B. K. Boust-]-t, R. A. Hayes, J. E. White, and . Peters, Etude Expérimentale et Modélisation des Pertes Thermiques Pariétales lors de l'Interaction Flamme-Paroi InstationnaireCombustion Chamber Temperature and Instantaneous Local Heat Flux Measurements in a Spark Ignition Engine, Internal Combustion Engine Fundamentals, 1989.

G. Bruneaux-asymptotique, Simulation Numérique Directe et Modélisation de l'Interaction Flamme Turbulente Prémélangée-Paroi PhD, Ecole Centrale de ParisA Numerical Study of Laminar Flame Wall Quenching, Combustion and Flame, vol.406, pp.81-99, 1981.

M. Saffman, Parametric studies of a side wall quench layer, Combustion and Flame, vol.55, issue.2, pp.141-159, 1984.
DOI : 10.1016/0010-2180(84)90023-3

F. Foucher, S. Burnel, C. Mounaim-rousselle, M. Boukhalfa, B. Renou et al., Flame wall interaction: effect of stretch, Experimental thermal and fluid science, pp.431-437, 2003.
DOI : 10.1016/S0894-1777(02)00255-8

URL : https://hal.archives-ouvertes.fr/hal-00618125

K. Karrer, Diagnostic des Plasmas de Combustion par Sonde d'Ionisation : Application à l'Etude de l'Interaction Flamme-Paroi Instationnaire, PhD, Poitiers, E.N.S.M.A, vol.9, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00445348

T. Kathrotia, U. Riedel, and J. Warnatz, A Numerical Study on the Relation of OH*, CH*, and C2* Chemiluminescence and Heat Release in Premixed Methane FlamesNumerical Evaluation of Equivalence Ratio Measurement using OH* and CH* Chemiluminescence in Premixed and Non-Premixed Methane-Air Flames, European Combustion Meeting, pp.273-291, 2009.

]. C. Heghes, C 1 to C 4 Hydrocarbon Oxidation Mechanism, 2007.

L. Haber and U. Vandsburger, A global reaction model for oh* chemiluminescence applied to a laminar flat-flame burner, Combustion Science and Technology, vol.175, issue.10, pp.1859-1891, 2003.
DOI : 10.1080/713713115

A. Gaydon, C. W. Hand, and G. B. Kistiakowsky, The Spectroscopy of FlamesIonization Accompanying Acetylene-Oxygen Reaction in Shock Waves, Journal of Chemical Physics, vol.37, p.1239, 1974.

. Savadatt, H. P. Mi, and . Broida, Spectral Study of Flames of Carbon Vapor at Low Pressure, The Journal of Chemical Physics, vol.45, issue.7, p.2390, 19661966.
DOI : 10.1063/1.1727952

G. P. Smith, D. M. Golden, R. K. Hanson, S. Song, W. C. Gardiner-jr et al., GRI-Mech 3, Qin, issue.0, 1999.

R. J. Smooke and . Blint, OH(A-X) Optical Emission in an Axisymmetric Laminar Diffusion FlameThe Relationship of the Laminar Flame Width to Flame Speed, Combustion and Flame Combustion Science and Technology, vol.122, issue.49, pp.172-175, 1986.

J. Sotton, Interactions entre une Combustion Turbulente et la Paroi dans une Enceinte Fermée, 2003.

S. R. Vosen, R. Greif, and C. K. Westbrook, Unsteady heat transfer during laminar flame quenching, Symposium (International) on Combustion, vol.20, issue.1, pp.75-83, 1985.
DOI : 10.1016/S0082-0784(85)80490-2

R. P. Lucht and M. A. Maris, CARS Measurements of Temperature Profiles Near a Wall in an Internal Combustion Engine, SAE Technical Paper Series
DOI : 10.4271/870459

]. S. Labuda, M. Karrer, J. Sotton, and M. Bellenoue, Experimental Study of Single-Wall Flame Quenching at High Pressures, Combustion Science and Technology, vol.40, issue.5, pp.409-426, 2011.
DOI : 10.1080/00102202.2010.528815

URL : https://hal.archives-ouvertes.fr/hal-00421264

J. Sotton, B. Boust, S. A. Labuda, and M. Bellenoue, HEAD-ON QUENCHING OF TRANSIENT LAMINAR FLAME: HEAT FLUX AND QUENCHING DISTANCE MEASUREMENTS, Combustion Science and Technology, vol.20, issue.7, pp.1305-1322, 2005.
DOI : 10.1080/00102208108946970

URL : https://hal.archives-ouvertes.fr/hal-00118373

M. Bellenoue, T. Kageyama, S. A. Labuda, and J. Sotton, Direct measurement of laminar flame quenching distance in a closed vessel, Experimental Thermal and Fluid Science, vol.27, issue.3, pp.323-331, 2003.
DOI : 10.1016/S0894-1777(02)00304-7

]. F. Foucher, Etude Expérimentale de l'Interaction Flamme-Paroi : Application au Moteur à Allumage Commandé, 2002.

J. H. Lu, O. Ezekoye, R. Greif, and R. F. Sawyer, Unsteady heat transfer during side wall quenching of a laminar flame, Symposium (International) on Combustion, pp.441-446, 1991.
DOI : 10.1016/S0082-0784(06)80289-4

O. Ezekoye, R. Greif, and R. F. Sawyer, Increased surface temperature effects on wall heat transfer during unsteady flame quenching, Symposium (International) on Combustion, vol.24, issue.1, pp.1465-1472, 1992.
DOI : 10.1016/S0082-0784(06)80171-2

P. Popp, M. Baum, and M. Baum, Heat Transfer and Pollutant Formation Mechanisms in Insulated Combustion ChambersAnalysis of Wall Heat Fluxes, Reaction Mechanisms, and Unburnt Hydrocarbons during the Head-On Quenching of a Laminar Methane Flame, SAE Technical Paper Combustion and Flame, vol.952387, issue.108, pp.327-348, 1995.

D. Lacoste32, ]. Liu, W. Liu, L. Wu, C. Zhao et al., PhDLDV Measurements of Velocities and Turbulence Intensities in a Production SI Engine under Motored and Firing Conditions, Effect of Combustion Chamber Shape on Tumble Flow, Squish-Generated Flow and Burn Rate, pp.291-296, 2002.

F. A. Alizon35-]-r, F. V. Fraser, . J. Bracco36-]-e, J. B. Lyford-pike, and . Heywood, Transferts de Chaleur Convectifs dans la Chambre de Combustion des Moteurs à Combustion Interne -Influence de l'Aérodynamique InterneCycle-Resolved LDV Integral Length Scale Measurements in an IC EngineThermal Boundary Layer Thickness in the Cylinder of a Spark-Ignition Engine, SAE transactions International journal of heat and mass transfer, vol.9737, issue.27, pp.222-241, 1984.

C. Angelberger, Contributions à la Modélisation de l'Interaction Flamme-Paroi et des Flux Pariétaux dans les Moteurs à Allumage Commandé, 1997.

K. Mukai, H. Miyazaki, and S. Yashuara, Measuring Technique of the Cooling Loss and the Influence of the Operating Variables on Heat Balance in a Gasoline Engine, SAE Technical Papers, pp.2003-2007, 2003.

F. Foucher, S. Burnel, and C. Mounaim-rousselle, Evaluation of burning rates in the vicinity of the piston in a spark-ignition engine, Proceedings of the Combustion Institute, pp.751-757, 2002.
DOI : 10.1016/S1540-7489(02)80096-7

URL : https://hal.archives-ouvertes.fr/hal-00618113

G. H. Choi, K. H. Choi, J. H. Lee, Y. S. Song, Y. Ryu et al., Analysis of Combustion Chamber Temperature and Heat Flux in a DOHC Engine, SAE Technical Paper Series, 1997.
DOI : 10.4271/970895

J. Saulnier, A. Dupont, J. Riviere, and J. Jullien, Effects of Aerodynamics on Fuel Consumption of a Multivalve S-I Engine. Investigation of the Instantaneous Local Heat Transfer at Part Loads and Distinct Equivalence Ratios, SAE Technical Paper Series, 1997.
DOI : 10.4271/972938

]. Y. Tsutsumi, K. Nomura, and N. Nakamura, Effect of Mirror-Finished Combustion Chamber on Heat Loss, SAE Technical Paper Series, p.902141, 1990.
DOI : 10.4271/902141

O. A. Ezekoye, Heat transfer consequences of condensation during premixed flame quenching, Combustion and Flame, vol.112, issue.1-2, pp.266-269, 1998.
DOI : 10.1016/S0010-2180(97)81775-0

B. Leveugle, J. Reveillon, and Y. D. Angelo, DNS of Flame/Wall Interaction, Application to Spark Ignition Engines, Workshop on Near-Wall Reactive Flows, 2010.

]. B. Leveugle, Y. D. Angelo, and J. Réveillon, DNS of Flame/Wall Interaction in a Strongly Non Isothermal Case, European Combustion Meeting, pp.2011-2057

W. B. Bush, F. E. Fendell, and S. F. Fink, Effect of Boundary Thermal Constraint on Planar Premixed-Flame/Wall Interaction, Combustion Science and Technology, vol.24, issue.1-2, pp.53-70, 1980.
DOI : 10.1080/00102207308952348

W. Hocks, N. Peters, and G. Adomeit, Flame quenching in front of a cold wall under two-step kinetics, Combustion and Flame, vol.41, pp.157-170, 1981.
DOI : 10.1016/0010-2180(81)90049-3

P. Popp, M. Baum, M. Hilka, and T. Poinsot, A Numerical Study of Laminar Flame Wall Interaction with Detailed Chemistry: Wall Temperature Effects, pp.81-123, 1996.

R. Kraichnan, Diffusion by a Random Velocity Field, Physics of Fluids, vol.13, issue.1, p.22, 1970.
DOI : 10.1063/1.1692799

I. Celik, A. Smirnov, and J. Smith, Appropriate Initial and Boundary Conditions for LES of a Ship WakeEtude Expérimentale de la Combustion d'un Mélange Méthane-Air Hétérogène Globalement Pauvre, 3rd ASME, 1999.

D. Bradley, P. H. Gaskell, and X. J. Gu, Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: A computational study, Combustion and Flame, vol.104, issue.1-2, pp.176-198, 1996.
DOI : 10.1016/0010-2180(95)00115-8

C. Strozzi, W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, Auto-Inflammation de Mélanges Gazeux en Milieux Confinés et sa Modélisation avec une Description Cinétique Chimique Détaillée [54] C. Schulz and V. SickTracer-LIF Diagnostics: Quantitative Measurement of Fuel Concentration, Temperature and Fuel/Air Ratio in Practical Combustion SystemsToluene LIF at Elevated Temperatures: Implications for Fuel-Air Ratio Measurements, Progress in Energy and Combustion Science, pp.75-121, 2005.

M. Thurber, Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows, Thermophysics Division, Department of Mechanical Engineering, 1999.

F. Frat, L. Legrix, P. Vervisch, and E. Dominguès, Effects of Pressure and Temperature on the Fluorescence of Toluene excited at 248 nm. Implication to Fuel/Air Ratio Measurements in Engines, Third European Combustion Meeting, 2007.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, Absorption and fluorescence of toluene vapor at elevated temperatures, Physical Chemistry Chemical Physics, vol.6, issue.11, pp.2940-2945, 2004.
DOI : 10.1039/b400997e

]. B. Lecordier, Etude de l'Interaction de la Propagation d'une Flamme Prémélangée avec le Champ Aérodynamique, par Association de la Tomographie Laser et de la Vélocimétrie par Images de Particules, 1997.

O. Pajot, Etude Expérimentale de l'Influence de l'Aérodynamique sur le Comportement et la Structure du Front de Flamme dans les Conditions d'un Moteur à Allumage Commandé, 2000.

]. C. Strozzi, J. Sotton, A. Mura, and M. Bellenoue, Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique, Measurement Science and Technology, vol.20, issue.12, 2009.
DOI : 10.1088/0957-0233/20/12/125403

G. Bruneaux, K. Akselvoll, T. Poinsot, and J. Ferziger, Flame-wall interaction simulation in a turbulent channel flow, Combustion and Flame, vol.107, issue.1-2, pp.27-36, 1996.
DOI : 10.1016/0010-2180(95)00263-4

M. Metghalchi and J. C. Keck, Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature, Combustion and Flame, vol.48, pp.191-210, 1982.
DOI : 10.1016/0010-2180(82)90127-4

B. Boust, J. Sotton, S. Labuda, and M. Bellenoue, A thermal formulation for single-wall quenching of transient laminar flames, Combustion and Flame, vol.149, issue.3, pp.286-294, 2007.
DOI : 10.1016/j.combustflame.2006.12.019

URL : https://hal.archives-ouvertes.fr/hal-00360525

]. B. Boust, L. Bernard, J. Sotton, S. Labuda, and M. Bellenoue, A Model of Flame Quenching in Non-Isothermal Initial Conditions, European combustion Meeting, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00420594

B. Boust, J. Sotton, and M. Bellenoue, Modeling Heat Transfer and Flame Quenching in Combustion Chambers, Workshop on Near-Wall Reactive Flows, 2010.

J. Moreau, Interaction entre un Jet et un Tourbillon Compressé -Etude Expérimentale de l'Aérodynamique et du Mélange PhD, Institut National Polytechnique de ToulouseDétermination des Paramètres influant sur le Phénomène d'Endommagement par Fatigue Thermique des Moules en Fonderie sous Pression d'Aluminium, 2003.