshots of the film thickness at three
different locations from upstream (top) to downstream (bottom).

sions and a phase-locking process. These observed spatial evolutions are
nearly identical to what was observed in the experiment by Liu and Gol-
lub. At low permeability (Da = 10−5), the momentum boundary layer in
the porous substrate is relatively thin in comparison to the film thickness
(dB = 0.037 mm as compared to H̄N − d = 1.2 mm). The amount of liq-
uid flowing in the porous substrate is not significant and the dynamics of
the film is therefore not different to what is observed on an impermeable
substrate (Da → 0).

At high permeability (Da = 1), the effect of the porous medium re-
mains quite limited on the waves, whose speed and wavelength are not
affected. The main significant effect of the presence of the porous layer
is a uniform displacement of the interface corresponding to the invasion
of the porous medium by the flow. The wave profiles at Da = 10−5 and
Da = 1 are close when moved by a distance equal to the displacement of
the lower end of the momentum boundary layer, i.e. d − dB(Da = 10−5) =
0.103 mm. In the nonlinear regime as well as in the linear regime, the ef-
fect of a porous substrate onto the wave dynamics is not very significant.
This is again related to the fact that, at a given flow rate and at the rela-
tively large porosity εH = 0.78 of a metal foam, the velocity distribution of
the base flow remains close to the semi-Poiseuille Nusselt solution on an
impermeable substrate. Consequently, varying the permeability does not
change noticeably the free surface velocity and the effective thickness of
the film, i.e. augmented with the thickness of the momentum boundary
layer in the porous substrate. The length and velocity scales remaining
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nearly unchanged, the nonlinear regime is not much affected by the pres-
ence of a permeable substrate.

5.2 non-Newtonian falling film

The second problem I have tackled during these last three years concerns
the influence of rheology on the Kapitza instability of a falling film. This
problem has been considered by Symphony Chakraborty in her PhD thesis
(Chakraborty 2012). I am summarizing the key findings of her study in
this section.

5.2.1 Power-law fluids

The most simple non-Newtonian fluids are generalized Newtonian fluids,
for which an effective viscosity function of the rate of strain γ̇ can be
defined. Our study thus started with this simple —but not so simple as we
shall see— fluids. In what follows, I focus mainly on shear-thinning fluids
(power-law index n < 1), which is the most interesting case. However,
shear-thickening fluids (n > 1) are also considered in Ruyer-Quil et al.
(2012).

Because of the simplicity of the Ostwald-de-Waele power-law model

µeff(γ̇) = µnγ̇n−1 , (5.16)

shear-thinning falling films have recently been the subject of a consequen-
tial interest (see e.g. Dandapat and Mukhopadhyay (2001; 2003), Sisoev
et al. (2007), Amaouche et al. (2009), Fernández-Nieto et al. (2010)). These
studies are based on the shallow-water averaging of the primitive equa-
tions (cf. § 2.3.4). Amaouche et al. (2009) and Fernández-Nieto et al.
(2010) have corrected the Kármán-Polhausen averaged momentum equa-
tion derived by Hwang et al. (1994) and Ng and Mei (1994) and formulated
two-equation models that are consistent up to order ǫ. This consistency
enabled them to correctly capture the instability threshold obtained by Ng
and Mei (1994), Miladinova et al. (2004). However, they do not account
for O(ǫ2) effects such as streamwise viscous diffusion (Trouton viscosity),
which is known to affect wave-to-wave interaction processes and thus the
wave dynamics for Newtonian film flows (Kawahara 1983, Kawahara and
Toh 1988, Pradas et al. 2011).

As a consequence, we have attempted to develop a model including
second-order viscous diffusion terms in a consistent way. To account for
streamwise viscous diffusion, the effective viscosity µeff(γ̇) and its deriva-
tive dµeff/dγ̇ must be computed at the free surface, where the strain rate
γ̇ goes to zero for an unperturbed interface. In the case of the power law
(5.16) either µeff(0) or dµeff/dγ̇(0), or both, are undefined for n < 3 which
corresponds to most shear-thinning and shear-thickening fluids. This calls
for a regularization at zero strain rate of the power law (5.16) which is here
accounted for by introducing a Newtonian plateau at low strain rates.

A regularization of the power-law Ostwald-de-Waele (5.16) is assumed
at low shear rate to recover the Newtonian behavior in that limit. This is
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Set Concentration µn n µ0 γ̇c γ̇ctν Γ

(Pa.sn) (Pa.s) (s−1)
1. 500 ppm 0.04062 0.607 0.08 0.18 1.8 × 10−3 378
2. 1500 ppm 0.3592 0.40 1.43 0.1 1.7 × 10−3 48.7
3. 2500 ppm 0.9913 0.34 7.16 0.05 1.2 × 10−3 13.0

Table 5.1 – Parameters of xanthan gum solutions in water. Surface tension and density
are σ = 65 mN/m and ρ = 995 kg/m3. Values of the Kapitza number are computed for a
moderate inclination β = 15◦.

the spirit of a three-parameter Carreau law:

µeff(γ̇) = µ0
[

1 + (γ̇/γ̇c)
2](n−1)/2

. (5.17)

However, using (5.17) forbids to determine analytically the base flow and
one can instead introduce a Newtonian plateau:

µeff(γ̇) = µnγ̇n−1 for γ̇ > γ̇c , (5.18a)

µeff(γ̇) = µ0 for γ̇ ≤ γ̇c . (5.18b)

The continuity of the shear stress at γ̇ = γ̇c requires µnγ̇n−1
c = µ0.

To set up the frame of this study, let us precise the fluid properties of
some considered shear-thinning fluids, the scaling and set of dimension-
less parameters.

Table 5.1 presents reasonable values of the zero strain viscosity µ0 and
the critical strain rate γ̇c separating Newtonian and non-Newtonian be-
havior of shear-thinning xanthan dilute solutions. The surface tension of
xanthan solutions is assumed here to remain close to that of pure water
σ = 65 mN/m.

The length scale is the uniform film thickness h̄N. The velocity scale
V is defined by balancing viscous friction ∝ µnVnh̄−(n+1)

N and streamwise
gravity acceleration ∝ ρg sin β which gives

V =

(

ρgh̄n+1
N sin β

µn

)1/n

(5.19)

such that the Froude number Fr = V/
√

gh̄N cos β, which compares the
characteristic speed of the flow to the speed of the gravity waves propa-
gating at the interface, and the Reynolds number

Re =
ρV2−nh̄n

N

µn
=
[

(µn/ρ)−2 (g sin β)2−nh̄n+2
N

]1/n
(5.20)

are related by the relation Re/ cot β = Fr2. As usual we introduce

lν = (µn/ρ)2/(n+2) (g sin β)(n−2)/(n+2) and tν =
(

µn
ρ

)
1

n+2
(g sin β)−

2
n+2 , the

length and time scales corresponding to the balance of gravity accelera-
tion and viscous drag. Surface tension, gravity and viscous drag can be
compared by the Kapitza number

Γ = (lc/lν)
2 = (σ/ρ)(µn/ρ)−4/(n+2)(g sin β)(2−3n)/(n+2) , (5.21)
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where lc =
√

[σ/(ρg sin β)] is the capillary length. The Weber and Kapitza
numbers are related one to the other by the relation We = Γ(lν/h̄N)

2. Fi-
nally, the Newtonian plateau introduces a last parameter, namely dimen-
sionless threshold s = γ̇ch̄N/V, or equivalently r = sn−1, which can be
interpreted as the ratio r = µ0/µw of the shear viscosities µ0 = µn(γ̇c)

n−1

and µw = µn(V/h̄N)
n−1 at the free surface and at the wall.

Let us emphasize that the velocity scale V given by (5.19) is the dimen-
sional speed of the linear kinematic waves in the long wavelength limit,
which is the typical speed of the nonlinear waves running on the falling
film and thus back up our choice of scales. The averaged velocity of the
Nusselt flat film is Vn/(2n + 1) so that there is a factor n/(2n + 1) be-
tween the adopted definition of the Reynolds number and the usual one
based on the averaged velocity.

We invoked again the weighted residual method to obtain a two-
equation model based on the mass balance (5.12) and an averaged mo-
mentum balance. A lengthy procedure [detailed in § 3 of Ruyer-Quil et al.
(2012) appended to this chapter] leads to

Re∂tq = Re
[

−F(n)
q
h

∂xq + G(n)
q2

h2 ∂xh
]

+I(n)
[

h (1 − cot β∂xh + We∂xxxh)− q|q|n−1

(φ0h2)n

]

+r(h, q)
[

J0(n)
q
h2 (∂xh)2 − K0(n)

∂xq∂xh
h

− L0(n)
q
h

∂xxh + M0(n)∂xxq
]

+rw(h)
[

Jw(n)
q
h2 (∂xh)2 − Kw(n)

∂xq∂xh
h

− Lw(n)
q
h

∂xxh + Mw(n)∂xxq
]

.(5.22)

where the coefficients are all explicit fractional functions of the power-
law index n. Here rw(h) = h1−1/n stands for the effective viscosity at
the wall, whereas r(h, q) denotes the effective viscosity at the free surface
µeff(y = h) approximated from the model variables h and q as :

r(h, q) ≡
[

s2 + ∂xv2
s + 4(∂xus)

2](n−1)/2 ∣
∣

y=h (5.23a)

where

∂xv2
s + 4(∂xus)

2
∣

∣

y=h =

[

2(2n + 1)
n + 1

∂x

( q
h

)

]2

+

{

2n + 1
n + 1

[

−2
∂xh∂xq

h

+q

(

2
(∂xh)2

h2 − ∂xxh
h

)]

+ ∂xxq

}2

. (5.23b)

We have considered as equivalent the assumption (5.18) of a Newtonian-
plateau and the Carreau law (5.17) to express the effective viscosity r(h, q).
Our computations show that this assumption is reasonable in the limit of
a vanishing Newtonian layer. The averaged momentum equation (5.22)
retains the contribution to streamwise viscous diffusion from the free sur-
face (second row) and from the bulk (third row).

Results from the two-equation low-dimensional model have been val-
idated by comparisons with DNSs using Gerris software (Popinet 2003;
2009). Figure 5.6 presents the distribution of the strain rate under the
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(a) DNS (b) WRM model

(c) DNS (d) WRM model

Figure 5.6 – Distribution of the strain rate γ̇ under the waves whose profiles are shown
in figures 5.7a and 5.7c. Left: results from DNS. Dark blue (red) regions correspond to
the minimum (maximum) of γ̇. Right: isocontours of the strain rate corresponding to
the WRM model. The location of the maxima of γ̇ at the wall and at the free surface are
depicted by squares.

solitary-like waves whose profiles are shown in figures 5.7a and 5.7c for
two different xanthan-gum solutions. From the results of the DNS simu-
lations, the local maxima of the strain rate are located either at the wall or
at the free surface.

This justifies the cumbersome expressions of the streamwise viscous
terms [the last two rows in (5.22)] as both the effective viscosity of the
fluid at the free surface and in the bulk act on the dispersion of the waves.
In both cases, the model (left panels in figure 5.6) slightly underestimates
the amplitude of the capillary ripples and predicts smaller values of the
maxima of the strain rate. However, the locations of the local minima and
maxima predicted with the model are in remarkable agreement with the
strain rate distributions found by DNS.

The profiles of traveling waves obtained at the end of the DNS simu-
lations are presented in figure 5.7 and contrasted to the solutions to the
two-equation model. The waves systematically present capillary ripples
preceding the main hump in spite of the very large ratio r of the free sur-
face to wall effective viscosities. Their shapes are similar to the solitary
waves observed experimentally for Newtonian fluids. A good agreement
between DNSs and the results from the model is obtained. However, the
model tends to overestimate the speed of the waves. We note that the
nonlinear dependence of the effective viscosity (5.23) on the gradients of q
and h is necessary to reproduce the capillary waves observed in the DNS
simulations.
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Figure 5.7 – Traveling wave profiles for shear-thinning xanthan-gum solutions in water.
Solid lines refer to the DNS results from Gerris software, whereas dashed lines refer to
the solutions to the two-equation model.
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Figure 5.8 – (a) Amplitude hmax − hmin versus frequency at Re = 100 showing the
subcritical onset of traveling waves when frequency is varied from the cut-off frequency
fc. (b) Stability diagram in the plane (Re, f ). Solid and dashed lines refers to the marginal
stability curve and to the locus of a saddle-node bifurcation fsub. The unconditionally and
conditionally stable regions are labeled ’US’ and ’CS’ respectively. The unconditional in-
stability region is labeled ’UI’. Inclination angle is β = 15◦, other parameters correspond
to a shear-thinning xanthan-gum solution. Traveling wave solutions have been computed
enforcing the integral constraint 〈q〉 = φ0.

An interesting phenomenon has been evidenced: shear-thinning pro-
motes a subcritical onset of traveling waves at larger wavenumber than the
linear cut-off wavenumber kc. A conditional stability of the base flow is
thus observed, the film being able to respond to a periodic forcing at inlet
at k > kc if the amplitude of the perturbations is large enough. This phe-
nomenon results from the removal of the Newtonian layer, the reduction
of the effective viscosity at the free surface and therefore the attenuation
of the damping of short waves. Comparisons to DNS show that this phe-
nomenon is accurately captured by the weighted-residual model (5.12),
(5.22).

Figure 5.8a presents the amplitude hmax − hmin versus the frequency
f of the principal branch of traveling-wave solutions for a xanthan gum
solution (parameter set 2 in table 5.1), Re = 100 and a moderate inclina-
tion angle β = 15◦. The integral constraint 〈q〉 = φ0 has been enforced
in order to enable comparisons with the wavetrains emerging from the
time-dependent simulations of the spatial response of the film to a pe-
riodic excitation at frequency f . Traveling waves emerge at the cut-off
frequency fc from the Nusselt solution (hmax − hmin = 0). The control pa-
rameter being f , a saddle-node bifurcation is observed at the frequency
fsub. Monitoring fc and fsub in the plane ( f , Re) gives the stability diagram
displayed in figure 5.8b. Below the cut-off frequency fc, the flat film is un-
conditionally unstable, whereas unconditional stability is expected above
fsub. Whenever f lies in the interval [ fc, fsub], a conditional stability is
anticipated. The spatial response of the flat film to a periodic excitation at
inlet then depends on the amplitude of the perturbation.

This intriguing phenomenon has not been reported yet in experiments.
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Figure 5.9 – Geometry of a viscoplastic falling films.

Indeed, our spatio-temporal simulations reveal that trains of short waves
excited at larger frequencies than the cut-off one are quickly disrupted by
secondary instabilities which lead to a disordered state organized around
solitary waves in interaction. The conditional stability of the primary flow
is thus likely to be difficult to observe in experiments.

5.2.2 Viscoplastic fluids

In this section I present some preliminary results detailed in S.
Chakraborty’s PhD thesis (Chakraborty 2012). A viscoplatic falling film
is modeled by an elasto-viscoplatic constitutive relation introduced by
Saramito (2008). The aim of this work is to extend the pseudo-plug theory
formulated by Balmforth and Liu (2004) to deal with viscoplatic films at
the moderate values of the Reynolds number.

(Balmforth and Liu 2004) considered the stability of a viscoplastic fluid
layer flowing on an inclined plane under the action of gravity. Their con-
cern was the onset of roll waves that are observable in mud surges. Their
approach was truncated at first order in the film parameter. Balmforth and
Liu showed that an unyielded plug region laying at the top of a uniform
film forms a lid which forbids the instability to occur. The geometry of
the base flow is sketched in figure 5.9.

However, as soon as the free surface is deformed, the plug starts to
yield and the instability is possible which assumes that normal stresses
appears instantly in the plug region so that the second invariant of the
stress can exceed the yield stress. In other words, small but finite ampli-
tude perturbations of the free surface are sufficient to trigger the instability
and viscoplastic film flows should be conditionally unstable. Moreover, in
order to describe the dynamics of a viscoplastic film, surface tension and
streamwise viscous diffusion must be accounted for. Balmforth and Liu
considered a viscoplastic fluid modeled by the Herschel and Buckley law

τ = K|σ|n−1σ + τ0
σ

|σ| when |σ| > 0 (5.24a)

|τ| < τ0 when |σ| = 0 (5.24b)
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where τ = (τij) and σ = (σij) = [(∂iuj + ∂jui)/2] are the stress and rate
of strain tensors, τ0 is the yield stress, |τ| = √

2τklτkl and |σ| = √
2σklσkl

are the second invariants of the stress and rate of strain tensors. Equation
(5.24) can be rewritten as (Saramito 2008)

σ = max
(

0,
|τ| − τ0

K|τ|n
)

1
n

τ ≡ κn(|τ|)τ (5.25)

The viscosity of a viscoplastic fluid modeled by (5.24) is undefined in the
unyielded region and diverges at zero strain rate. In order to take into
account viscous effects at the interface and to capture the conditional sta-
bility of the film, one has to describe how the unyielded plug region is
deformed which demands to include the elasticity of the solid-like behav-
ior of the fluid into the constitutive equation. Recently, Saramito (2008)
has proposed an extension of the Herschel-Bulkley law (5.24) including
the viscoelastic properties of the fluid:

1
G

▽
τ + κn(|τd|)τ − σ = 0 (5.26)

where G is the elastic modulus, τd = τ − 1
N tr(τ)I denotes the deviatoric

part of τ and
▽
τ = ∂tτ + v∇τ − τ∇vT −∇vτ (5.27)

is the upper convected time derivative of the stress tensor τ. We attempt
to extend the pseudo-plug theory by Balmforth and Liu using the consti-
tutive equation (5.26).

A Orr-Sommerfeld problem has been derived to study the linear stabil-
ity analysis of this flow based on the linearized governing equations. Fig-
ure 5.10 shows the critical Reynolds number against the relative thickness
of the pseudo-plug region hplug for several values of the Deborah number
(the Deborah number compares the characteristic time of elastic relaxation
and the inertial time). The result of the Orr-Sommerfeld problem shows
a good agreement with the result of a preliminary four-equation model.
As expected, lowering the thickness of the pseudo-plug region has a sta-
bilizing effect. Indeed, if De = 0 (no elastic effects) the plug is solid and
cannot deform, as a consequence the instability threshold Rec → ∞. As
expected, the stabilizing effect of the inelastic plug disappears along with
the pseudo-plug region (hplug → 0). Surprisingly enough, the same re-
moval of this stabilizing effect also occurs when the plug starts to invade
the whole domain.

A follow-up of this work is under way. Needless to say, a low-
dimensional modeling of this problem requires a treatment of the diver-
gence of the viscosity at the boundary of the pseudo-plug and the yielded
region.

5.3 Current works and perspectives

I this section, I give a short account of the two different projects I am
involved in at the present stage. For each project, I give some possible
directions for follow-up and future studies.
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Figure 5.10 – Critical Reynolds number Rec as a function of the relative thickness hplug
of the pseudo-plug region. The solid line correspond to a four-equation low-dimensional
model and squares refer to the numerical solutions to the Orr-Sommerfeld problem of the
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5.3.1 Geophysical problems

A natural development of the study of non-Newtonian falling films con-
cerns the study of rapid mass movements such as debris flows, lahars,
snow avalanches.

The aspect ratio of these hazardous events justifies the use of shallow-
water models. A good approximation concerning the material is to con-
sider it as a yield-stress fluid. However, this poses challenging issues such
as the account for elasticity and for the behavior of the (pseudo-)plug
zone of the flow. Models that are currently in use rely indeed on simpli-
fied, empirical treatments of the fluid rheology (Laigle and Coussot 1997,
Naaim et al. 2004). Accounting properly for the non-Newtonian rheology
of mud and avalanches flows is presently a key issue for achieving realistic
models. A current study consists in the derivation of an accurate model
accounting for the elasto-viscoplastic constitutive law derived by Saramito
(2008).

It is important to note that in many applications, a notable slip is ob-
served at the wall region. In particular, flows of dense snow present a
yield stress and a slip velocity at the wall as high as several meters per
second (Dent and Lang 1983, Kern et al. 2004, Rougier and Kern 2010).
An immediate extension of the derivation of low-dimensional models for
elasto-viscoplastic fluids that is currently under way would be to account
for a slip at the wall boundary.

An important aspect of real geophysical flows is the presence of a non-
planar and rough geometry. Roberts and Li (2006) and Boutounet et al.
(2008) have already proposed some models taking into account general
topographies. The success of the weighted residual method for the dif-
ferent problems reviewed in this memoir offers a promising ground for
future studies devoted to more realistic geophysical flows including com-
plex rheologies, complex geometries and wall boundary conditions.

5.3.2 Industrial problems

Liquid falling films are encountered in a variety of industrial applications.
For instance, the cooling of microelectronic equipment or the separation of
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Figure 5.11 – Sketch of gas stream shearing a liquid flow in a tube as gas flow rate is
increased. After Tseluiko and Kalliadasis (2011).

multi-component mixtures in the chemical and food industries are often
ensured by means of falling films. They even represent the state-of-the-
art technique in the sugar industry and constitute the basic components
in sea-water desalination plants. As far as heat or mass transport appli-
cations are concerned, a drastic enhancement of heat/mass transport is
observed (Colinet et al. 2001). For example, Frisk and Davis (1972) and
Goren and Mani (1968) have reported that the waviness of the film can in-
crease by as much as 10-100% the heat/mass transfer coefficients. There-
fore liquid film flows play a central role in the development of efficient
means for interfacial heat/mass transfer in engineering applications.

In most of the designs of the heat or mass exchangers involving falling
films, a counter-current or a co-current gas flow is generated to enhance
the transfer by shearing the liquid interface. An important technological
limitation of such devices is the so-called flooding phenomenon: as the gas
flow rate is increased, the initially downward-falling film starts to travel
upwards. Also, just before the flow reversal, the amplitude of the interfa-
cial waves grows very rapidly and at the same time the speed of the waves
decreases. Eventually, as the flow reverses very rapidly, atomization of the
liquid into the gas phase occurs. This phenomenon is sketched in fig-
ure 5.11. Yet, optimal operating conditions are generally close to the limit
of flooding. As the flooding phenomenon is accompanied by an immedi-
ate deterioration of device efficiency, the prediction of its limit is thus an
essential task. Turning to an example from the automotive industry, an im-
proved prediction and control of water films developing on windscreens
under rainy conditions is desirable in order to improve safety. This sce-
nario differs from the above mentioned example in the sense that the gas
flow shearing the liquid film is no longer geometrically confined, which
brings up the question of interaction with a gaseous turbulent boundary
layer.

At the experimental front, a large scattering of the experimental condi-
tions at which the flooding phenomenon can be found is observed (Jeong
and No 1996). This dispersion of the results is chiefly a consequence of
the sensitivity of the flow to the inlet conditions of the gas and liquid
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flows (Govan et al. 1991, Jeong and No 1994, Zapke and Kröger 1996)
and also results from the interplay of several mechanisms. Three physi-
cal mechanisms are postulated: (i) wavy instability of the film promoted
by the interfacial shear and leading to stationary waves of large ampli-
tudes, or “wave levitation” (Deendarlianto et al. 2010) that could poten-
tially evolve towards atomization; (ii) onset of liquid bridges in confined
geometries, generally at liquid entrance or “liquid bridging” Vlachos et al.
(2001), Mouza et al. (2002); (iii) standing wave trapped at the liquid exit,
the growth of which ultimately seals the passage of the gas flow (Mouza
et al. 2005).

As far as it is knowledgeable, no attention has been paid on the local
geometry of the liquid outlet/gas inlet (shape of the edges, orientation)
and it influence on the flooding phenomenon. If the enhancement of the
liquid film instability in presence of a shear is a commonly accepted mech-
anism for flooding, I am not aware of any attempt to control the dynamics
of the liquid film by applying a forcing at inlet. Yet, a significant progress
in the understanding of a falling film dynamics has been achieved in this
way (see for instance Liu and Gollub (1994) and § 2.1). The sequence of
transitions, primary and secondary instabilities, leading from the Nusselt
flat falling film solution to a disordered sate organized by 3D horseshoe
waves is now quite well characterized and has helped to improved the
different modeling attempts.

At the theoretical front, a first approach has been proposed by Miles
(1957) and Benjamin (1959) who linearized the Navier-Stokes equations
and modeled the effect of the turbulent gas flow with a generic mean ve-
locity profile. However, this linearized description is by design limited to
the case of small amplitude interfacial waves, which differs substantially
from industrial conditions. Moreover, the representation of the turbulent
velocity profile in the theory by Miles and Benjamin imposes further re-
strictions. Firstly, interfacial disturbances are to remain within the viscous
sublayer of the undisturbed gas flow. Secondly, the theory cannot take into
account the effect of confinement and thirdly, it cannot be applied when
separation occurs and backflow regions develop in the gas flow. However,
some substantial progress has been achieved along this line by Tseluiko
and Kalliadasis (2011) who have revisited the theory by Miles and Ben-
jamin and have adopted a one-sided approach: from the kinematics of the
film flow, they have computed the shear induced by the gas. They thus
have formulated hierarchies of models for which the action of the gas
flow is modeled by a non-local operator. Trifonov (2010; 2011) has also
invoked the Benjamin-Miles approach and has assumed the wavy liquid-
gas interface to yield small linear disturbance to the turbulent gas flow.
Both Tseluiko and Kalliadasis, and Trifonov have investigated the onset
of flooding within the “wave levitation” mechanism and have pinpointed
the flooding threshold at the divergence of the traveling-wave amplitude.

Hitherto, a systematic drawback of the theory stems from the one-
sided approach for which the kinematics of the film is assumed to pilot
the shear of the gas flow on the film. Indeed, little attention has been paid
to the effect of gas flow itself.

Sophie Mergui (assistant professor UPMC) and myself have contrived
a two-fold project on the experimental and theoretical axes. The first as-
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Figure 5.12 – Stream function contours (not equidistantly valued) in the wall-fixed
reference frame for co-current gas flow: Rel = 15.0, f = 16 Hz, Γ = 509.5, H = 1.5 mm,
UGS = 0.38 m/s.

pect of this project is under way with Nicolas Kofman’s PhD thesis (from
October 2011). An experimental set-up will be designed to study the onset
of flooding. The inlet conditions both in the gas and in the liquid will be
carefully designed in order to prevent the liquid to be sheared before the
gas flow is steady. A forcing device will be also designed in order to mon-
itor the excitation of the liquid inlet. Finally, the inclined plane geometry
is adopted in order to study the effect of a shear on the threshold of the
Kapitza instability.

The second part of this project benefited from Georg Dietze’s postdoc-
toral fellowship (May 2011 until October 2012). Georg Dietze has now
been recruited in CNRS. We have contrived a study of the coupling of
the gas/liquid flows in a two-phase approach starting with the (simpler)
problem of a falling film in presence of a laminar co- or counter-current
gas flow. The approach is based on the long-wave theory and the weighted
residual technique. A three-equation model has been derived which is
consistent at O(ǫ) for inertial terms and O(ǫ2) for the viscous terms.
DNSs have been performed using two-phase flow solvers based on the
VOF method, Gerris solver Popinet (2003; 2009) and OpenFOAM 1.

Some examples of non-linear traveling waves obtained with the model
are compared to the DNSs in figures 5.12 and 5.13. Streamlines in the
moving frame of the waves have been computed and evince intricate flow
patterns in the gas flow with the formation of large eddies, the presence

1http://www.openfoam.com/
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Figure 5.13 – Idem figure 5.12 but for UGS = 0.19 m/s.

of which may strongly modify the heat and mas transfer at the liquid-gas
interface.

A follow-up of this study will be devoted to the cylindrical geometry.
Core-annular flows of two liquids inside a tube is a typical problem in oil
extraction. The so called “bamboo waves” are typically observed when the
viscosity of the outer liquid is smaller than the viscosity of the inner liquid.
In horizontal pipes, the generation of waves at the interface separating
core and outer flows is a necessary condition for the levitation from the
wall of the core fluid, either lighter of heavier than the lubricating outer
one. Experiments suggest that inertia plays a key role in the levitation
process Joseph et al. (1997).

5.4 Appendix : Coefficients of the averaged momentum

balance (5.11)

We give below the expressions of the coefficients F(H) to M(H) in terms
of the base flow profile f (y; H) solution to (5.6) and of the weight w(y; H)
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defined by (5.10).

F(H) =
1

φ2H

∫ H

0

[

ε′ f l + ε( f 2 − f ′l) + ε2(φ′ f − φ g)
]

w/ε2 dy , (5.28a)

G(H) =
1
φ3

∫ H

0

{

ε′ f (φ′l − φm)

+ε
[

φ′( f 2 − f ′l) + φ( f ′m − f g)
]}

w/ε2 dy, (5.28b)

S(H) =
1

φH2

∫ H

0
f w dy , I(H) = Υ/H2 , (5.28c)

J(H) =
1
φ3

{

Υ
[

φ2 + 4 f |H(φ′)2 − 2φ( f |H + φ′)φ′′]+ w|Hφ(φφ′′ − 2 f |Hφ′)

+
∫ H

0
2(φ′)2 f − 2φφ′g − φφ′′ f

+ε
[

[2(φ′)2 − φφ′′](n − r) + 2φφ′(s − o)
]

w dy
}

, (5.28d)

K(H) =
2

H3φ2

{

2 f |HΥφ′ − Υφφ′′ − f |Hw|Hφ

+
∫ H

0

[

φ′ f − φg + ε
(

φ′(n − r) + φ(s − o)
)]

w dy
}

, (5.28e)

L(H) =
H2

2
K(H) + 2

f |Hw|H
Hφ

, (5.28f)

M(H) =
1

H2φ

{

2 f |HΥ + w|Hφ +
∫ H

0
[ f + ε(n − r)]w dy

}

, (5.28g)

where

g(y; H) = ∂H f , l(y; H) =
∫ y

0
f dy , (5.28h)

m(y; H) =
∫ y

0
g dy , n(y; H) =

∫ y

H
ε−1∂y f dy , (5.28i)

o(y; H) =
∫ y

H
ε−1∂yg dy , r(y; H) =

∫ y

H
l/κ dy , (5.28j)

s(y; H) =
∫ y

H
m/κ dy , φ(H) =

∫ H

0
f dy , (5.28k)

Υ(H) =
∫ H

0
εw dy . (5.28l)

The expressions of the coefficients F(H) to K(H) have been condensed by
using the relation φ′′ = 2g(H; H) and by employing primes to refer to par-
tial derivatives with respect to y, e.g. f ′ = ∂y f (y; H), and to total deriva-
tives with respect to H whenever it is unambiguous, e.g. φ′ = dφ/dH.
w|H and f |H refer to f (H; H) and w(H; H) respectively.
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We consider a power-law fluid flowing down an inclined plane under the action
of gravity. The divergence of the viscosity at zero strain rate is taken care of
by introducing a Newtonian plateau at small strain rate. Two-equation models
are formulated within the framework of lubrication theory in terms of the exact
mass balance and an averaged momentum equation, which form a set of evolution
equations for the film thickness h, a local velocity amplitude or the flow rate q.
The models account for the streamwise diffusion of momentum. Comparisons with
Orr–Sommerfeld stability analysis and with direct numerical simulation (DNS) show
convincing agreement in both linear and nonlinear regimes. The influence of shear-
thinning or shear-thickening on the primary instability is shown to be non-trivial. A
destabilization of the base flow close to threshold is promoted by the shear-thinning
effect, whereas, further from threshold, it tends to stabilize the base flow when the
viscous damping of short waves becomes dominant. A reverse situation is observed
in the case of shear-thickening fluids. Shear-thinning accelerates solitary waves and
promotes a subcritical onset of travelling waves at larger wavenumber than the linear
cut-off wavenumber. A conditional stability of the base flow is thus observed. This
phenomenon results from a reduction of the effective viscosity at the free surface.
When compared with DNS, simulations of the temporal response of the film based on
weighted residual models satisfactorily capture the conditional stability of the film.

Key words: complex fluids, shallow water flows, thin films

1. Introduction

Roll waves, i.e. hydraulic jumps connected by sections of gradually varying
flows, are generally encountered in torrential regimes of river flows and in man-
made conducts such as spillways (Dressler 1949; Julien & Hartley 1986; Chang &
Demekhin 2000). The possible onset of roll waves was already accounted for in the
design of aqueducts by Roman engineers (Fonder & Xanthoulis 2007). Roll waves can
also be observed in overland flows, especially in rill flows, with a potential increase
of the soil erosion (Liu et al. 2005). In estuaries, rivers may carry large amounts of
clay and the resulting mud flows are frequently pulsating and resemble roll waves
in turbulent flows of clear water (Liu & Mei 1994). For these two latter examples,
interactions between clay particles create extensive microscopic structures that are

† Email address for correspondence: ruyer@fast.u-psud.fr
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deformed and gradually broken down when a stress is applied. As a consequence

the response of the fluid to a stress is nonlinear and mud presents a shear-thinning

behaviour.

The onset of roll waves results from an instability mechanism that is similar to the

formation of teardrop-like solitary waves on a laminar film falling down an inclined

plane. In the latter case surface tension prevents the wave from breaking and arrests

the formation of hydraulic jumps. These waves are sometimes referred to as ‘capillary

roll waves’ (Balmforth & Liu 2004). In addition, at low flow rate, the observed wavy

dynamics on a falling film remains spanwise independent (Alekseenko, Nakoryakov &

Pokusaev 1994; Liu & Gollub 1994) which greatly simplifies their study. For these

two reasons, film flows can be viewed as a toy system whose wavy dynamics is

closely related to the torrential regime of rivers at larger flow rates.

The space–time evolution of a Newtonian liquid film flowing down an inclined plane

exhibits a very rich phenomenology which has attracted a considerable number of

studies since Kapitza’s experiments in the 1940s (Kapitza & Kapitza 1949). This is a

classical example of a convective primary instability (Brevdo et al. 1999) giving way

to a sequence of secondary instabilities ending with teardrop-shape large-amplitude

solitary waves (see e.g. Alekseenko et al. 1994; Chang & Demekhin 2002; Kalliadasis

et al. 2011 for a review of this complex phenomenology). There is still a renewed

interest for falling film wavy dynamics and, in particular, to its spatio-temporal

disordered state of solitary waves in interaction, which is an example of weak

turbulence organized by dissipative structures (Manneville 1990). The experiments

by Liu & Gollub (1994) and Vlachogiannis & Bontozoglou (2001) have evidenced

coalescence and repulsion events between waves resulting into a decrease of the

number of solitary waves with the distance from inlet. This coarsening dynamics has

been numerically investigated by Chang et al. (1996).

In comparison to the Newtonian case, far less studies have been devoted to

generalized Newtonian film flows for which the effective viscosity µeff (γ̇ ) is a function

of the strain rate γ̇ . Yet, because of the simplicity of the Ostwald–de Waele power-law

model

µeff (γ̇ )= µnγ̇
n−1, (1.1)

shear-thinning falling films have recently been the subject of a consequential interest

(see e.g. Dandapat & Mukhopadhyay 2001, 2003; Sisoev et al. 2007; Amaouche,

Djema & Bourdache 2009; Fernández-Nieto, Noble & Vila 2010). These studies are

based on the shallow-water averaging of the primitive equations, also often referred

to as the integral boundary layer formulation in the context of falling films (Chang &

Demekhin 2002). A scale separation is assumed in the streamwise and cross-stream

directions, the free surface being deformed on a length scale that is much larger

than the film thickness, which enables the introduction of a small film parameter ǫ.

The continuity and momentum equations are integrated in depth and form a closed

system of equations for the film thickness h and the local flow rate q once a

closure hypothesis, generally a self-similar velocity distribution, is made. Amaouche

et al. (2009) and Fernández-Nieto et al. (2010) have corrected the Kármán–Polhausen

averaged momentum equation derived by Hwang et al. (1994) and Ng & Mei (1994)

and formulated two-equation models that are consistent up to order ǫ. This consistency

enabled them to correctly capture the instability threshold obtained by Ng & Mei

(1994) and Miladinova, Lebonb & Toshev (2004).
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FIGURE 1. Geometry and notation.

The two-equation models derived by Amaouche et al. (2009) and Fernández-Nieto
et al. (2010) are consistent at O(ǫ) but do not account for O(ǫ2) effects such as
streamwise viscous diffusion, which is known to affect wave-to-wave interaction
processes and thus the wave dynamics for Newtonian film flows (Kawahara 1983;
Kawahara & Toh 1988; Pradas, Tseluiko & Kalliadasis 2011). In this paper we
shall present a modelling attempt of power-law falling film flows including second-
order viscous diffusion terms in a consistent way. To account for streamwise viscous
diffusion, the effective viscosity µeff (γ̇ ) and its derivative dµeff /dγ̇ must be computed
at the free surface, where the strain rate γ̇ goes to zero for an unperturbed interface.
In the case of the power law (1.1) either µeff (0) or dµeff /dγ̇ (0), or both, are undefined
for n < 3 which corresponds to most shear-thinning and shear-thickening fluids. This
calls for a regularization at zero strain rate of the power law (1.1) which is here
accounted for by introducing a Newtonian plateau at low strain rates.

The paper is organized as follows. Section 2 presents the governing equations. The
weighted-residual modelling approach is detailed in § 3. The linear stability of the
base flow is discussed in § 4. Nonlinear travelling waves are obtained and compared
with direct numerical simulations (DNSs) in § 5. The conditional stability of a shear-
thinning film is considered in § 6. Section 7 concludes the present study.

2. Governing equations

We consider a power-law fluid flowing down an inclined plane under the action of
gravity as sketched in figure 1. The flow is assumed to be incompressible and the fluid
properties, density ρ and surface tension σ are constant. The angle of inclination β
and the gravity acceleration g are also constant. The dimensional governing equations
read

∂xu + ∂yv = 0, (2.1a)

ρ(∂tu + u∂xu + v∂yu)= −∂xp + ρg sinβ + ∂xτxx + ∂yτxy, (2.1b)

ρ(∂tv + u∂xv + v∂yv)= −∂yp − ρg cosβ + ∂xτyx + ∂yτyy, (2.1c)

where τij = 2µeff (γ̇ )Dij. (2.1d)

Here u = ui + vj is the velocity field, Dij = (∂iuj + ∂jui)/2 is the rate of strain tensor,

γ̇ =
√

2DklDkl is the strain rate and µeff is an effective viscosity which is a function of
the strain rate γ̇ . The system of equations is completed by the boundary conditions at
the free surface y = h

[1 − (∂xh)
2]τxy + ∂xh(τyy − τxx)= 0, (2.2a)
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Set number Concentration µn n µ0 γ̇c γ̇ctν Γ

(Pa sn) (Pa s) (s−1)

1 500 ppm 0.04062 0.607 0.08 0.18 1.8 × 10−3 378
2 1500 ppm 0.3592 0.40 1.43 0.1 1.7 × 10−3 48.7
3 2500 ppm 0.9913 0.34 7.16 0.05 1.2 × 10−3 13.0

TABLE 1. Parameters from rheological measurements of xanthan gum solutions in water.
Surface tension and density are σ = 65 mN m−1 and ρ = 995 kg m−3. Values of the
Kapitza number are computed for a moderate inclination β = 15◦. Set 1 corresponds to
data from Bewersdorff & Singh (1988) and Lindner et al. (2000). Sets 2 and 3 refer to the
fluids studied by Seevaratnam et al. (2007).

pa − p +
τxx (∂xh)

2 −2τxy∂xh + τyy

1 + (∂xh)
2

=
σ∂xxh

[1 + (∂xh)
2]3/2

, (2.2b)

∂th + u∂xh = v, (2.2c)

and at the wall y = 0

u = v = 0. (2.2d)

A regularization of the Ostwald–de Waele power law model (1.1) is assumed at low
shear rate to recover the Newtonian behaviour in that limit. This is the spirit of a
three-parameter Carreau law:

µeff (γ̇ )= µ0 [1 + (γ̇ /γ̇c)
2](n−1)/2

. (2.3)

However, using (2.3) forbids the base flow from being determined analytically and one
can instead introduce a Newtonian plateau:

µeff (γ̇ )= µnγ̇
n−1 for γ̇ > γ̇c, (2.4a)

µeff (γ̇ )= µ0 for γ̇ 6 γ̇c. (2.4b)

The continuity of the shear stress at γ̇ = γ̇c requires µnγ̇
n−1
c = µ0.

Table 1 presents reasonable values of the zero strain viscosity µ0 and the critical
strain rate γ̇c separating Newtonian and non-Newtonian behaviour of shear-thinning
xanthan dilute solutions. Those values are taken from Bewersdorff & Singh (1988),
Lindner, Bonn & Meunier (2000) and Seevaratnam et al. (2007). Noteworthy is that
dilute xanthan solutions do not present yield stresses (Choppe et al. 2010). The
surface tension of xanthan solutions is assumed here to remain close to that of pure
water σ = 65 mN m−1 (Seevaratnam et al. 2007). Conversely, table 2 presents the
properties of three typical shear-thickening solutions of cornstarch in ethylene glycol.
The dynamic viscosity µ0 of the Newtonian plateau is assumed to correspond to the
solvent viscosity.

The length scale is the uniform film thickness h̄N. The velocity scale V is defined by

balancing viscous friction ∝µnVnh̄
−(n+1)
N and streamwise gravity acceleration ∝ρg sinβ

which gives

V =
(

ρgh̄n+1
N sinβ

µn

)1/n

(2.5)

such that the Froude number Fr = V/
√

gh̄N cosβ, which compares the characteristic
speed of the flow with the speed of the gravity waves propagating at the interface, and
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Set number Concentration µn n µ0 γ̇c γ̇ctν Γ

(Pa sn) (Pa s) (s−1)

4 33 % 8 1.3 0.016 10−9 1.3 × 10−10 0.01
5 35 % 6 1.55 0.016 2.1 × 10−5 2.8 × 10−6 0.0077
6 38 % 1.8 2.4 0.016 0.034 5.2 × 10−3 0.005

TABLE 2. Parameters from rheological measurements of cornstarch dispersions in ethylene
glycol (Griskey et al. 1985). Surface tension and density are σ = 48 mN m−1 and
ρ = 1113 kg m−3. The viscosity µ0 of the Newtonian plateau is assumed to correspond
to the solvent viscosity. Values of the Kapitza number are computed for a moderate
inclination β = 15◦.

the Reynolds number

Re =
ρV2−nh̄n

N

µn

= [(µn/ρ)
−2 (g sinβ)2−n h̄n+2

N ]1/n
(2.6)

are related by the relation Re/ cotβ = Fr2. Finally, let us note that the

Reynolds number can also be written as Re = (h̄N/lν)
(n+2)/n

where lν =
(µn/ρ)

2/(n+2) (g sinβ)(n−2)/(n+2) is the length scale corresponding to the balance of
gravity acceleration and viscous drag. We may also rewrite the velocity scale V as

V =
lν

tν

(

h̄N

lν

)(n+1)/n

where tν =
(

µn

ρ

)1/(n+2)

(g sinβ)−2/(n+2) (2.7)

tν is the time scale corresponding to the balance of viscosity and gravity acceleration.
With the above choice of scales, the dimensionless equations thus read

∂xu + ∂yv = 0, (2.8a)

Re(∂tu + u∂xu + v∂yu)= −∂xp + 1 + ∂xτxx + ∂yτxy, (2.8b)

Re(∂tv + u∂xv + v∂yv)= −∂yp − cotβ + ∂xτyx + ∂yτyy, (2.8c)

with boundary conditions

[1 − (∂xh)
2]τxy + ∂xh(τyy − τxx)= 0, (2.8d)

−p +
τxx (∂xh)

2 −2τxy∂xh + τyy

1 + (∂xh)
2

= We
∂xxh

[1 + (∂xh)
2]3/2

, (2.8e)

the kinematic condition (2.2c) and the no-slip condition (2.2d) at the wall. The

Weber number is defined by We = σ/(ρg sinβh̄2
N). Finally, surface tension, gravity

and viscous drag can be compared by the Kapitza number

Γ = (lc/lν)
2 = (σ/ρ) (µn/ρ)

−4/(n+2) (g sinβ)(2−3n)/(n+2), (2.9)

where lc =
√

[σ/(ρg sinβ)] is the capillary length. The Weber and Kapitza numbers

are related to each other by the relation We = Γ (lν/h̄N)
2
.

The dimensionless Carreau law is given by

µeff (γ̇ )= (s2 + γ̇ 2)
(n−1)/2

(2.10)
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FIGURE 2. Ranges of dimensionless maximum viscosity r = sn−1 and relative thickness
sn of the Newtonian surface layer attained for the Nusselt solution of uniform thickness
(2.12) when the Reynolds number is varied between Rec and 100. Solid (dashed) lines refer
to β = 15◦ (β = 85◦). Labels refer to the shear-thinning dilute xanthan solutions whose
properties are listed in table 1. Crosses (squares) correspond to Re = 100 (Re = Rec).

where the dimensionless threshold s is defined by s = γ̇ch̄N/V . Similarly, the
Newtonian plateau model reads

µeff (γ̇ )= γ̇ n−1 for γ̇ > s and µeff (γ̇ )= r otherwise. (2.11)

The dimensionless maximum effective viscosity r is defined by r = sn−1.
The advantage of the Newtonian plateau formulation (2.11) over the Carreau law

(2.10) lies in the presence of an analytical solution for the base flow of constant film
thickness h:

u0 = h(n+1)/nf0(ȳ) for ȳ< 1 − η̄c (2.12a)

u0 = h(n+1)/nf0(1 − η̄c)+ sn+1 g0[(ȳ + η̄c − 1)/η̄c] for ȳ> 1 − η̄c, (2.12b)

where ȳ = y/h is a reduced coordinate, f0(ȳ) = n/(n + 1)[1 − (1 − ȳ)(n+1)/n], g0(ȳ) =
ȳ − (1/2)ȳ2 and η̄c = sn/h is the fraction of the film thickness for which the fluid
is Newtonian. From the uniform-thickness solution (2.12) we obtain ∂yu0|y=0 = 1 and

the dimensional rate of strain at the wall is thus V/h̄N for the base flow. Therefore,
the dimensionless group r can be interpreted as the ratio r = µ0/µw of the shear

viscosities µ0 = µn (γ̇c)
n−1 and µw = µn (V/h̄N)

n−1
at the free surface and at the wall

for the corresponding base flow Nusselt solution. The Newtonian plateau model (2.11)
introduces a fake interface at y = h(1 − η̄c) separating a power-law region and a
Newtonian layer at the free surface. This is reminiscent of the pseudo-plug theory
developed by Balmforth & Liu (2004) and Fernández-Nieto et al. (2010), although in
that case the fake interface has a different physical meaning and separates a plastic
upper layer from a fluid layer underneath.

In the case of the three shear-thinning xanthan solutions whose properties are listed
in table 1, the approximation of a thin Newtonian layer (η̄c ≪ 1) and a large viscosity
ratio (r ≫ 1) is well verified. Figure 2 presents the relative thickness sn of the
Newtonian layer and the viscosity ratio r for the Nusselt film solution (2.12) at
two inclinations (β = 15 and 85◦) and for the three studied xanthan solutions when the
Reynolds number is varied in the interval [Rec, 100]. The instability threshold Rec is
here approximated by the formula (Ng & Mei 1994; Miladinova et al. 2004)

Re = Rec =
3n + 2

2
cotβ or Fr2 =

3n + 2

2
(2.13)
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which corresponds to the Ostwald–de Waele power-law model (1.1). In each case, the
viscosity at the free surface is at least one order of magnitude larger than at the wall
and the Newtonian layer at the free surface has a thickness that is at least one order of
magnitude smaller than the total thickness of the film.

Turning to the cornstarch suspensions (see table 2) the Newtonian surface layer is
very thin and the viscosity ratio is very small, sn and r being less than 2 × 10−6 and
5 × 10−4, respectively, for Re in the range [Rec, 100] and β = 15 or 85◦. We then
conclude that a thin Newtonian layer at the free surface (η̄c ≪ 1) can be assumed for
typical shear-thinning and shear-thickening fluids, an assumption that will be useful to
drastically simplify the derivation of the integral models that we detail below. Finally,
let us note that, although not strictly equivalent, the two models (2.10) and (2.11) of
generalized Newtonian fluids will be shown to lead to close results in the linear and
nonlinear regimes whenever s ≪ 1 and we consider them equivalent in our analysis in
the limit s → 0 (see § 3.1).

3. Low-dimensional formulation

Let us assume (i) slow space and time evolutions ∂x,t ∼ ǫ where ǫ ≪ 1 is a formal
film parameter, (ii) surface deformations induce order-ǫ corrections of the velocity
profile from the flat-film solution, (iii) the Newtonian plateau model (2.11) holds.
Otherwise stated, assumption (ii) implies that viscosity is strong enough to ensure the
cross-stream coherence of the flow which should be verified for small to moderate
Reynolds numbers.

With the help of the continuity equation, assumption (i) implies that the cross-stream
velocity v = −

∫ y

0
∂xu dy = O(ǫ) so that inertia terms can be dropped from the cross-

stream momentum equation, which yields the pressure distribution at order ǫ after
integration:

if y> yc, p = cotβ(h − y)− We∂xxh − r[∂xu|h + ∂xu], (3.1a)

if y 6 yc, p = cotβ(h − y)− We∂xxh − r[∂xu|h + ∂xu|yc+] + 2r∂xu|yc−

− 2∂xuγ̇
n−1
0 −

∫ yc

y

∂x[∂yuγ̇
n−1
0 ] dy, (3.1b)

where yc = h(1− η̄c) defines the location of the fake interface separating the Newtonian

and power-law layers and γ̇0 =
√

(∂yu)
2 +4 (∂xu)

2. Note that ∂yu and ∂xu must be taken

of the same order of magnitude in the expression of the strain rate. Since ∂yu becomes
small close to the free surface, the viscosity at the free surface is then governed by the
value of the streamwise derivative ∂xu|y=h for a thin or vanishing Newtonian layer.

Substitution of (3.1) into the streamwise momentum balance gives

Re(∂tu + u∂xu + v∂yu)= 1 + ∂yτ
(0)
xy + D

(2) − cotβ∂xh + We∂xxxh (3.2a)

where the definition of the lowest-order rate of strain τ (0)xy and of the second-order

viscous terms D (2) depend on whether the flow is Newtonian or non-Newtonian. For
y> yc they read

τ (0)xy = r∂yu and D
(2) = 2r∂xxu + r∂x[∂xu|h] (3.2b)
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whereas for y 6 yc we have

τ (0)xy = ∂yuγ̇
n−1
0 , (3.2c)

D
(2) = ∂y[∂xv(γ̇

n−1
0 + (n − 1) (∂yu)

2 γ̇ n−3
0 )] + 4∂x[∂xuγ̇

n−1
0 ]

+ ∂x

{
∫ yc

y

∂x[∂yuγ̇
n−1
0 ] dy

}

− 2∂x[r∂xu|yc−]

+ r∂x[∂xu|yc+ + ∂xu|h]. (3.2d)

Equation (3.2a) is completed by the no-slip condition u = v = 0 at the wall and the

tangential stress continuity at the free surface y = h truncated at order ǫ2:

∂yu = 4∂xh∂xu − ∂xv. (3.2e)

In spite of the elimination of the pressure, solving the boundary-layer equations

(3.2) remains a formidable task. A further simplification can be achieved by taking

advantage of the strong coherence of the velocity distribution across the fluid layer,

in which case the velocity field can be assumed to be slaved to a limited number of

unknowns and these are functions of time t and location x on the plane. The first of

these effective degrees of freedom is necessarily the film thickness h(x, t), for which

an evolution equation is easily obtained after integration of the continuity equation

∂th + ∂xq = 0, (3.3)

where q =
∫ h

0
u dy is the local flow rate. Equation (3.3) expresses the conservation

of mass. In all cases found in the literature, surface equations are obtained using a

closure assumption q = Q(h) manifesting the complete slaving of the dynamics of the

film to the evolution of the free surface. Integration of the base flow u0 across the fluid

layer leads to

q0 =
∫ h

0

u0 dy =
n

2n + 1
h(2n+1)/n +

1 − n

6n + 3
s (3.4)

which relates the flow rate q to the film thickness h. Assuming that (3.4) still holds

when the free surface is deformed, one is led after substitution into the mass balance

equation (3.3) to a kinematic-wave equation (Whitham 1974):

∂th + h(n+1)/n∂xh = 0, (3.5)

which governs the propagation of free surface deformations when the velocity field is

slaved to the film thickness through the mass balance equation (3.3) or, equivalently,

the kinematic boundary condition (2.2c). Infinitesimal waves |h−1| ≪ 1 thus propagate

at speed unity and the velocity scale V given by (2.5) is the dimensional speed of the

linear kinematic waves in the long-wavelength limit.
The slaving of the velocity to the free surface evolution is verified only at small

values of the Reynolds number Re. At moderate Reynolds number, some additional
degrees of freedom must be added to capture the dynamics of the film, which can be
done by projecting the velocity field on a set of chosen test functions. This closure
assumption is generally reduced to the postulate of a self-similar profile (Hwang
et al. 1994; Dandapat & Mukhopadhyay 2001; Sisoev et al. 2007). We avoid this
restrictive closure which is known to lead to an incorrect prediction of the instability
threshold (Ng & Mei 1994). However, since the mass conservation equation (3.3)
is exact, we stick to the derivation of a low-dimensional model consisting of two
evolution equations for the film thickness h and the local flow rate q. Considering that
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assumption (ii) holds, i.e. that the velocity distribution across the fluid layer is never
far from the flat-film solution, the velocity field is decomposed as

u = us + ũ(1) where (3.6a)

us = ūf0(ȳ) for ȳ 6 1 − η̄c, (3.6b)

us = ū[f0(1 − η̄c)+ η̄(n+1)/n
c g0[(ȳ + η̄c − 1)/η̄c]] for ȳ > 1 − η̄c, (3.6c)

and η̄c is the local relative thickness of the Newtonian layer at the free surface. The

definition of the velocity distribution us is based on the local film thickness h(x, t)

and a local velocity scale ū(x, t) that can be related to the rate of strain at the wall

Dxy|y=0 = ū/h + O(ǫ). Here ũ(1) accounts for the order-ǫ deviations of the velocity

profile induced by the deformation of the free surface. We can also include in ũ(1) the

O(ǫ) corrections of the relation between the flow rate q =
∫ h

0
u dy, h and ū provided by

the flat-film profile

q =
3n + (1 − n)η̄(2n+1)/n

c

6n + 3
hū ≡ φ(η̄c)hū, (3.7)

so that
∫ h

0
ũ(1) dy = 0 is assumed without any restrictions.

The local thickness η̄c of the Newtonian layer is defined by γ̇ (ȳ = 1 − η̄c)= s, which

reads at order ǫ2

s2 = {4 (∂xus)
2 + [∂yus + ∂xvs]2}

ȳ=1−η̄c
. (3.8)

In the limit η̄c ≪ 1, (3.8) can be further simplified to give

s2 =
4n2

(1 + n)2
(∂xū)

2 +η̄2/n
c

ū2

h2
. (3.9)

Therefore, the Newtonian layer disappears locally if

|∂xū|>
n + 1

2n
s. (3.10)

The formulation of an averaged momentum balance in terms of q and h is made

difficult by the impossibility to invert (3.8) and (3.7) to express ū as function of h

and q. We thus aim at a three-equation model for the unknowns h, η̄c and ū made of

the (exact) mass conservation equation (3.3) and (3.8) and an evolution equation for

ū. We apply the weighted residual technique and average the boundary-layer equations

(3.2) across the film. Let us introduce a weighting function w(ȳ) and the scalar product

〈·|·〉 =
∫ h

0
·dy. Writing formally (3.2) as BL(u) = 0, we then set to zero the residual

〈BL(u)|w〉. To obtain an equation that is consistent at O(ǫ), the weight w must be

chosen so that the viscous drag term
∫ yc

0

w(ȳ)∂y[n|∂yus |n−1 ∂yũ
(1)] dy +

∫ h

yc

rw(ȳ)∂yyũ
(1) dy

≡
1

h

∣

∣

∣

∣

ū

h

∣

∣

∣

∣

n−1

〈Lη̄c ũ(1)|w〉 + O(ǫ2) (3.11)

is O(ǫ2). The linear operator Lη̄c is defined by

Lη̄c = ∂ȳ[n (f ′
0)

n−1
∂ȳ·] if 0 6 ȳ 6 η̄c and Lη̄c = η̄(n−1)/n

c ∂ȳȳ · otherwise, (3.12)
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where the thickness of the Newtonian layer is estimated by η̄c = (sh/ū)n +O(ǫ2). The
deviations ũ(1) of the velocity field verify the no-slip condition ũ(1)|ȳ=0 = 0 at the
wall, ∂ȳũ

(1)|ȳ=1 = 0 at the interface and

n∂ȳũ
(1)|ȳ=ȳc− = η̄(n−1)/n

c ∂ȳũ
(1)|ȳ=ȳc+ (3.13)

where ȳc = 1 − η̄c, which is a consequence of the continuity of the rate of stress at the
fake interface:

|∂yu |n−1 ∂yu|ȳ=ȳc− + O(ǫ2)= r∂yu|ȳ=ȳc+ . (3.14)

Two integrations by parts of (3.11) show that the linear operator Lη̄c is self-adjoint.
To make use of the definition of the flow rate q, which implied the gauging condition
∫ h

0
ũ(1) dy = 0, the weight function w must be solution to Lη̄cw = cst which gives

if y< yc, w(ȳ)= f0(ȳ), (3.15a)

if y > yc, w(ȳ)= f0(1 − η̄c)+ nη̄(n+1)/n
c g0[(ȳ + η̄c − 1)/η̄c]. (3.15b)

Noteworthy is that the weight w is not proportional to the velocity profile us defined
in (3.6). The adopted weighted residual method is therefore slightly different from the
Galerkin method for which w ∝ us. This discrepancy is an effect of the nonlinearity of
the strain to stress relationship which introduces a factor n.

We next proceed to the averaging of the boundary-layer equations (3.2) with the
appropriate weights (3.15). To compute the viscous terms appearing in the boundary-
layer formulation (3.2d), we expand the nonlinear constitutive equation

γ̇ n−1
0 = |∂yu |n−1 +2(n − 1) (∂xu)

2 |∂yu |n−3 +O(ǫ4), (3.16)

and replace r with γ̇ n−1
0 |y=h(1−η̄c).

After some tedious algebra, the resulting averaged momentum equation (3.2) reads

∂tū = −Re

[

G̃
ū2

h
∂xh + F̃ū∂xū

]

+ Ĩ

(

1 − cotβ∂xh + We∂xxxh −
ū|ū |n−1

hn+1

)

+ J̃
ū

h2
(∂xh)

2 +K̃
∂xū∂xh

h
+ L̃

ū

h
∂xxh + M̃∂xxū + Ñ

(∂xū)
2

ū
. (3.17)

The coefficients F̃ to Ñ of the averaged momentum balance equation (3.17) are
explicit, but cumbersome, functions of the power-law index n and of the relative
thickness η̄c of the Newtonian layer. We give in appendix A the full expressions of the

coefficients F̃, G̃, Ĩ of the terms of orders ǫ0 and ǫ which will be needed to determine
the value of the critical Reynolds number at onset. The system (3.3), (3.8) and (3.17)
is consistent up to order ǫ and accurately accounts for second-order viscous terms. As
stated in the introduction, the derivation of the (3.17) has required a regularization of
the power law (1.1) for n< 3 in order to compute both µeff (0) and dµeff /dγ̇ (0) in the
Taylor expansion (3.16).

3.1. Shear-thinning film (n< 1) in the limit of vanishing Newtonian layer

The system of equations (3.3), (3.8) and (3.17) is still formidable to solve, mainly
because of the dependence of the coefficients (A1) on the relative thickness η̄c of the
Newtonian layer, which is in turn a nonlinear function of h, ū and their derivatives. For
this reason, we further simplify the formulation by retaining the asymptotic behaviour
of the coefficients when the Newtonian layer is very thin (η̄c → 0).
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In this limit, q ≈ (n/(2n + 1))hū and q can be easily substituted for ū. After some
algebra, we finally obtain

Re∂tq = Re

[

−F(n)
q

h
∂xq + G(n)

q2

h2
∂xh

]

+ I(n)

[

h (1 − cotβ∂xh + We∂xxxh)−
q|q |n−1

(φ0h2)
n

]

+ r

[

J0(n)
q

h2
(∂xh)

2 − K0(n)
∂xq∂xh

h
− L0(n)

q

h
∂xxh + M0(n)∂xxq

]

, (3.18)

where φ0 = φ(0)= n/(2n + 1). The coefficients F(n), . . . , M0(n) are also functions of
the power-law index n whose expressions are given below:

F =
11n + 6

4n + 3
, G =

6n + 3

4n + 3
, I =

3n + 2

2(2n + 1)
, (3.19a)

K0 = J0 = −
(n − 1)(2n + 1)(3n + 2)

(n + 1)2
, (3.19b)

L0 = K0/2, M0 = −
(n − 1)(3n + 2)

2(n + 1)
. (3.19c)

The derivation of (3.18) assumes the presence of the Newtonian layer at the interface
and thus only retains its dominant contributions to the streamwise viscous effects
(with the effective viscosity r). Yet, the limit of a very thin Newtonian layer implies
that the strain-rate threshold s also goes to zero. The Newtonian layer is thus easily
removed by O(s) gradients ∂xh of the film thickness as can be deduced from (3.10),
in which case the effective viscosity at the free surface µeff (y = h) is much lower
than its maximum r. The streamwise viscous effects are therefore overestimated by
(3.18) whenever the free surface is non-weakly deformed. To correctly account for
these viscous effects, the regions of the film where the effective viscosity reaches its
maximum must be considered.

In most cases, the effective viscosity is maximum at the free surface Yet, there is
evidence that this maximum can sometimes be located at the wall. Indeed, Dietze,
Leefken & Kneer (2008) and Dietze, AL-Sibai & Kneer (2009) have pointed out
the onset of backflow phenomena at the minimum thickness of large-amplitude
solitary waves running on Newtonian falling films. These backflow phenomena are
accompanied by the occurrence of separation points at the wall where the strain rate
necessarily goes to zero. In the case of shear-thinning fluids, the effective viscosity
would be maximum at the wall close to the locations of the separation points.

The contributions of the effective viscosity at the free surface to the streamwise
viscous diffusion terms of the averaged momentum balance can be easily accounted
for by substituting µeff (y = h) for the effective viscosity r in (3.18). It is however
more difficult to evaluate the leading contributions of the bulk and wall regions to the
streamwise viscous diffusion terms in the averaged momentum balance. A simple but
ad hoc way to proceed is to estimate the effective viscosity in the bulk region from

its value at the wall µeff (y = 0)≈ [|q|/((φ0h2)]n−1 = h(n−1)/n + O(ǫ), assume a constant

viscosity within the layer and compute the O(ǫ2) viscous contribution to the averaged
momentum equation (see appendix B). We then obtain

Re∂tq = Re

[

−F(n)
q

h
∂xq + G(n)

q2

h2
∂xh

]

+ I(n)

[

h (1 − cotβ∂xh + We∂xxxh)−
q|q |n−1

(φ0h2)
n

]
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+ r(h, q)

[

J0(n)
q

h2
(∂xh)

2 − K0(n)
∂xq∂xh

h
− L0(n)

q

h
∂xxh + M0(n)∂xxq

]

+ h(n−1)/n

[

Jw(n)
q

h2
(∂xh)

2 − Kw(n)
∂xq∂xh

h
− Lw(n)

q

h
∂xxh + Mw(n)∂xxq

]

(3.20)

where Jw,Kw,Lw and Mw are defined by

Jw =
3n2 + 13n + 8

(n + 2)(n + 1)
, Kw = Mw =

5n + 4

n + 1
, (3.21a)

Lw =
17n2 + 23n + 8

2 (n + 1)2
, (3.21b)

and r(h, q) stands for the evaluation of the effective viscosity at the free surface
µeff (y = h) from the model variables h and q:

r(h, q)≡ [s2 + ∂xv
2
s + 4 (∂xus)

2](n−1)/2
∣

∣

∣

y=h
(3.22a)

where

∂xv
2
s + 4 (∂xus)

2 | y=h =
[

2(2n + 1)

n + 1
∂x

(q

h

)

]2

+
{

2n + 1

n + 1

[

−2
∂xh∂xq

h

+ q

(

2
(∂xh)

2

h2
−
∂xxh

h

)]

+ ∂xxq

}2

. (3.22b)

We have considered as equivalent the assumption (2.11) of a Newtonian plateau and
the Carreau law (2.10) to express the effective viscosity r(h, q). Our computations
show that this assumption is reasonable in the limit of a vanishing Newtonian layer
η̄c ≪ 1 (see §§ 4.1 and 5.2). We note that the O(ǫ2) term ∂xvs has been kept in the
expression of the strain rate at the free surface. Indeed, retaining only the dominant
term 4 (∂xus|y=h)

2 ∝ [∂x(q/h)]2 implies that the effective viscosity spuriously reaches
local maxima at crests and troughs of travelling waves since q is a function of h in
that case (cf. § 5).

The averaged momentum equation (3.20) retains the contribution to streamwise
viscous diffusion from the free surface (second row) and from the bulk (third row). In
the Newtonian limit n → 1, the averaged momentum equation obtained by Ruyer-Quil
& Manneville (2000) is recovered

Re∂tq = Re

[

−
17

7

q

h
∂xq +

9

7

q2

h2
∂xh

]

+
5

6

[

h (1 − cotβ∂xh + We∂xxxh)− 3
q

h2

]

+ 4
q

h2
(∂xh)

2 −
9

2

∂xq∂xh

h
− 6

q

h
∂xxh +

9

2
∂xxq. (3.23)

The averaged momentum balance equation (3.3) accounts for the rapid decrease of the
effective viscosity µeff (y = h) when the interface is disturbed. Consistency is achieved
up to O(ǫ) for inertial terms and up to O(ǫ2) for the contribution of the surface
effective viscosity to the streamwise diffusion terms. The contribution of the bulk to
the streamwise viscous diffusion terms is evaluated in an ad hoc way but ensures
consistency with the Newtonian case in the limit n → 1.

Truncated at order ǫ, i.e. when the second and third rows are omitted, (3.20) is
identical to the momentum balance derived by Amaouche et al. (2009). Similarly to
Ng & Mei (1994), Amaouche et al. used the power-law constitutive equation (1.1)
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without regularization of the effective viscosity at zero strain rate. As a matter of fact,
the divergence of the effective viscosity does not affect the boundary-layer momentum
balance equation (3.3) when truncated at first order. Indeed at O(ǫ), the viscous
contribution comes only through the tangential stress τxy which remains bounded. As
a consequence, a regularization of the effective viscosity at low strain rate becomes
necessary only when streamwise viscous effects are accounted for.

3.2. Shear-thickening film (n> 1) in the limit of vanishing Newtonian layer

Now, turning to the shear-thickening case, and retaining the leading-order terms in the
limit s → 0, the averaged momentum equation (3.17) reduces (for 1< n< 3) to

Re∂tq = Re

[

−F(n)
q

h
∂xq + G(n)

q2

h2
∂xh

]

+ I(n)

[

h (1 − cotβ∂xh + We∂xxxh)−
q |q|n−1

(φ0h2)
n

]

+
[

|q|
φ0h2

]n−1

×
[

J1(n)
q

h2
(∂xh)

2 −K1(n)
∂xq∂xh

h

− L1(n)
q

h
∂xxh + M1(n)∂xxq

]

. (3.24)

The set of coefficients is completed by

J1 = −
(2n + 1)(2n + 7)(3n + 2)

3(2n − 1)(4n + 1)
, (3.25a)

K1 = −
(3n + 2)(4n4 − 12n3 − 85n2 − 23n + 2)

12n(2n − 1)(4n + 1)
, (3.25b)

L1 =
(2n + 1)(3n + 2)(12n3 + 36n2 + n − 1)

6n(2n − 1)(3n + 1)(4n + 1)
, (3.25c)

M1 =
(2n + 1)(2n + 7)(3n + 2)

6(4n + 1)(2n − 1)
. (3.25d)

In the Newtonian limit n → 1, the averaged momentum equation (3.23) derived by
Ruyer-Quil & Manneville (2000) is recovered but for the coefficients of the streamwise
viscous diffusion terms q (∂xh)

2 /h2 and (∂xq∂xh)/h as K1(1)= 19/2 and J1(1)= 9. We
note that these terms are nonlinear and do not contribute to the linear stability analysis
of the Nusselt base flow so that the dispersion relations of the model (3.3), (3.24)
and (3.3), (3.23) coincide when n = 1. The above discrepancy is a consequence of
the Taylor expansion (3.16) of the effective viscosity γ̇ n−1

0 which becomes invalid as
∂yus|y=h goes to zero for n = 1. Yet, the assumption of a vanishing Newtonian layer,
necessary to derive (3.24), is obviously not compatible with the Newtonian limit n → 1
and a full agreement of (3.24) with (3.23) is therefore not expected.

4. Linear stability analysis

4.1. Orr–Sommerfeld analysis

In this section, we consider the linear stability of the Nusselt uniform film solution.
We first linearize the governing equations (2.8) with a fluid modelled by a power
law and a Newtonian behaviour at low rate of strain (2.4). We thus perturb the basic
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state (2.12) with h = 1,

if y< 1 − sn, U(y)= f0(y) (4.1a)

otherwise U(y)= f0(1 − sn)+ sn+1g0[s−n(y + sn − 1)], (4.1b)

P(y)= cotβ(1 − y). (4.1c)

We introduce a stream function and proceed to a decomposition on normal modes:

u = U + Re
(

ψ ′(y)eik(x−ct)
)

, v = Re
(

−ikψ(y)eik(x−ct)
)

, (4.2)

hi = 1 − sn + Re
(

fie
ik(x−ct)

)

, (4.3)

where k and c are the wavenumber and phase speed, respectively, and Re stands for
the real part; hi refers to the position of the fake interface separating the Newtonian
and non-Newtonian regions of the flow. We thus obtain a Orr–Sommerfeld problem,

if y< 1 − sn, ikRe[(U − c)(D2 − k2)ψ − ψU′′]
= (D2 + k2)[n (U′)

n−1
(D2 + k2)ψ] − 4k2D[(U′)

n−1
Dψ], (4.4a)

otherwise, ikRe[(U − c)(D2 − k2)ψ − ψU′′] = r (D2 − k2)
2
ψ, (4.4b)

where D ≡ d/dy and again r = sn−1 is the ratio of the viscosity at the free surface and
at the wall. The system of equations (4.4) is completed by the boundary conditions at
the wall and at the interface,

ψ(0)= ψ ′(0)= 0, (4.4c)

k2ψ(1)+ ψ ′′(1)+ U′′(1)
ψ(1)

c − U(1)
= 0, (4.4d)

ψ(1)

c − U(1)
(Wek3 + cotβk)+ kRe[U(1)− c]ψ ′(1)+ ir[ψ ′′′(1)− 3k2ψ ′(1)] = 0, (4.4e)

The amplitude of the deformation of the fake interface is given by

fi = nsn−1(k2ψ |yc− + ψ ′′|yc−), (4.4f )

where yc = 1−sn refers to the location of the interface for the base flow. The continuity
of the velocity implies the continuity of ψ and ψ ′ at y = yc. Writing the continuity of
stresses at the fake interface finally leads to

ψ ′′|yc+ = [nψ ′′ + (n − 1)k2ψ]|yc−, (4.4g)

sn[ψ ′′′]|yc+ =
{

sn[nψ ′′′ + (n − 1)k2ψ ′] − (n − 1)[ψ ′′ + k2ψ]
}

|yc− (4.4h)

at the fake interface yc = 1 − sn.
We solve systems equation (4.4) by continuation using AUTO07P software (Doedel

2008). We obtain the spatial long-wave mode (k complex and ω real) starting from
its analytical solution at k = 0. We first present the result obtained for the three
shear-thinning fluids whose properties are detailed in table 1. Figure 3(a) shows the
behaviour of the spatial growth rate −ki = −Im(k) as a function of the wavenumber
kr = Re(k). The Reynolds number is chosen large (Re = 100) and the inclination
moderate (β = 15◦). Similarly to the Newtonian case (Brevdo et al. 1999), the range
of unstable wavenumbers extends from zero to the cut-off wavenumber kc. Figure 3(b)
presents the marginal stability curve, i.e. cut-off wavenumber kc versus Reynolds
number Re. As the concentration of xanthan gum increases from 500 ppm (set 1) to
2500 ppm (set 3), the instability threshold is displaced to lower values of the critical
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FIGURE 3. (a) Spatial growth rate −ki versus wavenumber kr at Re = 100. (b) Marginal
stability curves in the plane (Re, k). Inclination angle is β = 15◦. Labels refer to shear-
thinning xanthan gum solutions (cf. table 1). Solid lines refer to the solutions to the
Orr–Sommerfeld problem (4.4). Dashed lines correspond to the solutions when surface
tension is not taken into account (We = 0).

Reynolds number whereas the range of unstable wavenumbers is decreased. Shear-
thinning effects therefore enhance the primary instability close to threshold (Millet
et al. 2008), but also tend to stabilize the base flow far from threshold.

We have compared the Orr–Sommerfeld analyses with (We 6= 0) and without surface
tension (We = 0). Differences are important for set 1 but hardly noticeable for the
fluid sets 2 and 3, in which case the cut-off wavenumber is determined by the balance
of inertia and viscous damping. For shear-thinning fluid, viscosity is maximal at the
free surface and a competition of surface tension and viscous damping at the free
surface can be evaluated by computing the Kapitza number Γ0 based on the maximum
viscosity µ0 of the fluid:

Γ0 = (lc/lµ0
)2 = (σ/ρ) (µ0/ρ)

−4/3 (g sinβ)−1/3

where lµ0
= (µ0/ρ)

2/3 (g sinβ)−1/3 (4.5)

is the length at which viscosity µ0 balances streamwise gravity acceleration. From the
data in table 1, we get Γ0 = 8.8 for a 500 ppm xanthan solution (set 1) and Γ0 = 0.19
and 0.02, respectively, for the two more concentrated solutions corresponding to sets 2
and 3, which explains that for the concentrated xanthan solutions surface tension
effects are rather weak in comparison with the wave damping by the viscosity of the
fluid at the free surface.

Figure 4 compares the marginal stability conditions and spatial growth rate for given
fluid properties, flow rate and inclination angle, when the threshold γ̇c, separating the
shear-thinning and the Newtonian behaviours of the fluid, is varied. As expected, both
the location of the marginal stability curve in the plane (Re, kr) and the spatial growth
rate −ki varies significantly with γ̇c which underlines the damping role of the viscosity
at the free surface on the linear stability of the Nusselt film. We therefore conclude
that for a sufficiently small power-law index (n = 0.4 for set 2 and n = 0.34 for
set 3), the marginal stability conditions and thus the range of unstable wavenumbers
are governed by the viscous damping of short waves in the Newtonian layer below the
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FIGURE 4. Spatial linear stability analysis based on the Orr–Sommerfeld problem (4.4)
(thick lines) and based on the Orr–Sommerfeld analysis of Carreau-law fluids (C 2) (thin
lines). (a) Spatial growth rate −ki versus wavenumber kr at Re = 100. (b) Marginal stability
curves in the plane (Re, k). Inclination angle is β = 15◦. Fluid properties correspond to a
shear-thinning xanthan gum solution of concentration 1500 ppm (set 2 in table 1). Labelled
lines 1, 2 and 3 refer to γ̇c = 0.1, 1 and 0.02 s−1, respectively.

interface, a mechanism which is more effective than surface tension and the viscous
momentum diffusion in the bulk of the film.

We have compared the results of the spatial stability analysis obtained with the
Newtonian plateau regularization equation (2.11) with those from the Carreau law
(2.10) (see appendix C). The two analyses lead to close results as illustrated in
figure 4. We have checked that it is also the case for the fluid properties listed in
table 1 and the range of parameters [Rec, Re] for β = 15 and 85◦ for which the
thickness of the Newtonian layer is small (sn ≪ 1). Therefore, the conclusions of our
linear stability analysis do not depend on the peculiar choice of regularization of the
power law (1.1) at low strain rate.

Turning to the shear-thickening cornstarch solutions, we present the spatial growth
rate −ki versus wavenumber kr at Re = 100 and the marginal stability curves in the
plane (Re, k) in figure 5. Labels 4, 5 and 6 refers to the parameter sets given in
table 2. As the concentration of the cornstarch solution is raised from 33 % (set 4)
to 38 % (set 6), the instability threshold is displaced to larger values of the critical
Reynolds number whereas the range of unstable wavenumber increases. Conversely to
what is observed for shear-thinning fluids, shear-thickening effects stabilize the base
flow close to the instability threshold but are destabilizing farther from threshold. The
results presented in figure 5 are not noticeably modified whenever surface tension in
neglected (We = 0) or the critical strain rate is raised up to γ̇c = 1 s−1, which shows
that the range of unstable wavenumbers is determined by the effective viscosity of
the non-Newtonian bulk region and not by the significantly lower viscosity of the
Newtonian layer at the free surface or surface tension effects.

4.2. Whitham wave hierarchy

Turning to the stability analysis of the low-dimensional model (3.3), (3.9), (3.17) and
(3.7) leads to a dispersion relation written in canonical form as

c − ck(k)− ikRe[c − cd−(k)][c − cd+(k)] = 0, (4.6)
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FIGURE 5. Spatial linear stability analysis based on the Orr–Sommerfeld problem (4.4).
(a) Spatial growth rate −ki versus wavenumber kr at Re = 100. (b) Marginal stability curves
in the plane (Re, k). The inclination angle is β = 15◦. Fluid properties correspond to the
shear-thickening cornstarch solutions whose properties are listed in table 2.

which corresponds to the wave hierarchy situation considered by Whitham (1974).
Each dispersion relation of the form (4.6) can be split into two parts with a π/2 phase
shift, each part corresponding to a different kind of wave. The dispersion relation
of the first kind of wave is obtained by taking the limit Re → 0. In this limit, the
velocity field and thus the flow rate q are utterly slaved to the evolution of the film
thickness h and waves of the first kind are governed by the mass balance equation
(3.3) or equivalently the kinematic boundary condition (2.2c). These kinematic waves
result from the kinematic response of the free surface to a perturbation and propagate
at speed

ck =
nĨ + rk2

{

nL̃(1 − 2φ)+ M̃ [2(1 + n)φ − n]
}

nĨ + rk2M̃
, (4.7)

where φ is a function of the relative thickness η̄c of the Newtonian layer and is

defined in (3.7). The coefficients Ĩ, L̃, M̃ and φ are computed for the base state relative
thickness η̄c = sn. In the limit k → 0 we recover ck = 1 which in dimensional units
corresponds to the velocity scale V as already noticed in § 3. Let us stress that the
dependence of ck on the wavenumber k arises from the viscous diffusion of the
momentum in the direction of the flow. This viscous dispersion effect was first noted
in Ruyer-Quil et al. (2008).

In contrast, waves of the second kind correspond to the limit Re → ∞. These
dynamic waves are the responses of the film to the variation in momentum, hydrostatic
pressure and surface tension (for bounded Froude number and ratios We/Re) which are
induced by deformations of the free surface. They propagate at speeds

cd± = 1

2
(F̃ − n + 2(n + 1)φ ±

√
∆), (4.8)

with ∆ = [F̃ − n + 2(n + 1)φ]2 +4{[n − 2(n + 1)φ]F̃ + n(1 − 2φ)G̃}
+ 4n(1 − 2φ)ĨF̃r

−2
(k2), (4.9)
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FIGURE 6. Critical Froude number Fr2 = Re/ cotβ as a function of the relative thickness
sn of the Newtonian layer for the different values of the power-law index n. The solid
lines correspond to (4.11). Crosses and circles refer to the numerical solutions to the
Orr–Sommerfeld problem (4.4) and (C 2), respectively (the thin solid lines are guides to
the eye).

where the coefficients are again computed at η̄c = sn and F̃r
−2
(k2)= (cotβ+Wek2)/Re.

Dispersion of dynamic waves is induced by surface tension.
Considering real wavenumbers, the temporal stability condition of the base state can

be written in terms of the speeds ck and cd± of the kinematic and dynamic waves
(Whitham 1974):

cd− 6 ck 6 cd+. (4.10)

The base state is marginally stable if cd− = ck or cd+ = ck. In our case, only the latter
condition can be achieved. The instability threshold arises at k = 0 which reflects the
long-wave nature of the instability and leads to

Fr2 =
Re

cotβ
=

nĨ

(n + 1)(1 − F̃)− nG̃
. (4.11)

We present in figure 6 the variations of the critical Froude number with respect
to the relative thickness sn of the Newtonian layer for the base flow for the shear-
thinning and shear-thickening fluids reported in tables 1 and 2. The expression (4.11)
is compared with the threshold obtained by solving the Orr–Sommerfeld problem (4.4)
numerically. For all tested values of sn and n a remarkable agreement is achieved. As
for Newtonian film flows this agreement is related to the consistency of the modelling
approach at order ǫ (Ruyer-Quil & Manneville 2000).

We have completed figure 6 with the values of the Froude number at the instability
threshold given by the solution to the Orr–Sommerfeld problem (C 2) when the
Carreau constitutive equation (2.10) is assumed. Whenever the relative thickness of
the Newtonian layer sn is less than 0.2, solving the Orr–Sommerfeld problem with the
regularization given by (2.10) or (2.11) give close results.

The effect of the Ostwald–de Waele model on the stability of the uniform film
Nusselt solution can be found by comparing kinematic and dynamic wave speeds. We
have plotted in figure 7 the minimum of the fastest dynamic wave speed cd+ which is

reached in the limit F̃r
−2 → 0 corresponding to a vertical wall and a null wavenumber.

The largest is the interval between the minimum of cd+ and ck, the smallest is the
threshold Fr2 of the instability. Since the minimum of cd+ is always smaller than one,
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FIGURE 7. Velocity at the free surface ui (solid lines) and dynamic wave speed cd+ in the

limit F̃r
−2 → 0 (dashed lines): (a) n = 0.34, 0.4 and 0.607; (b) n = 1.3, 1.55 and 2.4.

which is the dimensionless value of ck for k = 0, lowering (increasing) the minimum
of cd+ is destabilizing (stabilizing). The decrease of the instability threshold observed
for a shear-thinning fluid (n< 1) in figure 6 is therefore made clear by the drop of the
minimum of the fastest dynamic wave velocity observed in figure 7. The same analysis
applies conversely for a shear-thickening fluid (n > 1). Figure 7 has been completed
with the fluid velocity at the interface, i.e. ui = u|y=1 for the Nusselt base flow h = 1
(Equation (2.12)). Interestingly, ui stays close to the minimum of cd+ whatever the
values of n and sn. Therefore, the variations of the interval between cd+ and ck follow
closely the variations of the interval between ck and the velocity of the fluid at the
interface (which is also the maximum velocity of the base flow). As noted by Smith
(1990), the ability of kinematic waves to move faster than any fluid particles is the
key ingredient of the instability mechanism of a falling liquid film. There is a direct
correlation between the movement of the threshold Fr2 in figure 6 and the variation
of the velocity at the interface ui depicted in figure 7. The smaller the power-law
index n and the thinner the Newtonian layer, the smaller the minimum of cd+ and thus
the instability threshold Fr2 are (Rousset et al. 2007; Millet et al. 2008). The weak
dependence of the maximum velocity of the base flow ui and the speed cd+ of the fast
dynamic waves on the thickness sn of the Newtonian layer for sn lower than 0.2 makes
clear the similar trend observed for the critical Froude number.

4.3. Limit of a vanishing Newtonian layer

We now turn to the simplified models (3.3), (3.20) and (3.3), (3.24) obtained in § 3 in
the limit of thin Newtonian layers at the free surface (sn → 0).
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For a shear-thinning fluid the dispersion relation of model (3.3), (3.20) can be recast
in the canonical form (4.6) where the kinematic wave speed now reads

ck =
n

n + 1
+

1

1 + n + (1 − n)rk2
(4.12)

so that ck = 1 when the viscous dispersive effect vanishes (r → 0). The dynamic wave
speed reads

cd± =
1

2
φ0(F ±

√
∆), with ∆= F2 − 4G +

I

φ2
0 F̃r

2
, (4.13)

where again φ0 = φ(0)= n/(2n+1). Turning to a shear-thickening fluid, the dispersion
relation of the two-equation model (3.3), (3.24) again admits the canonical form (4.6)
where kinematic wave speed is given by

ck =
nI + φ2

0Lk2

nI + φ0Mk2
(4.14)

and dynamic wave speeds remain given by (4.13). For both models (3.3), (3.20) and
(3.3), (3.24), the marginal stability condition ck = cd+ leads to the correct expression
(2.13) of the instability threshold.

We compare in figures 8 and 9 the marginal stability curves obtained with the
two-equation models (3.3), (3.20) and (3.3), (3.24) with the reference results from
the Orr–Sommerfeld stability analysis. A good agreement is obtained for each shear-
thinning and shear-thickening fluid properties listed in tables 1 and 2. More precisely,
the instability threshold is very well captured for each tested set of parameters
although we assume a negligible thickness of the Newtonian layer at the free surface
(sn → 0). The very weak dependence of the instability threshold on the thickness sn

of the Newtonian layer for sn lower than 0.2 observed in figure 6 does explain this
agreement. Note that a better agreement between the models and the Orr–Sommerfeld
analysis is achieved in the case of shear-thinning fluids than for shear-thickening fluids.
Since the cut-off wavenumbers are smaller in the shear-thinning case, which reflects
the stabilizing contribution of streamwise viscous diffusion at the free surface layer,
the long-wave assumption is more easily verified in that case which explains the
observed better agreement with the Orr–Sommerfeld analysis.

As for the Orr–Sommerfeld analysis, we note that the spatial stability analysis of
the shear-thinning model (3.3), (3.20) is strongly dependent on the viscosity contrast r

between the wall and the free surface. Indeed setting r to zero provides much larger
values of the cut-off wavenumber and spatial growth rate. Conversely, we have not
noticed significant differences for the stability of a uniform film of shear-thickening
fluid based on the weighted-residual approach when the Newtonian layer viscosity is
taken into account or not (r = 0).

5. Travelling waves

In this section we consider the nonlinear solutions to the simplified models (3.3),
(3.20) and (3.3), (3.24) such as travelling waves propagating at constant speed c. In
the frame of reference moving with the speed of the waves, ξ = x − ct, the flow
is stationary and partial differential equations are converted into ordinary differential
equations which we solved by continuation using AUTO07P software (Doedel 2008).
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FIGURE 8. (a) Cut-off wavenumber kc versus Reynolds number Re. (b) Phase speed c at
marginal conditions versus Re. Inclination angle is β = 15◦. Labels refer to the shear-thinning
xanthan gum solutions whose properties are listed in table 1. Solid and dashed lines stand for
the solutions to the Orr–Sommerfeld problem (4.4) and to the dispersion relation of (3.3) and
(3.20), respectively.
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FIGURE 9. (a) Cut-off wavenumber kc versus Reynolds number Re. (b) Phase speed c
at marginal conditions versus Re. Inclination angle is β = 15◦. Labels refer to the shear-
thickening cornstarch solutions whose properties are given in table 2. Solid and dashed lines
stand for the solutions to the Orr–Sommerfeld problem (4.4) and to the dispersion relation of
(3.3) and (3.24), respectively.

5.1. Bifurcation diagrams

Considering first shear-thinning fluids, we have reported in figure 10 the bifurcation
diagrams in the plane wavenumber versus speed of the travelling-wave branches of
solutions to (3.3) and (3.20) for the fluid properties of the three xanthan gum aqueous
solutions reported in table 1, at moderate inclination angle β = 15◦ and Re = 20. The

integral constraint 〈h〉 ≡ λ−1
∫ λ

0
h dξ = 1 has been enforced. Here λ = 2π/k refers to

the wavelength.
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FIGURE 10. Speed c of travelling-wave solutions as a function of the wavenumber k/kc

normalized by the cut-off wavenumber kc. Hopf bifurcation at k equal to the cut-off
wavenumber kc is indicated by squares. Here Re = 20, β = 15◦. (a) A 500 ppm shear-thinning
xanthan solution in water (set 1 in table 1). Dashed lines refer to the locus of solutions made
of two γ1 waves. (b) Solid and dashed lines refer to 1500 ppm and to 2500 ppm xanthan
solutions: set 2 and 3 in table 1, respectively.

For the most dilute solution (a), a first branch of slow-wave solutions arises from
the marginal stability condition k = kc through a Hopf bifurcation. Several secondary
branches are found through period doubling of this first branch. One bifurcates at
k ≈ 0.55kc and terminates into fast waves. Following Chang, Demekhin & Kopelevitch
(1993), we denote by γ1 the principal branch of slow waves and by γ2 the secondary
branch of fast waves. The other secondary waves bifurcating from the principal γ1

branch are slow.
Travelling waves correspond to limit cycles in the phase space that terminate into

homoclinic trajectories as their lengthes are augmented. These trajectories correspond
to small-wavenumber solitary-like wavetrains. Figure 11 presents the shapes of slow γ1

and fast γ2 waves at low wavenumbers. The γ1 waves are made of a trough followed
by capillary ripples (a) whereas γ2 are one-humped waves preceded by capillary
ripples (b).

The wrinkling of the solution branches in the k-versus-c diagram in figure 10(a) and
the onset of numerous secondary branches are consequences of the interaction between
the typical length of the capillary ripples preceding or following the waves and the
wavelength. For the more condensed xanthan gum solutions in water (parameter sets 2
and 3), we observed a much simpler bifurcation diagram (see figure 10b). A unique
branch of travelling-wave solutions bifurcate from the Nusselt solutions through a
Hopf bifurcation. Secondary bifurcations through period doubling were not found. The
number and amplitude of the capillary ripples preceding the main hump of the waves
are considerably reduced because of the efficient damping of short waves by viscosity.
This efficient damping of capillary waves is responsible for the drastic simplification
of the bifurcation diagram in figure 10(b) when compared with figure 10(a).

For each bifurcation diagram displayed in figure 10, travelling-wave solutions are
found at k larger than the cut-off wavenumber kc which corresponds to a stable Nusselt
uniform film flow. Travelling waves therefore bifurcate subcritically from the Nusselt
solution. The range of subcritical wavenumbers [ksub, kc] for which travelling waves
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FIGURE 12. Speed c of travelling-wave solutions as a function of the wavenumber k. Solid
line refers to model (3.3) and (3.24), crosses and square refers the phase speed of the
wave before and after breaking, respectively, of the DNS result from Gerris software. Here
Re = 30, β = 15◦. The fluid properties of the shear-thickening cornstarch solutions are given
in table 2. Labels a and b refer to the wave profiles displayed in figure 14: panel (a) set 4,
n = 1.3; panel (b) set 5, n = 1.55 .

coexist with a stable Nusselt solution tends to increase as the power-law index n

is lowered. The onset of subcriticality is here related to the large viscosity ratio r

between the wall and the free surface. Linear waves are efficiently damped by the
free-surface viscosity and the cut-off wavenumber is determined by this effect. Finite-
amplitude disturbances may survive to viscous damping by removing the Newtonian
layer and thus significantly lower the viscosity at the free surface.

Turning to shear-thickening fluids (n > 1), figure 12 presents the bifurcation
diagrams obtained with model (3.3), (3.24) for the cornstarch solutions whose
properties are listed in table 2. The integral constraint 〈h〉 = 1 is again enforced.
For each set of fluid properties, the Kapitza number Γ is small and capillary waves
are effectively damped by viscous effects so that (i) no capillary ripples are observable
at the front of the nearly solitary waves at small wavenumber and (ii) no secondary
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FIGURE 13. Detail of the mesh grid at the end of one Gerris run showing the dynamic
refinement at the interface. The number of cells in the total grid is 15971. Here Re =
100, β = 15◦. The wavelength is λ = 80, fluid properties correspond to shear-thinning
1500 ppm xanthan gum solution (set 2 in table 1). The entire wave profile is displayed in
figure 15(d).

branches have been found to emerge from the principal one through period-doubling
bifurcations. In contrast to shear-thinning fluids, travelling-wave solutions are found
only when the Nusselt base flow solution is unstable and the Hopf bifurcation
corresponds to a supercritical situation.

5.2. Comparisons with DNSs

DNSs of the primitive set of equations (2.8) have been performed implementing
periodic boundary conditions. Initial conditions correspond to the Nusselt flat-film
solution to which a small disturbance has been added. At the final stage of the
computation, nonlinear saturated travelling waves are observed that can be compared
with the travelling-wave solutions to the models (3.3), (3.20) and (3.3), (3.24) with the
integral constraint 〈h〉 = 1.

Gerris software developed by Popinet (2003, 2009) enables us to implement the
Ostwald–de Waele power-law model with a Newtonian plateau (2.4) and has been
used extensively for this purpose. Gerris is a GPL licenced program that can be freely
downloaded from http://gfs.sourceforge.net. Gerris uses a multilevel Poisson solver,
an approximate projection method and a second-order accurate upwind scheme to
discretize advection terms. Variable spatial resolution is enabled by a quadtree adaptive
refinement method. Interfacial flow phenomena are captured by means of a generalized
volume of fluid scheme which allows mesh refinement along the interface.

Refinement of the mesh to the deepest available level is imposed at the free surface
in order to accurately capture the instability of the film. A typical mesh grid is
presented in figure 13. Gerris automatically adapts the mesh in order to capture
velocity variations as is observable at the liquid–solid interface.

Considering first shear-thickening cornstarch solutions (cf. table 2), the free surface
elevations corresponding to the final time of our DNS simulations are displayed in
figure 14. A striking agreement is obtained with the results to the weighted-residual
model (3.3) and (3.24). The amplitude and speed of the waves are also faithfully
captured (see table 3). However, for the largest tested numerical domains, either our
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FIGURE 14. Travelling-wave profiles for the shear-thickening fluids (n> 1) whose properties
are listed in table 2. Solid lines refer to the DNS results from Gerris software, whereas dashed
lines refer to the solutions to model (3.3) and (3.24): (a) set 4, Re = 30, λ = 40; (b) set 5,
Re = 30, λ= 45.

Fluid Re λ c hm

DNS model DNS model

Set 4 30 40 0.98 0.92 1.68 1.65
Set 5 30 45 1.01 1.00 1.65 1.65

TABLE 3. Phase speed c and maximum height hm of travelling-wave solutions with 〈h〉 = 1.
Fluid properties correspond to a shear-thickening cornstarch dispersion in ethylene glycol
and to a 15◦ inclination angle (table 2).

DNSs do not lead to permanent waves or wave breaking phenomena are observed.
The speeds of the fronts, computed immediately before the breaking of the waves take
place, are indicated by filled squares in figure 12(a,b). Curiously, the onset of the wave
breaking phenomenon is accompanied by a reduction of the wave speed, a trend that
is reproduced by the travelling-wave solutions to the weighted-residual model as the
wavenumber k is lowered.

Turning to shear-thinning xanthan gum solutions in water (cf. table 1) the profiles
of the travelling waves obtained at the end of the DNSs are presented in figure 15.
The waves systematically present capillary ripples preceding the main hump in spite
of the very large ratio r of the free surface to wall effective viscosities. Their shapes
are similar to the solitary waves observed experimentally for Newtonian fluids (Liu &
Gollub 1994; Chang & Demekhin 2002). If the amplitude of the waves are comparable
for the three tested sets of fluid properties, the phase speed tends to be larger for the
most concentrated xanthan solution (set 3) corresponding to the lowest value of the
power-law index (n = 0.34).

Shapes, speeds and amplitudes are compared with the predictions of the weighted
residual model (3.3) and (3.20) in figure 15 and table 4. Good agreement is obtained
for the shape and amplitude. However, the model tends to overestimate the speed of
the waves. We note that the nonlinear dependence of the effective viscosity (3.22) on
the gradients of q and h is necessary to reproduce the capillary waves observed in the
DNSs. Solutions to the two-equation model (3.3) and (3.18) with a constant effective
free surface viscosity r do not present capillary ripples.

The DNSs presented in table 4 and figure 15 have been performed again using the
smooth Carreau constitutive equation (2.10) instead of the continuous equation (2.11).
The results of these simulations are labelled ‘DNS(CL)’ in table 4. Wave profiles are
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FIGURE 15. Travelling-wave profiles for shear-thinning xanthan gum solutions in water
(see table 1). Solid lines refer to the DNS results from Gerris software, whereas dashed
lines refer to the solutions to model (3.3) and (3.20): (a) set 1, Re = 50, λ = 60; (b) set
1, Re = 100, λ = 80; (c) set 2, Re = 50, λ = 60; (d) set 2, Re = 100, λ = 80; (e) set 3,
Re = 50, λ= 60; (f ) set 3, Re = 100, λ= 80.

Fluid Re λ c hm

DNS DNS(CL) Model DNS DNS(CL) Model

Set 1 50 60 0.86 0.86 0.88 1.65 1.65 1.60
100 80 0.81 0.82 0.87 2.19 2.19 1.94

Set 2 50 60 0.92 0.92 1.03 2.07 2.07 1.96
100 80 0.76 0.76 0.96 2.20 2.20 2.22

Set 3 50 60 0.93 0.92 1.14 2.02 2.01 2.09
100 80 0.75 0.75 1.05 2.07 2.06 2.28

TABLE 4. Phase speed c and maximum height hm of travelling-wave solutions with 〈h〉 = 1.
Fluid properties correspond to shear-thinning dilute solutions of xanthan gum and to a 15◦

inclination angle (see table 1). ‘DNS’ and ‘DNS(CL)’ refer to the results from Gerris using
the Newtonian plateau constitutive equation (2.11) and the Carreau law (2.10), respectively.

nearly identical and no significant differences have been observed in the results of

DNS using (2.10) or (2.11). We can therefore conclude that, at least for the fluids and

parameters we have tested, travelling-wave solutions are not affected by the particular

choice of regularization at low strain rates of the power-law model (1.1).
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Set 1 (n = 0.607) Set 2 (n = 0.4)
γ̇max max(γ̇y=0) max(γ̇y=h) Γ⋆ γ̇max max(γ̇y=0) max(γ̇y=h) Γ⋆

DNS 1.6 1.6 0.8 470 4.5 1.8 4.5 380
Model 1.2 1.2 0.6 2.0 2.0 1.6

TABLE 5. Maxima of the strain rate γ̇ , global, at the wall and at the free surface
corresponding to figure 16. ‘DNS’ refers to the final stage of DNSs performed with
Gerris software, whereas ‘Model’ denotes the travelling solutions to (3.3) and (3.20). Here
β = 15◦,Re = 50, λ = 60 and Γ⋆ is the Kapitza number corresponding to the viscosity

minimum at the free surface, i.e. Γ⋆ = Γ0 (s/max(γ̇y=h))
4(n−1)/3.

Figure 16 presents the distribution of the strain rate under the solitary-like waves
whose profiles are shown in figure 15(a,c). We limit ourselves to consider the capillary
region at the front of the main hump where the free surface is the steepest. Parameters
correspond to the same Reynolds number, inclination and wavelength but different
xanthan-gum solutions. The more dilute one, set 1 in table 1 with n = 0.607 is less
shear-thinning that the other one, set 2 with n = 0.4. From the results of the DNS
simulations, the local maxima of the strain rate are located either at the wall or at the
free surface. Global maxima of the strain rate, maxima along the wall and along the
free surface are compared in table 5. For the most dilute xanthan-gum solution (set 1
with n = 0.607), the shear rate is maximum at the wall at a location that is close to
the maximum elevation of the free surface as suggested by the leading order term of
the gradient expansion γ̇ = |∂yus| + O(ǫ) whose maximum |q/(φ0h2)| = h1/n + O(ǫ) is
reached at the wall under the crest of the wave. Instead, for the less dilute solution
(set 2 with n = 0.4), the global maximum of the strain rate is reached at the free
surface at a point where the gradient of the thickness is the largest, which suggests
that the long-wave approximation is not well verified at the front of the wave. Indeed,
the front of the wave is quite steep and the assumption ∂xh ≪ 1 does not hold
there. In that region, viscous diffusion and surface tension effects can be compared
by computing the Kapitza number based on the minimum of viscosity at the free
surface, i.e. Γ⋆ = Γ0 (s/max(γ̇y=h))

4(n−1)/3. In each case, Γ⋆ is found to be large which
implies that the breaking of the wave is arrested by surface tension and shows that the
observed ripples have indeed a capillary origin.

Figure 16 and table 5 have been completed with the corresponding results from
the weighted-residual model (3.3) and (3.20). The strain rate distribution has been
computed from the self-similar velocity profile (3.6b), (3.6c). In both cases, the model
slightly underestimates the amplitude of the capillary ripples and predicts smaller
values of the maxima of the strain rate. However, the locations of the local minima
and maxima predicted with the model are in remarkable agreement with the strain rate
distributions found by DNS. For the 500 ppm solution (set 1, n = 0.607), a convincing
agreement is obtained, whereas for the more concentrated 1500 ppm solution (set 2,
n = 0.4) the model fails to locate at the free surface the maximum of the strain rate.
We note that in the latter situation the long-wave approximation starts to be violated.

6. Conditional stability of shear-thinning film flows

In § 5.1, we have seen that travelling waves may be found for shear-thinning fluids
even if the Nusselt flat-film solution is linearly stable. Since infinitesimal perturbations
are then damped, we conclude with a conditional stability of the Nusselt solution.
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FIGURE 16. Distribution of the strain rate γ̇ under the waves whose profiles are shown in
figure 15(a,c). (a,c) Results from DNS. Dark blue (red) regions correspond to the minimum
(maximum) of γ̇ . (b,d) Isocontours of the strain rate corresponding to the weighted-residual
model (3.3) and (3.20). The location of the maxima of γ̇ at the wall and at the free surface are
depicted by squares.

DNSs of the temporal response of the film to an initial perturbation of the form
h(x, 0) = 1 + A cos(kx) have been performed to test the conditional stability of the
film. As in § 5.2, periodic boundary conditions have been implemented. Figure 17
reports the amplitude hmax − hmin of the waves observed at the final stage of the
simulations. DNS results are compared with the corresponding bifurcation diagrams
of the travelling-wave solutions to the model (3.3) and (3.20) (the speed of these
waves is already reported in figure 10b). At a given wavenumber, larger than the
linear cut-off wavenumber kc but smaller than a limiting values ksub, we expect to
find three solutions. For k > ksub, only the Nusselt flat-film solution is found. In the
range [kc, ksub] the largest-amplitude travelling wave and the Nusselt flat-film solutions
should be stable, whereas the smallest-amplitude travelling wave is presumed to be
unstable. In most of our DNS simulations, travelling waves are found to emerge
from a transient growth or decay. As expected, at small amplitude, the initial
disturbance relaxes to the linearly stable flat-film solution, whereas at sufficiently
large amplitude, travelling waves are found. Interestingly, the estimation of ksub from
DNS is in remarkable agreement with the bifurcation diagram from the weighted-
residual model. We therefore conclude that the model (3.3) and (3.20) accurately
captures the conditional stability of the Nusselt film solution. Some DNS simulations,
indicated by double circles in figure 17, leads to temporally periodic waves whose
amplitudes oscillate in time. This kind of wave is also observable in the DNSs of
Newtonian falling films performed by Ramaswamy, Chippada & Joo (1996). They are
observed only in few cases and within a quite narrow band of amplitudes A of the
initial perturbation. We presume that these waves result from the instability of the
low-amplitude travelling-wave solutions, which otherwise are not observable.

The use of periodic boundary conditions enables to limit the computational domain
to the size of the waves and thus to drastically reduce the cost of DNSs. An
immediate drawback is that we investigate the temporal response of the film whereas
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FIGURE 17. Amplitude of the waves obtained at the final stage of DNSs. Parameters
correspond to shear-thinning xanthan gum, Re = 20, β = 15◦. Black and white squares
stand for the travelling-wave solutions for parameter sets 2 and 3, respectively. The range
of amplitudes achieved for time-periodic solutions is indicated by double circles. Solid
and dashed lines refer to the travelling-wave solutions to (3.3) and (3.20) for sets 2 and 3,
respectively.

experimental conditions correspond to the spatial response of the film to periodic
forcing at inlet. However, the weighted-residual model (3.3) and (3.20) accurately
captures the conditional stability of the film and drastically reduces the cost of the
simulations of extended spatial domains. We therefore investigate the spatial response
of the film to a periodic excitation at frequency f within the frame of (3.3) and (3.20).

Figure 18(a) presents the amplitude hmax − hmin versus the frequency f of the
principal branch of travelling-wave solutions for a xanthan gum solution (parameter
set 2 in table 1), Re = 100 and a moderate inclination angle β = 15◦. The integral
constraint 〈q〉 = φ0 has been enforced in order to enable comparisons with the
wavetrains emerging from the time-dependent simulations of the spatial response of
the film to a periodic excitation at frequency f (Scheid et al. 2005).

Travelling waves emerge at the cut-off frequency fc from the Nusselt solution
(hmax − hmin = 0). The control parameter being f , a saddle-node bifurcation is observed
at the frequency fsub. Monitoring fc and fsub in the plane (f ,Re) gives the stability
diagram displayed in figure 18(b). Below the cut-off frequency fc, the flat film
is unconditionally unstable, whereas unconditional stability is expected above fsub.
Whenever f lies in the interval [fc, fsub], a conditional stability is anticipated. The
spatial response of the flat film to a periodic excitation at the inlet then depends on the
amplitude of the perturbation.

We next simulate the response in space and time of the Nusselt flat-film solution to
a periodic forcing at inlet. We have imposed a sinusoidal disturbance on the inlet flow
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FIGURE 18. (a) Amplitude hmax − hmin versus frequency at Re = 100 showing the subcritical
onset of travelling waves when frequency is varied from the cut-off frequency fc. (b) Stability
diagram in the plane (Re, f ). Solid and dashed lines refers to the marginal stability curve
and to the locus of a saddle-node bifurcation fsub. The unconditionally and conditionally
stable regions are labelled ‘US’ and ‘CS’, respectively. The unconditional instability region
is labelled ‘UI’. The inclination angle is β = 15◦, other parameters correspond to a shear-
thinning xanthan gum solution (Set 2 in table 1). Travelling-wave solutions have been
computed enforcing the integral constraint 〈q〉 = φ0.
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FIGURE 19. Snapshots of the free-surface elevation showing the response of the film to a
forcing at inlet with two forcing amplitudes. The simulation is based on model (3.3) and
(3.20). The fluid is a xanthan gum solution (set 2 in table 1 with n = 0.4). Here Re = 100,
β = 15◦ and the forcing frequency is f = 14 Hz. Solid and dashed lines refer to forcing
amplitudes A = 0.08 and A = 0.1, respectively.

rate q(0, t)= φ0[1 + A cos(2πft)]. Chosen properties correspond to a 1500 ppm xanthan
gum solution (parameter set 2 in table 1), Re = 100 and β = 15◦ which corresponds
to the travelling-wave branch drawn in figure 18(a). The chosen dimensional forcing
frequency f = 14 Hz lies in the range [6.5, 16] bounded by fc and fsub. At low values
of the forcing amplitude A, the inlet signal is attenuated as it travels downstream.
After A reaches a certain threshold, inlet perturbations are amplified downstream and
give way to regular trains of travelling waves whose temporal periodicity agrees with
the inlet forcing frequency. Figure 19 presents snapshots of the film thickness at two
amplitudes A = 0.08 and A = 0.1 chosen slightly below and above the threshold. The
damping of the signal for A = 0.08 and its amplification for A = 0.1 are clearly visible.
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FIGURE 20. Simulation of the response of the film to a forcing at inlet with a small amount
of noise. The simulation is based on model (3.3) and (3.20). The fluid is a xanthan gum
solution (set 2 in table 1 with n = 0.4). Here Re = 100, β = 15◦. The forcing frequency
and amplitude are f = 14 Hz and A = 0.4. (a) Spatio-temporal diagram. Light (dark) regions
correspond to small (large) elevations. Vertical and horizontal ranges are 7.5 s and 0.3 m,
respectively. (b) Snapshot of the free-surface elevation at the end of the simulation.

We have rerun our simulations with the addition of a small amount of noise to

the inlet periodic forcing. The spatio-temporal diagram displayed in figure 20(a) gives

an illustration of the evolution of the wave pattern in time and space. The regular

wavetrain that emerges at the forcing frequency close to inlet is quickly disorganized

by secondary instabilities, even if the amplitude A = 0.4 of the forcing signal is

already quite large. The primary wavetrain is disrupted by the onset of larger waves

which accelerate and capture the smaller waves ahead of them. A series of coalescence

events then occurs which drastically reduces the wave density. Figure 20(b) presents

a snapshot of the film thickness at the end of the simulation showing the entire

numerical domain. At the downstream end of the flow, large-amplitude solitary waves

in interaction organize the disordered state of the flow. The resulting wave dynamics

is qualitatively similar to the observation of noise-driven dynamics of a Newtonian

falling film (Chang et al. 1993; Liu & Gollub 1994; Malamataris, Vlachogiannis &

Bontozoglou 2002).

7. Summary and conclusions

The evolution of a power-law laminar film flow has been modelled within the frame

of the lubrication approximation by means of the weighted residual approach. The

derived models are made of the exact mass balance equation (3.3) and an averaged

momentum equation, which form a set of two coupled evolution equations for the

film thickness h and the flow rate q, or equivalently a local velocity amplitude ū. The
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models consistently account for inertial terms up to O(ǫ) and to viscous diffusion

terms up to O(ǫ2). This choice has enabled us to limit the number of degrees of

freedom to only two and to limit the complexity of the different averaged momentum

equations. It is possible to extent the present analysis to account for second-order

inertia terms but at the cost of an increased complexity (Ruyer-Quil & Manneville

2000; Scheid, Ruyer-Quil & Manneville 2006). We expect these terms to play an

important role when three-dimensional wave dynamics are considered.

Consistency at first order of inertial terms is necessary to adequately capture the

onset of the instability, whereas consistency at second order of the viscous terms

enables us to accurately account for the damping of the short waves by streamwise

viscous diffusion. Owing to the unphysical divergence of the effective viscosity of

power-law fluids as the strain rate goes to zero, it is not possible to consistently

account for the streamwise viscous diffusion. To avoid this difficulty, we introduce

a bound to the effective viscosity and a Newtonian plateau at low strain rate and

divide the flow into a Newtonian layer at the free surface and a non-Newtonian

bulk separated by a fake interface. The relative thickness η̄c of Newtonian layer

and the local flow rate q are slaved to h and ū by the implicit relations (3.8) and

(3.7). Application of the weighted residual approach leads to the evolution (3.17)

whose coefficients are functions of η̄c. The two-equation model (3.3) and (3.17) is

thus formidable to solve. A drastic simplification is obtained in the limit η̄c → 0

but at the cost of two different formulations (3.20) and (3.24) of the averaged

momentum equation for shear-thinning fluids (n < 1) and shear-thickening fluids

(n > 1), respectively. The momentum balance (3.20) accounts for the contributions

of the free surface and wall regions to the viscous streamwise diffusion terms. It

is consistent with the averaged momentum equation (3.23) previously derived in the

Newtonian case in the limit n → 1. In the case of (3.24), the averaged momentum

balance (3.23) is not recovered as n goes to one. Yet, the dispersion relations

corresponding to the linear stability of the Nusselt flow, and obtained from (3.24)

and (3.23), coincide at n = 1. We note that a full agreement is not required as the limit

of a vanishing Newtonian layer at the free surface is not compatible with the limit

n → 1.

The two-equation models (3.3), (3.20) and (3.3), (3.24) have been validated in

the linear and nonlinear regimes by means of comparisons with the solutions of the

primitive set of equations (2.1), (2.2) and (2.4). A remarkable agreement with the

Orr–Sommerfeld stability analysis has been obtained. In particular, the instability

threshold is accurately recovered. Comparisons to the DNSs of two-phase flows

demonstrate that the models correctly predict the speed, amplitude and shape of

large-amplitude nearly solitary waves. In particular, the details of the capillary ripples,

the capillary shock region, preceding the main humps are captured correctly.

We have compared the results of our Orr–Sommerfeld analyses and DNSs with

the only continuous Newtonian plateau constitutive law (2.11) and with the smooth

Carreau law (2.10). Whenever the thickness of the Newtonian layer is small (sn ≪ 1),

which is indeed the case for the fluids we have considered in our study, the two

constitutive laws provide very similar results. This gives us confidence that the results

of our study are not dependent on a particular regularization at low strain rate of the

power law (1.1).

Our linear stability analysis shows that the threshold of the long-wave instability

is weakly dependent on the relative thickness sn of the Newtonian layer at the free
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surface. The smaller the power-law index n and the thinner the Newtonian layer,

the smaller the critical Froude number is. For shear-thinning fluids (n < 1) and

low-power-law indices, the range of unstable wavenumbers is governed by the balance

of inertia to streamwise viscous diffusion at the free surface, surface tension and the

contribution of the bulk to viscous diffusion being negligible. Instead, in the case

of shear-thickening fluids (n > 1), viscous diffusion at the free surface is negligible

and the range of unstable wavenumbers is governed by the effective viscosity of

the non-Newtonian bulk layer. The influence of shear-thinning and shear-thickening

on the primary instability is shown to be nontrivial. Instead of the destabilization

(stabilization) of the base flow close to threshold in the case of shear-thinning (shear-

thickening) fluids, an unexpected reverse behaviour is observed further from threshold

when the viscous damping of short waves becomes dominant.

Our study of nonlinear waves focuses on the one-humped large-amplitude solitary

waves that are well known to organize the dynamics of a Newtonian film (Alekseenko

et al. 1994). For shear-thickening fluids, surface tension is a weak effect as compared

to viscous diffusion (Γ ≪ 1) and travelling waves do not present the capillary ripples

observed on shear-thinning and Newtonian films. Shear thinning accelerates solitary

waves and promotes a subcritical onset of travelling waves at larger wavenumber

than the linear cut-off wavenumber kc. A conditional stability of the base flow is

thus observed, the film being able to respond to a periodic forcing at the inlet at

k > kc if the amplitude of the perturbations is large enough. This phenomenon results

from the removal of the Newtonian layer, the reduction of the effective viscosity

at the free surface and therefore the attenuation of the damping of short waves.

Comparisons with DNSs show that this phenomenon is accurately captured by the

weighted-residual model (3.3) and (3.20). Spatio-temporal simulations reveal that trains

of short waves excited at larger frequencies than the cut-off frequency are quickly

disrupted by secondary instabilities which lead to a disordered state organized around

solitary waves in interaction. The spatio-temporal dynamics of this disordered state

is then amenable to a coherent-structure theory in which the flow is discretized into

particle-like solitary waves. Wave-to-wave interaction of solitary waves in Newtonian

flows have been recently investigated by Pradas et al. (2011) who pointed out the

role of viscous dispersion effects. An extension of the theory by Pradas et al. to

shear-thinning film flows is currently under way.

A natural application of the present modelling effort is the study of roll waves

in overland shallow flows which remain laminar and where clay suspensions present

shear-thinning properties. For such flows, the onset of nonlinear waves in conditions

for which the base flow is linearly stable have also been observed by Ng & Mei (1994)

and Pascal & d’Alesio (2007). Yet, these studies do not correctly predict the instability

threshold, a drawback which prevents quantitative comparisons with experimental data.

The remarkable agreement of the solutions to the weighted-residual models with DNSs

suggests that a quantitative representation of the roll wave dynamics might be achieved

within the frame of shallow-water equations similar to (3.3) and (3.20).
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Appendix A. Coefficients of the Newtonian power-law model

The coefficients of the averaged momentum balance equation (3.3) are given in the

following in a fraction form X̃ = X̃a/X̃b:

F̃a = 630n((n + 1)2(7n + 3))+ (n − 1)η̄2+1/n
c {105n(4n + 3)[n(34n + 35)+ 8]

+ 14(4n + 3)η̄1+1/n
c [3(2n + 1)(n(9n(n − 4)− 4)+ 6)

+ 10(n − 1) (n + 1)2(3n + 2)η̄c]
+ (2n + 1)η̄2+2/n

c [−15(n − 6)(2n + 1)(3n + 2)(4n − 3)

+ 28(n − 1) (n + 1)2(3n − 7)(4n + 3)η̄c}], (A 1a)

F̃b = 42(n + 1)(2n + 1)(4n + 3)[15(n + 1)

+ (n − 1)η̄1+1/n
c (30n + 20 + (2n + 1)(3n − 7)η̄1+1/n

c )], (A 1b)

G̃a = 630n3(n + 1)+ (n − 1)η̄2+1/n
c {105n2(4n + 3)(10n + 7)+ 14(4n + 3)η̄1+1/n

c

× [3(2n + 1){n[n(3n − 25)+ 3)+ 6} + 10(n − 1) (n + 1)2(3n + 2)η̄c]
+ (2n − 1)η̄2+2/n

c [28η̄c(4n + 3)(3n − 7) (n + 1)2(n − 1)

− 15(4n − 3)(3n + 2)(2n + 1)(n − 6)]]}, (A 1c)

G̃b =
n

n + 1
F̃b, (A 1d)

Ĩa = 5(n + 1)(3n + 2)[3 + 2(n − 1)η̄2+1/n
c ], (A 1e)

Ĩb =
1

21(2n + 1)(4n + 3)
G̃b. (A 1f )

Appendix B. Coefficients Jw,Kw,Lw and Mw

The contribution of the bulk region of the flow to the streamwise viscous diffusion

terms are evaluated by assuming a constant viscosity µeff . The second-order boundary-

layer equations then read (Ruyer-Quil & Manneville 2000):

Re(∂tu + u∂xu + v∂yu)= µeff [∂yyu + 2∂xxu + ∂x(∂xu|h)]
+ 1 − cotβ∂xh + We∂xxxh, (B 1a)

completed by the tangential stress balance at the free surface

∂yu|h = 4∂xh∂xu|h − ∂xv|h, (B 1b)

the kinematic condition (2.2c) and the no-slip condition (2.2d) at the wall.

Considering the self-similar velocity profile (3.6b) and (3.6c) and averaging the

momentum balance equation (B 1a) with the weight f0 then leads to

Re

∫ h

0

f0(ȳ)(∂tus + us∂xus + vs∂yus) dy = µeff

{

f0(1) [4∂xh∂xus|h − ∂xvs|h]

+
∫ h

0

f ′′
0 (ȳ)us + f0(ȳ) [2∂xxus + ∂x(∂xus|h)] dy

}

. (B 2)
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We then obtain the following averaged momentum equation

Re∂tq = Re

[

−F(n)
q

h
∂xq + G(n)

q2

h2
∂xh

]

+ I(n)

[

h (1 − cotβ∂xh + We∂xxxh)− µeff

Iw(n)

φ0

q

h2

]

+µeff

[

Jw(n)
q

h2
(∂xh)

2 −Kw(n)
∂xq∂xh

h
− Lw(n)

q

h
∂xxh + Mw(n)∂xxq

]

, (B 3)

where Iw = (2n + 1)/(n + 2). Coefficients Jw, Kw, Lw and Mw are given in (3.21).

Appendix C. Orr–Sommerfeld analysis of Carreau-law films

In this section, we consider the primary stability of a uniform film flow when the
rheological behaviour of the liquid is governed by the three-parameter Carreau law
(2.3). The base flow is given by

1 − y = (s2 + U′2)
(n−1)/2

U′ (C 1)

with the no slip condition U(0)= 0.
Proceeding to a decomposition in normal modes of infinitesimal perturbations

around the base state leads to the Orr–Sommerfeld equation

ikRe[(U − c)(D2 − k2)ψ − ψU′′] = (D2 + k2)[(s2 + U′2)
(n−3)/2

(s2 + nU′2)(D2 + k2)ψ]

− k2D[(s2 + U′2)
(n−1)/2

Dψ], (C 2)

where k and c refer again to the wavenumber and phase speed, respectively. The
boundary conditions associated with (C 2) are (4.4c), (4.4d) and (4.4e). Rousset et al.

(2007) and Usha et al. (2011) have considered the stability of a shear-thinning falling
film using a four-parameter Carreau law accounting for Newtonian plateaus at high
and low shear rates. The system (C 2), (4.4c), (4.4d) and (4.4e) corresponds to the
Orr–Sommerfeld system of equations derived by Usha et al. (2011) when the influence
of the Newtonian plateau at high shear rate is neglected, that is when the parameter I

is set to zero in their formulation.
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Titre De la modélisation et des instabilités des films liquides tombants

Résumé Ce mémoire présente une synthèse de travaux de recherche
portant sur l’étude et la modélisation d’instabilités de grandes longueurs
d’ondes en général et de films liquides tombants en particulier. Les dif-
férentes méthodes sont discutées au chapitre 1 et appliquées aux écoule-
ments inertiels en cellule de Hele-Shaw. L’instabilité Kapitza d’un film
tombant est étudiée au chapitre 2. Les couplages de l’instabilité Kapitza
avec les instabilités Marangoni (films chauffés) et Rayleigh-Plateau (films
sur fibres) font l’objet des chapitres 3 et 4. Le chapitre 5 présente mes
derniers travaux sur les films non-Newtoniens, en présence d’une paroi
poreuse ou encore cisaillés par un écoulement gazeux.

Mots-clés instabilités, modéliation, ondes longues, films liquides
tombants, Rayleigh-Plateau, Marangoni, Kelvin-Helmholtz

Title Instabilities and modeling of falling film flows

Abstract This manuscript presents a synthesis of research activities de-
voted to the study and low-dimensional modeling of long-wave instabili-
ties in general and to falling film flows in particular. The different method-
ologies are discussed in Chapter 1 and applied to the modeling of inertial
flows in a Hele-Shaw cell. Chapter 2 is devoted to the Kapitza instability
of a falling film. Chapter 3 and 4 investigate the coupling of the Kapitza
instability with the Marangoni (heated films) and the Rayleigh-Plateau in-
stabilities (films running down fibers). Chapter 5 presents recent works
on non-Newtonian falling films, films running on porous media and some
current works on films sheared by a gas stream.

Keywords instabilities, low-dimensional modeling, long waves, falling
liquid films, Rayleigh-Plateau, Marangoni, Kelvin-Helmholtz
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