B. Sels, E. D. Hondt, P. Jacobs, G. Centi, R. A. Van-santen et al., The Future of Glycerol, Chem. Soc. Rev, vol.375, issue.10, p.13, 2007.

C. Montassier, D. Giraud, J. Barbier, and I. Stud, Polyol Conversion by Liquid Phase Heterogeneous Catalysis Over Metals, Surf. Sci. Catal, vol.41, p.165, 1988.
DOI : 10.1016/S0167-2991(09)60811-9

C. Montassier, J. M. Dumas, P. Granger, and J. Barbier, Deactivation of supported copper based catalysts during polyol conversion in aqueous phase, Applied Catalysis A: General, vol.121, issue.2, p.231, 1995.
DOI : 10.1016/0926-860X(94)00205-3

Z. Huang, F. Cui, H. Kang, J. Chen, X. Zhang et al., Highly Dispersed Silica-Supported Copper Nanoparticles Prepared by Precipitation???Gel Method: A Simple but Efficient and Stable Catalyst for Glycerol Hydrogenolysis, Chemistry of Materials, vol.20, issue.15, p.5090, 2008.
DOI : 10.1021/cm8006233

L. Guo, J. Zhou, J. Mao, X. Guo, and S. Zhang, Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols, Applied Catalysis A: General, vol.367, issue.1-2, p.93, 2009.
DOI : 10.1016/j.apcata.2009.07.040

Z. Yuan, J. Wang, L. Wang, W. Xie, and P. Chen, Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts, Bioresource Technology, vol.101, issue.18, p.7088, 2010.
DOI : 10.1016/j.biortech.2010.04.016

Z. Yuan, L. Wang, J. Wang, S. Xia, and P. Chen, Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts, Applied Catalysis B: Environmental, vol.101, issue.3-4, p.431, 2011.
DOI : 10.1016/j.apcatb.2010.10.013

C. Liang, Z. Ma, L. Ding, and J. Qiu, Template Preparation of Highly Active and Selective Cu???Cr Catalysts with High Surface Area for Glycerol Hydrogenolysis, Catalysis Letters, vol.27, issue.95, p.169, 2009.
DOI : 10.1007/s10562-009-9844-y

R. B. Mane, A. A. Ghalwadkar, A. M. Hengne, Y. R. Suryawanshi, and C. V. Rode, Role of promoters in copper chromite catalysts for hydrogenolysis of glycerol, Catalysis Today, vol.164, issue.1, p.447, 2010.
DOI : 10.1016/j.cattod.2010.10.032

M. Balaraju, V. Rekha, P. Sai-prasad, R. Prasad, and N. Lingaiah, Selective Hydrogenolysis of Glycerol to 1, 2 Propanediol Over Cu???ZnO Catalysts, Catalysis Letters, vol.281, issue.1-2, p.119, 2008.
DOI : 10.1007/s10562-008-9590-6

L. Huang, Y. Zhu, H. Zheng, Y. Li, and Z. Zeng, Continuous production of 1,2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions, Journal of Chemical Technology & Biotechnology, vol.216, issue.12, p.1670, 2008.
DOI : 10.1002/jctb.1982

Z. Zhou, X. Li, T. Zeng, W. Hong, Z. Cheng et al., Kinetics of Hydrogenolysis of Glycerol to Propylene Glycol over Cu-ZnO-Al2O3 Catalysts, Chinese Journal of Chemical Engineering, vol.18, issue.3, p.384, 2010.
DOI : 10.1016/S1004-9541(10)60235-2

Y. Feng, H. Yin, A. Wang, L. Shen, L. Yu et al., Gas phase hydrogenolysis of glycerol catalyzed by Cu/ZnO/MOx (MOx=Al2O3, TiO2, and ZrO2) catalysts, Chemical Engineering Journal, vol.168, issue.1, p.403, 2011.
DOI : 10.1016/j.cej.2011.01.049

C. Montassier, J. C. Ménézo, L. C. Hoang, C. Renaud, and J. Barbier, Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium, Journal of Molecular Catalysis, vol.70, issue.1, p.99, 1991.
DOI : 10.1016/0304-5102(91)85008-P

J. Zhao, W. Yu, C. Chen, H. Miao, H. Ma et al., Ni/NaX: A Bifunctional Efficient Catalyst for Selective Hydrogenolysis of Glycerol, Catalysis Letters, vol.83, issue.1-2, p.184, 2010.
DOI : 10.1007/s10562-009-0208-4

W. Yu, J. Zhao, H. Ma, H. Miao, Q. Song et al., Aqueous hydrogenolysis of glycerol over Ni???Ce/AC catalyst: Promoting effect of Ce on catalytic performance, Applied Catalysis A: General, vol.383, issue.1-2, p.73, 2010.
DOI : 10.1016/j.apcata.2010.05.023

Q. Liu, X. Guo, T. Wang, Y. Li, and W. Shen, Synthesis of CoNi nanowires by heterogeneous nucleation in polyol, Materials Letters, vol.64, issue.11, p.1271, 2010.
DOI : 10.1016/j.matlet.2010.03.006

D. G. Lahr and B. H. Shanks, Effect of sulfur and temperature on ruthenium-catalyzed glycerol hydrogenolysis to glycols, Journal of Catalysis, vol.232, issue.2, p.386, 2005.
DOI : 10.1016/j.jcat.2005.03.015

M. Balaraju, V. Rekha, P. S. Sai-prasad, B. L. Prabhavathi-devi, R. B. Prasad et al., Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts, Applied Catalysis A: General, vol.354, issue.1-2, p.82, 2009.
DOI : 10.1016/j.apcata.2008.11.010

E. P. Maris and R. J. Davis, Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts, Journal of Catalysis, vol.249, issue.2, p.328, 2007.
DOI : 10.1016/j.jcat.2007.05.008

A. Alhanash, E. Kozhevnikova, and I. Kozhevnikov, Hydrogenolysis of Glycerol to Propanediol Over Ru: Polyoxometalate Bifunctional Catalyst, Catalysis Letters, vol.30, issue.3-4, p.307, 2008.
DOI : 10.1007/s10562-007-9286-3

J. Feng, H. Fu, J. Wang, R. Li, H. Chen et al., Hydrogenolysis of glycerol to glycols over ruthenium catalysts: Effect of support and catalyst reduction temperature, Catalysis Communications, vol.9, issue.6, p.1458, 2008.
DOI : 10.1016/j.catcom.2007.12.011

M. Balaraju, V. Rekha, B. L. Devi, R. B. Prasad, P. S. Prasad et al., Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol, Applied Catalysis A: General, vol.384, issue.1-2, p.107, 2010.
DOI : 10.1016/j.apcata.2010.06.013

C. Montassier, J. C. Ménézo, J. Moukolo, J. Naja, L. C. Hoang et al., Polyol conversions into furanic derivatives on bimetallic catalysts: Cu???Ru, Cu???Pt and Ru???Cu, Journal of Molecular Catalysis, vol.70, issue.1, p.65, 1991.
DOI : 10.1016/0304-5102(91)85006-N

L. Ma and D. He, Hydrogenolysis of Glycerol to Propanediols Over Highly Active Ru???Re Bimetallic Catalysts, Topics in Catalysis, vol.167, issue.1???2, p.834, 2009.
DOI : 10.1007/s11244-009-9231-3

D. Roy, B. Subramaniam, and R. V. Chaudhari, Aqueous phase hydrogenolysis of glycerol to 1,2-propanediol without external hydrogen addition, Catalysis Today, vol.156, issue.1-2, p.31, 2010.
DOI : 10.1016/j.cattod.2010.01.007

A. Wawrzetz, B. Peng, A. Hrabar, A. Jentys, A. A. Lemonidou et al., Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol, Journal of Catalysis, vol.269, issue.2, p.411, 2010.
DOI : 10.1016/j.jcat.2009.11.027

R. B. Mane, A. A. Ghalwadkar, A. M. Hengne, Y. R. Suryawanshi, and C. V. Rode, Role of promoters in copper chromite catalysts for hydrogenolysis of glycerol, Catalysis Today, vol.164, issue.1, p.447, 2011.
DOI : 10.1016/j.cattod.2010.10.032

G. W. Huber and J. A. Dumesic, An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery, Catalysis Today, vol.111, issue.1-2, p.119, 2006.
DOI : 10.1016/j.cattod.2005.10.010

L. Kong, G. Li, H. Wang, W. He, and F. Ling, Hydrothermal catalytic conversion of biomass for lactic acid production, Journal of Chemical Technology & Biotechnology, vol.33, issue.3, p.383, 2008.
DOI : 10.1002/jctb.1797

J. Huang, W. Li, and X. Zhou, Preparation of lactic acid from glucose in ionic liquid solvent system, Journal of Central South University of Technology, vol.35, issue.1, p.45, 2010.
DOI : 10.1007/s11771-010-0009-3

M. S. Holm, S. Saravanamurugan, and E. Taarning, Conversion of Sugars to Lactic Acid Derivatives Using Heterogeneous Zeotype Catalysts, Science, vol.328, issue.5978, p.602, 2010.
DOI : 10.1126/science.1183990

R. M. West, M. S. Holm, S. Saravanamurugan, J. Xiong, Z. Beversdorf et al., Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars, Journal of Catalysis, vol.269, issue.1, p.122, 2009.
DOI : 10.1016/j.jcat.2009.10.023

A. Yuksel, H. Koga, M. Sasaki, and M. Goto, Electrolysis of glycerol in subcritical water, Journal of Renewable and Sustainable Energy, vol.1, issue.3, p.33112, 2009.
DOI : 10.1063/1.3156006

Y. Shen, S. Zhang, H. Li, Y. Ren, and H. Liu, Efficient Synthesis of Lactic Acid by Aerobic Oxidation of Glycerol on Au-Pt/TiO2 Catalysts, Chemistry - A European Journal, vol.215, issue.103, p.7368, 2010.
DOI : 10.1002/chem.201000740

C. S. Callam, S. J. Singer, T. L. Lowary, and C. M. Hadad, Computational Analysis of the Potential Energy Surfaces of Glycerol in the Gas and Aqueous Phases:?? Effects of Level of Theory, Basis Set, and Solvation on Strongly Intramolecularly Hydrogen-Bonded Systems, Journal of the American Chemical Society, vol.123, issue.47, p.11743, 2001.
DOI : 10.1021/ja011785r

J. L. Dashnau, N. V. Nucci, K. A. Sharp, and J. M. Vanderkooi, Hydrogen Bonding and the Cryoprotective Properties of Glycerol/Water Mixtures, The Journal of Physical Chemistry B, vol.110, issue.27, p.13670, 2006.
DOI : 10.1021/jp0618680

A. B. Yongye, B. L. Foley, and R. J. Woods, On Achieving Experimental Accuracy from Molecular Dynamics Simulations of Flexible Molecules:?? Aqueous Glycerol, The Journal of Physical Chemistry A, vol.112, issue.12, p.2634, 2008.
DOI : 10.1021/jp710544s

C. J. Zhang and P. Hu, A first principles study of methanol decomposition on Pd(111): Mechanisms for O???H bond scission and C???O bond scission, The Journal of Chemical Physics, vol.115, issue.15, p.7182, 2001.
DOI : 10.1063/1.1405157

S. K. Desai, M. Neurock, and K. Kourtakis, A Periodic Density Functional Theory Study of the Dehydrogenation of Methanol over Pt(111), The Journal of Physical Chemistry B, vol.106, issue.10, p.2559, 2002.
DOI : 10.1021/jp0132984

J. Greeley and M. Mavrikakis, A First-Principles Study of Methanol Decomposition on Pt(111), Journal of the American Chemical Society, vol.124, issue.24, p.7193, 2002.
DOI : 10.1021/ja017818k

J. Greeley and M. Mavrikakis, Competitive Paths for Methanol Decomposition on Pt(111), Journal of the American Chemical Society, vol.126, issue.12, p.3910, 2004.
DOI : 10.1021/ja037700z

D. Cao, G. Q. Lu, A. Wieckowski, S. A. Wasileski, and M. Neurock, Mechanisms of Methanol Decomposition on Platinum:?? A Combined Experimental and ab Initio Approach, The Journal of Physical Chemistry B, vol.109, issue.23, p.11622, 2005.
DOI : 10.1021/jp0501188

G. Wang, Y. Zhou, Y. Morikawa, J. Nakamura, Z. Cai et al., Kinetic Mechanism of Methanol Decomposition on Ni(111) Surface:?? A Theoretical Study, The Journal of Physical Chemistry B, vol.109, issue.25, p.12431, 2005.
DOI : 10.1021/jp0463969

Y. Zhou, P. Lv, and G. Wang, DFT studies of methanol decomposition on Ni(100) surface: Compared with Ni(111) surface, Journal of Molecular Catalysis A: Chemical, vol.258, issue.1-2, p.203, 2006.
DOI : 10.1016/j.molcata.2006.04.013

M. Yang, X. Bao, and W. Li, First Principle Study of Ethanol Adsorption and Formation of Hydrogen Bond on Rh(111) Surface, The Journal of Physical Chemistry C, vol.111, issue.20, p.7403, 2007.
DOI : 10.1021/jp0686184

Y. Choi and P. Liu, Mechanism of Ethanol Synthesis from Syngas on Rh(111), Journal of the American Chemical Society, vol.131, issue.36, p.13054, 2009.
DOI : 10.1021/ja903013x

R. Alcalá, M. Mavrikakis, and J. A. Dumesic, DFT studies for cleavage of C$z.sbnd;C and C$z.sbnd;O bonds in surface species derived from ethanol on Pt(111), Journal of Catalysis, vol.218, issue.1, p.178, 2003.
DOI : 10.1016/S0021-9517(03)00090-3

J. Wang, C. S. Lee, and M. C. Lin, Mechanism of Ethanol Reforming: Theoretical Foundations, The Journal of Physical Chemistry C, vol.113, issue.16, p.6681, 2009.
DOI : 10.1021/jp810307h

H. Wang and Z. Liu, Comprehensive Mechanism and Structure-Sensitivity of Ethanol Oxidation on Platinum: New Transition-State Searching Method for Resolving the Complex Reaction Network, Journal of the American Chemical Society, vol.130, issue.33, p.10996, 2008.
DOI : 10.1021/ja801648h

M. Li, W. Guo, R. Jiang, L. Zhao, X. Lu et al., Density Functional Study of Ethanol Decomposition on Rh(111), The Journal of Physical Chemistry C, vol.114, issue.49, p.21493, 2010.
DOI : 10.1021/jp106856n

B. N. Zope, D. D. Hibbitts, M. Neurock, and R. J. Davis, Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis, Science, vol.330, issue.6000, p.74, 2010.
DOI : 10.1126/science.1195055

V. Pallassana and M. Neurock, Reaction Paths in the Hydrogenolysis of Acetic Acid to Ethanol over Pd(111), Re(0001), and PdRe Alloys, Journal of Catalysis, vol.209, issue.2, p.289, 2002.
DOI : 10.1006/jcat.2002.3585

M. Salciccioli, W. Yu, M. A. Barteau, J. G. Chen, and D. G. Vlachos, Differentiation of O???H and C???H Bond Scission Mechanisms of Ethylene Glycol on Pt and Ni/Pt Using Theory and Isotopic Labeling Experiments, Journal of the American Chemical Society, vol.133, issue.20, p.7996, 2011.
DOI : 10.1021/ja201801t

J. K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L. B. Hansen et al., Universality in Heterogeneous Catalysis, Journal of Catalysis, vol.209, issue.2, p.275, 2002.
DOI : 10.1006/jcat.2002.3615

P. Ferrin, D. Simonetti, S. Kandoi, E. Kunkes, J. A. Dumesic et al., Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and Br??nsted???Evans???Polanyi Relations, Journal of the American Chemical Society, vol.131, issue.16, p.5809, 2009.
DOI : 10.1021/ja8099322

D. Loffreda, F. Delbecq, F. Vigné, and P. Sautet, Titelbild: Fast Prediction of Selectivity in Heterogeneous Catalysis from Extended Br??nsted-Evans-Polanyi Relations: A Theoretical Insight (Angew. Chem. 47/2009), Angewandte Chemie, vol.121, issue.47, p.8955, 2009.
DOI : 10.1002/ange.200905266

J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, vol.45, issue.23, p.13244, 1992.
DOI : 10.1103/PhysRevB.45.13244

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.13, issue.12, p.5188, 1976.
DOI : 10.1103/PhysRevB.13.5188

M. C. Payne, M. P. Teter, D. C. Allan, and T. A. Arias, total-energy calculations: molecular dynamics and conjugate gradients, Reviews of Modern Physics, vol.64, issue.4, p.1045, 1992.
DOI : 10.1103/RevModPhys.64.1045

G. Henkelman and H. Jonsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, The Journal of Chemical Physics, vol.111, issue.15, p.7010, 1999.
DOI : 10.1063/1.480097

P. E. Blöchl, Projector augmented-wave method, Physical Review B, vol.50, issue.24, p.17953, 1994.
DOI : 10.1103/PhysRevB.50.17953

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.59, issue.3, p.1758, 1999.
DOI : 10.1103/PhysRevB.59.1758

S. Laref, F. Delbecq, and D. Loffreda, Theoretical elucidation of the selectivity changes for the hydrogenation of unsaturated aldehydes on Pt(111), Journal of Catalysis, vol.265, issue.1, p.35, 2009.
DOI : 10.1016/j.jcat.2009.04.010

URL : https://hal.archives-ouvertes.fr/hal-01116676