R. Bosch and G. , Messfuehler fuer die bestimmung des sauerstoffgehaltes in abgasen, pp.13-22, 1973.

S. Zhuiykov and N. Miura, Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: What are the prospects for sensors?, Sensors and Actuators B: Chemical, vol.121, issue.2, pp.639-651, 2007.
DOI : 10.1016/j.snb.2006.03.044

J. W. Fergus, Materials for high temperature electrochemical NOx gas sensors, Sensors and Actuators B: Chemical, vol.121, issue.2, pp.652-663, 2007.
DOI : 10.1016/j.snb.2006.04.077

J. Riegel, H. Neumann, and H. Wiedenmann, Exhaust gas sensors for automotive emission control, Solid State Ionics, pp.152-153, 2002.

N. Insulators and L. , NOx sensor. www.ngk.co, 2008.

V. Siemens and . Automotive, Smart NOx sensor, www.vdo.fr/generator/www/fr/fr/vdo/main/products_solutions/special_oem_solutions/sensors

G. Heiland, Zunn einflub von adsorvierten sauerstoff auf die elektrische leitfãhigkeit von zinkoxydkristallen, Zeitschrift für phtsik A, Hadrons and Nuclei, pp.459-464, 1954.

A. Bielanski, J. Deren, and J. Haber, Electric Conductivity and Catalytic Activity of Semiconducting Oxide Catalysts, Nature, vol.12, issue.4561, pp.179-669, 1957.
DOI : 10.1038/179668a0

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, A New Detector for Gaseous Components Using Semiconductive Thin Films., Analytical Chemistry, vol.34, issue.11, pp.1502-1503, 1962.
DOI : 10.1021/ac60191a001

H. Figaro-engineering-inc, U. Meixner, J. Lampe, M. Gerblinger, and . Fleischer, Chemosensors for motor management systems of the future, Analytical Chemistry, vol.348, pp.536-541, 1994.

H. Meixner and M. Fleisher, Fast gas sensors based on metal oxides which are stable at high temperatures, Sensors and Actuators B, vol.43, pp.1-10

H. Meixner and M. Fleischer, Thin-film gas sensors based on high-temperature-operated metal oxides, Cacuum Science Technology A, 1999.

U. Lampe, J. Gerblinger, and H. Meixner, Lambda detection with thin-film metal oxides using synthetic exhaust gas mixtures, Sensors and Actuators B: Chemical, vol.18, issue.1-3, pp.18-19, 1994.
DOI : 10.1016/0925-4005(94)87071-3

E. M. Logothetis, Resistive-Type Exhaust Gas Sensors, 8th Automotive Materials Conference : Ceramic Engineering and Science Proceedings, 2008.
DOI : 10.1002/9780470291023.ch7

L. Francioso, D. S. Presicce, M. Epifani, P. Siciliano, and A. Ficarella, Response evaluation of TiO2 sensor to flue gas on spark ignition engine and in controlled environment, Sensors and Actuators B: Chemical, vol.107, issue.2, pp.563-571, 2005.
DOI : 10.1016/j.snb.2004.11.017

A. Cabot, A. Marsal, J. Arbiol, and J. R. Morante, Bi2O3 as a selective sensing material for NO detection, Sensors and Actuators B: Chemical, vol.99, issue.1, pp.74-89, 2004.
DOI : 10.1016/j.snb.2003.10.032

S. Chang, Method and thin film semiconductor sensor for detecting NOx, 4,169,369 Etats-Unis, 2 octobre 1979, 25. R. E. Soltis, E. M. Logothetis, Oxides of Nitrogen Detector, vol.4840, p.913, 1989.

W. Hamd, Elaboration par voie sol-gel et étude microstructurale de gels et de couches minces de SnO, Thèse, 2009.

H. Teterycz, R. Klimkiewicz, and M. Laniecki, Study on physico-chemical properties of tin dioxide based gas sensitive materials used in condensation reactions of n-butanol, Applied Catalysis A: General, vol.274, issue.1-2
DOI : 10.1016/j.apcata.2004.05.034

C. Pijolat, Etude des propriétés physico-chimiques et des propriétés électriques du dioxyde d'étain en fonction de l'atmosphère gazeuse environnante- Application à la détection sélective des gaz, Thèse, 1986.

T. Tapio, T. S. Rantala, V. Rantala, and . Lantto, Electronic structure of SnO 2 (110) surface, Materials Science in Semiconductor Processing, vol.3, pp.103-107, 2000.

M. Batzill and U. Diebold, The surface and materials science of tin oxide, Progress in Surface Science, vol.79, issue.2-4, pp.47-154, 2005.
DOI : 10.1016/j.progsurf.2005.09.002

G. Pfaff, Effect of powder preparation and sintering on the electrical properties of tin dioxide-based ceramic gas sensors, Sensors and Actuators B: Chemical, vol.20, issue.1, pp.43-48, 1994.
DOI : 10.1016/0925-4005(93)01163-X

R. Lalauze, C. Pijolat, G. Tournier, and P. Breuil, Tin dioxide sensor a very complex device : Physico-chemical and technological approach, Electron Technology, vol.33, pp.31-39, 2000.
URL : https://hal.archives-ouvertes.fr/emse-00438021

U. Nicolae-barsan and . Weimar, Conduction Model of Metal Oxide Gas sensors, Journal of Electroceramics, vol.7, issue.3, pp.143-167, 2001.
DOI : 10.1023/A:1014405811371

J. Bertrand, Etude électrique et spectroscopique de l'influence de l'électrode sur les capteurs de gaz à base de SnO 2, Thèse, 2008.

C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based elements, Sensors and Actuators B: Chemical, vol.3, issue.2, pp.147-155, 1991.
DOI : 10.1016/0925-4005(91)80207-Z

S. Saukko and V. Lantto, Influence of electrode material on properties of SnO2-based gas sensor, Thin Solid Films, vol.436, issue.1, pp.137-140, 2003.
DOI : 10.1016/S0040-6090(03)00509-1

S. M. Durrani, The influence of electrode metals and its configuration on the response of tin oxide thin film CO sensor, Talanta, vol.68, issue.5, pp.68-1732, 2006.
DOI : 10.1016/j.talanta.2005.08.015

N. Barsan, D. Koziej, and U. Weimar, Metal oxide-based gas sensor research: How to?, Sensors and Actuators B: Chemical, vol.121, issue.1, pp.18-35, 2007.
DOI : 10.1016/j.snb.2006.09.047

N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Interactions of tin oxide surface with O2, H2O AND H2, Surface Science, vol.86, issue.2, pp.335-344, 1979.
DOI : 10.1016/0039-6028(79)90411-4

G. Tournier and C. Pijolat, Influence of oxygen concentration in the carrier gas on the response of tin dioxide sensor under hydrogen and methane, Sensors and Actuators B: Chemical, vol.61, issue.1-3, pp.61-104, 1999.
DOI : 10.1016/S0925-4005(99)00278-6

N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Interactions of tin oxide surface with O2, H2O AND H2, Surface Science, vol.86, issue.2, pp.335-344, 1979.
DOI : 10.1016/0039-6028(79)90411-4

J. Rantala and . Mizsei, Experimental studies of O 2 -SnO 2 surface interaction using powder, thick films and nanocrystalline thin films, Thin Solid Films, vol.490, pp.48-53, 2005.

S. C. Chang, Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements, Journal of Vacuum Science and Technology, vol.17, issue.1, pp.17-366, 1980.
DOI : 10.1116/1.570389

D. Koziej, N. Bârsan, U. Weimar, J. Szuber, K. Shimanoe et al., Wateroxygen interplay on tin dioxide surface: Implication on gas sensing, Chemical Physics Letters, pp.410-321, 2005.

E. W. Thornton and P. G. Harrison, Tin oxide surfaces. Part 1.???Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.71, issue.0, pp.71-461, 1975.
DOI : 10.1039/f19757100461

S. Lenaerts, J. Roggen, and G. , Macs, FTIR characterization of tin dioxide gas sensors materials under working conditions, spectorchimica Acta Part A, pp.883-894, 1995.

F. Berger, E. Beche, R. Berjoan, D. Klein, and A. Chambaudet, An XPS and FTIR study of SO 2 adsorption on SnO 2 surfaces Oxidic semiconductor gas sensors, Applied Surface Science Gas Sensors, vol.93, pp.43-88, 1992.

K. Morishige, S. Kittaka, and T. Morimoto, The thermal desorption of surface hydroxide on tin(IV) oxide, Bulletin of the Chemical Society of Japan, pp.53-2128, 1980.

G. S. Coles and G. Williams, An evaluation of thick and thin film tin dioxide based sensors for the selective detection of NO 2 , Sensors VI: technology, Systems and Applications, pp.79-83, 1993.

B. Ruhland, . Th, G. Becker, and . Müller, Gas-kinetic interactions of nitrous oxides with SnO2 surfaces, Sensors and Actuators B: Chemical, vol.50, issue.1, pp.85-94, 1998.
DOI : 10.1016/S0925-4005(98)00160-9

J. Huusko, H. Torvela, and V. Lantto, Detection of NO and unburnt gases in combustion processes using SnO2 sensors operated at different temperatures, Sensors and Actuators B: Chemical, vol.7, issue.1-3, pp.700-703, 1992.
DOI : 10.1016/0925-4005(92)80388-E

P. G. Eastwood, S. Fischer, M. Schweizer-berberich, G. Girardi, and W. , A new method for on-vehicle detection of catalyst malfunction based upon measurement of nonequilibrated gas mixtures, Sensors and Actuators B, pp.24-25, 1995.

H. Torvela, J. Huusko, and V. Lantto, Reduction of the interference caused by NO and SO2 in the CO response of Pd-catalysed SnO2 combustion gas sensors, Sensors and Actuators B: Chemical, vol.4, issue.3-4, pp.479-484, 1991.
DOI : 10.1016/0925-4005(91)80155-D

W. Göpel and K. D. Schierbaum, SnO 2 sensors: current status and future prospects, Sensors and Actuators B, pp.26-27, 1995.

C. Pijolat, J. P. Viricelle, G. Tournier, and P. Montmeat, Application of membranes and filtering films for gas sensors improvements, Thin Solid Films, vol.490, issue.1, pp.490-497, 2005.
DOI : 10.1016/j.tsf.2005.04.017

P. Montmeat, Rôle d'éléments métalliques sur les mécanismes de détection d'un capteur de gaz à base de dioxyde d'étain. Application à l'amélioration de la sélectivité à l'aide d'une membrane de platine, Thèse, 2002.

S. Benard, L. Retailleau, F. Gaillard, P. Vernoux, and A. , Giroir-Fendler, Supported platinum catalysts for nitrogen oxide sensors, Applied Catalysis B: Environmental, pp.55-66, 2005.

B. Rivière, Optimisation du procédé de sérigraphie pour la réalisation de capteurs de gaz en couche épaisse-Etude de la compatibilité avec la technologie microélectronique, Thèse, 2004.

A. Ndoye, Capteur de gaz d'échappement, Manuscrit de stage Master, 2006.

A. Valleron, Etude de capteurs à base de dioxyde d'étain pour la détection de gaz d'échappement dans l'industrie automobile, 2007.

F. Ménil, Modélisation des temps de réponse des capteurs chimiques, Comptes Rendus de l'Académie des Sciences -Séries IIC -Chemistry, pp.899-904, 2001.

H. Tanaka, M. Uenishi, M. Taniguchi, I. Tan, K. Narita et al., The intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control, Catalysis Today, vol.117, issue.1-3, pp.117-321, 2006.
DOI : 10.1016/j.cattod.2006.05.029

M. Leischer, S. Kornely, T. Weh, J. Frank, and H. Meixner, Selective gas detection with high-temperature operated metal oxides using catalytic filters, Sensors and Actuators B: Chemical, vol.69, issue.1-2, pp.205-210, 2000.
DOI : 10.1016/S0925-4005(00)00513-X

P. K. Clifford and D. T. Tuma, Characteristics of semiconductor gas sensors I. Steady state gas response, Sensors and Actuators, vol.3, pp.233-254, 1982.
DOI : 10.1016/0250-6874(82)80026-7

R. K. Srivastava, P. Lal, R. Dwivedi, and S. K. Srivastava, Sensing mechanism in tin oxide-based thick-film gas sensors, Sensors and Actuators B: Chemical, vol.21, issue.3, pp.213-218, 1994.
DOI : 10.1016/0925-4005(94)01248-2

S. Ahlers, G. Müller, and T. Doll, A rate equation approach to the gas sensitivity of thin film metal oxide materials, Sensors and Actuators B: Chemical, vol.107, issue.2, pp.587-599, 2005.
DOI : 10.1016/j.snb.2004.11.020

N. Yamazoe and K. Shimanoe, Receptor Function and Response of Semiconductor Gas Sensor, Journal of Sensors, vol.3, issue.2, 2009.
DOI : 10.1016/S0925-4005(03)00439-8

N. Yamazoe and K. Shimanoe, Theory of power laws for semiconductor gas sensors, Sensors and Actuators B: Chemical, vol.128, issue.2, pp.566-573, 2008.
DOI : 10.1016/j.snb.2007.07.036

N. Yamazoe, New approaches for improving semiconductor gas sensors, Sensors and Actuators B: Chemical, vol.5, issue.1-4, pp.7-19, 1991.
DOI : 10.1016/0925-4005(91)80213-4

B. Licznerski, Thick-film gas microsensors based on tin dioxide, Bulletin of the polish academy of sciences-Technical Sciences, p.1, 2004.

F. Engineering, General Technical Information on TGS Gas Sensors

M. Iwamoto, Y. Yoda, N. Yamazoe, and T. Seiyama, Study of metal oxide catalysts by temperature programmed desorption-Oxygen adsorption on various metal oxides, Journal of Physical Chemistry, vol.82, pp.24-2564, 1978.

E. Llobet, X. Vilanova, J. Brezmes, J. E. Sueiras, and X. Correig, Transient response of thick-film tin oxide gas-sensors to multicomponent gas mixtures, Sensors and Actuators B: Chemical, vol.47, issue.1-3, pp.47-104, 1998.
DOI : 10.1016/S0925-4005(98)00009-4

S. Hirobayashi, M. A. Kadir, T. Yoshizawa, and T. Yamabuchi, Verification of a logarithmic model for estimation of gas concentrations in a mixture for a tin oxide gas sensor response, Sensors and Actuators B: Chemical, vol.92, issue.3, pp.269-278, 2003.
DOI : 10.1016/S0925-4005(03)00311-3

A. Fort, M. Mugnaini, S. Rocchi, M. B. Serrano-santos, V. Vignoli et al., Simplified models for SnO2 sensors during chemical and thermal transients in mixtures of inert, oxidizing and reducing gases, Sensors and Actuators B: Chemical, vol.124, issue.1, pp.245-259, 2007.
DOI : 10.1016/j.snb.2006.12.030

A. Chaiyboun, R. Traute, T. Haas, O. Kiesewetter, and T. Doll, A logarithmic multi-parameter model using gas sensor main and cross sensitivities to estimate gas concentrations in a gas mixture for SnO2 gas sensors, Sensors and Actuators B: Chemical, vol.123, issue.2, pp.1064-1070, 2007.
DOI : 10.1016/j.snb.2006.11.012

A. Abbas and A. Bouabdellah, Theory of solids/gas mixtures multi-interfaces: Application to the steady state interactions between a sensor array based on metal oxide semiconductor detectors and a mixture of vapours, Sensors and Actuators B: Chemical, vol.145, issue.2, pp.620-627, 2010.
DOI : 10.1016/j.snb.2010.01.006

O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermodynamical Properties of Inorganic Substances I-II. (éd, 1991.

E. Leblanc, Etude de la réponse de capteurs de gaz à base d'oxyde d'étain en présence d'oxydes d'azote (NOx)-Modélisation des interactions NOx, Thèse, 1999.

F. J. Bryan and . Manly, Multivariate Statistical Methods: A Primer, 1986.

M. Neuilly and C. , Modélisation et estimation des erreurs de mesure, 1993.