]. T. Milligan, Modern antenna design, CHAPITRE 5. CONCLUSION Bibliographie, issue.1, 1985.
DOI : 10.1002/0471720615

J. Wessel, Surface-enhanced optical microscopy, Journal of the Optical Society of America B, vol.2, issue.9, pp.1538-1541, 1985.
DOI : 10.1364/JOSAB.2.001538

U. Fischer and D. Pohl, Observation of Single-Particle Plasmons by Near-Field Optical Microscopy, Physical Review Letters, vol.62, issue.4, pp.458-461, 1989.
DOI : 10.1103/PhysRevLett.62.458

J. Farahani, D. Pohl, H. Eisler, and B. Hecht, Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter, Physical Review Letters, vol.95, issue.1, p.17402, 2005.
DOI : 10.1103/PhysRevLett.95.017402

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna, Physical Review Letters, vol.97, issue.1, p.17402, 2006.
DOI : 10.1103/PhysRevLett.97.017402

T. Taminiau, F. Segerink, and N. Van-hulst, A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements, IEEE Transactions on Antennas and Propagation, vol.55, issue.11, pp.3010-3017, 2007.
DOI : 10.1109/TAP.2007.908561

URL : http://doc.utwente.nl/74944/1/monopole.pdf

P. Bharadwaj, B. Deutsch, and L. Novotny, Optical Antennas, Advances in Optics and Photonics, vol.1, issue.3, p.438, 2009.
DOI : 10.1364/AOP.1.000438

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, Gap-Dependent Optical Coupling of Single ???Bowtie??? Nanoantennas Resonant in the Visible, Nano Letters, vol.4, issue.5, pp.957-961, 2004.
DOI : 10.1021/nl049951r

C. Du, Y. You, X. Zhang, K. Johnson, and Z. Shen, Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles, Plasmonics, vol.275, issue.3, pp.217-222, 2009.
DOI : 10.1007/s11468-009-9095-1

E. Hao and G. Schatz, Electromagnetic fields around silver nanoparticles and dimers, The Journal of Chemical Physics, vol.120, issue.1, p.357, 2004.
DOI : 10.1063/1.1629280

T. Taminiau, F. Stefani, and N. Van-hulst, Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna, Optics Express, vol.16, issue.14, pp.10858-10864, 2008.
DOI : 10.1364/OE.16.010858.m001

G. Lerosey, Nano-Optics: Yagi???Uda antenna shines bright, Nature Photonics, vol.308, pp.10-11, 2010.
DOI : 10.1038/nphoton.2010.78

A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant et al., Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna, Science, vol.329, issue.5994, p.930, 2010.
DOI : 10.1126/science.1191922

C. Girard and E. Dujardin, nanostructures, Journal of Optics A: Pure and Applied Optics, vol.8, issue.4, pp.73-86, 2006.
DOI : 10.1088/1464-4258/8/4/S05

URL : https://hal.archives-ouvertes.fr/hal-00437243

M. Choi, K. Stanton-maxey, J. Stanley, C. Levin, R. Bardhan et al., A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors, Nano Letters, vol.7, issue.12, pp.3759-3765, 2007.
DOI : 10.1021/nl072209h

A. Gobin, M. Lee, N. Halas, W. James, R. Drezek et al., Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy, Nano Letters, vol.7, issue.7, pp.1929-1934, 2007.
DOI : 10.1021/nl070610y

J. Zhao, X. Zhang, C. Yonzon, and A. Haes, Localized surface plasmon resonance biosensors, Nanomedicine, vol.1, issue.2, pp.219-247, 2006.
DOI : 10.2217/17435889.1.2.219

J. Homola, S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review, Sensors and Actuators B: Chemical, vol.54, issue.1-2, pp.3-15, 1999.
DOI : 10.1016/S0925-4005(98)00321-9

H. Sota and Y. Hasegawa, Detection of Conformational Changes in an Immobilized Protein Using Surface Plasmon Resonance, Analytical Chemistry, vol.70, issue.10, pp.2019-2043, 1998.
DOI : 10.1021/ac9713666

E. Cubukcu, E. Kort, K. Crozier, and F. Capasso, Plasmonic laser antenna, Applied Physics Letters, vol.89, issue.9, p.93120, 2006.
DOI : 10.1063/1.2339286

K. Catchpole and A. Polman, Plasmonic solar cells, Optics Express, vol.16, issue.26, pp.21793-800, 2010.
DOI : 10.1364/OE.16.021793

J. Alda, J. Rico-garcía, J. López-alonso, and G. Boreman, Optical antennas for nano-photonic applications, Nanotechnology, vol.16, issue.5, p.230, 2005.
DOI : 10.1088/0957-4484/16/5/017

L. Tang, S. Kocabas, S. Latif, and A. Okyay, Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna, Nature Photonics, vol.152, issue.4, pp.226-229, 2008.
DOI : 10.1038/nphoton.2008.30

R. Ritchie, Plasma Losses by Fast Electrons in Thin Films, Physical Review, vol.106, issue.5, pp.874-881, 1957.
DOI : 10.1103/PhysRev.106.874

E. Economou, Surface Plasmons in Thin Films, Physical Review, vol.182, issue.2, p.539, 1969.
DOI : 10.1103/PhysRev.182.539

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, 1988.
DOI : 10.1007/BFb0048317

P. Mulvaney, Surface Plasmon Spectroscopy of Nanosized Metal Particles, Langmuir, vol.12, issue.3, pp.788-800, 1996.
DOI : 10.1021/la9502711

M. Miller, Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment, The Journal of Physical Chemistry B, vol.109, issue.46, pp.21556-21565, 2005.
DOI : 10.1021/jp054227y

S. Underwood, Effect of the Solution Refractive Index on the Color of Gold Colloids, Langmuir, vol.10, issue.10, pp.3427-3430, 1994.
DOI : 10.1021/la00022a011

]. K. Kelly, E. Coronado, and L. Zhao, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, ChemInform, vol.107, issue.16, pp.668-677, 2003.
DOI : 10.1002/chin.200316243

C. Huang, A. Bouhelier, G. Colas-des-francs, A. Bruyant, A. Guenot et al., Gain, detuning, and radiation patterns of nanoparticle optical antennas, Physical Review B, vol.78, issue.15, p.155407, 2008.
DOI : 10.1103/PhysRevB.78.155407

URL : https://hal.archives-ouvertes.fr/hal-00472387

C. Bohren and D. Huffman, Absorption and scattering of light by small particles, 1983.
DOI : 10.1002/9783527618156

I. Romero, J. Aizpurua, and G. Bryant, Plasmons in nearly touching metallic nanoparticles : singular response in the limit of touching dimers Arxiv preprint arXiv, pp.9988-99, 2007.

P. Olk, J. Renger, and M. Wenzel, Distance Dependent Spectral Tuning of Two Coupled Metal Nanoparticles, Nano Letters, vol.8, issue.4, pp.1174-1178, 2008.
DOI : 10.1021/nl080044m

T. Härtling, Y. Alaverdyan, and A. Hille, Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition, Optics Express, vol.16, issue.16, pp.12362-71, 2008.
DOI : 10.1364/OE.16.012362

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, and A. Halm, Nanomechanical control of an optical antenna, Nature Photonics, vol.65, issue.4, pp.230-233, 2008.
DOI : 10.1038/nphoton.2008.27

F. Huang, Actively Tuned Plasmons on Elastomerically Driven Au Nanoparticle Dimers, Nano Letters, vol.10, issue.5, pp.1787-92, 2010.
DOI : 10.1021/nl1004114

S. Bidault, F. De-abajo, and A. Polman, Plasmon-Based Nanolenses Assembled on a Well-Defined DNA Template, Journal of the American Chemical Society, vol.130, issue.9, pp.2750-2751, 2008.
DOI : 10.1021/ja711074n

A. Aì-u and N. Engheta, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, Physical Review Letters, vol.101, p.43901, 2008.

A. Aì-u and N. Engheta, Tuning the scattering response of optical nanoantennas with nanocircuit loads, Nature Photonics, vol.2, pp.307-310, 2008.

Y. Leroux, J. Lacroix, and K. Chane-ching, Conducting Polymer Electrochemical Switching as an Easy Means for Designing Active Plasmonic Devices, Journal of the American Chemical Society, vol.127, issue.46, pp.16022-16025, 2005.
DOI : 10.1021/ja054915v

Y. Zheng, Y. Yang, L. Jensen, and L. Fang, Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches, Nano Letters, vol.9, issue.2, pp.819-844, 2009.
DOI : 10.1021/nl803539g

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson et al., Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal, Applied Physics Letters, vol.91, issue.4, p.43101, 2007.
DOI : 10.1063/1.2759463

J. Müller, C. Sönnichsen, H. Von-poschinger, G. Von-plessen, T. A. Klar et al., Electrically controlled light scattering with single metal nanoparticles, Applied Physics Letters, vol.81, issue.1, p.171, 2002.
DOI : 10.1063/1.1491003

K. Chu, C. Chao, Y. Chen, Y. Wu, and C. Chen, Electrically controlled surface plasmon resonance frequency of gold nanorods, Applied Physics Letters, vol.89, issue.10, p.103107, 2006.
DOI : 10.1063/1.2335812

J. J. Mock, M. Barbic, D. R. Smith, S. Schultz, and . Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, The Journal of Chemical Physics, vol.116, issue.15, p.6755, 2002.
DOI : 10.1063/1.1462610

P. Kossyrev, A. Yin, and S. Cloutier, Electric Field Tuning of Plasmonic Response of Nanodot Array in Liquid Crystal Matrix, Nano Letters, vol.5, issue.10, pp.1978-1981, 2005.
DOI : 10.1021/nl0513535

V. Freedericksz and V. Zolina, Forces causing the orientation of an anisotropic liquid, Trans. Faraday Soc., vol.29, issue.140, pp.919-930, 1933.
DOI : 10.1039/TF9332900919

W. Rechberger, A. Hohenau, and A. Leitner, Optical properties of two interacting gold nanoparticles, Optics Communications, vol.220, issue.1-3, pp.137-141, 2003.
DOI : 10.1016/S0030-4018(03)01357-9

H. Ren and S. Wu, Single glass substrate liquid crystal device using electric field-enforced phase separation and photoinduced polymerization, Applied Physics Letters, vol.90, issue.19, p.191105, 2007.
DOI : 10.1063/1.2737366

P. De-gennes and J. Prost, The physics of liquid crystals, 1993.

S. Park, Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle, Physical Review Letters, vol.94, issue.21, p.217401, 2005.
DOI : 10.1103/PhysRevLett.94.217401

G. M. Koenig, B. T. Gettelfinger, J. J. De-pablo, and N. L. Abbott, Using Localized Surface Plasmon Resonances to Probe the Nanoscopic Origins of Adsorbate-Driven Ordering Transitions of Liquid Crystals in Contact with Chemically Functionalized Gold Nanodots, Nano Letters, vol.8, issue.8, pp.2362-2370, 2008.
DOI : 10.1021/nl801180c

P. Jain, Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing, Nano Letters, vol.8, issue.12, pp.4347-52, 2008.
DOI : 10.1021/nl8021835

S. Wu, Nematic liquid crystal modulator with response time less than 100 ??s at room temperature, Applied Physics Letters, vol.57, issue.10, p.986, 1990.
DOI : 10.1063/1.103533

C. S. Kim, I. Vurgaftman, R. A. Flynn, M. Kim, J. R. Lindle et al., An integrated surface-plasmon source, Optics Express, vol.18, issue.10, pp.10609-10624, 2010.
DOI : 10.1364/OE.18.010609

J. Tetienne, D. Bousseksou, R. Costantini, . Colombelli, I. Babuty et al., Injection of midinfrared surface plasmon polaritons with an integrated device, Applied Physics Letters, vol.97, issue.21, p.211110, 2010.
DOI : 10.1063/1.3519985

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil et al., Organic plasmon-emitting diode, Nature Photonics, vol.4, issue.11, pp.684-687, 2008.
DOI : 10.1063/1.1646730

R. J. Walters, R. V. Van-loon, I. Brunets, J. Schmitz, and A. Polman, A silicon-based electrical source for surface plasmon polaritons, 2009 6th IEEE International Conference on Group IV Photonics, pp.21-26, 2010.
DOI : 10.1109/GROUP4.2009.5338358

P. Bharadwaj, A. Bouhelier, and L. Novotny, Electrical Excitation of Surface Plasmons, Physical Review Letters, vol.106, issue.22, p.226802, 2011.
DOI : 10.1103/PhysRevLett.106.226802

T. Wang, E. Boer-duchemin, Y. Zhang, G. Comtet, and G. Dujardin, Excitation of propagating surface plasmons with a scanning tunnelling microscope, Nanotechnology, vol.22, issue.17, p.175201, 2011.
DOI : 10.1088/0957-4484/22/17/175201

M. Akimov, M. D. Jo, H. Lukin, and . Park, Near-field electrical detection of optical plasmons and single-plasmon sources, Nature Physics, vol.5, pp.475-479, 2009.

J. K. Hyun and L. J. Lauhon, Spatially Resolved Plasmonically Enhanced Photocurrent from Au Nanoparticles on a Si Nanowire, Nano Letters, vol.11, issue.7, pp.0-3, 2011.
DOI : 10.1021/nl201021k

J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze et al., Electrically Induced Optical Emission from a Carbon Nanotube FET, Science, vol.300, issue.5620, pp.783-789, 2003.
DOI : 10.1126/science.1081294

M. Freitag, Y. Martin, J. Misewich, R. Martel, and P. Avouris, Photoconductivity of Single Carbon Nanotubes, Nano Letters, vol.3, issue.8, pp.1067-1071, 2003.
DOI : 10.1021/nl034313e

S. Shi, X. Xu, D. C. Ralph, and P. L. Mceuen, Plasmon Resonance in Individual Nanogap Electrodes Studied Using Graphene Nanoconstrictions as Photodetectors, Plasmon Resonance in Individual Nanogap Electrodes Studied Using Graphene Nanoconstrictions as Photodetectors, pp.1814-1818, 2011.
DOI : 10.1021/nl200522t

P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, Electrical detection of confined gap plasmons in metal???insulator???metal waveguides, Nature Photonics, vol.12, issue.5, pp.283-286, 2009.
DOI : 10.1038/nphoton.2009.47

M. Freitag, J. Chen, J. Tersoff, J. Tsang, Q. Fu et al., Mobile Ambipolar Domain in Carbon-Nanotube Infrared Emitters, Physical Review Letters, vol.93, issue.7, pp.13-16, 2004.
DOI : 10.1103/PhysRevLett.93.076803

. Iijima, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, p.603, 1993.
DOI : 10.1038/363603a0

R. H. Baughman, A. A. Zakhidov, and W. A. De-heer, Carbon Nanotubes--the Route Toward Applications, Science, vol.297, issue.5582, pp.787-92, 2002.
DOI : 10.1126/science.1060928

J. Liu, M. Shao, X. Chen, W. Yu, X. Liu et al., Large-Scale Synthesis of Carbon Nanotubes by an Ethanol Thermal Reduction Process, Journal of the American Chemical Society, vol.125, issue.27, pp.8088-8097, 2003.
DOI : 10.1021/ja035763b

M. H. Rümmeli, A. Bachmatiuk, F. Börrnert, F. Schäffel, I. Ibrahim et al., Synthesis of carbon nanotubes with and without catalyst particles, Nanoscale Research Letters, vol.6, issue.1, p.303, 2011.
DOI : 10.1088/2041-8205/710/1/L98

K. Balasubramanian and M. Burghard, Charge transport through carbon nanotubes interacting with light, Semiconductor Science and Technology, vol.21, issue.11, pp.22-32, 2006.
DOI : 10.1088/0268-1242/21/11/S04

H. Harutyunyan, Excited State Dynamics of Individual Single-Walled Carbon Nanotubes, Carbon Nanotubes, 2009.

M. J. O-'connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano et al., Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, Science, vol.297, issue.5581, pp.593-599, 2002.
DOI : 10.1126/science.1072631

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley et al., Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes, Science, vol.298, issue.5602, pp.2361-2367, 2002.
DOI : 10.1126/science.1078727

A. Hartschuh, H. N. Pedrosa, L. Novotny, and T. D. Krauss, Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes, Science, vol.301, issue.5638, pp.1354-1360, 2003.
DOI : 10.1126/science.1087118

J. Lefebvre, J. Fraser, P. Finnie, and Y. Homma, Photoluminescence from an individual single-walled carbon nanotube, Physical Review B, vol.69, issue.7, pp.1-5, 2004.
DOI : 10.1103/PhysRevB.69.075403

J. Lefebvre, Y. Homma, and P. Finnie, Bright Band Gap Photoluminescence from Unprocessed Single-Walled Carbon Nanotubes, Physical Review Letters, vol.90, issue.21, pp.1-4, 2003.
DOI : 10.1103/PhysRevLett.90.217401

Y. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley et al., Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy, The Journal of Chemical Physics, vol.120, issue.7, pp.3368-73, 2004.
DOI : 10.1063/1.1640339

F. Wang, G. Dukovic, L. Brus, and T. Heinz, Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes, Physical Review Letters, vol.92, issue.17, pp.17-20, 2004.
DOI : 10.1103/PhysRevLett.92.177401

]. K. Iakoubovskii, N. Minami, T. Ueno, S. Kazaoui, and H. Kataura, Optical Characterization of Double-Wall Carbon Nanotubes: Evidence for Inner Tube Shielding, The Journal of Physical Chemistry C, vol.112, issue.30, pp.11194-11198, 2008.
DOI : 10.1021/jp8018414

V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Carbon Nanotube Inter- and Intramolecular Logic Gates, Nano Letters, vol.1, issue.9, pp.453-456, 2001.
DOI : 10.1021/nl015606f

B. Chen, J. Wei, P. Lo, H. Wang, M. Lai et al., A carbon nanotube field effect transistor with tunable conduction-type by electrostatic effects, Solid-State Electronics, vol.50, issue.7-8, pp.1341-1348, 2006.
DOI : 10.1016/j.sse.2006.05.026

V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Controlling doping and carrier injection in carbon nanotube transistors, Applied Physics Letters, vol.80, issue.15, p.2773, 2002.
DOI : 10.1063/1.1467702

M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. Tsang et al., Hot Carrier Electroluminescence from a Single Carbon Nanotube, Nano Letters, vol.4, issue.6, pp.1063-1066, 2004.
DOI : 10.1021/nl049607u

M. Freitag, J. C. Tsang, J. Kirtley, A. Carlsen, J. Chen et al., Electrically Excited, Localized Infrared Emission from Single Carbon Nanotubes, Nano Letters, vol.6, issue.7, pp.1425-1458, 2006.
DOI : 10.1021/nl060462w

M. Postek, Electron Beam-Induced Sample Contamination in the SEM, Microscopy and Microanalysis, vol.11, pp.764-765, 2005.

Z. Chen, J. Appenzeller, J. Knoch, Y. Lin, and P. Avouris, The Role of Metal???Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors, Nano Letters, vol.5, issue.7, pp.1497-502, 2005.
DOI : 10.1021/nl0508624

Y. He, J. Zhang, S. Hou, Y. Wang, and Z. Yu, Schottky barrier formation at metal electrodes and semiconducting carbon nanotubes, Applied Physics Letters, vol.94, issue.9, p.93107, 2009.
DOI : 10.1063/1.3093677

S. Tans and A. Verschueren, Room-temperature transistor based on a single carbon nanotube, Nature, vol.393, pp.49-52, 1998.

W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li et al., Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors, Nano Letters, vol.3, issue.2, pp.193-198, 2003.
DOI : 10.1021/nl0259232

M. Gerardin, No Title, C.R Acad Sci Paris, vol.53, p.727, 1861.

F. Skaupy, No Title, Zeitschrift für Physik, vol.58, issue.560, 1907.

H. Park, A. K. Lim, A. P. Alivisatos, J. Park, and P. L. Mceuen, Fabrication of metallic electrodes with nanometer separation by electromigration, Applied Physics Letters, vol.75, issue.2, pp.301-303, 1999.
DOI : 10.1063/1.124354

H. B. Heersche, G. Lientschnig, K. O. Neill, H. S. Van-der-zant, and H. W. Zandbergen, imaging of electromigration-induced nanogap formation by transmission electron microscopy, Applied Physics Letters, vol.91, issue.7, p.72107, 2007.
DOI : 10.1063/1.2767149

D. R. Ward, F. Huser, F. Pauly, J. C. Cuevas, and D. Natelson, Optical rectification and field enhancement in a plasmonic nanogap, Nature Nanotechnology, vol.94, issue.10, pp.732-736, 2010.
DOI : 10.1038/nnano.2010.176

K. I. Bolotin, F. Kuemmeth, A. N. Pasupathy, and D. C. Ralph, Metal-nanoparticle single-electron transistors fabricated using electromigration, Applied Physics Letters, vol.84, issue.16, pp.3154-3156, 2004.
DOI : 10.1063/1.1695203

J. Moreland and J. W. Ekin, Electron tunneling experiments using Nb???Sn ??????break?????? junctions, Journal of Applied Physics, vol.58, issue.10, pp.3888-3895, 1985.
DOI : 10.1063/1.335608

J. M. Muller and L. J. De-jongh, Experimental observation of the transition from weak link to tunnel junction, Physica C: Superconductivity, vol.191, issue.3-4, p.485054, 1992.
DOI : 10.1016/0921-4534(92)90947-B

D. R. Strachan, D. E. Smith, D. E. Johnston, T. Park, M. J. Therien et al., Controlled fabrication of nanogaps in ambient environment for molecular electronics, Applied Physics Letters, vol.86, issue.4, p.43109, 2005.
DOI : 10.1063/1.1857095

A. Mahapatro, S. Ghosh, and D. Janes, Nanometer scale electrode separation (nanogap) using electromigration at room temperature, IEEE Transactions On Nanotechnology, vol.5, issue.3, pp.232-236, 2006.
DOI : 10.1109/TNANO.2006.874053

J. T. Lau, J. Prybyla, and S. K. Theiss, electron microscopy studies of electromigration in stacked Al(Cu)/TiN interconnects, situ electron microscopy studies of electromigration in stacked Al(Cu)/TiN interconnects, p.164, 2000.
DOI : 10.1063/1.125690

S. Shingubara and Y. Nakasaki, Electromigration in a single crystalline submicron width aluminum interconnection, Applied Physics Letters, vol.58, issue.1, pp.42-44, 1991.
DOI : 10.1063/1.104431

P. Besser and M. Madden, scanning electron microscopy observation of the dynamic behavior of electromigration voids in passivated aluminum lines, Journal of Applied Physics, vol.72, issue.8, pp.3792-3797, 1992.
DOI : 10.1063/1.352276

B. Stahlmecke, F. Heringdorf, and L. Chelaru, Electromigration in self-organized single-crystalline silver nanowires, Applied Physics Letters, vol.88, issue.5, p.53122, 2006.
DOI : 10.1063/1.2172012

J. Tang, Y. Wang, C. Nuckolls, and S. J. Wind, Chemically responsive molecular transistors fabricated by self-aligned lithography and chemical self-assembly, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.24, issue.6, p.3227, 2006.
DOI : 10.1116/1.2357968

A. Mangin, TransportélectroniqueTransportélectronique dans des nanocassures pour la réalisation de transistorsàtransistorsà molécule unique, 2010.

Y. Blanter and M. Büttiker, Shot noise in mesoscopic conductors, Physics Reports, vol.336, issue.1-2, pp.1-166, 2000.
DOI : 10.1016/S0370-1573(99)00123-4

J. G. Simmons, Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film, Journal of Applied Physics, vol.34, issue.6, p.1793, 1963.
DOI : 10.1063/1.1702682

A. Mangin, A. Anthore, M. L. Della-rocca, E. Boulat, and P. Lafarge, Reduced work functions in gold electromigrated nanogaps, Physical Review B, vol.80, issue.23, pp.1-5, 2009.
DOI : 10.1103/PhysRevB.80.235432

R. Fowler and L. Nordheim, Electron Emission in Intense Electric Fields, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.119, issue.781, pp.173-181, 1928.
DOI : 10.1098/rspa.1928.0091

J. Beebe, B. Kim, J. Gadzuk, C. Daniel-frisbie, and J. Kushmerick, Transition from Direct Tunneling to Field Emission in Metal-Molecule-Metal Junctions, Physical Review Letters, vol.97, issue.2, pp.1-4, 2006.
DOI : 10.1103/PhysRevLett.97.026801

M. L. Trouwborst, C. A. Martin, R. H. Smit, C. M. Guédon, T. A. Baart et al., Transition Voltage Spectroscopy and the Nature of Vacuum Tunneling, Nano Letters, vol.11, issue.2, pp.614-621, 2011.
DOI : 10.1021/nl103699t

R. M. Feenstra, Scanning tunneling spectroscopy Surface Science 299-300, pp.965-979, 1994.

E. Huisman, M. Trouwborst, F. Bakker, B. Van-wees, and S. Van-der-molen, The mechanical response of lithographically defined break junctions, Journal of Applied Physics, vol.109, issue.10, p.104305, 2011.
DOI : 10.1063/1.3587192

H. Michaelson, The work function of the elements and its periodicity, Journal of Applied Physics, vol.48, issue.11, pp.4729-4733, 1977.
DOI : 10.1063/1.323539

L. Olesen, M. Brandbyge, M. Sorensen, K. Jacobsen, E. Lae-gsgaard et al., Apparent Barrier Height in Scanning Tunneling Microscopy Revisited, Physical Review Letters, vol.76, issue.9, pp.1485-1488, 1996.
DOI : 10.1103/PhysRevLett.76.1485

C. Untiedt, A. Yanson, R. Grande, G. Rubio-bollinger, N. Agra¨?tagra¨?t et al., Calibration of the length of a chain of single gold atoms, Physical Review B, vol.66, issue.8, pp.1-6, 2002.
DOI : 10.1103/PhysRevB.66.085418

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García-de-abajo, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Physical Review B, vol.71, issue.23, pp.1-13, 2005.
DOI : 10.1103/PhysRevB.71.235420

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, Gap-Dependent Optical Coupling of Single ???Bowtie??? Nanoantennas Resonant in the Visible, Nano Letters, vol.4, issue.5, pp.957-961, 2004.
DOI : 10.1021/nl049951r

E. Hao and G. Schatz, Electromagnetic fields around silver nanoparticles and dimers, The Journal of Chemical Physics, vol.120, issue.1, p.357, 2004.
DOI : 10.1063/1.1629280

A. García-martín, D. Ward, D. Natelson, and J. Cuevas, Field enhancement in subnanometer metallic gaps, Physical Review B, vol.83, issue.19, pp.4-7, 2011.
DOI : 10.1103/PhysRevB.83.193404

C. Huang, A. Bouhelier, G. Colas-des-francs, A. Bruyant, A. Guenot et al., Gain, detuning, and radiation patterns of nanoparticle optical antennas, Physical Review B, vol.78, issue.15, p.155407, 2008.
DOI : 10.1103/PhysRevB.78.155407

URL : https://hal.archives-ouvertes.fr/hal-00472387

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer et al., Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods, Physical Review Letters, vol.95, issue.26, pp.4-7, 2005.
DOI : 10.1103/PhysRevLett.95.267405

J. Butet, J. Duboisset, G. Bachelier, I. Russier-antoine, E. Benichou et al., Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium, Nano Letters, vol.10, issue.5, pp.1717-1738, 2010.
DOI : 10.1021/nl1000949

M. Lippitz and M. Van-dijk, Third-Harmonic Generation from Single Gold Nanoparticles, Nano Letters, vol.5, issue.4, pp.799-802, 2005.
DOI : 10.1021/nl0502571

P. Mühlschlegel, H. Eisler, O. J. Martin, B. Hecht, and D. W. , Resonant Optical Antennas, Science, vol.308, issue.5728, pp.1607-1616, 2005.
DOI : 10.1126/science.1111886

M. Beversluis, A. Bouhelier, and L. Novotny, Continuum generation from single gold nanostructures through near-field mediated intraband transitions, Physical Review B, vol.68, issue.11, pp.1-10, 2003.
DOI : 10.1103/PhysRevB.68.115433

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. Van-hulst, and R. Quidant, Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas, Physical Review Letters, vol.101, issue.11, pp.1-4, 2008.
DOI : 10.1103/PhysRevLett.101.116805

J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp et al., Mode Imaging and Selection in Strongly Coupled Nanoantennas, Nano Letters, vol.10, issue.6, pp.2105-2115, 2010.
DOI : 10.1021/nl100614p

URL : http://arxiv.org/abs/1002.3887

P. Franken, A. Hill, C. Peters, and G. Weinreich, Generation of Optical Harmonics, Physical Review Letters, vol.7, issue.4, pp.118-119, 1961.
DOI : 10.1103/PhysRevLett.7.118

N. Bloembergen, R. Chang, S. Jha, and C. Lee, Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry, Physical Review, vol.174, issue.3, p.813, 1968.
DOI : 10.1103/PhysRev.174.813

M. Finazzi, P. Biagioni, M. Celebrano, and L. Dù-o, Selection rules for secondharmonic generation in nanoparticles, Physical Review B, p.76, 2007.

G. Bachelier, I. Russier-antoine, E. Benichou, C. Jonin, and P. Brevet, Multipolar second-harmonic generation in noble metal nanoparticles, Journal of the Optical Society of America B, vol.25, issue.6, p.955, 2008.
DOI : 10.1364/JOSAB.25.000955

I. Russier-antoine and E. Benichou, Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles, The Journal of Physical Chemistry C, vol.111, issue.26, pp.9044-9048, 2007.
DOI : 10.1021/jp0675025

M. Danckwerts and L. Novotny, Optical Frequency Mixing at Coupled Gold Nanoparticles, Physical Review Letters, vol.98, issue.2, pp.1-4, 2007.
DOI : 10.1103/PhysRevLett.98.026104

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim et al., High-harmonic generation by resonant plasmon field enhancement, Nature, vol.127, issue.7196, pp.757-60, 2008.
DOI : 10.1038/nature07012

S. Link, C. Burda, B. Nikoobakht, and M. Sayed, Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses, The Journal of Physical Chemistry B, vol.104, issue.26, pp.6152-6163, 2000.
DOI : 10.1021/jp000679t

. Wu, Nanostructured Ag surface fabricated by femtosecond laser for surfaceenhanced Raman scattering, Journal of colloid and interface science, vol.360, pp.305-313, 2011.

J. Wang and C. Guo, Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals, Applied Physics Letters, vol.87, issue.25, p.251914, 2005.
DOI : 10.1063/1.2146067

K. Ko, A. Kumar, K. Fung, and R. Ambekar, Nonlinear Optical Response from Arrays of Au Bowtie Nanoantennas, Nano Letters, vol.11, issue.1, pp.61-66, 2011.
DOI : 10.1021/nl102751m

P. Ghenuche, Probing the near-field optical response of plasmon nanostructures with two-photon luminescence microscopy, 2009.

J. Lambe and S. Mccarthy, Light Emission from Inelastic Electron Tunneling, Physical Review Letters, vol.37, issue.14, pp.923-925, 1976.
DOI : 10.1103/PhysRevLett.37.923

J. Gimzewski, B. Reihl, J. Coombs, and R. Schlittler, Photon emission with the scanning tunneling microscope, Zeitschrift f???r Physik B Condensed Matter, vol.9, issue.190, pp.497-501, 1988.
DOI : 10.1007/BF01314531

J. Kirtley, T. Theis, J. Tsang, and D. Dimaria, Hot-electron picture of light emission from tunnel junctions, Physical Review B, vol.27, issue.8, p.4601, 1983.
DOI : 10.1103/PhysRevB.27.4601

F. Yin, R. Palmer, and Q. Guo, Nanoscale surface recrystallization driven by localized electric field, Physical Review B, vol.73, issue.7, pp.2-5, 2006.
DOI : 10.1103/PhysRevB.73.073405

X. W. Tu, J. H. Lee, and W. Ho, Atomic-scale rectification at microwave frequency, The Journal of Chemical Physics, vol.124, issue.2, p.21105, 2006.
DOI : 10.1063/1.2159491

A. Thon, M. Merschdorf, W. Pfeiffer, T. Klamroth, P. Saalfrank et al., Photon-assisted tunneling versus tunneling of excited electrons in metal?insulator?metal junctions, Applied Physics A: Materials Science & Processing, vol.78, issue.2, pp.189-199, 2004.
DOI : 10.1007/s00339-003-2314-2

P. Tien and J. Gordon, Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films, Physical Review, vol.129, issue.2, 1963.
DOI : 10.1103/PhysRev.129.647

C. S. Ha, K. P. Patel, and P. A. Martin, Vue d'intérêt du plan de Fourier pour le guide avec une pointe de 10? Sur la figure 15.9 (a) sont présentées deux images obtenues avec le microscopè a fuites radiatives Il s'agit de la distribution d'intensité d'un plasmon se propageant sur un guide de 2 µm de large pour deux angles de pointes différents. Dans les deux cas, les bords de la pointe s'illuminent. Néanmoins, pour le guide avec une terminaisonàterminaisonà 10?, le bout de la pointe n'est pas visible contrairementàcontrairementà celui avec un anglè a 45?. Sur la figure 15.9 (b) est représentée une vue partielle du plan de Fourier pour le guide avec la pointe de 10?. L'image a ´ eté volontairement saturée pour faire appara??treappara??tre les deux lignes caractéristiques de la diffraction du plasmon par une arête. La signature du plasmon de surface se propageant dans le guide est existante dans le centre du spot. Ce qui est intéressant ici c, Figure, vol.15

. Kohl, Interconnect opportunities for gigascale integration, IBM Journal of Research and Development, vol.46, pp.245-263, 2002.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, Plasmonics : the next chip-scale technology The development of chip-scale electronics and photonics has led to, pp.20-27, 2006.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park et al., 40Gbit???s light signal transmission in long-range surface plasmon waveguides, Applied Physics Letters, vol.91, issue.17, p.171117, 2007.
DOI : 10.1063/1.2803069

A. Pitilakis and E. Kriezis, Longitudinal 2x2 Switching Configurations Based on Thermo-Optically Addressed Dielectric-Loaded Plasmonic Waveguides, Journal of Lightwave Technology, pp.1-1

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan et al., Plasmonics Going Practical : Tb/s WDM transmission and high-quality switching using plasmons

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, 1988.
DOI : 10.1007/BFb0048317

M. Bashevoy, F. Jonsson, A. Krasavin, N. Zheludev, Y. Chen et al., Generation of Traveling Surface Plasmon Waves by Free-Electron Impact, Nano Letters, vol.6, issue.6, pp.1113-1115, 2006.
DOI : 10.1021/nl060941v

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García-de-abajo, Efficient Generation of Propagating Plasmons by Electron Beams, Nano Letters, vol.9, issue.3, pp.1176-81, 2009.
DOI : 10.1021/nl803825n

E. J. Vesseur, R. De-waele, M. Kuttge, and A. Polman, Direct Observation of Plasmonic Modes in Au Nanowires Using High-Resolution Cathodoluminescence Spectroscopy, Nano Letters, vol.7, issue.9, pp.2843-2849, 2007.
DOI : 10.1021/nl071480w

E. Devaux, T. W. Ebbesen, J. Weeber, and A. Dereux, Launching and decoupling surface plasmons via micro-gratings, Applied Physics Letters, vol.83, issue.24, p.4936, 2003.
DOI : 10.1063/1.1634379

A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Zeitschrift für Physik A Hadrons and Nuclei, pp.398-410, 1968.
DOI : 10.1007/BF01391532

E. Kretschmann, Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results, Optics Communications, vol.6, issue.2, pp.185-187, 1972.
DOI : 10.1016/0030-4018(72)90224-6

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Guiding of a one-dimensional optical beam with nanometer diameter, Optics Letters, vol.22, issue.7, pp.475-482, 1997.
DOI : 10.1364/OL.22.000475

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers et al., Silver Nanowires as Surface Plasmon Resonators, Physical Review Letters, vol.95, issue.25, p.257403, 2005.
DOI : 10.1103/PhysRevLett.95.257403

E. Verhagen, M. Spasenovi´cspasenovi´c, A. Polman, and L. Kuipers, Nanowire Plasmon Excitation by Adiabatic Mode Transformation, Physical Review Letters, vol.102, issue.20, pp.1-4, 2009.
DOI : 10.1103/PhysRevLett.102.203904

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin et al., Colas-des Francs Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires, ACS nano, 2011.

T. Laroche, A. Vial, and M. Roussey, Crystalline structure???s influence on the near-field optical properties of single plasmonic nanowires, Applied Physics Letters, vol.91, issue.12, p.123101, 2007.
DOI : 10.1063/1.2784389

J. Weeber, Y. Lacroute, and A. Dereux, Optical near-field distributions of surface plasmon waveguide modes, Physical Review B, vol.68, issue.11, pp.1-10, 2003.
DOI : 10.1103/PhysRevB.68.115401

URL : https://hal.archives-ouvertes.fr/hal-00472590

D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nature Photonics, vol.89, issue.2, pp.83-91, 2010.
DOI : 10.1038/nphoton.2009.282

J. Weeber, J. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute et al., Near-field observation of surface plasmon polariton propagation on thin metal stripes, Physical Review B, vol.64, issue.4, pp.1-9, 2001.
DOI : 10.1103/PhysRevB.64.045411

URL : https://hal.archives-ouvertes.fr/hal-00472593

R. Zia, J. Schuller, and M. Brongersma, Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides, Physical Review B, vol.74, issue.16, pp.1-12, 2006.
DOI : 10.1103/PhysRevB.74.165415

J. Weeber, M. U. González, A. Baudrion, and A. Dereux, Surface plasmon routing along right angle bent metal strips, Applied Physics Letters, vol.87, issue.22, p.221101, 2005.
DOI : 10.1063/1.2130393

URL : https://hal.archives-ouvertes.fr/hal-00472596

M. González, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov et al., Design, near-field characterization, and modeling of 45?A?surface45? 45?A?45?A?surface-plasmon Bragg mirrors, Physical Review B, vol.73, pp.19-21, 2006.

J. Weeber, A. Bouhelier, G. C. Francs, L. Markey, and A. Dereux, Submicrometer In-Plane Integrated Surface Plasmon Cavities, Nano Letters, vol.7, issue.5, pp.1352-1361, 2007.
DOI : 10.1021/nl070403y

URL : https://hal.archives-ouvertes.fr/hal-00472406

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher et al., Dielectric optical elements for surface plasmons, Optics Letters, vol.30, issue.8, pp.893-898, 2005.
DOI : 10.1364/OL.30.000893

J. Grandidier, S. Massenot, G. Des-francs, A. Bouhelier, J. Weeber et al., Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy, Physical Review B, vol.78, issue.24, pp.1-9, 2008.
DOI : 10.1103/PhysRevB.78.245419

URL : https://hal.archives-ouvertes.fr/hal-00472378

J. Grandidier, G. Des-francs, S. Massenot, A. Bouhelier, L. Markey et al., Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength, Nano Letters, vol.9, issue.8, pp.2935-2939, 2009.
DOI : 10.1021/nl901314u

URL : https://hal.archives-ouvertes.fr/hal-00472376

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, Channel plasmonpolariton guiding by subwavelength metal grooves, Physical review letters 95, p.46802, 2005.

S. Bozhevolnyi, V. Volkov, E. Devaux, J. Laluet, and T. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature, vol.85, issue.7083, pp.508-511, 2006.
DOI : 10.1038/nature04594

E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martín-moreno, F. García et al., Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons, Physical Review Letters, vol.100, issue.2, pp.1-4, 2008.
DOI : 10.1103/PhysRevLett.100.023901

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Compact gradual bends for channel plasmon polaritons, Optics Express, vol.14, issue.10, pp.4494-503, 2006.
DOI : 10.1364/OE.14.004494

T. Yatsui, M. Kourogi, and M. Ohtsu, Plasmon waveguide for optical far/near-field conversion, Applied Physics Letters, vol.79, issue.27, p.4583, 2001.
DOI : 10.1063/1.1428405

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo et al., Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths, Optics Express, vol.16, issue.8, pp.5252-60, 2008.
DOI : 10.1364/OE.16.005252

A. Bouhelier, T. Huser, H. Tamaru, H. G-"-untherodt, D. Pohl et al., Plasmon optics of structured silver films, Physical Review B, vol.63, issue.15, p.155404, 2001.
DOI : 10.1103/PhysRevB.63.155404

A. Bouhelier and G. Wiederrecht, Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy, Physical Review B, vol.71, issue.19, p.195406, 2005.
DOI : 10.1103/PhysRevB.71.195406

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher et al., Leakage radiation microscopy of surface plasmon polaritons, Materials Science and Engineering: B, vol.149, issue.3, pp.220-229, 2008.
DOI : 10.1016/j.mseb.2007.10.010

A. Bouhelier and G. Wiederrecht, Surface plasmon rainbow jets, Optics Letters, vol.30, issue.8, pp.884-886, 2005.
DOI : 10.1364/OL.30.000884

L. Novotny, Allowed and forbidden light in near-field optics I A single dipolar light source, Journal of the Optical Society of America A, vol.14, issue.1, pp.91-104, 1997.
DOI : 10.1364/JOSAA.14.000091

G. Des-francs, J. Grandidier, S. Massenot, A. Bouhelier, J. Weeber et al., Integrated plasmonic waveguides: A mode solver based on density of states formulation, Physical Review B, vol.80, issue.11, p.115419, 2009.
DOI : 10.1103/PhysRevB.80.115419

URL : https://hal.archives-ouvertes.fr/hal-00453145

S. Massenot, J. Weeber, A. Bouhelier, G. Colas-des-francs, J. Grandidier et al., Differential method for modeling dielectric-loaded surface plasmon polariton waveguides, Optics Express, vol.16, issue.22, pp.17599-17608, 2008.
DOI : 10.1364/OE.16.017599

M. Nevì-ere and E. Popov, Light propagation in periodic media : differential theory and design, 2003.

R. Wallis, A. Maradudin, and G. Stegeman, Surface polariton reflection and radiation at end faces, Applied Physics Letters, vol.42, issue.9, pp.764-766, 1983.
DOI : 10.1063/1.94092

R. Oulton, D. Pile, Y. Liu, and X. Zhang, Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities, Physical Review B, vol.76, issue.3, pp.1-12, 2007.
DOI : 10.1103/PhysRevB.76.035408

P. Dawson, F. D. Fornel, and J. Goudonnet, Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope, Physical Review Letters, vol.72, issue.18, pp.2927-2930, 1994.
DOI : 10.1103/PhysRevLett.72.2927

P. Berini, Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics, Optics Express, vol.7, issue.10, pp.329-335, 2000.
DOI : 10.1364/OE.7.000329

R. Zia, A. Chandran, and M. L. Brongersma, Dielectric waveguide model for guided surface polaritons, Optics Letters, vol.30, issue.12, pp.1473-1478, 2005.
DOI : 10.1364/OL.30.001473

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno et al., Surface plasmon propagation in microscale metal stripes, Applied Physics Letters, vol.79, issue.1, p.51, 2001.
DOI : 10.1063/1.1380236

E. Verhagen, A. Polman, and L. K. Kuipers, Nanofocusing in laterally tapered plasmonic waveguides, Optics Express, vol.16, issue.1, pp.45-57, 2008.
DOI : 10.1364/OE.16.000045

M. Stockman, Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides, Physical Review Letters, vol.93, issue.13, pp.1-4, 2004.
DOI : 10.1103/PhysRevLett.93.137404

U. and L. Résolution-obtenue-est-bien-meilleure, Typiquement avec notre système de LFE nous avons une résolution minimum de 20 nm (contrairementàcontrairementà 400 nm pour la photolithographie UV) Une autre différence vient de la conduction de l'´ echantillon

L. En, appliquè a tous les types de substrats, mais ce n'est pas le cas pour la lithographie e-beam. Elle nécessite l'utilisation d'un substrat conducteur. Pour cela une couche conductrice d'oxyde indiumétainindiumétain (ITO) d'une vingtaine de nanomètres estévaporéeestévaporée sur une lamelle de verre de 22 mm × 22 mm et 170 µm d'´ epais

L. Lithographies-par-faisceau-d, ´ electron sont réaliséesréaliséesà partir d'un microscopémicroscopé electroniquè a balayage (MEB) de marque JEOL (modèle 6500) ´ equipé d'un " e-beam blanker " . La création des motifs est effectuéè a partir d'un ordinateuréquipéordinateuréquipé d'un

´. Etape, Etalement de 160 µL d'un solution de PMMA dilué dans l'´ ethylactate en concentration en volume [1 :1], sur un substrat conducteur. Il s'agit d'une résiné electro-sensible positif. Ceci signifie que les parties qui seront insolées seront dissoutes dans le développeur. Les paramètres de spin-coating utilisé sont résumés

J. Berthelot, G. Bachelier, and P. Rai, Gérard Colas des Francs, Alain Dereux and Alexandre Bouhelier Tailored second harmonic generation in strongly coupled optical gap antennas " ; soumisàsoumisà Physical Review Letters

J. Berthelot, F. Tantussi, and P. Rai, Gérard Colas des Francs, Jean-Claude Weeber, Alain Dereux, Francesco Fuso, Maria Allegrini and Alexandre Bouhelier Determinant role of the edges in defning surface plasmon propagation in stripe waveguides and tapered concentrators " ; soumisàsoumisà, Journal of the Optical Society America B

N. Hartmann, G. Piredda, and J. Berthelot, Gérard Colas des Francs, Alexandre Bouhelier and Achim Hartschuh Launching Propagating Surface Plasmon Polaritons by a Single Emitter

J. Berthelot and A. Bouhelier, Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon, Optics Express, vol.19, issue.6, p.5303, 2011.
DOI : 10.1364/OE.19.005303

URL : https://hal.archives-ouvertes.fr/hal-00703538

C. Huang, A. Bouhelier, J. Berthelot, G. Colas-des-francs, E. Finot et al., External control of the scattering properties of a single optical nanoantenna, Applied Physics Letters, vol.96, issue.14, p.143116, 2010.
DOI : 10.1063/1.3385155

J. Berthelot, A. Bouhelier, E. Finot, J. Weeber, A. Dereux et al., Hicham Ibn El Ahrach Tuning of an Optical Dimer Nanoantenna by Electrically Controlling Its Load Impedance, Nano Letters Nature Photonics, vol.9, issue.4, pp.3914-3921, 2009.