Mouvement brownien branchant avec sélection

Soutenance de thèse de Pascal MAILLARD

effectuée sous la direction de Zhan SHI

Jury
Brigitte CHAUVIN, Francis COMETS, Bernard DERRIDA, Yueyun HU, Andreas KYPRIANOU, Zhan SHI

Rapporteurs
Andreas KYPRIANOU, Ofer ZEITOUNI

Université Pierre et Marie Curie
11 octobre 2012
Thesis structure

Introduction + 3 chapters:

1. The number of absorbed individuals in branching Brownian motion with a barrier
2. Branching Brownian motion with selection of the N right-most particles
3. A note on stable point processes occurring in branching Brownian motion
Thesis structure

Introduction + 3 chapters:

1. The number of absorbed individuals in branching Brownian motion with a barrier
2. Branching Brownian motion with selection of the N right-most particles
3. A note on stable point processes occurring in branching Brownian motion

In this presentation: Chapters 1 and 2.
Branching Brownian motion (BBM)

Definition

- A particle performs **standard Brownian motion** started at a point \(x \in \mathbb{R} \).
Definition

- A particle performs **standard Brownian motion** started at a point \(x \in \mathbb{R} \).
- With rate \(\beta \), it **branches**, i.e. it dies and spawns \(L \) offspring (\(L \) being a random variable).
Branching Brownian motion (BBM)

Definition

- A particle performs **standard Brownian motion** started at a point $x \in \mathbb{R}$.
- With rate β, it **branches**, i.e. it dies and spawns L offspring (L being a random variable).
- Each offspring repeats this process independently of the others.
Definition

- A particle performs **standard Brownian motion** started at a point $x \in \mathbb{R}$.
- With rate β, it **branches**, i.e. it dies and spawns L offspring (L being a random variable).
- Each offspring repeats this process independently of the others.

→ **A Brownian motion** indexed by a **tree**.
Introduction

Branching Brownian motion (BBM) (2)

Context

- An example of a multitype branching process (type space: \mathbb{R})

\[x \sim \exp(\beta) \]

\[\text{time} \downarrow \]

\[\text{position} \rightarrow \]

Pascal MAILLARD

Mouvement brownien branchant avec sélection 5 / 33
Branching Brownian motion (BBM) (2)

Context

- An example of a multitype branching process (type space: \mathbb{R})
- Discrete counterpart: branching random walk

$$x \sim \exp(\beta).$$
Introduction

Branching Brownian motion (BBM) (2)

Context

- An example of a multitype branching process (type space: \(\mathbb{R} \))
- Discrete counterpart: branching random walk
- Interpretations:
 - Model for an asexual population undergoing mutation (position = fitness)
 - Spin glass (with infinitely deep hierarchy)
 - Directed polymer on a tree
 - Prototype of a travelling wave

\[\sim \exp(\beta) \]
We always suppose $m := \mathbb{E}[L] - 1 > 0$.

Right-most particle

Let R_t be the position of the right-most particle. Then, as $t \to \infty$, almost surely on the event of survival,

$$\frac{R_t}{t} \to \sqrt{2\beta m}.$$
We always suppose
\[m := \mathbb{E}[L] - 1 > 0. \]

Right-most particle
Let \(R_t \) be the position of the right-most particle. Then, as \(t \to \infty \), almost surely on the event of survival,
\[
\frac{R_t}{t} \to \sqrt{2\beta m}.
\]

Convention
We will henceforth set
\[\beta = 1/(2m). \]
Let $g : \mathbb{R} \rightarrow [0, 1]$ be measurable. Define

$$u(t, x) = \mathbb{E}_x \left[\prod_{u \in \mathcal{N}_t} g(X_u(t)) \right].$$

Then u satisfies the following partial differential equation:

Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) equation

\[
\begin{aligned}
\partial_t u &= \frac{1}{2} \partial_x^2 u + \beta (\mathbb{E}[u^L] - u) \\
\quad u(0, x) &= g(x) \quad \text{(initial condition)}
\end{aligned}
\]

The prototype of a parabolic PDE admitting travelling wave solutions.
Two models of BBM with selection:

1. **BBM with absorption**: Let \(f(t) \) be a continuous function (the barrier). Kill an individual as soon as its position is less than \(f(t) \) (one-sided FKPP).

2. **BBM with constant population size (N-BBM)**: Fix \(N \in \mathbb{N} \). As soon as the number of individuals exceeds \(N \), kill the left-most individuals until the population size equals \(N \) (noisy FKPP).

\[y = -x + ct \]
Two models of BBM with selection:

1. **BBM with absorption**: Let $f(t)$ be a continuous function (the barrier). Kill an individual as soon as its position is less than $f(t)$ (one-sided FKPP).

$$y = -x + ct$$
Selection

Two models of BBM with selection:

1. **BBM with absorption**: Let \(f(t) \) be a continuous function (the barrier). Kill an individual as soon as its position is less than \(f(t) \) (one-sided FKPP).

2. **BBM with constant population size (\(N \)-BBM)**: Fix \(N \in \mathbb{N} \). As soon as the number of individuals exceeds \(N \), kill the left-most individuals until the population size equals \(N \) (noisy FKPP).
Outline

1. Introduction

2. Branching Brownian motion with absorption
 - Results
 - Proof idea

3. BBM with constant population size

4. Perspectives
We take $f(t) = -x + ct$ (linear barrier).

Vast literature, known results (sample):

- almost sure extinction $\Leftrightarrow c \geq 1$
 ($c = 1$: critical case
 $c > 1$: supercritical case)

- growth rates for $c < 1$.

- asymptotics for extinction
 probability for $c = 1 - \varepsilon$, ε small

We are interested in the number of absorbed individuals in the case $c \geq 1$
(question raised by D. Aldous).
Our results (critical case)

Let Z_x denote the number of individuals absorbed at the line $-x + ct$.

Theorem

Assume that $c = 1$ and that $\mathbb{E}[L(\log L)^2] < \infty$. For each $x > 0$,

$$
\mathbb{P}(Z_x > n) \sim \frac{x e^x}{n(\log n)^2}, \quad \text{as } n \to \infty.
$$

If, furthermore, $\mathbb{E}s^L < \infty$ for some $s > 1$, then

$$
\mathbb{P}(Z_x = \delta n + 1) \sim \frac{x e^x}{\delta n^2(\log n)^2}, \quad \text{as } n \to \infty,
$$

where δ is the span of $L - 1$.
Our results (supercritical case)

Theorem

Assume that $c > 1$ and that $\mathbb{E}[s^L] < \infty$ for some $s > 1$. Let $\lambda_c < \bar{\lambda}_c$ be the roots of the equation $\lambda^2 - 2c\lambda + 1 = 0$ and define $d = \frac{\bar{\lambda}_c}{\lambda_c}$. There exists $K = K(c, L) > 0$, such that for all $x > 0$,

$$
\mathbb{P}(Z_x = \delta n + 1) \sim \frac{K(e^{\bar{\lambda}_c x} - e^{\lambda_c x})}{n^{d+1}} \quad \text{as } n \to \infty.
$$

Aïdékon, Hu and Zindy (2012+): Similar results for branching random walk ($c \geq 1$), with more explicit K.
Other studies

Aïdékon, Hu and Zindy (2012+): Similar results for branching random walk ($c \geq 1$), with more explicit K.

In contrast to the above papers, our proofs are entirely analytic. Strategy: derive asymptotics on the generating function of Z_x near its singularity 1 (following an idea of R. Pemantle’s).
The number of absorbed individuals

Theorem (Neveu, 1988)

\((Z_x)_{x \geq 0}\) is a continuous-time Galton–Watson process. The infinitesimal generating function

\[a(s) = \frac{d}{dx} \mathbb{E}[s^{Z_x}] \]

admits the decomposition

\[a = -\psi' \circ \psi^{-1}, \]

where \(\psi\) is an FKPP travelling wave of speed \(c\), i.e.

\[\frac{1}{2} \psi''(s) - c\psi'(s) + \beta(\mathbb{E}[s^{L}] - s) = 0, \]

and \(\psi(x) \uparrow 1\), as \(x \to \infty\).
Tail asymptotics $c = 1$

Follow from a Tauberian theorem and the following lemma:

Lemma

$$a''(1 - s) \sim \frac{1}{s \log^2 s}, \quad s \downarrow 0.$$
Tail asymptotics $c = 1$

Follow from a Tauberian theorem and the following lemma:

Lemma

$$a''(1 - s) \sim \frac{1}{s \log^2 s}, \quad s \downarrow 0.$$

Proof of lemma:

- Solve two-dimensional ODE satisfied by (ψ', ψ)
- Use known asymptotic: $1 - \psi(x) \sim Cxe^{-x}$ as $x \to \infty$.
Asymptotics on density \((c \geq 1)\)

Derive asymptotics of \(a(s)\) near \(s = 1\) in the complex plane and use transfer theorems by Flajolet and Odlyzko.
Asymptotics on density \((c \geq 1)\)

Derive asymptotics of \(a(s)\) near \(s = 1\) in the complex plane and use transfer theorems by Flajolet and Odlyzko.

To this end,

- show that \(a(s)\) can be analytically extended to a region \(\Delta(r, \varphi)\),
- analyse its asymptotic behaviour near the point \(s = 1\) inside \(\Delta(r, \varphi)\).
Asymptotics on $a(s)$ near $s = 1$

Theorem

For every $\varphi \in (0, \pi)$ there exists $r > 1$, such that $a(s)$ possesses an analytical extension to $\Delta(\varphi, r)$. Moreover, as $1 - s \to 1$ in $\Delta(\varphi, r)$, the following holds.

If $c = 1$, then there exists $K = K(L)$, such that

$$a(1 - s) = -s + s \log \frac{1}{s} - s \log \log \frac{1}{s} \left(\log \frac{1}{s}\right)^2 + Ks\left(\log \frac{1}{s}\right)^2 + o\left(s\left(\log \frac{1}{s}\right)^2\right).$$

If $c > 1$, then there exists $K = K(c, L) \neq 0$ and a polynomial $h(s)$, such that

$$a(1 - s) = -\lambda cs + h(s) + Ksd + o(s^d),$$

where $d \in \mathbb{N}$. If $d \in \mathbb{N}$,

$$a(1 - s) = -\lambda cs + h(s) + Ksd \log s + o(s^d).$$
Asymptotics on $a(s)$ near $s = 1$

Theorem

For every $\varphi \in (0, \pi)$ there exists $r > 1$, such that $a(s)$ possesses an analytical extension to $\Delta(\varphi, r)$. Moreover, as $1 - s \to 1$ in $\Delta(\varphi, r)$, the following holds.

- *If $c = 1$, then $\exists K = K(L)$, such that*

$$a(1-s) = -s + \frac{s}{\log \frac{1}{s}} - s \frac{\log \log \frac{1}{s}}{(\log \frac{1}{s})^2} + \frac{Ks}{(\log \frac{1}{s})^2} + o \left(\frac{s}{(\log \frac{1}{s})^2} \right).$$
Asymptotics on $a(s)$ near $s = 1$

Theorem

For every $\varphi \in (0, \pi)$ there exists $r > 1$, such that $a(s)$ possesses an analytical extension to $\Delta(\varphi, r)$. Moreover, as $1 - s \to 1$ in $\Delta(\varphi, r)$, the following holds.

- If $c = 1$, then $\exists K = K(L)$, such that

 $$
a(1 - s) = -s + \frac{s}{\log \frac{1}{s}} - s \frac{\log \log \frac{1}{s}}{(\log \frac{1}{s})^2} + \frac{Ks}{(\log \frac{1}{s})^2} + o \left(\frac{s}{(\log \frac{1}{s})^2} \right).
 $$

- If $c > 1$, then $\exists K = K(c, L) \neq 0$ and a polynomial $h(s)$, such that

 - if $d \notin \mathbb{N}$: $a(1 - s) = -\lambda_c s + h(s) + Ks^d + o(s^d)$,
 - if $d \in \mathbb{N}$: $a(1 - s) = -\lambda_c s + h(s) + Ks^d \log s + o(s^d)$.

Pascal MAILLARD

Mouvement brownien branchant avec sélection
Proof: Main idea

As before, write two-dimensional ODE satisfied by \((\psi', \psi)\) in a subset of the complex plane. Changing coordinates leads to the classic
Proof: Main idea

As before, write two-dimensional ODE satisfied by \((\psi', \psi)\) in a subset of the complex plane. Changing coordinates leads to the classic Briot–Bouquet equation

\[
z f'(z) = \lambda f(z) + pz + \ldots, \quad \lambda, p \in \mathbb{C}.
\]

The set of solutions to this equation is known explicitly.
Proof: Main idea

As before, write two-dimensional ODE satisfied by \((\psi', \psi)\) in a subset of the complex plane. Changing coordinates leads to the classic Briot–Bouquet equation

\[
zf'(z) = \lambda f(z) + pz + \ldots, \quad \lambda, p \in \mathbb{C}.
\]

The set of solutions to this equation is known explicitly.

Note. Major technical difficulty in the proofs: justifying the coordinate changes.
Outline

1. Introduction

2. Branching Brownian motion with absorption

3. BBM with constant population size
 - Introduction
 - Results

4. Perspectives
BBM with constant population size

Recall: Fix $N \in \mathbb{N}$. As soon as the number of individuals exceeds N, kill the left-most individuals until the population size equals N. Much harder than BBM with absorption:

- strong interaction between particles
- no exact description through differential equations
BBM with constant population size

Recall: Fix $N \in \mathbb{N}$. As soon as the number of individuals exceeds N, kill the left-most individuals until the population size equals N. Much harder than BBM with absorption:

- strong interaction between particles
- no exact description through differential equations

Heuristic picture of N-BBM (BDMM 06)

- Meta-stable state: speed $c_N^{\text{det}} = \sqrt{1 - \pi^2 / \log^2 N}$, empirical measure seen from the left-most particle approximately proportional to $\sin(\pi x / \log N)e^{-x}1_{(0,\log N)}(x)$, diameter $\approx \log N$. After a time of order $\log^3 N$, a particle “breaks out” and goes far to the right (close to $N = \log N + 3 \log \log N$), spawning $O(N)$ descendants. This leads to a shift ($O(1)$) of the whole system to the right. Relaxation time of order $\log^2 N$, then process repeats.
Heuristic picture of N-BBM (BDMM 06)

- Meta-stable state: speed $c_N^{\text{det}} = \sqrt{1 - \pi^2 / \log^2 N}$, empirical measure seen from the left-most particle approximately proportional to $\sin(\pi x / \log N) e^{-x} 1_{(0, \log N)}(x)$, diameter $\approx \log N$.
- After a time of order $\log^3 N$, a particle “breaks out” and goes far to the right (close to $a_N = \log N + 3 \log \log N$), spawning $O(N)$ descendants.
Heuristic picture of N-BBM (BDMM 06)

- Meta-stable state: speed $c_N^{\text{det}} = \sqrt{1 - \pi^2 / \log^2 N}$, empirical measure seen from the left-most particle approximately proportional to $\sin(\pi x / \log N) e^{-x} \mathbf{1}_{(0, \log N)}(x)$, diameter $\approx \log N$.
- After a time of order $\log^3 N$, a particle “breaks out” and goes far to the right (close to $a_N = \log N + 3 \log \log N$), spawning $O(N)$ descendants.
- This leads to a shift ($O(1)$) of the whole system to the right.
Heuristic picture of N-BBM (BDMM 06)

- Meta-stable state: speed $c_N^{\text{det}} = \sqrt{1 - \pi^2 / \log^2 N}$, empirical measure seen from the left-most particle approximately proportional to $\sin(\pi x / \log N) e^{-x} \mathbf{1}_{(0,\log N)}(x)$, diameter $\approx \log N$.
- After a time of order $\log^3 N$, a particle “breaks out” and goes far to the right (close to $a_N = \log N + 3 \log \log N$), spawning $O(N)$ descendants.
- This leads to a shift ($O(1)$) of the whole system to the right.
- Relaxation time of order $\log^2 N$, then process repeats.
Heuristic picture of N-BBM (BDMM 06)

- Meta-stable state: speed $c_N^{\text{det}} = \sqrt{1 - \pi^2 / \log^2 N}$, empirical measure seen from the left-most particle approximately proportional to $\sin(\pi x / \log N)e^{-x}1_{(0,\log N)}(x)$, diameter $\approx \log N$.
- After a time of order $\log^3 N$, a particle “breaks out” and goes far to the right (close to $a_N = \log N + 3 \log \log N$), spawning $O(N)$ descendants.
- This leads to a shift ($O(1)$) of the whole system to the right.
- Relaxation time of order $\log^2 N$, then process repeats.
Heuristic picture of N-BBM (BDMM 06)

- Meta-stable state: speed $c_N^{\text{det}} = \sqrt{1 - \pi^2 / \log^2 N}$, empirical measure seen from the left-most particle approximately proportional to $\sin(\pi x / \log N)e^{-x}1_{(0, \log N)}(x)$, diameter $\approx \log N$.
- After a time of order $\log^3 N$, a particle “breaks out” and goes far to the right (close to $a_N = \log N + 3 \log \log N$), spawning $O(N)$ descendants.
- This leads to a shift ($O(1)$) of the whole system to the right.
- Relaxation time of order $\log^2 N$, then process repeats.
Heuristic picture of N-BBM (BDMM 06)

- Meta-stable state: speed $c_N^{\text{det}} = \sqrt{1 - \pi^2 / \log^2 N}$, empirical measure seen from the left-most particle approximately proportional to $\sin(\pi x / \log N)e^{-x}1_{(0, \log N)}(x)$, diameter $\approx \log N$.
- After a time of order $\log^3 N$, a particle “breaks out” and goes far to the right (close to $a_N = \log N + 3 \log \log N$), spawning $O(N)$ descendants.
- This leads to a shift ($O(1)$) of the whole system to the right.
- Relaxation time of order $\log^2 N$, then process repeats.

Real speed of the system is approximately

$$c_N = \sqrt{1 - \frac{\pi^2}{a_N^2}} = c_N^{\text{det}} + \frac{3\pi^2 \log \log N + o(1)}{\log^3 N},$$

and $O(1 / \log^3 N)$ fluctuations.
Main result

Order the individuals according to position: $X_1(t) > X_2(t) > \ldots$
Define x_α by $(1 + x_\alpha)e^{-x_\alpha} = \alpha$.

Theorem
Suppose $E[L_2] < \infty$ and at time 0, there are N particles distributed independently in $(0, a_N)$ according to density proportional to $\sin(\pi x / a_N)e^{-x}$. Then, for every $\alpha \in (0, 1)$,

$$(X_\alpha N(t \log 3 N) - c_N t \log 3 N)_{t \geq 0} \Rightarrow (L_t^\alpha)_{t \geq 0}$$

Here, $(L_t^\alpha)_{t \geq 0}$ is a (pure-jump) Lévy process with $L_0 = 0$ and Lévy measure the image of $\pi^2 x - 2 1_{x > 0} dx$ by the map $x \mapsto \log(1 + x)$.

Proof idea: Approximate the N-BBM by BBM with a certain (random) absorbing barrier, called the B-BBM.
Main result

Order the individuals according to position: \(X_1(t) > X_2(t) > \ldots \)
Define \(x_\alpha \) by \((1 + x_\alpha)e^{-x_\alpha} = \alpha. \)

Theorem

\[\text{Suppose } \mathbb{E}[L^2] < \infty \text{ and at time } 0, \text{ there are } N \text{ particles distributed independently in } (0, a_N) \text{ according to density proportional to } \sin(\pi x / a_N)e^{-x}. \text{ Then, for every } \alpha \in (0, 1), \]

\[(X_{\alpha N}(t \log^3 N) - c_N t \log^3 N) \overset{\text{fidi}}{\rightarrow} (L_t + x_\alpha)_{t \geq 0}. \]

Here, \((L_t)_{t \geq 0} \) is a (pure-jump) \textbf{Lévy process} with \(L_0 = 0 \) and \textbf{Lévy measure the image of } \(\pi^2 x^{-2}1_{x > 0} \text{ dx by the map } x \mapsto \log(1 + x). \)
Main result

Order the individuals according to position: $X_1(t) > X_2(t) > \ldots$
Define x_α by $(1 + x_\alpha)e^{-x_\alpha} = \alpha$.

Theorem

Suppose $\mathbb{E}[L^2] < \infty$ and at time 0, there are N particles distributed independently in $(0, a_N)$ according to density proportional to $\sin(\pi x / a_N)e^{-x}$. Then, for every $\alpha \in (0, 1)$,

$$(X_{\alpha N}(t \log^3 N) - c_N t \log^3 N)_{t \geq 0} \overset{fidi}{\to} (L_t + x_\alpha)_{t \geq 0}.$$

Here, $(L_t)_{t \geq 0}$ is a (pure-jump) Lévy process with $L_0 = 0$ and Lévy measure the image of $\pi^2 x^{-2}1_{x > 0} \, dx$ by the map $x \mapsto \log(1 + x)$.

Proof idea: Approximate the N-BBM by BBM with a certain (random) absorbing barrier, called the B-BBM.
The B-BBM

a: Position of a second barrier (idea from BBS (2010)).
Add drift $-c$, with $c = \sqrt{1 - \pi^2/a^2}$.
A: Determines number of particles ($N \approx 2\pi e^{A+a}/a^3$).
Let first a, then A go to ∞.
The B-BBM

\(a\): Position of a second barrier (idea from BBS (2010)).
Add drift \(-c\), with \(c = \sqrt{1 - \pi^2/a^2}\).

\(A\): Determines number of particles \((N \approx 2\pi e^{A+a/a^3})\).
Let first \(a\), then \(A\) go to \(\infty\).

When particle hits \(a\), it will create \(\approx WN\) descendants, where
\(\mathbb{P}(W > x) \sim x^{-1}\) (BBS (2010)).
Breakout when \(W > \varepsilon e^A\), \(\varepsilon\) small.
The B-BBM

\(a\): Position of a second barrier (idea from BBS (2010)).
Add drift \(-c\), with \(c = \sqrt{1 - \pi^2/a^2}\).
\(A\): Determines number of particles \((N \approx 2\pi e^A + a/a^3)\).
Let first \(a\), then \(A\) go to \(\infty\).

When particle hits \(a\), it will create \(\asymp WN\) descendants, where
\[P(W > x) \sim x^{-1}\] (BBS (2010)).
Breakout when \(W > \varepsilon e^A\), \(\varepsilon\) small.

After breakout, move barrier smoothly by random amount \(\Delta\).
The B-BBM (continued)

Three details:

1. Particles that hit a and have few descendants are important: compensator for the limiting Lévy process.

2. B-BBM until the first breakout $= \text{spine} + \text{BBM (weakly)}$ conditioned not to hit a (Doob transform of BBM).

3. Shape of barrier given by a family (f_Δ) $\Delta \geq 0$ of explicitly given, smooth, increasing functions with $f_0 = 0$ and $f_{+\infty} = \Delta$.

$\Delta \approx a^3$

≈ 1

$\approx a^2$
The B-BBM (continued)

Three details:

1. Particles that hit a and have few descendants are important: compensator for the limiting Lévy process.

2. B-BBM until the first breakout = spine + BBM (weakly) conditioned not to hit a (Doob transform of BBM).
The B-BBM (continued)

Three details:

1. Particles that hit \(a \) and have few descendants are important: compensator for the limiting Lévy process.

2. B-BBM until the first breakout = spine + BBM (weakly) conditioned not to hit \(a \) (Doob transform of BBM).

3. Shape of barrier given by a family \((f_\Delta)_{\Delta \geq 0} \) of explicitly given, smooth, increasing functions with \(f_\Delta(0) = 0 \) and \(f_\Delta(+\infty) = \Delta \).
B-BBM ↔ N-BBM

First idea: couple both processes.

- **black** particles: present in B-BBM and *N*-BBM,
- **red** particles: present in B-BBM but *not* in *N*-BBM,
- **blue** particles: present in *N*-BBM but *not* in B-BBM.

Problem

Dependencies between particles too difficult to handle.
Introduce two auxiliary particle systems: The B^b-BBM and the $B^\#$-BBM (stochastically) bound the N-BBM (and the B-BBM) from below and above (in the sense of stochastic order on the empirical measures).
Bounding the N-BBM from below: The B^b-BBM

Kill a particle
- whenever it hits 0 or
- whenever it has N particles to its right (red particles).

\implies more particles are being killed than in N-BBM.
Bounding the N-BBM from below: The B^b-BBM

Kill a particle
- whenever it hits 0 or
- whenever it has N particles to its right (red particles).

\implies more particles are being killed than in N-BBM.

At timescale $\log^3 N$, number of red particles stays negligible.
Bounding the N-BBM from above: The $B^\#$-BBM

Kill a particle whenever it (at the same time)
- hits 0 and
- has N particles to its right.

A particle survives temporarily (blue particles) if it has less than N particles to its right the moment it hits 0.
Outline

1. Introduction
2. Branching Brownian motion with absorption
3. BBM with constant population size
4. Perspectives
N-BBM \leftrightarrow noisy FKPP

Noisy FKPP equation

\[
\begin{cases}
 u(t, x) : \mathbb{R}_+ \times \mathbb{R} \to [0, 1] \\
 \partial_t u = \partial_x^2 u + u(1 - u) + \sqrt{\varepsilon u(1 - u)} \dot{W} \\
 u(0, x) = 1_{(x < 0)} \quad \text{(IC)}
\end{cases}
\]
N-BBM \leftrightarrow noisy FKPP

Noisy FKPP equation

$$
\begin{aligned}
 u(t, x) : \mathbb{R}_+ \times \mathbb{R} &\rightarrow [0, 1] \\
 \partial_t u &= \partial_x^2 u + u(1 - u) + \sqrt{\varepsilon u(1 - u)} \dot{W} \\
 u(0, x) &= 1_{(x < 0)} \quad (IC)
\end{aligned}
$$

- Admits travelling wave solutions with same phenomenology as N-BBM ($N \approx \varepsilon^{-1}$), cf Mueller, Mytnik and Quastel (2010)
Perspectives

\(N\)-BBM ←→ noisy FKPP

Noisy FKPP equation

\[
\begin{aligned}
&u(t, x) : \mathbb{R}_+ \times \mathbb{R} \rightarrow [0, 1] \\
&\partial_t u = \partial_x^2 u + u(1 - u) + \sqrt{\varepsilon u(1 - u)} \dot{W} \\
&u(0, x) = 1_{(x < 0)} \quad \text{(IC)}
\end{aligned}
\]

- Admits travelling wave solutions with same phenomenology as \(N\)-BBM \((N \simeq \varepsilon^{-1})\), cf Mueller, Mytnik and Quastel (2010)
- Dual to BBM with particles coalescing at rate \(\varepsilon\).
 \(\rightarrow\) density-dependent selection
Known: Empirical measure of N-BBM seen from the left-most particle is an ergodic Markov process.
Known: Empirical measure of N-BBM seen from the left-most particle is an ergodic Markov process.

Open problem
Show that stationary probability converges as $N \to \infty$ to the Dirac-measure in $xe^{-x} \, dx$.
Known: Empirical measure of N-BBM seen from the left-most particle is an ergodic Markov process.

Open problem

Show that stationary probability converges as $N \to \infty$ to the Dirac-measure in $xe^{-x} \, dx$.

→ ongoing work with J. Berestycki and M. Jonckheere.
Varying displacement

Q: What changes if one replaces BBM by BRW (or, equivalently, by branching Lévy process)?

A: Depends on the right tail of the jump distribution.

Ongoing work joint with Jean Bérard: Consider N-BRW where at each time step, particles split into two and children jump according to the law of a random variable $X \geq 0$, with $P(X > x) \sim x^{-\alpha}$, $\alpha > 0$. Keep only the N right-most particles at every time step. Right scaling: space by $\left(\frac{N \log N}{1/\alpha} \right)$, time by $\log N$.
Varying displacement

Q: What changes if one replaces BBM by BRW (or, equivalently, by branching Lévy process)?
A: Depends on the right tail of the jump distribution.
Q: What changes if one replaces BBM by BRW (or, equivalently, by branching Lévy process)?
A: Depends on the right tail of the jump distribution.

Ongoing work joint with Jean Bérard: Consider N-BRW where at each time step, particles split into two and children jump according to the law of a random variable $X \geq 0$, with $\mathbb{P}(X > x) \sim x^{-\alpha}$, $\alpha > 0$. Keep only the N right-most particles at every time step.

Right scaling: space by $(N \log N)^{1/\alpha}$, time by $\log N$.
Other open questions

- Speed of the system
- Genealogy
- Inhomogeneous media
- ...

Perspectives