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Preface

This Ph.D. thesis has been prepared at the Department of Industrial Engineering at Universidad de

Los Andes (Colombia) and the Department of Automation and Production at École des Mines de Nantes

(France), between October 2009 and September 2012. It has been supervised by Professor Andrés L.

Medaglia at Universidad de Los Andes and Christelle Guéret at École des Mines de Nantes.

Financial support for this work was provided by the CPER (Contrat de Projet Etat Region) Vallée

du Libre; and the Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad (CEIBA,

Colombia). Vallée du Libre is an open platform aiming to connect research laboratories with the needs

of industry via the development of open source software. CEIBA is an excellence research center

funded by the Colombian Administrative Department of Science, Technology and Innovation (COL-

CIENCIAS) and participating universities and institutions, Universidad de Los Andes being among

them.

The present dissertation is composed by an introductory chapter, Vve research papers, written in

collaboration with the coauthors mentioned at the beginning of each paper, and a conclusion. Each

research paper is self-contained, meaning that it comprises a description of the underlying problem,

its contributions, computational experiments, conclusions, and its own bibliography. In addition to

the research papers, the thesis includes six appendices: Appendices A, B, and C describe the software

libraries and framework developed to support the research presented in the Vve papers. Appendix D

and E present an instance generator and the best known solutions for the instances introduced in this

thesis. Finally, Appendix F summarizes the record of publications of the work developed during this

thesis.

Nantes, October 10, 2012, Victor Pillac
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Introduction

Within the wide scope of logistics management, transportation plays a central role and is a crucial

activity in the delivery of goods and services. Among others, it allows for the timely distribution

between suppliers, production units, warehouses, retailers, and Vnal customers. Transportation also

has an important footprint in the trade economy and on the environment. According to Hesse and

Rodrigue (2004), the total logistic costs in the year 2000 in the United States (US) represented 10% of

the GDP (Gross Domestic Product), while transportation on its own accounted for 5.9% of the GDP.

In addition, a recent report from the Energy Information Administration (EIA, 2011) indicates that

transportation was responsible for 27% of the greenhouse gas emissions in the US in 2009, while the

European Environment Agency estimates this share to be 24% in the European Union (EEA, 2011).

Therefore, improving the eXciency of transportation activities is a critical step to increase com-

petitiveness and reduce the environmental impact of organizations. In this sense, operating a Weet

of vehicles is a cornerstone problem that arises both in the service industry, with, among others, the

transportation of less-able people, the scheduling of school buses, or the on-site maintenance activi-

ties; and in the goods industry, with, for instance, the transport of raw materials between suppliers

and factories, the relocation of trucks in carrier companies, or the pickup and delivery of goods in the

retail industry.

More speciVcally, Vehicle Routing Problems (VRPs) deal with the design of a set of minimal-cost

routes that serve the demand for goods or services of a set of geographically spread customers, satis-

fying a group of operational constraints. Since its Vrst deVnition by Dantzig and Ramser (1959), the

amount of published material on VRP has exponentially increased. As an evidence of this trend, the

recent study by Eksioglu et al. (2009) reports approximately 1,500 indexed publications on vehicle rout-

ing (as of 2006). The volume of publications is closely related to the variety of routing problems, and

the diversity of approaches proposed to tackle them.

The original Capacitated Vehicle Routing Problem (CVRP or simply VRP) formulation is a gener-

alization of the Traveling Salesman Problem (TSP) presented by Flood (1956). The VRP is deVned on a

graph G = (V, E ,C,q), with V = {v0, ..., vn} being the set of vertices, E the arc set, C = (ce)e∈E a

cost matrix deVned on E , and q = (qi)i∈V a vector of demands for a certain commodity. Traditionally,

vertex v0 is called the depot, while the remaining vertices represent customers that require a commodity

to be delivered. The VRP consists in Vnding a set of routes of minimal cost for an unlimited Weet of

vehicles of identical capacity Q, starting and ending at the depot, such that each of the customers is

visited exactly once, while not exceeding the capacity of the vehicles.

The above deVnition has been extended in a variety of forms to model a wide range of practical
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INTRODUCTION
applications. Among the most common extensions are those that include time-window constraints

that enforce the visit of each vertex within a given time interval; the pickup and delivery constraints

that require the commodity to be picked-up at certain vertices before being delivered to others; the

distance constraints that limit the total distance traveled by a vehicle; and accessibility constraints that

limit the set of vehicles allowed to visit a given vertex. On the other hand, common variants of the

original problem statement include multiple depots, from which vehicles can start and end their routes;

the possibility to split customer deliveries; and heterogeneous and/or limited Weets. Finally, related

problems consider multi-period horizons; the combination of routing with inventory management;

multiple levels of routing with trucks feeding hubs from which smaller vehicles start delivery routes

(Nguyen et al., 2012a,b); vehicles with trailers that can be detached to visit customers with accessibility

constraints; and arc-routing problems in which the demand is located on the arcs (Belenguer et al.,

2010; Corberán and Prins, 2010).

Parallel to the myriad of variants, a number of optimization approaches have been proposed to

tackle routing problems. We refer the interested reader to the surveys by Baldacci et al. (2007); Cordeau

et al. (2007); Laporte (2009), and Toth and Vigo (2002) for a complete review of both exact and approx-

imate approaches.

Recent exact approaches for the VRP are based on three base formulations: vehicle Wow, commod-

ity Wow, and set partitioning. Vehicle Wow formulations (Lysgaard et al., 2004; Naddef and Rinaldi,

2002) deVne an integer variable for each arc that counts the number of times a vehicle travels through

it. Commodity Wow formulations (Baldacci et al., 2004) are based on a continuous variable for each arc

that models the Wow of commodities between vertices. Finally, set partitioning formulations (Baldacci

et al., 2010, 2007; Feillet, 2010; Feillet et al., 2005, 2004; Fukasawa et al., 2006; Rousseau et al., 2007)

consider the set of all feasible routes and select a subset of routes of minimal cost such that all the con-

straints are satisVed. As it is often impossible to enumerate the whole set of feasible solutions, such

approaches generally rely on a column generation scheme that iteratively generates feasible routes for

the set covering model.

Despite the advances in algorithms and the constant growth of computational power, state-of-the-

art exact approaches are only able to solve problems with approximately one hundred vertices, which

is well below the typical size of problems faced in industry. In addition, exact approaches are closely

tied to a speciVc VRP variant, and may take several hours to produce a solution. As a consequence,

a number of (faster) approximate approaches have been developed to tackle the VRP and its variants.

Approximate approaches can be divided in three categories: classical heuristics, metaheuristics, and

matheuristics.

Classical heuristics are further divided in three categories: constructive, two-phase, and improve-

ment heuristics. A well-known constructive heuristic is the Clarke and Wright (1964) savings algo-

rithm that starts by creating one route per customer and then iteratively merges routes until the total

distance can no longer be reduced. Petal heuristics (Gillett and Miller, 1974; Renaud et al., 1996; Ryan

et al., 1993) are another class of constructive heuristics that start by generating a set of feasible routes,

and then solve a set partitioning model to build a feasible solution. The two-phase approaches include

the cluster-Vrst, route-second (CR) and route-Vrst, cluster-second (RC) heuristics. The CR heuristics

were introduced by Fisher and Jaikumar (1981) and consists in grouping customers into clusters with-
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INTRODUCTION
out violating the vehicle capacity, and then solving a TSP for each cluster. The RC heuristics start by

designing a giant tour visiting all customers that is then split into feasible routes. Prins (2004) demon-

strated that properly-designed RC heuristics can bring signiVcant improvements when embedded in

more complex methods (Mendoza et al., 2010, 2011; Prins, 2009b; Prins et al., 2009; Villegas et al., 2010,

2011a). Finally, improvement heuristics attempt to improve a solution by considering moves that alter

the sequence of customers within a route and/or exchange customers between diUerent routes. Each

type of move deVnes a neighborhood of the considered solution. Among the most widely used neigh-

borhoods are swap, 2-opt, 3-opt (Lin, 1965), Or-opt (Or, 1976), and string exchange. The eXciency of

improvement heuristics depends to a great extent on the implementation of the neighborhood explo-

ration. For instance, Irnich et al. (2006) propose a decomposition scheme, namely sequential search,

and report speedup factors of up to 104 for the exploration of the 3-opt neighborhood against a naive

implementation.

Metaheuristics are optimization paradigms which main objective is to overcome limitations of the

classical heuristics, in particular, their tendency to get trapped in local optima and their lack of robust-

ness. Among the most popular single-solution metaheuristics are Tabu Search (TS) (Gendreau et al.,

1994; Glover, 1986; Taillard, 1993; Toth and Vigo, 2003), Simulated Annealing (SA) (Kirkpatrick et al.,

1983; Osman, 1993), Greedy Randomized Adaptive Search Procedure (GRASP) (Feo and Resende, 1989;

Hashimoto et al., 2011; Prins, 2009a; Villegas et al., 2010), and Large Neighborhood Search (LNS) (Bent

and Van Hentenryck, 2004; Pisinger and Ropke, 2007, 2010; Shaw, 1998). Population-based metaheuris-

tics include Genetic Algorithms (GA) (Holland, 1975), Memetic Algorithms (MA) (Bontoux et al., 2010;

El-Fallahi et al., 2008; Labadi et al., 2008a,b; Mendoza et al., 2010; Prins, 2009b; Vidal et al., 2011), and

Ant Colony Optimization (ACO) (Bontoux and Feillet, 2008; Reimann et al., 2004). We refer the inter-

ested reader to the work by Bräysy and Gendreau (2005); Cordeau et al. (2005, 2002); Prins et al. (2010),

and Gendreau et al. (2002) for an in-depth analysis of the latest advances in metaheuristics in the Veld

of vehicle routing.

Finally, a recent trend combines heuristics with exact approaches, in what is commonly referred to

as matheuristics (Maniezzo et al., 2009). In their review, Puchinger and Raidl (2005) make a distinction

between collaborative and integrative matheuristics. In collaborative approaches, heuristics and exact

algorithms exchange information to build a solution. This is for instance the case of the Lagrangean re-

laxation granular TS introduced by Prins et al. (2007), or the approach proposed by Archetti et al. (2008)

for the VRP with split deliveries. More recently, researchers have used mixed integer programming as

a post-optimization procedure to aggregate partial solutions explored in a metaheuristic. For instance,

Villegas et al. (2011b) tackled the Truck and Trailer Routing Problem by Vrst generating solutions us-

ing a GRASP based approach, and then solving a set-covering problem (SC) using the routes generated

during the search. Pillac et al. (2012f) applied a similar approach using the solutions generated by an

Adaptive Large Neighborhood Search. Finally, Mendoza and Villegas (2011, 2012) propose a simple yet

eUective matheuristic for the VRP with Stochastic Demands (VRPSD) that generates a large number

of routes using randomized constructive heuristics and then solves a SC to build a solution, reporting

state-of-the-art results. On the other hand, integrative matheuristics embed one technique into an-

other. A sample of integrative heuristics include the Large Neighborhood Search algorithms in which

an exact approach (either Integer Programming or Constraint Programming) is used to optimally ex-
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plore the neighborhood of a solution (De Franceschi et al., 2006; Mouthuy et al., 2012; Prescott-Gagnon

et al., 2009; Rousseau et al., 2002); the hybrid TS proposed by Ngueveu et al. (2010), which solves a

b-matching problem to guide a TS procedure; or the heuristic column generation proposed by Massen

et al. (2012).

Despite the development of eXcient optimization algorithms that produce high quality solutions,

Sörensen et al. (2008) point out that commercial routing software does not take full advantage from

state-of-the-art algorithms but instead embed a large toolbox of simpler heuristics. The gap between

academic research and industrial practice can be explained by the fact that the two communities face

diverging incentives. Academia is driven by the publication of ground-breaking results on well-known

sets of instances, or alternatively by the deVnition of novel optimization problems. Therefore, research

is biased toward highly specialized methods able to solve a particular problem with optimal or nearly-

optimal results. In contrast, industry requires that the resources invested on the development of a

new decision support system (DSS) translate in signiVcant gains once the system is operational. In this

perspective, it is more eXcient to develop and maintain a set of simple optimization components that Vt

a variety of problems and produce relatively good results, than to invest resources in the development

of complex approaches tailored for a speciVc problem that will only bring marginal improvements.

Nonetheless, a thriving trend in the routing community attempts to develop methods able to tackle

a variety of practical problems. This trend follows two main streams: rich vehicle routing (Doerner and

Schmid, 2010; Schmid et al., 2012), which focuses on routing problems that simultaneously consider

features from several VRP variants; and uniVed optimization approaches, which are designed to account

for a variety of business constraints, like the Adaptive Large Neighborhood Search introduced by

Pisinger and Ropke (2007) or the UniVed Hybrid Genetic Search proposed by Vidal et al. (2012).

An alternative approach to foster technology transfer from academia to industry is the release

of state-of-the-art algorithms as open source projects. Successful stories at the intersection of the

operations research and computer science communities include the COIN-OR project 2, which puts

together a variety of frameworks from metaheuristics to linear and non-linear solvers; GLPK 3, a solver

for linear and mixed integer programming; Paradiseo 4, a framework for the design of metaheuristics;

and Choco 5, a Constraint Programming solver implemented in Java. There exists a limited number of

open-source projects that provide optimization frameworks for vehicle routing. As surveyed by Lodi

and Punnen (2004), most of these initiatives are devoted to the resolution of the TSP, and to the best

of our knowledge, the remaining focus on the CVRP. For instance, SYMPHONY (Ralphs et al., 2012;

Ralphs, 2003; Ralphs et al., 2003) and CVRPSD (Lysgaard et al., 2004) tackle the optimal resolution of

the CVRP using mathematical programming. Other projects include VRPH (Groër et al., 2010), a C/C++

framework based on local search; jCW (Mendoza et al., 2008), an object oriented implementation in

Java of generalized saving heuristics; and jSplit (Villegas et al., 2008), a Java framework for the rapid

development of cluster-Vrst, route-second heuristics.

Most routing algorithms and software often rely on the assumption that all the information is

known with certainty. However, in many applications, part or all the information is uncertain. An

2. http://coin-or.org
3. http://www.gnu.org/s/glpk
4. http://paradiseo.gforge.inria.fr
5. http://www.emn.fr/z-info/choco-solver
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INTRODUCTION
obvious example are travel times that Wuctuate greatly depending on traXc or weather conditions, es-

pecially in urban areas. These problems are referred to as static and stochastic, and common examples

include: stochastic customers, where a customer needs to be serviced with a given probability (Bert-

simas, 1988; Waters, 1989); stochastic times, in which either service or travel times are modeled by

random variables (Kenyon and Morton, 2003; Laporte et al., 1992; Verweij et al., 2003); and lastly,

stochastic demands (Christiansen and Lysgaard, 2007; Dror et al., 1989; Laporte et al., 2002; Mendoza

et al., 2011, 2009; Secomandi, 2000; Secomandi and Margot, 2009) where customer demands are known

as probability distributions. Further details on the static stochastic vehicle routing can be found in the

reviews by Bertsimas and Simchi-Levi (1996); Cordeau et al. (2007), and Gendreau et al. (1996).

In addition, recent advances in communication and geolocation technologies now allow compa-

nies to economically track their Weet in real time. These new technologies lead to the development of

Intelligent Transport Systems (ITS), and more precisely Advanced Fleet Management Systems (AFMS),

that combine hardware and software solutions to provide real time information on the Weet, customers,

and road networks. The development of ITS and AFMS creates new challenges and opportunities for

operations research. Vehicle routing is no longer limited to the design of a-priori routes that cannot be

altered once the vehicles have departed the depot. Instead, it can now consider real-time reoptimiza-

tion of routes, leading to what is referred to as dynamic vehicle routing problems. Nonetheless, Crainic

et al. (2009) point out that while the hardware part of ITS has considerably evolved, the correspond-

ing Decision Support Systems (DSS) and optimization models have not yet reached their maturity.

Therefore, the advent of such systems require the development of a new class of eXcient optimization

algorithms able to manage Weets in real time.

The purpose of this dissertation is to review the state-of-the-art in the area of dynamic routing, de-

sign new algorithms for this class of problems; implement general-purpose software components that

are both reusable and adaptable to a wide range of variants; apply the proposed algorithms to a real-

world routing application; and Vnally, to release the proposed components as open-source packages to

accelerate technology transfer from academia to industry.

Chapter 1 presents a comprehensive review of the literature on dynamic vehicle routing. We clas-

sify problems from the perspective of quality and evolution of information, identifying four categories

depending on whether they are static or dynamic, and deterministic or stochastic. In the remaining

discussion, we focuse on dynamic vehicle routing problems, for which we give a general deVnition

and present metrics to measure their degree of dynamism. In addition, we illustrate the relevance of

dynamic routing by listing applications in the service industry, transport of goods, and transport of

persons. We provide an extensive review of solution methods for both dynamic and deterministic and

dynamic and stochastic problems, present performance evaluation metrics, and list available bench-

marks. We conclude by drawing directions for future research in this emerging Veld. This paper was

submitted to the European Journal of Operational Research (Pillac et al., 2011a) and two earlier versions

were published as technical reports (Pillac et al., 2011b, 2010a).

Chapter 2 focuses on dynamic and deterministic routing problems in which part or all of the input

is unknown and revealed dynamically during the design or execution of routes. An important feature

is that no information is available on the dynamically revealed data, therefore solution methods cannot

anticipate changes in input, but may only react to them. In this chapter, we consider routing problems
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in which new customers appear during the execution of routes, requiring updates in the routing plan.

We propose a fast re-optimization approach, namely parallel Adaptive Large Neighborhood Search

(pALNS), which produces high quality routing in limited computational time. We then illustrate its

performance on a set of Dynamic Vehicle Routing Problem with Time Windows (D-VRPTW) instances

derived from the Solomon (1987) benchmark. Noting that the common assumption that vehicle drivers

do not know their next destination until they Vnish serving their current customer may not be de-

sirable from a practical perspective, we introduce the notion of driver inconvenience and deVne a

bi-objective optimization problem that minimizes the routing cost while maintaining its consistency

throughout the day. We consider a context in which vehicles have an initial routing plan at the be-

ginning of the day, that is then periodically updated by a decision maker. We introduce a measure

of the driver inconvenience resulting from each update, and propose a bi-objective approach based

on pALNS, namely pBiALNS, that is able to produce a set of non-dominated solutions in reasonable

computational time. These solutions oUer diUerent tradeoUs between cost eXciency and consistency,

and can be used by the decision maker to update the vehicle routing introducing a controlled num-

ber of changes. Our computational experiments study the tradeoU between cost eXciency and route

consistency, and show that pBiALNS is able to produce a variety of alternative solutions in a few sec-

onds. This chapter was published as a technical report (Pillac et al., 2012b), and an earlier version was

presented at the ROADEF 2012 conference (Pillac et al., 2012g). Details on the implementation of the

pALNS and pBiALNS algorithms are presented in Appendix C.

In dynamic and stochastic problems part or all the input is unknown and revealed dynamically dur-

ing the execution of the routes, yet exploitable stochastic knowledge is available on the dynamically

revealed information. Chapter 3 presents an event-driven framework based on a multiple scenario

approach called jMSA. This framework is Wexible, parallelized, and easily embeddable in a decision

support system. It can cope with a wide variety of dynamic vehicle routing problems and may be ex-

tensible to other dynamic combinatorial optimization problems. jMSA generates and maintains a pool

of scenarios, each containing a realization of the random variables modeling the dynamically revealed

data. This pool is then used to take the routing decisions whenever required. We illustrate the Wexi-

bility of the framework by solving the VRP with Stochastic Demands and show that our approach is

competitive against the state-of-the-art algorithms. This chapter was accepted for publication in Deci-

sion Support Systems (Pillac et al., 2012a), an earlier version of this work was published as a technical

report (Pillac et al., 2011d), while preliminary results were presented at the ALIO-INFORMS 2010 and

the ROADEF 2011 conferences (Pillac et al., 2010b, 2011c). Appendix C presents the implementation of

the algorithm used to optimize scenarios, namely Adaptive Variable Neighborhood Search (AVNS).

In Chapter 4, we formally introduce the Technician Routing and Scheduling Problem (TRSP), which

is motivated by the optimization problem faced by an industrial partner. The TRSP consists in routing

a crew of technicians to serve a set of requests. Distinctive features of this problem are: the fact that

technicians start and end their tour at their home; the consideration of skills, tools, and spare parts

that restricts the set of technicians that can serve a speciVc request; the possibility for technicians

to pick up additional tools and spare parts at a central depot; and Vnally, the objective function that

considers the minimization of the total working time and the balancing of tours. The Vrst paper

in this chapter proposes a parallel adaptive large neighborhood search coupled with a set-covering

LUNAM - EMN - Uniandes 6/192 Pillac V. - Ph D. Dissertation



INTRODUCTION BIBLIOGRAPHY
post-optimization, namely pALNS+SC, used to tackle the static TRSP. We illustrate the performance

of pALNS+SC on the Solomon (1987) VRPTW instances, then we introduce a new set of instances

for the TRSP, generated from the Solomon (1987) instances as described in Appendix D, and solve

them using pALNS+SC. This paper was submitted to Optimization Letters (Pillac et al., 2012f) and

preliminary results were presented at the MIC 2011 conference (Pillac et al., 2011e). The second paper

tackles the dynamic TRSP and proposes two solution methods. The Vrst is an adaptation of the fast-

reoptimization approach presented in Chapter 2. The second is a multiple plan approach, which is a

variant of the multiple scenario approach presented in Chapter 3. This work is available as a technical

report (Pillac et al., 2012d) and preliminary results were presented at the ODYSSEUS 2012 and EURO

2012 conferences (Pillac et al., 2012c,e).

Finally, Appendices A, B, and C describe software libraries and frameworks developed to support

the research presented in the Vve papers, Appendix D presents an instance generator for the TRSP,

Appendix E details the best known solutions for the new instances, and Appendix F summarizes the

record of publications developed during this thesis.
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1
Literature review

In this chapter we present a thorough review of the current state of the art in dynamic vehicle

routing applications and approaches.
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Abstract : A number of technological advances have led to a renewed interest on dy-

namic vehicle routing problems. This survey classiVes routing problems from

the perspective of information quality and evolution. After presenting a gen-

eral description of dynamic routing, we introduce the notion of degree of

dynamism, and present a comprehensive review of applications and solution

methods for dynamic vehicle routing problems.
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1.1 Introduction

The Vehicle Routing Problem (VRP) formulation was Vrst introduced by Dantzig and Ramser

(1959), as a generalization of the Traveling Salesman Problem (TSP) presented by Flood (1956). The

VRP is generally deVned on a graph G = (V, E , C), where V = {v0, ..., vn} is the set of vertices;

E = {(vi, vj)|(vi, vj) ∈ V2, i 6= j} the arc set; and C = (cij)(vi,vj)∈E a cost matrix deVned over E ,
representing distances, travel times, or travel costs. Traditionally, vertex v0 is called the depot, while

the remaining vertices in V represent customers (or requests) that need to be serviced. The VRP consists

in Vnding a set of routes for K identical vehicles based at the depot, such that each of the vertices is

visited exactly once, while minimizing the overall routing cost.

Beyond this classical formulation, a number of variants have been studied. Among the most com-

mon are the Capacitated VRP (CVRP), where each customer has a demand for a good and vehicles have

Vnite capacity; the VRP with Time Windows (VRPTW), where each customer must be visited during

a speciVc time frame; the VRP with Pick-up and Delivery (PDP), where goods have to be picked-up

and delivered in speciVc amounts at the vertices; and the Heterogeneous Weet VRP (HVRP), where

vehicles have diUerent capacities. Routing problems that involve moving people between locations are

referred to as Dial-A-Ride-Problem (DARP) for land transport; or Dial-A-Flight-Problem (DAFP), for

air transport.

In contrast to the classical deVnition of the vehicle routing problem, real-world applications often

include two important dimensions: evolution and quality of information (Psaraftis, 1980). Evolution

of information relates to the fact that in some problems the information available to the planner may
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CHAPTER 1. LITERATURE REVIEW 1.1. INTRODUCTION
change during the execution of the routes, for example, with the arrival of new customer requests.

Quality of information reWects possible uncertainty on the available data, for instance, when the de-

mand of a customer is only known as a range estimate of its real demand. In addition, depending on

the problem and the available technology, vehicle routes can either be designed statically (a-priori)

or dynamically. For instance, the VRP with Stochastic Demands (VRPSD), can be seen from both

perspectives. From a static perspective, the problem is to design a set of robust routes a-priori, that

will undergo minor changes during their execution (Bertsimas and Simchi-Levi, 1996; Gendreau et al.,

1996). From a dynamic perspective, the problem consists in designing the vehicle routes in an online

fashion, communicating to the vehicle which customer to serve next as soon as it becomes idle (Novoa

and Storer, 2009; Secomandi, 2001; Secomandi and Margot, 2009). Based on these dimensions, Table 1.1

identiVes four categories of routing problems.

Information quality

Deterministic input Stochastic input

Information
evolution

Input known
beforehand

Static and deterministic Static and stochastic

Input changes
over time

Dynamic and deterministic Dynamic and stochastic

Table 1.1: Taxonomy of vehicle routing problems by information evolution and quality.

In static and deterministic problems, all input is known beforehand and vehicle routes do not change

once they are in execution. This classical problem has been extensively studied in the literature, and

we refer the interested reader to the recent reviews of exact and approximate methods by Baldacci

et al. (2007); Cordeau et al. (2007b); Laporte (2007, 2009), and Toth and Vigo (2002).

Static and stochastic problems are characterized by input partially known as random variables,

which realizations are only revealed during the execution of the routes. Additionally, it is assumed that

routes are designed a-priori and only minor changes are allowed afterwards. For instance, allowable

changes include planning a trip back to the depot or skipping a customer. Applications in this category

do not require any technological support. Uncertainty may aUect any of the input data, yet the three

most studied cases are (Cordeau et al., 2007b): stochastic customers, where a customer needs to be

serviced with a given probability (Bertsimas, 1988; Waters, 1989); stochastic times, in which either

service or travel times are modeled by random variables (Kenyon and Morton, 2003; Laporte et al.,

1992; Verweij et al., 2003); and lastly, stochastic demands (Christiansen and Lysgaard, 2007; Dror et al.,

1989; Laporte et al., 2002; Mendoza et al., 2011, 2009; Secomandi, 2000; Secomandi and Margot, 2009).

Further details on the static stochastic vehicle routing can be found in the reviews by Bertsimas and

Simchi-Levi (1996); Cordeau et al. (2007b), and Gendreau et al. (1996).

In dynamic and deterministic problems, part or all of the input is unknown and revealed dynami-

cally during the design or execution of the routes. For these problems, vehicle routes are redeVned in

an ongoing fashion, requiring technological support for real-time communication between the vehicles

and the decision maker (e.g., mobile phones and global positioning systems). This class of problems

are also referred to as online or real time by some authors (Jaillet and Wagner, 2008a).
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Similarly, dynamic and stochastic problems have part or all of their input unknown and revealed

dynamically during the execution of the routes, but in contrast with the latter category, exploitable

stochastic knowledge is available on the dynamically revealed information. As before, the vehicle

routes can be redeVned in an ongoing fashion with the help of technological support.

Besides dynamic routing problems, where customer visits must be explicitly sequenced along the

routes, there are other related vehicle dispatching problems, such as managing a Weet of emergency

vehicles(Brotcorne et al., 2003; Gendreau et al., 2001; Haghani and Yang, 2007), or the so-called dynamic

allocation problems in the area of long haul truckload trucking (Godfrey and Powell, 2002; Powell et al.,

2002; Spivey and Powell, 2004). In this paper, we focus solely on dynamic problems with an explicit

routing dimension.

The remainder of this document is organized as follows. Section 1.2 presents a general description

of dynamic routing problems and introduce the notion of degree of dynamism. Section 1.3 reviews

diUerent applications in which dynamic routing problems arise, while Section 1.4 provides a compre-

hensive survey of solution approaches. Finally, Section 1.5 concludes this paper and gives directions

for further research.

1.2 Dynamic vehicle routing problems

1.2.1 A general deVnition

The Vrst reference to a dynamic vehicle routing problem is due to Wilson and Colvin (1977). They

studied a single vehicle DARP, in which customer requests are trips from an origin to a destination that

appear dynamically. Their approach uses insertion heuristics able to perform well with low computa-

tional eUort. Later, Psaraftis (1980) introduced the concept of immediate request: a customer requesting

service always wants to be serviced as early as possible, requiring immediate replanning of the current

vehicle route.

A number of technological advances have led to the multiplication of real-time routing applica-

tions. With the introduction of the Global Positioning System (GPS) in 1996, the development and

widespread use of mobile and smart phones, combined with accurate Geographic Information Systems

(GIS), companies are now able to track and manage their Weet in real time and cost eUectively. While

traditionally a two-step process (i.e., plan-execute), vehicle routing can now be done dynamically, in-

troducing greater opportunities to reduce operational costs, improve customer service, and reduce

environmental impact.

The most common source of dynamism in vehicle routing is the online arrival of customer requests

during the operation. More speciVcally, requests can be a demand for goods (Attanasio et al., 2004; Goel

and Gruhn, 2008; Hvattum et al., 2006, 2007; Ichoua et al., 2006; Mes et al., 2007; Mitrović-Minić and La-

porte, 2004; Van Hemert and Poutré, 2004) or services (Beaudry et al., 2010; Bent and Van Hentenryck,

2005; Bertsimas and Van Ryzin, 1991; Gendreau et al., 1999; Larsen et al., 2004; Thomas, 2007). Travel

time, a dynamic component of most real-world applications, has been recently taken into account (At-

tanasio et al., 2007; Barcelo et al., 2007; Chen et al., 2006; Fleischmann et al., 2004; Güner et al., 2012;

Haghani and Jung, 2005; Lorini et al., 2011; Potvin et al., 2006; Tagmouti et al., 2011; Taniguchi and
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Shimamoto, 2004; Zeimpekis et al., 2007a); while service time has not been explicitly studied (but can

be added to travel time). Finally, some recent work considers dynamically revealed demands for a set

of known customers (Novoa and Storer, 2009; Novoa, 2005; Secomandi, 2000; Secomandi and Margot,

2009) and vehicle availability (Li et al., 2009a,b; Mu et al., 2011), in which case the source of dynamism

is the possible breakdown of vehicles. In the following we use the preVx “D-” to label problems in

which new requests appear dynamically.

To better understand what we mean by dynamic, Figure 1.1 illustrates the route execution of a

single vehicle D-VRP. Before the vehicle leaves the depot (time t0), an initial route plans to visit the

currently known requests (A,B,C,D,E). While the vehicle executes its route, two new requests (X

and Y ) appear at time t1 and the initial route is adjusted to fulVll them. Finally, at time tf the executed

route is (A,B,C,D, Y,E,X).
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Figure 1.1: Example of dynamic vehicle routing

This example reveals how dynamic routing inherently adjusts routes in an ongoing fashion, which

requires real-time communication between vehicles and the dispatching center. Figure 1.2 illustrates

this real-time communication scheme, where the environment refers to the real-world while the dis-

patcher is the agent that gives instructions to the vehicle. Once the vehicle is ready (Vrst dotted arrow),

the dispatcher makes a decision and instructs the vehicle to fulVll request A (Vrst double-headed ar-

row). When the vehicle starts (second dotted arrow) and ends (third dotted arrow) service at request

A, it notiVes the dispatcher, which in turns updates the available information and communicates the

vehicle its next request (second double-headed arrow).
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Figure 1.2: Timeline of events for the dynamic routing of a single vehicle
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1.2.2 DiUerences with static routing

In contrast to their static counterparts, dynamic routing problems involve new elements that in-

crease the complexity of their decisions (more degrees of freedom) and introduce new challenges while

judging the merit of a given route plan.

In some contexts, such as the pick-up of express courier (Gendreau et al., 1999), the transport

company may deny a customer request. As a consequence, it can reject a request either because

it is simply impossible to service it, or because the cost of serving it is too high. This process of

acceptance/denial has been used in many approaches (Attanasio et al., 2004; Fagerholt et al., 2009;

Gendreau et al., 1999; Ichoua et al., 2000, 2003, 2006; Li et al., 2009a) and is referred to as service

guarantee (Van Hentenryck and Bent, 2006).

In dynamic routing, the ability to redirect a moving vehicle to a new request nearby allows for

additional savings. Nevertheless, it requires real-time knowledge of the vehicle position and being able

to communicate quickly with drivers to assign them new destinations. Thus, this strategy has received

limited interest, with the main contributions being the early work by Regan et al. (1995, 1998, 1996),

the study of diversion issues by Ichoua et al. (2000), and the work by Branchini et al. (2009).

Dynamic routing also frequently diUers in the objective function (Psaraftis, 1995). In particular,

while a common objective in the static context is the minimization of the routing cost, dynamic rout-

ing may introduce other notions such as service level, throughput (number of serviced requests), or

revenue maximization. Having to answer to dynamic customer requests also introduces the notion of

response time: a customer might request to be serviced as soon as possible, in which case the main

objective may become to minimize the delay between the arrival of a request and its service.

Dynamic routing problems require making decisions in an online manner, which often compro-

mises reactiveness with decision quality. In other words, the time invested searching for better de-

cisions, comes at the price of a lower reactiveness to input changes. This aspect is of particular im-

portance in contexts where customers call for a service and a good decision must be made as fast as

possible.

1.2.3 Measuring dynamism

DiUerent problems (or instances of a same problem) can have diUerent levels of dynamism, which

can be characterized according to two dimensions (Ichoua et al., 2007): the frequency of changes and

the urgency of requests. The former is the rate at which new information becomes available, while the

latter is the time gap between the disclosure of a new request and its expected service time. From this

observation three metrics have been proposed to measure the dynamism of a problem (or instance).

Lund et al. (1996) deVned the degree of dynamism δ as the ratio between the number of dynamic

requests nd and the total number of requests ntot as follows:

δ =
nd
ntot

(1.1)

Based on the fact that the disclosure time of requests is also important (Psaraftis, 1988, 1995), Larsen

(2001) proposed the eUective degree of dynamism δe. This metric can be interpreted as the normalized
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average of the disclosure times. Let T be the length of the planning horizon,R the set of requests, and

ti the disclosure time of request i ∈ R. Assuming that requests known beforehand have a disclosure

time equal to 0, δe can be expressed as:

δe =
1

ntot

∑
i∈R

ti
T

(1.2)

Larsen (2001) also extended the eUective degree of dynamism to problems with time windows to

reWect the level of urgency of requests. He deVnes the reaction time as the diUerence between the

disclosure time ti and the end of the corresponding time window li, highlighting that longer reaction

times mean more Wexibility to insert the request into the current routes. Thus, the eUective degree of

dynamism measure is extended as follows:

δeTW =
1

ntot

∑
i∈R

(
1− li − ti

T

)
(1.3)

It is worth noting that these three metrics only take values in the interval [0, 1] and all increase

with the level of dynamism of a problem. Larsen et al. (2002, 2007) use the eUective degree of dynamism

to deVne a framework classifying D-VRPs among weakly, moderately, and strongly dynamic problems,

with values of δe being respectively lower than 0.3, comprised between 0.3 and 0.8, and higher than

0.8.

Although the eUective degree of dynamism and its variations have proven to capture well the

time-related aspects of dynamism, it could be argued that they do not take into account other possible

sources of dynamism. In particular, the geographical distribution of requests, or the traveling times

between requests, are also of great importance in applications aiming at the minimization of response

time. Although not considered, the frequency of updates in problem information has a dramatical

impact on the time available for optimization.

1.3 A review of applications

Recent advances in technology have allowed the emergence of a wide new range of applications

for vehicle routing. In particular, the last decade has seen the development of Intelligent Transport

Systems (ITS), which are based on a combination of geolocation technologies, with precise geographic

information systems, and increasingly eXcient hardware and software for data processing and opera-

tions planning. We refer the interested reader to the study by Crainic et al. (2009) for more details on

ITS and the contributions of operations research to this relatively new domain.

Among the ITS, the Advanced Fleet Management Systems (AFMS) are speciVcally designed for

managing a corporate vehicle Weet. The core problem is generally to deliver (pick-up) goods or persons

to (from) locations distributed in a given area. While customer requests can either be known in advance

or appear dynamically during the day, vehicles are dispatched and routed in real time, potentially, by

taking into account changing traXc conditions, uncertain demands, or varying service times. A key

technological feature of AFMS is the optimization component. Traditionally, vehicle routing relies on
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teams of human dispatchers, meaning a critical operational process is bound to the competence and

experience of dispatchers, as well as the management costs that are directly linked to the size of the

Weet (Attanasio et al., 2007). Advances in computer science have allowed a technological transfer from

operational research to AFMS, as presented in the studies by Attanasio et al. (2007); Du et al. (2007);

Godfrey and Powell (2002); Powell and Topaloglu (2005); Roy (2001); Simao et al. (2009), and Slater

(2002).

The remainder of this section presents applications where dynamic routing has been or can be

implemented. The interested reader is also referred to the work by Gendreau and Potvin (1998) and

Ichoua et al. (2007) for complementary reviews.

1.3.1 Services

In this category of applications, a service request is deVned by a customer location and a possible

time window; while vehicle routes just fulVll service requests without considering side constraints such

as capacity. Perhaps the simplest, yet most illustrative case in this category is the dynamic traveling

salesman problem (Larsen et al., 2004).

A common application of dynamic routing can be found in the area of maintenance operations.

Maintenance companies are often committed by contract to their customers, which specify periodical

or planned visits to perform preventive maintenance, and may also request corrective maintenance on

short notice. Therefore, each technician is Vrst given a route with known requests at the beginning

of the day, while new urgent requests are inserted dynamically throughout the day. An interesting

feature of this problem is the possible mix of skills, tools, and spare part requirements, which have to

be matched in order to service the request. This problem has been studied by Borenstein et al. (2010)

with an application to British Telecom.

Another application of dynamic routing arises in the context of the French non-proVt organization

SOS Médecins. This organization operates with a crew of physicians, who are called on duty via a call

center coordinated with other emergency services. When a patient calls, the severity of the case is

evaluated, and a visit by a practitioner is planned accordingly. As in other emergency services, having

an eXcient dispatching system reduces the response time, thus improving service level for the society.

On the other hand, it is important to decide in real-time whether or not to send a physician, so that it

is possible to ensure a proper service level in areas where emergencies are likely to appear.

Dynamic aspects can also appear on arc routing problems. This is for instance the case in the

study by Tagmouti et al. (2011) on the operation of a Weet of vehicles for winter gritting applications.

Their work consider a network of streets or road segments that need to be gritted when aUected by a

moving storm. Depending on the movements of the storm, new segments may have to be gritted, and

the routing of vehicles has to be updated accordingly.

1.3.2 Transport of goods

Due to the fact that urban areas are often characterized by highly variable traveling times, trans-

port of goods in such areas have led to the deVnition of a speciVc category of applications known

as city logistics. City logistics can be deVned as an integrated vision of transport activities in urban
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areas, taking into account factors such as traXc and competition or cooperation between transport

companies (Taniguchi and Thompson, 2002). Barcelo et al. (2007) developed a general framework for

city logistics applications. They describe the diUerent modules ranging from modeling the city road

network and acquiring real-time traXc data to the dynamic routing of a Weet of vehicles. Zeimpekis

et al. (2007a) proposed a Decision Support System (DSS) for city logistics which takes into account

dynamic travel and service times.

A typical application in city logistics is the courier service present in most urban areas. Couriers

are dispatched to customer locations to collect packages, and either deliver them to their destination

(short haul) or to a unique depot (long haul). Depending on the level of service paid by the customer,

couriers may consolidate pick-ups from various customers, or provide an expedited service. Companies

oUering courier services often have an heterogeneous Weet composed of bicycles, motorbikes, cars,

and small vans. The problem is then to dynamically route couriers, taking into account not only the

known requests, their type, pick-up and delivery locations, and time windows, but also considering

traXc conditions and varying travel times. A case study by Attanasio et al. (2007) outlines the beneVts

of using an optimization-enabled AFMS at eCourier Ltd, a London based company oUering courier

services. The authors illustrate that aside from the improvements in service quality, response time,

and courier eXciency, the use of an automated system allows decoupling the Weet size from the need

for more dispatchers. Further results motivated by a similar application can be found in Gendreau et al.

(2006) and Ghiani et al. (2009).

The delivery of newspapers and magazines is a domain in which customer satisfaction is of Vrst

importance. When a magazine or newspaper is not delivered, a subscriber contacts a call center and

is oUered to choose between a voucher or a future delivery. In the latter case, the request is then

forwarded to the delivery company, which assigns it to a driver that will do a priority delivery. Tradi-

tionally, this process relies on an exchange of phone calls, faxes, and printed documents, that ultimately

communicate the driver about the pending delivery, once he/she comes back to the depot. As an al-

ternative, Bieding et al. (2009) propose a centralized application that makes use of mobile phones to

communicate with drivers and intelligently perform the routing in real time, reducing costs and im-

proving customer satisfaction. More recently, Ferrucci et al. (2011) developed an approach that makes

use historical data to anticipate future requests.

Another application in which customer requests need to be answered with short delays can be

found in companies with a direct service model, such as grocery delivery services. In general, the

customer selects products on a website, and then chooses a time frame for the delivery at his home.

Traditionally, the vendor deVnes an arbitrary number of customers that can be serviced within a time

window, and the time window is made unavailable to customers as soon as the capacity is reached.

Campbell and Savelsbergh (2005) deVned the Home Delivery Problem, in which the goal is to maximize

the total expected revenue by dynamically deciding whether or not to accept a customer request within

a speciVc time window. In comparison with the traditional approach, this means that the time windows

available for a customer are dynamically deVned taking into consideration the possible future requests.

The authors propose a Greedy Randomized Adaptive Search Procedure (GRASP) and compare diUerent

cost functions to capture the problem uncertainty. Later, Azi et al. (2011) proposed an Adaptive Large

Neighborhood Search (ALNS) that take into account uncertainty by generating scenarios containing
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possible demand realizations.

Apart from classical routing problems, related operational problems also arise in many organi-

zations. The review by Stahlbock and Voss (2008) on operations research applications in container

terminals describes the dynamic stacker crane problem (Balev et al., 2009; Berbeglia et al., 2010), which

considers the routing of container carriers loading and unloading ships in a terminal. Other applica-

tions include transport of goods inside warehouses (Smolic-Rocak et al., 2010), factories, and hospitals,

where documents or expensive medical instruments must be transferred eXciently between services

(Fiegl and Pontow, 2009).

1.3.3 Transport of persons

The transport of persons is in general–and by many aspects–similar to the transport of goods, yet

it is characterized by additional constraints such as regulation on waiting, travel, and service times.

Taxis are arguably the most common on-demand individual transport systems. Requests are com-

posed of a pick-up location and time, possibly coupled with a destination. They can be either known in

advance, for instance when a customer books a cab for the next day, or they can arrive dynamically, in

which case a taxi must be dispatched in the shortest time. When customers cannot share a vehicle, the

closest free taxi is generally the one which takes the ride, leaving limited space for optimization. The

study by Caramia et al. (2002), generalized by Fabri and Recht (2006), focuses on a multi-cab metropoli-

tan transportation system, where a taxi can transport more than one passenger at the same time. In

this case the online algorithms minimize the total traveled distance, while assigning requests to ve-

hicles and computing the taxi routes. This multi-cab transportation system can be generalized as an

on-demand or door-to-door transport service.

Many applications involve the transport of children, the elderly, disabled people, or patients, from

their home to schools, place of work, or medical centers. Xiang et al. (2008) studied a DARP with

changing travel speeds, vehicle breakdowns, and traXc congestion; while Dial (1995), followed by

Horn (2002a,b, 2004), studied demand-responsive transport systems. An extensive review of this class

of problems can be found in the studies by Cordeau et al. (2007a) and Berbeglia et al. (2010).

A singular application of on-demand transportation systems can be found in major hospitals, with

services possibly spread across various buildings on several branches. Depending on the medical

procedure or facility capacity, a patient may need to be transferred on short notice from one service

to another, possibly requiring trained staU or speciVc equipment for his/her care. This application has

been studied by Beaudry et al. (2010); Kergosien et al. (2011), and Melachrinoudis et al. (2007).

Air taxis developed as a Wexible response to the limitations of traditional airlines. Air taxis oUer

passengers the opportunity to travel through smaller airports, avoiding waiting lines at check-in and

security checks. Air taxi companies oUer an on-demand service: customers book a Wight a few days in

advance, specifying whether they are willing to share the aircraft, stop at an intermediate airport, or

have Wexible traveling hours. Then, the company accommodates these requests, trying to consolidate

Wights whenever possible. The underlying optimization problems have not been subject to much at-

tention, except in the studies by Cordeau et al. (2007a); Espinoza et al. (2008a,b); Fagerholt et al. (2009),

and Yao et al. (2007). Similar problems arises in helicopter transportation systems, typically used by oil
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and gas companies to transport personnel between oUshore petroleum platforms (Gribkovskaia et al.,

2008; Romero et al., 2007).

1.4 Solution Methods

Few research was conducted on dynamic routing between the work of Psaraftis (1980) in 1980

and the late 1990s. However, the last decade has seen a renewed interest for this class of problems

(Eksioglu et al., 2009), with solution techniques ranging from linear programming to metaheuristics.

This section presents the major contributions in this Veld, and the reader is referred to the reviews,

books, and special issues by Gendreau and Potvin (1998, 2004); Ghiani et al. (2003); Goel (2008); Ichoua

(2001); Ichoua et al. (2006, 2007); Jaillet and Wagner (2008b); Larsen et al. (2008), and Zeimpekis et al.

(2007b), to complement our review.

1.4.1 Dynamic and deterministic routing problems

This section presents approaches that have been successfully applied to dynamic routing, in the

absence of stochastic information. In this context, critical information is revealed over time, meaning

that the complete instance is only known at the end of the planning horizon. As a consequence, exact

methods only provide an optimal solution for the current state, but do not guarantee that the solution

will remain optimal once new data becomes available. Therefore, most dynamic approaches rely on

heuristics that quickly compute a solution to the current state of the problem. Approaches for dynamic

and deterministic vehicle routing problems can be divided into two categories: those based on periodic

reoptimization, and those based on continuous reoptimization.

1.4.1.1 Periodic reoptimization

To the best of our knowledge, the Vrst periodic reoptimization approach is due to Psaraftis (1980),

with the development of a dynamic programming approach. His research focuses on the DARP and

consists in Vnding the optimal route each time a new request is known. The main drawback of dynamic

programming is the well-known curse of dimensionality (Powell, 2007, Chap. 1), which prevents its

application to large instances.

More generally, periodic reoptimization approaches start at the beginning of the day with a Vrst

optimization that produces an initial set of routes. Then, an optimization procedure periodically solves

a static problem corresponding to the current state, either whenever the available data changes, or at

Vxed intervals of time –referred to as decision epochs (Chen and Xu, 2006) or time slices (Kilby et al.,

1998). The advantage of periodic reoptimization is that it can be based on algorithms developed for

static routing, for which extensive research has been carried out. The main drawback is that all the

optimization needs to be performed before updating the routing plan, thus increasing delays for the

dispatcher.

Yang et al. (2004) addressed the real-time truckload PDP, in which a Weet of trucks has to service

point-to-point transport requests arriving dynamically. Important assumptions are that all trucks can

only handle one request at a time, with no possible preemption, and they travel at the same constant
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speed. The authors propose MYOPT, a rolling horizon approach based on a linear program (LP) that

is solved whenever a new request arrives. Along the same line of linear programming, Chen and

Xu (2006) designed a dynamic column generation algorithm (DYCOL) for the D-VRPTW. The authors

propose the concept of decision epochs over the planning horizon, which are the dates when the op-

timization process runs. The novelty of their approach relies on dynamically generating columns for

a set-partitioning model, using columns from the previous decision epoch. The authors compared

DYCOL to a traditional column generation with no time limit (COL). Computational results based on

the Solomon benchmark (Solomon, 1987) demonstrate that DYCOL yields comparable results in terms

of objective function, but with running times limited to 10 seconds, opposed to the various hours

consumed by COL.

Montemanni et al. (2005) developed an Ant Colony System (ACS) to solve the D-VRP. Similar to

Kilby et al. (1998), their approach uses time slices, that is, they divide the day in periods of equal

duration. A request arriving during a time slice is not handled until the end of the time bucket, thus

the problem solved during a time slice only considers the requests known at its beginning. Hence, the

optimization is run statically and independently during each time slice. The main advantage of this

time partition is that similar computational eUort is allowed for each time slice. This discretization

is also possible by the nature of the requests, which are never urgent, and can be postponed. An

interesting feature of their approach is the use of the pheromone trace to transfer characteristics of a

good solution to the next time slice. A similar approach was also used by Gambardella et al. (2003) and

Rizzoli et al. (2007).

1.4.1.2 Continuous reoptimization

Continuous reoptimization approaches perform the optimization throughout the day and maintain

information on good solutions in an adaptive memory (Taillard et al., 2001). Whenever the available

data changes, a decision procedure aggregates the information from the memory to update the current

routing. The advantage is that the computational capacity is maximized, possibly at the expense of a

more complex implementation. It is worth noting that because the current routing is subject to change

at any time, vehicles do not know their next destination until they Vnish the service of a request.

To the best of our knowledge, the Vrst continuous reoptimization approach is due Gendreau et al.

(1999) with the adaptation of the parallel Tabu Search (TS) framework introduced by Taillard et al.

(1997) to a D-VRPTW problem arising in the local operation of long distance express courier services.

Their approach maintains a pool of good routes–the adaptive memory–which is used to generate initial

solutions for a parallel TS. The parallelized search is done by partitioning the routes of the current

solution, and optimizing them in independent threads. Whenever a new customer request arrives, it is

checked against all the solutions from the adaptive memory to decide whether it should be accepted or

rejected. This framework was also implemented for the D-VRP (Ichoua et al., 2000, 2003), while other

variations of TS have been applied to the D-PDP (Barcelo et al., 2007; Chang et al., 2003) and the DARP

(Attanasio et al., 2004; Beaudry et al., 2010).

Bent and Van Hentenryck (2004b) introduced theMultiple Plan Approach (MPA) as a generalization

of the TS with adaptive memory (Gendreau et al., 1999). The general idea is to populate and maintain
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a solution pool (the routing plans) that are used to generate a distinguished solution. Whenever a new

request arrives, a procedure is called to check whether it can be serviced or not; if it can be serviced,

then the request is inserted in the solution pool and incompatible solutions are discarded. Pool updates

are performed periodically or whenever a vehicle Vnishes servicing a customer. This pool-update phase

is crucial and ensures that all solutions are coherent with the current state of vehicles and customers.

The pool can be seen as an adaptive memory that maintains a set of alternative solutions.

In an early work, Benyahia and Potvin (1998) studied the D-PDP and proposed a Genetic Algorithm

(GA) that models the decision process of a human dispatcher. More recently, GAs were also used for

the same problem (Cheung et al., 2008; Haghani and Jung, 2005) and for the D-VRP (Van Hemert and

Poutré, 2004). Genetic algorithms in dynamic contexts are very similar to those designed for static

problems, although they generally run throughout the planning horizon and solutions are constantly

adapting to the changes made to the input.

1.4.2 Dynamic and stochastic routing problems

Dynamic and stochastic routing problems can be seen as an extension of their deterministic coun-

terparts, where additional (stochastic) knowledge is available in the dynamically revealed input. Ap-

proaches for this class of problems can be divided in two categories: those based on sampling and

those based on stochastic modeling. As their name suggests, sampling strategies incorporate stochastic

knowledge by generating scenarios based on realizations drawn from random variable distributions.

Each scenario is then optimized by solving the static and deterministic problem they deVne. On the

other hand, approaches based on stochastic modeling integrate stochastic knowledge analytically. The

advantage of sampling is its relative simplicity and Wexibility on distributional assumptions, while its

drawback is the massive generation of scenarios to accurately reWect reality. Alternatively, stochastic

modeling strategies formally capture the stochastic nature of the problem, but they are highly technical

in their formulation and require to eXciently compute possibly complex expected values. Examples of

these two strategies follow.

1.4.2.1 Stochastic modeling

Powell et al. (1988) formulated a truckload PDP as a Markov Decision Process (MDP). Later, MDPs

were used by Thomas and White (2004) and Thomas (2007) to solve a VRP in which known customers

may ask for service with a known probability. Kim et al. (2005) also used MDPs to tackle the VRP with

dynamic travel times. Unfortunately, the curse of dimensionality and the simplifying assumptions

make this approach unsuitable in most real-world applications. Nonetheless, it allowed new insights

in the Veld of dynamic programming.

To cope with the scalability problems of traditional dynamic programming, Approximate Dynamic

Programming (ADP) steps forward in time, approximates the value function, and ultimately avoids

the evaluation of all possible states. We refer the interested reader to Powell (2007, 2009) for a more

detailed description of the ADP framework. ADP has been successfully applied to freight transport

(Powell et al., 2007; Powell and Topaloglu, 2003) and Weet management problems (Godfrey and Powell,

2002; Powell and Topaloglu, 2005; Simao et al., 2009). In particular, Novoa and Storer (2009) propose
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an ADP algorithm to dynamically solve the VRPSD.

Linear programming has also been adapted to the dynamic and stochastic context. The OPTUN ap-

proach, proposed by Yang et al. (2004) as an extension of MYOPT (see § 1.4.1.1), considers opportunity

costs on each arc to reWect the expected cost of traveling to isolated areas. Consequently, the opti-

mization tends to reject isolated requests, and avoids traversing arcs that are far away from potential

requests. Later, Yang et al. (2005) studied the emergency vehicle dispatching and routing and proposed

a mathematical formulation that was later used by Haghani and Yang (2007) on a similar problem.

1.4.2.2 Sampling

Sampling approaches rely on the generation of scenarios containing possible realizations of the

random variables. Figure 1.3 illustrates how scenarios are generated for the D-VRP. Solely based on the

current customers, the optimal tour would be (A,B,E,D,C) (1.3a.), which ignores two zones (gray

areas) where customers are likely to appear. By sampling the customer spatial distributions, customers

X , Y , and Z are generated, and the new optimal tour is (C,X, Y,B,A,Z,E,D) (1.3b.). Removing the

sampled (potential) customers leads to the tour (C,B,A,E,D) (1.3c.) which is suboptimal regarding

a myopic cost evaluation, but leaves room to accommodate new customers at a lower cost.

E

D C

A

B

a. A-priori optimal tour

E

D C

A

B

X

Y
Z

b. Optimal tour with sampled cus-
tomers

E

D C

A

B

X

Y
Z

c. Optimized scenario without sampled
customers

Legend: TourA Customer (actual/sampled)A Depot Customer distribution density

Figure 1.3: Scenario generation in sampling approaches.

The Multiple Scenario Approach (MSA) is a predictive adaptation of the MPA framework discussed

in § 1.4.1.2. The idea behind MSA is to take advantage of the time between decisions to continuously

improve the current scenario pool. During the initialization, the algorithm, generates a Vrst set of sce-

narios based on the requests known beforehand. Throughout the day, scenarios are then reoptimized

and new ones are generated and added to the pool. When a decision is required, the scenario optimiza-

tion procedure is suspended, and MSA uses the scenario pool to select the request to service next. MSA

then discards the scenarios that are incompatible with the current routing, and resumes the optimiza-

tion. Computational experiments on instances adapted from the Solomon benchmark (Solomon, 1987)

showed that MSA outperforms MPA both in terms of serviced customers and traveled distances, espe-

cially for instances with high degrees of dynamism (Bent and Van Hentenryck, 2004b). Flatberg et al.

(2007) adapted the SPIDER commercial solver to use multiple scenarios and a consensus algorithm to
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tackle the D-VRP, while Pillac et al. (2012) implemented an event-driven optimization framework based

on MSA and showed signiVcant improvements over state-of-the-art algorithms for the D-VRPSD.

An important component of scenario based-approaches such as MSA is the decision process, which

deVnes how the information from the scenario pool is used to reach upon a decision regarding the next

customer to visit. The most common algorithms used to reach a decision in MSA are: consensus, expec-

tation, and regret. The consensus algorithm (Bent and Van Hentenryck, 2004b,c) selects the customer

appearing Vrst with the highest frequency among scenarios. Expectation (Bent and Van Hentenryck,

2004a,c; Chang et al., 2000) consists in evaluating the cost of visiting each customer Vrst by forcing

its visit in all scenarios and performing a complete optimization. Finally, regret (Bent and Van Hen-

tenryck, 2004a) approximates the expectation algorithm and avoids the reoptimization of all scenarios.

Even though these algorithms were initially designed for the routing of a single vehicle, they can be

extended to the multi-vehicle case (Van Hentenryck and Bent, 2006).

Hvattum et al. (2006) developed the Dynamic Sample Scenario Hedge Heuristic (DSHH), an ap-

proach similar to the consensus algorithm for D-VRP. This method divides the planning horizon into

time intervals. At the beginning of each interval, DSHH revises the routing by assigning a subset of

promising requests to the vehicles, depending on the frequency of their assignment over all scenarios.

DSHH later led to the development of the Branch and Regret Heuristic (BRH), where scenarios are

merged to build a unique solution.

Various local search approaches have been developed for the stochastic and dynamic problems.

Ghiani et al. (2009) developed an algorithm for the D-PDP that only samples the near future to reduce

the computational eUort. The main diUerence with MSA is that no scenario pool is used and the selec-

tion of the distinguished solution is based on the expected penalty of accommodating requests in the

near future. Azi et al. (2011) developed an Adaptive Large Neighborhood Search (ALNS) for a dynamic

routing problem with multiple delivery routes, in which the dynamic decision is the acceptance of a

new request. The approach maintains a pool of scenarios, optimized by an ALNS, that are used to

evaluate the opportunity value of an incoming request.

Tabu search has also been adapted to dynamic and stochastic problems. Ichoua et al. (2006) and

Attanasio et al. (2007) tackled with tabu search the D-VRPTW and the D-PDP, respectively.

1.4.2.3 Other strategies

In addition to the general frameworks described previously, the use of stochastic knowledge allows

for the design and implementation of other strategies that try to adequately respond to upcoming

events.

The waiting strategy consists in deciding whether a vehicle should wait after servicing a request,

before heading toward the next customer; or planning a waiting period on a strategic location. This

strategy is particularly important in problems with time windows, where time lags appear between

requests. Mitrović-Minić et al. (2004) proved that in all cases it is better to wait after servicing a

customer, but a more reVned strategy can lead to further improvements. The problem is in general

to evaluate the likelihood of a new request in the neighborhood of a serviced request and to plan a

waiting period accordingly. The waiting strategy has been implemented in various frameworks for
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the D-VRP (Branke et al., 2005; Thomas, 2007), D-VRPTW (Bent and Van Hentenryck, 2007; Branchini

et al., 2009; Ichoua et al., 2006; Van Hentenryck and Bent, 2006), D-PDP (Ghiani et al., 2009; Mitrović-

Minić et al., 2004), and Dynamic and Stochastic TSP (Ghiani et al., 2008). The strategy has shown good

results, especially in the case of a limited Weet facing a high request rate (Van Hentenryck and Bent,

2006).

Aside from the waiting after or before servicing a customer, a vehicle can be relocated to a strategic

position, where new requests are likely to arrive. This strategy is the keystone of emergency Weet de-

ployment, also known as Emergency Vehicle Dispatching–or Redeployment–Problem (Gendreau et al.,

2001; Haghani and Yang, 2007). The relocation strategy has also been applied to other vehicle routing

problems, such as the D-VRP (Larsen, 2001),D-VRPTW (Bent and Van Hentenryck, 2007; Branchini

et al., 2009; Ichoua et al., 2006; Van Hentenryck and Bent, 2006), D-TSPTW (Larsen et al., 2004), D-PDP

(Ghiani et al., 2009; Pureza and Laporte, 2008), and the Resource Allocation Problem (RAP) (Godfrey

and Powell, 2002).

Request buUering, introduced by Pureza and Laporte (2008), consists in delaying the assignment of

some requests to vehicles in a priority buUer, so that more urgent requests can be handled Vrst.

1.4.3 Performance evaluation

In contrast to static problems, where measuring the performance of an algorithm is straightforward

(i.e., running time and solution quality), dynamic problems require the introduction of new metrics to

assess the performance of a particular method.

Sleator and Tarjan (1985) introduced the competitive analysis (Jaillet and Wagner, 2008a; Larsen

et al., 2007). Let P be a minimization problem and I the set of all instances of P . Let z∗(Ioff) be the

optimal cost for the oYine instance Ioff corresponding to I ∈ I . For oYine instance Ioff , all input

data from instance I , either static or dynamic, is available when building the solution. In contrast, the

data of the online version I is revealed in real time, thus an algorithm A has to take into account new

information as it is revealed and produce a solution relevant to the current state of knowledge. Let

zA(I) = z(xA(I)) be the cost of the Vnal solution xA(I) found by the online algorithmA on instance

I . AlgorithmA is said to be c-competitive, or equivalently to have a competitive ratio of c, if there exists

a constant α such that

zA(I) ≤ c · z∗ (Ioff) + α , ∀ I ∈ I (1.4)

In the case where α = 0, the algorithm is said to be strictly c-competitive, meaning that in all cases

the objective value of the solution found by A will be at most of c times the optimal value. The

competitive ratio metric allows a worst-case absolute measure of an algorithm performance in terms

of the objective value. We refer the reader to Borodin and El-Yaniv (2005) for an in-depth analysis of

this measure, and to Jaillet and Wagner (2008a) and Fink et al. (2009) for results on various routing

problems.

The main drawback of the competitive analysis is that it requires to prove the previously stated

inequality analytically, which may be complex for real-world applications. The value of information

proposed by Mitrović-Minić et al. (2004) constitutes a more Wexible and practical metric. We denote by
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zA(Ioff) the value of the objective function returned by algorithm A for the oYine instance Ioff . The

value of information VA(I) for algorithm A on instance I is then deVned as

VA(I) =
zA(I)− zA(Ioff)

zA(Ioff)
(1.5)

The value of information can be interpreted as the gap between the solution returned by an algorithm

A on a instance I and the solution returned by the same algorithm when all information from I is

known beforehand. In contrast with the competitive ratio, the value of information gives information

on the performance of an algorithm based on empirical results, without requiring optimal solutions

for the oYine instances. It captures the impact of the dynamism on the solution yield by the algorithm

under analysis. For instance, Gendreau et al. (1999) report a value of information between 2.5% and

4.1% for their tabu search algorithm for the D-VRPTW, while Tagmouti et al. (2011) reports values

between 10% and 26.7% for a variable neighborhood search descent applied to a dynamic arc routing

problem.

1.4.4 Benchmarks

To date, there is no reference benchmark for dynamic routing problems. Although, it is worth

noting that various authors based their computational experiments on adaptations of the Solomon

(1987) instances for static routing (Bent and Van Hentenryck, 2004a,b; Chen et al., 2006; Chen and Xu,

2006; Gendreau et al., 1999). Van Hentenryck and Bent (2006, Chap. 10) describe how the original

benchmark by Solomon (1987) can be adapted to dynamic problems.

The interested reader is referred to the website of Pankratz and Krypczyk (2009) for an updated list

of publicly available instances sets for dynamic vehicle routing problems.

1.5 Conclusions

Recent technological advances provide companies with the right tools to manage their Weet in

real time. Nonetheless, these new technologies also introduce more complexity in Weet management

tasks, unveiling the need for decision support systems adapted to dynamic contexts. Consequently,

during the last decade, the research community have shown a growing interest for the underlying op-

timization problems, leading to a new family of approaches speciVcally designed to eXciently address

dynamism and uncertainty. By analyzing the current state of the art, some directions can be drawn for

future research in this relatively new Veld.

First, further work should aim at creating a taxonomy of dynamic vehicle routing problem, possibly

by extending existing research on static routing (Eksioglu et al., 2009). This would allow a more precise

classiVcation of approaches, evaluate similarities between problems, and foster the development of

generic frameworks.

Second, there is currently no reference benchmark for dynamic vehicle routing problems. There-

fore, there is a strong need for the development of publicly available benchmarks for the most common

dynamic vehicle routing problems.
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Third, with the advent of multi-core processors on desktop computers, and low-cost graphical pro-

cessing units (GPU), parallel computing is now readily available for time-consuming methods such as

those based on sampling. Although early studies considered distributed optimization (Gendreau et al.,

1999), most approaches reviewed in this document do not take advantage of parallel architectures. The

development of parallel algorithms is a challenge that could reduce the time needed for optimization

and provide decision makers with highly reactive tools.

Fourth, our review of the existing literature revealed that a large fraction of work done in the area

of dynamic routing does not consider stochastic aspects. We are convinced that developing algorithms

that make use of stochastic information will improve the Weet performance and reduce operating costs.

Thus this line of research should become a priority in the near future.

Finally, researchers have mainly focused on the routing aspect of the dynamic Weet management.

However, in some applications there is more that can be done to improve performance and service

level. For instance, in equipment maintenance services, the call center has a certain degree of freedom

in Vxing service appointments. In other words, it means that the customer time windows can be

deVned, or inWuenced, by the call center operator. As a consequence, a system in which aside from

giving a yes/no answer to a customer request, suggests convenient times for the company would be

highly desirable in such contexts.
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2
Dynamic and deterministic routing

In dynamic and deterministic problems, part or all of the input is unknown and revealed dynami-

cally during the design or execution of the routes. This class of problems are also referred to as online

or real time by some authors (Jaillet and Wagner, 2008).

In this chapter we present a fast re-optimization approach able to produce high quality routing in

limited computational time, then we introduce a bi-objective dynamic routing problem and study the

trade-oU between route consistency and cost eXciency in dynamic routing.

The full reference of the paper presented in this chapter is:

– Pillac, V., Guéret, C., and Medaglia, A. L. (2012)

A fast re-optimization approach for dynamic vehicle routing

Technical report, École des Mines de Nantes, France. Report 12/6/AUTO.

Previous versions of this work were presented in the ROADEF 2012 conference:

– Pillac, V., Guéret, C., and Medaglia, A. L. (2012)

Route stability in dynamic vehicle routing: a bi-objective approach

In ROADEF 2012, Angers, France.
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Abstract : The present work deals with dynamic vehicle routing problems in which new

customers appear during the design or execution of the routing. We propose

a parallel Adaptive Large Neighborhood Search (pALNS) that produces high

quality routes in a limited computational time. Then, we introduce the no-

tion of driver inconvenience and deVne a bi-objective optimization problem

that minimizes the cost of routing while maintaining its consistency through-

out the day. We consider a problem setting in which vehicles have an initial

routing plan at the beginning of the day, that is periodically updated by a de-

cision maker. We introduce a measure of the driver inconvenience resulting

from each update and propose a bi-objective approach based on pALNS that

is able to produce a set of non-dominated solutions in reasonable computa-

tional time. These solutions oUer diUerent tradeoUs between cost eXciency

and consistency, and can be used by the decision maker to update the routing

of the vehicles introducing a controlled number of changes.

Keywords : Dynamic vehicle routing ; route consistency ; bi-objective optimization

2.1 Introduction

The problem of operating a Weet of vehicles arises in many contexts, from pickup and delivery

of goods to the transportation of patients in hospitals. More speciVcally, Vehicle Routing Problems

(VRP) deal with the design of a set of minimal-cost vehicle routes that serve the demand for goods

or services of a group of geographically spread customers, satisfying operational constraints. From

an information perspective, such problems generally include two dimensions: evolution and quality of

information (Psaraftis, 1980). Information evolution relates to the fact that the data available to the

planner may change during the execution of the routes, for example with the arrival of new customer

requests. Information quality reWects possible uncertainty on the available data, for instance, when the

demand of a customer is only known as a range estimate of its real demand, or when the geographical

distribution of customers can be forecasted. Based on these dimensions, Pillac et al. (2011) classify

vehicle routing problems in four categories depending on whether the problem is static/dynamic and

deterministic/stochastic. Dynamism in routing can emerge from diUerent aspects of the problem. The

most common source of dynamism is the arrival of new customers with a demand for goods or ser-

vices. Other sources of dynamic include dynamically revealed demands for a set of known customers,

LUNAM - EMN - Uniandes 45/192 Pillac V. - Ph D. Dissertation



CHAPTER 2. DYN. & DETERMINISTIC ROUTING 2.1. INTRODUCTION
dynamic travel times, and vehicle availability.

The present work focuses on dynamic and deterministic routing, also referred to as online routing,

in which part or all of the input is unknown and revealed dynamically and unpredictably during the

execution of the routes. Vehicle routes are redeVned in an ongoing fashion, requiring technological

support for real time communication between the vehicles and the decision maker (e.g., mobile phones

and global positioning systems). More speciVcally, we study the Dynamic Vehicle Routing Problem

with TimeWindows (D-VRPTW), in which a limited Weet of identical capacitated vehicles must deliver

a product to a set of customers over a single day horizon. Each customer has a geographic position,

requires a known quantity of product, and must be served within a given time frame. While a set of

(static) customers is known beforehand, new (dynamic) customers may appear during the day.

t0

C
A

B

D
E

a. Initial routing

t1

C
A

B

D
E

X

Y

b. New customers

C
A

B

D
E

X

Y

tf

c. Final routing

Figure 2.1: Illustration of a typical dynamic vehicle routing problem.

Figure 2.1 illustrates the routing of two vehicles in a dynamic context. Before the vehicles leave the

depot (2.1a.), two routes are designed to visit the currently known customers: (A,B,C) and (D,E).

While the vehicles execute their route, two new customers (X and Y ) appear at time t1 (2.1b.). At this

stage, the dispatcher must decide whether or not it should accept or reject the new requests. In this case,

Y is far from the current routes and vehicles, therefore its service may not be feasible or may be too

costly. Customer Y is thus rejected and a penalty is paid. On the other hand,X is accepted and inserted

in the second route. Finally, at time tf the executed route are (A,B,C) and (D,X,E) (2.1c.). This

example reveals how dynamic routing inherently adjusts routes in an ongoing fashion, which requires

real-time communication between vehicles and the dispatching center. In this context, the problem is

Vrst to design an initial set of routes, visiting all the static customers. Then, each time a new customer

appears, the problem is to decide whether it can be served or not, and eventually, to reoptimize the

vehicle routes. We assume that by rejecting customers we incur a penalty that can be interpreted as

an outsourcing cost. Dynamic routing problems introduce new challenges as they require to react

quickly to changes in the available data. According to Ichoua et al. (2007), the level of dynamism of a

problem can be characterized according to two dimensions: the frequency of changes and the urgency

of customer requests. The former is the rate at which new information becomes available, while the

latter is the period of time between the disclosure of a new customer and its expected service time.

From this observation diUerent metrics have been proposed to measure the dynamism of a problem

(or instance). Lund et al. (1996) deVned the degree of dynamism δ as the ratio between the number of
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dynamic customers nd and the total number of customers ntot: δ = nd

ntot
. Larsen (2001) extended the

degree of dynamism to take into account the disclosure date and the time windows of the dynamic

customers.

To the best of our knowledge, the Vrst application of an optimization technique to dynamic routing

is due to Psaraftis (1980) with the development of a dynamic programming approach. His research

focuses on the Dial A Ride Problem (DARP) and consists in Vnding the optimal route each time a

new customer is known. The main drawback of dynamic programming is the well-known curse of

dimensionality (Powell, 2007, Chap. 1), which often prevents its application to large instances. Few

research was conducted on dynamic routing between Psaraftis (1980) and the late 1990s. However,

the last decade has seen a renewed interest in dynamic routing, with numerous approaches tackling a

variety of problems. This section classiVes the major contributions in this Veld in two categories: 1)

periodic reoptimization and 2) continuous reoptimization. The reader is referred to the reviews, books,

and special issues by Gendreau and Potvin (2004); Ghiani et al. (2003); Ichoua et al. (2007); Larsen et al.

(2008); Pillac et al. (2011), and Zeimpekis et al. (2007), to complement our review.

Figure 2.1 presents an overview of periodic reoptimization approaches: the algorithm starts at the

beginning of the day and a Vrst optimization produces an initial solution S0. Then, the procedure waits

for an update in the available data, or for a Vxed period of time, followed by a new optimization trigger

that leads to an updated solution St+1. The advantage of periodic reoptimization approaches is that

they can be based on algorithms developed for static routing, for which extensive research has been

conducted. Their main drawback is that all the optimization has to be performed before updating the

solution, which can increase the delays for the dispatcher, while the computational power is unused

during waiting times.

Start

Optimize

End 
of day?

NO

YES

Optimize Updated solution 
St+1

End

Wait for update

Initial solution 
S0

Figure 2.2: Overview of periodic reoptimization approaches

Periodic reoptimization approaches were used in diUerent contexts to tackle dynamic routing

problems. Chen and Xu (2006) designed a dynamic column generation algorithm (DYCOL) for the

D-VRPTW. The authors use the concept of decision epochs over the planning horizon, which are the

dates when the optimization process runs. It is worth noting that a new customer is not handled

until the next decision epoch, hence, the optimization is run statically and independently at each de-

LUNAM - EMN - Uniandes 47/192 Pillac V. - Ph D. Dissertation



CHAPTER 2. DYN. & DETERMINISTIC ROUTING 2.1. INTRODUCTION
cision epoch. The main advantage of this time partition is that similar computational eUort is allowed

for each time slice. The novelty of their approach relies on dynamically generating columns for a

set-partitioning model, using columns from the previous decision epoch. The authors compared DY-

COL to a traditional column generation with no time limit (COL). Computational results based on the

Solomon benchmark (Solomon, 1987) demonstrate that DYCOL yields comparable results in terms of

objective function, but with running times limited to 10 seconds, opposed to the various hours con-

sumed by COL. Using a notion similar to decision epochs, Montemanni et al. (2005) developed an Ant

Colony System (ACS) to solve the D-VRP. An interesting feature of their approach is the use of the

pheromone trace to transfer characteristics of a good solution to the next time slice. ACS was also

used by Gambardella et al. (2003) and Rizzoli et al. (2007). Other heuristic approaches, such as Tabu

Search (TS), were also used to tackle the Dynamic Pickup and Delivery Problem (D-PDP) (Barcelo

et al., 2007; Chang et al., 2003) and the Dynamic Dial-a-Ride Problem (D-DARP) (Attanasio et al., 2004;

Beaudry et al., 2010).

In contrast, continuous reoptimization approaches perform the optimization throughout the day in

an optimization loop and store information on good solutions in an adaptive memory (see Figure 2.1). In

parallel, a decision loop aggregates the information from the memory whenever needed. The advantage

of such approaches is that the computational power utilization is maximized, at the price of possibly

cumbersome implementation.

Decision loopOptimization loop

Start

Update

End 
of day?

NO

YES

Optimize

End

Wait for update

Adaptive
memory

End 
of day?

NO

YES

Make decision

End

Updated solution 
St+1

Optimize Initial solution 
S0

Figure 2.3: Overview of continuous reoptimization approaches

To the best of our knowledge, the Vrst application of continuous reoptimization is due to Gendreau

et al. (1999). Their approach consists in the adaptation of the Tabu Search (TS) framework introduced

by Taillard et al. (1997) to a dynamic context motivated by the local operation of long distance ex-

press courier services, which can be seen as a D-VRPTW. The general idea is to maintain a pool of

good routes–the adaptive memory (Taillard et al., 2001)–which is used to generate initial solutions for

a parallel tabu search. The parallelized search is done by partitioning the routes of the current so-

lution and optimizing them in independent threads. Whenever a new customer request arrives, it is
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checked against all the solutions from the adaptive memory to decide whether it should be accepted or

rejected. This framework was also implemented for the D-VRP (Ichoua et al., 2000, 2003). Bent and Van

Hentenryck (2004) generalized this framework and introduced the Multiple Plan Approach (MPA) to

tackle the D-VRPTW. The general idea is to populate and maintain a solution pool (the routing plans)

that are used to generate a distinguished solution. Whenever a new customer arrives, a procedure is

called to check whether it can be served or not; if it can be served, then the customer is inserted in

the solution pool and incompatible solutions are discarded. Pool updates are performed periodically

or whenever a vehicle Vnishes servicing a customer. This pool-update phase is crucial and ensures

that all solutions are coherent with the current state of vehicles and customers. The pool can be seen

as an adaptive memory that maintains a set of alternative solutions. Following a diUerent approach,

Benyahia and Potvin (1998) studied the D-PDP and proposed a Genetic Algorithm (GA) that models

the decision process of a human dispatcher. More recently, other GAs were also used for the same

problem (Cheung et al., 2008; Haghani and Jung, 2005) and for the D-VRP (Van Hemert and Poutré,

2004). Genetic algorithms in dynamic contexts are very similar to those designed for static problems,

except that they run throughout the planning horizon and solutions are constantly adapting to the

changes made to the input.

In this work we propose two parallelized periodic reoptimization approaches. Section 2.2 presents

a parallel adaptive large neighborhood search to tackle the D-VRPTW; Section 2.3 introduces a bi-

objective extension of the D-VRPTW and proposes a reoptimization approach; Vnally, Section 2.4 con-

cludes this work and gives directions for further research.

2.2 Fast reoptimization for dynamic routing

The proposed approach is based on a parallel Adaptive Large Neighborhood Search (pALNS) al-

gorithm which is used to compute an initial solution, and then, to reoptimize the solution whenever

a new customer request arrives. In the remainder of this section we present the original Adaptive

Large Neighborhood Search (ALNS) algorithm, discuss the proposed parallelization scheme and the

reoptimization approach, and present computational results on the D-VRPTW.

2.2.1 The Adaptive Large Neighborhood Search

The ALNS algorithm, originally proposed by Pisinger and Ropke (2007), is an extension of the

Large Neighborhood Search (LNS) algorithm (Shaw, 1998). LNS works by successively destroying

(removing customers) and repairing (inserting customers back) a current solution, using destroy and

repair operators. ALNS adds an adaptive layer that randomly selects operators depending on their past

performance, automatically Vtting the algorithm to the instance at hand. We refer the interested reader

to Pisinger and Ropke (2010) for a detailed description of LNS, ALNS, and related methods.

Algorithm 2.1 presents the outline of the ALNS approach. ALNS starts with an initial solution Π0.

Then for I iterations, the algorithm selects destroy and repair operators (line 4) with a roulette wheel

that reWects their past performance. Destroy operators remove a subset of customers from the current

solution, while repair operators reinsert them using heuristics that are known to perform well on the
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Algorithm 2.1 Adaptive Large Neighborhood Search (ALNS) algorithm

Input: Π0 initial solution, z evaluation function, Θ−/Θ+ set of destroy/repair operators, I number
of iterations

Output: Π∗ the best solution found
1: Π∗ ← Π0 . Initialize best solution
2: Π← Π0 . Initialize current solution
3: for I iterations do
4: d← select (Θ−) ; r ← select (Θ+) . Select destroy/repair
5: Π′ ← r (d (Π)) . Generate a neighbor
6: if accept (Π′,Π) then . Π′ is accepted as current solution
7: Π← Π′ . Update current solution
8: end if
9: if z(Π′) < z(Π∗) then . An improvement has been found
10: Π∗ ← Π′ . Update best solution
11: end if
12: updateScore (d, r,Π′) . Update scores
13: end for
14: return Π∗

problem at hand (line 5). The resulting new solution is conditionally accepted as current solution

according to a simulated annealing criterion (line 6). At the end of each iteration, the scores of the

destroy and repair operators are updated depending on the solution they generated (line 12).

2.2.2 Parallel Adaptive Large Neighborhood Search

We propose pALNS, an extension of the Adaptive Large Neighborhood Search (ALNS) algorithm

that includes a novel parallelization scheme that eXciently spreads the computational eUort among

independent processors.

Algorithm 2.2 presents the outline of pALNS. The algorithmmaintains a pool P ofN promising so-

lutions that are optimized inK subprocesses (note thatN ≥ K). For eachmaster iteration, a subset of

K promising solutions is selected randomly (line 2) and distributed among independent subprocesses.

Each subprocess performs Ip ALNS iterations (lines 3-14) by destroying and repairing the current so-

lution Πp as in the original ALNS algorithm. The Vnal current solution of each subprocess is added

to the pool of promising solutions (line 13) and a Vltering procedure ensures that the pool contains

at most N solutions, including the best solution found so far (line 15). The algorithm stops after Im

master iterations, which corresponds to I = Im × Ip ALNS iterations. Note that the implementation

of pALNS ensures that no synchronization is required between subprocesses to avoid deadlocks. The

following paragraphs present in more detail the diUerent components of the algorithm.

2.2.2.1 Destroy

Destroy operators remove a random fraction ξ ∈ [ξmin, ξmax] of the customers from the current

solution. We denote R the set of customers served in the solution, and U the set of customers that

are not served. We used three destroy operators originally proposed by Pisinger and Ropke (2007):

random, related, and critical.
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Algorithm 2.2 Parallel Adaptive Large Neighborhood Search (pALNS) algorithm

Input: P initial solutions, z evaluation function, Θ−/Θ+ set of destroy/repair operators,N maximum
size of the solution pool, K number of subprocesses, Im number of master iterations, Ip number
of iterations performed in parallel.

Output: Π∗, the best solution found
1: for Im iterations do
2: P ′ ← selectSubset (P,K) . Select a subset ofK solutions
3: parallel forall Π in P ′ do
4: Πp ← Π . Current solution for this subprocess
5: for Ip iterations do
6: d← select (Θ−) ; r ← select (Θ+) . Select destroy/repair
7: Π′ ← r (d (Πp)) . Destroy and repair current solution
8: if accept (Π′,Πp) then
9: Πp ← Π′ . Π′ is accepted as current solution
10: end if
11: updateScore (d, r,Π′) . Update d and r scores
12: end for
13: P ← P ∪ {Πp} . Add Πp to the pool P
14: end forall
15: P ← retain (P, N) . Retain at most N solutions in the pool P
16: end for
17: return Π∗ = arg minΠ∈P {z(Π)}

The random destroy operator selects customers randomly and removes them from their actual

tours.

The related destroy attempts to remove customers that share some characteristics. Let the relat-

edness rij of customers i and j be a measure of how related two customers are (the lower the rij , the

more related i and j). The procedure starts by randomly removing a seed customer i (U = {i}), then it

iteratively selects a customer i ∈ U , and removes the most related customer j∗:

j∗ = arg min
j∈R
{rij} (2.1)

There are diUerent ways to measure the relatedness. We propose a new metric that can be precalcu-

lated, namely a-priori relatedness, that does not depend on the actual position of customers in tours:

rsij =

(
1 +

cij
Mc

)θc (
1 +
|bi − bj |
Mt

)θt
(2.2)

Where cij is the distance between i and j, bi and bj are the end of the time windows of customers i

and j,Mc andMt are scaling constants, θc and θt deVne the weight given to the geographic distance

between the two customers, and the diUerence between due dates respectively.

On the other hand, time-oriented relatedness (Pisinger and Ropke, 2007) measures the diUerence be-
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tween the current times of service Ai and Aj of customers i and j:

rtij = |Ai −Aj | (2.3)

Finally, critical destroy consists in removing the customer i∗ such that the cost of the resulting

solution is minimal:

i∗ = arg max
i∈R
{ci−1,i+1 − ci−1,i − ci,i+1} (2.4)

Where i− 1 and i+ 1 are the predecessor and successor of i.

In practice related and critical operators are randomized and the byp|R|c-th best customer is se-

lected, where y is a random number in [0, 1) and p ≥ 1 is a parameter that controls the level of

randomness (the lower the p, the more randomness is introduced).

2.2.2.2 Repair

Repair operators attempt to insert customers that are currently unserved. Our implementation is

based on regret-q heuristics (Potvin and Rousseau, 1993): at each iteration the algorithm inserts (at

the best position) the customer with the lowest regret value. The regret-q value rqi of customer i is a

measure of how desirable it is to insert i in the current iteration assuming that the best insertion will

no longer be feasible in the next iteration. It is deVned as:

rqi =

q∑
h=2

(
∆zhi −∆z1

i

)
(2.5)

Where ∆zqi is the cost of the q-th best insertion of customer i ∈ U . Note that ties are resolved by

selecting the customer with the lowest ∆z1
i value, and therefore regret-1 corresponds to the classical

best insertion heuristic. We used three regret levels: regret-1, regret-2, and regret-3.

2.2.2.3 Adaptive layer

At each iteration, the pALNS algorithm selects a destroy and a repair operator using a selection

roulette, such that operator θ ∈ Θ� is selected with probability wθ , where Θ� is either the set of destroy

(Θ−) or repair (Θ+) operators. Probabilities are initialized with value 1
|Θ.| , and then updated every l

iterations (a segment) as follows:

wθ ← (1− ρ)wθ + ρ
sθ∑
θ∈Θ. sθ

(2.6)

Where ρ ∈ [0, 1] is the reaction factor which deVnes how quickly probabilities are adjusted, and sθ
is the score of operator θ in the last l iterations. The scores sθ are reset to 0 every l iterations and

updated at the end of each iteration depending on the new solution: a score of σ1 is granted for a new

best solution, σ2 for an improving solution, σ3 for a non-improving but accepted solution, and σ4 for a

rejected solution. It is worth noting that in contrast with the adaptive scheme originally proposed by

LUNAM - EMN - Uniandes 52/192 Pillac V. - Ph D. Dissertation



CHAPTER 2. DYN. & DETERMINISTIC ROUTING 2.2. FAST REOPTIMIZATION
Pisinger and Ropke (2007), this formula ensures that

∑
θ∈Θ� wθ = 1 at all time, which makes it easier

to interpret the relative weight of each component.

2.2.2.4 Objective function

The initial solution or the solution resulting from the destroy operator can leave some customers

unserved (U 6= ∅). Therefore we need to be able to evaluate a partial solution Π′ to account for the

unserved customers. Given an evaluation function z and an initial solution Π0, Pisinger and Ropke

(2007) deVne the cost of partial solution Π′ as follows:

zφ(Π′) = z(Π′) + φ|U|z(Π0) (2.7)

Where φ is a parameter that controls the unserved customer penalty.

2.2.2.5 Acceptance criterion

As in the original ALNS, the pALNS algorithm relies on a simulated annealing acceptance criterion

which accepts a new solution Π′ with probability e
z(Π)−z(Π′)

T , where T is the temperature parameter.

The temperature is initialized with the value T0 and it is reduced at each iteration by a cooling fac-

tor c. The two parameters T0 and c are set depending on the initial solution and the target number of

iterations (Ropke and Pisinger, 2006). Given an initial solution Π0, T0 is deVned such that a solution

with value (1 + w)z(Π0) is accepted with probability p, and c is set such that the temperature after n

iterations is equal to αT0.

2.2.2.6 Computation of an initial solution

The pALNS algorithm requires an initial solution which is computed with a regret-3 constructive

heuristic: starting with empty routes for each vehicle, the algorithm iteratively inserts the customer

with the lowest regret value as described in §2.2.2.2.

2.2.2.7 Solution pool

The solution pool acts as a shared memory and allows subprocesses to collaborate eXciently. In

the original algorithm, the simulated annealing acceptance criterion results in a search scheme that

starts from a diversiVcation phase, in which poor solutions may be accepted as current solutions,

and progressively switch to an intensiVcation phase, in which only improving solutions are accepted.

The use of a solution pool that would contains the N best solutions found so far tend to break this

scheme, as poor solutions may never be kept in the pool and will therefore not be exploited properly.

To overcome this limitation we propose to maintain a pool of diverse solutions that are promising in

terms of cost.

This is achieved by the retainmethod (line 15) which ensures thatP contains at mostN solutions:

if |P| > N then the method retains the N best solutions according to the Vtness function f :

f(Π) = (1− λ)rankz(Π) + λrankd(Π) (2.8)
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Where λ is a weight between 0 and 1, rankz(Π) is the rank of solution Π according to its objec-

tive value, and rankd(Π) is the rank of Π according to its average broken-pairs distance (Prins, 2009)

relative to the other solutions from P . The broken pairs distance counts the number of arcs that dif-

fer between two solutions. This Vtness function is inspired by the biased Vtness introduced by Vidal

et al. (Vidal et al., 2011) in a genetic algorithm with diversity management. The weight λ can either be

Vxed a-priori, or adjusted throughout the search to switch from diversiVcation (λ = 1) to intensiVca-

tion (λ = 0). Note that we ensure that P always contains the best solution found so far.

2.2.3 Parallel reoptimization approach for the D-VRPTW

Figure 2.4 illustrates the proposed reoptimization approach: the algorithm starts by producing an

initial solution S0 by using a constructive heuristic coupled with the pALNS described in the previous

section. Then each time a new customer appears, it Vxes the currently executed portion of the routes,

and re-runs the pALNS for a limited number of iterations to produce an updated solution S′t. If pALNS

is able to insert the new customer request, then the customer is accepted and S′t becomes the new

current solution, otherwise the customer is rejected and St remains as the current solution.
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End 
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NO
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Updated solution 
St+1

End
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Wait until a new 
customer appears

Initial solution 
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Accept? Select new current
solution
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Figure 2.4: Overview of the proposed approach

It is important to note that the immediate commitment of idle vehicles to customers may lead to

diXculties when new customers appear. Figure 2.5 illustrates this with a single vehicle. Suppose that

at time t a vehicle is assigned to a customer i, if the vehicle is dispatched immediately to i (upper

left time line), it will travel to i then wait at its destination until the start of the time window (black

brackets). On the other hand, if a waiting strategy is used (lower left time line), the vehicle will remain

idle until the latest moment such that it will not wait at i. If at time t+ 1 a new customer j appears, in

the Vrst case j cannot be served as the vehicle is already waiting at i, while in the second case a visit

to j can be inserted right before i. As a consequence, vehicles are considered to remain idle at their

current location until the latest departure time such that it will not wait at the next customer, leaving
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time for further insertions.

i

i

i

ij

Immediate
commitment

Waiting
strategy

t t+1

travel wait serve

idle travel serve

executed

Figure 2.5: Illustration of the waiting strategy.

2.2.4 Computational results

To assess the eUect of parallelization we tested our algorithm on the static instances for the VRPTW

proposed by Solomon (1987) on a quad-core desktop computer 1. For the detailed parameter setting of

the algorithm please refer to Appendix 2.A.

Parallel - Num. of Threads
Seq. 1 2 3 4 5 6 7 8

Gap 0.74% 0.72% 0.55% 0.69% 0.54% 0.70% 0.52% 0.66% 0.48%
Gap (st. dev.) 0.87% 0.88% 0.76% 0.89% 0.70% 0.86% 0.74% 0.82% 0.66%
Time (s) 36.58 37.32 22.07 17.60 14.70 14.69 13.39 12.37 11.32
Time (s, st. dev.) 6.27 6.33 4.06 3.17 2.72 2.57 2.50 2.27 2.15

Table 2.1: Comparison of gap to the best known solutions and running times for diUerent levels of
parallelization.

Table 2.1 presents aggregated values over the 53 instances, with ten run per instance and 25,000

ALNS iterations 2. The Vrst column corresponds to the original sequential (Seq.) implementation of

the ALNS, and the following to the parallel implementation with 1 to 8 threads. The Vrst and second

rows contain the mean and standard deviation of the gap value relative to either the optimal or the best

known solution. Finally, the third and fourth rows show the mean and standard deviation of the CPU

times. Note that increasing the number of threads has a limited impact on the gap to the best known

solutions, which is consistently around 0.6%, but it allows a reduction of running times by a factor 3.3.

Figure 2.6 presents the box plot of the distribution of the gap and CPU times for the sequential (S) and

parallel implementations with 1, 2, 4, and 8 threads. A graphical analysis shows that the median gap

and variance slightly decrease with the number of threads. In contrast, the median running time and

variance decreases sharply with the number of threads. Therefore, we selected the conVguration with

8 threads as it oUers the best compromise between speed and quality. Note that the processor used is

a quad-core with Intel hyper-threading technology which allows two threads per core. This partially

explains the relatively small reduction of CPU times when switching from 4 to 8 threads.

1. CPU: Intel i7 860 (4x2.8GHz), RAM: 6GB DDR3, OS: Ubuntu 11.10 x64, Java 7

2. To ensure that I = Im × Ip ×K ' 25000, we used Im =
⌈

25000
40×K

⌉
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Figure 2.6: Impact of the number of threads on the gap and CPU time.

We tested the pALNS algorithm on the instances proposed by Lackner (2004) and based on the

Solomon (1987) benchmark, in which a fraction of the customers is revealed dynamically. The instances

contain 100 customers located randomly (R), in clusters (C), or combining both (RC); while the planning

horizon is either short (type 1) or long (type 2); and the number of dynamic customers (or degree of

dynamism, δ) is either 10, 30, 50, 70, or 90. These instances are organized combining location, horizon

length, and degree of dynamism. We consider the minimization of the traveled distance. For each

instance, we performed 10 simulations in which pALNS is initially run for 25,000 iterations to produce

an initial solution. Then, each time a new customer appears, pALNS is run for 5,000 iterations to

produce a solution that will be used until the next customer is revealed. Finally, pALNS is run for

50,000 iterations to solve the a-posteriori problem, in which all the accepted customers are assumed to

be known beforehand.

Table 2.2 presents the Value of Information (VI) (Lund et al., 1996) for each instance group and

degree of dynamism (δ). The value of information for instance I is deVned as the ratio z(I)−z(Ioff)
z(Ioff)

where z(I) is the value of the solution found by the algorithm for the dynamic instance, and z(Ioff)

is the value of the solution for a-posteriori instance Ioff . As expected, results indicate that the VI

increases with the degree of dynamism, which can be explained by the fact that suboptimal routing

decisions add up over time, and more decisions are made in highly dynamic instances. However, even

when 90 out of 100 customers appear dynamically, the VI is of just 11% on average, which means that

the algorithm is still able to produce a Vnal routing that is very close to what would have been done if

all the customers were known from the beginning of the day.

Table 2.3 presents a comparison of approaches for the Lackner (2004) instances. The Vrst and sec-

ond columns present the traveled distance and number of rejected customers for pALNS, averaged over

10 runs and for each group and degree of dynamism. The third and fourth columns report the average

distance, relative average additional distance (in parenthesis), and number of rejected customers for

the Large Neighborhood Search (LNS) approach proposed by Hong (2012), while the Vfth and sixth

columns report the same values for the Genetic Algorithm (GA) developed by Lackner (2004). Note

that the experimental setting of the two cited studies is not explicitly presented, which limits the rele-
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δ R1 C1 RC1 R2 C2 RC2 Avg.

10 2.05% 2.89% 3.06% 1.70% 1.66% 1.61% 2.14%
30 4.67% 5.83% 5.83% 4.34% 1.74% 4.70% 4.54%
50 6.41% 9.28% 9.03% 8.15% 2.82% 5.38% 6.93%
70 8.29% 11.18% 10.24% 10.17% 5.41% 8.60% 9.03%
90 9.33% 12.49% 11.84% 11.83% 6.51% 12.33% 10.71%

Table 2.2: Average value of information for the Lackner (2004) instances

vance of direct comparisons. Nonetheless, Vgures show that our approach is competitive both in terms

of traveled distance and number of rejected customers. In addition, average running times are of just

5.3s for the initial optimization, and 2.0s for subsequent reoptimizations, which is signiVcantly less

than the 33s and 47s reported by Hong (2012) and Lackner (2004) respectively.

2.3 Route consistency in dynamic routing:
a bi-objective approach

Most studies on dynamic routing consider that routes are designed online, which means that ve-

hicle drivers do not know their next destination until they Vnish serving their current customer. Al-

though this assumption is theoretically appealing and allows a better optimization of the cost func-

tion, it may not be desirable if drivers are used to know their routes from the beginning of the day.

In practice, having a set of routes known a-priori that are then changed may be desirable over purely

dynamic routing. Hence there is a need for approaches able to maintain consistency in the vehicles

routes throughout the day while ensuring cost eXciency.

To the best of our knowledge, all studies on dynamic routing focus on the optimization of a single

criterion, such as the minimization of the total traveled distance or the maximization of the number of

served customers. On the other hand, and as surveyed by Jozefowiez et al. (2008), a growing number of

studies on static routing consider multiple objectives in an attempt to better Vt operational contexts. In

this section we present a preliminary study that takes into account driver inconvenience. The proposed

approach is an adaptation of the pALNS algorithm that simultaneously minimizes a cost function and

maximizes the route consistency throughout the day.

2.3.1 Measuring consistency

Assuming that an initial set of routes are handed to the drivers at the beginning of the day, it seems

natural to consider them as the reference routes for each driver. To prevent multiple and unnecessary

changes in routes, we assume that drivers will only be informed of changes in their routes at the

last possible moment. As a consequence, a change will take eUect only when necessary. From the

driver’s perspective, four types of changes can be made to the route: one or more customers may be a)

inserted between existing customers; b) removed; c) swapped within the same route; d) substituted by

a customer previously unvisited. In this context, minimizing inconvenience is therefore equivalent to

minimizing the number of changes communicated to the driver.

LUNAM - EMN - Uniandes 57/192 Pillac V. - Ph D. Dissertation



CHAPTER 2. DYN. & DETERMINISTIC ROUTING 2.3. BI-OBJECTIVE D-VRP

pALNS Hong (2012) Lackner (2004)

Group δ Dist. Rej. Dist. Rej. Dist. Rej.

R1 10 1197.4 0.25 1257.1 ( 4.99%) 0.17 1278.1 ( 6.74%) 0.47
30 1212.9 0.80 1286.6 ( 6.08%) 0.58 1337.9 ( 10.30%) 0.72
50 1225.0 1.25 1295.8 ( 5.78%) 0.67 1330.0 ( 8.57%) 0.78
70 1237.3 1.71 1331.3 ( 7.60%) 1.75 1336.1 ( 7.98%) 0.94
90 1230.1 2.55 1335.9 ( 8.60%) 2.33 1278.3 ( 3.92%) 0.75

C1 10 850.6 0.11 895.8 ( 5.31%) 0.22 996.4 ( 17.14%) 0.00
30 874.9 0.11 962.1 ( 9.97%) 0.33 1066.9 ( 21.95%) 0.00
50 903.4 0.11 1001.2 ( 10.82%) 0.22 1236.1 ( 36.82%) 0.00
70 919.1 0.11 1031.7 ( 12.25%) 0.22 1261.3 ( 37.24%) 0.00
90 929.9 0.11 1039.8 ( 11.81%) 0.22 1479.6 ( 59.11%) 0.00

RC1 10 1389.4 0.04 1436.2 ( 3.37%) 1.13 1426.9 ( 2.70%) 0.46
30 1421.5 0.28 1492.2 ( 4.98%) 1.13 1439.7 ( 1.28%) 0.42
50 1463.4 0.23 1514.7 ( 3.50%) 1.38 1448.1 ( -1.05%) 0.46
70 1470.1 0.58 1511.3 ( 2.80%) 1.88 1488.4 ( 1.25%) 0.58
90 1495.5 0.51 1513.9 ( 1.23%) 2.00 1475.2 ( -1.36%) 0.42

R2 10 893.0 0.00 950.0 ( 6.39%) 0.09 1052.9 ( 17.90%) 0.03
30 915.6 0.00 985.5 ( 7.63%) 0.00 1085.4 ( 18.54%) 0.15
50 948.6 0.00 1016.5 ( 7.17%) 0.00 1138.8 ( 20.05%) 0.21
70 967.7 0.00 1032.0 ( 6.65%) 0.09 1116.9 ( 15.42%) 0.30
90 981.7 0.00 1047.8 ( 6.73%) 0.09 1193.3 ( 21.55%) 0.52

C2 10 597.2 0.00 594.7 ( -0.42%) 0.00 629.1 ( 5.35%) 0.00
30 597.6 0.00 651.4 ( 9.01%) 0.00 632.3 ( 5.81%) 0.04
50 604.0 0.00 605.0 ( 0.17%) 0.00 689.3 ( 14.12%) 0.13
70 619.2 0.00 636.5 ( 2.79%) 0.00 743.8 ( 20.12%) 0.21
90 625.7 0.00 636.8 ( 1.78%) 0.00 792.5 ( 26.66%) 0.29

RC2 10 1024.4 0.00 1103.3 ( 7.70%) 0.00 1220.9 ( 19.18%) 0.00
30 1053.1 0.00 1166.0 ( 10.73%) 0.25 1244.9 ( 18.21%) 0.04
50 1060.5 0.00 1190.5 ( 12.26%) 0.13 1244.9 ( 17.38%) 0.00
70 1091.4 0.00 1239.5 ( 13.57%) 0.00 1269.3 ( 16.30%) 0.00
90 1130.3 0.00 1257.2 ( 11.23%) 0.13 1346.8 ( 19.16%) 0.13

Average 0.29 (+6.75%) 0.50 (+15.61%) 0.27

Table 2.3: Comparison of approaches for the Lackner (2004) instances.
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We use the edit distance (or Levenshtein distance) as a proxy for the driver’s inconvenience. The

edit distance between two routes is deVned as the minimum number of insertions, removals, or sub-

stitutions of customers that have to be applied to transform one route into the other. Therefore the

inconvenience of a new solution relative to a reference solution is equal to the sum of edit distances

between each vehicle’s reference and new routes. The advantage of this metric is that it is eXciently

computed and models accurately the changes described above, and it can be adapted to give weights

to each type of change. The main limitation of this proxy is that it does not necessarily reWect the

eUective number of changes communicated to the driver as sections of the route may be changed later.

Figure 2.7 illustrates the evaluation of the edit distance between a reference and a new route.

The gray nodes correspond to the portion of the route that has already been executed. The distance

between the reference and new route is 3, with 1 substitution (SUB), 1 insertion (INS), and 1 removal

(REM).
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Figure 2.7: Example of the edit distance between two routes.

2.3.2 The proposed approach

The proposed approach, namely parallel Bi-objective Adaptive Large Neighborhood Search (pBiALNS),

is an extension of the pALNS algorithm described in Section 2.2, and it is inspired by the bi-objective

LNS proposed by Schmid and Hartl (2011). In a nutshell, the central idea is to maintain and opti-

mize a set of non-dominated and possibly infeasible solutions. In addition, our approach introduces a

parallelization scheme that improves performance and allows its use in a dynamic context.

The adaptation of the pALNS algorithm to deal with the bi-objective case is straightforward: the

algorithm maintains the set P̄ of non-dominated solutions that are optimized in K subprocesses. For

Im master iterations, a subset of K non-dominated solutions is selected randomly and distributed

among independent subprocesses. Each subprocess performs Ip ALNS iterations by destroying and

repairing the current solution, considering only the main objective (cost). In contrast to the original

pALNS algorithm, each temporary solution is considered for inclusion in the set of non-dominated

solutions, and the number of solutions stored in P̄ is not limited. Finally, the algorithm returns the

whole set of non-dominated solutions P̄ , from which the decision maker selects a single solution.

It is important to note that the optimization itself, which takes place in the ALNS iterations, only

considers the minimization of the cost. Therefore, there is an implicit lexicographic ordering of the

objectives, the maximization of the consistency being handled implicitly with the set of non-dominated

solutions. This choice is motivated by the fact that at each ALNS iteration the algorithm needs to

introduce changes in the current solution by removing and inserting customers, and introducing the

consistency at this level would steer the approach away from cost-eUective solutions.
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Note that pBiALNS may visit infeasible solutions that do not visit all customers. Therefore, we

deVne a dominance relation that ensures that no feasible solution will be dominated by an infeasible

solution:

DeVnition 1 (Dominance). A solution Π dominates (denoted ≺) a solution Π′ if and only if Π is as good

as Π′ in both objectives, and strictly better in one objective, and either Π is feasible or both Π and Π′ are

infeasible.

2.3.3 Computational results

We tested the pBiALNS approach on the Lackner (2004) instances described in §2.2.4 with a similar

experimental setting. pALNS is Vrst run for 25,000 iterations to produce the reference (initial) solu-

tion; then, each time a new customer appears pBiALNS is run for 5,000 iterations to produce a set

of candidate new solutions to choose from; Vnally, pALNS is run for 50,000 iterations to produce the

a-posteriori solution to the problem.

Figure 2.8 represents the objective space explored by pBiALNS after 5,0000 iterations for one in-

stance, at a given step of the simulation (ie., after a new customer appeared). The graph illustrates the

diversity of solutions oUered to the decision maker, ranging from the least-cost solution (upper left)

to the most similar to the reference solution (lower right). For the purpose of benchmarking and to

assess the tradeoU between the two objectives, we deVne a threshold selection policy and select the non-

dominated solution that is closest to the reference, allowing a deviation in cost of at most γ percent

from the least-cost solution (green diamond). This policy models the behavior of an expert dispatcher

who would select one solution among the non-dominated set.
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Figure 2.8: Objective space for instance R101 and illustration of the threshold policy.

Table 2.4 presents (a) the average edit distance between the Vnal solution and the reference solu-

tion, and (b) the average gap between the cost of the Vnal solution and the cost of a solution evaluated

a-posteriori and the average number of rejected requests, for diUerent values of γ and degree of dy-

namism (δ). Running times are of 2.5 seconds on average at each decision. As expected, the edit

distance relative to the reference solution is negatively correlated to γ, and is minimal for γ = ∞. In

this case we always choose the solution which is the closest to the reference solution, in other words
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we simply insert new customers in the current solution, which leads to a distance equal to the number

of accepted dynamic customers. It is important to note that the quality of the routing, measured by the

gap to the static solution, is positively correlated to γ. This conVrms the intuition that poor routing

decisions tend to add up over time and can lead to larger deviations at the end of the day. Our results

also indicate that, for problems with low degree of dynamism, it can be worth sacriVcing quality of

solution to gain route stability. For instance, with δ = 10, the value γ = 5% leads to a gap of 6%

versus 2% with γ = 0%, but it reduces the number of required changes by a factor 3. However, this

statement no longer holds for instances with higher degrees of dynamism where numerous changes

are necessary to insert all customers. In this case it is better to focus on optimizing the routing, as it

does not lead to excessive instability in routes.

(a) Average edit distance to reference solution

γ
δ 0% 1% 2% 5% 10% ∞

10 32.8 19.3 17.0 12.9 12.6 9.8
30 59.4 48.1 44.2 39.2 36.4 29.6
50 78.2 70.3 65.9 61.4 58.2 49.4
70 87.6 84.0 81.7 78.5 75.7 69.2
90 95.7 94.5 93.9 92.7 91.3 88.9

(b) Average gap to a-posteriori solution (%) and number of rejected requests (in parenthesis)

γ
δ 0% 1% 2% 5% 10% ∞

10 2.0 (0.1) 2.8 (0.1) 4.2 (0.1) 6.1 (0.1) 8.1 (0.1) 11.2 (0.2)
30 4.3 (0.3) 5.6 (0.3) 6.5 (0.3) 10.9 (0.2) 16.3 (0.2) 29.3 (0.4)
50 6.4 (0.3) 7.6 (0.3) 9.1 (0.4) 13.1 (0.3) 18.7 (0.3) 50.1 (0.6)
70 9.0 (0.4) 10.3 (0.4) 11.8 (0.5) 15.3 (0.5) 20.5 (0.4) 71.0 (0.8)
90 9.8 (0.7) 10.8 (0.7) 11.6 (0.6) 14.4 (0.6) 19.4 (0.7) 95.5 (1.1)

Table 2.4: Evolution of the distance to reference solution and gap to a-posteriori solution for diUerent
degrees of dynamism and values of γ

2.4 Conclusions

In this work we proposed an eXcient parallelization scheme for an Adaptive Large Neighborhood

Search, namely pALNS. This algorithm distributes the optimization of promising solutions across mul-

tiple processors, resulting in factor 3.3 speedups on a quad-core desktop machine. The eXciency of

pALNS relies on the presence of a promising solution pool with diversity management, which pre-

vents deadlocks between optimization threads, and improves the exploration of the search space. We

illustrated the eXciency of pALNS on the Solomon (1987) CVRPTW instances, for which it produces

solutions in average 0.7% away from the optimal/best known solution in just 12s.

We also introduced a fast-reoptimization approach based on pALNS to tackle the dynamic VRPTW.

This approach consists in running pALNS to produce an initial solution at the beginning of the day,
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and then running it for a limited number of iterations whenever a new customer appears. We tested

our approach on the instance set proposed by Lackner (2004). Computational results show that pALNS

is capable of achieving state of the art results in competitive time, bringing improvements of up to 12%

over previous approaches.

Finally, we presented a preliminary bi-objective extension of the classical D-VRPTW that attempts

to captures the drivers inconvenience resulting from dynamic routing. It is based on the notion of

having a reference routing plan handled to the drivers at the beginning of the period, that will then

undergo changes as new customers arrive. We introduced an inconvenience metric that measures the

consistency between an updated routing plan and the reference plan. We proposed a fast bi-objective

optimization approach based on pALNS, namely pBiALNS, which maintains and optimizes in parallel

the set of non-dominated solutions.

This optimization algorithm was used coupled with a threshold policy modeling an expert dis-

patcher to tackle the D-VRPTW instances proposed by Lackner (2004). Our results indicate that there

is a clear tradeoU between minimizing the traveled distance and maintaining consistency in routes.

Furthermore, it appears that for problems with a low degree of dynamism it can be worth sacriVcing

cost eXciency to maintain consistency. In contrast, in highly dynamic problems the priority should be

given to the minimization of the cost, as it does not lead to excessive inconsistency in routing.

Future research should focus on the development of a continuous reoptimization approach based

on pALNS that runs throughout the day and maintains a pool of alternative promising solutions as

adaptive memory. In addition, pALNS could be improved by having completely independent subpro-

cesses that pull their starting solution from the pool, and push their Vnal solution, without waiting for

other subprocesses to Vnish. pBiALNS could be reVned to better approximate the Pareto front, Vrst

in the selection of the non-dominated solutions to optimize, then by applying a local search or a path

relinking between non-dominated solutions.
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2.A Parameter setting

Table 2.5 presents the detail parameter setting used in the pALNS algorithm. The number of parallel

iterations and the maximum size of the pool where selected after running experiments with values Ip ∈
{10, 50, 100, 500, 1000} and N ∈ {1, 5, 10, 20, 30, 40, 50}. We also tested two schemes for the solution

pool, the Vrst with a Vxed value of 0.5 for λ, the second using an adaptive scheme starting with λ = 0.5

and decreasing its value using the same process as the one used to decrease the simulated annealing

temperature. Over all our experiments the combination of an adaptive diversity management with

Ip = 50 and N = 40 showed the best results for 25,000 pALNS iterations, and Ip = 100 and N = 10

for 5,000 pALNS iterations. The remaining parameters were directly derived from the work by Pisinger

and Ropke (2007).

Parameter Value Description

K 8 Number of threads
Ip 50 (100) Number of parallel iterations
N 40 (10) Maximum promising solution pool size

φ 0.10 Penalization for unserved customers
ξmin 0.10 Minimum proportion of customers to be removed
ξmax 0.40 Maximum proportion of customers to be removed

w 0.05 Reference objective degradation
p 0.5 Initial probability of accepting a degrading solution
α 0.002 Fraction of the initial temperature to be reached at the end

ρ 0.40 Reaction factor
σ1 1.00 Score for new best solution
σ2 0.25 Score for improving solution
σ3 0.40 Score for non-improving accepted solution
σ4 0.00 Score for rejected solution
l 100 Operator probability (wθ) update frequency

Table 2.5: Detailed parameter setting for the pALNS algorithm for 25,000 iterations, values in paren-
thesis indicate adjusted values for 5,000 iterations.
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3
Dynamic and stochastic routing

In dynamic and stochastic problems, part or all the input is unknown and revealed dynamically

during the execution of the routes, and exploitable stochastic knowledge is available on the dynam-

ically revealed information. Vehicle routes can be redeVned in an ongoing fashion with the help of

technological support.

Our focus being on developing software components that can be used for a wide range of appli-

cations, we chose to develop an event-driven framework based on the Multiple Scenario Approach

proposed by Van Hentenryck and Bent (2006). In this chapter we present the general framework and

its implementation, and then illustrate the validity of this approach by tackling the Dynamic Vehicle

Routing Problem with Stochastic Demands (D-VRPSD).
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Abstract : The real-time operation of a Weet of vehicles introduces challenging opti-

mization problems. In this work, we propose an event-driven framework

which anticipates unknown changes arising in the context of dynamic ve-

hicle routing. The framework is intrinsically parallelized to take advantage

of modern multi-core and multi-threaded computing architectures. It is also

designed to be easily embeddable in decision support systems that cope with

a wide range of contexts and side constraints. We illustrate the Wexibility

of the framework by showing how it can be adapted to tackle the dynamic

vehicle routing problem with stochastic demands.

Keywords : Dynamic vehicle routing ; event-driven framework ; multiple scenario ap-

proach ; online stochastic optimization ; D-VRPSD ; D-VRP

3.1 Introduction

The problem of operating a Weet of vehicles arises in many contexts, from pickup and delivery

of goods to relocation of trucks in carrier companies. More speciVcally, Vehicle Routing Problems

(VRP) deal with the design of a set of minimal-cost vehicle routes that serve the demand for goods

or services of a group of geographically spread customers, satisfying operational constraints. From

an information perspective, such problems generally include two dimensions: evolution and quality

of information (Psaraftis, 1980). Information evolution relates to the fact that in some problems the

information available to the planner may change during the execution of the routes, for example with

the arrival of new customer requests. Information quality reWects possible uncertainty on the available

data, for instance, when the demand of a customer is only known as a range estimate of its real

demand. In addition, depending on the problem and the available technology, vehicle routes can either

be designed a-priori or online. Based on these dimensions, Table 3.1 identiVes four categories of routing

problems.

The static and deterministic category includes the classical Vehicle Routing Problem (VRP) as de-

Vned by Dantzig and Ramser (1959) in which all information is known beforehand and with certainty.

In contrast, problems from the static and stochastic class are characterized by input partially known

as random variables, which realizations are only revealed during the execution of the routes. Addi-

tionally, it is assumed that routes are designed a-priori and only minor changes are allowed afterward.
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Information quality
Deterministic input Stochastic input

Information
evolution

Input known
beforehand

Static and deterministic Static and stochastic

Input changes over
time

Dynamic and deterministic Dynamic and stochastic

Table 3.1: Taxonomy of vehicle routing problems by information evolution and quality.

A common example is the VRP with Stochastic Demands (VRPSD), in which customer demands are

uncertain. We refer the interested reader to the surveys by Cordeau et al. (2007), Baldacci et al. (2007),

and Laporte (2009) for a recent review of these two classes of problems.

In dynamic and deterministic problems, also referred to as online problems, part or all of the in-

put is unknown and revealed dynamically and unpredictably during the design or execution of the

routes. On the other hand, dynamic and stochastic problems include partial stochastic knowledge on

the dynamically revealed information. For these problems, vehicle routes are redeVned in an ongoing

fashion, requiring technological support for real time communication between the vehicles and the

decision maker (e.g., mobile phones and global positioning systems). Techniques for both classes are

reviewed in the studies by Ichoua et al. (2007) and Pillac et al. (2011).

Dynamism in routing can emerge from diUerent aspects of the problem. The most common source

of dynamism is the arrival of new customers with a demand for goods or services. Other researchers

consider dynamically revealed demands for a set of known customers, dynamic travel times, and vehi-

cle availability.

Fig. 3.1 illustrates the Dynamic Vehicle Routing Problem (D-VRP), in which new customers appear

while the vehicle is executing its route. Before the vehicle leaves the depot (at time t0), an initial route

plans to visit the currently known customers (A,B,C,D,E). While the vehicle executes its route, two

new customers (X and Y ) appear (at time t1) and the initial route is adjusted to accommodate them.

Finally (at time tf ), the executed route is (A,B,C,D, Y,E,X). This example reveals that dynamic

routing requires to adjust the routes in an ongoing fashion, which implies real-time communication

between vehicles and the dispatching center.
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Figure 3.1: Example of dynamic vehicle routing
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Until recently, the lack or high cost of real-time communication technologies steered vehicle rout-

ing research away from dynamic problems (Eksioglu et al., 2009). Nevertheless, recent advances in

communication and geolocation technologies now allow companies to economically track their Weet

in real time. These new technologies lead to the development of Intelligent Transport Systems (ITS),

and more precisely Advanced Fleet Management Systems (AFMS), that combine hardware and soft-

ware solutions to provide real time information on the Weet, customers, and road networks.

The development of ITS and AFMS creates new challenges and opportunities for operations re-

search. The advent of these systems demands a new class of eXcient optimization algorithms to

handle various diXcult aspects of Weet management. Nevertheless, Crainic et al. (2009) suggest that

while the hardware part of ITS has considerably evolved, the corresponding Decision Support Systems

(DSS) and optimization models have not yet reached their maturity.

From a practical perspective, we can identify the following desirable characteristics of a dynamic

routing DSS:

– Event-driven. Organizations are expected to react quickly to changes in their environment. Hav-

ing a DSS which is periodically updated implies longer reaction delays. Thus, a DSS should

be driven by the same transactional events that keep the business operating (e.g., customer re-

quests).

– Parallelized. As dynamic routing requires fast decisions, the underlying optimization algorithms

should be parallelized, taking advantage of the now ubiquitous parallel (and distributed) com-

puting architectures able to perform several tasks concurrently.

– Flexible. The landscape of vehicle routing problem variants is vast. Thus, a DSS should be easily

extensible to account for operational constraints in a continuously evolving environment.

In this paper, we propose an application-oriented optimization framework for dynamic and stochas-

tic vehicle routing that is event-driven, parallelized and Wexible. The rest of this document is organized

as follows. Section 3.2 reviews the literature on dynamic routing optimization techniques and related

decision support systems. Section 3.3 describes the proposed framework, Section 3.4 illustrates its

application to the dynamic VRPSD, and Section 3.5 presents experimental results. Finally, Section 3.6

concludes this paper and discusses how the framework can be generalized and extended to other dy-

namic optimization settings.

3.2 Literature review

A growing body of research has been carried out on dynamic routing, leading to new optimization

techniques and innovative DSS. In this section we will review some of the most signiVcant contribu-

tions in the dynamic routing Veld.

3.2.1 Dynamic routing

A wide range of techniques have been developed to address the dynamic nature of routing prob-

lems. Dynamic methods can be divided in two categories: non-anticipative, which only react to up-

dates in the problem data; and anticipative, which take into account knowledge on the dynamically
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revealed information to anticipate the future. Non-anticipative methods are designed for dynamic and

deterministic problems. They generally are a direct adaptation of static methods such as integer pro-

gramming (Yang et al., 2004), large neighborhood search (Goel and Gruhn, 2008), tabu search (Beaudry

et al., 2010; Gendreau et al., 1999; Ichoua et al., 2003), genetic algorithms (Benyahia and Potvin, 1998;

Haghani and Jung, 2005), or ant colony optimization (Montemanni et al., 2005). Conversely, antici-

pative methods often make better decisions by using stochastic information available in the form of

probability distributions. Anticipative methods are further classiVed into one of two families: stochastic

modeling or sampling.

Anticipative methods based on stochastic modeling accurately describe the problem’s stochasticity.

In an early work, Powell (1988) formulated the D-VRP as a Markov Decision Process (MDP). Never-

theless, the exponential growth of the state and action spaces causes traditional MDP to stall. This

problem has led to the development of Approximate Dynamic Programming (ADP). The main idea be-

hind ADP is to decompose the time in decision epochs. At each decision epoch the goal is to minimize

the current deterministic cost plus an approximation of the expected future cost. This technique has

been successfully applied to diUerent dynamic Weet management problems (Godfrey and Powell, 2002;

Powell and Topaloglu, 2005; Simao et al., 2009) and vehicle routing with stochastic demands (Novoa

and Storer, 2009). The strength of ADP is that it accurately encapsulates stochastic information in

the model, but at the expense of a higher complexity and stronger assumptions on the probability

distributions.

On the other hand, anticipative methods based on sampling are to some extent simpler, but require

more eUort to capture the problem’s stochasticity. These methods sample the probability distributions

to generate scenarios that are used to make decisions. Such approaches include the dynamic sample

scenario hedge heuristic proposed by Hvattum et al. (2006), the tabu search heuristics proposed by

Ichoua et al. (2006) and Attanasio et al. (2007), and the Multiple Scenario Approach (MSA) proposed by

Van Hentenryck and Bent (2006).

Among the anticipative methods based on sampling, MSA is unique in the sense that it provides a

more general framework for dynamic problems. More speciVcally, MSA maintains a pool of scenarios

with realizations of the problem random variables and a solution to the corresponding deterministic

problem. A distinctive feature of MSA is that the next customer to visit is selected based on the whole

scenario pool by means of a decision process. The algorithm starts by initializing the scenario pool

based on the currently known information. Periodically, MSA updates the scenario pool to reWect the

current environment state, selects the next customer, and optimizes the scenarios. As new information

is disclosed, some scenarios might become obsolete and are removed from the pool, leaving space for

new ones.

The strength of MSA is that optimization is performed on scenarios and only requires to solve a

static and deterministic problem. Therefore this approach is very Wexible as it can virtually be adapted

to any problem, provided an optimization algorithm for its static and deterministic version. Nonethe-

less, its integration in a real-world context is far from trivial, especially considering communication

between the method and its environment. Additionally, the fact that it relies on time steps induces

delays between the arrival of new information and its processing.
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3.2.2 Decision support systems for dynamic routing

There exists a wide range of DSS for the operation of a Weet of vehicles, as surveyed by Zak (2010).

In the following paragraphs we will focus on dynamic routing DSS and review the body of research in

this area.

The operation of a Weet of vehicles in an urban area is a key component of city logistics (Taniguchi

et al., 2001), and the core subject of various DSS developments. For instance, Fleischmann et al. (2004)

presented an event-based DSS that takes into account changing travel times and the arrival of new

customers in the context of a local area courier service. The framework continuously optimizes a sin-

gle routing plan in which new customers are inserted either with an assignment model or insertion

algorithms. A similar problem was addressed by Attanasio et al. (2007) who showed that the proposed

DSS allows for an eXcient operation (low administrative cost) as the Weet size (number of couriers)

increases, a key competitive advantage in this sector. Comparable conclusions were drawn by Petrakis

et al. (2012) for the dynamic routing and scheduling of Veld technicians. Likewise, Barcelo et al. (2007)

presented a Wexible DSS for vehicle routing and scheduling in city logistics and its application to the

delivery of goods in two Italian cities. Their DSS includes a real time traXc simulator, connection to

common GIS systems, and various routing models and optimization modules. Dahl and Derigs (2011)

studied the eUectiveness of a DSS that allows for cooperation between carriers, increasing the utiliza-

tion of vehicles. In a diUerent context, Zeimpekis et al. (2007) developed a DSS that takes into account

unexpected events such as traXc conditions or vehicle breakdowns to re-optimize an existing distri-

bution schedule. Li et al. (2007) also studied vehicle breakdowns in an application to waste collection

in Brazil.

Dynamic DSS generally rely on speciVc technology to ensure the communication between vehicles

and the dispatching center (Zeimpekis et al., 2007). In contrast Bieding et al. (2009) propose a DSS

based on a WAP (Wireless Application Protocol) server and mobile phones to manage the delivery

of newspapers. The use of web technologies for DSS is promising, as highlighted by the study by

Bhargava et al. (2007), especially for dynamic routing, as it allows users to access the DSS with mobile

devices such as cell phones or tablet computers.

As pointed out by Crainic et al. (2009), there is a gap between state-of-the-art optimization tech-

niques and the optimizers embedded in real-life DSS. This may be explained by the complexity and

level of specialization of certain approaches, that render diXcult their extension and integration in

an application-oriented context. To address this issue, we propose a Wexible optimization framework,

based on MSA, easily embeddable in any DSS for dynamic routing.

3.3 Proposed framework

The framework, called jMSA, is a Wexible, parallel, and event-driven Java implementation of the

multiple scenario approach. The proposed framework has been designed to facilitate and accelerate

the development and deployment of MSA-based algorithms embeddable in DSS. This section presents

the proposed framework in detail.
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3.3.1 Scenarios and decisions

Scenarios capture uncertainty in MSA. Each scenario contains a realization of the random variables,

and a solution to the static and deterministic problem deVned by this realization. For instance, in the

Dynamic VRPSD (D-VRPSD), in which vehicles can be dynamically rerouted, each scenario contains

a realization of the customer demands; while in the D-VRP, it contains a set of sampled (potential)

customers, aside from the known customers. An optimization algorithm is used to solve the static and

deterministic routing problem deVned by both actual and sampled data. Virtually, any optimization

algorithm can be used to optimize scenarios. Nonetheless, it should be fast enough to be able to

optimize the whole scenario pool between two events. Additionally, as the same scenario may be

optimized more than once, it should be capable of escaping from local optima to further improve the

solution.

Fig. 3.2 illustrates how scenarios are generated for the D-VRP. Solely based on the actual customers,

the optimal tour would be (A,B,E,D,C), which ignores two zones (gray areas) where customers are

likely to appear. By sampling the customer spatial distributions, customersX , Y and Z are generated,

and the new optimal tour is (C,X, Y,B,A,Z,E,D). Removing the sampled customers leads to the

tour (C,B,A,E,D) which is sub-optimal based on a myopic cost evaluation, but leaves room to

accommodate new customers at a lower cost.

A-priori optimal tour Optimal tour with sampled
customers

Resulting scenario

E

D C

A

B
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D C

A

B
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Y
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Legend: TourA Customer (actual/sampled)A Depot Customer distribution density

Figure 3.2: Scenario generation in MSA

Another key element in MSA is the decision process, which deVnes how to select the next customer

to serve based on the information of the scenario pool. MSA’s accuracy relies to a great extent on the

decision process, being the most common algorithms expectation, consensus, and regret. The expectation

algorithm (Chang et al., 2000) evaluates the cost of visiting each customer Vrst, by forcing its visit

and reoptimizing each scenario. The consensus algorithm (Bent and Van Hentenryck, 2004b) selects

the customer appearing Vrst with the highest frequency. Finally, the regret algorithm (Bent and Van

Hentenryck, 2004a) approximates the cost of visiting each customer Vrst.

The jMSA framework uniVes these decision processes in the generic Algorithm 3.1, in which a

subset of candidate customers (line. 1) is evaluated against the scenario pool (line. 6) to select the best

one (line. 9). The evaluation of each customer reWects how desirable it is to serve it Vrst depending on

the objective. In most routing problems, the customer with the highest evaluation should be the one
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that ensures the lowest expected routing distance when visited Vrst.

Algorithm 3.1 A general algorithm for the decision process in jMSA

Input: scenario pool P , set of pending customersR
Output: r∗ the next customer to serve
1: C ← selectCandidates (R,P) . Select a subset of candidate customers
2: f∗ ← −∞, r∗ ← ∅
3: for all r ∈ C do
4: f ← 0
5: for all s ∈ P do
6: f ← f + evaluateRequestProfit (r, s)
7: end for
8: if f > f∗ then
9: f∗ ← f, r∗ ← r
10: end if
11: end for
12: return r∗

3.3.2 Event-driven interaction

The original description of MSA is implicitly based on the discretization of time in intervals. This

implies a time lag between an update in the problem data, such as the arrival of a new customer, and

the response of the system, corresponding to the time before the next time interval. Consequently, in

jMSA we propose a description of MSA from an event-driven perspective, suitable for its integration

as a component of a real-world decision support system.
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Figure 3.3: Time line of events for the dynamic routing of a single vehicle

Fig. 3.3 illustrates a typical sequence of events while routing a single vehicle in a dynamic context.

The environment refers to the real-world, the DSS is assumed to be based on the MSA algorithm, and

active (idle) times are represented with a continuous (dotted) segment. While the vehicle is parked

at the depot, the MSA procedure initializes a scenario pool based on the currently known customers.

Once the vehicle is ready (Vrst dotted arrow), MSA analyzes the scenario pool and instructs the vehicle

to service customer A (Vrst double-headed arrow). While the vehicle is traveling towards customer A,

MSA generates and reoptimizes the scenario pool. When the vehicle reaches its destination, an event

is sent to the system (second dotted arrow) and triggers an update of the scenario pool. The remaining

LUNAM - EMN - Uniandes 75/192 Pillac V. - Ph D. Dissertation



CHAPTER 3. DYN. & STOCHASTIC ROUTING 3.3. PROPOSED FRAMEWORK
service time is used by MSA to reoptimize the pool until the vehicle is ready to depart. This event

(third dotted arrow) triggers the decision procedure, which recommends visiting customer B (second

double-headed arrow). At some point in time while the vehicle is traveling to B, an event (last dotted

arrow) triggers an update of the scenario pool. Such event could be the arrival of a new customer in

the D-VRP, or an update in the traXc information in the case of routing with dynamic travel times.

The main advantage of this event-driven interaction between the environment and the system is

that it increases the responsiveness of the DSS by feeding real-time information to the system and

communicating decisions without delay.

3.3.3 Framework design

As illustrated in Fig. 3.4, the proposed framework is divided in two layers: a kernel, common to all

dynamic combinatorial optimization problems; and a problem layer, with problem-speciVc components.

Problem layer

Kernel

MSA 
Procedure

Event 
Handler 
Manager

Callback 
Manager

Component 
Manager

Scenario 
Pool

Global 
Parameters

Generate 
Handler

Optimize 
handler

Decision 
Handler

Scenario 
Generator

Scenario 
Optimizer Decision Scenario

DVRP 
Scenario 
Generator

VRP 
Scenario 
Optimizer

Consensus VRP
Scenario

jMSA framework

Callback

ComponentInterface Inheritance AssociationCore componentLegend:

Event 
Queue

Figure 3.4: Design overview of the jMSA framework

The central component of the kernel is the MSAProcedure, which contains the logic of the al-

gorithm and instantiates all other components. The MSAProcedure is conVgured via the Global-

Parameters that can be set programmatically or via a conVguration Vle.

The event-driven behavior is modeled using two elements: events and event handlers. Fig. 3.5 shows

how events drive the framework. The MSA procedure continuously dequeues events from the event

queue, and then processes them by using the corresponding event handler in the event handler manager.

Events are designed to increase the framework responsiveness. To ensure that important events

are handled Vrst, events are prioritized and the event queue is sorted accordingly. Additionally, some

events are preemptive, meaning that the handling of a non-preemptive event is always aborted in favor

of a preemptive event.
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Figure 3.5: Event-driven MSA framework

Event handlers deVne at a very high level what actions are triggered by a given event. By design,

these handlers do not contain any problem-speciVc logic which is instead delegated to components.

The component manager contains references to all components and acts as an interface between event

handlers and problem-speciVc implementations.

Fig. 3.6 illustrates how event handlers and components interact for the ScenarioGeneration

event. First, GenerateHandler calls the generateScenario method of the ComponentManager that

internally uses the registered ScenarioGenerator. Then it calls the optimizeScenariomethod, del-

egated to the instance of ScenarioOptimizer in use, and adds the scenario to the pool. The process

repeats until the pool is full, moment when the event handling terminates by raising a Scenario-

Optimization event that is further pushed to the event queue.

The framework includes a callback system that provides users with further control over the MSA

procedure. Users may implement a callback simply by extending the Callback interface provided

in the framework, and registering it in the MSA procedure. User-deVned callbacks are automatically

invoked at speciVc points of the procedure and allow customized uses such as logging to a Vle or

dynamic parameter tunning.

Tied, yet decoupled to the kernel, the jMSA framework oUers a problem-speciVc layer containing

components that provide ready-to-use functionalities for common dynamic combinatorial optimization

problems. Fig. 3.4 illustrates some components that could be combined for the D-VRP. Consensus is an

implementation of the consensus algorithm that is common to many dynamic problems solved under

MSA; VRPScenario is an implementation of Scenario for routing problems containing a set of routes;
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ComponentManager ScenarioGeneratorGenerateHandler ScenarioOptimizer

generateScenario

optimizeScenario

addToPool

scenario

scenario

While pool not full

generateScenario

handleEvent

raise(ScenarioOptimization)

MSAProcedure

Figure 3.6: Interaction between the GenerateHandler and the diUerent components.

VRPScenarioOptimizer is a generic solver for the VRP; and Vnally DVRPScenarioGenerator is the

only component speciVc to the D-VRP that is responsible for the generation of new scenarios.

This two-layer architecture ensures Wexibility and extensibility. While kernel elements are deVned

at a high level and are designed to be problem independent, the problem layer provides implemen-

tations for speciVc problems. Thus, users only have to deVne or extend components, in particular

for scenario generation and optimization, without worrying how they will be integrated in the MSA

procedure.

3.3.4 Parallelization via multi-threading

The ubiquitous presence of multi-core processors can be exploited in parallelizable algorithms such

as MSA. Nevertheless, parallelization often comes at the price of a higher implementation complexity.

The jMSA framework oUers multi-threaded parallelization of the most time-consuming tasks, hiding

it from the user. That is, under jMSA, users do not have to explicitly write a parallel algorithm, but

simply rely on the ComponentManager which internally distributes tasks among diUerent threads.

Fig. 3.7 illustrates how threads interact within the jMSA framework. At time t0 the MSA thread

dequeues an OptimizePool event, and processes it with the corresponding OptimizeHandler. In

parallel to the MSA thread, two other threads are started by the ComponentManager to optimize the

scenarios of the pool. At t1, a preemptive NewCustomer and a Decision event are pushed by the

environment, causing the MSA thread to prematurely abort the optimization. To avoid inconsistencies,

the main thread waits for the pool executor to terminate, sends a signal to the callback thread to

notify that the OptimizePool event was handled, and raises a GenerateScenarios event. Finally,

the procedure dequeues the NewCustomer event, which has a higher priority than the Decision event,

and processes it.

It is worth noting that aside from time-consuming tasks such as scenario generation and opti-

mization, parallelization is also used to execute callbacks. Callbacks can be particularly useful when
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Figure 3.7: Multiple threads interacting in jMSA

writing Vles or updating the state of a user interface as it does not aUect the performance of the main

algorithm. This behavior can be overridden using synchronous callbacks.

3.4 Application to the dynamic VRP with stochastic demands

This section illustrates the Wexibility of the jMSA framework on the Dynamic VRP with Stochastic

Demands, and we illustrate how under the proposed approach we can easily relax the assumptions on

the demand distributions required by state-of-the-art approaches, thus leading us to the solution of a

more general problem with jMSA.
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3.4.1 Problem description

The fundamental diUerence between the classic VRP and the VRPwith Stochastic Demands (VRPSD)

is that in the latter customer demands are known as random variables. The randomness in the VRPSD

implies that a customer demand realization might exceed the vehicle remaining capacity, leading to a

route failure that requires a recourse action. An intuitive recourse action is for the vehicle to go back

to the depot to restore its initial capacity and then resume its route (Mendoza et al., 2009), or to al-

low the service of additional customers before returning to the depot (Novoa, 2005). It is important

to stress that in this context all customers are known beforehand and the only dynamically revealed

information is the realization of the customer demands.

Uncertainty in the VRPSD has been addressed by various solution approaches, of which the two

most studied are the Chance Constrained Programming (CCP) and the Stochastic Programming with

Recourse (SPR). Both methods are based on a two-stage approach: the Vrst phase builds a robust routing

plan; while the second phase takes recourse (corrective) actions as the realizations of the customer

demands are unveiled. The conceptual diUerence between the two approaches lies in the objective

of the Vrst-stage optimization: in CCP, the goal is to ensure an upper bound on the probability of a

failure, regardless of the expected cost of the second phase; while SPR seeks the minimization of the

total expected cost, including recourse actions.

The Dynamic VRPSD (D-VRPSD) is an extension of the VRPSD in which it is possible to freely

reroute vehicles upon new demand realizations, allowing more complex recourse actions. Literature on

the D-VRPSD is scarce, with the main contributions being the work by Novoa (2005), Novoa and Storer

(2009), Secomandi (2001), and Secomandi and Margot (2009). The only publicly available instances for

the D-VRPSD are those from Novoa (2005), therefore we will use the same problem deVnition deVned

therein to allow a fair comparison between algorithms. In our work, as in all studies on the D-VRPSD,

we consider the single-vehicle case with discrete and uniformly distributed demand distributions. If

at some point the realization ξ̂ of the demand of a customer exceeds the vehicle remaining capacity

Q̄, the vehicle serves the quantity Q̄, and returns to the depot to restore its capacity. Afterwards, a

subsequent visit to the customer is planned to serve the remaining demand ξ̂ − Q̄.

3.4.2 Scenarios and decisions

In the context of the D-VRPSD, scenarios contain diUerent realizations of the customer demands,

along with a feasible routing for these values. Given that the vehicle can go back to the depot during

its service, a scenario can contain diUerent routes that will be executed in a sequential order by the

same vehicle.

The fact that customer locations are identical across scenarios suggests that diUerent scenarios

might have similar routes. Therefore, we use the consensus algorithm to select the next customer to

visit. Let us consider the scenario pool of Fig. 3.8. The customers who have already been served (4

and 1) appear Vrst in all scenarios, while customers 2, 3, 5, and 6, appear in varying order depending

on the scenario sampled demands. Considering that customer 2 appears Vrst in 2 out of 4 scenarios,

by consensus it is selected as the next customer to visit. With the notations from Algorithm 3.1, the

function selectCandidates (line 1) returns the set of unserved customers while evaluateRequest-
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Profit (line. 6) returns 1 if customer r appears Vrst in the scenario; 0, otherwise. It is worth noting

that the consensus decision might recommend the vehicle to return to the depot for a preventive

replenishment, that is, before the vehicle runs out of capacity.
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Figure 3.8: Example of the decision process by consensus in a 4-scenario pool. Each scenario contains
customers who have been visited (in white) and customers yet to be visited (in gray).

3.4.3 Optimization

To optimize scenarios we use an Adaptive Variable Neighborhood Search (AVNS), which is an

extension of the Variable Neighborhood Search (VNS) (Mladenovic and Hansen, 1997). The main dif-

ference between AVNS and VNS is that neighborhoods are not explored sequentially, but randomly

selected with a bias depending on their previous performance. Our implementation uses an average

ratio of the improvement to time as a metric of neighborhood performance, and maintains this infor-

mation between calls to the optimization procedure. Neighborhoods with a better performance are

more likely to be explored Vrst, leading to a self-tuning algorithm. Our MSA scheme beneVts from

this automatic self-tuning behavior as the optimization procedure is called numerous times on similar

instances (i.e., scenarios).

Algorithm 3.2 presents an outline of the AVNS algorithm. The algorithm initializes with the whole

set of neighborhood structures (line. 2), then it selects a neighborhood (line. 4) to randomly perturb

the current solution (line. 5), and improves it by applying a local search procedure (line. 6). If the new

solution is improving (line. 8) then it becomes the current solution (line. 9), and the set of active neigh-

borhood structures is reset (line. 10). Otherwise, the current neighborhood is removed from the set of

active neighborhoods (line. 12). At each iteration, the performance of the current neighborhood is up-

dated (line. 7). This process iterates until all neighborhoods have been explored with no improvement.

In our experiments we used the two neighborhoods structures Or-opt and string-exchange for the

perturbation, and a Variable Neighborhood Descent (VND) based on swap and 2-opt as local search

(line. 6). A more detailed description of these neighborhoods can be found in the paper by Irnich et al.

(2006). The initial solution is obtained by a Clarke andWright (CW) heuristic (Clarke andWright, 1964)

in which the saving list is randomized, as presented in Mendoza et al. (2010), leading to the CW+AVNS

algorithm.
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Algorithm 3.2 The Adaptive Variable Neighborhood Search algorithm

Input: feasible solution x, evaluation function z , and set of neighborhood structures N =
{N1, .., NK}

Output: best solution found x∗

1: x∗ ← x
2: Nc ← N . Initial neighborhood set
3: while Nc 6= ∅ do
4: N ← selectNeighborhood (Nc) . Select neighborhood
5: x′ ← shake (N,x) . Generate a neighbor from neighborhood N
6: x′ ← localSearch (x′) . Local search to improve x′

7: updatePerformance (N ,x,x′)
8: if z(x′) < z(x) then . x′ is accepted as current solution
9: x← x′ . Update current solution
10: Nc ← N . Reset the neighborhood set
11: else
12: Nc ← Nc \ {N} . Remove the explored neighborhood
13: end if
14: if z(x′) < z(x∗) then . An improvement has been found
15: x∗ ← x′ . Update best solution
16: end if
17: end while
18: return x∗

3.4.4 Failure handling

A route fails when a customer demand exceeds the vehicle’s remaining capacity. Thus, the MSA

procedure becomes aware of a route failure as soon as a Resource event is raised upon the arrival

at the customer location. As a consequence, the route failure handling must be deVned at the event

handler level, by checking if the demand of the current customer is larger than the vehicle remaining

capacity, and updating the scenario pool accordingly.

3.4.5 User interface

To illustrate the use of callbacks we developed a user interface shown in Fig. 3.9. The main panel

(right) presents in real time the unserved (white) and served (dark gray) customers, the vehicle desti-

nation (light gray), and the executed route (arrows). The left panel displays a log of events of jMSA

and echoes the conVguration settings. By means of a callback registered in the MSA procedure, all the

information in the interface is updated in real time.

3.5 Computational experiments on the D-VRPSD

The benchmark instances for the D-VRPSD used in this work were initially proposed by Novoa

(2005) and later used in Novoa and Storer (2009). In this work we consider the larger problems with 30,

40, and 60 customers uniformly distributed in a 1× 1 square grid with discrete uniform demands. For

each problem size, there are ten combinations of Vve diUerent client locations and demand distributions
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Figure 3.9: A graphical user interface for jMSA

by two vehicle capacities, leading to a complete testbed of 30 instances. Optimal values where obtained

using the COIN-OR Symphony VRP solver (Ralphs, 2006; Ralphs et al., 2003).

To assess the optimization component in isolation, we conducted an experiment on 100 diUerent

demand realizations for all 30 instances. Fig. 3.10 presents the distribution of gaps to optimal values

for CW+AVNS and a CW+2-opt heuristic used for comparison. Note that CW+AVNS clearly dominates

CW+2-opt, with 90% of all instances solved with a gap of less than 4%. Additionally, CW+AVNS runs

relatively fast, with average CPU times between 50 ms and 650 ms for the larger instances.
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Figure 3.10: Optimal gap distribution of the CW+AVNS algorithm vs. CW+2-opt for all Novoa (2005)
instances

To facilitate the comparison between approaches for the D-VRPSD, we report the results in terms
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of value of information (Mitrović-Minić and Laporte, 2004). The value of information for instance I ,

namely V(I), is the gap between the cost of the Vnal solution returned by the algorithm z(I) and the

a-posteriori optimal solution z∗(I), and it is calculated as follows:

V(I) =
z(I)− z∗(I)

z∗(I)
(3.1)

As in Novoa and Storer (2009), we ran 100 simulations with diUerent demand realizations for each

instance, using the jMSA framework as a black box. This means that an external simulator was used

to send events to the MSA procedure simulating the vehicle route execution. The results reported by

Novoa and Storer (2009) being aggregated, we report the average value of information by using average

solution values in Eq. 3.1.

Instance set (size,capacity)
Algorithm (30,137) (30,87) (40,183) (40,116) (60,274) (60,175) Average
1s_n2_r (Secomandi, 2001) 12.3% 11.8% 11.1% 12.9% 13.9% 19.6% 13.6%
1s_stostat_r (Novoa and Storer, 2009) 4.7% 5.1% 3.7% 5.3% 3.5% 12.3% 5.8%
2s_stostat_r (Novoa and Storer, 2009) 3.5% 3.6% 3.0% 5.4% 2.8% 10.7% 4.8%
jMSA 0.9% 4.1% 3.5% 6.3% 2.9% 2.0% 3.3%

Table 3.2: Comparison of average value of information, bold values indicate the best performing algo-
rithm for a subset of instances.

Table 3.2 presents results for the 30 benchmark instances, each column representing 500 runs (100

runs for each of the 5 instances with the same size and capacity). MSA dominates the algorithm

proposed by Secomandi (2001) (1s_n2_r), and outperforms the best performing algorithms reported

by Novoa and Storer (2009) (1s_stostat_r, 2s_stostat_r) for instances with 30 and 60 customers, and

a vehicle capacity of 137 and 175. Additionally, MSA shows better overall results with an average

gap of 3.3% against 4.8% for 2s_stostat_r, 5.8% for 1s_stostat, and 13.6% for 1s_n2_r. Aside from the

performance in terms of value of information, it is important to stress that MSA runs continuously, and

the next customer to visit is selected in a fraction of a second, while the other algorithms can take up

to several minutes to make such decision, limiting their deployment and applicability in a real-world

online DSS.

Aside from direct numerical comparison, the strength of our approach relies on the lack of strong

assumptions on demand distributions. To illustrate this point, we adapted the testbed instances by

changing the demand distribution from a discrete uniform distribution to a left-truncated normal dis-

tribution (NLT≥0) as follows:

Uint (a, b)→ NLT≥0

(
a+ b

2
,
b− a+ 2

6

)
(3.2)

Note that Eq. 3.2 ensures that the demand will be between a− 1 and b+ 1 with probability 0.997, and

truncates negative values.

Table 3.3 highlights the robustness of MSA which shows consistent performance when demand

distributions are changed from uniform (discrete) to normal (continuous). Furthermore, the results are

as expected slightly better, with a reduction of 0.3% in the overall average value of information, which

is due to the smaller variance. It is important to stress that to conduct this experiment in jMSA the
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Instance set (size,capacity)

Algorithm (30,137) (30,87) (40,183) (40,116) (60,274) (60,175) Average
Uniform 0.9% 3.9% 3.5% 6.3% 2.9% 2.0% 3.3%
Normal 0.7% 3.6% 3.4% 6.2% 2.2% 1.9% 3.0%

Table 3.3: Comparison of average VI for discrete uniform and normal distributions.

only change required was to use a diUerent random number generator, which illustrates the Wexibility

of our approach. Other approaches based on stochastic modeling (Novoa and Storer, 2009; Novoa,

2005; Secomandi, 2001) are not as Wexible and depend on distributional assumptions, thus limiting

their application scope.

3.6 Conclusions

In this paper we presented the design and implementation of jMSA, an object-oriented event-driven

framework for the Multiple Scenario Approach (MSA). By doing a high-level abstraction of MSA to a

problem independent level, we modeled it as an event-driven process that allows high reactivity to

changes occurring in online and highly dynamic operational environments. We implemented jMSA as

a Wexible framework that is easily embeddable in decision support systems. By design, jMSA includes

a callback system that gives the user further control over MSA and allow complex interactions with

third party components. Additionally, we integrated into the framework the parallelization of time

consuming tasks with no compromise for the framework user, which is a key aspect considering the

wide availability of multi-core personal computers.

We illustrated the use of jMSA on the Dynamic Vehicle Routing Problem with Stochastic Demands

(D-VRPSD). The optimization of scenarios is performed by an Adaptive Variable Neighborhood Search

(AVNS) which improves an initial solution generated with a randomized Clarke and Wright heuristic.

The strength of AVNS is that it automatically adjusts its search scheme depending on the problem’s

structure by keeping track of the neighborhood performance throughout the execution of the MSA

procedure. Computational experiments show that our approach is competitive with state-of-the-art

algorithms that take full advantage of the stochastic aspects, while it provides a more Wexible scheme

that can be used to tackle problems with diUerent demand distributions.
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4
Case study: the Technician Routing and Scheduling

Problem

The two papers presented in this chapter are motivated by a real-world optimization problem

submitted by an industrial partner. This company provides software solutions for organizations that

have to route a crew of technicians to service geographically distributed customer requests that can

be either static or dynamic. Static requests are known in advance and correspond to appointments

with customers or preventive maintenance operations. On the other hand, dynamic requests appear

dynamically throughout the day and are, for instance, emergencies or corrective maintenance opera-

tions. Requests may require a technician with diUerent skills, a certain set of tools, and a number of

spare parts to be serviced. In addition, technicians generally start and end their day at their home,

and may visit a central depot to pickup tools and spare parts. Finally, the objectives include the mini-

mization of the traveled distance, the minimization of the working time, the balancing of the workload

between technicians, and the minimization of the constraints violations.

From this practical application, we introduced a new optimization problem, namely, the Technician

Routing and Scheduling Problem (TRSP), which deals with a limited crew of technicians that serves a

set of requests. In the TRSP, each technician has a set of skills, tools, and spare parts, while requests

require a subset of each. The problem is then to design a set of tours of minimal total duration such

that each request is visited exactly once, within its time window, by a technician with the required

skills, tools, and spare parts.

A distinctive feature of this problem is that it introduces several compatibility constraints between

technicians and requests. While skills are intrinsic attributes, technicians may carry diUerent tools

and spare parts over the planning horizon. Technicians start their tour from home, with a set of tools

(renewable resources) and spare parts (consumed once the technician serves a request) that allow them
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to serve an initial set of requests. Technicians may have the opportunity to replenish their tools and

spare parts at a central depot at any time to service more requests.

The TRSP naturally arises in a wide range of applications, including telecoms, public utilities,

and maintenance operations. However technician routing and scheduling problems have received

limited attention until recently, and to the best of our knowledge there is no work that considers

simultaneously skills, tools, spare parts, and the arrival of new requests, three important components

of real-world applications. The paper in Section 4.1 introduces a parallel matheuristic able to solve the

static TRSP, while the paper in Section 4.2 presents two approaches to tackle the dynamic TRSP.
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4.1 The static TRSP

The paper presented in this section proposes a parallel matheuristic to solve the static TRSP. From

a practical perspective, this algorithm can be used either to design an initial solution to the problem

considering only static requests, or to compute an a-posteriori solution to a dynamic problem that can

be used to assess the performance of a dynamic approach.

The full reference of the paper presented in this section is:

– Pillac, V., Guéret, C., and Medaglia, A. L. (2011)

A parallel matheuristic for the technician routing and scheduling problem

Optimization Letters, Accepted manuscript, doi:10.1007/s11590-012-0567-4.

Preliminary results were presented in MIC 2011 international conference:

– Pillac, V., Guéret, C., and Medaglia, A. L. (2011)

On the technician routing and scheduling problem

In Di Gaspero, L., Schaerf, A., and Stützle, T., editors, Proceedings of the 9th Metaheuristics

Conference (MIC 2011), pages 675–678. Università degli Studi di Udine.
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Abstract : The Technician Routing and Scheduling Problem (TRSP) consists in rout-

ing staU to serve requests for service, taking into account time windows,

skills, tools, and spare parts. Typical applications include maintenance op-

erations and staU routing in telecoms, public utilities, and in the health

care industry. In this paper, we present a formal deVnition of the TRSP,

discuss its relation with the Vehicle Routing Problem with Time Windows

(VRPTW), and review related research. From a methodological perspective,

we describe a matheuristic composed of a constructive heuristic, a parallel

Adaptive Large Neighborhood Search (pALNS), and a mathematical program-

ming based post-optimization procedure that successfully tackles the TRSP.

We validate the matheuristic on the Solomon VRPTW instances, where we

achieve an average gap of 0.23%, and matched 44 out of 55 optimal solutions.

Finally, we illustrate how the matheuristic successfully solves a set of TRSP

instances extended from the Solomon benchmark.

Keywords : Vehicle routing ; Technician routing and scheduling ; Matheuristic ; ALNS ;

pALNS ; VRPTW

4.1.1 Introduction

The Technician Routing and Scheduling Problem (TRSP) deals with a limited crew of technicians

K that serves a set of requestsR. In the TRSP, each technician has a set of skills, tools, and spare parts,

while requests require a subset of each. The problem is then to design a set of tours of minimal total

duration such that each request is fulVlled exactly once, within its time window, by a technician with

the required skills, tools, and spare parts. It is important to note that the departure of technicians may

be delayed to minimize the waiting time at each visited request, thus reducing the duration of tours.

The TRSP naturally arises in a wide range of settings, including telecoms, public utilities, and compa-

nies planning maintenance operations. The TRSP can be seen as an extension of the Vehicle Routing

Problem with Time Windows (VRPTW), where technicians play the role of vehicles and requests are

made by clients. Thus, it belongs to the class of NP-Hard problems.

A distinctive feature of this problem is the presence of compatibility constraints between techni-

cians and requests. While skills are intrinsic attributes, technicians may carry diUerent tools and spare

parts over the planning horizon. Technicians start their tour from their home, with a set of tools and

spare parts that allows them to serve an initial set of requests. They also have the opportunity to
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replenish their tools and spare parts at a central depot at any time to serve more requests. Tools can be

seen as renewable resources, while spare parts are non-renewable and consumed once the technician

serves a request.

The remainder of this paper is organized as follows: Section 4.1.2 reviews the literature on prob-

lems related to the TRSP; Section 4.1.3 introduces the proposed matheuristic; Section 4.1.4 presents

experimental results; and Vnally, Section 4.1.5 concludes this work and outlines directions for future

research.

4.1.2 Literature review

The technician scheduling problem is closely related to the TRSP, but does not consider the rout-

ing aspects, nor the tool and spare part constraints. It was featured in the 2007 French Operational

Research Society (ROADEF) challenge. We refer the reader to the work by Cordeau et al. (2010) and

Hashimoto et al. (2011) for two solution approaches to a multi-day variant in which teams are assem-

bled to serve requests. Kovacs et al. (2011) studied an extension of this problem, namely, the Service

Technician Routing and Scheduling Problem (STRSP), which considers routing costs, skills, and team

building.

Bredström and Rönnqvist (2008) present a generic mixed integer programming formulation for a

Vehicle Routing and Scheduling Problem with Time Windows (VRSPTW) in which some clients must

be visited simultaneously by two or more vehicles. The authors do not explicitly consider skills, but the

proposed model accounts for compatibility constraints between vehicles and requests. Parragh (2010)

also tackled a variant with synchronization between technician visits.

A practical consideration in technician routing is that it may not be possible or desirable to serve

all requests. Xu and Chiu (2001) studied a variant of the TRSP in which the objective is to maximize

the number of requests served while accounting for skill constraints and request urgency. Tang et al.

(2007) also considered requests with diUerent urgency levels. The authors use a multi-period maximum

collection problem formulation with time-dependent rewards modeling customer preferences. Tsang

and Voudouris (1997) solved a problem faced by British Telecom where technician skills aUect the time

required to serve a request.

Finally, home care routing and scheduling problems are related to the TRSP in the sense that they

consider patients that need to be visited by staU with speciVc skills and within a given time frame. We

refer the interested reader to the case studies by Bertels and Fahle (2006), Eveborn et al. (2006), and

Akjiratikarl et al. (2007).

In summary, technician routing problems have received limited attention and to the best of our

knowledge, no work considers tools or spare parts, two important components of real-world appli-

cations. The present work, based on a real problem, addresses this aspect and proposes a parallel

matheuristic approach for the TRSP.

4.1.3 The proposed matheuristic

This section outlines the proposed matheuristic that comprises a fast constructive heuristic, a par-

allel adaptive large neighborhood search, and a mathematical programming based post-optimization.
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4.1.3.1 Regret constructive heuristic

Regret heuristics (Potvin and Rousseau, 1993) are constructive heuristics that incorporate a look

ahead component. At each iteration the algorithm inserts the request with the greatest regret value at

the best position, where the regret value is an estimation of the additional cost incurred if a request is

not inserted at its best position.

More formally, let U be the set of requests to be inserted and δki be the cost of inserting request

i at its best position in its k-th best route. The regret-q heuristic inserts at its best position request

i∗ = arg maxi∈U
{∑q

k=2

(
δki − δ1

i

)}
(ties are broken by choosing the request with the lowest δ1

i value).

It is worth noting that regret-1 corresponds to the well-known best insertion heuristic.

When evaluating the insertion of a request in a tour we need to consider the possibility to plan a

trip to the main depot to pick up additional tools and spare parts. The procedure Vrst checks for the

best feasible insertion without considering trips to the depot. If no feasible insertion is found, it then

considers each possible combination of request and main depot insertions. Insertion feasibility and cost

are evaluated in constant time using the concepts of waiting time and forward time slack introduced by

Savelsbergh (1992).

We use a regret-3 heuristic to design an initial set ofK solutions that will then be improved by the

parallel adaptive large neighborhood search.

4.1.3.2 Parallel Adaptive Large Neighborhood Search

Shaw (1998) introduced the Large Neighborhood Search algorithm (LNS), which works by succes-

sively destroying and repairing a current solution. Pisinger and Ropke (2007) extended LNS by using

several destroy and repair operators and adding an adaptive layer to select them, leading to the Adap-

tive LNS algorithm (ALNS). In this work, we propose a parallel version of ALNS, namely pALNS, that

takes advantage of parallel architectures to achieve signiVcant speedups.

Algorithm 4.1 presents the outline of pALNS. The algorithm maintains a pool P of N promising

solutions that are optimized in K subprocesses (note that N ≥ K). For each master iteration, a

subset of K promising solutions is selected randomly (line 4) and distributed among independent

subprocesses. Then for Ip iterations, each subprocess selects destroy and repair operators with a

roulette wheel mechanism that adaptively reWects their past performance (line 8). The current solution

is then successively destroyed and repaired, producing a temporary solution (line 9). The temporary

solution is either accepted as the subprocess current solution or rejected according to a simulated

annealing criterion (line 10) The weights of the destroy and repair operators are updated depending

on their performance (line 16) and the tours from the solution are stored for the post-optimization

(line 17). The Vnal current solution of each subprocess is added to the pool of promising solutions

(line 19). When all subprocesses have terminated, a Vltering procedure ensures that the pool contains

at most N solutions, including the best solution found so far (line 21). The algorithm stops after Im

master iterations, which corresponds to I = Im × Ip ×K ALNS iterations. What follows is a detailed

description of the main components of pALNS.
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Algorithm 4.1 Parallel Adaptive Large Neighborhood Search (pALNS) algorithm

Input: P , initial solutions; z, evaluation function; Θ−/Θ+, set of destroy/repair operators; N , maxi-
mum size of the solution pool; Km number of subprocesses; Im, number of master iterations; Ip,
number of iterations performed in parallel.

Output: Π∗, the best solution found; Ω, the pool of tours for the post-optimization.
1: Ω← ∅
2: Π∗ ← arg minΠ∈P {z(Π)}
3: for Im iterations do
4: P ′ ← selectSubset (P,K) . Select a subset ofK solutions
5: parallel forall Π in P ′ do
6: Πp ← Π . Current solution for this subprocess
7: for Ip iterations do
8: d← select (Θ−) ; r ← select (Θ+) . Select destroy/repair
9: Π′ ← r (d (Πp)) . Destroy and repair current solution
10: if accept (Π′,Πp) then
11: Πp ← Π′ . Π′ is accepted as current solution
12: end if
13: if z(Π′) < z(Π∗) then
14: Π∗ ← Π′ . Π′ is the best solution found so far
15: end if
16: updateScore (d, r,Π′) . Update d and r scores
17: Ω← Ω ∪ {π}π∈Π′ . Add tours from Π′ to the set-covering tour pool Ω
18: end for
19: P ← P ∪ {Πp} . Add Πp to the pool P
20: end forall
21: P ← retain (P,Π∗, N) . Retain at most N solutions in the pool P
22: end for
23: return Π∗,Ω
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Destroy Destroy operators remove a random number of requests from the current solution. We used

three destroy operators originally proposed by Pisinger and Ropke (2007): random, critical, and related.

The random destroy operator removes requests randomly from their current tours; the critical destroy

operator removes requests that are among the most costly in the current solution; Vnally, the related

destroy removes requests that share common characteristics by Vrst selecting a seed request, and then

removing related requests. It is important to note that all three destroy operators are randomized.

We propose two relatedness metrics tailored for the TRSP that deVne two new destroy operators.

The a priori relatedness is a precalculated metric that does not depend on the current position of the

requests in the tours and combines three components: geographic distance, diUerence of due dates,

and number of technicians that can serve both requests. On the other hand, time relatedness measures

the diUerence between the service time of two requests in the current solution.

Repair Repair operators attempt to insert requests that are currently unserved. If requests cannot be

reinserted, a penalty proportional to the number of unserved requests is added to the objective func-

tion. This penalty approach allows infeasible solutions to be considered as the current solution during

the search, and can be interpreted as the possible outsourcing of some requests. Our implementation

is based on three repair heuristics: best insertion, regret-2, and regret-3.

Adaptive layer At each iteration, the pALNS algorithm selects a destroy and a repair operator using

a roulette wheel mechanism. Operator θ is selected with probability wθ . Let Θ� be either the set of

destroy (Θ−) or repair (Θ+) operators. As in the original ALNS algorithm, probabilities are initialized

with value 1
|Θ�| . However, they are then updated every l iterations as follows: wθ ← (1 − ρ)wθ +

ρ sθ∑
θ∈Θ� sθ

, where ρ ∈ [0, 1] is the reaction factor which deVnes how quickly probabilities are adjusted,

and sθ is the score of operator θ in the last l iterations. Note that this formula ensures that
∑

θ∈Θ� wθ =

1 at all time. The scores sθ are maintained at the master level. They are reset to 0 every l iterations

and updated at the end of each iteration depending on the new solution Π′: a score of σ1 is granted

for a new best solution, σ2 for an improving solution, σ3 for a non-improving but accepted solution,

and σ4 for a rejected solution.

Acceptance criterion The pALNS algorithm relies on a simulated annealing acceptance criterion: a

new solution Π′ is accepted with probability e
z(Π)−z(Π′)

T , where T is the temperature parameter. T is

initialized with value T0 and reduced at each iteration by a cooling factor c. Parameters T0 and c are

Vxed depending on the initial solution and the target number of iterations (Pisinger and Ropke, 2007).

Promising solution pool The solution pool acts as a shared memory and allows subprocesses to

collaborate eXciently. The method retain ensures that P contains at most N solutions: if |P| > N

then the method retains the N best solutions according to the Vtness function f(Π) = rankz(Π) +

rankd(Π), where rankz(Π) is the rank of solution Π according to its objective value and rankd(Π) is

the rank of Π according to a diversity metric. For the latter metric, we use the average broken pairs

distance (Prins, 2009) to measure the diversity of solution Π relative to the other solutions in P . This
Vtness function is inspired by the biased Vtness introduced by Vidal et al. (2011) in a genetic algorithm
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with diversity management. It allows the preservation of solutions that are both diverse and promising

in terms of cost. In addition, we ensure that P always contains the best solution found so far.

4.1.3.3 Set-covering based post-optimization

The pALNS algorithm generates one solution per ALNS iteration, but only keeps the best one.

However, good solutions may contain poor tours, and conversely poor solutions may contain good

tours. The proposed approach overcomes this limitation by solving a Set Covering model (SC) that

combines the tours generated throughout the search to assemble a better solution. Note that a similar

approach was for instance used by Villegas (2012) to solve the Truck and Trailer Routing Problem

(TTRP) showing excellent results.

Tour pool Throughout the pALNS algorithm, we store in a pool Ω the tours π that make up the

temporary solutions Π′ found by the algorithm (see Algorithm 4.1, line 17). Tours are either stored in

a single hash table when solving the CVRPTW, or in a separate hash table per technician for the TRSP.

We associate a 32-bit integer to each tour using the hash function hash(π) = ⊕i∈πR[i], where R is

an array associating a random 32-bit integer to each request and ⊕ is the XOR bit-wise operator. It is

important to note that this hash function only considers the subset of requests in tour π, ignoring their

sequence which is not relevant for the set-covering model. Preliminary experiments revealed that the

probability of having a hash collision was under 10−3. Therefore, we ignore hash collisions and always

keep the tour with the lowest cost, without checking if tours actually contain the same requests.

Mathematical model Let Ωk ⊆ Ω be the subset of tours associated with technician k, ct be the

duration of tour t, and ati a binary parameter that takes the value of 1 if tour t visits request i and

0 otherwise. We denote by xt a decision variable that takes the value of 1 if tour t is selected, and 0

otherwise. We can then formulate the TRSP on the subset Ω of all feasible tours as follows:

min
∑
t∈Ω

ctxt (4.1)

s.t.,
∑
t∈Ω

ati · xt ≥ 1 ∀i ∈ R (4.2)∑
t∈Ωk

xt ≤ 1 ∀k ∈ K (4.3)

xt ∈ {0, 1} ∀t ∈ Ω (4.4)

where the objective (4.1) minimizes the total routing duration, constraints (4.2) ensure that each request

is served at least once, and constraints (4.3) guarantee each technician performs at most one tour.

Considering that requests must be served exactly once, one could argue that a set-partitioning

formulation Vts better. However, our model only contains a reduced subset of tours (columns), and

therefore, we might not be able to Vnd a good combination of tours that visit all requests exactly once.

The drawback of this formulation is that the solution may visit a request more than once. In such

event, the solution is repaired by removing the most costly duplicated visits.
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4.1.4 Computational results

In this section we report computational results for the proposed matheuristic. All experiments were

run using Java 7 and Gurobi 4.60 on an Ubuntu 11.10 64-bit machine, with an Intel i7 860 processor

(4 × 2.8GHz) and 6GB of RAM, using K = 8 subprocesses. The pALNS algorithm was run for 25600

iterations (Ip = 100, Im = 32) and a time limit of 30 minutes was enforced for the set-covering model.

Because the destroy operators are randomized, pALNS is a non-deterministic algorithm, therefore we

run it 10 times for each instance. The detailed parameter settings are shown in Pillac et al. (2011).

4.1.4.1 Validation on the VRPTW

The TRSP being a natural extension of the VRPTW, we validate our matheuristic on the 56 VRPTW

instances from the Solomon benchmark (Solomon, 1987). The instances contain 100 requests located

randomly (R), in clusters (C), or combining both (RC); with either a short (type 1) or long (type 2)

planning horizon. These instances are organized combining location and horizon (i.e., C1, C2, R1, R2,

RC1, and RC2), each group containing between 8 and 12 instances. For the VRPTW, we consider the

minimization of the traveled distance 1 and replace constraints (4.3) from the set covering model by∑
t∈Ω xt ≤ 25 to model the 25-vehicle homogeneous Weet deVned in the Solomon (1987) instances.

Improvement Gap to BKS/Opt Best known solutions Time (s)

Group ∆pALNS ∆SC pALNS pALNS+SC #Opt. #BKS pALNS SC |Ω|

C1 37.89% 0.00% 0.00% 0.00% 9/9 - 14.6 0.4 11550
C2 26.41% 0.02% 0.02% 0.00% 8/8 - 26.5 0.2 3479
R1 24.28% 0.44% 0.59% 0.14% 10/12 - 13.1 27.2 27303
R2 32.21% 0.25% 0.76% 0.51% 5/10 1/1 24.5 2.1 14161
RC1 25.06% 1.21% 1.38% 0.15% 6/8 - 12.6 25.1 25327
RC2 36.56% 0.43% 0.99% 0.55% 6/8 - 21.3 1.3 11822

All 30.20% 0.38% 0.62% 0.23% 44/55 1/1 18.6 10.1 16293

Table 4.1: Computational results for the Solomon (1987) instances (average over 10 runs).

Table 4.1 summarizes the average results for each instance group. The Vrst column deVnes the

instance group, the second column contains the relative improvement between the initial solution

and the solution returned by pALNS (∆pALNS), the third column reports the relative improvement

between the pALNS solution and the pALNS+SC solution (∆SC ). The fourth and Vfth columns contain

the average gap to the optimal or best known solution for pALNS and pALNS+SC. The sixth column

reports the number of optimal solutions found (Opt.) over the number of known optimal solutions,

while the seventh column reports the number of best known solutions (BKS) found over the number

of heuristic BKS. Columns eight and nine show the average computational times for the pALNS and

SC, and the last column reports the average size of the tour pool.

The overall average gap for pALNS+SC is just 0.23%, while Pisinger and Ropke (2007) report a

value of 0.36% using an ALNS with a larger number of destroy and repair operators 2. This illustrates

1. Note that we truncate the distances to one decimal, as it is common practice when solving the Solomon (1987) instances
with the distance minimization as solely objective.

2. In addition, it is important to note that 7 optimal solutions were not known at the time of their study, using the same
values the average gap for our approach is of 0.16%.
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the importance of the post-optimization step of the matheuristic, which is able to divide the gap by

a factor of 3.4 in 10s on average. On the other hand, the parallelization of the algorithm allowed

for speedups of 3.5 times relative to a sequential implementation, leading to running times of 19s on

average.

4.1.4.2 Results on the TRSP

After validating our algorithmic building blocks on the VRPTW, in this section we analyze the per-

formance of our matheuristic on randomly generated instances of the TRSP. Our testbed is composed

of 56 instances of the TRSP based on the Solomon (1987) benchmark. For each instance, we considered

a crew of 25 technicians with diUerent home locations, skills, initial set of tools and spare parts. In

addition, we generated requests by adding skill, tool, and spare part information to each customer.

These instances and our detailed solutions are publicly available at Pillac et al. (2011).

Improvement Gap to BKS Time (s)

Group ∆SC pALNS pALNS+SC pALNS SC |Ω|

C1 0.97% 1.22% 0.23% 24.0 388.9 67020
C2 0.35% 0.78% 0.42% 27.8 23.6 39334
R1 3.62% 4.96% 0.82% 28.9 500.2 30783
R2 0.23% 1.69% 1.46% 31.0 42.1 24396
RC1 3.06% 3.90% 0.68% 27.9 185.8 18638
RC2 0.49% 1.93% 1.43% 27.9 15.6 16917

All 1.53% 2.54% 0.86% 28.1 210.1 32858

Table 4.2: Computational results for 56 randomly generated TRSP instances.

Table 4.2 reports our results for the six groups of instances. Note that in this case we do not report

the improvement of pALNS over the initial solution as the regret heuristic is not always able to insert

all requests. In addition, the third and fourth columns report average gap to the best solution found in

our experiments.

The SC post-optimization improves by 1.5% the pALNS solution, which is larger than the 0.38%

improvement found for the VRPTW. This can be explained by the fact that the TRSP is harder for

pALNS than the VRPTW, so further improvements can be found in the post-optimization phase. It is

worth noting that on average the tour pool contains twice as many tours as in the VRPTW experiments.

This can be explained by the fact that in the TRSP identical tours may be associated with diUerent

technicians. However the problem being overly constrained, it expectedly admits fewer feasible tours.

In terms of running times, the post-optimization engine requires 20 times more computational eUort

to solve the TRSP than the VRPTW. This is due to the larger size of the tour pool and the presence of

resource constraints (4.3) that destroy the set-covering structure, thus demanding more eUort from the

linear optimization engine which is likely to embed speciVc heuristics for pure set-covering models.

4.1.5 Conclusions and research perspectives

In this study we introduced a new challenging routing problemwith numerous applications, namely

the Technician Routing and Scheduling Problem. Distinctive features of this problem are the presence

of compatibility constraints between technicians and requests; an initial set of tools and spare parts

LUNAM - EMN - Uniandes 100/192 Pillac V. - Ph D. Dissertation



CHAPTER 4. CASE STUDY: THE TRSP BIBLIOGRAPHY
available to the technicians; the possibility for technicians to visit a main depot to pick up additional

tools and spare parts; and the scheduling aspects introduced by the objective of minimizing the total

tour duration.

We proposed a parallel matheuristic, which comprises three components: a regret constructive

heuristic, a parallel adaptive large neighborhood search (pALNS), and a set-covering post-optimizer

(SC). The parallelization of the ALNS allows a speed increase by a factor of 3.4 on a quad-core com-

puter, while the post-optimization phase assembles a better solution by using tours gathered during

the search. The resulting matheuristic maintains the Wexibility of the ALNS, while improving its per-

formance and reducing the need for complex operators.

We validated and measured the performance of the proposed matheuristic on the Solomon VRPTW

benchmark, showing a negligible gap of 0.23% to the optimal and best known solutions (BKS), and

Vnding 44 of the 55 optimal solutions in under 30s. Results on randomly generated instances of the

TRSP illustrate the improvement that pALNS and SC bring over a constructive heuristic solution.

Future work will focus on the extension of the problem to a dynamic setting, in which unexpected

delays and new requests may occur. To this end, we are focusing our research eUorts on developing

fast optimization procedures able to react in real time to changes in the problem information.
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4.2 The dynamic TRSP

The technical report presented in this section introduces the dynamic TRSP and proposes two

optimization approaches to tackle it. The Vrst is based on the fast reoptimization framework presented

in Chapter 2, and the second is an adaptation of the jMSA framework described in Chapter 3.

The full reference of the paper presented in this section is:

– Pillac, V., Guéret, C., and Medaglia, A. L. (2011)

On the dynamic technician routing and scheduling problem

Technical report 12/5/AUTO.

Preliminary results were presented in two international conferences:

– Pillac, V., Guéret, C., and Medaglia, A. L. (2012)

A Multiple Plan Approach for the Dynamic Technician Routing and Scheduling Problem

In 25th European Conference on Operational Research (EURO 2012), Vilnius, Lithuania.

– Pillac, V., Guéret, C., and Medaglia, A. L. (2012)

On the dynamic technician routing and scheduling problem

In Proceedings of the 5th International Workshop on Freight Transportation and Logistics

(ODYSSEUS 2012), Mykonos, Greece.
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Abstract : The Technician Routing and Scheduling Problem (TRSP) consists in routing

staU to serve requests for service, taking into account time windows, skills,

tools, and spare parts. Typical applications include maintenance operations

and staU routing in telecoms, public utilities, and in the health care industry.

In this paper we tackle the Dynamic TRSP (D-TRSP) in which new requests

appear over time. We propose a fast reoptimization approach based on a par-

allel Adaptive Large Neighborhood Search (pALNS) and a Multiple Plan Ap-

proach (MPA). Finally, we present computational experiments on both ran-

domly generated instances and real-world data.

Keywords : Dynamic Vehicle Routing ; Technician Routing and Scheduling ; Parallel

Adaptive Large Neighborhood Search ; Multiple Plan Approach

4.2.1 Introduction

The Technician Routing and Scheduling Problem (TRSP) deals with a limited crew of techniciansK
that serves a set of requests R. The TRSP can be seen as an extension of the Vehicle Routing Problem

with Time Windows (VRPTW), where technicians play the role of vehicles and requests are made by

clients. In the TRSP, each technician has a set of skills, tools, and spare parts, while requests require

a subset of each. The problem is then to design a set of tours such that each request is visited exactly

once, within its time window, by a technician with the required skills, tools, and spare parts. The TRSP

naturally arises in a wide range of applications, including telecoms, public utilities, and maintenance

operations.

This problem introduces compatibility constraints between technicians and requests. While skills

are intrinsic attributes, technicians may carry diUerent tools and spare parts over the planning horizon.

Technicians usually start their tour from their home with an initial set of tools and spare parts that

allows them to serve an initial set of requests. They also have the opportunity to replenish their tools

and spare parts at a central depot at any time to serve more requests. Tools can be seen as renewable

resources, while spare parts are non renewable and consumed once the technician serves a customer.

Figure 4.1 illustrates an instance of the TRSP with two technicians and six requests. Technician A

has the green skill, while B has both green and blue skills. Technician A starts its tour at home (gray

diamond) with a hammer and a screwdriver, then serves requests 1, 2, and 3, before returning home.

Technician B Vrst serves 4, then goes to the central depot (black square) to pick up a drill that allows

him/her to serve request 6 after serving request 5. Note that although request 5 is close to the tour of
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technician A, only technician B can serve it due to skill constraints.

Skills

Tools

A

B

1

6

3

5

2
Pickup

4

Main depot

Home

Home

Skills

Tools

Figure 4.1: Example of a technician routing and scheduling problem with two technicians, three tools,
and two skills

The static deVnition of the TRSP was introduced by the authors in Pillac et al. (2012b). In this work,

we tackle a dynamic variant of the problem, namely the D-TRSP, in which new requests appear while

the technicians are executing their routes. In this context, two types of decisions have to be taken in

real time. First, whenever a technician Vnishes serving a request, it must be decided what will be the

next request to visit. Second, whenever a request appears, the algorithm must decide whether it is

possible or desirable to accept it or not. If not the request is said to be rejected, it leads to a cost penalty

corresponding to the outsourcing/postponing of the request.

Despite its numerous practical applications and its challenging features, static technician routing

and scheduling problems have received limited attention until recently, and to the best of our knowl-

edge, no study simultaneously considers skills, tools, and spare parts. For instance, Xu and Chiu (2001)

studied the Field Technician Scheduling Problem (FTSP) seen as a variant of the VRPTW, in which

the objective is to maximize the number of requests served while accounting for skill constraints,

request priorities, multiple depots, and overtime. The authors describe a mixed integer formulation

and develop three heuristics including a GRASP algorithm. Similarly, Weigel and Cao (1999) present

a software solution developed for Sears, a US retailer that serves its customers with home delivery

and on-site technical assistance. The proposed solution works by Vrst assigning technicians to re-

quests, and then optimizing technician routes individually. Tsang and Voudouris (1997) studied the

technician workforce scheduling problem faced by British Telecom. Their study does not consider

skill constraints, but uses a proVciency factor that reduces the service time depending on the techni-

cian experience. They propose a Fast Local Search and a Guided Local Search to solve this problem.

Borenstein et al. (2010) extended this problem accounting for dynamic requests and skill compatibility

constraints. They cluster the requests using a k-mean algorithm followed by a heuristic that assigns

technicians to areas. Finally, they propose a rule-based system that assigns and sequences the requests.

They conclude their study by assessing the impact of soft clustering and show that it can increase sys-
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tem performance under certain assumptions.

Maintenance operations planning is a problem closely related to the TRSP. Blakeley et al. (2003)

present the optimization of periodic maintenance operations for Schindler Elevator Corporation in

North America, a company that manufactures, installs, and maintains elevators and escalators. The

problem faced by this company consists in designing a set of routes for technicians to perform periodic

maintenance and repairs taking into account travel times, working regulations, and skill constraints.

A similar application was studied by Tang et al. (2007) who formulate the problem as a multi-period

maximum collection problem in which time-dependent rewards are granted for the completion of a

request. This approach allows the modeling of soft constraints such as the desirability of performing

a task in a given day (job-to-time penalties). The authors propose a Tabu Search (TS) algorithm that

yields near-optimal solutions on real instances in reasonable time.

In 2007 the French Operations Research Society (ROADEF) organized a challenge based on a prob-

lem submitted by France Telecom. The problem consists in Vnding a schedule for technicians to ex-

ecute a set of tasks on a multiple-day horizon. Each task requires one or more skills with diUerent

minimum proVciency levels, while technicians can have multiple skills with a given proVciency. An

important aspect is the creation of teams that work together during one day, combining the skills of

their members, and the possibility to outsource the execution of a task. However, this problem ig-

nores the routing aspects. Cordeau et al. (2010) proposed a mathematical model and an Adaptive Large

Neighborhood Search (ALNS), while Hashimoto et al. (2011) proposed a Greedy Randomized Adaptive

Search procedure (GRASP) approach to tackle this problem.

Work regulation is an important aspect of technician routing and scheduling. Tricoire (2006)

presents a technician routing problem faced by Veolia, a water distribution and treatment company. In

this application, technicians have the skills to perform all requests that are divided in two categories:

user requested interventions and company scheduled visits. As new requests appear on a daily basis,

the routing of technicians is performed on a rolling horizon, taking into account work regulations and

customer service standards. The main contributions are a column generation approach and a memetic

algorithm (Bostel et al., 2008). Their approaches take advantage of partial solutions from previous

plans in the rolling horizon framework to reduce computational times.

A number of technological advances have led to a renewed interest in dynamic vehicle routing

problems, leading to the development of new optimization approaches. Pillac et al. (2011a) classify

dynamic routing problems in two categories: deterministic and stochastic. In both cases the informa-

tion available to the stackholder changes over time. In stochastic setting, data is available on the dy-

namically revealed information in the form of known probability distributions, while in deterministic

problems, changes are simply unpredictable. The present work falls in the dynamic and deterministic

category, for which approaches are based either on periodic reoptimization or continuous reoptimization.

Periodic reoptimization approaches start at the beginning of the day by producing an initial set of

routes that are communicated to the vehicles. As the available information is updated along the day,

or at given intervals of time, an optimization is performed using the currently available information to

update the routing. Such approaches can be based on algorithms developed for static problems and are

therefore relatively easy to implement, however, they may introduce delays between the update of the

information and the routing plan. Such approaches include the Ant Colony Systems (ACS) proposed by
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Montemanni et al. (2005) to solve the Dynamic VRP (D-VRP). A novel feature of their approach is the

use of the pheromone trace to transfer characteristics of a good solution between reoptimizations. ACS

was also used by Gambardella et al. (2003) and Rizzoli et al. (2007). Other heuristic approaches, such as

Tabu Search (TS), were also used to tackle the Dynamic Pickup and Delivery Problem (D-PDP) (Barcelo

et al., 2007; Chang et al., 2003) and the Dynamic Dial-a-Ride Problem (D-DARP) (Attanasio et al., 2004;

Beaudry et al., 2010).

Continuous reoptimization approaches run throughout the day and are generally based on an adap-

tive memory (Taillard et al., 2001) that stores alternative solutions. The adaptive memory is then used

to react to changes in the available information, thus avoiding a complete reoptimization of the prob-

lem. Gendreau et al. (1999) developed a parallel TS with adaptive memory to tackle a Dynamic VRPTW

(D-VRPTW), that was later applied to the D-VRP (Ichoua et al., 2000, 2003). Bent and Van Hentenryck

(2004) generalized this framework and introduced the Multiple Plan Approach (MPA) to tackle the D-

VRPTW. Following a diUerent approach, Benyahia and Potvin (1998) studied the Dynamic Pickup and

Delivery Problem (D-PDP) and proposed a Genetic Algorithm (GA) that models the decision process

of a human dispatcher. More recently, GAs were also used for the same problem (Cheung et al., 2008;

Haghani and Jung, 2005) and for the D-VRP (Van Hemert and Poutré, 2004).

To the best of our knowledge, no work considers simultaneously skills, tools, spare parts, and dy-

namically arriving requests, four important components of technician routing and scheduling. The

present work addresses this aspect and proposes two optimization approaches for the dynamic ver-

sion of the problem, noted D-TRSP, where new requests arrive during the execution of the routes.

Section 4.2.2 introduces a fast reoptimization approach based on a parallel adaptive large neighbor-

hood search; then Section 4.2.3 introduces a continuous reoptimization algorithm based on a multiple

plan approach; Vnally, Section 4.2.4 presents the computational results and Section 4.2.5 concludes this

paper and draws directions for future research.

4.2.2 A fast reoptimization approach

The proposed approach is based on the parallel Adaptive Large Neighborhood Search (pALNS)

reoptimization algorithm introduced by Pillac et al. (2012a), which is used to Vrst compute an initial

solution, and then to reoptimize the solution whenever a new customer request arrives. The pALNS

extends the Adaptive Large Neighborhood Search (ALNS) algorithm (Pisinger and Ropke, 2007), which

in turn is an extension of the Large Neighborhood Search (LNS) algorithm (Pisinger and Ropke, 2010;

Shaw, 1998). LNS works by successively destroying (removing customers) and repairing (inserting

customers back) a current solution, using destroy and repair operators. ALNS adds a layer that ran-

domly selects operators depending on their past performance, allowing a self-adaptive version of the

algorithm to the instance at hand.

Algorithm 4.2 presents the outline of pALNS as introduced in Pillac et al. (2012a). The algorithm

maintains a pool P ofN promising solutions that are optimized inK subprocesses (note thatN ≥ K).

For each master iteration, a subset of K promising solutions is selected randomly (line 3) and dis-

tributed among independent subprocesses. Then for Ip iterations, each subprocess selects destroy and

repair operators with a roulette wheel that adaptively reWects their past performance (line 7). The
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resulting new solution is either accepted as the subprocess current solution or rejected according to

a simulated annealing criterion (line 9), the weights of the destroy and repair operators are updated

depending on their performance (line 15). The Vnal current solution is added to the pool of promising

solutions (line 17) and a Vltering procedure ensures that the pool contains at most N solutions, in-

cluding the best solution found so far (line 19). The algorithm stops after Im master iterations, which

corresponds to I = Im × Ip ALNS iterations.

Algorithm 4.2 Parallel Adaptive Large Neighborhood Search (pALNS) algorithm

Input: P , initial solutions; z, evaluation function; Θ−/Θ+, set of destroy/repair operators; N , maxi-
mum size of the solution pool; Km number of subprocesses; Im, number of master iterations; Ip,
number of iterations performed in parallel.

Output: Π∗, the best solution found
1: Π∗ ← arg minΠ∈P {z(Π)}
2: for Im iterations do
3: P ′ ← selectSubset (P,K) . Select a subset ofK solutions
4: parallel forall Π in P ′ do
5: Πp ← Π . Current solution for this subprocess
6: for Ip iterations do
7: d← select (Θ−) ; r ← select (Θ+) . Select destroy/repair
8: Π′ ← r (d (Πp)) . Destroy and repair current solution
9: if accept (Π′,Πp) then
10: Πp ← Π′ . Π′ is accepted as current solution
11: end if
12: if z(Π′) < z(Π∗) then
13: Π∗ ← Π′ . Π′ is the best solution found so far
14: end if
15: updateScore (d, r,Π′) . Update d and r scores
16: end for
17: P ← P ∪ {Πp} . Add Πp to the pool P
18: end forall
19: P ← retain (P,Π∗, N) . Retain at most N solutions in the pool P
20: end for
21: return Π∗

the pALNS algorithm uses three destroy operators (random, related, and critical), and three repair

operators (regret-1, regret-2, regret-3). The promising solution pool P maintains the N best solutions

according to a Vtness function that considers both the cost of the solution and its diversity relative to

the other solutions in the pool. The interested reader is referred to the work by Pillac et al. (2012a) and

Pillac et al. (2012b) for more details on the approach.

To tackle the D-TRSP, we modiVed the related destroy operator, which attempts to remove a subset

of requests that share some characteristics. We deVne the relatedness rij of requests i and j as a

measure of how related two requests are (the lower the rij , the more related i and j). The procedure

starts by randomly removing a seed request i (U = {i}), then it iteratively selects a request i ∈ U ,
and removes the most related request j∗ = arg minj∈R′ {rij} from the set of unserved requests R′.
In practice the selection process is randomized and the byp|R′|c-th most related request is selected,

where y is a random number in [0, 1) and p ≥ 1 is a parameter that controls the level of randomness
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(the lower the p, the more randomness is introduced). For the D-TRSP we introduced the a-priori

relatedness, which is a precalculated metric that does not depend on the actual position of requests in

the tours:

rsij =

(
1 +

cij
Mc

)θc (
1 +
|bi − bj |
Mt

)θt (
2− |Ki ∩ Kj |

min {|Ki|, |Kj |}

)θs
(4.5)

Where Mc and Mt are scaling constants, and θc, θt, and θs are factors that deVne the weight given

to each metric component. The Vrst component, measures the geographic distance between the two

requests (cij). The second is the diUerence of due dates bi and bj . The third measures the number of

technicians that can serve both requests, which is modeled by the intersection of the sets Ki and Kj of
technicians that can serve request i and j respectively.

The second major adaptation focuses on the objective function that considers the minimization of

the total working time (i.e., the sum of traveling times, service times, and waiting times). We used

the concept of forward time slack introduced by Savelsbergh (1992) to eXciently evaluate the minimal

duration of a tour and the cost of inserting a request in a tour.

Start

pALNS

End 
of day?

NO

YES

pALNS

Updated solution 
St+1

End

NO

Wait until a new 
customer appears

Initial solution 
S0

Accept? Select new current
solution

YES

Candidate solution
St'

Figure 4.2: Overview of the proposed fast reoptimization approach

Figure 4.2 presents an overview of the proposed approach. The algorithm starts by producing

an initial solution S0 by using a constructive heuristic coupled with pALNS. Then each time a new

customer appears, it Vxes the currently executed portion of the solution, and re-runs the pALNS for

a limited number of iterations, producing an updated solution S′t. If pALNS is able to insert the new

customer request, then the customer is accepted and S′t becomes the new current solution, otherwise,

the customer is rejected and St remains as the current solution.
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4.2.3 A Multiple Plan Approach

The second proposed approach for the D-TRSP is based on the Multiple Plan Approach (MPA)

introduced by Bent and Van Hentenryck (2004) to tackle the D-VRPTW. MPA is a generalization of the

tabu search with adaptive memory proposed by Gendreau et al. (1999). The general idea is to populate

and maintain a solution pool (the routing plans) that are used to generate a distinguished solution.

Whenever a new request arrives, a procedure is called to check whether it can be served or not; if it can

be served, then the request is inserted in each plan of the solution pool and incompatible solutions are

discarded. Pool updates are performed periodically or whenever a vehicle Vnishes serving a customer.

This pool-update phase is crucial and ensures that all solutions are coherent with the current state of

vehicles and customers. The pool can be seen as an adaptive memory that maintains a set of alternative

solutions.

The present work is based on the event-driven optimization framework for dynamic vehicle routing

proposed by the authors, namely jMSA (Pillac et al., 2011b). By design, jMSA is a Wexible, parallel, and

event-driven Java implementation of the Multiple Scenario Approach (MSA) (Van Hentenryck and

Bent, 2006), which is an extension of MPA for dynamic and stochastic routing problems. The proposed

framework is designed to facilitate and accelerate the development and deployment of MSA-based

algorithms embeddable in decision support systems.

Kernel

Problem layer

Events Handlers

MPA
procedure Event

queue
Handler
manager

Callback

Components Plan

Plan
pool

Plan 
generator

Plan 
optimizer

Plan 
updater

…

Figure 4.3: Design overview of the jMSA framework

Figure 4.3 outlines the main aspects of the jMSA framework: the kernel contains the components

that deVne the event-driven behavior, and a generic deVnition of the problem layer components. To

adapt the framework for a speciVc problem, the user needs only to implement a subset of components,

mainly to generate, optimize, and update plans. The following paragraphs give more details on how

jMSA was adapted to tackle the D-TRSP.

Figure 4.4 presents a conceptual overview of the MPA procedure as implemented in the jMSA

framework. jMSA starts two subprocesses: a main loop and an event loop. The main loop is responsible

for continuously generating and optimizing a set of alternative solutions (the routing plans) stored

in the plan pool. This main loop maximizes the utilization of the computational resources when the
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Figure 4.4: Overview of the multiple plan approach implemented with jMSA

system is idle, i.e., when no decision is required. On the other hand, the event loop reacts to events

from the environment, which can be of two types: a) a customer calls in and requests a service; b)

a technician Vnishes serving a request and becomes idle. In the Vrst case, the algorithm looks for a

feasible insertion of the new request in all the solutions in the pool. If at least a given fraction of the

solutions can accommodate the request, then it is accepted, otherwise it is rejected. In the second case,

the algorithm selects a solution from the pool and assigns a request to all idle technicians. The event

loop is also responsible for updating the pool and ensuring that all plans are coherent with the current

state of the environment.

4.2.3.1 Plan generation

The goal of the plan pool is to maintain a set of diverse solutions for the current routing problem

that could be used later to cope with the arrival of new requests. It is therefore necessary to have a

randomized constructive heuristic that will produce a set of solutions that are both diverse and of good

quality.

Our implementation is based on a randomized regret-3 heuristic (Potvin and Rousseau, 1993) which

iteratively inserts requests at their best position. More formally let U be the set of requests that are

currently not visited in the solution and let ∆zki be the cost of insertion of request i ∈ U in its k-th

best route. The regret-q value rqi associated with request i is a measure of how desirable it is to insert i

in the current iteration assuming that the best insertion will no longer be feasible in the next iteration.

It is deVned as:

rqi =

q∑
k=2

(
∆zki −∆z1

i

)
(4.6)

The randomized regret-3 algorithm iteratively selects the next request to insert using a roulette wheel
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in which each request is given a probability pi:

pi =
r3
i∑

j∈U r
3
j

(4.7)

4.2.3.2 Optimization procedure

The optimization procedure continuously optimizes the pool of solutions. The fact that a solution

might go through the optimization process more than once requires an algorithm able to escape from

local optima to further improve a solution. Therefore, we implemente an Adaptive Large Neighborhood

Search (ALNS) similar to the pALNS presented in Section 4.2.2. Note that the choice of having a

sequential optimization algorithm is motivated by the fact that jMSA will optimize various plans in

parallel.

Algorithm 4.3 outlines the ALNS algorithm. ALNS starts with an initial solution Π. Then for I

iterations, the algorithm selects destroy and repair operators (line 4) with a roulette wheel that reWects

their past performance. The destroy operator removes a subset of requests from the current solution

that are then reinserted by the repair operator (line 5). The resulting new solution is accepted as

current solution according to a simulated annealing criterion (line 6). At the end of each iteration,

the scores of the destroy and repair operators are updated depending on the solution they generated

(line 12).

Algorithm 4.3 Adaptive Large Neighborhood Search (ALNS) algorithm

Input: Π0 initial solution, z evaluation function, Θ−/Θ+ set of destroy/repair operators, I number
of iterations

Output: Π∗ the best solution found
1: Π∗ ← Π0 . Initialize best solution
2: Π← Π0 . Initialize current solution
3: for I iterations do
4: d← select (Θ−) ; r ← select (Θ+) . Select destroy/repair
5: Π′ ← r (d (Π)) . Generate a neighbor
6: if accept (Π′,Π) then . Π′ is accepted as current solution
7: Π← Π′ . Update current solution
8: end if
9: if z(Π′) < z(Π∗) then . An improvement has been found
10: Π∗ ← Π′ . Update best solution
11: end if
12: updateScore (d, r,Π′) . Update scores
13: end for
14: return Π∗

4.2.3.3 Interactions with the decision maker

The decision maker interacts with MPA by raising events. In the context of the D-TRSP, there are

two major events: the arrival of a new request and the end-of-service of a request.
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Arrival of new requests Whenever a new request appears, a procedure attempts to insert it in

all the plans in the pool. The procedure starts by trying to insert the request directly, if it fails, it

removes a fraction of the requests and uses regret-3 to attempt to reinsert all requests. If at least a

given fraction of the plans can accommodate the new request then it is accepted and the plans are

updated accordingly, otherwise the request is marked as rejected.

Real-time routing decisions When a technician Vnishes serving a request and becomes idle, a de-

cision needs to be taken on what will be his/her next assignment. To this end we use the consensus

algorithm (Van Hentenryck and Bent, 2006) which aggregates the information contained in the plans

from the pool to select a distinguished solution and assign requests to idle technicians. The intuition

behind consensus is to assign to each technician the requests that appear Vrst with the highest fre-

quency across plans. As multiple technicians are involved, the consensus algorithm selects a solution

from the pool that maximizes the consensus across all technicians. Algorithm 4.4 presents the details

of the algorithm. Consensus starts by counting the number of times each request appears Vrst in a

tour across all solutions from the pool (lines 1 to 6). Then the algorithm evaluates each solution by

summing the evaluations of the Vrst request of each of its tours (line 11). Finally, the solution Π∗

with the highest evaluation is returned, and the Vrst unserved request of each tour in Π∗ is the next

assignment of the corresponding technician.

Algorithm 4.4 The consensus algorithm
Input: P a pool of alternative solutions
Output: Π∗ a distinguished solution
1: e← [0]i∈R . Initialize the evaluation of all requests
2: for all Π ∈ P do . For each solution in the pool
3: for all π ∈ Π do . For each tour in the solution
4: e[π0]← e[π0] + 1 . Increment the evaluation of the Vrst unserved request π0

5: end for
6: end for
7: s∗ ← 0
8: for all Π ∈ P do
9: s← 0 . Initialize the evaluation of this scenario
10: for all π ∈ Π do
11: s← s+ e[π0] . Update the evaluation of this scenario
12: end for
13: if s > s∗ then
14: Π∗ ← Π
15: end if
16: end for
17: return Π∗

Waiting strategy It is important to note that the immediate commitment of idle technicians to

requests may lead to diXculties when new requests appear. Figure 4.5 illustrates this with a single

technician. Suppose that at time t a technician is assigned to a request i, if the technician is committed

immediately to i, it will travel to i then wait at its destination until the start of the time window (black
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brackets). On the other hand, if a waiting strategy is used, the technician will remain idle until the

latest moment such that it will not wait at i. Assume now that at time t+1 a new request j appears, in

the Vrst case j cannot be served as the technician is already waiting at i (the hashed section is already

executed), while in the second case it can be inserted right before i.

i

i

i

ij

Immediate
commitment

Waiting
strategy

t t+1

travel wait serve

idle travel serve

executed

Figure 4.5: Advantage of a waiting strategy.

The proposed waiting strategy is implemented as follows: Vrst, the procedure evaluates the latest

departure time so that the technician will not have to wait at its next request. If this departure time is

within a given range, then it is assumed there is not enough time to change the technician’s route and

the technician is committed to the next request. Otherwise, the technician remains in an idle state for

a given time, after what a new decision is taken, leaving time for further changes in assignments.

4.2.4 Preliminary results

We tested the pALNS and MPA approaches on a set of 56 randomly generated instances based on

the Solomon (1987) testbed. The instances contain 100 requests located randomly (R), in clusters (C),

or combining both (RC); while the planning horizon is either short (type 1) or long (type 2). These

instances are organized combining location and horizon (i.e., C1, C2, R1, R2, RC1, and RC2). We

considered 5 skills, 5 tools, and 5 types of spare parts. For each request, we selected 1 skill, and

between 0 and 2 tools and spare part types. Each of the 25 technicians has between 2 and 4 skills, and

an initial set of 0 to 5 tools, and 2 to 5 spare parts. In addition, we generated release dates for either 10,

30, 50, 70, or 90 requests, leading to a complete testbed of 280 dynamic instances.

We compare the two proposed approaches with a regret-3 heuristic. This simple approach starts

with the same initial solution as pALNS. Each time a new request appears, it attempts to insert it

in the current solution using a regret heuristic, rejecting it if it cannot be inserted. The parameter

setting for the pALNS reoptimization approach is identical to the one presented in Pillac et al. (2012a),

we allowed for 25,000 iterations for the calculation of the initial solution, and 5,000 for subsequent

reoptimizations. The maximum pool size for MPA was set to 50 plans, while the ALNS algorithms used

the same parameters as in Pillac et al. (2012a), with a maximum of 5,000 iterations per optimization.

The same simulation procedure was used to test the three approaches. First, the simulator allows

them time to either design an initial solution (pALNS and regret-3) or initialize the pool of plans

(MPA). Then the procedure simulates the routing of the technicians using an average traveling speed

and taking into account waiting times. Whenever a technician becomes idle, the simulator uses the
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current solution (pALNS and regret-3) or distinguished plan (MPA) to select the next assignment for

this technician. The simulator handles the new requests and depending on the approach response it

marks them as accepted or rejected. Finally, it Vnds an a-posteriori solution to the problem deVned by

all the accepted requests using pALNS with 50,000 iterations.

4.2.4.1 Minimizing the total working time

The static TRSP problem (Pillac et al., 2012b) considers the minimization of the total working time.

In a dynamic setting, this objective leads to the premature ending of tours: technicians are sent home

as soon as possible to reduce the duration of their tour, ignoring the fact that additional requests may

appear in the future. To prevent this behavior we deVne a cutoU policy that ensures for an instance I

that technicians will no be sent back to their home until time tc(I). Considering that each instance

have a diUerent horizon [0, T (I)], we deVne the relative cutoU α(G) for instance group G. The value

of α(G) is deVned such that all requests of instance I ∈ G will be known before α(G)T (I) with a

certain probability. In our experiments, α(G) corresponds to the 90-percentile of the distribution of{
rdImax
T (I)

}
I∈G

where rdImax is the last release date for instance I
3.

A direct consequence of this policy is that the minimal tour duration for instance I is either 0 (if the

technician is not used), or α(G)T (I). Therefore the total duration at the end of the day is signiVcantly

longer than the one found when solving the static problem.

pALNS MPA regret-3

δ Gap (%) R Gap (%) R Gap (%) R

10 65.7 0.0 152.8 1.5 59.9 0.4
30 79.5 0.1 160.1 3.2 84.6 0.6
50 93.0 0.1 150.6 4.6 100.4 1.0
70 100.3 0.2 153.9 6.3 113.8 1.4
90 102.8 0.4 154.0 6.0 122.3 1.8

Avg. 88.3 0.2 154.3 4.4 96.2 1.0

Table 4.3: Average gap to a-posteriori solution and number of rejected requests for the D-TRSP in-
stances minimizing the total duration.

Table 4.3 reports the results for the 56 instances and 5 degrees of dynamism when minimizing

the total duration. The Vrst column contains the degree of dynamism (δ) deVned as the number of

dynamic requests. The second and third columns report the average gap to an a-posteriori solution 4

and the average number of rejected requests (R) for the pALNS. The fourth and Vfth columns contain

these statistics for the MPA, and the seventh and eighth columns for the regret-3 heuristic. Note that

running times for pALNS are of 12s on average for the calculation of the initial solution and 2.8s for

subsequent reoptimizations, while decision times are negligible for both MPA and regret-3.

3. With this deVnition: αC1 = 0.380, αC2 = 0.509, αR1 = 0.357, αR2 = 0.419, αRC1 = 0.321, αRC2 = 0.400

4. The gap for instance I is deVned as the ratio z(I)−z(I)
z(I)

where z(I) is the value of the solution found by the algorithm
for the dynamic instance, and z(I) is a lower bound obtained by solving the static a-posteriori instance with 50,000 iterations
of the pALNS algorithm.
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Firstly, it can be observed that gaps are large regardless of the approach. This is due to the fact

that the a-posteriori solution does not consider the cutoU strategy enforced in the dynamic context.

Therefore the gap should not be interpreted as an absolute performance metric, but instead as a metric

that allows comparisons between approaches. Secondly, the results show that, as expected, both the

gap and number of rejected requests increase with the degree of dynamism. Finally, they indicate that

the pALNS approach leads to better solutions both in terms of quality of the routing (measured by

the gap) and ability to cope with new requests (measured by R). In contrast, MPA performs poorly

and is dominated by the simpler regret-3 reoptimization approach. This can be explained by the fact

that the decision process in MPA does not take into account the cost (total duration) of plans to select

the distinguished plan, while the other two approaches explicitly focus on the cost. In addition, our

experiments show that MPA tends to use more technicians, starting more tours than pALNS and regret-

3. Considering that technicians then have to wait until the cutoU time, this leads to a greater total

duration. On the other hand, the higher number of rejected requests can be explained by the fact that

MPA is more conservative than the other approaches, as it requires that a fraction of the plans can

accommodate the new requests, while the other approaches only require a feasible insertion in the

current solution.

4.2.4.2 Minimizing the total distance

The cutoU policy forces technicians to wait at their current location before returning home. Thus,

the minimization of the working time may not be as relevant in a dynamic context as it is for the static

case. To assess the validity of this objective, we performed the same experiments with the minimization

of the traveled distance.

pALNS MPA regret-3

δ Gap (%) R Gap (%) R Gap (%) R

10 2.4 0.1 9.1 1.9 10.5 0.3
30 5.4 0.1 11.0 4.6 30.5 0.4
50 10.8 0.3 14.4 5.6 44.1 1.0
70 11.8 0.2 21.3 8.7 57.5 1.2
90 17.9 0.4 23.9 8.1 64.1 1.4

Avg. 9.7 0.2 16.1 5.9 41.3 0.8

Table 4.4: Average gap to a-posteriori solution and number of rejected requests for the D-TRSP in-
stances minimizing the total distance.

Table 4.4 compares the diUerent approaches when the objective only considers the minimization

of the traveled distance. As before, the gap and number of rejected requests generally increases with

the degree of dynamism. These results show that pALNS consistently outperforms the two other

approaches, both in terms of gap and number of rejected requests. However, in this case MPA is the

second best-performing approach in terms of gap, but it remains third with respect to the number

of rejected requests. As before, our experiments show that MPA uses more technicians on average.

However, what was a disadvantage when minimizing the total duration helps MPA in reducing the
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total distance. Nonetheless, the remark regarding the number of rejected requests remains valid: the

approach seems to be overly conservative.

pALNS MPA regret-3

δ ∆WT∆WT∆WT ∆Dist∆Dist∆Dist ∆WT∆WT∆WT ∆Dist∆Dist∆Dist ∆WT∆WT∆WT ∆Dist∆Dist∆Dist

10 -8.0 -40.9 -13.3 -58.1 -1.4 -33.6
30 -9.8 -45.5 -15.8 -57.2 -7.7 -31.7
50 -16.4 -46.5 -11.4 -55.1 -11.0 -31.4
70 -18.5 -47.6 -12.8 -54.1 -10.8 -30.2
90 -20.2 -45.4 -10.1 -52.9 -11.9 -32.0

Avg. -14.6 -45.2 -12.6 -55.4 -8.5 -31.8

Table 4.5: DiUerence in total working time and distance when minimizing the total distance instead of
the total working time (in %).

Finally, Table 4.5 presents the eUect of the change in the objective function in both total working

time (∆WT ) and traveled distance (∆Dist) for the three approaches. As expected, minimizing the

distance instead of the working time leads to a reduction of the total traveled distance by 45%, 55%,

and 32% for pALNS, MPA, and regret-3, respectively. More surprisingly, it also leads to a reduction

of the total working time by 15%, 13%, and 8%. This can be explained by the cutoU policy that is

contradictory with the minimization of the working, which mainly focuses on minimizing waiting

times. In contrast, focusing on the minimization of the traveled distance always leads to a reduction of

the travel time, which in turn reduces the duration of tours.

4.2.5 Conclusions

In this paper we introduced a new dynamic optimization problem, namely the Dynamic Technician

Routing and Scheduling Problem (D-TRSP). This problem arises in numerous practical contexts such

as public utilities, telecoms, and maintenance operations.

We propose two solution methods to tackle the D-TRSP. The Vrst is a periodic reoptimization ap-

proach based on a parallel Adaptive Large Neighborhood Search (pALNS) that produces a new routing

plan each time a new request appears. The second is a continuous reoptimization approach based on

the Multiple Plan Approach (MPA) that continuously optimizes a pool of routing plans that are then

use to take routing decisions.

Our preliminary computational results indicate that the pALNS based reoptimization approach

dominates MPA and a simpler regret-3 heuristic, by yielding high quality results in limited time. In

addition, its relative simplicity makes it a good candidate for practical applications. MPA results were

disappointing, but this can be attributed to the decision process which does not takes into account the

plan costs, and an overly conservative request acceptance criterion.

In addition, we have demonstrated that the minimization of the total working time, although per-

fectly sound in a static context, does not Vt well in a dynamic environment. In particular, we have

shown that minimizing the total distance ultimately leads to solutions that are better both in terms of

total distance and duration.
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Further work will focus on improving MPA to take better decisions and reject less requests. In

addition, we are testing the proposed approach on real world data from an industrial partner. Finally,

the uncertainty should be modeled to better anticipate the arrival of new requests and improve the

quality of the decisions.
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Conclusions

Recent technological advances provide companies with the right tools to manage their Weet in real

time. Nonetheless, these new technologies also introduce more complexity in Weet management tasks,

unveiling the need for decision support systems dedicated to dynamic vehicle routing. In this con-

text, the contributions of this Ph.D. thesis are threefold: Vrst, we presented a comprehensive review

of the literature on dynamic vehicle routing; second, we designed, implemented, and made publicly

available Wexible optimization frameworks that can cope with a wide variety of dynamic vehicle rout-

ing problems; and third, we deVned a new vehicle routing problem faced by an industrial partner and

introduced new sets of instances.

In the literature review, we introduced a new taxonomy dividing vehicle routing problems in four

categories, depending on whether they are static or dynamic, and deterministic or dynamic. Further,

we presented several real-world applications and surveyed the current state-of-the-art solution tech-

niques for dynamic routing. We classify approaches for dynamic and deterministic routing problems

into periodic and continuous reoptimization, depending on whether the optimization algorithm is run

periodically or throughout the planning horizon. Similarly, we identiVed two categories of approaches

for dynamic and stochastic problems: stochastic modeling approaches which model accurately the

stochasticity of the problem, and sampling based approaches, that rely on the generation of scenarios

to capture the uncertainty of the problem at hand. Finally, we outline promising research directions

for dynamic routing. In particular, we stressed the need for both parallel algorithms that make use of

modern computer architectures to reduce running times, and Wexible approaches able to capture the

uncertainty of dynamic routing problems. In this thesis, we developed parallel and Wexible approaches

for both dynamic and deterministic and dynamic and stochastic vehicle routing problems.

We tackled dynamic and deterministic routing problems with a parallel Adaptive Large Neighbor-

hood Search (pALNS). The proposed pALNS inherits the Wexibility of ALNS and is therefore able to

cope with a wide variety of side constraints, while its parallel architecture improves running times by

a factor of 3.5 on a regular desktop machine. The proposed algorithm relies on a promising solution

pool for which we designed a diversity management scheme that allows the eXcient exploration of the

solution space. We demonstrated the eXciency of pALNS on the reference benchmark introduced by

Solomon (1987) for the Vehicle Routing Problem with TimeWindows (VRPTW), achieving gaps to best

known and optimal solutions of 0.5% under 12s. Then, we proposed a simple yet eUective reoptimiza-

tion approach for the Dynamic-VRPTW that makes use of pALNS to reoptimize the routing whenever

a new customer appears, and illustrated its performance on the Lackner (2004) benchmark instances,

leading to improvements of up to 12% relative to state-of-the-art approaches.
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We presented a bi-objective optimization problem that arises in the context of dynamic vehicle

routing. It is generally assumed that routes can be designed in an online fashion, implying that drivers

do not know their next destination until the very last moment. We proposed to consider the driver

inconvenience resulting from the online routing of vehicles by accounting for the route consistency

throughout the planning horizon. The approach we proposed, namely pBiALNS, is an extension of the

pALNS framework that maintains the set of non-dominated solutions according to the minimization

of the cost function, and the minimization of the edit distance relative to a reference solution which

reWects the number of changes made to the routes. Our computational results indicate that pBiALNS

is able to quickly produce a set of alternative solutions for the decision maker to choose from, and

illustrate the tradeoU between the two objectives, revealing that under certain conditions it may be

worth sacriVcing quality of routing to gain route consistency.

We addressed dynamic and stochastic routing problems with a Wexible event-driven optimization

framework, namely jMSA, that eXciently captures uncertainty. It is based on a multiple scenario ap-

proach and it is easily embeddable in decision support systems. One of its key features is that it

intrinsically handles the parallelization of time consuming tasks without any intervention from the

user. Besides, the fact that it is event-driven makes it reactive and application-oriented. We illustrated

the Wexibility and accuracy of our approach by tackling the Dynamic Vehicle Routing Problem with

Stochastic Demands (D-VRPSD), producing state-of-the-art results on the Novoa (2005) benchmark in-

stances with average gaps of 3.3%, compared to the 4.8% reported in Novoa and Storer (2009) with a

speciVcally tailored algorithm.

Finally, we deVned a novel optimization problem inspired from a real-world application, namely

the Technician Routing and Scheduling Problem (TRSP). The TRSP considers the routing of a Weet of

technicians that serve a set of requests, considering skills, tools, spare parts, and time windows. The

TRSP objectives include the minimization of the total working time and tour balancing. We introduced

two sets of instances for the TRSP, one based on the Solomon (1987) benchmark, and the other derived

from real-world data 5. To tackle the static version of the problem, we designed a parallel matheuristic

(pALNS+SC) that combines the pALNS algorithm with a set-covering post-optimization. Our compu-

tational experiments indicate that pALNS+SC is competitive with state-of-the-art approaches for the

VRPTW: it solves instances from the Solomon (1987) benchmark at 0.23% of the optimal or best known

solution in under 30s, and is able to Vnd 44 out of 55 optimal solutions. In addition, it solves the TRSP

instances with 100 customers in under 240s. We proposed two approaches for the dynamic TRSP, the

Vrst based on the pALNS algorithm, and the second on a Multiple Plan Approach (MPA) implemented

within the jMSA framework.

An important contribution of this work is the release as open-source software of the components

and algorithms developed to support the presented results 6. It represents 55000 lines of codes and in-

cludes a generic library for the modeling of vehicle routing problems; an implementation of commonly

used heuristics such as ALNS, VNS, GRASP, and the algorithms proposed in this thesis; and the jMSA

framework. We hope that this initiative will foster the development of other open-source projects

dedicated to vehicle routing, and that it will facilitate technology transfer to industry.

5. Benchmark instances available at http://hdl.handle.net/1992/1145
6. Source code available at http://victorpillac.wordpress.com/libraries-for-the-vrp
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To summarize, the present thesis brings the following contributions with respect to the current

state of the art: Vrst, pALNS is the Vrst parallel periodic-optimization algorithm able to cope with

a wide variety of D-VRP variants; second, jMSA is the Vrst event-oriented description of the Multiple

Scenario Approach, and we hope it will constitute a reference point for application-driven optimization

frameworks for dynamic routing; third, we introduced a dynamic bi-objective routing problem that

takes into account driver inconvenience and attempt to maintain route consistency throughout the

day; fourth, we deVned the TRSP, a new optimization problem with numerous applications; and Vfth,

we published a new open-source library for static and dynamic vehicle routing.

From our experience, periodic reoptimization approaches such as pALNS represent a good alter-

native for practical applications as they are relatively simple to implement and provide satisfactory

results. In that sense, it is worth noting that pALNS is currently used by the industrial partner that

motivated the deVnition of the TRSP. However, they suUer from two limitations: Vrst, they transfer the

computational eUort at decision time, which induces potentially long response times when the size of

the problem grows; second, they do not keep information on good solutions from one run to the other.

Consequently, we consider that optimization algorithms for dynamic vehicle routing problems

should focus on event-driven continuous-reoptimization approaches. Although their implementation

may be more complex, they are the best Vt to take full advantage of modern multi-core architecture as

the optimization can be spread over multiple threads. Moreover, they allow for faster interactions with

the decision maker when a decision is required. Whenever possible, stochastic information should

be used to better anticipate the future. In our opinion, the generation of scenarios by sampling is

a promising and practical direction. In contrast to stochastic modeling approaches, sampling-based

optimization handles stochasticity decoupled from the optimization algorithms, thus they are able to

cope with a wider scope of business constraints.

Future work should focus on the development of simple and Wexible continuous reoptimization

frameworks for dynamic and deterministic routing. Such framework could be based on pALNS and

optimize a set of promising and diverse solutions throughout the planning horizon. It could then be

extended to include stochastic knowledge by generating scenarios. An interesting direction of research

would be to Vnd smart ways to limit the computational complexity of the resulting optimization prob-

lem, which could be achieved by putting emphasis on capturing the uncertainty on the near future,

or by avoiding very unlikely scenarios. In addition, new eXcient ways to aggregate information from

scenarios should be developed as this appear to be a key component in such approaches.

The dynamic management of a Weet of vehicles raises numerous theoretical and practical problems

that require the development of eXcient and accurate algorithms. Although it has received an increas-

ing interest in the last decades, there is still room for innovation and we hope that the present thesis

will bring signiVcant insights for further research.
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Appendices





A
EXcient implementation

This appendix provides details on the implementation of the data structures used for the VRPTW

and TRSP experimentations.

A.1 Tour representation

A tour π is represented by a doubly linked list. This choice is motivated by the fact that it is

generally not required to have constant time access to a node at a given index, while the majority of

operations on tours consist in removing and inserting nodes, or truncating and concatenating subtours.

More speciVcally:

π = [k, π0, πl,πππ
−,πππ+]

With:

k the technician id

π0(πl) the Vrst (last) node visited by the tour

πππ−(πππ+) the predecessor (successor) array

For convenience, we will use the notations i− 1 = πππ−i (i− 1 is the predecessor of i) and i+ 1 = πππ+
i

(i+ 1 is the successor of i). πππ−(πππ+) are implemented with two integer arrays of dimension |R|+ 2|K|,
initialized with an arbitrary value (noted �, for instance −1), and are then updated to represent the
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tour. For instance, tour π = (0, 3, 4, 2, 5) associated with technicien 3 will be represented as follows:

π =



k = 3

π0 = 0

πl = 5

πππ− = [�,�, 4, 0, 3, 2]

πππ+ = [3,�, 5, 4, 2,�]

(A.1)

In addition, a tour contains the following information:

Main depot visited For each node in the tour we store a boolean Wag that states whether the main

depot was visited before or not.

Remaining number of spare parts For each node in the tour we store the number of spare parts

for each type that are still available after its service. If the main depot is visited before then this value

is considered as inVnite.

Earliest arrival date The earliest time at which the technician can arrive to the node.

Aπ0 = aπ0 (A.2)

Ai+1 = max {Ai, ai}+ si + ci,i+1 ∀i ∈ π, i 6= π0 (A.3)

Earliest departure time Using the earliest arrival date, we can evaluate the earliest departure time

Di at node i:

Dπ0 = aπ0 + sπ0 (A.4)

Di = max{Ai, ai}+ si ∀i ∈ π, i 6= π0 (A.5)

Latest feasible arrival time The latest feasible arrival time deVnes the latest arrival time that en-

sures that the rest of the tour will remain feasible:

lπl = bπl (A.6)

li = min {bi, li+1 − si − ci,i+1} ∀i ∈ π, i 6= πl (A.7)

Waiting time The time the technician has to wait between the earliest arrival date and the start of

the time window.

Wi = max {0, ai −Ai} ∀i ∈ π (A.8)
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Cumulated waiting time The cumulated waiting time between a node and the end of the tour.

W πl
i =

πl∑
j=i

Wj ∀i ∈ π (A.9)

Forward time slack The forward time slack Fi, introduced by Savelsbergh (1992), measures how

much the departure from node i can be delayed without causing the route to become infeasible. By

extension, F ji (also noted F i,...,ji ) is the forward time slack at node i relative to the path (or subtour)

(i, . . . , j) (Note that Fi = F πli and F ii = +∞):

F ji = min
i<q≤j

bq −
Di +

∑
i≤p<q

cp,p+1 +
∑
i<p<q

sp

 (A.10)

Note that bq is the latest feasible arrival at node q, whileDi+
∑

i≤p<q cp,p+1+
∑

i<p<q sp is the earliest

arrival time at q when departing at timeDi from i. Using the theorem presented by Savelsbergh (1992),

we can derive the following recursive deVnition for F ji :

F ii = +∞ (A.11)

F j+1
i = min

{
F ji , bj+1 −Aj+1 +W j

i+1

}
∀i, j ∈ π, i < j (A.12)

Proof. Theorem 1 (Savelsbergh, 1992) states that

F
(i1,...,j1,i2,...,j2)
i1

= min

F j1i1 , F j2i2 +
∑

i1<q≤j1

Wq +Di2 − (Dj1 + cj1i2)

 (A.13)

With respect to the original deVnition and notations, we replace the time windows end li by bi+si and

the travel times cij with the sum of travel time and service time cij + sj . This leads to the following:

F
(i1,...,j1,i2,...,j2)
i1

= min

F j1i1 , F j2i2 +
∑

i1<q≤j1

Wq +Di2 − (Dj1 + cj1i2 + si2)

 (A.14)

Therefore:

F j+1
i = F

(i,...,j,j+1...,j+1)
i1

= min

F ji , F j+1
j+1 +

∑
i<q≤j

Wq +Dj+1 − (Dj + cjj+1 + sj+1)


= min

{
F ji , bj+1 + sj+1 −Dj+1 +W j

i+1 +Dj+1 −Dj − cjj+1 − sj+1

}
= min

{
F ji , bj+1 −Aj+1 +W j

i+1

}
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0 1 2 3

ai 0 5 25 30
bi 50 10 35 40
Ai - 5 15 35
Wi - 0 10 0
Di 0 10 30 35
F 3
i 5 15 5 +∞

Table A.1: Illustration of the forward time slack concept for a 4-nodes tour.

Table A.1 illustrates the concept of forward time slack for a tour with 4 nodes, in which traveling

and service time are equal to 5. The forward time slack at node 2 F2 is equal to 5 as delaying the

departure for more than 5 time units will cause the violation of the time window of node 3. F1 is equal

to 15: if we delay the departure of 15, W2 becomes 0 and D2 becomes 35, which will allow for the

arrival at 3 at the end of its time window. Finally, F0 is equal to 5 as delaying the departure any longer

will cause the violation of the time window at 1.

Compact representation Figure A.1 illustrates the compact representation of a solution with a

single array describing 3 diUerent tours. The use of such representation is particularly useful when

solutions have to be cloned often as it minimizes the memory footprint and the time required to copy

the arrays.
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Figure A.1: Representation of 3 tours with a unique matrix. Tours are (0, 2, 3, 4, 5, 6, 19) (green),
(1, 7, 8, 9, 11, 12, 20) (blue), and (2, 18, 17, 16, 15, 14, 21) (red). Nodes 10 and 13 are not visited.

A.2 Cost of a solution

Depending on whether we are solving the VRPTW or the TRSP, the cost of a solution is either

deVned as the total traveled distance zdis, or the total working time zwt.

A.2.1 Total distance

The total distance zdis measures the total distance traveled by all vehicles:

zdis(Π) =
∑
π∈Π

zdis(π) =
∑
π∈Π

|π|∑
i=2

cπi−1,πi (A.15)
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A.2.2 Total working time

The total working time zwt evaluates the total duration of all tours, including travel, service, and

waiting times. It is deVned as:

zwt(Π) =
∑
π∈Π

zwt(π) (A.16)

zwt(π) =
[
Aπl − (aπ0 + min{Fπ0 ,W

πl
π0
})
]

(A.17)

Where (aπ0 + min{Fπ0 ,W
πl
π0
}) models the fact that the start of tour π may be delayed to reduce its

total duration.

Algorithm A.1 presents the detail of the evaluation of zwt. An important diUerence with zdis is that

we need to take into account waiting times and the possible delay at the beginning of the tour.

Algorithm A.1 Algorithm for the evaluation of zwt

1: function evaluateZWT(π)
2: A← aπ0

3: F ← bπ0 − aπ0

4: W ← 0
5: for i = 2 to |π| do
6: A← max{A, aπi−1}+ sπi + cπi−1,πi

7: W ←W + max{0, ai −A}
8: F ← min {F, bi −Ai +W}
9: end for
10: return A− (aπ0 + min{F,W})
11: end function

A.3 Node insertion evaluation

The eXciency of the adaptive large neighborhood search algorithms presented in this thesis de-

pends on the ability to evaluate the cost and feasibility of an insertion in constant time. This section

details how this can be achieved.

A.3.1 Simple insertion

We consider the insertion or r between i and j in tour π = (π0, . . . , i, j, . . . , πl), which would lead

to tour π′ = (π0, . . . , i, r, j, . . . , πl).

A.3.1.1 Total distance insertion cost

The cost of a simple insertion in terms of total distance ∆zdis(π, r, i, j) is straightforward:

∆zdis(π, r, i, j) = ci,r + cr,j − ci,j (A.18)
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A.3.1.2 Working time insertion cost

The evaluation of the cost of an insertion in terms of working time is more complicated as it

will impact the arrival time at the successors and may require an earlier departure from the depot.

Nonetheless, Savelsbergh (1992) points out that it can be achieved in constant time using precalculated

data as the waiting and forward time slack.

Arrival time at the last node We start by evaluating the arrival time and the waiting time at the

inserted request r:

Ar = Di + cir Wr = max{0, ar −Ar} (A.19)

Then, we evaluate the arrival time at the successor j:

A′j = max{Ar, ar}+ sr + crn (A.20)

Finally, we calculate the resulting arrival time at the last node:

A′πl = Aπl + max
{

0,∆−W πl
j

}
(A.21)

where ∆ = A′j−Aj is the change in arrival time at j, andW πl
j is the cumulated waiting time between

j and πl that will possibly absorb the delay.

Cumulated waiting time The new cumulated waiting time is:

W ′
πl
π0

= W i
π0

+Wr + max{0,W πl
j −∆} (A.22)

Forward time slack The new forward time slack F ′π0
is:

F ′π0
= min

{
F iπ0

, br −Ar +W i
π0
, F

(j,...,πl)
j +W i

π0
+Wr + max{Aj , aj} −A′j

}
(A.23)

Cost of the insertion Finally, the cost of the insertion is:

∆zwt(π, r, i, j) = zwt(π
′)− zwt(π)

= (A′πl − (ak + min{F ′π0
,W ′

πl
π0
}))− (Aπl − (ak + min{Fπ0 ,W

πl
π0
}))

= max
{

0,∆−W πl
j

}
−min{F ′π0

,W ′
πl
π0
}+ min{Fπ0 ,W

πl
π0
} (A.24)

A.3.1.3 Feasibility

If the inserted node is a request, the technician must have the required skills, tools, and spare parts

to service it. In addition, the insertion must not violate time window constraints. This can be checked
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in constant time using the values calculated in §A.3.1.2 by verifying that:{

Ar ≤ br
A′j ≤ lj

(A.25)

A.3.2 Simultaneous insertion

We consider the insertion of r betweenm and n and q between i and j in tour π = (π0, . . . ,m, n,-

. . . , i, j, . . . , πl), which would lead to tour π′ = (π0, . . . ,m, r, n, . . . , i, q, j, . . . , πl). This case is useful

when considering the simultaneous insertion of a request and a visit to the main depot.

A.3.2.1 Total distance insertion cost

Similarly to the simple insertion case, the cost of the insertion is:

∆zwt(π, r,m, n, q, i, j) = cm,r + cr,n − cm,n + ci,q + cq,j − ci,j (A.26)

In the case in which q is inserted immediately after r (n = q and i = r), the cost of the insertion

is:

∆zwt(π, r,m, n, q, i, j) = cm,r + cr,q + cq,j − cm,j (A.27)

A.3.2.2 Working time insertion cost

Arrival time at the last node We Vrst evaluate the arrival and waiting time at the inserted node r:

Ar = Dm + cmr Wr = max{0, ar −Ar} (A.28)

Then we evaluate the new arrival time at n:

A′n = max{Ar, ar}+ sr + crn (A.29)

Next we evaluate the new earliest departure time at i:

D′i = Di + max{0,∆n −W i
n} (A.30)

Where ∆n = A′n − An is the change in the arrival time at n. We can then evaluate the arrival time at

q:

Aq = D′i + ciq Wq = max{0, aq −Aq} (A.31)

And the new arrival time at j

A′j = max{Aq, aq}+ sq + cqj (A.32)
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And the new arrival time at the last node:

A′πl = Aπl + max{0,∆j −W πl
j } (A.33)

Where ∆j = A′j −Aj .

Total waiting time Similarly to the analysis made for the single insertion case, the new total waiting

time can be computed as follows:

W ′
πl
π0

= Wm
π0

+Wr + max{0,W i
n −∆n}+Wq + max{0,W πl

j −∆j} (A.34)

Note that max{0,W i
n −∆n} is the waiting time on the path (n, . . . , i), which absorbs the change in

arrival time at n, and max{0,W πl
j −∆j} is the waiting time on the path (j, . . . , πl) which will absorb

the change in arrival time at j.

Forward time slack We consider Vve paths: (π0, . . . ,m), (r), (n, . . . , i), (q), and (j, . . . , πl).

From Equation (A.23):

F (π0,...,m,r,n,...,i)
π0

= min
{
Fmπ0

, br −Ar +Wm
π0
, F (n,...,i)

n +Wm
π0

+Wr + max{An, an} −A′n
}

(A.35)

And for the whole new path:

F ′π0
= min



F iπ0
,

br −Ar +Wm
π0
,

F
(n,...,i)
n +Wm

π0
+Wr + max{An, an} −A′n,

bq −Aq +W ′iπ0
,

F
(j,...,πl)
j +W ′iπ0

+Wq + max{Aj , aj} −A′j

(A.36)

WhereW ′iπ0
is the new waiting time between π0 and i:

W ′
i
π0

= Wm
π0

+Wr + max{0,W i
n −∆n} (A.37)

Cost of the insertion The cost of the insertion is equal to

∆zwt(π, r,m, n, q, i, j) = zwt(π
′)− zwt(π)

= (A′πl − (ak + min{F ′π0
,W ′

πl
π0
}))− (Aπl − (ak + min{Fπ0 ,W

πl
π0
}))

= max
{

0,∆j −W πl
j

}
−min{F ′π0

,W ′
πl
π0
}+ min{Fπ0 ,W

πl
π0
} (A.38)

Special case A special case of the simultaneous insertion is when the second node is the successor of

the Vrst (i = r and n = q)). The resulting tour would then be (π0, . . . ,m, r, q, j, . . . , πl), and this case

must be treated separately. We chose to merge r and q into a single node R and to adapt the formulas

from the single insertion case. In particular the waiting time at R isWR = Wr +Wq , and the second

term of Equation (A.23) becomes min{br −Ar +Wn
π0
, bq −Aq +Wn

π0
+Wr}.
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A.3.2.3 Feasibility

The feasibility of a simultaneous insertion is similar to the single insertion case, in particular, we

ensure that time windows are not violated by making sure that the solution veriVes:



Ar ≤ br
A′n ≤ ln
Aq ≤ bq
A′j ≤ lj

(A.39)

A.4 Preprocessing

The algorithms can be speed up by performing some preprocessing on the data. This section details

the main procedures used.

A.4.1 Infeasible arcs

During the preprocessing we remove from the graphA the edges (i, j) such that j cannot be visited

after i without violating time window constraints. This is achieved by ensuring that:

ai + si + cij ≤ bj ∀(i, j) ∈ A (A.40)

A.4.2 Technician-request compatibility

This procedure checks for each technician k and request r if the technician has the required skills to

serve the request. In addition, it also checks if it can serve the request without violating time windows,

in other words if ak + ckr ≤ ar and ar + crk ≤ bk.
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B
A library for the modeling of vehicle routing

problems

VroomModeling is a Wexible library that has been developed to model a wide range of instances

of vehicle routing problems. The general idea is to clearly separate the problem information (nodes,

locations, Weet, requests) from the routing logic (cost calculation, route optimization); but also to ensure

a high Wexibility in the model. This is achieved with the deVnition of node, request and vehicle objects

as a combination of base properties (e.g. a node necessarily has a geographic location) and attributes

that are mapped to attribute keys. For instance in this representation a node can also have a time

window or a compatibility constraint with vehicles (some vehicles may not be able to access the node).

An important design characteristic is the separation between the node, which represents a physical

location, for instance a client, and a request which is associated with one (pickup/delivery) or two

nodes (pickup and delivery), and represent a request for service.
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Figure B.1: Overview of the VroomModeling library.

Figure B.1 presents an overview of the VroomModeling library. The root object is the instance

(Instance), it contains a reference to a problem deVnition (VehicleRoutingProblemDefinition),

a planning period (PlanningPeriod), a Weet (Fleet) composed by one or more vehicles (Vehicle),

and a list of requests (Request). It is important to note that the calculation of distances and costs is

delegated to an instance of CostCalculatorDelegate, separating this logic from the representation

of routes. On the other hand, a solution (Solution) contains a reference to an instance, and a set of

routes (Route). A route is associated with a vehicle, and contains a sequence of node visits (Node-

Visit) that model the visit of a node associated with a given request. It is worth noting that the three

classes Vehicle, Node, and Request, inherits from ObjectWithAttributes which allows for the

deVnition of any number of additional attributes such as time windows or compatibility constraints.
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Figure B.2: Illustration of a possible use of the VroomModeling library.

Figure B.2 illustrates how a complex VRP problem could be modeled using the VroomModeling

library. In this example, vehicles have trailers, nodes have a time window and compatibility constraints

with vehicles, and requests have a time window and a stochastic demand.
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C
A library of heuristics for vehicle routing problems

VroomHeuristics is a library of common heuristics and metaheuristics. Although they were

implemented to tackle vehicle routing problems, the design of the algorithms in this library is Wexible

enough to solve other optimization problems.

Figure C.1 presents an overview of the library. There are two top-level interfaces that deVne

two types of heuristics: IInitialization and ILocalSearch. The Vrst deVnes algorithms that

will design a solution (ISolution) from scratch, while the second take an initial solution as in-

put and attempt to improve it. We implemented two initialization procedure: a Clarke and Wright

(CW) savings algorithm (ClarkeAndWrightHeuristic), and a Versatile Local Search (VLS) algorithm

that combines GRASP, ELS, and ILS (VersatileLocalSearch). The main local search component is

the LocalSearchBase class, which contains a reference to both a stopping and acceptance criterion

(IStoppingCriterion and IAcceptanceCriterion). The library contains two local search algo-

rithms: Variable Neighborhood Search (VNS - VariableNeighborhoodSearch), and Adaptive Large

Neighborhood Search (ALNS - AdaptiveLargeNeighborhoodSearch). The library also provide a

generic deVnition of a neighborhood (INeighborhood) that can either be used to Vnd a move (IMove)

that will lead to a neighbor of a solution, or as a local search procedure to Vnd the local optima starting

with a given solution. In addition, VroomHeuristics contains a generic deVnition of a component

handler (IComponentHandler) that can be used to handle components such as neighborhoods in VNS

or destroy/repair operators in ALNS. Finally, constraints are deVned and handled separately with the

interface IConstraint and the class ConstraintHandler. All constraint implementations should be

able to check the feasibility of both a solution and a move relative to a solution.
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Figure C.1: Design overview of the VroomHeuristics framework.

C.1 Clarke and Wright

The savings algorithm, or Clarke and Wright heuristic (CW) (Clarke and Wright, 1964), is a con-

structive heuristic for vehicle routing problems. It starts by creating one route for each customer, and

then iteratively merges routes using the notion of savings.

Algorithm C.1 presents an outline of the CW heuristic. The algorithm starts by initializing a list

of candidate mergings, which savings are calculated line 6 and correspond to the decrease in cost

resulting from the removal of arcs (0, i) and (0, j) while adding arc (i, j). Then the algorithm considers

all possible mergings between routes in order of decreasing savings. For each candidate merging (i, j),

the mergingFeasible function (line 11) checks if i) both nodes i and j are either Vrst or last in their

routes πi and πj ; ii) the route that would result from the merging satisfy all constraints. The latter

is achieved within the VroomHeuristics framework using a ConstraintHandler and modeling the

merging as a move (IMove). If the merging is feasible, then it is executed and route πj is appended to

πi (line 12). The algorithm terminates when there is no additional feasible merging.

Figure C.2 presents an overview of the proposed implementation of the CW algorithm, namely

jCW. The main component is the ClarkeAndWrightHeuristic that uses a generic deVnition of a sav-

ing algorithm (ISavingAlgorithm) and relies on global parameters for its setup (CWParameters). The
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Algorithm C.1 Outline of the Clarke and Wright savings heuristic
Input: V a set of vertices, A a set of arcs, 0 the central depot
Output: Π a feasible solution
1: for all i ∈ V do . Initialize routes
2: πi ← (0, i, 0) . Associate a singleton route with node i
3: end for
4: M ← [] . The list of candidate mergings
5: for all (i, j) ∈ A do
6: sij ← c0i + c0j − cij . The saving for arc (i, j)
7: M ←M + (i, j, sij) . Append to the list of mergings
8: end for
9: S ← sort(M) . Sort the merging list in decreasing savings value
10: for all (i, j, sij) ∈M do
11: if mergingFeasible (πi, πj , (i, j)) then
12: πi ← merge (πi, πj , (i, j)) .Merge the two routes with arc (i, j)
13: πj ← πi
14: end if
15: end for
16: Π← {πi}i∈V . The solution contains all the Vnal routes
17: return Π

saving algorithms use instances of IJCWArc to represent candidate savings and instances of Route-

MergingMove to model the corresponding merging of two routes. The framework provides two con-

crete savings algorithm implementations: BasicSavingHeuristic that corresponds to Algorithm C.1,

and RandomizedSavingsHeuristicwhich introduces some randomization while sorting the merging

list.

The Clarke and Wright savings heuristic was used to generate scenarios in the multiple scenario

approach presented in Chapter 3.

C.2 Adaptive Variable Neighborhood search

In this section we propose an extension of Variable Neighborhood Search (VNS) (Mladenovic and

Hansen, 1997), namely Adaptive Variable Neighborhood Search (AVNS), that was used as optimization

component of the multiple plan approach for the DVRPSD presented in Chapter 3. The original VNS

iteratively improves a solution by exploring sequentially neighborhoods of increasing complexity or

size. AVNS in contrast does not impose any order on the exploration of neighborhoods, leading to a

higher level of modularity.

Algorithm C.2 presents an overview of the AVNS procedure. The algorithm starts with an initial

solution Π and generates a neighbor Π′ from the current neighborhood (shake line 6), which is then

improved by a local search procedure (line 7). If the new solution is accepted (line 8), it replaces

the current solution and a new iteration is performed using the whole set of neighborhoods (line

10); otherwise, the neighborhood is marked as explored (line 12) and a new iteration is done with

the unchanged current solution. Iterations are performed until either all neighborhoods have been

explored or a stop criterion is met (usually a maximum time or number of iterations). The key diUerence
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Figure C.2: Design overview of the Clarke and Wright heuristic framework.
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with respect to the original VNS algorithm is the call to the selectNeighborhood function at line

5. It allows for non-sequential exploration of neighborhoods, with the goal of exploring the best

neighborhoods Vrst.

Algorithm C.2 The Adaptive Variable Neighborhood Search algorithm.
Input: Π a feasible solution, z an evaluation function and N = {N1, .., NK} a set of neighborhood

structures
Output: Π∗ the best solution found
1: function VNS(Π)
2: Π∗ ← Π
3: Nc ← N . Initial neighborhood set
4: while Nc 6= ∅ and stop condition not met do
5: N ← selectNeighborhood(Nc) . Select neighborhood
6: Π′ ← shake(N,Π) . Generate a neighbor from neighborhood N
7: Π′ ← ls(Π′) . Local search to improve Π′

8: if accept(Π′,Π) then . Π′ is accepted as current solution
9: Π← Π′ . Update current solution
10: Nc ← N . Reset the neighborhood set
11: else
12: Nc ← Nc \ {N} . Remove the explored neighborhood
13: end if
14: if z(Π′) < z(Π∗) then . An improvement has been found
15: Π∗ ← Π′ . Update best solution
16: end if
17: end while
18: return Π∗

19: end function

C.2.1 Implementation

Figure C.3 presents a UML diagram of the VNS implementation. The key classes are the following:

VariableNeighborhoodSearch is the class containing the implementation of Algorithm C.2, where

the shake, local search and neighborhood selection are delegated to instances of other classes (template

method pattern); ILocalSearch is the generic deVnition of local search, an instance of this class is

responsible for the local search in the VNS algorithm (ls line 7); INeighborhood is a generic deVni-

tion of a neighborhood structure. IComponentHandler is an interface for classes responsible of the

neighborhood selection strategy.

It is worth noting that the following variants (Hansen et al., 2003) can be easily implemented in

this framework:

Shake Local search

VND Best neighbor None

RVNS Random neighbor None

BVNS Random neighbor Any

GVNS Random neighbor VND
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Figure C.3: Design overview of the VNS implementation.

LUNAM - EMN - Uniandes 148/192 Pillac V. - Ph D. Dissertation



APPENDIX C. VROOM HEURISTICS C.2. ADAPTIVE VARIABLE NEIGHBORHOOD SEARCH
C.2.2 Neighborhoods

We implemented four neighborhoods for the VRP, all considering intra and inter-route moves:

swap, 2-opt, Or-opt, and string-exchange. The swap neighborhood swaps two nodes from possibly

diUerent routes; 2-opt removes two non-adjacent edges and reconnect the segments; Or-opt relocates

a segment of 1 to k nodes, possibly by reversing its order, in the best possible position (in our im-

plementation k = 3); and Vnally string-exchange exchanges two segments of length 1 to k, possibly

by reversing their orders (we set k = 4). We refer the interested reader to the paper by Irnich and

Villeneuve (2006) for a more detailed description of these neighborhoods.

We provide a general purpose implementation of INeighborhoodHandler in the class Generic-

NeighborhoodHandlerwhich deVnes 4 strategies: sequential (SEQ), frequency-based (FRE), eXciency

based (EFF) and random (RAN). The simplest selection strategy (FRE) explores neighborhoods sequen-

tially, as in the original VNS algorithm. FRE stores the success count for each neighborhood, i.e. the

number of times that its exploration yields an improvement in the objective function. The selection

of the next neighborhood is then performed using a roulette wheel based on the success count. EFF

uses a eXciency metric equal to the average ratio improvement
time to select the next neighborhood with a

roulette wheel. Finally, RAB is used as a comparison basis and select any neighborhood with equal

probability.

C.2.3 Computational experiments

The AVNS was designed to tackle the Vehicle Routing Problem with Stochastic Demands (VRPSD)

within the jMSA framework. Therefore, we tested it on the Novoa (2005) testbed, later used in Novoa

et al. (2006) and Novoa and Storer (2009). The customer demands are given as probability distribu-

tions, however, the routing problems solved in the MSA procedure are deterministic, thus we used the

expected value of the demands. The benchmark contains instances of 5, 8, 20, 40 and 60 customers,

randomly distributed on a 1 per 1 square, the depot being at the origin (0,0). There are 10 instances of

each size

We tested the four strategies presented above, in two variants: for the sequential strategy we used

an increasing complexity ordering of neighborhoods (swap, 2-opt, Or-opt, string-exchange), denoted

SEQ, as well as a reversed order, denoted SEQ-Rev; for the frequency (respectively eXciency) we did a

set of run in which the neighborhood handler is reset between each run, denoted FRE-R (EFF-R), and

a second where the performance information (success count or eXciency) is kept between runs, noted

FRE-NR (EFF-NR).

Each strategy was run 10 times on each instance, each run starting with the initial solutions ob-

tained by running a randomized savings based heuristic. We used a Variable Neighborhood Descent

variant in order to have a better understanding of the neighborhood selection impact on performance.

Table C.1 presents the average gaps to the optimal solutions for the diUerent strategies. It can be

noted that there is apparently no diUerence between strategies at this point, although SEQ-Rev appears

to perform slightly better.

Table C.2 reports average CPU running times. They reveal a strong dominance of EFF-NR over all

instances sizes. SEQ performs quite poorly on small instances but it is competitive on larger instances,
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while the tendency reverses for SEQ-Rev. This last observation can be explained by the fact that this

last strategy will explore Vrst the more complex neighborhoods (string-exchange and Or-opt), which

are of complexity O(k2n2) and O(kn2), thus requiring a quadratically increasing time to explore. As

expected, we can note that preserving the performance information from one run to another (R vs.

NR) slightly improves the performance.

Finally, Table C.3 shows that the EFF-NR strategy also have a lower CPU time standard deviation,

meaning that it is the most stable in terms of running times. A similar analysis has been done for the

gap standard deviation but no tendency can be drawn.

C.3 Versatile Local Search

The Versatile Local Search package (VLS) contains an implementation of the Greedy Random-

ized Adaptive Search Procedure (GRASP) with multi-start evolutionary local search proposed by Prins

(2009) and Villegas et al. (2010). This approach is an hybrid between GRASP, Iterated Local Search

(ILS), and Evolutionary Local Search (ELS), and was initially designed as optimization component for

the jMSA framework.

Algorithm C.3 presents the outline of the approach which comprises three nested loops. The

GRASP loop (lines 1–20) builds a solution with a randomized constructive heuristic (line 2) and then

improves the solution with a local search (line 3). The resulting solution is passed to the ILS loop (lines

4–16), and the ELS loop (lines 6–12). The ELS randomly modiVes the current solution (line 5) and then

apply a local search to it (line 6). The best solution from the ELS iteration is then taken as current

solution for the next ILS iteration.

Figure C.4 illustrates the implementation of the VLS algorithm withing the VroomHeuristics

framework. The central component is the VersatileLocalSearch class which is conVgured via VLS-

GlobalParameters and contains a reference to an initialization (IInitialization), local search

(ILocalSearch), and perturbation (IVLSPerturbation).

C.4 Adaptive Large Neighborhood Search

Figure C.5 presents an overview of the implementation of the Adaptive Large Neighborhood Search

(ALNS) and parallel ALNS (pALNS) algorithms described in Chapter 2. The main component is the

AdaptiveLargeNeighborhoodSearch class, which is conVgured via (ALNSGlobalParameters). It

relies on two component handlers (ALNSComponentHandler) that are responsible for the evaluation

and selection of the destroy and repair operators (IDestroy and IRepair). ParallelALNS provides

the parallel implementation and uses an abstract deVnition of a solution pool (IPALNSSolutionPool)

to manage the pool of solutions.

The pALNS and ALNS algorithms were used in Chapter 2 and 4 to tackle both static and dynamic

routing problems.
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Size SEQ SEQ-Rev FRE-R FRE-NR EFF-R EFF-NR RAN-R
5 4.60 4.60 4.60 4.60 4.60 4.60 4.60
8 4.76 4.75 4.75 4.75 4.76 4.76 4.75

20 6.48 6.45 6.45 6.48 6.45 6.46 6.46
40 7.33 7.28 7.31 7.28 7.28 7.33 7.30
60 8.15 8.12 8.15 8.14 8.14 8.13 8.14

Table C.1: Average gap to the optimal solution (in %).

Algorithm C.3 The Versatile Local Search algorithm.
Input: I an instance, initialization a randomized constructive heuristics, localSearch a local

search procedure, perturbation a randomized perturbation procedure., z an evaluation function.
Output: Π∗ the best solution found
1: for i = 1 to ns do . GRASP loop
2: Π← initialization(I) . Build a new solution
3: Π← localSearch(S) . Apply a local search
4: for j = 1 to ni do . ILS loop
5: Π′ ← Π . Starting solution for the ELS
6: for k = 1 to nc do . ELS loop
7: Π′′ ← perturbation(Π′) . Randomly perturb the solution
8: Π′′ ← localSearch(Π′′) . Apply a local search
9: if z(Π′′) < z(Π′) then
10: Π← Π′′ . Store the best solution produced by ELS
11: end if
12: end for
13: if z(Π′) < z(Π) then
14: Π← Π′ . Update the current solution with the best ELS solution
15: end if
16: end for
17: if z(Π) < z(Π∗) then
18: Π∗ ← Π . Update the overall best solution
19: end if
20: end for
21: return Π∗
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Figure C.4: Design overview of the Versatile Locale Search framework.

Figure C.5: Design overview of the Adaptive Large Neighborhood Search framework.
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Size SEQ SEQ-Rev FRE-R FRE-NR EFF-R EFF-NR RAN-R

5 2 0 1 0 0 0 0
8 4 1 1 1 1 1 1

20 18 58 22 14 20 15 19
40 142 575 232 273 190 120 212
60 485 2385 861 603 656 430 812

Table C.2: Average CPU running times (ms).

Size SEQ-R SEQ-Rev FRE-R FRE-NR EFF-R EFF-NR RAN-R
5 64.6 140.7 92.2 67.8 61.7 37.9 56.3
8 4.5 0.7 0.9 0.7 0.6 0.5 1.3

20 0.8 0.8 0.8 0.8 0.8 0.8 0.8
40 64.6 140.7 92.2 67.8 61.7 37.9 56.3
60 135.8 674.5 362.8 157.6 187.5 158.3 193.6

Table C.3: Standard deviation of CPU running times (ms).

C.5 Multi-space sampling with heuristic concentration

This section describes an approach based on the work of Mendoza and Villegas (2011), namely

Multiple Space Sampling with Heuristic Concentration (MSSHC), which generates feasible routes using

randomized constructive heuristics, and then builds a solution by solving a set-covering problem.

Algorithm C.4 presents an overview of the method. For each constructive heuristic, the algorithm

generates a number of giant TSP-like tours (line 5), that are then split into a set of feasible routes (line

6). Finally, a set-covering model is solved to select a subset of routes conforming a solution of minimal

cost (line 10).

Algorithm C.4 The MSSHC algorithm
Input: H a set of constructive heuristics, I number of iterations
Output: Π∗ the best solution that can be built from the generated routes
1: P ← ∅ . Initialize route pool

2: IH ←
⌈
I
|H|

⌉
. Number of samples per heuristic

3: for all H ∈ H do
4: for i = 1 to IH do
5: π̄ ← generateGiantTour (H) . Generate a giant tour
6: P ′ ← split (π̄) . Split the giant tour into multiple feasible routes
7: P ← P ∪ P ′ . Add the routes to the pool
8: end for
9: end for
10: Π∗ ← solveSC (P) . Solve the set covering problem
11: return Π∗

We tested this approach on the TRSP but it appeared that pALNS+SC was clearly dominating both

in terms of objective function and computational time. Our intuition is that the presence of time

windows makes it more diXcult to generate good routes during the split procedure. However this

method has shown very good results on the VRPSD and its simplicity makes it a good candidate for

problems without time windows.
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C.5.1 Implementation

Figure C.6 presents an overview of the MSSHC framework. The main class is RCHSCSolver which

uses a collection of randomized constructive heuristics (TRSPRndConstructiveHeuristic) and a set

covering solver (SCGurobiSolver). Note that at present time this implementation is tied with the data

model used for the experiments on the TRSP.

Figure C.6: Design overview of the MSSHC framework.

C.5.2 Constructive heuristics

Giant tours are generated using a randomized variant of four well known heuristics for the TSP,

that draw a random number χ between 0 and the number of unvisited customers. Random Nearest

Neighbor (RNN) selects the χ-th closest customer to the last customer of the tour and appends it to the

tour. Random Nearest (Furthest) Insertion (RNI/RFI) selects the χ-th closest (furthest) customer to any

of the customers currently in the tour and inserts it in the best position. Random Best Insertion (RBI)

selects and inserts the χ-th best insertion for all unserved customers.

C.5.3 Split procedure

Algorithm C.5 presents the split procedure as introduced by Prins (2004), which is basically a label-

ing algorithm that Vnds the shortest path on an auxiliary graph representing all the feasible partitions

of the giant tour into routes.
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Algorithm C.5 The split procedure
Input: π̄ a giant tour of length n, z an evaluation function
Output: P ′ the optimal splitting of π̄ into a set of routes
1: P ′ ← ∅
2: L← [+∞]i=1..n . Initialize labels to +∞
3: L1 ← 0 . Initialize labels of the Vrst node to 0
4: P ← [∅]i=1..n . Initialize the predecessor array
5: for i = 1 to n do
6: j ← i
7: f ← true

8: while f and j ≤ n do
9: f ← isFeasible

(
π̄[i,j]

)
. Check route feasibility

10: if f and Li + z(π̄[i,j]) < Lj then .We found an improving feasible arc
11: Lj ← Li + z(π̄[i,j]) . Update j’s label
12: Pj ← π̄[i,j] . Update j’s predecessor
13: end if
14: j ← j + 1
15: end while
16: end for
17: i← n
18: while i 6= 1 do
19: P ′ ← P ′ ∪ {Pi} . Add the route to the set of optimal routes
20: i← P 0

i .Move to the Vrst node of the route
21: end while
22: return P ′

C.5.4 Heuristic concentration

The heuristic concentration consists in selecting a subset of routes that constitutes a minimal cost

feasible solution of the problem at hand. This can be modeled as the following set-covering problem:

Min
∑
t∈P

ctxt (C.1)

s.t. ∑
t∈P

xtati ≥ 1 ∀i ∈ R (C.2)

xt ∈ {0, 1} ∀t ∈ P (C.3)

Where P is the set of generated routes and ati a parameter taking the value of 1 if route t visits node i.

Constraint C.2 ensures that each customer is visited at least once. Considering that customers

must be visited exactly once, one could argue that a set-partitioning formulation would Vt better our

purpose. Nonetheless, our model only contains a limited subset of columns, and therefore we may not

be able to Vnd a good combination of columns that ensures the unique covering of all customers. As

a result, the Vnal solution may visit a customer more than once. This is easily dealt with by removing

the most costly visits. In all cases we are ensured that the repaired solution x∗SC+rep, is at least as

good as the optimal solution x∗SC of the set-covering, and by transitivity of the set-partitioning x∗SP ,
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as illustrated in Equation C.4

z(x∗SC) ≤ z(x∗SP ) ∧ z(x∗SC+rep) ≤ z(x∗SC)⇒ z(x∗SC+rep) ≤ z(x∗SP ) (C.4)
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D
An instance generator for the TRSP

We adapted the VRPTW instances proposed by Solomon (1987) by adding skills, tools, and spare

parts information. The instances contain 100 requests located randomly (R), in clusters (C), or com-

bining both (RC); while the planning horizon is either short (type 1) or long (type 2). These instances

are organized combining location and horizon (i.e., C1, C2, R1, R2, RC1, and RC2). For all instances the

crew size is Vxed, and the traveling speed of technicians is assumed to be unitary.

D.1 Parameters

The parameters of the generator are the following:

|S|, |T |, |P| number of skills, tools, and spare parts types;

DtS distribution of the number of skills per technician;

DtT distribution of the number of tools available to each technician;

DtP distribution of the number of diUerent spare part types available to each technician;

DtPC distribution of the number of spare parts of any available type available to each technician;

DrS distribution of the number of skills required by each request;

DrT distribution of the number of tools required by each request;

DrP distribution of the number of diUerent spare part types required by each request;

DrPC distribution of the number of spare parts of any required type required by each request.

We then numerate skills, tools and spare parts in a natural order (e.g., S = {0, 1, ..., |S| − 1}).
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D.2 Tools and spare parts

To ensure a certain coherence between skills and spare parts, we deVne for each skill a subset of

associated tools/spare parts. For instance the skill screw will be associated with the tools (drill, screw

driver) and spare parts (screw, rawplug). We therefore have:

Ts the set of tools associated with skill s,

Ts =
{
t| : s ∗ d |T ||S| e ≤ t < (s+ 1) ∗ d |T ||S| e

}
Ps the set of spare parts associated with skill s,

Ps =
{
p| : s ∗ d |P||S| e ≤ p < (s+ 1) ∗ d |P||S| e

}
D.3 Technicians

We associate to each vehicle of the original instance a technician k, and generate additional infor-

mation to match the TRSP deVnition.

Home depot We randomly generate a home depot hk for each technician k in a 100× 100 square.

Skills We sample the DtS distribution to generate a random number ηs, and then pick ηs skills from

the skill set S to form Sk, the skill set of technician k.

Tools We sample the DtT distribution to generate a random number ηt, and then pick ηt tools from

the union of the tool subsets
⋃
s∈Sk Ts.

Spare parts We sample the DtP distribution to generate a random number ηp, and then pick ηp
spare part types from the union of the spare part types subsets

⋃
s∈Sk Ps; then for each selected spare

part type pwe generate the number of parts of type p available to the technician by sampling theDtPC
distribution.

D.4 Requests

We associate to each customer of the original instance a request i, and generate additional infor-

mation to match the TRSP deVnition.

Skills We sample theDrS distribution to generate a random number ηs, and then pick ηs skills from

the skill set S to form Si, the skill set of request i.

Tools We sample the DrT distribution to generate a random number ηt, and then pick ηt tools from

the union of the tool subsets
⋃
s∈Si Ts.

Spare parts We sample the DrP distribution to generate a random number ηp, and then pick ηp
spare part types from the union of the spare part types subsets

⋃
s∈Si Ps; then for each p we generate

the number of parts of type p required by the request by sampling the DrPC distribution.
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Release dates For the dynamic instances we generate release date for a proportion δ of the requests.

The release date for request r is selected randomly in the interval [0, br − 1.5c0r], where br is the time

window end for request r, and c0r is the travel time between the central depot and r. The interval

upper bound is an estimate of the latest feasible time for a technician to start traveling to the request.

D.5 File format

Figure D.1 illustrates the Vle format used which is an extension of the original Solomon’s format.

The Vrst line contains the instance name; then follows a description of the instance with the number

of technicians, skills, tools and spare part types; and the rest of the Vle contains a list of nodes. The

Vrst corresponds to the main depot, while the |K| following are a description of each technician with

its home depot, set of skills, tools and available spare parts (from node 1 to 25 in this example). Finally,

the remaining lines describe the instance requests (from node 26 to 125 in this example). Filename

follows the pattern |R|-name_|S|-|T |-|P| where name is the name of the original instance.

100-C101_5-5-5

INFO

CREW COUNT SKILLS TOOLS SPARE PARTS

25 5 5 5

DEPOT TECHNICIANS AND REQUESTS

ID X Y TWS TWE Serv SKILLS TOOLS SPARE PARTS

0 40 50 0 1236 0 [] [] []

1 51 19 0 1236 0 [2,3,4] [3,4] [0,0,2,5,0]

2 16 73 0 1236 0 [0,1,2] [2] [0,3,2,3,5]

...

26 45 68 912 967 90 [4] [1] [0,1,0,1,0]

27 45 70 825 870 90 [1] [2] [0,0,0,0,0]

...

125 60 85 561 622 90 [1] [] [0,0,0,1,0]

Figure D.1: Illustration of the Vle format used to store Solomon based instances.

D.6 Generated instances

The parameters used to generate instances are recapitulated in Table D.1
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Parameter Value
|S| 5
|T | 5
|P| 5

DtS Uint(2, 4)
DtT Uint(0, 5)
DtP Uint(2, 5)
DtPC Uint(2, 5)

DrS 1
DrT Uint(0, 2)
DrP Uint(0, 2)
DrPC 1

Table D.1: Parameter setting for the instance generation
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E
Best known solutions for the TRSP

This appendix presents the value of the best known solutions for the TRSP instances introduced in

this thesis.

E.1 Summary of best known solutions

Tables E.1, E.2, and E.3 present a summary of the best known solutions for instances from group

C, R, and RC respectively. Note that the objective function only considers the minimization of the

duration, the distance is reported for reference only.

The interested reader is referred to the webpage http://hdl.handle.net/1992/1152 for the

detailed solutions.
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Instance Duration Distance
C101.100_25-5-5-5 10717.516 1665.946
C102.100_25-5-5-5 10239.040 1206.218
C103.100_25-5-5-5 10281.862 1281.862
C104.100_25-5-5-5 10107.440 1107.440
C105.100_25-5-5-5 10584.062 1584.062
C106.100_25-5-5-5 10322.596 1322.329
C107.100_25-5-5-5 10356.556 1353.632
C108.100_25-5-5-5 10251.215 1250.821
C109.100_25-5-5-5 10107.331 1107.331
C201.100_25-5-5-5 10192.975 1162.608
C202.100_25-5-5-5 10001.521 1001.521
C203.100_25-5-5-5 10001.169 999.590
C204.100_25-5-5-5 9890.558 890.558
C205.100_25-5-5-5 10208.442 1208.442
C206.100_25-5-5-5 9983.137 983.137
C207.100_25-5-5-5 9849.688 849.688
C208.100_25-5-5-5 9981.063 981.063

Table E.1: Best known solutions for group C

Instance Duration Distance
R101.100_25-5-5-5 3134.863 1950.115
R102.100_25-5-5-5 3039.234 1962.761
R103.100_25-5-5-5 2421.778 1399.052
R104.100_25-5-5-5 2285.773 1285.773
R105.100_25-5-5-5 2975.424 1945.165
R106.100_25-5-5-5 2626.378 1618.301
R107.100_25-5-5-5 2134.362 1119.964
R108.100_25-5-5-5 2116.046 1116.046
R109.100_25-5-5-5 2512.891 1512.891
R110.100_25-5-5-5 2359.424 1359.424
R111.100_25-5-5-5 2550.500 1550.500
R112.100_25-5-5-5 2145.758 1145.758
R201.100_25-5-5-5 2639.699 1616.663
R202.100_25-5-5-5 2382.865 1375.446
R203.100_25-5-5-5 2334.581 1333.116
R204.100_25-5-5-5 1931.190 931.190
R205.100_25-5-5-5 2254.816 1254.816
R206.100_25-5-5-5 2082.799 1082.799
R207.100_25-5-5-5 1981.760 981.760
R208.100_25-5-5-5 1879.491 879.491
R209.100_25-5-5-5 2130.504 1130.504
R210.100_25-5-5-5 2111.923 1111.923
R211.100_25-5-5-5 1975.420 975.420

Table E.2: Best known solutions for group R
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Instance Duration Distance
RC101.100_25-5-5-5 2856.488 1804.244
RC102.100_25-5-5-5 2843.178 1825.804
RC103.100_25-5-5-5 2495.567 1494.851
RC104.100_25-5-5-5 2162.514 1162.514
RC105.100_25-5-5-5 2711.491 1684.443
RC106.100_25-5-5-5 2761.863 1761.863
RC107.100_25-5-5-5 2570.403 1570.403
RC108.100_25-5-5-5 2354.422 1354.422
RC201.100_25-5-5-5 2686.012 1685.053
RC202.100_25-5-5-5 2487.727 1486.713
RC203.100_25-5-5-5 2310.010 1303.007
RC204.100_25-5-5-5 2064.163 1064.163
RC205.100_25-5-5-5 2588.166 1560.131
RC206.100_25-5-5-5 2359.699 1350.841
RC207.100_25-5-5-5 2233.678 1233.678
RC208.100_25-5-5-5 1914.536 914.536

Table E.3: Best known solutions for group RC

LUNAM - EMN - Uniandes 163/192 Pillac V. - Ph D. Dissertation





F
List of contributions

F.1 International peer-reviewed journal papers

Pillac, V., Guéret, C., Medaglia, A. L. (2012), An event-driven optimization framework for dynamic

vehicle routing, Decision Support Systems, Accepted manuscript, doi:10.1016/j.dss.2012.06.007

Pillac, V., Gendreau, M., Guéret, C., Medaglia, A. L. (2012), A review of dynamic vehicle routing prob-

lems, European Journal of Operational Research, Accepted manuscript, doi:10.1016/j.ejor.2012.08.015.

Pillac, V., Guéret, C., Medaglia, A. L. (2012), A parallel matheuristic for the Technician Routing and

Scheduling Problem, Optimization Letters, Accepted manuscript, doi:10.1007/s11590-012-0567-4.

F.2 Technical reports

Pillac, V., Guéret, C., Medaglia, A. L. (2012), A fast re-optimization approach for dynamic vehicle rout-

ing, Technical Report 12/6/AUTO, Ecole des Mines de Nantes, France

http://hal.archives-ouvertes.fr/hal-00739782/en

Pillac, V., Guéret, C., Medaglia, A. L. (2012), On the Dynamic Technician Routing and Scheduling

Problem, Technical Report 12/5/AUTO, Ecole des Mines de Nantes, France

http://hal.archives-ouvertes.fr/hal-00739781/en

Pillac, V., Gendreau, M., Guéret, C., Medaglia, A. L. (2011), A review of dynamic vehicle routing prob-

LUNAM - EMN - Uniandes 165/192 Pillac V. - Ph D. Dissertation

http://dx.doi.org/10.1016/j.dss.2012.06.007
http://dx.doi.org/10.1016/j.ejor.2012.08.015
http://dx.doi.org/10.1007/s11590-012-0567-4
http://hal.archives-ouvertes.fr/hal-00739782/en
http://hal.archives-ouvertes.fr/hal-00739781/en


APPENDIX F. CONTRIBUTIONS F.3. PEER-REVIEWED CONFERENCE PROCEEDINGS
lems, CIRRELT Research Paper, CIRRELT-2011-62,

https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2011-62.pdf

Pillac, V., Guéret, C., Medaglia, A. L. (2011), An event-driven optimization framework for dynamic

vehicle routing, Technical Report 11/2/AUTO, Ecole des Mines de Nantes, France,

http://hal.archives-ouvertes.fr/hal-00623479/en

Pillac, V., Guéret, C., Medaglia, A. L. (2010), Dynamic Vehicle Routing Problems: State of the art and

Prospects, Technical Report 10/4/AUTO, Ecole des Mines de Nantes, France,

http://hal.archives-ouvertes.fr/hal-00623474/en

F.3 Peer-reviewed conference proceedings

Pillac, V., Guéret, C., Medaglia, A. L. (2012),On the Dynamic Technician Routing and Scheduling

Problem, Proceedings of the 5th International Workshop on Freight Transportation and Logistics

(ODYSSEUS 2012), 509–512, Mikonos (Greece).

http://hal.archives-ouvertes.fr/hal-00674408/en

Pillac, V., Guéret, C., Medaglia, A. L. (2011), On the Technician Routing and Scheduling Problem,

Proceedings of the 9th Metaheuristics International Conference (MIC 2011), 675-678, Udine (Italy),

http://hal.archives-ouvertes.fr/hal-00623486/en

F.4 Conference presentations

Pillac, V., Guéret, C., Medaglia, A. L. (2012), A Multiple Plan Approach for the Dynamic Technician

Routing and Scheduling Problem, 25th European Conference on Operational Research (EURO 2012),

Vilnius (Lithuania),

http://hal.archives-ouvertes.fr/hal-00674444/en

Pillac, V., Guéret, C., Medaglia, A. L. (2012), Route stability in dynamic vehicle routing: a bi-objective

approach, ROADEF 2012, Angers (France),

http://hal.archives-ouvertes.fr/hal-00674440/en

Pillac, V., Guéret, C., Medaglia, A. L. (2011), A dynamic approach for the vehicle routing problem with

stochastic demands, ROADEF 2011, St Etienne (France),

http://hal.archives-ouvertes.fr/hal-00623481/en

Pillac, V., Guéret, C., Medaglia, A. L. (2010), Solving the Vehicle Routing Problem with Stochastic

Demands with a Multiple Scenario Approach, ALIO-INFORMS 2010, Buenos Aires (Argentina),

http://hal.archives-ouvertes.fr/hal-00623472/en

LUNAM - EMN - Uniandes 166/192 Pillac V. - Ph D. Dissertation

https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2011-62.pdf
http://hal.archives-ouvertes.fr/hal-00623479/en
http://hal.archives-ouvertes.fr/hal-00623474/en
http://hal.archives-ouvertes.fr/hal-00674408/en
http://hal.archives-ouvertes.fr/hal-00623486/en
http://hal.archives-ouvertes.fr/hal-00674444/en
http://hal.archives-ouvertes.fr/hal-00674440/en
http://hal.archives-ouvertes.fr/hal-00623481/en
http://hal.archives-ouvertes.fr/hal-00623472/en


APPENDIX F. CONTRIBUTIONS F.5. SOFTWARE LIBRARIES
F.5 Software libraries

We released the libraries under the GNU General Public License version 3 (GPL3) 1 to allow their

use in non-commercial applications only. This choice is motivated by two aspects: Vrst, the libraries

depend to a certain extent on the Stochastic Simulation in Java (SSJ) 2 which is itself released under

GPL 3; second the libraries may be included in the near future in an open-source project with a broader

scope and a more permissive license, therefore we wanted to restrict the use of the present libraries in

favor of the broader project. All the cited libraries are publicly available at:

http://victorpillac.wordpress.com/libraries-for-the-vrp

Pillac, V., Guéret, C., Medaglia, A. L., VroomModeling: A general purpose modeling library for vehicle

routing problems.

Pillac, V., Guéret, C., Medaglia, A. L., VroomHeuristics: A set of general heuristics for vehicle routing

problems.

Pillac, V., Guéret, C., Medaglia, A. L., jMSA: An event-driven optimization framework for dynamic

vehicle routing.

1. GNU General Public License v.3 - http://www.gnu.org/licenses/gpl.html
2. SSJ library - http://www.iro.umontreal.ca/~simardr/ssj/
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G
Résumé en français

Les activités de transport jouent un rôle crucial tant dans le domaine de la production que dans

celui des services. En particulier, elles permettent d’assurer la distribution de biens et de services entre

fournisseurs, unités de production, entrepôts, distributeurs, et clients Vnaux. Le transport a également

un fort impact sur l’économie et sur l’environnement. Selon Hesse and Rodrigue (2004), le coût total

des activités logistiques était de 10% du Produit Intérieur Brut (PIB) aux États Unis en 2010, et le

transport à lui seul représentait 5.9% du PIB. Par ailleurs, un rapport récent de la la Energy Information

Administration (EIA, 2011) indique que le transport était responsable de 27% des émissions de gaz à

eUet de serre en 2009 (toujours aux États Unis), alors que la European Environment Agency estime

cette part à 24% pour l’Union Européenne (EEA, 2011).

En conséquence, améliorer l’eXcacité des activités de transport est une étape critique pour aug-

menter la compétitivité et réduire l’impact environnemental des organisations. Dans ce sens, l’opéra-

tion d’une Wotte de véhicules constitue un problème clef qui apparaît autant dans les entreprises de

services, avec entre autres le transport de personnes handicapées, la planiVcation des tournées de bus

scolaires, ou les activités de maintenance sur site, que dans l’industrie avec, par exemple, le transport

de matières premières entre fournisseurs et usines, le repositionnement de camions dans les sociétés

de transport longue distance, ou la collecte et la livraison de produits dans les societés de vente par

correspondance.

Plus particulièrement, les problèmes de tournées de véhicules (Vehicle Routing Problems - VRPs)

considèrent la conception d’un ensemble de tournées de coût minimal servant les demandes en produits

ou services d’un ensemble de clients distribués géographiquement, tout en respectant un ensemble de

contraintes opérationnelles. Depuis sa déVnition par Dantzig and Ramser (1959), le nombre de publica-

tions sur le VRP a augmenté exponentiellement. L’étude récente de Eksioglu et al. (2009) est une preuve

de cette évolution : elle reporte environ 1500 publications indexées traitant des tournées de véhicules
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(à la date de la rédaction de l’article). Le volume de publications est intimement lié à la grande diversité

de problèmes de tournées, et la variété des approches proposées pour les traiter.

La formulation originale du problème de tournées de véhicules avec capacité (CVRP ou simplement

VRP) est une généralisation du problème du voyageur de commerce (Travelling Salesman Problem -

TSP) proposé par Flood (1956). Le VRP est déVni sur un graphe G = (V, ε,C,q), où V = {v0, . . . , vn}
est l’ensemble des nœuds, ε est l’ensemble des arcs, C = (ce)e∈ε est une matrice de coûts déVnie sur les

arcs, et q = (qi)i∈V est un vecteur de demandes pour un certain produit. Traditionnellement, le nœud

v0 est appelé dépôt, alors que les nœuds restants représentent des clients qui requièrent une certaine

quantité du produit considéré. Le VRP consiste à concevoir un ensemble de tournées de coût minimal

pour une Wotte illimitée de véhicules de capacité Q, commençant et Vnissant au dépôt, de telle sorte

que chaque client soit visité exactement une fois, tout en respectant la capacité des véhicules.

Cette déVnition a été étendue sous diverses formes pour modéliser une variété d’applications pra-

tiques. Parmi les contraintes additionnelles les plus étudiées se trouvent la prise en compte de fenêtres

de temps qui imposent de visiter un client durant une certaine période ; la prise en compte simultanée

des opérations de collecte et de livraison qui impose qu’un produit soit d’abord collecté à une certaine

position pour être ensuite livré à une autre, les contraintes de distances ou durées maximales qui li-

mitent le nombre de clients visités dans une tournée ; ou les contraintes d’accessibilité qui réduisent

l’ensemble des véhicules pouvant desservir un client. Par ailleurs, les variantes communes de la déVni-

tion originale du problème incluent la prise en compte de multiples dépôts, avec des véhicules pouvant

commencer et terminer leur tournées à des dépôts distincts ; des Wottes de véhicules hétérogènes et/ou

limitées. Finalement, d’autres problèmes proches considèrent des horizons multi-périodes ; la prise en

compte simultanée de la gestion de stocks ; les tournées à niveaux multiples dans lesquelles certains

véhicules alimentent des hubs desquels partent d’autres tournées de livraison ; des véhicules avec une

remorque pouvant être détachée pour servir des clients avec des contraintes d’accessibilité ; et des

problèmes de tournées sur les arcs dans lesquels la demande est localisée sur les arcs.

En parallèle de cette multitude de variantes, de nombreuses méthodes d’optimisation ont été propo-

sées pour résoudre les problèmes de tournées de véhicules. Nous renvoyons le lecteur vers les études de

la littérature de Baldacci et al. (2007), Cordeau et al. (2007), Laporte (2009), et Toth and Vigo (2002) pour

un panorama complet des méthodes exactes et approchées. La majorité des algorithmes et logiciels de

tournées de véhicules reposent sur l’hypothèse que toute l’information est connue avec certitude. Ce-

pendant, dans certaines applications, une partie ou l’ensemble des informations sont incertaines. Un

exemple fréquent est l’incertitude sur les temps de transport qui varient grandement, en fonction des

conditions météorologiques et de traVc, en particulier dans les zones urbaines. Ces problèmes sont

qualiVés de statiques et stochastiques et des exemples communs incluent des clients présents avec une

certaine probabilité, des temps de trajet et de service stochastiques, et enVn des demandes stochas-

tiques lorsque la demande des clients n’est connue que sous forme de probabilité.

Par ailleurs, les avancés récentes des moyens de communication et de géolocalisation permettent

aux entreprises de suivre et d’interagir avec leur Wotte en temps réel. Ces nouvelles technologies ont

amené à la création des systèmes de transport intelligents (Intelligent Transport Systems - ITS), et plus

précisément des système de gestion avancée de Wotte (Advanced Fleet Management Systems - AFMS),

qui combinent des solutions matérielles et logicielles pour présenter en temps réel l’information dis-
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ponible sur la Wotte, les clients, et les réseaux routiers. Le développement des ITS et AFMS crée de

nouveaux déVs et opportunités pour la recherche opérationnelle. Les tournées de véhicules ne sont

plus limitées à une conception a-priori de tournées ne pouvant être modiVées par la suite. À l’inverse,

les véhicules peuvent désormais être orientés en temps réel, déVnissant une nouvelle catégorie de pro-

blème de tournées dynamiques.

t0

C
A

B

D
E

a. Tournées initiales

t1

C
A

B

D
E

X

Y

b. Nouveaux clients

C
A

B

D
E

X

Y

tf

c. Tournées Vnales

Figure G.1 – Illustration d’un problème de tournées de véhicules dynamique.

La Vgure G.1 illustre le routage dynamique de deux véhicules. Initialement (G.1a.), deux tournées

sont déVnies pour servir l’ensemble des clients actuellement connus : (A,B,C) et (D,E). À l’instant

t1 et alors que les véhicules ont commencé leurs tournées (G.1b.), deux nouveaux client X et Y appa-

raissent. A ce stade, deux décisions doivent être prises : la première consiste a décider si les nouveaux

clients doivent être acceptés ou rejetés, la seconde a pour but d’insérer les clients acceptés dans les

tournées. Par exemple, le client X est proche de la seconde tournée et peut donc être accepté et inséré

entreD et E. En revanche, le client Y est éloigné des tournées et de la position actuelle des véhicules,

il est donc potentiellement impossible de le servir, ou son service impliquerait un coût trop important

(détour). En conséquence, la décision est prise de le rejeter. EnVn, les tournées Vnales sont (A,B,C)

et (D,X,E) (G.1c.). La qualité du routage dynamique des véhicules peut se mesurer en comparant les

tournées Vnales avec les tournées qui auraient pu être conçues en supposant connu l’ensemble des

clients acceptés. Cette solution, dite statique, est obtenue en résolvant le problème de tournées déVni

par les clients A, B, C , D, E, et X .

Le but de cette thèse est d’étudier l’état de l’art des approches dédiées aux tournées dynamiques ;

de concevoir des algorithmes innovants pour cette catégorie de problèmes ; d’implémenter des com-

posant logiciels génériques à la fois réutilisables, extensibles, et applicables à un grand nombre de

variantes ; d’appliquer les algorithmes proposés à un cas d’étude réel ; et, Vnalement, de rendre pu-

blique l’ensemble des contributions sous forme de librairies open-source pour accélérer les transferts

de technologies entre l’académie et l’industrie.

G.1 État de l’art sur les tournées dynamiques

Dans ce premier chapitre nous présentons une étude détaillée de la littérature traitant des pro-

blèmes de tournées de véhicules dynamiques. Dans un premier temps nous déVnissons une classiV-

cation des problèmes de tournées suivant deux axes : l’évolution et la qualité de l’information, ce qui
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conduit aux quatre catégories de problèmes identiVés dans le tableau G.1.

Qualité de l’information

Données déterministes Données stochastiques

Évolution de
l’information

Données connues à
l’avance

Statique et
déterministe

Statique et
stochastique

Données
changeantes

Dynamique et
déterministe

Dynamique et
stochastique

Table G.1 – ClassiVcation des problèmes de tournées de véhicules suivant l’évolution et la qualité de
l’information.

Les problèmes de la catégorie statique et déterministe correspondent aux variantes de la déVnition

originale du VRP dans lesquelles l’ensemble de l’information est connue de façon certaine a-priori.

Les problèmes statiques et stochastiques sont caractérisés par des données partiellement connues sous

forme de variables aléatoires dont la réalisation est révélée lors de l’exécution des tournées. Par ailleurs,

ils supposent que seules des modiVcations mineures peuvent être apportées aux tournées une fois les

véhicules partis, avec par exemple un retour anticipé au dépôt ou le non-service d’un client.

Les problèmes dynamiques et déterministes considèrent qu’une partie ou l’ensemble des données

est inconnu et révélé dynamiquement et de façon non-prévisible lors de l’exécution des tournées. Pour

ces problèmes, les tournées sont déVnies en temps réel, ce qui suppose la possibilité de communiquer

en temps réel avec les véhicules. Les problèmes dynamiques et stochastiques supposent eux qu’il est

possible de prévoir les changement dynamiques, par exemple en les modélisant sous forme de variables

aléatoires avec des distributions connues.

Ce chapitre se focalise sur les problèmes dynamiques et déterministes et dynamiques et stochas-

tiques. Dans un premier temps, nous étudions les diUérences avec les tournées de véhicules statiques

ainsi que diUérentes mesures pour évaluer le dynamisme d’un problème, et nous listons les applica-

tions les plus communes dans les domaines du transport de personnes, transport de marchandises, et

les services. Dans un second temps, nous dressons l’inventaire des méthodes proposées pour les pro-

blèmes dynamiques ainsi que des mesures de performance permettant leur comparaison. EnVn nous

concluons sur le panorama général de ce domaine et dessinons des directions de recherche.

G.1.1 Mesures de dynamisme

DiUérentes mesures ont été proposées pour évaluer le degré de dynamisme d’un problème.

Degré de dynamisme Lund et al. (1996) déVnissent le degré de dynamisme (degree of dynamism) δ

comme le ratio entre le nombre de clients dynamiques nd et le nombre total de clients ntot :

δ =
nd
ntot

(G.1)

Degré de dynamisme eUectif Remarquant que la date à laquelle les nouveaux clients apparaissent

est également important, Larsen (2001) propose le degré de dynamisme eUectif (eUective degree of dy-
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namism) δe. Soit T la longueur de l’horizon de planiVcation, R l’ensemble des clients, et ti l’heure

d’apparition du client i ∈ R. En supposant que les clients connus à l’avance ont une heure d’appari-

tion égale à 0, δe peut s’exprimer de la façon suivante :

δe =
1

ntot

∑
i∈R

ti
T

(G.2)

Dynamisme et urgence Larsen (2001) a également étendu le degré eUectif de dynamisme à des pro-

blèmes avec fenêtres de temps aVn de reWéter le niveau d’urgence des demandes. Il déVnit le temps de

réaction comme la diUérence entre la date d’apparition ti et la Vn de la fenêtre de temps correspon-

dante li, soulignant que les temps de réaction plus longs introduisent une plus grande Wexibilité pour

insérer la demande dans les tournées actuelles. Ainsi, le degré de dynamisme est étendue comme suit :

δeTW =
1

ntot

∑
i∈R

(
1− li − ti

T

)
(G.3)

Il est à noter que ces trois mesures prennent leurs valeurs dans l’intervalle [0, 1] et augmentent

avec le niveau de dynamisme d’un problème. Larsen et al. (2002, 2007) utilisent le degré eUectif de dy-

namisme pour classer les D-VRP entre problèmes faiblement, moyennement et fortement dynamiques,

avec des valeurs de δe inférieures à 0.3, comprise entre 0.3 et 0.8, et supérieures à 0.8 respectivement.

G.1.2 Approches pour les problèmes dynamiques et déterministes

Cette section présente les approches qui ont été appliquées avec succès au routage dynamique, en

l’absence d’information stochastique. Dans ce contexte, des données critiques sont révélées au Vl du

temps, ce qui signiVe que l’instance complète n’est connue qu’à la Vn de l’horizon de planiVcation. En

conséquence, les méthodes exactes ne fournissent une solution optimale que pour l’état actuel, mais ne

garantissent pas que la solution reste optimale lorsque de nouvelles données deviennent disponibles.

Par conséquent, la majorité des approches dynamiques s’appuient sur des heuristiques qui permettent

de calculer rapidement une solution à l’état actuel du problème. Les approches pour les problèmes dy-

namiques et déterministes peuvent être divisés en deux catégories : celles basées sur une réoptimisation

périodique, et celles basées sur une réoptimisation continue des tournées.

Réoptimisation périodique La Vgure G.1.2 présente un aperçu des approches réoptimisation pé-

riodique : l’algorithme commence au début de la journée par première optimisation produisant une

solution initiale S0. Ensuite, la procédure attend soit jusqu’au prochain changement dans les données

disponibles, soit pour une période de temps déterminée, puis réalise une nouvelle optimisation qui

conduit à mise à jour de la solution St+1. L’avantage des approches de réoptimisation périodiques est

qu’elles peuvent être basées sur des algorithmes développés pour les problèmes de tournées statiques.

Leur principal inconvénient est que l’optimisation doit être eUectuée avant la mise à jour de la solu-

tion, ce qui peut augmenter les délais pour le preneur de décision, tandis que la puissance de calcul est

inutilisée pendant les temps d’attente.
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Figure G.2 – Approches de réoptimisation périodique
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Figure G.3 – Approches de réoptimisation continue

Réoptimisation continue Les approches dites de réoptimisation continue sont basées sur un al-

gorithme d’optimisation qui s’execute tout au long de la journée. Comme l’illustre la Figure G.1.2,

la boucle d’optimisation stocke ses résultats dans une mémoire adaptative. En parallèle, une seconde

boucle utilise les données de la mémoire adaptative pour prendre des décisions, par exemple pour dé-

cider si un nouveau client peut être servi ou non, ou pour sélectionner le prochain client à aUecter à

un véhicule. L’avantage de ces approches est que l’utilisation de la puissance de calcul est maximisée,

au prix d’une implémentation plus complexe.

G.1.3 Approches pour les problèmes dynamiques et stochastiques

Les problèmes de tournées dynamiques et stochastiques peuvent être vus comme une extension de

leurs homologues déterministes, dans lesquels les données dynamiquement révélées peuvent être mo-

delées comme un processus stochastique. Les approches pour cette classe de problèmes peuvent être
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divisées en deux catégories : celles basées sur l’échantillonnage et celles basées sur la modélisation sto-

chastique. Comme leur nom l’indique, les stratégies d’échantillonage incorporent les informations sto-

chastiques en générant des scénarios basés sur une réalisation possible des variables aléatoires. Chaque

scénario est ensuite optimisé par la résolution du problème statique et déterministe qu’il déVnit. Les ap-

proches basées sur la modélisation stochastique intègrent quant à elles les informations stochastiques

analytiquement. L’avantage de l’échantillonnage est sa relative simplicité et sa Wexibilité, tandis que

son inconvénient est qu’il peut requérir de générer un grand nombre de scénarios pour reWéter Vdèle-

ment la réalité. Alternativement, les stratégies de modélisation stochastique saisissent formellement la

nature stochastique du problème, mais leur formulation et les algorithmes d’optimisation sous-jacents

sont plus complexes.

Référence de l’article présenté dans ce chapitre :

– Pillac, V., Gendreau, M., Guéret, C., and Medaglia, A. L. (2011) A review of dynamic vehicle

routing problems European Journal of Operational Research, Accepted manuscript,

doi :10.1016/j.ejor.2012.08.015.

Des versions précédentes de cet article ont été publiées comme rapports techniques avec réfé-

rences :

– Pillac, V., Gendreau, M., Guéret, C., and Medaglia, A. L. (2011) A review of dynamic vehicle

routing problems Technical report, CIRRELT. CIRRELT-2011-62.

– Pillac, V., Guéret, C., and Medaglia, A. L. (2010) Dynamic Vehicle Routing : State of the Art and

Prospects Technical report, École des Mines de Nantes, France. Report 10/4/AUTO.

G.2 Tournées dynamiques et déterministes

Dans ce chapitre nous proposons une méthode de réoptimisation rapide pour les tournées de vé-

hicules dynamiques et nous étudions des aspects bi-objectifs liés à la prise en compte de la constance

des tournées au cours de la journée.

G.2.1 Méthode de réoptimisation rapide

La méthode de réoptimisation proposée est basée sur l’algorithme de recherche adaptative à voisi-

nage large ALNS (Adaptive Large Neighborhood Search) proposée par Pisinger and Ropke (2007), lui

même une extension de la recherche à voisinages larges LNS (Large Neighborhood Search) introduite

par Shaw (1998). LNS consiste a successivement détruire puis réparer une solution courante. ALNS ra-

joute une couche adaptive qui sélectionne aléatoirement les opérateurs de destruction et de réparation

en fonction de leur performance antérieure.

L’algorithme G.1 présente l’approche ALNS. ALNS part d’une solution initiale Π0, puis, pour I ité-

rations l’algorithme choisit un opérateur de destruction et un opérateur de réparation (ligne 4) avec une

roulette qui reWète leur performance passée. Les opérateurs de destruction enlèvent un sous-ensemble

de clients de la solution courante, alors que les opérateurs de réparation les réinsèrent en utilisant
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Algorithm G.1 Adaptive Large Neighborhood Search (ALNS)

Input: Π0 initial solution, z evaluation function, Θ−/Θ+ set of destroy/repair operators, I number
of iterations

Output: Π∗ the best solution found
1: Π∗ ← Π0 . Initialize best solution
2: Π← Π0 . Initialize current solution
3: for I iterations do
4: d← select (Θ−) ; r ← select (Θ+) . Select destroy/repair
5: Π′ ← r (d (Π)) . Generate a neighbor
6: if accept (Π′,Π) then . Π′ is accepted as current solution
7: Π← Π′ . Update current solution
8: end if
9: if z(Π′) < z(Π∗) then . An Amélioration has been found
10: Π∗ ← Π′ . Update best solution
11: end if
12: updateScore (d, r,Π′) . Update scores
13: end for
14: return Π∗

diUérentes heuristiques (ligne 5). La solution obtenue est acceptée comme solution courante en fonc-

tion d’un critère de recuit simulé (ligne 6). À la Vn de chaque itération, les scores des opérateurs de

destruction et de réparation sont mis à jour en fonction de la solution qu’ils ont générée (ligne 12).

Cet algorithme a montré d’excellentes performances sur une grande variété de problèmes de tour-

nées (Pisinger and Ropke, 2010), le rendant particulièrement intéressant dans l’optique de développer

des approches génériques. Cependant, son caractère séquentiel fait qu’il n’utilise qu’une fraction des

ressources disponibles sur la majorité des ordinateurs modernes. Par conséquent, nous proposons un

schéma de parallélisation permettant d’utiliser au mieux ces ressources et de réduire ainsi les temps

de calcul. L’algorithme proposé, ou recherche adaptive parallèle à voisinages larges pALNS, repose sur

l’utilisation d’un ensemble de solutions prometteuses.

L’algorithme G.2 présente les grandes lignes de pALNS. L’algorithme maintient un ensemble P de

N solutions prometteuses qui sont optimisées parK sous-processus (notez queN ≥ K). Pour chaque

itération maître, un sous-ensemble deK solutions prometteuses est choisi au hasard (ligne 2) et répartis

entre les sous-processus indépendants. Chaque sous-processus exécute Ip ALNS itérations (lignes 3-

14) en détruisant et en réparant la solution actuelle Πp comme dans l’algorithme original ALNS. La

solution Vnale actuelle de chaque sous-processus est ajoutée à l’ensemble de solutions prometteuses

(ligne 13) et une procédure de Vltrage assure que cet ensemble contient au plusN solutions, y compris

la meilleure solution trouvée jusqu’alors (ligne 15). L’algorithme s’arrête après Im itérations maitres,

ce qui correspond à I = Im × Ip itérations ALNS. Notez que l’implémentation de pALNS assure

qu’aucune synchronisation n’est nécessaire entre les sous-processus pour éviter les deadlocks.

Le tableau G.2 présente les valeurs agrégées sur les 53 instances, avec dix tests par instance et

25000 itérations ALNS 1. La première colonne correspond à l’algorithme séquentiel original (SEQ), et

les suivantes aux implémentations parallèles avec de 1 à 8 threads. Les première et deuxième lignes

1. Pour que I = ImIpK ' 25000, nous avons utilisé Im =
⌈

25000
40K

⌉
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Algorithm G.2 Parallel Adaptive Large Neighborhood Search (pALNS)

Input: P initial solutions, z evaluation function, Θ−/Θ+ set of destroy/repair operators,N maximum
size of the solution pool, K number of subprocesses, Im number of master iterations, Ip number
of iterations performed in parallel.

Output: Π∗, the best solution found
1: for Im iterations do
2: P ′ ← selectSubset (P,K) . Select a subset ofK solutions
3: parallel forall Π in P ′ do
4: Πp ← Π . Current solution for this subprocess
5: for Ip iterations do
6: d← select (Θ−) ; r ← select (Θ+) . Select destroy/repair
7: Π′ ← r (d (Πp)) . Destroy and repair current solution
8: if accept (Π′,Πp) then
9: Πp ← Π′ . Π′ is accepted as current solution
10: end if
11: updateScore (d, r,Π′) . Update d and r scores
12: end for
13: P ← P ∪ {Πp} . Add Πp to the pool P
14: end forall
15: P ← retain (P, N) . Retain at most N solutions in the pool P
16: end for
17: return Π∗ = arg minΠ∈P {z(Π)}

contiennent la moyenne et l’écart-type des écarts aux meilleures solutions connues ou solutions opti-

males. EnVn, les troisième et quatrième lignes indiquent la moyenne et l’écart type des temps de calcul.

Notez que l’augmentation du nombre de threads a un impact limité sur l’écart avec les meilleures solu-

tions connues, lequel est toujours autour de 0,6%, mais elle permet une réduction des temps d’exécution

par un facteur 3,3.

Parallèle - Nombre de Threads
Seq. 1 2 3 4 5 6 7 8

Ecart 0.74% 0.72% 0.55% 0.69% 0.54% 0.70% 0.52% 0.66% 0.48%
Ecart (dev. st.) 0.87% 0.88% 0.76% 0.89% 0.70% 0.86% 0.74% 0.82% 0.66%
Temps (s) 36.58 37.32 22.07 17.60 14.70 14.69 13.39 12.37 11.32
Temps (s, dev. st.) 6.27 6.33 4.06 3.17 2.72 2.57 2.50 2.27 2.15

Table G.2 – Comparaison de l’écart avec les meilleurs et temps de calcul pour diUérents niveaux de
parallélisation.

La Vgure G.4 illustre l’approche de réoptimisation proposée : l’algorithme commence par produire

une solution initiale S0 en utilisant une heuristique constructive couplé avec l’algorithme pALNS décrit

dans la section précédente. Ensuite, chaque fois qu’un nouveau client apparaît, il Vxe la partie en cours

d’exécution des tournées, et réexécute pALNS pour un nombre limité d’itérations pour produire une

solution mise à jour S′t. Si pALNS est capable d’insérer la demande de nouveaux clients, le client est

accepté et S′t devient la nouvelle solution courante, sinon le client est rejeté et St est maintenue comme

solution actuelle.

Le tableau G.3 présente l’écart moyen entre la solution produite par la méthode de réoptimisation
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Figure G.4 – Approche de réoptimisation proposée

proposée et la solution optimale a-posteriori. Par ailleurs, le tableau G.4 compare l’approche proposée

avec la méthode proposée par Lackner (2004) et celle présentée par Hong (2012). Ces résultats expé-

rimentaux montrent que l’approche proposée produit des résultats proches de la solution optimale

a-posteriori et meilleurs que ceux rapportés par les études précédentes.

δ R1 C1 RC1 R2 C2 RC2 Moy.

10 2.05% 2.89% 3.06% 1.70% 1.66% 1.61% 2.14%
30 4.67% 5.83% 5.83% 4.34% 1.74% 4.70% 4.54%
50 6.41% 9.28% 9.03% 8.15% 2.82% 5.38% 6.93%
70 8.29% 11.18% 10.24% 10.17% 5.41% 8.60% 9.03%
90 9.33% 12.49% 11.84% 11.83% 6.51% 12.33% 10.71%

Table G.3 – Valeur de l’information moyenne pour les instances Lackner (2004)

G.2.2 Constance des tournées - une approche bi-objective

La plupart des études sur les tournées dynamiques considèrent que les tournées sont conçues en

temps réel, ce qui signiVe que les conducteurs de véhicules ne connaissent leur prochaine destination

qu’à la Vn du service du client actuel. Bien que cette hypothèse permette une meilleure optimisation

de la fonction de coût, elle peut ne pas être souhaitable si les conducteurs sont habitués à connaître

leurs itinéraires au début de la journée. Dans la pratique, avoir un ensemble de tournées connues a

priori et ensuite modiVées peut être souhaitable. Il y a donc un besoin pour des approches capables de

maintenir une cohérence dans les tournées des véhicules tout au long de la journée, tout en minimisant

le coût total.

Les études sur les tournées dynamiques considèrent l’optimisation d’un critère unique, comme
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pALNS Hong (2012) Lackner (2004)

Groupe δ Dist. Rej. Dist. Rej. Dist. Rej.

R1 10 1197.4 0.25 1257.1 ( 4.99%) 0.17 1278.1 ( 6.74%) 0.47
30 1212.9 0.80 1286.6 ( 6.08%) 0.58 1337.9 ( 10.30%) 0.72
50 1225.0 1.25 1295.8 ( 5.78%) 0.67 1330.0 ( 8.57%) 0.78
70 1237.3 1.71 1331.3 ( 7.60%) 1.75 1336.1 ( 7.98%) 0.94
90 1230.1 2.55 1335.9 ( 8.60%) 2.33 1278.3 ( 3.92%) 0.75

C1 10 850.6 0.11 895.8 ( 5.31%) 0.22 996.4 ( 17.14%) 0.00
30 874.9 0.11 962.1 ( 9.97%) 0.33 1066.9 ( 21.95%) 0.00
50 903.4 0.11 1001.2 ( 10.82%) 0.22 1236.1 ( 36.82%) 0.00
70 919.1 0.11 1031.7 ( 12.25%) 0.22 1261.3 ( 37.24%) 0.00
90 929.9 0.11 1039.8 ( 11.81%) 0.22 1479.6 ( 59.11%) 0.00

RC1 10 1389.4 0.04 1436.2 ( 3.37%) 1.13 1426.9 ( 2.70%) 0.46
30 1421.5 0.28 1492.2 ( 4.98%) 1.13 1439.7 ( 1.28%) 0.42
50 1463.4 0.23 1514.7 ( 3.50%) 1.38 1448.1 ( -1.05%) 0.46
70 1470.1 0.58 1511.3 ( 2.80%) 1.88 1488.4 ( 1.25%) 0.58
90 1495.5 0.51 1513.9 ( 1.23%) 2.00 1475.2 ( -1.36%) 0.42

R2 10 893.0 0.00 950.0 ( 6.39%) 0.09 1052.9 ( 17.90%) 0.03
30 915.6 0.00 985.5 ( 7.63%) 0.00 1085.4 ( 18.54%) 0.15
50 948.6 0.00 1016.5 ( 7.17%) 0.00 1138.8 ( 20.05%) 0.21
70 967.7 0.00 1032.0 ( 6.65%) 0.09 1116.9 ( 15.42%) 0.30
90 981.7 0.00 1047.8 ( 6.73%) 0.09 1193.3 ( 21.55%) 0.52

C2 10 597.2 0.00 594.7 ( -0.42%) 0.00 629.1 ( 5.35%) 0.00
30 597.6 0.00 651.4 ( 9.01%) 0.00 632.3 ( 5.81%) 0.04
50 604.0 0.00 605.0 ( 0.17%) 0.00 689.3 ( 14.12%) 0.13
70 619.2 0.00 636.5 ( 2.79%) 0.00 743.8 ( 20.12%) 0.21
90 625.7 0.00 636.8 ( 1.78%) 0.00 792.5 ( 26.66%) 0.29

RC2 10 1024.4 0.00 1103.3 ( 7.70%) 0.00 1220.9 ( 19.18%) 0.00
30 1053.1 0.00 1166.0 ( 10.73%) 0.25 1244.9 ( 18.21%) 0.04
50 1060.5 0.00 1190.5 ( 12.26%) 0.13 1244.9 ( 17.38%) 0.00
70 1091.4 0.00 1239.5 ( 13.57%) 0.00 1269.3 ( 16.30%) 0.00
90 1130.3 0.00 1257.2 ( 11.23%) 0.13 1346.8 ( 19.16%) 0.13

Moyenne 0.29 (+6.75%) 0.50 (+15.61%) 0.27

Table G.4 – Comparaison des approches pour les instances Lackner (2004).
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la minimisation de la distance totale parcourue ou la maximisation du nombre de clients desservis.

D’autre part, un nombre croissant d’études sur les tournées statiques prend en compte des objectifs

multiples dans le but de mieux répondre aux diUérents contextes opérationnels (Jozefowiez et al., 2008).

Dans cette section, nous présentons une étude préliminaire qui prend en compte la gêne des

conducteurs. L’approche proposée est une adaptation de l’algorithme pALNS qui minimise simulta-

nément une fonction de coût et maximise la constance des tournées tout au long de la journée. Les ré-

sultats expérimentaux préliminaires montrent que pour les instances faiblement dynamiques il semble

intéressant de favoriser la constance des tournées, alors que pour les instances fortement dynamiques

il est plus proVtable de ne considerer que la minimisation de la fonction de coût.

Référence de l’article présenté dans ce chapitre :

– Pillac, V., Guéret, C., and Medaglia, A. L. (2012) A fast re-optimization approach for dynamic

vehicle routing Technical report, École des Mines de Nantes, France. Report 12/6/AUTO.

Des résultats préliminaires sur le cas bi-objectifs ont été présentés à la conférence ROADEF 2012 :

– Pillac, V., Guéret, C., and Medaglia, A. L. (2012) Route stability in dynamic vehicle routing : a

bi-objective approach In ROADEF 2012, Angers, France.

G.3 Tournées dynamiques et stochastiques

Dans les problèmes de tournées dynamiques et stochastiques, tout ou partie des données n’est pas

connue initialement et est révélée dynamiquement au cours de l’exécution des tournées. Cependant, à

la diUérence des problèmes dynamiques et déterministes, des informations stochastiques exploitables

sont disponibles et permettent de prévoir les changements. Notre accent étant mis sur le développe-

ment de composants logiciels qui peuvent être utilisés pour une large gamme d’applications, nous

avons choisi de développer un framework (jMSA) orienté évènements basé sur l’approche multiples

scénarios MSA (Multiple Scenario Approach) proposé par Van Hentenryck and Bent (2006). Dans ce

chapitre, nous présentons le framework jMSA, son implémentation, puis nous illustrons la validité de

cette approche en abordant le problème de tournées dynamiques avec demandes stochastiques (D-

VRPSD).

G.3.1 Multiple Scenario Approach

MSA est une méthode de réoptimisation continue qui capture l’incertain en générant des scénarios

ensuite utilisés pour prendre les décisions.

La Vgure G.5 illustre la génération d’un scénario. En ne considérant que les clients connus actuel-

lement (G.5a.) la tournée optimale a-priori s’éloigne d’une région où des clients sont susceptibles d’ap-

paraître en début de matinée (zone verte). L’échantillonnage (G.5b.) génère des clients Vctifs dans cette

zone et permet d’orienter l’optimisation vers une tournée qui visite en premier cette région (G.5c.).

Une fois un nombre suXsant de scénarios généré, une procédure de décision est utilisée pour agréger

l’information contenue dans chacun des scénario aVn de prendre des décisions qui tiennent compte de

la stochasticité du problème.
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Figure G.5 – Génération de scenarios dans MSA

G.3.2 Framework proposé

La Vgure G.6 présente une vue d’ensemble du framework proposé. Le composant central est MSA-

Procedure qui contient la logique générale de la méthode, et dont les paramètres sont déVnis dans

GlobalParameters. Notre implémentation repose sur une Vle d’évènements EventQueue. La procé-

dure principale extrait le premier évènement de la Vle et sélectionne le handler correspondant dans

le EventHandlerManager. Le handler contient la logique nécessaire au traitement de l’évènement à

un niveau indépendant du problème considéré. AVn d’assurer la généricité du framework, la logique

spéciVque à un problème est déléguée aux implémentations des diUérents composants, lesquels sont

gérés par le ComponentManager. Dans cet exemple, la logique relative à la génération d’un scena-

rio est déVnie par la classe concrète DVRPScenarioGenerator, qui implémente l’interface Scenario

Generator. EnVn, un système de callbacks permet à l’utilisateur d’interagir avec la méthode sans de-

voir modiVer le code du framework, via le CallbackManager et des implémentations de l’interface

Callback.

Un aspect important du framework est la parallélisation transparente des opérations les plus exi-

geantes en temps de calcul. La Vgure G.7 illustre les interactions entre threads (Vls d’exécution) dans le

framework jMSA. À l’instant t0, le thread MSA déVle un évènement OptimizePool, et le traite avec le

handler OptimizeHandler correspondant. En parallèle du thread MSA, deux nouveaux threads sont

créés par le ComponentManager pour optimiser les scénarios. À l’instant t1, un évènement préemptif

NewCustomer et un évènement Decision sont enVlés par l’environnement, causant l’arrêt prématuré

de l’optimisation. EnVn, la procédure déVle et traite l’évènement NewCustomer, lequel a une priorité

plus élevée que l’évènement Decision.

G.3.3 Résultats expérimentaux

La diUérence fondamentale entre le VRP classique et le VRP avec demandes stochastiques (VRPSD)

est que dans ce dernier les demandes des clients sont modélisées par des variables aléatoires. Le ca-

ractère aléatoire du VRPSD implique que la réalisation de la demande des clients peut dépasser la

capacité restante du véhicule, conduisant à l’échec de la tournée. Il est important de souligner que,

dans ce contexte, tous les clients sont connus à l’avance et la seule information révélée dynamique est

la réalisation de la demande des clients. Le VRPSD dynamique (D-VRPSD) est une extension du VRPSD

dans laquelle il est possible de rediriger les véhicules librement suivant la réalisation des demandes.

LUNAM - EMN - Uniandes 181/192 Pillac V. - Ph D. Dissertation



ANNEXE G. RÉSUMÉ G.3. TOURNÉES DYNAMIQUES ET STOCHASTIQUES

Problem layer

Kernel

MSA 
Procedure

Event 
Handler 
Manager

Callback 
Manager

Component 
Manager

Scenario 
Pool

Global 
Parameters

Generate 
Handler

Optimize 
handler

Decision 
Handler

Scenario 
Generator

Scenario 
Optimizer Decision Scenario

DVRP 
Scenario 
Generator

VRP 
Scenario 
Optimizer

Consensus VRP
Scenario

jMSA framework

Callback

ComponentInterface Inheritance AssociationCore componentLegend:

Event 
Queue

Figure G.6 – Vue d’ensemble du framework jMSA

La littérature sur le D-VRPSD est limitée, avec comme contributions principales les études de Novoa

(2005), Novoa and Storer (2009), Secomandi (2001), et Secomandi and Margot (2009).

Groupee d’instances (taille,capacité)
Algorithme (30,137) (30,87) (40,183) (40,116) (60,274) (60,175) Moyenne
1s_n2_r (Secomandi, 2001) 12.3% 11.8% 11.1% 12.9% 13.9% 19.6% 13.6%
1s_stostat_r (Novoa and Storer, 2009) 4.7% 5.1% 3.7% 5.3% 3.5% 12.3% 5.8%
2s_stostat_r (Novoa and Storer, 2009) 3.5% 3.6% 3.0% 5.4% 2.8% 10.7% 4.8%
jMSA 0.9% 4.1% 3.5% 6.3% 2.9% 2.0% 3.3%

Table G.5 – Comparaison des valeurs d’information moyennes.

Le tableau G.5 présente les résultats pour les 30 instances de référence proposées par Novoa (2005),

chaque colonne représentant la moyenne sur 500 essais (100 essais pour chacune des 5 instances avec

la même taille et la même capacité). MSA domine l’algorithme proposé par Secomandi (2001) (1s_n2_r),

et surpasse les meilleurs algorithmes rapportés par Novoa and Storer (2009) (1s_stostat_r, 2s_stostat_r)

pour les instances avec 30 et 60 clients et une capacité de 137 véhicules et 175. En outre, la MSA montre

de meilleurs résultats globaux avec un écart moyen de 3,3% contre 4,8 % pour 2s_stostat_r, 5,8 % pour

1s_stostat, et 13,6 % pour 1s_n2_r. Mises à part les performances en termes de valeur de l’information,

il est important de souligner que MSA fonctionne en continu, et le prochain client à visiter est sélec-

tionné en une fraction de seconde, tandis que les autres algorithmes peuvent prendre jusqu’à plusieurs

minutes pour prendre une telle décision, ce qui limite leur déploiement et leur applicabilité dans un

système d’aide à la décision.
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Figure G.7 – Parallelisation dans jMSA

Référence de l’article présenté dans ce chapitre :

– Pillac, V., Guéret, C., and Medaglia, A. L. (2012) An event-driven optimization fra-

mework for dynamic vehicle routing Decision Support Systems, Accepted manuscript

doi :10.1016/j.dss.2012.06.007.

Une version précédente de cet article a été publiée comme rapport technique :

– Pillac, V., Guéret, C., and Medaglia, A. L. (2011) An event-driven optimization framework

for dynamic vehicle routing Technical report, École des Mines de Nantes, France. Report

11/2/AUTO.

LUNAM - EMN - Uniandes 183/192 Pillac V. - Ph D. Dissertation

http://dx.doi.org/10.1016/j.dss.2012.06.007


ANNEXE G. RÉSUMÉ G.4. TOURNÉES DE TECHNICIENS

Des résultats préliminaires ont été présentées dans deux conférences :

– Pillac, V., Guéret, C., and Medaglia, A. L. (2011) A dynamic approach for the vehicle routing

problem with stochastic demands In ROADEF 2011, St Etienne, France.

– Pillac, V., Guéret, C., and Medaglia, A. L. (2010) Solving the vehicle routing problem with sto-

chastic demands with a multiple scenario approach

In ALIO-INFORMS 2010, Buenos Aires (Argentina).

G.4 Application au problème de tournées de techniciens

Les deux articles présentées dans ce chapitre sont motivés par un problème d’optimisation réel pré-

senté par un partenaire industriel. Cette société fournit des solutions logicielles à destination d’organi-

sations gèrant une équipe de techniciens pour servir un ensemble de requêtes distribuées géographi-

quement. Ces requêtes peuvent être soit statiques soit dynamiques. Les requêtes statiques sont connues

à l’avance et correspondent aux rendez-vous avec des clients ou des opérations de maintenance pré-

ventive. Les demandes dynamiques apparaissent dynamiquement tout au long de la journée et sont, par

exemple, les situations d’urgence ou des opérations de maintenance corrective. Les requêtes peuvent

nécessiter un technicien avec des compétences diUérentes, un certain ensemble d’outils, et un certain

nombre de pièces de rechange. En outre, les techniciens commencent et terminent généralement leur

journée à leur domicile, et peuvent visiter un dépôt central pour récupérer des outils et des pièces de

rechange. EnVn, les objectifs comprennent la minimisation de la distance parcourue, la minimisation

du temps de travail, l’équilibrage de la charge de travail entre les techniciens, et la minimisation des

violations de contraintes.

A partir de cette application pratique, nous avons introduit un nouveau problème d’optimisation,

à savoir, le problème de planiVcation de tournées de technicien (TRSP - Technician Routing and Sche-

duling Problem) qui considère une équipe de techniciens K qui sert un ensemble de requêtes R. Le
TRSP peut être vu comme une extension du problème de tournées de véhicules avec fenêtres de temps

(VRPTW), où les techniciens jouent le rôle de véhicules et les requêtes sont faites par les clients.

Comme illustré par la Vgure G.8, dans le TRSP, chaque technicien dispose d’un ensemble de com-

pétences, d’outils et de pièces de rechange, tandis que les requêtes nécessitent un sous-ensemble de

chaque. Le problème est alors de concevoir un ensemble de tournées tels que chaque requête soit vi-

sitée dans sa fenêtre de temps, par un technicien ayant les compétences, outils, et pièces de rechange

requises.

Un trait distinctif de ce problème est qu’il introduit plusieurs contraintes de compatibilité entre les

techniciens et les demandes. Si les compétences sont des attributs intrinsèques, les techniciens peuvent

disposer de diUérents outils et pièces de rechange sur l’horizon de planiVcation. Les techniciens com-

mencent leur tournée à leur domicile, avec un ensemble d’outils (ressources renouvelables) et de pièces

de rechange (consommées une fois que le technicien sert une requête) qui leur permettent de servir

une première série de requêtes. Les techniciens ont alors l’opportunité de renouveler leurs outils et

pièces de rechange dans un dépôt central à tout moment pour servir plus de requêtes.

Le TRSP se pose naturellement dans une large gamme d’applications, avec entre autres les télé-

communications, les services publics, et les opérations de maintenance. Cependant ce problème n’a
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Figure G.8 – Exemple d’un problème de tournées et planiVcation de techniciens.

reçu que peu d’attention jusqu’à récemment, et les compétences, les outils, les pièces de rechange, et

l’arrivée de nouvelles demandes, trois composantes importantes des applications réelles, n’ont pas été

simultanément prises en compte. L’article de la section G.4.1 introduit une matheuristique parallèle

capable de résoudre le TRSP statique, tandis que l’article de la section G.4.2 présente deux approches

pour attaquer le TRSP dynamique

G.4.1 Cas statique

La matheuristique proposée pour résoudre le TRSP est basée sur l’algorithme pALNS présenté dans

la section G.2.1, couplé avec un problème de recouvrement (SC - Set Covering) qui permet d’assembler

une solution à partir des tournées trouvées tout au long de l’exécution de pALNS. Le tableau G.6

présente des résultats expérimentaux sur les instances du VRPTW de Solomon (1987), et illustre la

performance de l’approche proposée qui est capable d’atteindre un écart de seulement 0,23% en moins

de 30s en moyenne.

Amélioration Ecart MSC/Opt Meilleures solutions Temps (s)

Groupe ∆pALNS ∆SC pALNS pALNS+SC #Opt. #MSC pALNS SC |Ω|

C1 37.89% 0.00% 0.00% 0.00% 9/9 - 14.6 0.4 11550
C2 26.41% 0.02% 0.02% 0.00% 8/8 - 26.5 0.2 3479
R1 24.28% 0.44% 0.59% 0.14% 10/12 - 13.1 27.2 27303
R2 32.21% 0.25% 0.76% 0.51% 5/10 1/1 24.5 2.1 14161
RC1 25.06% 1.21% 1.38% 0.15% 6/8 - 12.6 25.1 25327
RC2 36.56% 0.43% 0.99% 0.55% 6/8 - 21.3 1.3 11822

Total 30.20% 0.38% 0.62% 0.23% 44/55 1/1 18.6 10.1 16293

Table G.6 – Résultats expérimentaux pour les instances de Solomon (1987) (moyenne sur 10 essais),
MSC : meilleures solutions connues, Opt : solutions optimales..

Par ailleurs, le tableau G.7 présente les résultats expérimentaux pour un ensemble de 56 instances

du TRSP générées aléatoirement à partir des instances de Solomon (1987). Les résultats mettent en

évidence l’apport de la post-optimisation (SC) qui permet de réduire l’écart de 1.7% en moyenne. Il est
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également à noter que les temps de calcul pour la post-optimisation (SC) sont nettement supérieurs

à ceux observés pour le VRPTW, ce qui peut être attribué à des contraintes additionnelles dans le

problème de recouvrement.

Amélioration Ecart MSC Temps (s)

Groupe ∆SC pALNS pALNS+SC pALNS SC |Ω|

C1 0.97% 1.22% 0.23% 24.0 388.9 67020
C2 0.35% 0.78% 0.42% 27.8 23.6 39334
R1 3.62% 4.96% 0.82% 28.9 500.2 30783
R2 0.23% 1.69% 1.46% 31.0 42.1 24396
RC1 3.06% 3.90% 0.68% 27.9 185.8 18638
RC2 0.49% 1.93% 1.43% 27.9 15.6 16917

Total 1.53% 2.54% 0.86% 28.1 210.1 32858

Table G.7 – Résultats expérimentaux pour 56 instances générées aléatoirement.

Référence de l’article présenté dans ce chapitre :

– Pillac, V., Guéret, C., and Medaglia, A. L. (2011) A parallel matheuristic for the technician rou-

ting and scheduling problem Optimization Letters, Accepted manuscript, doi :10.1007/s11590-

012-0567-4.

Des résultats préliminaires de ce travail ont été présentés à la conférence MIC 2011 :

– Pillac, V., Guéret, C., and Medaglia, A. L. (2011) On the technician routing and scheduling pro-

blem In Di Gaspero, L., Schaerf, A., and Stützle, T., editors, Proceedings of the 9th Metaheuristics

Conference (MIC 2011), pages 675–678. Università degli Studi di Udine.

G.4.2 Cas dynamique

Nous avons traité le cas dynamique du TRSP avec trois approches : la réoptimisation rapide basée

sur pALNS proposée dans la section G.2.1 ; une approche par plans multiples MPA (Multiple Plan

Approach), qui est une réduction au cas déterministe de MSA, implémentée dans le framework jMSA ;

et une heuristique simple (regret-3) permettant de modéliser le comportement d’un preneur de décision

humain.

pALNS MPA regret-3

δ Ecart (%) Rej. Ecart (%) Rej. Ecart (%) Rej.

10 2.4 0.1 9.1 1.9 10.5 0.3
30 5.4 0.1 11.0 4.6 30.5 0.4
50 10.8 0.3 14.4 5.6 44.1 1.0
70 11.8 0.2 21.3 8.7 57.5 1.2
90 17.9 0.4 23.9 8.1 64.1 1.4

Moy. 9.7 0.2 16.1 5.9 41.3 0.8

Table G.8 – Ecart moyen avec la solution a-posteriori et nombre de requêtes rejetées (Rej.) pour les
instances du D-TRSP en minimisant la distance totale.
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Le tableau G.8 présente une comparaison de ces trois méthodes. Il apparaît que pALNS domine

clairement les deux autres approches tant en termes d’écart avec la solution a-posteriori, qu’en termes

de nombre de requêtes rejetées. Il est à noter cependant que les résultats de MPA sont à un stade

préliminaire, et donc perfectibles.

Référence de l’article présenté dans ce chapitre :

– Pillac, V., Guéret, C., and Medaglia, A. L. (2011) On the dynamic technician routing and sche-

duling problem Technical report 12/5/AUTO.

Des travaux préliminaires ont été présentés aux conférences suivantes :

– Pillac, V., Guéret, C., and Medaglia, A. L. (2012) A Multiple Plan Approach for the Dynamic

Technician Routing and Scheduling Problem In 25th European Conference on Operational Re-

search (EURO 2012), Vilnius, Lithuania.

– Pillac, V., Guéret, C., and Medaglia, A. L. (2012) On the dynamic technician routing and sche-

duling problem In Proceedings of the 5th International Workshop on Freight Transportation and

Logistics (ODYSSEUS 2012), Mykonos, Greece.

G.5 Conclusions

Les progrés technologiques récents fournissent aux organisations les outils adaptés pour gérer leur

Wotte en temps réel. Cependant, ces nouvelles technologies introduisent également plus de complexité

dans la gestion des Wottes de véhicules, révélant un besoin pour des systèmes d’aide à la décision dédiés

aux problèmes de tournées de véhicules dynamiques. Dans ce contexte, les contributions de la présente

thèse sont les suivantes : premièrement, nous avons présenté une étude exhaustive de la littérature ;

deuxièmement, nous avons conçu, implémenté, et rendu publiques des frameworks d’optimisation à

la fois Wexibles et extensibles capables de traiter une grande variété de problèmes de tournées dyna-

miques ; et troisièmement, nous avons déVni et attaqué un problème de tournées rencontré par un

partenaire industriel.

Nous estimons que les travaux futurs devraient se centrer autour du développement d’approches

de réoptimisation continue simples et Wexibles, par exemple en étendant l’algorithme pALNS présenté

dans cette thèse. Il serait également intéressant de trouver des stratégies pour limiter la complexité des

problèmes d’optimisation sous-jacents, par exemple en mettant plus d’eUort sur l’optimisation du futur

proche, ou en éliminant des scénarios trop pessimistes. EnVn, une attention particulière devrait être

mise sur la conception de nouvelles procédures permettant de consolider l’information contenue dans

un ensemble de scénarios pour prendre de meilleurs décisions en un temps plus court.

La gestion en temps réel d’une Wotte de véhicules soulève de nombreux problèmes, tant théoriques

que pratiques, et nécessite le développement d’algorithmes rapides et eXcaces. Bien que ce domaine

ait reçu un intérêt croissant au cours des dernières décennies, il existe toujours de nombreuses op-

portunités de recherche et nous espérons que la présente thèse sera une source de réWexion pour des

travaux futurs.
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Méthodes de résolution et outils informatiques
pour les tournées de véhicules dynamiques

Résumé
Les activités de transport jouent un rôle crucial au-
tant dans le domaine de la production que dans
celui des services. En particulier, elles permettent
d’assurer la distribution de biens et de services
entre fournisseurs, unités de production, entre-
pôts, distributeurs, et clients finaux. Plus spécifi-
quement, les problèmes de tournées de véhicules
(VRP) considèrent la mise au point d’un ensemble
de tournées de coût minimal servant la demande
en biens ou en services d’un ensemble de clients
distribués géographiquement, tout en vérifiant un
ensemble de contraintes opérationnelles. Alors
qu’il s’agissait d’un problème statique, des avan-
cées technologiques récentes permettent aux or-
ganisations de gérer leur flotte de véhicules en
temps réel. Cependant, ces nouvelles technolo-
gies introduisent également une plus grande com-
plexité dans les tâches de gestion de flotte, révé-
lant une demande pour des outils d’aide à la dé-
cision dédiés aux problèmes de tournées de vé-
hicules dynamiques. Dans ce contexte, les contri-
butions de la présente thèse de doctorat s’orga-
nisent autour de trois axes : (i) elle présente un
état de l’art détaillé des problèmes de tournées dy-
namiques ; (ii) elle introduit des frameworks d’opti-
misation génériques adaptés à une grande variété
de problèmes ; (iii) elle définit un problème de tour-
nées novateur et aux nombreuses applications.

Abstract
Within the wide scope of logistics management,
transportation plays a central role and is a crucial
activity in both production and service industry.
Among others, it allows for the timely distribution
of goods and services between suppliers, produc-
tion units, warehouses, retailers, and final custo-
mers. More specifically, Vehicle Routing Problems
(VRPs) deal with the design of a set of minimal-
cost routes that serve the demand for goods or
services of a set of geographically spread custo-
mers, satisfying a group of operational constraints.
While it was traditionally a static problem, recent
technological advances provide organizations with
the right tools to manage their vehicle fleet in real
time. Nonetheless, these new technologies also
introduce more complexity in fleet management
tasks, unveiling the need for decision support sys-
tems dedicated to dynamic vehicle routing. In this
context, the contributions of this Ph.D. thesis are
threefold : (i) it presents a comprehensive review
of the literature on dynamic vehicle routing ; (ii)
it introduces flexible optimization frameworks that
can cope with a wide variety of dynamic vehicle
routing problems ; (iii) it defines a new vehicle rou-
ting problem with numerous applications.
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Tournées de véhicules dynamiques ; optimisation
bi-objectif ; optimisation combinatoire en temps
réel ; tournées de techniciens
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Dynamic vehicle routing ; bi-objective
optimization ; online combinatorial optimization ;
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