T. Abichou, C. H. Benson, and T. B. , Network model for hydraulic conductivity of sand-bentonite mixtures, Canadian Geotechnical Journal, vol.41, issue.4, pp.698-712, 2004.
DOI : 10.1139/t04-016

I. Agnolin and J. Roux, Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks, Physical Review E, vol.76, issue.6, p.76, 2007.
DOI : 10.1103/PhysRevE.76.061302

URL : https://hal.archives-ouvertes.fr/hal-00148554

T. Anderson and R. Jackson, Fluid Mechanical Description of Fluidized Beds. Equations of Motion, Industrial & Engineering Chemistry Fundamentals, vol.6, issue.4, pp.527-539, 1967.
DOI : 10.1021/i160024a007

E. Ando, S. Hall, G. Viggiani, J. Desrues, and P. Bésuelle, Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach, Acta Geotechnica, vol.4, issue.1, pp.1-13, 2011.
DOI : 10.1007/s11440-011-0151-6

F. Aurenhammer, Voronoi diagrams---a survey of a fundamental geometric data structure, ACM Computing Surveys, vol.23, issue.3, pp.345-405, 1991.
DOI : 10.1145/116873.116880

K. Bagi, Analysis of microstructural strain tensors for granular assemblies, International Journal of Solids and Structures, vol.43, issue.10, pp.3166-3184, 2006.
DOI : 10.1016/j.ijsolstr.2005.07.016

S. Bakke and P. Øren, 3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks, SPE Journal, vol.2, issue.02, pp.136-149, 1997.
DOI : 10.2118/35479-PA

J. Bardet and J. Proubet, A numerical investigation of the structure of persistent shear bands in granular media, G??otechnique, vol.41, issue.4, pp.599-613, 1991.
DOI : 10.1680/geot.1991.41.4.599

V. Batista, D. Millman, S. Pion, and J. Singler, Parallel geometric algorithms for multi-core computers, Computational Geometry, vol.43, issue.8, pp.663-677, 2010.
DOI : 10.1016/j.comgeo.2010.04.008

URL : https://hal.archives-ouvertes.fr/inria-00409051

J. Bear, Hydraulics of groundwater, 1979.

J. Biarez and P. Hicher, Elementary Mechanics of Soil Behaviour: Saturated Remoulded Soil, 1994.

M. Biot, Theory of Elasticity and Consolidation for a Porous Anisotropic Solid, Journal of Applied Physics, vol.26, issue.2, pp.182-185, 1955.
DOI : 10.1063/1.1721956

URL : https://hal.archives-ouvertes.fr/hal-01368659

M. Biot, Theory of Propagation of Elastic Waves in a Fluid???Saturated Porous Solid. I. Low???Frequency Range, The Journal of the Acoustical Society of America, vol.28, issue.2, pp.168-178, 1956.
DOI : 10.1121/1.1908239

URL : https://hal.archives-ouvertes.fr/hal-01368668

F. Blake, The resistance of packing to fluid flow, Transactions of the American Institute of Chemical Engineers, vol.14, pp.415-421, 1922.

R. Boer and W. Ehlers, The development of the concept of effective stresses, Acta Mechanica, vol.41, issue.6, pp.77-92, 1990.
DOI : 10.1007/BF01174734

R. R. Bonilla, Numerical simulation of undrained granular media, 2004.

S. Bryant and M. Blunt, Prediction of relative permeability in simple porous media, Physical Review A, vol.46, issue.4, pp.2004-2011, 1992.
DOI : 10.1103/PhysRevA.46.2004

S. Bryant and A. Johnson, Wetting phase connectivity and irreducible saturation in simple granular media, Journal of Colloid and Interface Science, vol.263, issue.2, pp.572-579, 2003.
DOI : 10.1016/S0021-9797(03)00371-0

S. Bryant, P. King, and D. Mellor, Network model evaluation of permeability and spatial correlation in a real random sphere packing, Transport in Porous Media, vol.2, issue.B7, pp.53-70, 1993.
DOI : 10.1007/BF00614635

C. Callari, Appunti del corso di meccanica dei mezzi porosi, 2007.

F. Calvetti, G. Combe, and J. Lanier, Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path, Mechanics of Cohesive-frictional Materials, vol.2, issue.2, pp.121-163, 1997.
DOI : 10.1002/(SICI)1099-1484(199704)2:2<121::AID-CFM27>3.0.CO;2-2

B. Cambou and M. Jean, Micromécanique des matériaux granulaires, Hermes Science, 2001.

B. Chareyre, L. Briançon, and P. Villard, Theoretical Versus Experimental Modeling of the Anchorage Capacity of Geotextiles in Trenches, Geosynthetics International, vol.9, issue.2, pp.97-123, 2002.
DOI : 10.1680/gein.9.0212

B. Chareyre, A. Cortis, E. Catalano, and E. Barthélemy, Pore-scale modeling of viscous flow and induced forces in dense sphere packings, Transport in Porous Media, pp.473-493, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00905656

F. Chen, E. Drumm, and G. Guiochon, Coupled discrete element and finite volume solution of two classical soil mechanics problems. Computers and Geotechnics, 2011.

P. Cundall, A. Drescher, and O. Strack, Numerical experiments on granular assemblies ; measurements and observations, IUTAM Conference on Deformation and Failure of Granular Materials, pp.355-37047, 1979.

H. Darcy, Les fontaines publiques de la ville de dijon, 1856

J. Degroote, K. Bathe, and J. Vierendeels, Performance of a new partitioned procedure versus a monolithic procedure in fluid???structure interaction, Computers & Structures, vol.87, issue.11-12, pp.11-12793, 2009.
DOI : 10.1016/j.compstruc.2008.11.013

E. Detournay and H. Alexander, Fundamentals of poroelasticity1, 1993.

J. Dupuit, Traité théorique et pratique de la conduite et de la distribution des eaux. Dunod, p.1854

H. Edelsbrunner and N. R. Shah, Incremental topological flipping works for regular triangulations, Algorithmica, vol.133, issue.3, pp.223-241, 1996.
DOI : 10.1007/BF01975867

A. Fabri, G. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, The CGAL kernel: A basis for geometric computation, Applied Computational Geometry Towards Geometric Engineering, pp.191-202, 1996.
DOI : 10.1007/BFb0014496

R. Gallagher, R. Glowinski, P. Gresho, J. Oden, and O. Zienkiewicz, Finite elements in fluids, 1988.

J. A. Gili and E. E. Alonso, Microstructural deformation mechanisms of unsaturated granular soils, International Journal for Numerical and Analytical Methods in Geomechanics, vol.1, issue.35, pp.433-468, 2002.
DOI : 10.1002/nag.206

R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Periaux, A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001.
DOI : 10.1006/jcph.2000.6542

N. Gould, J. Scott, and Y. Hu, A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations, ACM Transactions on Mathematical Software, vol.33, issue.2, p.10, 2007.
DOI : 10.1145/1236463.1236465

Z. Guo and T. Zhao, Lattice Boltzmann model for incompressible flows through porous media, Physical Review E, vol.66, issue.3, p.36304, 2002.
DOI : 10.1103/PhysRevE.66.036304

M. Hakuno, Simulation of the dynamic liquefaction of sand, Earthq. geotechnical engineering, pp.857-862, 1995.

M. Hakuno and Y. Tarumi, A granular assembly simulation for the seismic liquefaction of sand., Proc. of, pp.129-138, 1988.
DOI : 10.2208/jscej.1988.398_129

S. Hentz, F. Donzé, and L. Daudeville, Discrete element modelling of concrete submitted to dynamic loading at high strain rates, Computers & Structures, vol.82, issue.29-30, pp.2509-2524, 2004.
DOI : 10.1016/j.compstruc.2004.05.016

M. Hilpert, R. Glantz, and C. T. Miller, Calibration of a pore-network model by a pore-morphological analysis, Transp. Porous Med, issue.51, pp.267-285, 2003.

C. Itasca, Pfc 3d-user manual. Itasca Consulting Group, 1999.

K. Iwashita and M. Oda, Micro-deformation mechanism of shear banding process based on modified distinct element method, Powder Technology, vol.109, issue.1-3, pp.192-205, 2000.
DOI : 10.1016/S0032-5910(99)00236-3

M. Jean, The non-smooth contact dynamics method, Computer Methods in Applied Mechanics and Engineering, vol.177, issue.3-4, pp.3-4235, 1999.
DOI : 10.1016/S0045-7825(98)00383-1

URL : https://hal.archives-ouvertes.fr/hal-01390459

J. Jerier, B. Hathong, V. Richefeu, B. Chareyre, D. Imbault et al., Study of cold powder compaction by using the discrete element method, Powder Technology, vol.208, issue.2, 2010.
DOI : 10.1016/j.powtec.2010.08.056

T. Kambe, Elementary fluid mechanics, 2007.
DOI : 10.1142/5895

G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.359-392, 1998.
DOI : 10.1137/S1064827595287997

K. M. Khanafer and A. J. Chamkha, Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium, International Journal of Heat and Mass Transfer, vol.42, issue.13, pp.422465-2481, 1999.
DOI : 10.1016/S0017-9310(98)00227-0

D. Koester, S. Ranka, and G. Fox, A parallel gauss-seidel algorithm for sparse power system matrices, Proceedings of the 1994 conference on Supercomputing, pp.184-193, 1994.

J. Kozeny, Ueber kapillare leitung des wassers im boden, p.271, 1927.

J. Kozeny and P. Carman, Flow of gases through porous media, 1956.

M. Krafczyk, P. Lehmann, O. Philippova, D. Hänel, and U. Lantermann, Lattice boltzmann simulations of complex multi-phase flows, pp.50-57, 2000.

M. Leva and U. S. , of Mines. Fluid flow through packed and fluidized systems, USGPO, 1951.

Y. Liu, J. Snoeyink, V. A. Luchnikov, N. N. Medvedev, L. Oger et al., A comparison of five implementations of 3d delaunay tessellation Voronoi-delaunay analysis of voids in systems of nonspherical particles, Combinatorial and Computational Geometry, pp.439-458, 1999.

A. Mahboubi, A. Ghaouti, and B. Cambou, La simulation numérique discrète du comportement des matériaux granulaires. Revue française de géotechnique, pp.45-61, 1996.

M. Mansouri, J. Delenne, A. Seridi, and M. E. Youssoufi, Numerical model for the computation of permeability of a cemented granular material, Powder Technology, vol.208, issue.2, pp.532-536, 2011.
DOI : 10.1016/j.powtec.2010.08.055

M. Mansouri, J. Delenne, M. E. Youssoufi, and A. Seridi, A 3D DEM-LBM approach for the assessment of the quick condition for sands, Comptes Rendus M??canique, vol.337, issue.9-10, pp.9-10675, 2009.
DOI : 10.1016/j.crme.2009.09.010

D. Marzougui, Hydromechanical modeling of the transport and deformation in bed load sediment with discrete elements and finite volume, 2011.

S. Mcnamara, E. G. Flekkøy, and K. J. Måløy, Grains and gas flow: Molecular dynamics with hydrodynamic interactions, Physical Review E, vol.61, issue.4, pp.4054-4059, 2000.
DOI : 10.1103/PhysRevE.61.4054

R. D. Mindlin and H. Deresiewicz, Elastic Spheres in Contact Under Varying Oblique Forces, J. of Appl. Mech, vol.20, 1953.
DOI : 10.1007/978-1-4613-8865-4_35

N. Mortensen, F. Okkels, and H. Bruus, Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels, Physical Review E, vol.71, issue.5, pp.57301-57302, 2005.
DOI : 10.1103/PhysRevE.71.057301

H. Nakasa, T. Takeda, and M. Oda, A simulation study on liquefaction using dem, Earthquake geotechnical engineering, pp.637-642, 1999.

A. Naumovich, On a finite volume discretization of the three-dimensional biot poroelasticity system in multilayered domains, Computational methods in applied mathematics, vol.6, issue.3, p.306, 2006.

P. Nithiarasu, K. Seetharamu, and T. Sundararajan, Natural convective heat transfer in a fluid saturated variable porosity medium, International Journal of Heat and Mass Transfer, vol.40, issue.16, pp.403955-3967, 1997.
DOI : 10.1016/S0017-9310(97)00008-2

P. Nithiarasu, K. Seetharamu, and T. Sundararajan, Finite element modelling of flow, heat and mass transfer in fluid saturated porous media, Archives of Computational Methods in Engineering, vol.107, issue.No. 1, pp.3-42, 2002.
DOI : 10.1007/BF02736231

A. V. Oostreom and J. Strackee, The solid angle of a plane triangle, IEEE Trans. on Biomedical Eng. BME, vol.30, issue.2, pp.125-126, 1983.

P. Øren, S. Bakke, and O. Arntzen, Extending Predictive Capabilities to Network Models, SPE Journal, vol.3, issue.04, pp.324-336, 1998.
DOI : 10.2118/52052-PA

C. O. Sullivan, J. Bray, and M. Riemer, 3-d dem validation using steel balls with regular packing arrangements, Third International Conference on Discrete Element Methods: Numerical Modelling of Discontinua, 2002.

T. Patzek and T. Silin, Shape Factor and Hydraulic Conductance in Noncircular Capillaries, Journal of Colloid and Interface Science, vol.236, issue.2, pp.295-304, 2001.
DOI : 10.1006/jcis.2000.7413

M. Piri and M. J. Blunt, Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description, Physical Review E, vol.71, issue.2, p.71026301, 2005.
DOI : 10.1103/PhysRevE.71.026301

J. Poiseuille, Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres, 1844.

F. Radjai, Contact dynamics method, European Journal of Environmental and Civil Engineering, vol.296, issue.5, pp.871-900, 2008.
DOI : 10.1103/PhysRevE.65.061305

URL : https://hal.archives-ouvertes.fr/hal-00759642

F. Radjai and V. Richefeu, Contact dynamics as a nonsmooth discrete element method, Mechanics of Materials, vol.41, issue.6, pp.715-728, 2009.
DOI : 10.1016/j.mechmat.2009.01.028

URL : https://hal.archives-ouvertes.fr/hal-00689866

V. Richefeu, M. Youssoufi, and F. Radja¨?radja¨?, Shear strength properties of wet granular materials, Physical Review E, vol.73, issue.5, p.51304, 2006.
DOI : 10.1103/PhysRevE.73.051304

URL : https://hal.archives-ouvertes.fr/hal-00022654

V. Rotkin and S. Toledo, The design and implementation of a new out-of-core sparse cholesky factorization method, ACM Transactions on Mathematical Software, vol.30, issue.1, pp.19-46, 2004.
DOI : 10.1145/974781.974783

J. Rousseau, E. Frangin, P. Marin, and L. Daudeville, Multidomain finite and discrete elements method for impact analysis of a concrete structure. Engineering structures, pp.312735-2743, 2009.

H. Sari, B. Chareyre, E. Catalano, P. Philippe, and E. Vincens, Investigation of internal erosion processes using a coupled dem-fluid method, Particles 2011 II International Conference on Particle-Based Methods, 2011.

A. Scheidegger, The Physics of Flow Through Porous Media, Soil Science, vol.86, issue.6, 1960.
DOI : 10.1097/00010694-195812000-00015

O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Generation Computer Systems, vol.20, issue.3, pp.475-487, 2004.
DOI : 10.1016/j.future.2003.07.011

O. Schenk and K. Gärtner, On fast factorization pivoting methods for sparse symmetric indefinite systems, 88] E. M. Schlueter. Predicting the Transport Properties of Sedimentary Rocks from Microstructure, pp.158-179, 1995.

L. Scholtés, Modélisation micromécanique des milieux granulaires partiellement saturés, 2008.

L. Scholtès, B. Chareyre, F. Nicot, and F. Darve, Micromechanics of granular materials with capillary effects, International Journal of Engineering Science, vol.47, issue.1, pp.64-75, 2009.
DOI : 10.1016/j.ijengsci.2008.07.002

L. Scholtes, P. Hicher, F. Nicot, B. Chareyre, and F. Darve, On the capillary stress tensor in wet granular materials, International Journal for Numerical and Analytical Methods in Geomechanics, vol.122, issue.8, pp.1289-1313, 2009.
DOI : 10.1002/nag.767

A. Skempton, Significance of terzaghi's concept of effective stress. From Theory to Practice in Soil Mechanics, 1960.

C. Slichter and G. S. Branch, Theoretical investigation of the motion of ground waters, 1899.

V. Smilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez et al., Yade Reference Documentation, 2010.

K. Terzaghi, Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen, pp.125-138, 1923.

K. E. Thompson and H. S. Fogler, Modeling flow in disordered packed beds from pore-scale fluid mechanics, AIChE Journal, vol.43, issue.6, pp.1547-5905, 1997.
DOI : 10.1002/aic.690430602

C. Thornton and J. Lanier, Uniaxial compression of granular media: numerical simulations and physical experiment. Powders and Grains, pp.223-226, 1997.

S. Toledo, D. Chen, and V. Rotkin, Taucs: A library of sparse linear solvers, 2003.

A. Tong, E. Catalano, and B. Chareyre, Numerical simulation of hydromechanical couplings by combined discrete element method and finite volumes: model predictions versus experiments on bi-dispersed granular assemblies, Oil & Gas Science and Technology, p.2012

J. Van-deemter and E. Van-der-laan, Momentum and energy balances for dispersed two-phase flow, Applied Scientific Research, vol.11, issue.1, pp.102-108, 1961.
DOI : 10.1007/BF00411902

]. V. Smilauer and B. Chareyre, Yade dem formulation. Yade Documentation, 2010.

Z. Yu and L. Fan, Lattice Boltzmann method for simulating particle???fluid interactions, Particuology, vol.8, issue.6, pp.539-543, 2010.
DOI : 10.1016/j.partic.2010.07.012

M. Zeghal and U. E. Shamy, A continuum-discrete hydromechanical analysis of granular deposit liquefaction, International Journal for Numerical and Analytical Methods in Geomechanics, vol.249, issue.14, pp.1361-1383, 2004.
DOI : 10.1002/nag.390

. Paramètres-d-'´-etat and . Cinétiques, ´ etat et de la cinétique du système pendant la simulation, est représentée en fig.6.60. L'amplitude A varie linéairement dans le temps. L'´ evolution de l'´ energie cinétique KE et du paramètre ? (indicateur de stabilité, =0 en cas d'´ equilibre statique) sontégalementsont´sontégalement représentés. L'´ evolution de KE indique une stabilité globale qui est maintenue jusqu'` a une amplitude de 1500 Pa. Ensuite, une instabilité appara??tappara??t, avec les particules quiaccéì erent soudainement. L'´ evolution du ? confirme ces indications