]. T. Yamagichi, Y. Uchida, S. Agatsuma, and H. Arakawa, Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%, Acrim 2011] Sattelite total solar irradiance monitoring, p.733, 2009.
DOI : 10.1016/j.solmat.2008.09.021

T. Ono, T. Yamaguchi, and H. Arakawa, Study on dye-sensitized solar cell using novel infrared dye, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, p.831, 2009.
DOI : 10.1016/j.solmat.2008.09.038

]. L. Zhang, Y. Shi, S. Peng, J. Liang, Z. Tao et al., Dye-sensitized solar cells made from BaTiO3-coated TiO2 nanoporous electrodes, Journal of Photochemistry and Photobiology A: Chemistry, vol.197, issue.2-3, p.260, 2008.
DOI : 10.1016/j.jphotochem.2008.01.002

]. K. Park and M. Dhayal, High efficiency solar cell based on dye sensitized plasma treated nano-structured TiO2 films, Electrochemistry Communications, vol.11, issue.1, p.75, 2009.
DOI : 10.1016/j.elecom.2008.10.020

]. A. Nogueira, J. Durrant, and M. D. Paoli, Dye-Sensitized Nanocrystalline Solar Cells Employing a Polymer Electrolyte, Advanced Materials, vol.13, issue.11, p.826, 2001.
DOI : 10.1002/1521-4095(200106)13:11<826::AID-ADMA826>3.0.CO;2-L

]. A. Du-pasquier, M. Stewart, T. Spitler, and M. Coleman, Aqueous coating of efficient flexible TiO2 dye solar cell photoanodes, Solar Energy Materials and Solar Cells, vol.93, issue.4, p.528, 2009.
DOI : 10.1016/j.solmat.2008.10.029

]. X. Zhang, T. Tagichi, H. Wang, Q. Meng, O. Sato et al., Investigation of the stability of solid-state dye-sensitized solar cells, Research on Chemical Intermediates, vol.105, issue.1-2, 2007.
DOI : 10.1163/156856707779160799

]. A. Goetzberger, V. Hoffmann, ]. W. Cai, X. Gong, and Y. Cao, Photovoltaic solar energy generation, Chapitre 1 Polymer solar cells: recent development and possible routes for improvement in the performance, Solar Energy Materials & Solar Cells, vol.94, p.114, 2005.

]. B. O-'regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol.353, issue.6346, p.737, 1991.
DOI : 10.1038/353737a0

]. U. Bach, Y. Tachibana, J. Moser, S. Haque, J. Durrant et al., Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells, Journal of the American Chemical Society, vol.121, issue.32, p.7445, 1999.
DOI : 10.1021/ja9915403

]. D. Cahen, G. Hodes, M. Grätzel, and J. , Nature of Photovoltaic Action in Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B, vol.104, issue.9, p.2053, 2000.
DOI : 10.1021/jp993187t

P. Comte, M. Péchy, and . Grätzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, Journal of the Electrochemical Society, vol.153, p.2255, 2006.

]. T. Murakami and M. Grätzel, Counter electrodes for DSC: Application of functional materials as catalysts, Inorganica Chimica Acta, vol.361, issue.3, p.572, 2008.
DOI : 10.1016/j.ica.2007.09.025

C. Baik, D. Kim, M. Kang, S. Kang, J. Ko et al., Organic dyes with a novel anchoring group for dye-sensitized solar cell applications, Journal of Photochemistry and Photobiology A: Chemistry, vol.201, issue.2-3, p.168, 2009.
DOI : 10.1016/j.jphotochem.2008.10.018

]. A. Zaban, S. Ferrere, and B. Gregg, Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface, The Journal of Physical Chemistry B, vol.102, issue.2, p.452, 1998.
DOI : 10.1021/jp972924n

]. M. Gupta and J. Ballato, The handbook of photonics (2 ieme édition, 2007.

]. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide et al., Dye-sensitized solar cells with conversion efficiency of 11, Japanese Journal of Applied Physics, vol.1, issue.45, p.638, 2006.

]. L. Han, A. Islam, N. Koide, and R. Yamanaka, Alternative technology enables large-area solar-cell production, SPIE Newsroom, 2009.
DOI : 10.1117/2.1200908.1774

Y. Ogomi, Y. Kashiwa, Y. Noma, Y. Fujita, S. Kojima et al., Photovoltaic performance of dye-sensitized solar cells stained with black dye under pressurized condition and mechanism for high efficiency, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, p.1009, 2009.
DOI : 10.1016/j.solmat.2008.11.030

]. X. Li, D. Zhang, Z. Sun, Y. Chen, and S. Huang, Metal-free indoline-dye-sensitized TiO 2 nanotube solar cells, Microelectronics Journal, vol.40, issue.108, 2009.

]. M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasaka, Improvement in durability of flexible plastic dye-sensitized solar cell modules, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, p.836, 2009.
DOI : 10.1016/j.solmat.2008.09.051

. Grätzel and . High-efficiency, 2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline- TiO 2 photoanode, Chemistry Communication, issue.7, p.4004, 2006.

]. S. Ito, T. Murakami, P. Comte, P. Liska, C. Grätzel et al., Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films, vol.516, issue.14, p.4613, 2008.
DOI : 10.1016/j.tsf.2007.05.090

]. J. Han, J. Chen, X. Zhou, Y. Lin, J. Zhang et al., Dye-sensitized solid-state solar cells fabricated by screen-printed TiO2 thin film with addition of polystyrene balls, Chinese Chemical Letters, vol.19, issue.8, p.1004, 2008.
DOI : 10.1016/j.cclet.2008.05.013

M. Kang, K. Ryu, S. Chang, N. Park, J. Hong et al., Dependence of TiO 2 film thickness on photocurrent-voltage characteristics of dye-sensitized solar cells, Bulletin of Korean Chemical Society, vol.25, p.742, 2004.

]. Y. Jun, J. Kim, and M. Kang, A study of stainless steel-based dye-sensitized solar cells and modules, Solar Energy Materials and Solar Cells, vol.91, issue.9, p.779, 2007.
DOI : 10.1016/j.solmat.2007.01.007

]. Y. Jun, H. Son, D. Sohn, and M. Kang, A module of a TiO2 nanocrystalline dye-sensitized solar cell with effective dimensions, Journal of Photochemistry and Photobiology A: Chemistry, vol.200, issue.2-3, p.314, 2008.
DOI : 10.1016/j.jphotochem.2008.08.009

]. G. Kiema, M. Colgan, and M. Brett, Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers, Solar Energy Materials and Solar Cells, vol.85, issue.3, p.321, 2005.
DOI : 10.1016/j.solmat.2004.05.001

]. S. Jo, M. Song, Y. Ahn, C. Park, and D. Kim, Nanofibril formation of electrospun TiO 2 Fibers and its application to dye-sensitized solar cells, Journal of Macromolecular Science A: Pure and Applied Chemistry, vol.42, p.1529, 2005.

]. B. Lee and J. Kim, Enhanced efficiency of dye-sensitized solar cells by UV???O3 treatment of TiO2 layer, Current Applied Physics, vol.9, issue.2, p.404, 2009.
DOI : 10.1016/j.cap.2008.03.017

F. Krebs, Polymer photovoltaics a practical approach, Chapitre 1, SPIE Polymer photovoltaics a practical approach, Ogawa, H. Kurata et S. Isoda, Characterization of Grätzel dye on TiO 2 particles by transmission electron microscopy, p.95, 2004.

]. X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu et al., Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells, Thin Solid Films, vol.472, issue.1-2, p.242, 2005.
DOI : 10.1016/j.tsf.2004.07.083

]. T. Meen, W. Water, W. Chen, S. Chao, L. Ji et al., Application of TiO2 nano-particles on the electrode of dye-sensitized solar cells, Journal of Physics and Chemistry of Solids, vol.70, issue.2, p.472, 2009.
DOI : 10.1016/j.jpcs.2008.12.002

Z. Huang, X. Liu, K. Li, D. Li, Y. Luo et al., Application of carbon materials as counter electrodes of dye-sensitized solar cells, Electrochemistry Communications, vol.9, issue.4, p.596, 2007.
DOI : 10.1016/j.elecom.2006.10.028

F. Zhang, Y. Luo, J. Song, X. Guo, W. Liu et al., Triphenylamine-based dyes for dye-sensitized solar cells, Dyes and Pigments, vol.81, issue.3, p.224, 2009.
DOI : 10.1016/j.dyepig.2008.10.012

]. N. Ikeda, K. Teshima, and T. Miyasaka, Conductive polymer???carbon???imidazolium composite: a simple means for constructing solid-state dye-sensitized solar cells, Chem. Commun., vol.34, issue.16, p.1733, 2006.
DOI : 10.1039/B516417F

]. H. Yang, O. Ileperuma, M. Shimomura, and K. Murakami, Effect of ultra-thin polymer membrane electrolytes on dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, p.1083, 2009.
DOI : 10.1016/j.solmat.2008.12.019

]. B. Yoo, K. Kim, S. Lee, W. Kim, N. Park et al., TiO 2 triple-layered transparent conducting substrates for dye-sensitized solar cells, Solar Energy Materials & Solar Cells, vol.92, issue.873, 2008.

D. ). Park, M. Park, H. Dhayal, and . Gu, Electrochemical properties of liquid electrolyte added quasi-solid state TiO2 dye-sensitized solar cells, Electrochemistry Communications, vol.10, issue.7, p.1098, 2008.
DOI : 10.1016/j.elecom.2008.05.024

]. P. Cameron, L. Peter, S. Zakeeruddin, and M. Grätzel, Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells, Coordination Chemistry Reviews, vol.248, issue.13-14, p.1447, 2004.
DOI : 10.1016/j.ccr.2004.02.010

]. X. Tang, J. Qian, Z. Wang, H. Wang, Q. Feng et al., Comparison of low crystallinity TiO2 film with nanocrystalline anatase film for dye-sensitized solar cells, Journal of Colloid and Interface Science, vol.330, issue.2, p.386, 2009.
DOI : 10.1016/j.jcis.2008.10.072

]. B. Ma, R. Gao, L. Wang, F. Luo, C. Zhan et al., Alternating assembly structure of the same dye and modification material in quasi-solid state dye-sensitized solar cell, Journal of Photochemistry and Photobiology A: Chemistry, vol.202, issue.1, p.33, 2009.
DOI : 10.1016/j.jphotochem.2008.11.004

]. T. Renouard and M. Grätzel, Functionalized tetradentate ligands for Ru-sensitized solar cells, Tetrahedron, vol.57, issue.38, p.8145, 2001.
DOI : 10.1016/S0040-4020(01)00801-8

]. P. Singh, K. Kim, N. Park, and H. Rhee, Mesoporous nanocrystalline TiO2 electrode with ionic liquid-based solid polymer electrolyte for dye-sensitized solar cell application, Synthetic Metals, vol.158, issue.14, p.590, 2008.
DOI : 10.1016/j.synthmet.2008.04.003

]. S. Cerneaux, S. Zakeeruddin, M. Grätzel, Y. Cheng, and L. Spiccia, New functional triethoxysilanes as iodide sources for dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol.198, issue.2-3, p.186, 2008.
DOI : 10.1016/j.jphotochem.2008.03.008

]. S. Ngamsinlapasathian, T. Sreethawong, and S. Yoshikawa, Enhanced efficiency of dye-sensitized solar cell using double-layered conducting glass, Thin Solid Films, vol.516, issue.21, p.7802, 2008.
DOI : 10.1016/j.tsf.2008.03.037

]. S. Kang, M. Kang, S. Choi, J. Kim, H. Kim et al., Improved charge transport in dye-sensitized solar cells employing viscous non-volatile electrolytes, Electrochemistry Communications, vol.10, issue.9, p.1326, 2008.
DOI : 10.1016/j.elecom.2008.07.004

]. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura et al., High-performance carbon counter electrode for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.79, issue.4, p.459, 2003.
DOI : 10.1016/S0927-0248(03)00021-7

]. C. Bhongale and M. Thelakkat, Efficient hybrid polymer/titania solar cells sensitized with carboxylated polymer dye, Solar Energy Materials and Solar Cells, vol.94, issue.5, p.817, 2010.
DOI : 10.1016/j.solmat.2009.12.030

]. X. Ma, J. Hua, W. Wu, Y. Jin, F. Meng et al., A high-efficiency cyanine dye for dye-sensitized solar cells, Tetrahedron, vol.64, issue.2, p.345, 2008.
DOI : 10.1016/j.tet.2007.10.094

]. M. Toivola, F. Ahlskog, and P. Lund, Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures, Solar Energy Materials and Solar Cells, vol.90, issue.17, p.2881, 2006.
DOI : 10.1016/j.solmat.2006.05.002

]. R. Kawano, M. Nazeeruddin, A. Sato, M. Grätzel, and M. Watanabe, Amphiphilic ruthenium dye as an ideal sensitizer in conversion of light to electricity using ionic liquid crystal electrolyte, Electrochemistry Communications, vol.9, issue.5, p.1134, 2007.
DOI : 10.1016/j.elecom.2007.01.005

]. A. Welte, C. Waldauf, C. Brabec, and P. Wellmann, Application of optical absorbance for the investigation of electronic and structural properties of sol???gel processed TiO2 films, Thin Solid Films, vol.516, issue.20, p.7256, 2008.
DOI : 10.1016/j.tsf.2007.12.025

]. K. Schwarzburg and F. Willig, Origin of Photovoltage and Photocurrent in the Nanoporous Dye-Sensitized Electrochemical Solar Cell, The Journal of Physical Chemistry B, vol.103, issue.28, p.5743, 1999.
DOI : 10.1021/jp990312s

]. J. Xue, B. Rand, S. Uchida, and S. Forrest, A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell, Advanced Materials, vol.76, issue.1, p.66, 2005.
DOI : 10.1002/adma.200400617

]. T. Kitamura, M. Maitani, M. Matsuda, Y. Wada, and S. Yanagida, Improved Solid-State Dye Solar Cells with Polypyrrole using a Carbon-Based Counter Electrode, Chemistry Letters, vol.30, issue.10, p.1054, 2001.
DOI : 10.1246/cl.2001.1054

]. M. Akhtar, J. Park, H. Lee, S. Lee, and O. Yang, Carbon nanotubes???polyethylene oxide composite electrolyte for solid-state dye-sensitized solar cells, Electrochimica Acta, vol.55, issue.7, p.2418, 2010.
DOI : 10.1016/j.electacta.2009.11.062

]. S. Ngamsinlapasathian, S. Pavasupree, Y. Suzuki, and S. Yoshikawa, Dye-sensitized solar cell made of mesoporous titania by surfactant-assisted templating method, Solar Energy Materials and Solar Cells, vol.90, issue.18-19, p.3187, 2006.
DOI : 10.1016/j.solmat.2006.06.021

]. G. Yu, J. Gao, J. Hummelen, F. Wudl, and A. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, vol.270, issue.5243, p.1789, 1995.
DOI : 10.1126/science.270.5243.1789

]. J. Zhang and A. Zaban, Efficiency enhancement in dye-sensitized solar cells by in situ passivation of the sensitized nanoporous electrode with Li2CO3, Electrochimica Acta, vol.53, issue.18, p.5670, 2008.
DOI : 10.1016/j.electacta.2008.03.027

]. D. Kuang, C. Klein, H. Snaith, R. Baker, S. Zakeeruddin et al., A new ion-coordinating ruthenium sensitizer for mesoscopic dye-sensitized solar cells, Inorganica Chimica Acta, vol.361, issue.3, p.699, 2008.
DOI : 10.1016/j.ica.2007.05.031

]. H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells, Electrochimica Acta, vol.54, issue.4, p.1319, 2009.
DOI : 10.1016/j.electacta.2008.09.025

L. Polyaniline, ]. M. Albert, and J. Combs, Correction factors for radial resistivity gradient evaluation of semiconductor slices, p.148, 1964.

]. I. Alig, S. Dudkin, W. Jenninger, and M. Marzantowicz, Ac conductivity and dielectric permittivity of poly(ethylene glycol) during crystallization: Percolation picture, Polymer, vol.47, issue.5, p.1722, 2006.
DOI : 10.1016/j.polymer.2005.12.026

]. M. Ayad and E. Zaki, Doping of polyaniline films with organic sulfonic acids in aqueous media and the effect of water on these doped films, European Polymer Journal, vol.44, issue.11, p.3741, 2008.
DOI : 10.1016/j.eurpolymj.2008.08.012

Z. Liu, J. Zhou, H. Xue, L. Shen, H. Zang et al., Polyaniline/TiO2 solar cells, Polyaniline/TiO 2 solar cells, p.721, 2006.
DOI : 10.1016/j.synthmet.2006.04.001

W. Liu, D. Guo, W. Fu, and . Chen, p???n Heterojunction diodes made by assembly of ITO/nano-crystalline TiO2/polyaniline/ITO, Synthetic Metals, vol.156, issue.5-6, p.414, 2006.
DOI : 10.1016/j.synthmet.2006.01.003

]. Q. Yu, M. Shi, M. Deng, M. Wang, and H. Chen, Morphology and conductivity of polyaniline sub-micron fibers prepared by electrospinning, Materials Science and Engineering: B, vol.150, issue.1, p.70, 2008.
DOI : 10.1016/j.mseb.2008.02.008

Y. Yu, M. Li, H. Wang, and . Chen, Polyaniline nanobelts, flower-like and rhizoid-like nanostructures by electrospinning, Chinese Chemical Letters, vol.19, issue.2, p.223, 2008.
DOI : 10.1016/j.cclet.2007.12.005

]. S. Chew, Y. Wen, Y. Dzenis, and K. Leong, The Role of Electrospinning in the Emerging Field of Nanomedicine, Current Pharmaceutical Design, vol.12, issue.36, p.4751, 2006.
DOI : 10.2174/138161206779026326

]. L. Coleman, Polycrystalline techniques for conductivity studies of organic charge transfer salts, Review of Scientific Instruments, vol.49, issue.1, p.58, 1978.
DOI : 10.1063/1.1135252

]. A. Diaz and J. Logan, Electroactive polyaniline films, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.111, issue.1, p.111, 1980.
DOI : 10.1016/S0022-0728(80)80081-7

. Macdiarmid, Insulator-to-metal transition in polyaniline, Synthetic Metals, vol.18, issue.303, 1987.

]. E. Falcao, D. Petrov, and W. D. Azevedo, Polyaniline-Poly(Vinyl Alcohol) Composite: Spectroscopic Characterization and Diffraction Grating Recording, Molecular Crystals and Liquid Crystals, vol.374, p.173, 2002.
DOI : 10.1080/713738266

]. P. Juvin, M. Hasik, J. Fraysse, J. Planes, and A. , Conductive blends of polyaniline with plasticized poly(methyl methacrylate), Journal of Applied Polymer Science, vol.29, issue.3, p.471, 1999.
DOI : 10.1002/(SICI)1097-4628(19991017)74:3<471::AID-APP1>3.0.CO;2-C

]. W. Feng, X. Bai, Y. Lian, J. Liang, X. Wang et al., Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization, Carbon, vol.41, issue.8, p.1551, 2003.
DOI : 10.1016/S0008-6223(03)00078-2

]. A. Greiner and J. Wendorff, Functional Self-Assembled Nanofibers by Electrospinning, Advanced Polymer Science, vol.219, issue.107, 2008.
DOI : 10.1007/12_2008_146

]. V. Gupta and N. Miura, Large-area network of polyaniline nanowires prepared by potentiostatic deposition process, Electrochemistry Communications, vol.7, issue.10, p.995, 2005.
DOI : 10.1016/j.elecom.2005.07.008

]. J. Haberko, A. Bernasik, W. Luzny, J. Raczkowska, J. Rysz et al., Dendrites and pillars in spin cast blends of polyaniline or its oligomeric analogue, Synthetic Metals, vol.160, issue.23-24, p.2459, 2010.
DOI : 10.1016/j.synthmet.2010.09.027

]. S. Hellring, K. Ragunathan, and K. Balog, Electrospinning process, US Patent No, p.145655, 2008.

T. Lin and K. Ho, A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene), Solar Energy Materials and Solar Cells, vol.90, issue.4, p.506, 2006.
DOI : 10.1016/j.solmat.2005.02.017

]. A. Hopkins, R. Lipeles, and W. Kao, Electrically conducting polyaniline microtube blends, Thin Solid Films, pp.447-448, 2004.
DOI : 10.1016/j.tsf.2003.07.010

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA427964

M. Zhang, S. Kotaki, and . Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, vol.63, p.2223, 2003.

]. G. Inzelt, Conducting polymers a new era in electrochemistry, 2008.

]. J. Isaksson, N. Robinson, and M. Berggren, Electronic modulation of an electrochemically induced wettability gradient to control water movement on a polyaniline surface, Thin Solid Films, vol.515, issue.4, p.2003, 2006.
DOI : 10.1016/j.tsf.2006.04.001

]. H. Dong, S. Prasad, V. Nyame, and W. Jones, Sub-micrometer Conducting Polyaniline Tubes Prepared from Polymer Fiber Templates, Chemistry of Materials, vol.16, issue.3, p.371, 2004.
DOI : 10.1021/cm0347180

]. W. Jung, Y. Lee, and S. Mccarthy, Synthesis of needle-like polyanilines, Journal of Vinyl and Additive Technology, vol.100, issue.2, p.20106, 2007.
DOI : 10.1002/vnl.20106

]. P. Kahol and N. Pinto, Electron paramagnetic resonance investigations of electrospun polyaniline fibers, Solid State Communications, vol.124, issue.5-6, p.195, 2002.
DOI : 10.1016/S0038-1098(02)00492-1

]. P. Kahol, R. Perera, K. Satheesh-kumar, S. Geetha, and D. Trivedi, Electron localization length in polyaniline, Solid State Communications, vol.125, issue.7-8, p.369, 2003.
DOI : 10.1016/S0038-1098(02)00878-5

]. H. Tran and R. Kaner, A general synthetic route to nanofibers of polyaniline derivatives, Chemical Communications, vol.3, issue.6, p.3915, 2006.
DOI : 10.1039/b605928g

]. D. Li and R. Kaner, How nucleation affects the aggregation of nanoparticles, Journal of Materials Chemistry, vol.16, issue.22, p.2279, 2007.
DOI : 10.1039/b700699c

]. E. Kang, K. Neoh, and K. Tan, Polyaniline: A polymer with many interesting intrinsic redox states, Progress in Polymer Science, vol.23, issue.2, p.277, 1998.
DOI : 10.1016/S0079-6700(97)00030-0

]. S. Roy, K. Kargupta, S. Chakraborty, and S. Ganguly, Preparation of polyaniline nanofibers and nanoparticles via simultaneous doping and electro-deposition, Materials Letters, vol.62, issue.16, p.2535, 2008.
DOI : 10.1016/j.matlet.2007.12.066

]. X. Li, S. Tian, Y. Ping, D. Kim, and W. Knoll, -PVP Diblock Copolymers as Templates, Langmuir, vol.21, issue.21, p.9393, 2005.
DOI : 10.1021/la0514009

URL : https://hal.archives-ouvertes.fr/tel-00807841

]. B. Kuila and M. Stamm, Fabrication of oriented polyaniline nanostructures using block copolymer nanotemplates and their optical, electrochemical and electric properties, Journal of Materials Chemistry, vol.109, issue.29, p.6086, 2010.
DOI : 10.1039/c0jm00352b

]. A. Kukla, Y. Shirshov, and S. Piletsky, Ammonia sensors based on sensitive polyaniline films, Sensors and Actuators B: Chemical, vol.37, issue.3, p.135, 1996.
DOI : 10.1016/S0925-4005(97)80128-1

]. G. Li, S. Pang, J. Liu, Z. Wang, and Z. Zhang, Synthesis of Polyaniline Submicrometer-Sized Tubes with Controllable Morphology, Journal of Nanoparticle Research, vol.35, issue.448, p.1038, 2006.
DOI : 10.1007/s11051-005-9057-2

]. Y. Long, L. Zhang, Z. Chen, K. Huang, Y. Yang et al., Electronic transport in single polyaniline and polypyrrole microtubes, Electronic transport in single polyaniline and polypyrrole microtubes, p.165412, 2005.
DOI : 10.1103/PhysRevB.71.165412

]. I. Norris, M. Shaker, F. Ko, and A. Macdiarmid, Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends, Synthetic Metals, vol.114, issue.2, 2000.
DOI : 10.1016/S0379-6779(00)00217-4

]. A. Macdiarmid, ???Synthetic metals???: a novel role for organic polymers, Current Applied Physics, vol.1, issue.4-5, p.269, 2001.
DOI : 10.1016/S1567-1739(01)00051-7

H. Ko, M. Okuzaki, and . Llaguno, Electrostatically-generated nanofibres of electronic polymers, Synthetic Metals, vol.119, p.27, 2001.

M. Freitag, J. Hone, C. Staii, A. Johnson, N. Pinto et al., Fabrication and electrical characterization of polyaniline-based nanofibres with diameter below 30 nm, Applied Physics Letters, vol.83, p.3800, 2003.

]. N. Pinto, R. Gonzalez, A. Johnson, and A. Macdiarmid, Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode, Applied Physics Letters, vol.89, issue.3, p.33505, 2006.
DOI : 10.1063/1.2227758

]. X. Zhang and S. Manohar, Polyaniline nanofibers: chemical synthesis using surfactants, Chemical Communications, issue.20, p.2360, 2004.
DOI : 10.1039/b409309g

]. S. Surwade, N. Manohar, and S. Manohar, Origin of Bulk Nanoscale Morphology in Conducting Polymers, Macromolecules, vol.42, issue.6, p.1792, 2009.
DOI : 10.1021/ma900141g

]. M. Gosh, A. Barman, A. Meikap, S. De, and S. Chatterjee, Hopping transport in HCl doped conducting polyaniline, Physics Letters A, vol.260, issue.1-2, p.138, 1999.
DOI : 10.1016/S0375-9601(99)00501-0

]. A. Mirmohseni and A. Oladegaragoze, Anti-corrosive properties of polyaniline coating on iron, Synthetic Metals, vol.114, issue.2, p.105, 2000.
DOI : 10.1016/S0379-6779(99)00298-2

]. S. Pomfret, P. Adams, and N. , Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process, Polymer, vol.41, issue.6, p.2265, 2000.
DOI : 10.1016/S0032-3861(99)00365-1

]. B. Sundaray, A. Choi, and Y. Park, Highly conducting electrospun polyaniline-polyethylene oxide nanofibrous membranes filled with single-walled carbon nanotubes, Synthetic Metals, vol.160, issue.9-10, p.984, 2010.
DOI : 10.1016/j.synthmet.2010.02.013

]. N. Pinto, I. Ramos, R. Rojas, P. Wang, and A. Johnson, Electric response of isolated electrospun polyaniline nanofibers to vapors of aliphatic alcohols, Sensors and Actuators B: Chemical, vol.129, issue.2, p.621, 2008.
DOI : 10.1016/j.snb.2007.09.040

]. R. Rivera and N. Pinto, Schottky diodes based on electrospun polyaniline nanofibers: Effects of varying fiber diameter and doping level on device performance, Physica E: Low-dimensional Systems and Nanostructures, vol.41, issue.3, p.423, 2009.
DOI : 10.1016/j.physe.2008.09.002

]. J. Pouget, M. Jozefowicz, A. Epstein, and X. , X-ray structure of polyaniline, Macromolecules, vol.24, issue.3, p.779, 1991.
DOI : 10.1021/ma00003a022

]. P. Rao, J. Anand, S. Palaniappan, and D. Sathyanarayana, Effect of sulphuric acid on the properties of polyaniline???HCl salt and its base, European Polymer Journal, vol.36, issue.5, p.915, 2000.
DOI : 10.1016/S0014-3057(99)00152-4

M. Roe, J. Ginder, P. Wigen, A. Epstein, M. Angelopoulos et al., Photoexcitation of Polarons and Molecular Excitons in Emeraldine Base, Physical Review Letters, vol.60, issue.26, p.2789, 1988.
DOI : 10.1103/PhysRevLett.60.2789

]. K. Ryu, K. Kim, N. Park, Y. Park, and S. Chang, Symmetric redox supercapacitor with conducting polyaniline electrodes, Journal of Power Sources, vol.103, issue.2, p.305, 2002.
DOI : 10.1016/S0378-7753(01)00862-X

]. S. Kutanis, M. Karakisla, U. Akbulut, and M. Sacak, The conductive/poly(ethylene terephthalate) composite fabrics, Composite A 38, p.609, 2007.

]. S. Saravanan, M. Anantharaman, and S. Venkatachalam, Structural and electrical studies on tetrameric cobalt phthalocyanine and polyaniline composites, Materials Science and Engineering: B, vol.135, issue.2, p.113, 2006.
DOI : 10.1016/j.mseb.2006.08.048

]. J. Anand, S. Palaniappan, and D. Sathyanarayana, Conducting polyaniline blends and composites, Progress in Polymer Science, vol.23, issue.6, p.993, 1998.
DOI : 10.1016/S0079-6700(97)00040-3

]. J. Stejskal and R. G. Gilbert, Polyaniline preparation of a conducting polymer, Pure Applied Chemistry, vol.74, p.857, 2002.

]. I. Sapurina and J. Stejskal, The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures, Polymer International, vol.516, issue.136, p.1295, 2008.
DOI : 10.1002/pi.2476

]. D. Sutar, R. Tewari, G. Dey, S. Gupta, and J. Yakhmi, Morphology and structure of highly crystalline polyaniline films, Synthetic Metals, vol.159, issue.11, p.1067, 2009.
DOI : 10.1016/j.synthmet.2009.01.030

E. Haba, M. Segal, G. Narkis, A. Titelman, and . Siegmann, Polyaniline???DBSA/polymer blends prepared via aqueous dispersions, Synthetic Metals, vol.110, issue.3, p.189, 2000.
DOI : 10.1016/S0379-6779(99)00280-5

C. Laslau, Z. Zujovic, and J. , Travas-Sejdic, Theories of polyaniline nanostructure selfassembly: towards an expanded, comprehensive Multi-Layer Theory (MLT), Progress in Polymer Science, p.1403, 2010.

]. O. Ngamna, S. Moulton, and G. Wallace, Incorporation of dye into conducting polyaniline nanoparticles, Reactive and Functional Polymers, vol.67, issue.3, p.173, 2007.
DOI : 10.1016/j.reactfunctpolym.2006.10.007

Y. Yang and M. Wan, Chiral nanotubes of polyaniline synthesized by a template-free method, Journal of Materials Chemistry, vol.12, issue.4, p.897, 2002.
DOI : 10.1039/b107384m

Z. Wei, Z. Zhang, and M. Wan, Formation Mechanism of Self-Assembled Polyaniline Micro/Nanotubes, Langmuir, vol.18, issue.3, p.917, 2002.
DOI : 10.1021/la0155799

]. H. Qiu, J. Zhai, S. Li, L. Jiang, and M. Wan, Oriented Growth of Self-Assembled Polyaniline Nanowire Arrays Using a Novel Method, Advanced Functional Materials, vol.13, issue.12, p.925, 2003.
DOI : 10.1002/adfm.200304366

Z. Wei, L. Zhang, M. Yu, Y. Yang, and M. Wan, Self-Assembling Sub-Micrometer-Sized Tube Junctions and Dendrites of Conducting Polymers, Advanced Materials, vol.15, issue.16, p.1382, 2003.
DOI : 10.1002/adma.200305048

M. Zhang, Y. Wan, and . Wei, Highly Crystalline Polyaniline Nanostructures Doped with Dicarboxylic Acids, Advanced Functional Materials, vol.278, issue.8, p.1100, 2006.
DOI : 10.1002/adfm.200500636

]. X. Li, J. Shen, M. Wan, Z. Chen, and Y. Wei, Core???shell structured and electro-magnetic functionalized polyaniline composites, Synthetic Metals, vol.157, issue.13-15, p.575, 2007.
DOI : 10.1016/j.synthmet.2007.06.007

M. Wan, ]. T. Mo, H. Wang, S. Chen, and Y. Yeh, Conducting polymers with micro or nanometer structure Synthesis and dielectric properties of polyaniline/titanium dioxide nancomposites, Ceramics International, vol.34, issue.1, p.1767, 2008.

]. X. Lu, Y. Yu, L. Chen, H. Mao, L. Wang et al., Poly(acrylic acid)-guided synthesis of helical polyaniline microwires, Polymer, vol.46, issue.14, p.5329, 2005.
DOI : 10.1016/j.polymer.2005.04.019

]. L. Huang, Z. Wang, H. Wang, X. Cheng, A. Mitra et al., Polyaniline nanowires by electropolymerization from liquid crystalline phases, Journal of Materials Chemistry, vol.12, issue.2, p.388, 2002.
DOI : 10.1039/b107499g

]. C. Yang, T. Wang, and Y. Shieh, Molecular assembled crosslinked self-doped polyaniline nano-thin films in application of electrochromic devices, Electrochemistry Communications, vol.11, issue.2, p.335, 2009.
DOI : 10.1016/j.elecom.2008.12.014

]. J. Li, X. Tang, H. Li, Y. Yan, and Q. Zhang, Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline, Synthetic Metals, vol.160, issue.11-12, p.1153, 2010.
DOI : 10.1016/j.synthmet.2010.03.001

]. I. Alig, S. Dudkin, W. Jenninger, and M. Marzantowicz, Ac conductivity and dielectric permittivity of poly(ethylene glycol) during crystallization: Percolation picture, Polymer, vol.47, issue.5, p.1722, 2006.
DOI : 10.1016/j.polymer.2005.12.026

H. Bejbouji, L. Vignau, J. L. Miane, M. T. Dang, E. M. Oualim et al., Polyaniline as a hole injection layer on organic photovoltaic cells, Solar Energy Materials and Solar Cells, vol.94, issue.2, p.176, 2010.
DOI : 10.1016/j.solmat.2009.08.018

URL : https://hal.archives-ouvertes.fr/hal-00585548

]. S. Scully and R. Bissessur, An intercalated polyaniline???titanate nanomaterial, Synthetic Metals, vol.159, issue.7-8, p.637, 2009.
DOI : 10.1016/j.synthmet.2008.12.009

W. Li, D. Guo, W. Fu, and . Chen, p???n Heterojunction diodes made by assembly of ITO/nano-crystalline TiO2/polyaniline/ITO, Synthetic Metals, vol.156, issue.5-6, p.414, 2006.
DOI : 10.1016/j.synthmet.2006.01.003

Z. Liu, J. Zhou, H. Xue, L. Shen, H. Zang et al., Polyaniline/TiO2 solar cells, Polyaniline/TiO 2 solar cells, p.721, 2006.
DOI : 10.1016/j.synthmet.2006.04.001

]. X. Sui, Y. Chu, S. Xing, M. Yu, and C. Liu, Self-organization of spherical PANI/TiO 2 nanocomposites in reverse micelles, Colloids and Surfaces A: Physicochemical Engineering Aspects, 2004.

]. C. Cristescu, A. Andronie, S. Iordache, S. Stamatin, L. Constantinescu et al., Iordache, I. Stamatin, PANI-TiO 2 nanostructures for fuel cell and sensor applications, Journal of optoelectronics and advanced materials, vol.10, p.2985, 2008.

]. H. Devendrappa, U. Subba-rao, and M. A. Prasad, Study of dc conductivity and battery application of polyethylene oxide/polyaniline and its composites, Journal of Power Sources, vol.155, issue.2, p.368, 2006.
DOI : 10.1016/j.jpowsour.2005.05.014

]. X. Zhang, G. Yan, H. Ding, and Y. Shan, Fabrication and photovoltaic properties of self-assembled sulfonated polyaniline/TiO2 nanocomposite ultrathin films, Materials Chemistry and Physics, vol.102, issue.2-3, p.249, 2007.
DOI : 10.1016/j.matchemphys.2006.12.013

]. S. Ebrahim, A. Kashyout, and M. Soliman, Ac and Dc conductivities of polyaniline/poly vinyl formal blend films, Current Applied Physics, vol.9, issue.2, p.448, 2009.
DOI : 10.1016/j.cap.2008.04.007

]. A. Yavuz and A. Gok, Preparation of TiO2/PANI composites in the presence of surfactants and investigation of electrical properties, Synthetic Metals, vol.157, issue.4-5, p.235, 2007.
DOI : 10.1016/j.synthmet.2007.03.001

]. B. O-'regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol.353, issue.6346, p.737, 1991.
DOI : 10.1038/353737a0

]. K. Gurunathan and D. Trivedi, Studies on polyaniline and colloidal TiO2 composites, Studies on polyaniline and colloidal TiO 2 composites, p.262, 2000.
DOI : 10.1016/S0167-577X(00)00115-4

T. Han, T. Kusunose, and . Sekino, The Preparation and Characterization of Organic Solvent Dispersible Polyaniline Coated Titania Hybrid Nanocomposites, Materials Science Forum, vol.569, p.161, 2008.
DOI : 10.4028/www.scientific.net/MSF.569.161

]. J. Hanawalt, H. Rinn, and L. Frevel, Chemical Analysis by X-Ray Diffraction, Industrial & Engineering Chemistry Analytical Edition, vol.10, issue.9, p.457, 1938.
DOI : 10.1021/ac50125a001

]. E. Kang, K. Neoh, and K. Tan, Polyaniline: A polymer with many interesting intrinsic redox states, Progress in Polymer Science, vol.23, issue.2, p.277, 1998.
DOI : 10.1016/S0079-6700(97)00030-0

]. J. Kwon, P. Kim, J. Keum, and J. Kim, Polypyrrole/titania hybrids: synthetic variation and test for the photovoltaic materials, Solar Energy Materials and Solar Cells, vol.83, issue.2-3, p.311, 2004.
DOI : 10.1016/j.solmat.2004.02.033

]. B. Kim, K. Lee, P. Huh, D. Lee, N. Jo et al., In situ template polymerization of aniline on the surface of negatively charged TiO2 nanoparticles, situ template polymerization of aniline on the surface of negatively charged TiO 2 nanoparticles, p.1369, 2009.
DOI : 10.1016/j.synthmet.2009.03.012

]. B. Kuila and M. Stamm, Fabrication of oriented polyaniline nanostructures using block copolymer nanotemplates and their optical, electrochemical and electric properties, Journal of Materials Chemistry, vol.109, issue.29, p.6086, 2010.
DOI : 10.1039/c0jm00352b

]. J. Kwon, P. Kim, J. Keum, and J. Kim, Polypyrrole/titania hybrids: synthetic variation and test for the photovoltaic materials, Solar Energy Materials and Solar Cells, vol.83, issue.2-3, p.311, 2004.
DOI : 10.1016/j.solmat.2004.02.033

]. B. Kim, K. Lee, P. Huh, D. Lee, N. Jo et al., In situ template polymerization of aniline on the surface of negatively charged TiO2 nanoparticles, situ template polymerization of aniline on the surface of negatively charged TiO 2 nanoparticles, p.1369, 2009.
DOI : 10.1016/j.synthmet.2009.03.012

J. Xu, W. Liu, and H. Li, Titanium dioxide doped polyaniline, Materials Science and Engineering: C, vol.25, issue.4, p.444, 2005.
DOI : 10.1016/j.msec.2004.11.003

M. Karim, J. Yeum, M. Lee, and K. Lim, Preparation of conducting polyaniline/TiO2 composite submicron-rods by the ??-radiolysis oxidative polymerization method, Reactive and Functional Polymers, vol.68, issue.9, p.1371, 2008.
DOI : 10.1016/j.reactfunctpolym.2008.06.016

]. D. Dhawale, R. Salunkhe, U. Patil, K. Gurav, and A. , Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction, Sensors and Actuators B: Chemical, vol.134, issue.2, p.988, 2008.
DOI : 10.1016/j.snb.2008.07.003

]. N. Nagaraja, J. Pattar, N. Shashank, J. Manjanna, Y. Kamada et al., Electrical, structural and magnetic properties of polyaniline/pTSA-TiO2 nanocomposites, Synthetic Metals, vol.159, issue.7-8, p.718, 2009.
DOI : 10.1016/j.synthmet.2008.12.025

]. F. Wang and S. Min, TiO2/polyaniline composites: An efficient photocatalyst for the degradation of methylene blue under natural light, Chinese Chemical Letters, vol.18, issue.10, p.1273, 2007.
DOI : 10.1016/j.cclet.2007.08.010

]. M. Novak, I. Kokanovic, D. Babic, M. Bacani, and A. Tonejc, Variable-range-hopping exponents 1, Synthetic Metals, vol.4, issue.159, p.649, 2009.

]. J. Pouget, M. Jozefowicz, A. Epstein, and X. , X-ray structure of polyaniline, Macromolecules, vol.24, issue.3, p.779, 1991.
DOI : 10.1021/ma00003a022

]. S. Radhakrishnan, C. Siju, D. Mahanta, S. Patil, and G. Madras, Conducting polyaniline???nano-TiO2 composites for smart corrosion resistant coatings, Electrochimica Acta, vol.54, issue.4, p.1249, 2009.
DOI : 10.1016/j.electacta.2008.08.069

]. S. Ameen, S. Ansari, M. Song, Y. Kim, and H. Shin, Fabrication of polyaniline/ heterojunction structure using plasma enhanced polymerization technique, Superlattices and Microstructures, vol.46, issue.5, p.745, 2009.
DOI : 10.1016/j.spmi.2009.07.007

]. T. Skotheim and J. Reynolds, Conjugated polymers processing and applications, 2007.

]. J. Stejskal and R. G. Gilbert, Polyaniline preparation of a conducting polymer, Pure Applied Chemistry, vol.74, p.857, 2002.

S. Sze, Physics of semiconductor devices Seconde édition Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization, Polymer, vol.47, p.7361, 1981.

]. M. Ilieva, S. Ivanov, and V. Tsakova, Electrochemical synthesis and characterization of TiO2-polyaniline composite layers, Journal of Applied Electrochemistry, vol.50, issue.7, p.63, 2008.
DOI : 10.1007/s10800-007-9399-9

]. L. Zhang, M. Wan, and Y. Wei, Polyaniline/TiO 2 microspheres prepared by a template-free method, Synthetic Metals, vol.151, issue.1, 2005.

]. S. Xiong, Q. Wang, and H. Xia, Template synthesis of polyaniline/TiO2 bilayer microtubes, Synthetic Metals, vol.146, issue.1, p.37, 2004.
DOI : 10.1016/j.synthmet.2004.06.017

]. T. Mo, H. Wang, S. Chen, and Y. Yeh, Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites, Ceramics International, vol.34, issue.7, p.1767, 2008.
DOI : 10.1016/j.ceramint.2007.06.002

X. Li, D. Wang, G. Cheng, Q. Luo, J. An et al., Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination, Preparation of polyaniline-modified TiO 2 nanoparticles and their photocatalytic activity under visible light illumination, p.267, 2008.
DOI : 10.1016/j.apcatb.2007.12.022

]. D. Wise, G. Wnek, D. Trantolo, T. Cooper, and J. Gresser, Electrical and optical polymer systems, 1998.

]. G. Senadeera, T. Kitamura, Y. Wada, and S. Yanagida, Deposition of polyaniline via molecular self-assembly on TiO2 and its uses as a sensitiser in solid-state solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol.164, issue.1-3, p.61, 2004.
DOI : 10.1016/j.jphotochem.2003.12.026

]. Y. Kim, J. Lim, Y. Sung, J. Xia, N. Masaki et al., Photoelectrochemical oxidative polymerization of aniline and its application to transparent TiO2 solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol.204, issue.2-3, p.110, 2009.
DOI : 10.1016/j.jphotochem.2009.03.002

]. Y. Yu, B. Che, Z. Si, W. Chen, and G. Xue, Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion, Synthetic Metals, vol.150, issue.3, p.271, 2005.
DOI : 10.1016/j.synthmet.2005.02.011

]. C. Bian, A. Yu, and H. Wu, Fibriform polyaniline/nano-TiO2 composite as an electrode material for aqueous redox supercapacitors, Electrochemistry Communications, vol.11, issue.2, p.266, 2009.
DOI : 10.1016/j.elecom.2008.11.026

]. J. Li, X. Tang, H. Li, Y. Yan, and Q. Zhang, Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline, Synthetic Metals, vol.160, issue.11-12, p.1153, 2010.
DOI : 10.1016/j.synthmet.2010.03.001

]. C. Wei, Y. Zhu, X. Yang, and C. Li, One-pot synthesis of polyaniline-doped in mesoporous TiO2 and its electrorheological behavior, Materials Science and Engineering: B, vol.137, issue.1-3, p.213, 2007.
DOI : 10.1016/j.mseb.2006.11.016

]. A. Références, A. Bedeloglu, Y. Demir, N. Bozkurt, and . Sariciftci, A flexible textile based on polymeric photovoltaics using transparent cathode, Synthetic Metals, vol.159, p.2043, 2009.

]. M. Toivola, M. Ferenets, P. Lund, and A. Harlin, Photovoltaic fiber, Thin Solid Films, vol.517, issue.8, p.2799, 2009.
DOI : 10.1016/j.tsf.2008.11.057

]. D. Cahen, G. Hodes, M. Grätzel, and J. , Nature of Photovoltaic Action in Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B, vol.104, issue.9, p.2053, 2000.
DOI : 10.1021/jp993187t

]. G. Inzelt, Conducting polymer a new era in electrochemistry, 2008.

]. B. Wang and L. Kerr, Dye sensitized solar cells on paper substrates, Solar Energy Materials and Solar Cells, vol.95, issue.8, p.2531, 2011.
DOI : 10.1016/j.solmat.2011.02.032

]. F. Krebs, M. Biancardo, B. Winther-jensen, H. Spanggard, and J. Alstrup, Strategies for incorporation of polymer photovoltaics into garments and textiles, Solar Energy Materials and Solar Cells, vol.90, issue.7-8, p.1058, 2006.
DOI : 10.1016/j.solmat.2005.06.003

]. M. Schubert and J. Werner, Flexible solar cells for clothing, Materials Today, vol.9, issue.6, p.42, 2006.
DOI : 10.1016/S1369-7021(06)71542-5

URL : http://doi.org/10.1016/s1369-7021(06)71542-5

]. D. Zou, D. Wang, Z. Chu, and Z. , Fiber-shaped flexible solar cells, Coordination Chemistry Reviews, vol.254, issue.9-10, p.1169, 2010.
DOI : 10.1016/j.ccr.2010.02.012

]. G. Références, G. D. Calogero, and . Marco, Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells, Solar Energy Materials & Solar Cells, vol.92, p.1341, 2008.

]. H. Chang, H. Wu, T. Chen, K. Huang, C. Jwo et al., Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea, Journal of Alloys and Compounds, vol.495, issue.2, p.606, 2010.
DOI : 10.1016/j.jallcom.2009.10.057

H. Chang and Y. Lo, Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells, Solar Energy, vol.84, issue.10, p.1833, 2010.
DOI : 10.1016/j.solener.2010.07.009

]. S. Furukawa, H. Lino, T. Iwamoto, K. Kukita, and S. Yamauchi, Characteristics of dye-sensitized solar cells using natural dye, Thin Solid Films, vol.518, issue.2, p.526, 2009.
DOI : 10.1016/j.tsf.2009.07.045

]. B. O-'regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol.353, issue.6346, p.737, 1991.
DOI : 10.1038/353737a0

]. C. Baik, D. Kim, M. Kang, S. Kang, J. Ko et al., Organic dyes with a novel anchoring group for dye-sensitized solar cell applications, Journal of Photochemistry and Photobiology A: Chemistry, vol.201, issue.2-3, p.168, 2009.
DOI : 10.1016/j.jphotochem.2008.10.018

]. A. Zaban, S. Ferrere, and B. Gregg, Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface, The Journal of Physical Chemistry B, vol.102, issue.2, p.452, 1998.
DOI : 10.1021/jp972924n

]. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide et al., Dye-Sensitized Solar Cells with Conversion Efficiency of 11, Japanese Journal of Applied Physics, vol.1, issue.45, p.638, 2006.

]. A. Patrocinio, S. Mizoguchi, L. Paterno, C. Garcia, and N. Iha, Efficient and low cost devices for solar energy conversion: Efficiency and stability of some natural-dye-sensitized solar cells, Synthetic Metals, vol.159, issue.21-22, p.2342, 2009.
DOI : 10.1016/j.synthmet.2009.08.027

]. J. Lee, B. Jeong, S. Jang, Y. Kim, Y. Jang et al., Preparations of TiO2 pastes and its application to light-scattering layer for dye-sensitized solar cells, Journal of Industrial and Engineering Chemistry, vol.15, issue.5, p.724, 2009.
DOI : 10.1016/j.jiec.2009.09.053

]. G. Kumara, S. Kaneko, M. Okuya, B. Onwona-agyeman, A. Konno et al., Shiso leaf pigments for dye-sensitized solid-state solar cell, Solar Energy Materials and Solar Cells, vol.90, issue.9, p.1220, 2006.
DOI : 10.1016/j.solmat.2005.07.007

]. H. Zhou, L. Wu, Y. Gao, and T. Ma, Dye-sensitized solar cells using 20 natural dyes as sensitizers, Journal of Photochemistry and Photobiology A: Chemistry, vol.219, issue.2-3, p.188, 2011.
DOI : 10.1016/j.jphotochem.2011.02.008

]. N. Saelim, R. Magaraphan, and T. Sreethawong, TiO2/modified natural clay semiconductor as a potential electrode for natural dye-sensitized solar cell, Ceramics International, vol.37, issue.2, p.659, 2011.
DOI : 10.1016/j.ceramint.2010.09.001

N. Saelim, R. Magaraphan, and T. Sreethawong, Preparation of sol-gel TiO 2 /purified Nabentonite composites and their photovoltaic application for natural dye-sensitized solar cells, Energy Conversion and Management, p.2815, 2011.

]. C. Sandquist and J. Mchale, Improved efficiency of betanin-based dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol.221, issue.1, p.90, 2011.
DOI : 10.1016/j.jphotochem.2011.04.030

. Balasundaraprabhu, Natural dye (cyanidin-3-O-glucoside) sensitized nanocrystalline TiO 2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte, Renewable Energy, vol.36, p.2484, 2011.

]. N. Gomez-ortiz, I. Vazquez-maldonado, A. Perez-espadas, G. Mena-rejon, J. Azamar-barrios et al., Dye-sensitized solar cells with natural dyes extracted from achiote seeds, Solar Energy Materials and Solar Cells, vol.94, issue.1, p.40, 2010.
DOI : 10.1016/j.solmat.2009.05.013

]. M. Roy, P. Balraju, M. Kumar, and G. Sharma, Dye-sensitized solar cell based on Rose Bengal dye and nanocrystalline TiO2, Solar Energy Materials and Solar Cells, vol.92, issue.8, p.909, 2008.
DOI : 10.1016/j.solmat.2008.02.022

]. K. Tennakone, G. Kumara, A. Kumarasinghe, K. Wijayantha, and P. Sirimanne, A dye-sensitized nano-porous solid-state photovoltaic cell, Semiconductor Science and Technology, vol.10, issue.12, p.1689, 1995.
DOI : 10.1088/0268-1242/10/12/020

]. X. Ma, J. Hua, W. Wu, Y. Jin, F. Meng et al., A high-efficiency cyanine dye for dye-sensitized solar cells, Tetrahedron, vol.64, issue.2, p.345, 2008.
DOI : 10.1016/j.tet.2007.10.094