Network model for hydraulic conductivity of sand-bentonite mixtures, Canadian Geotechnical Journal, vol.41, issue.4, pp.698-712, 2004. ,
DOI : 10.1139/t04-016
Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks, Physical Review E, vol.76, issue.6, p.76, 2007. ,
DOI : 10.1103/PhysRevE.76.061302
URL : https://hal.archives-ouvertes.fr/hal-00148554
Fluid Mechanical Description of Fluidized Beds. Equations of Motion, Industrial & Engineering Chemistry Fundamentals, vol.6, issue.4, pp.527-539, 1967. ,
DOI : 10.1021/i160024a007
Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach, Acta Geotechnica, vol.4, issue.1, pp.1-13, 2011. ,
DOI : 10.1007/s11440-011-0151-6
Voronoi diagrams---a survey of a fundamental geometric data structure, ACM Computing Surveys, vol.23, issue.3, pp.345-405, 1991. ,
DOI : 10.1145/116873.116880
Analysis of microstructural strain tensors for granular assemblies, International Journal of Solids and Structures, vol.43, issue.10, pp.3166-3184, 2006. ,
DOI : 10.1016/j.ijsolstr.2005.07.016
3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks, SPE Journal, vol.2, issue.02, pp.136-149, 1997. ,
DOI : 10.2118/35479-PA
A numerical investigation of the structure of persistent shear bands in granular media, G??otechnique, vol.41, issue.4, pp.599-613, 1991. ,
DOI : 10.1680/geot.1991.41.4.599
Parallel geometric algorithms for multi-core computers, Computational Geometry, vol.43, issue.8, pp.663-677, 2010. ,
DOI : 10.1016/j.comgeo.2010.04.008
URL : https://hal.archives-ouvertes.fr/inria-00409051
Hydraulics of groundwater, 1979. ,
Elementary Mechanics of Soil Behaviour: Saturated Remoulded Soil, 1994. ,
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid, Journal of Applied Physics, vol.26, issue.2, pp.182-185, 1955. ,
DOI : 10.1063/1.1721956
URL : https://hal.archives-ouvertes.fr/hal-01368659
Theory of Propagation of Elastic Waves in a Fluid???Saturated Porous Solid. I. Low???Frequency Range, The Journal of the Acoustical Society of America, vol.28, issue.2, pp.168-178, 1956. ,
DOI : 10.1121/1.1908239
URL : https://hal.archives-ouvertes.fr/hal-01368668
The resistance of packing to fluid flow, Transactions of the American Institute of Chemical Engineers, vol.14, pp.415-421, 1922. ,
The development of the concept of effective stresses, Acta Mechanica, vol.41, issue.6, pp.77-92, 1990. ,
DOI : 10.1007/BF01174734
Numerical simulation of undrained granular media, 2004. ,
Prediction of relative permeability in simple porous media, Physical Review A, vol.46, issue.4, pp.2004-2011, 1992. ,
DOI : 10.1103/PhysRevA.46.2004
Wetting phase connectivity and irreducible saturation in simple granular media, Journal of Colloid and Interface Science, vol.263, issue.2, pp.572-579, 2003. ,
DOI : 10.1016/S0021-9797(03)00371-0
Network model evaluation of permeability and spatial correlation in a real random sphere packing, Transport in Porous Media, vol.2, issue.B7, pp.53-70, 1993. ,
DOI : 10.1007/BF00614635
Appunti del corso di meccanica dei mezzi porosi, 2007. ,
Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path, Mechanics of Cohesive-frictional Materials, vol.2, issue.2, pp.121-163, 1997. ,
DOI : 10.1002/(SICI)1099-1484(199704)2:2<121::AID-CFM27>3.0.CO;2-2
Micromécanique des matériaux granulaires, Hermes Science, 2001. ,
Theoretical Versus Experimental Modeling of the Anchorage Capacity of Geotextiles in Trenches, Geosynthetics International, vol.9, issue.2, pp.97-123, 2002. ,
DOI : 10.1680/gein.9.0212
Pore-scale modeling of viscous flow and induced forces in dense sphere packings, Transport in Porous Media, pp.473-493, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00905656
Coupled discrete element and finite volume solution of two classical soil mechanics problems. Computers and Geotechnics, 2011. ,
Numerical experiments on granular assemblies ; measurements and observations, IUTAM Conference on Deformation and Failure of Granular Materials, pp.355-37047, 1979. ,
Les fontaines publiques de la ville de dijon, 1856 ,
Performance of a new partitioned procedure versus a monolithic procedure in fluid???structure interaction, Computers & Structures, vol.87, issue.11-12, pp.11-12793, 2009. ,
DOI : 10.1016/j.compstruc.2008.11.013
Fundamentals of poroelasticity1, 1993. ,
Traité théorique et pratique de la conduite et de la distribution des eaux. Dunod, p.1854 ,
Incremental topological flipping works for regular triangulations, Algorithmica, vol.133, issue.3, pp.223-241, 1996. ,
DOI : 10.1007/BF01975867
The CGAL kernel: A basis for geometric computation, Applied Computational Geometry Towards Geometric Engineering, pp.191-202, 1996. ,
DOI : 10.1007/BFb0014496
Finite elements in fluids, 1988. ,
Microstructural deformation mechanisms of unsaturated granular soils, International Journal for Numerical and Analytical Methods in Geomechanics, vol.1, issue.35, pp.433-468, 2002. ,
DOI : 10.1002/nag.206
A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001. ,
DOI : 10.1006/jcph.2000.6542
A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations, ACM Transactions on Mathematical Software, vol.33, issue.2, p.10, 2007. ,
DOI : 10.1145/1236463.1236465
Lattice Boltzmann model for incompressible flows through porous media, Physical Review E, vol.66, issue.3, p.36304, 2002. ,
DOI : 10.1103/PhysRevE.66.036304
Simulation of the dynamic liquefaction of sand, Earthq. geotechnical engineering, pp.857-862, 1995. ,
A granular assembly simulation for the seismic liquefaction of sand., Proc. of, pp.129-138, 1988. ,
DOI : 10.2208/jscej.1988.398_129
Discrete element modelling of concrete submitted to dynamic loading at high strain rates, Computers & Structures, vol.82, issue.29-30, pp.2509-2524, 2004. ,
DOI : 10.1016/j.compstruc.2004.05.016
Calibration of a pore-network model by a pore-morphological analysis, Transp. Porous Med, issue.51, pp.267-285, 2003. ,
Pfc 3d-user manual. Itasca Consulting Group, 1999. ,
Micro-deformation mechanism of shear banding process based on modified distinct element method, Powder Technology, vol.109, issue.1-3, pp.192-205, 2000. ,
DOI : 10.1016/S0032-5910(99)00236-3
The non-smooth contact dynamics method, Computer Methods in Applied Mechanics and Engineering, vol.177, issue.3-4, pp.3-4235, 1999. ,
DOI : 10.1016/S0045-7825(98)00383-1
URL : https://hal.archives-ouvertes.fr/hal-01390459
Study of cold powder compaction by using the discrete element method, Powder Technology, vol.208, issue.2, 2010. ,
DOI : 10.1016/j.powtec.2010.08.056
Elementary fluid mechanics, 2007. ,
DOI : 10.1142/5895
A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.359-392, 1998. ,
DOI : 10.1137/S1064827595287997
Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium, International Journal of Heat and Mass Transfer, vol.42, issue.13, pp.422465-2481, 1999. ,
DOI : 10.1016/S0017-9310(98)00227-0
A parallel gauss-seidel algorithm for sparse power system matrices, Proceedings of the 1994 conference on Supercomputing, pp.184-193, 1994. ,
Ueber kapillare leitung des wassers im boden, p.271, 1927. ,
Flow of gases through porous media, 1956. ,
Lattice boltzmann simulations of complex multi-phase flows, pp.50-57, 2000. ,
of Mines. Fluid flow through packed and fluidized systems, USGPO, 1951. ,
A comparison of five implementations of 3d delaunay tessellation Voronoi-delaunay analysis of voids in systems of nonspherical particles, Combinatorial and Computational Geometry, pp.439-458, 1999. ,
La simulation numérique discrète du comportement des matériaux granulaires. Revue française de géotechnique, pp.45-61, 1996. ,
Numerical model for the computation of permeability of a cemented granular material, Powder Technology, vol.208, issue.2, pp.532-536, 2011. ,
DOI : 10.1016/j.powtec.2010.08.055
A 3D DEM-LBM approach for the assessment of the quick condition for sands, Comptes Rendus M??canique, vol.337, issue.9-10, pp.9-10675, 2009. ,
DOI : 10.1016/j.crme.2009.09.010
Hydromechanical modeling of the transport and deformation in bed load sediment with discrete elements and finite volume, 2011. ,
Grains and gas flow: Molecular dynamics with hydrodynamic interactions, Physical Review E, vol.61, issue.4, pp.4054-4059, 2000. ,
DOI : 10.1103/PhysRevE.61.4054
Elastic Spheres in Contact Under Varying Oblique Forces, J. of Appl. Mech, vol.20, 1953. ,
DOI : 10.1007/978-1-4613-8865-4_35
Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels, Physical Review E, vol.71, issue.5, pp.57301-57302, 2005. ,
DOI : 10.1103/PhysRevE.71.057301
A simulation study on liquefaction using dem, Earthquake geotechnical engineering, pp.637-642, 1999. ,
On a finite volume discretization of the three-dimensional biot poroelasticity system in multilayered domains, Computational methods in applied mathematics, vol.6, issue.3, p.306, 2006. ,
Natural convective heat transfer in a fluid saturated variable porosity medium, International Journal of Heat and Mass Transfer, vol.40, issue.16, pp.403955-3967, 1997. ,
DOI : 10.1016/S0017-9310(97)00008-2
Finite element modelling of flow, heat and mass transfer in fluid saturated porous media, Archives of Computational Methods in Engineering, vol.107, issue.No. 1, pp.3-42, 2002. ,
DOI : 10.1007/BF02736231
The solid angle of a plane triangle, IEEE Trans. on Biomedical Eng. BME, vol.30, issue.2, pp.125-126, 1983. ,
Extending Predictive Capabilities to Network Models, SPE Journal, vol.3, issue.04, pp.324-336, 1998. ,
DOI : 10.2118/52052-PA
3-d dem validation using steel balls with regular packing arrangements, Third International Conference on Discrete Element Methods: Numerical Modelling of Discontinua, 2002. ,
Shape Factor and Hydraulic Conductance in Noncircular Capillaries, Journal of Colloid and Interface Science, vol.236, issue.2, pp.295-304, 2001. ,
DOI : 10.1006/jcis.2000.7413
Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description, Physical Review E, vol.71, issue.2, p.71026301, 2005. ,
DOI : 10.1103/PhysRevE.71.026301
Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres, 1844. ,
Contact dynamics method, European Journal of Environmental and Civil Engineering, vol.296, issue.5, pp.871-900, 2008. ,
DOI : 10.1103/PhysRevE.65.061305
URL : https://hal.archives-ouvertes.fr/hal-00759642
Contact dynamics as a nonsmooth discrete element method, Mechanics of Materials, vol.41, issue.6, pp.715-728, 2009. ,
DOI : 10.1016/j.mechmat.2009.01.028
URL : https://hal.archives-ouvertes.fr/hal-00689866
Shear strength properties of wet granular materials, Physical Review E, vol.73, issue.5, p.51304, 2006. ,
DOI : 10.1103/PhysRevE.73.051304
URL : https://hal.archives-ouvertes.fr/hal-00022654
The design and implementation of a new out-of-core sparse cholesky factorization method, ACM Transactions on Mathematical Software, vol.30, issue.1, pp.19-46, 2004. ,
DOI : 10.1145/974781.974783
Multidomain finite and discrete elements method for impact analysis of a concrete structure. Engineering structures, pp.312735-2743, 2009. ,
Investigation of internal erosion processes using a coupled dem-fluid method, Particles 2011 II International Conference on Particle-Based Methods, 2011. ,
The Physics of Flow Through Porous Media, Soil Science, vol.86, issue.6, 1960. ,
DOI : 10.1097/00010694-195812000-00015
Solving unsymmetric sparse systems of linear equations with PARDISO, Future Generation Computer Systems, vol.20, issue.3, pp.475-487, 2004. ,
DOI : 10.1016/j.future.2003.07.011
On fast factorization pivoting methods for sparse symmetric indefinite systems, 88] E. M. Schlueter. Predicting the Transport Properties of Sedimentary Rocks from Microstructure, pp.158-179, 1995. ,
Modélisation micromécanique des milieux granulaires partiellement saturés, 2008. ,
Micromechanics of granular materials with capillary effects, International Journal of Engineering Science, vol.47, issue.1, pp.64-75, 2009. ,
DOI : 10.1016/j.ijengsci.2008.07.002
On the capillary stress tensor in wet granular materials, International Journal for Numerical and Analytical Methods in Geomechanics, vol.122, issue.8, pp.1289-1313, 2009. ,
DOI : 10.1002/nag.767
Significance of terzaghi's concept of effective stress. From Theory to Practice in Soil Mechanics, 1960. ,
Theoretical investigation of the motion of ground waters, 1899. ,
Yade Reference Documentation, 2010. ,
Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen, pp.125-138, 1923. ,
Modeling flow in disordered packed beds from pore-scale fluid mechanics, AIChE Journal, vol.43, issue.6, pp.1547-5905, 1997. ,
DOI : 10.1002/aic.690430602
Uniaxial compression of granular media: numerical simulations and physical experiment. Powders and Grains, pp.223-226, 1997. ,
Taucs: A library of sparse linear solvers, 2003. ,
Numerical simulation of hydromechanical couplings by combined discrete element method and finite volumes: model predictions versus experiments on bi-dispersed granular assemblies, Oil & Gas Science and Technology, p.2012 ,
Momentum and energy balances for dispersed two-phase flow, Applied Scientific Research, vol.11, issue.1, pp.102-108, 1961. ,
DOI : 10.1007/BF00411902
Yade dem formulation. Yade Documentation, 2010. ,
Lattice Boltzmann method for simulating particle???fluid interactions, Particuology, vol.8, issue.6, pp.539-543, 2010. ,
DOI : 10.1016/j.partic.2010.07.012
A continuum-discrete hydromechanical analysis of granular deposit liquefaction, International Journal for Numerical and Analytical Methods in Geomechanics, vol.249, issue.14, pp.1361-1383, 2004. ,
DOI : 10.1002/nag.390
´ etat et de la cinétique du système pendant la simulation, est représentée en fig.6.60. L'amplitude A varie linéairement dans le temps. L'´ evolution de l'´ energie cinétique KE et du paramètre ? (indicateur de stabilité, =0 en cas d'´ equilibre statique) sontégalementsont´sontégalement représentés. L'´ evolution de KE indique une stabilité globale qui est maintenue jusqu'` a une amplitude de 1500 Pa. Ensuite, une instabilité appara??tappara??t, avec les particules quiaccéì erent soudainement. L'´ evolution du ? confirme ces indications ,