Les différentes natures de l’anticipation en tennis : de la quantification aux apprentissages perceptifs

Celine Triolet

To cite this version:

HAL Id: tel-00738998
https://tel.archives-ouvertes.fr/tel-00738998
Submitted on 5 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Les différentes natures de l’anticipation en tennis : de la quantification aux apprentissages perceptifs

Directeur de thèse : N. Benguigui Professeur, Université de Caen Basse Normandie
Co-directeur de thèse : M. Williams Professeur, John Moores University, Liverpool

Composition du jury :

Rapporteurs :
M. Lenoir Professeur, Universiteit Gent
R. Thouvarecq Professeur, Université de Rouen

Examinateurs :
C. Le Scanff Professeur, Université Paris Sud
G. Montagne Professeur, Université de Méditerranée
Avant propos

J’ai choisi d’introduire ce manuscrit par la page de remerciements car cette thèse a été l’occasion de rencontres et de partages. Mais j’ai surtout eu la chance d’être aidée et soutenue par de nombreuses personnes que je tenais à associer à ce travail.

Je tiens tout d’abord à remercier Nicolas Benguigui pour avoir accepté d’encadrer ma thèse et avoir partagé cette aventure avec moi. Je n’oublierai pas nos longues discussions statistiques, nos échanges lors de la mise en place des expérimentations, nos débats toujours animés sur le tennis, ton soutien lors de cette dernière étape de rédaction comme tout au long de ce chemin, bref ton amitié au quotidien. J’espère que nous aurons encore l’occasion de partager tous ces moments. Tu es évidemment bien plus qu’un collègue, un ami.

Merci à Mark Williams qui a accepté de co-encadrer mon travail. Merci pour tes conseils et remarques toujours constructives qui nous ont permis d’avancer en évitant de nombreux pièges, pour ton professionnalisme et ta connaissance du domaine de l’anticipation et enfin pour ton aide précieuse lors de la rédaction de l’article.

Ce travail s’est également inscrit dans le cadre du projet ANR Blan06-1_134792. À l’intérieur de celui-ci, j’ai eu l’occasion de partager et de débattre avec Yves Guiard et Vincent Déchelette. Merci pour vos remarques éclairées et un grand merci à Vincent pour toutes les vidéos de tennis sans lesquelles aucune expérimentation n’aurait pu être réalisée.

Celles-ci n’auraient pas non plus eu lieu sans la participation de nombreuses personnes. Un grand merci à tous ceux qui y ont pris part, novices, joueurs de tennis de tous niveaux, entraîneurs professionnels.

Pour terminer, je voudrais remercier mes amis pour leur soutien, leurs conseils, leur aide, leur relecture.... (un merci tout particulier à Tigrane, Muriel, Hélène) ; mes collègues de la grande famille des STAPS et de celle de l’ATU ; et enfin, mes derniers remerciements vont évidemment à ma famille. Merci pour tout ce que vous faites au quotidien pour moi, pour tout votre amour qui me permet d’avancer dans la vie avec sérénité.
# Sommaire

Introduction .......................................................................................................................................................... 6

Cadre théorique.......................................................................................................................................................... 13

1. La performance expérée ..................................................................................................................................... 13

2. L’expertise perceptive-motrice dans les sports de balle ............................................................................... 16

3. L’anticipation ....................................................................................................................................................... 18

3.1 L’utilisation de la gestuelle adverse pour anticiper ....................................................................................... 19

3.1.1 Le paradigme de l’occlusion temporelle .................................................................................................. 19

3.1.2 L’identification de l’information utilisée .................................................................................................. 21

3.2 La reconnaissance des situations et l’utilisation des informations tactiques, des probabilités de jeu et du contexte .................................................................................................................. 35

3.2.1 La reconnaissance des situations de jeu .................................................................................................. 36

3.2.2 L’incidence du contexte ............................................................................................................................ 38

3.2.3 L’utilisation des probabilités de jeu inhérentes à un joueur .................................................................... 39

3.3 La nature de la scène visuelle ...................................................................................................................... 40

3.4 Les diverses modalités de réponse .............................................................................................................. 42

Problématique et démarche .................................................................................................................................. 44
Partie empirique........................................................................................................................................................................................................48

4. L’analyse in situ. Etude N°1 : Quantifier l’anticipation chez les joueurs de tennis professionnels ..........................................................................................................................................................................................................................................................50

5. La mise en place de tâches représentatives ..........................................................................................................................................................................................................................................................73

5.1 Le pré-test ..............................................................................................................................................................................................................................................................................75

5.1.1 Méthode ......................................................................................................................................................................................................................................................................76

5.1.2 Résultats ......................................................................................................................................................................................................................................................................78

5.1.3 Discussion ..................................................................................................................................................................................................................................................................81

5.2 Etude N°2 : Information gestuelle vs. information tactique pour prédire la frappe adverse ..........................................................................................................................................................................................................................................................................................83

5.2.1 Méthode ......................................................................................................................................................................................................................................................................84

5.2.2 Résultats ......................................................................................................................................................................................................................................................................87

5.2.3 Discussion ..................................................................................................................................................................................................................................................................90

5.3 Etude N°3 : Conditions temporelles d’accès à l’information tactique au cours de l’échange ..........................................................................................................................................................................................................................................................................................94

5.3.1 Méthode ......................................................................................................................................................................................................................................................................94

5.3.2 Résultats ......................................................................................................................................................................................................................................................................97

5.3.3 Discussion ..................................................................................................................................................................................................................................................................100

6. La mise en place de protocoles d’apprentissage. Etude N°4 : apprentissage générique ou spécifique de l’anticipation chez des experts ..........................................................................................................................................................................................................................................................................................104

6.1 Méthode ......................................................................................................................................................................................................................................................................113

6.2 Résultats ......................................................................................................................................................................................................................................................................117

6.3 Discussion ......................................................................................................................................................................................................................................................................120
Discussion générale, limites et perspectives..........................................................................................125

7. Discussion générale ..........................................................................................................................127

7.1 Quantifier l’anticipation ..............................................................................................................127

7.2 Les informations concernant les aspects tactiques et la gestuelle adverse ..............................131

7.3 Les différences experts/novices dans l’anticipation .................................................................132

7.4 L’échange précision/temps de réponse .......................................................................................133

7.5 Apprentissages perceptifs .........................................................................................................135

8. Limites du travail présenté ...........................................................................................................137

9. Perspectives ....................................................................................................................................141

9.1 Les informations utilisées ............................................................................................................141

9.2 Les protocoles d’apprentissage et d’entraînement .................................................................141

9.2.1 Reconnaissance des situations nécessitant d’anticiper .......................................................141

9.2.2 La structuration des protocoles d’entraînement .................................................................142

Références bibliographiques..................................................................................................................144
Introduction
« Citius, Altius, Fortius, plus vite, plus haut, plus fort » (Didon, 1891) est la devise olympique. Cette maxime illustre la volonté des sportifs de se dépasser afin d’améliorer leurs performances et de viser l’excellence. Les athlètes se sont toujours entraînés dans le but de vaincre leurs adversaires ou de battre des records. Lors des Jeux Olympiques de l’Antiquité, les vainqueurs étaient considérés comme des héros, alors que les vaincus étaient immédiatement oubliés. Qui se souvient du finaliste d’un tournoi ou du deuxième d’une course ? Seuls les vainqueurs et les recordmen ont droit à la-postérité.

Afin d’atteindre les sommets, et même lorsqu’ils disposent de qualités initiales exceptionnelles, les sportifs doivent s’entraîner de manière intense en suivant des protocoles d’entraînement très précis afin de développer toutes les habiletés nécessaires à la réalisation de performances du meilleur niveau. Ericsson, Krampe et Tesch-Romer (1993) ont par exemple estimé que la réalisation d’une performance experte repose généralement sur une décennie d’entraînement intensif et de pratique délibérée.

L’objet de cette thèse est de questionner un facteur de l’expertise et de la performance dans le domaine des sports de balle. Ces activités d’opposition duelle engendrent un rapport de force entre deux joueurs ou deux équipes dans lequel chaque participant doit adapter ses réponses à celles de son adversaire. Cela peut alors ressembler à une partie d’échecs où le vainqueur n’est pas forcément celui qui frappe le plus fort et court le plus vite mais celui qui s’est le mieux adapté à son adversaire ou qui l’a emmené dans son propre système de jeu. Dans le domaine de l’entraînement, il est fréquent de considérer que la performance de haut niveau dans les sports de raquette est dépendante de facteurs multiples regroupés dans les domaines techniques, tactiques, physiques, mentaux et environnementaux. Les méthodes d’apprentissage de la gestuelle et des techniques de déplacement ont largement été étudiées. Celles-ci sont basées sur des recherches biomécaniques et permettent un apprentissage des fondamentaux techniques tout en adaptant ceux-ci aux spécificités morphologiques, musculaires et articulaires des joueurs (e.g., Elliott, Reid & Crespo, 2003). Les méthodes de
préparation physique évoluent en se basant sur les recherches en physiologie de la performance (e.g., Billat, 2011), alors que la psychologie de la performance permet d’améliorer les aspects mentaux de la performance (e.g., Le Scanff, 2005). Enfin, les recherches en psycho-sociologie permettent une meilleure compréhension de l’influence des facteurs environnementaux sur la performance (e.g., Delforge & Le Scanff, 2006). Enfin, pendant leur formation, les joueurs réalisent l’apprentissage de bases tactiques et mettent en place des stratégies permettant de s’adapter à leurs adversaires. Il faut noter à ce sujet que c’est un domaine qui a été relativement peu étudié au plan scientifique. Cela est d’autant plus étonnant que les joueurs experts dans les sports de balle ont longtemps été décrits comme étant supérieurs aux moins experts dans des caractéristiques telles que « lire le jeu » ou « avoir tout le temps du monde » (« All the time in the world ») pour exécuter un mouvement (Bar-tlett, 1947). Les contraintes temporelles dans le domaine du tennis par exemple sont de plus en plus élevées. Un joueur en position de retour de service ne dispose que de 600 ms environ pour prendre de l’information sur la trajectoire de la balle, se déplacer et renvoyer le service si celui-ci est servi à 200 km.h⁻¹ (Abernethy & Wollstein, 1989). Le joueur doit donc être capable de prendre de l’information le plus rapidement possible afin de réussir à relancer la balle qui lui parvient. Les habiletés perceptivo-motrices et notamment les capacités d’anticipation sont donc considérées comme un aspect crucial de la performance dans les sports de balles. Dans le domaine du tennis, par exemple, les joueurs frappent de plus en plus fort, les balles voyagent de plus en plus vite, rebondissent très près de la ligne de fond de court, ce qui oblige les joueurs à s’organiser de plus en plus tôt afin de renvoyer la balle dans les meilleures conditions. C’est pourquoi, il est étonnant de noter que le domaine perceptif est très peu abordé dans les protocoles d’entraînement. Lorsqu’on questionne les entraîneurs, ceux-ci évoquent fréquemment « le coup d’œil » du joueur comme une capacité « innée » et en tout cas non-entrainable que posséderaient certains joueurs. Peu d’entraîneurs s’aventurent dans le développement de ces habiletés et leurs connaissances restent la plupart du temps empiriques. Cependant, plus un joueur est capable de prendre une décision précoce plus son temps disponible pour réaliser son action motrice sera important (Williams, Ford, Eccles & Ward,
2010). Or, le temps disponible à haut niveau est faible en raison de ces contraintes temporelles très importantes. C’est pourquoi, la compétence des joueurs à prélever de l’information sur le jeu de l’adversaire paraît être un atout important à haut niveau. Nous avons donc décidé de nous pencher sur ce domaine d’expertise perceptivo-motrice qu’est l’anticipation dans les sports de balle rapides.

Le dictionnaire Le Petit Robert de la langue Française 2010 définit l’anticipation comme un « mouvement de la pensée qui imagine ou vit d’avance un événement ». Les comportements d’anticipation peuvent être observés dans des situations sportives lorsqu’un gardien de but au football fait face à un tireur de pénalty, mais également dans des situations de la vie quotidienne dans lesquelles on cherche à éviter des collisions lorsqu’on se déplace dans des foules ou en conduisant une voiture par exemple. De plus, Richelle et Lejeune (1980) ont défini l’anticipation en psychologie comme « des conduites clairement ordonnées à quelque événement ultérieur ». Enfin, dans le domaine sportif, l’anticipation peut être définie comme la « faculté de prévoir l’attaque de l’adversaire et d’en préparer la parade » (Le Petit Robert de la langue Française 2010).

Dans le domaine des sports de balle, il semble important de différencier l’anticipation et la préparation à l’action. En effet, la préparation à l’action regroupe tous les ajustements préparatoires qui vont permettre de lancer la réponse motrice plus rapidement et de diminuer ainsi le temps de réponse (Proteau, 1977). Au tennis par exemple, la préparation à l’action la plus évidente est la séquence sursaut d’allègement/reprise d’appui qui, grâce à une mise en tension des muscles des membres inférieurs au moment de la reprise d’appuis, permet une meilleure réactivité et un démarrage vers la balle plus rapide (Uzu, Shinya & Oda, 2009 ; Avilès, Benguigui, Beaudoin & Godart, 2002). Dans cette même activité, l’anticipation pourrait se définir quant à elle comme l’amorce d’un mouvement de réponse du joueur (qui aura donc pris une décision) avant que son adversaire n’ait frappé la balle (par exemple, un joueur choisit un côté et commence à se déplacer alors que son adversaire est encore en train d’armer son smash). Le choix de réponse du joueur se fera donc à partir de l’analyse d’éléments précédant la frappe de la balle et non pas sur la lecture de la trajectoire de la balle. Le joueur se basera donc sur des informations partielles et réalisera un pari.
Même si le développement des qualités d’anticipation est très peu présent dans les protocoles d’entraînement, c’est un domaine qui a été étudié par les chercheurs depuis de nombreuses années. Crognier et Féry (2007), dans une revue de littérature sur l’anticipation en tennis, ont recensé environ 40 études entre 1965 et 2006 dans cette seule activité. La première expérimentation qui a été recensée a été réalisée par Haskins (1965). L’objectif de cette étude était d’améliorer la perception de la direction de service de tennis. Par la suite, les expérimentations ont reposé sur trois méthodologies dominantes : le rapport verbal, l’occlusion visuelle et l’enregistrement des mouvements oculaires. L’essentiel de ces études a eu pour objectif d’analyser l’utilisation de l’information gestuelle lors de l’anticipation (cf, partie 3.1). Plus récemment, des études se sont intéressées à l’utilisation d’informations en lien avec le contexte de jeu et la tactique (cf, partie 3.2). Enfin, les chercheurs se sont intéressés à la mise en place de protocoles d’entraînement perceptifs pour déterminer s’il était possible d’améliorer les capacités d’anticipation, et, si oui, dans quelles conditions.

Il est cependant important de noter que la question de l’utilisation de l’anticipation en situation réelle n’a jamais véritablement été étudiée. En effet, si l’anticipation a été beaucoup étudiée au niveau de protocoles expérimentaux divers, elle n’a jamais fait l’objet d’une étude systématique sur le terrain pour déterminer dans quelle proportion et de quelle façon les comportements d’anticipation se manifestent sur les terrains de sport. C’est pourquoi, la première étude que nous avons menée dans le cadre de ce travail de thèse fut une étude de l’anticipation in situ chez des joueurs de tennis de haut niveau.

Dans cette thèse, nous avons choisi de prendre comme support d’étude l’activité tennis. Ce sport présente l’avantage de proposer des situations très standardisées de un contre un. De plus, l’accès à des vidéos de matchs de tennis professionnels est relativement aisé grâce à de nombreuses retransmissions télévisées. Enfin, le point de vue utilisé sur ces vidéos est standardisé ce qui permet un traitement et une analyse efficaces. Il est cependant important de souligner que le choix de ce sport n’est pas une fin en soi. Les mécanismes d’anticipation étudiés dans cette thèse et utilisés en tennis
sont communs à d’autres sports de raquette, d’autres activités duelles voire même présent dans des activités de la vie quotidienne.

Dans la première partie de ce manuscrit, nous présenterons le cadre théorique dans lequel s’inscrit notre travail de recherche. Nous allons tout d’abord exposer les principes à mettre en œuvre pour l’analyse de la performance expérte. Ensuite, nous présenterons l’expertise perceptivo-motrice. Cela nous conduira à décrire les différents comportements qui caractérisent les sports de balle (frappe de balle, déplacement vers la zone de frappe, réaction face à la frappe) pour nous focaliser sur les comportements d’anticipation. Nous détaillerons enfin les différentes sources d’information susceptibles d’être utilisées par les experts pour anticiper.

Suite à cette présentation, nous problématiserons notre recherche avant de présenter, dans une troisième partie, les différentes expérimentations réalisées au cours de ce travail de thèse. La première étude réalisée a consisté à analyser l’anticipation in situ lors de matchs de tennis de haut niveau. Cette étude nous a permis de formaliser des hypothèses qui sont à l’origine de deux expérimentations portant sur l’utilisation d’informations gestuelles et tactiques. Enfin, nous terminerons cette partie expérimentale en présentant un protocole d’apprentissage perceptif mis en place afin de déterminer dans quelle mesure il était possible de contribuer à améliorer les capacités d’anticipation. Pour conclure, la dernière partie de ce manuscrit aura pour objet de discuter les résultats obtenus et le travail de recherche effectué ainsi que de présenter des perspectives à notre travail.
Cadre théorique
1. La performance experte

La réalisation d’une performance experte est une quête poursuivie par de nombreux individus dans des domaines très variés tels que l’art, la musique, les sciences ou le sport. Cependant, seuls quelques individus réussissent à atteindre ce très haut niveau d’expertise. C’est pourquoi, au cours des dernières décennies, de nombreux chercheurs se sont penchés sur l’étude de la performance experte en essayant de faire émerger les habiletés supérieures des experts par rapport aux autres pratiquants. Ils ont également essayé de mettre en lumière les mécanismes sous-jacents de cette expertise.

En référence à Ericsson et Smith (1991), nous définissons la performance experte comme l’habileté d’un individu à démontrer de façon constante un niveau supérieur de performance dans une tâche représentative d’un domaine particulier et à travers une période donnée.

De Groot (1965) a été sans doute l’un des pionniers dans la volonté de capturer la performance experte. Il a mis en place une expérimentation qui consistait à mémoriser les positions des pièces sur un échiquier pendant un temps donné. Le jeu était alors enlevé et les participants devaient replacer les pièces sur un jeu vide. Par la suite, Simon et Chase (1973) ont repris ce paradigme et ont comparé dans une expérience de référence trois groupes de niveaux différents : un maître des échecs, des joueurs avancés et des novices. Les auteurs présentaient un échiquier composé de 25 pièces pendant cinq secondes aux participants. Ceux-ci devaient alors essayer de reconstituer l’échiquier sur un autre échiquier vierge. Les échiquiers qui étaient présentés aux participants étaient soit des phases de jeu habituelles aux échecs, soit des pièces placées de manière aléatoire. Lorsque le jeu présenté provenait d’une partie réelle, les joueurs novices étaient capables de replacer environ quatre pièces, les joueurs avancés replaçaient huit pièces et le maître replaçait 16 pièces environ. Les auteurs en ont conclu que les joueurs experts disposaient en mémoire de connaissances particulières qui leur
permettent d’encoder très rapidement les configurations signifiantes. Ils ont donné à ces configurations, le nom de « chunks ».


Plus précisément, Ericsson et al. (1993) ont montré que les niveaux d’expertise étaient corrélés avec le temps de pratique chez des violonistes experts. Ils ont réalisé une étude sur trois groupes de niveaux d’expertise distincts en violon. Pour chaque groupe, le temps moyen de pratique délibérée était différent : 10000 heures pour les meilleurs violonistes mondiaux, 7500 heures pour le deuxième groupe et 5000 heures pour les experts les plus faibles. Ainsi, ils ont mis en évidence l’importance de cette quantité de pratique afin d’atteindre le plus haut niveau d’expertise possible.
Par ailleurs, Bloom (1985) (Tableau 1) a identifié trois étapes permettant d’accéder à la réalisation de performances expertes. Lors de la phase 1, les experts internationaux ont commencé par pratiquer des activités de manière ludique étant enfants. Après cette période récréative, ils ont révélé du talent ou des prédispositions. C’est pourquoi leurs parents les ont inscrits à des cours avec un enseignant ce qui les a engagés dans une faible quantité de pratique délibérée. La phase 2 correspond à une période de préparation plus longue qui se termine lorsque l’individu décide de s’engager individuellement dans l’activité à plein temps. Pendant cette deuxième période, on note une augmentation de la pratique délibérée. Enfin, la troisième étape correspond à une période d’engagement beaucoup plus important de l’individu afin d’améliorer ses performances. Cette étape permet à certains de devenir professionnel et d’accéder à un niveau expert de performance. Ils suivront alors un entraînement intensif continu (pratique délibérée importante) afin de maintenir un niveau très élevé de pratique. D’autres stoppent leur engagement à plein temps en raison d’échec ou de choix professionnels.

Pour résumer, il semble apparaître que l’expertise soit une combinaison de facteurs intrinsèques et extrinsèques dont la part relative est impossible à quantifier. Le rôle des facteurs extrinsèque reste essentiel et il a retenu l’attention de nombreux chercheurs. Cela pose la question des apprentissages experts que nous aborderons dans une des études de cette thèse (cf, partie 6).

Tableau 1. Les différentes phases de Bloom (1985) en vue de l’accession à une performance experte

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pratique ludique étant enfant</td>
<td>Période de préparation plus longue</td>
<td>Recherche de l’amélioration des performances</td>
</tr>
<tr>
<td>Les parents vont les engager dans la pratique</td>
<td>Engagement individuel de l’individu</td>
<td>Engagement total de l’individu</td>
</tr>
</tbody>
</table>
2. L’expertise perceptivo-motrice dans les sports de balle

La vitesse de jeu dans les sports de balles est de plus en plus élevée. En tennis, le service le plus rapide a récemment été enregistré à 249.9 km.h\(^{-1}\). En squash, des balles ont été mesurées à 276 km.h\(^{-1}\). Le record revient au badminton avec un smash qui a été frappé à 414 km.h\(^{-1}\). Malgré ces vitesses et le peu de temps disponible pour répondre, les joueurs de haut niveau donnent la plupart du temps l’impression de renvoyer les balles avec une grande facilité et une grande précision. Il est donc particulièrement intéressant de s’interroger sur les mécanismes utilisés par les joueurs de haut niveau afin de réagir aussi vite et aussi précisément.

Ainsi, l’expertise perceptivo-motrice dans les sports de balle peut se manifester à différents niveaux. Cela peut se traduire dans la capacité à contrôler l’action de frappe ou de capture pour obtenir la meilleure précision possible au moment du contact (e.g., Peper, Bootsma, Mestre & Bakker, 1994 ; Caljouw, Van Der Kamp & Savelsbergh, 2004), dans la rapidité et la précision du déplacement locomoteur (e.g., McBeath, Shaffer & Kaiser, 1995) ou dans la réduction du délai pour initier une réponse (e.g., Uzu et al., 2009 ; Shim, Carlton, Chow & Chae, 2005).

C’est sur ce dernier sujet que nous allons focaliser notre attention dans cette thèse et plus particulièrement sur les possibilités de réduire ce délai et d’anticiper l’action adverse\(^1\).

\(^1\) « Ces différents domaines où l’expertise perceptivo-motrice peut se manifester ont donné l’occasion de débats théoriques majeurs entre les approches cognitive et écologique. Nous ne rentrerons pas dans ce débat et étayons notre travail principalement sur la base de l’approche cognitive qui est celle qui a permis jusqu’à présent les avancées principales dans le domaine de l’anticipation. »
Les sports de balle sont, en effet, caractérisés par la volonté des joueurs de placer constamment leurs adversaires en crise de temps. Il est donc fondamental de réagir le plus tôt possible. Plus un joueur réagira tôt et se mettra précocement en action, plus son temps disponible pour se déplacer vers la zone d’interception et pour réaliser la frappe ou la capture sera important. Pour réagir tôt, les joueurs semblent présenter des qualités neuro-musculaires leur permettant une mise en action très rapide afin de se déplacer vers la zone de frappe. Pour cela, les joueurs de nombreux sports de balle (tennis, tennis de table, badminton, gardien de but au football et handball…) utilisent un enchaînement caractéristique « allègement/reprise d’appuis » qui leur permet une mise en action optimale. À ce sujet, Uzu et al. (2009), dans une étude sur le tennis, ont montré que l’utilisation de cette séquence permet aux joueurs de diminuer le temps nécessaire pour aller toucher une cible. De plus, ils ont montré que le timing de cette séquence est très important pour qu’elle soit efficace (voir également, Avilès et al., 2002).

Les capacités de réaction des experts en sport de balle ont d’abord été étudiées dans le cadre de la chronométrie mentale qui consiste à mesurer la durée des opérations mentales requises pour produire une réponse. Dans ce domaine, Mori, Ohtani et Imanaka (2002) ont par exemple montré que des experts en karaté se différenciaient de novices dans une tâche de temps de réaction pour détecter une attaque. Cependant, dans une tâche de réaction simple, ils n’ont pas montré de différences. Cette supériorité à réagir plus tôt n’est donc liée à des différences au niveau des fonctions sensorimotrices de base mais plutôt à des adaptations des structures cognitives spécifiques au sport qui ont été acquises à travers des années de pratique délibérée (Ericsson et al., 1993).

De plus, il a été montré auparavant que les temps de réaction au choix (avec plusieurs alternatives de réponses) étaient modulés par les probabilités d’occurrence (e.g., Proteau & Girouard, 1987). Alain et Proteau (1977) ont montré que si les novices diminuaient leur temps de réponse pour des probabilités autour de 70%/30% ou 80%/20% avec une augmentation des erreurs assez importante, les experts dans les sports de balle rapide diminuaient leur temps de réponse seulement pour des probabilités d’occurrence très élevées (90%/10%), ceci traduisant une stratégie « conservatrice ».

D’après Proteau et Girouard (1987), « ces modèles sont basés sur l’idée que l’individu confronté à une situation de TRC peut choisir entre deux types de réponses » : les réponses dites « honnêtes » (e.g., Sperling & Dosher, 1986) correspondent à des situations dans lesquelles la probabilité d’erreur est très faible et donc le TRC élevé ; les réponses dites « hâtives » sont caractérisées par un TRC plus faible mais un taux d’erreur plus élevé ; cependant, celles-ci ne semblent apparaître que lorsque la probabilité d’un événement augmente. Le choix des participants entre ces deux types de réponse est personnel et dépend de leur expérience.

Plus récemment, dans une expérience de terrain en tennis, Shim et al. (2005) ont cherché à analyser l’impact des informations posturales et gestuelles sur le temps de réaction pour déterminer l’orientation d’une trajectoire de balle. Ils ont comparé les temps de réponse face à un joueur qui frappe des passings shots et face à un lance-balles. Dans cette dernière condition, le temps de réponse moyen est de 179 ms. En revanche, face à un joueur, le temps de réponse moyen passe à 129 ms. Cette expérimentation suggère que les joueurs experts utilisent de l’information sur la gestuelle afin de réagir plus vite face à la trajectoire de balle. Cette dernière étude pose de manière plus précise la question de l’anticipation pour réduire le délai de réponse ou même répondre avant l’action de l’adversaire. C’est précisément ce que nous allons traiter dans la partie suivante.

3. L’anticipation
L’anticipation est une habileté perceptivo-motrice qui consiste « en la réalisation de conduites clairement ordonnées à quelque évènement ultérieur » (Richelle & Lejeune, 1980).

Les chercheurs qui ont travaillé sur ce sujet ont déterminé un certain nombre de discriminateurs de l’expertise perceptive dans le domaine de l’anticipation. La partie la plus dense des travaux dans ce domaine a consisté à étudier l’utilisation d’information sur la gestuelle et l’orientation posturale de l’adversaire afin d’anticiper (e.g., Abernethy & Russell, 1984 ; Williams & Burwitz, 1993). Des recherches ont également porté sur la reconnaissance des situations de jeu spécifiques de leur domaine (e.g., Williams, Hodges, North & Barton, 2006) et l’utilisation des connaissances tactiques et des probabilités de jeu (e.g., Abernethy, Gill, Parks & Packer, 2001 ; McRobert, Ward, Eccles, & Williams, 2011). Nous allons aborder chacun de ces aspects dans les chapitres qui suivent.

3.1 **L’utilisation de la gestuelle adverse pour anticiper**

De nombreux auteurs ont étudié la capacité des joueurs experts à utiliser des informations précoces et antérieures à la frappe ou au lancer de balle afin de prédire la trajectoire à venir et prendre une décision. Les études réalisées se sont basées sur des protocoles utilisant des séquences filmées ou virtuelles représentant le point de vue du participant et devant lesquelles les participants devaient prédire l’action de frappe adverse. Les réponses peuvent être données de différentes manières : réponses verbales, à l’aide d’un joystick ou en pressant un bouton ou encore en réalisant un mouvement de l’ensemble du corps.

Pour plus de précision, nous allons présenter successivement les différentes méthodologies utilisées : l’occlusion temporelle et l’occlusion spatiale, les dispositifs de points lumineux, le profilage biomécanique et les techniques de réduction de données, l’enregistrement des mouvements oculaires et les protocoles de rapports verbaux.

3.1.1 **Le paradigme de l’occlusion temporelle**
L’occlusion de la scène visuelle est le paradigme le plus classique pour étudier les processus perceptifs en sport. Les auteurs ont tout d’abord utilisé des protocoles d’occlusion de la scène visuelle afin de montrer que l’information qui précède la frappe ou le lancer permet d’anticiper l’action adverse. Salmela et Fiorito (1979), par exemple, ont réalisé une étude chez des gardiens de hockey sur glace. Ils ont utilisé des occlusions deux, quatre ou huit images avant le contact avec le palet, ce qui correspond à 83 ms, 167 ms ou 333 ms. Les participants devaient prédire la direction et la hauteur du palet (choix d’un des quatre angles du but). Plus l’occlusion est tardive, plus les prédictions sont précises. De plus, les résultats obtenus sont très proches de ceux observés in situ en situation de match. Les auteurs ont donc conclu que l’information disponible avant la frappe permet d’anticiper la trajectoire du palet.

De plus, le paradigme d’occlusion a beaucoup été utilisé pour montrer la supériorité des joueurs experts par rapport aux novices. Jones et Miles (1978) ont par exemple mis en place une expérimentation dans laquelle des experts et des novices devaient prédire le lieu du rebond d’un service au tennis avec trois moments d’occlusion : 336 ms après la frappe, 126 ms après la frappe et 42 ms avant la frappe. Ils ont montré que les résultats des joueurs experts étaient significativement supérieurs aux résultats des joueurs novices uniquement dans la condition d’occlusion avant la frappe de balle. Ils en ont conclu que les joueurs experts étaient capables d’utiliser l’information disponible avant la frappe de manière plus pertinente que les participants novices, mais seulement dans les instants qui précèdent la frappe. Ce résultat a été confirmé par Williams et Burwitz (1993) dans un protocole similaire avec des gardiens de but en football et quatre conditions d’occlusion par rapport à la frappe (-120, -40, 0 et +40 ms) qui a montré que les experts étaient significativement supérieurs aux novices, mais cette fois, dans les deux conditions d’occlusion avant la frappe.

voyayaient la phase préparatoire du service. Dans la deuxième condition, ils voyaient la phase de préparation ainsi que la première phase de l’exécution. Dans la troisième condition, ils avaient accès à la phase préparatoire jusqu’à la frappe de balle. Enfin, dans la quatrième condition, les participants voyaient la phase rituelle de mise en place du service jusqu’à la frappe de balle. Les résultats obtenus montrent que les joueurs experts sont capables d’utiliser l’information disponible pendant la phase de préparation ainsi que pendant la première partie de la phase d’exécution. Au contraire, les novices ont besoin de voir la phase de rituel jusqu’à la frappe de la balle pour être aussi précis que les experts.

Dans la même logique et en apportant du réalisme à leur expérimentation, Farrow et Abernethy (2003) ont réalisé une étude sur la prédiction de service au tennis in situ avec des lunettes occlusives à cristaux liquides. Ils ont utilisé cinq conditions d’occlusion : 900 ms avant la frappe (i.e., début du lancer), 600 ms avant la frappe (i.e., balle se situant au plus haut), 300 ms avant la frappe (i.e., le joueur est en position armée), contact balle/raquette et après la frappe. Les experts présentent des taux de prédiction supérieurs à la chance à partir de la condition 600 ms avant la frappe. Au contraire, les novices ne présentent des résultats supérieurs à la chance que dans la condition où l’occlusion a lieu après la frappe. Ces résultats confirment la supériorité des experts qui a été démontrée en laboratoire et leur compétence à utiliser de l’information pré-contact sur le lancer de balle et la gestuelle pour préparer la frappe (voir aussi Isaacs & Finch, 1983 sur le retour de service en tennis et Abernethy & Russell, 1984, expérimentations 1 et 2, en cricket).

3.1.2 L’identification de l’information utilisée

3.1.2.1 Occlusion temporelles et fenêtres de prise d’information

Nous avons vu que le paradigme des occlusions temporelles a permis de montrer la supériorité des experts sur les novices. Pour aller plus loin dans la compréhension des informations utilisées, les chercheurs ont manipulé de manière plus précise les fenêtres temporelles de présentation. Le postulat sur lequel s’appuient les chercheurs est que si une fenêtre temporelle est importante pour la prise
d’information alors l’occlusion de cette fenêtre engendrera une diminution de la justesse de la réponse. Ainsi, Abernethy et Russell (1987) ont montré que les experts et les novices en badminton peuvent prélever de l’information pour améliorer la justesse de leur prédiction dans la fenêtre temporelle [-83 ms ; 83 ms] (0 étant la frappe du volant). Cette période correspond au déplacement le plus important de la raquette ainsi qu’au début du vol du volant. De plus, les experts, contrairement aux novices, sont capables de prélever et d’utiliser de l’information dans une période plus précoce ([-167 ms ; -83 ms]). Cette période a été identifiée comme étant le moment où le bras qui tient la raquette effectue son déplacement le plus important (voir aussi Abernethy & Zawi, 2007, expérimentation 1 sur l’identification des fenêtres temporelles fournissant de l’information pour prédire la longueur et la direction d’un volant).

Des expérimentations ayant le même objectif ont été menées dans d’autres sports. Abernethy (1990, expérimentation 1) a réalisé une expérimentation en squash dans laquelle les joueurs devaient prédire la direction et la profondeur des frappes. Il a montré qu’il existe deux périodes très importantes dans la prise d’information en squash : a) entre 160 et 80 ms avant le contact balle/raquette ; b) la période de vol de la balle après les 80 premières millisecondes de vol. Cependant, il a montré que seuls les joueurs experts étaient capables de prélever et d’utiliser l’information qui précède le contact balle/raquette (voir aussi Abernethy et al., 2001). Enfin, une expérimentation similaire a été réalisée en volley par Wright, Pleasants et Gomez-Meza (1990). Ils ont identifié la fenêtre temporelle [-167 ms ; 167 ms] comme étant le moment de la prise d’informations pertinentes afin de réceptionner et de défendre des attaques.

Pour terminer, Farrow, Abernethy et Jackson (2005, expérimentations 1 et 2) ont réalisé une série de deux expérimentations afin de comparer les résultats obtenus en laboratoire et avec une étude de terrain. Dans l’expérimentation 1, les participants devaient prédire le rebond d’un service de tennis à partir d’une vidéo projetée sur un grand écran qui permettait d’obtenir une perspective proche de la réalité. Il leur était demandé de répondre à l’aide d’un papier et d’un crayon. Dans l’expérimentation 2, les participants portaient des lunettes d’occlusion à cristaux liquides. Ils de-
vaient réaliser un mouvement afin d'essayer de retourner le service. Les deux méthodes ont permis de montrer une prise d'information significative pour les participants experts et novices dans la période post contact et une prise d'information significative pour les experts dans la fenêtre qui précède le contact ([−300 ms ; contact]).

Pour résumer les résultats obtenus, il faut retenir que les experts sont capables de mieux utiliser des informations avant la frappe ou le lancer. De plus, il existe des fenêtres temporales importantes pour cette prise d'information et celles-ci varient en fonction de l'activité concernée. Enfin, le vol de la balle reste souvent indispensable pour réaliser une bonne prédiction ce qui montre que les prédicteurs réalisées sur la base d'informations prélevées avant la frappe comportent toujours une part de pari.

Ainsi, ce paradigme d'occlusion a permis d'identifier des fenêtres temporelles clés pour la prise d'information. Cependant, un problème majeur est de savoir si l'amélioration de la prédiction entre deux conditions d'occlusion est liée à l'apport d'informations pertinentes en vue de l'anticipation ou si cette amélioration est uniquement liée à une fenêtre temporelle plus longue pendant laquelle les participants peuvent prélever de l'information.

Farrow et al. (2005, expérimentations 1 et 2) ont également fait varier la fenêtre temporelle de prise d'information. Ils ont réalisé deux expérimentations dans lesquelles ils ont créé deux conditions d'occlusion : 1. Une condition d'occlusion temporelle progressive « classique » et 2. Une condition d'occlusion dans laquelle la durée de la fenêtre temporelle pour la prise d'informations est fixe et est déplacée en fonction des moments clés de prise d'informations. Ils ont montré qu'il existe un effet du moment d'occlusion mais pas de la condition d'occlusion. Ainsi, l'augmentation de la justesse de la prédiction serait bien liée à la présence d'informations pertinentes et non pas au fait d'augmenter la durée de la perception.

3.1.2.2 Occlusion spatiale
Un autre type d’approche visant à identifier les informations utilisées pour anticiper est la réalisation d’occlusions spatiales. Cette méthodologie consiste à présenter aux participants des séquences vidéo où certains éléments sont supprimées pendant l’essai (par exemple : on efface de la vidéo une partie du corps ou la raquette du joueur observé). Le principe est de montrer que la suppression de certaines sources d’information engendre une diminution de la performance de prédiction ; ces sources sont donc considérées comme utiles lors de l’anticipation. Le temps d’occlusion de chacun des éléments peut également être manipulé : cela permet d’obtenir une indication plus claire de l’importance de chaque source d’information à chaque étape de l’action.

Abernethy et Russell (1987) ont utilisé cette méthode avec des joueurs experts et des novices afin de prédir le lieu d’atterrissage d’un volant en badminton. Ils ont réalisé une occlusion temporelle au moment du contact volant/raquette et ont en parallèle réalisé des occlusions spatiales pendant le mouvement de frappe. Ils ont d’abord montré que le masquage du bas du corps ou de la tête n’avait pas d’effet sur les prédictions. Ils en ont conclu que soit ces régions ne fournissaient pas d’information utile pour anticiper soit ces informations étaient redondantes avec d’autres informations qui ont déjà été prélevées sur d’autres parties du corps ou sur la raquette.

En revanche, ils ont observé une diminution de la précision des prédictions des joueurs experts et novices dans la condition où la raquette était masquée. De plus, dans la condition où le bras ainsi que la raquette étaient masqués, seuls les experts montraient une diminution de la performance. Ainsi, ils en ont conclu que les experts sont capables de prélever des informations importantes afin de réaliser des prédictions non seulement sur la raquette mais également sur le mouvement du bras qui tient la raquette. Au contraire, les novices ne semblent être capables de prélever de l’information que sur le déplacement de la raquette (voir aussi Abernethy, 1990, expérimentation 2, pour des résultats similaires).

3.1.2.3 Les dispositifs de points lumineux (« point light display »)

Une autre approche de la perception pour anticiper consiste à utiliser des films à base de points lumineux afin de recréer et manipuler les informations essentielles présentes dans la scène visuelle. Ces films sont construits en enregistrant le corps en mouvement et en utilisant des marqueurs placés sur les articulations du joueur observé. Les origines des images à base de points lumineux proviennent des travaux de Marey (1895-1972) pour l’analyse du mouvement. Par la suite, cette méthode a été appliquée à l’étude de la perception du mouvement biologique par Johansson (e.g., 1973). Ce dernier a émis l’hypothèse que l’information nécessaire pour percevoir les mouvements biologiques humains ou animaux est transmise à travers la cinématique des différents segments du corps et que ces éléments, qui peuvent être très limités, sont suffisants pour une bonne perception de la signification du mouvement biologique. Johansson (1973) a rapporté que les participants pouvaient reconnaître différents schémas de marche et de course quand on leur présentait uniquement les marqueurs anatomiques les plus importants tels que les coudes, les épaules et les hanches en points lumineux animés sur un fond noir. De manière similaire, d’autres chercheurs ont démontré qu’il était possible d’identifier le sexe d’une personne (e.g., Cutting, 1978) ou d’estimer le poids d’objets portés (e.g., Runeson & Frykholm, 1981) en se basant sur la cinématique transmise à travers un dispositif de points lumineux.

Dans le domaine des sports de balles, des études ont montré que la présentation de ce dispositif était suffisante pour permettre aux participants de prédire la direction de trajectoires de balle (e.g., Abernethy et al., 2001 ; Ward, Williams & Bennett, 2002). Ces dispositifs ont souvent été couplés à des occlusions spatiales et/ou temporelles. Dans un premier temps, des comparaisons de performance de prédiction entre des présentations de la scène visuelle sur vidéo et à partir de dispositifs à base de points lumineux ont été réalisées. Ces études ont montré une diminution du taux de réussite de prédiction des experts lors de la présentation à base de points lumineux. Cependant, l’avantage des experts par rapport aux novices reste le même. Par exemple, Abernethy et Zawi (2007, expérimentation 1) ont réalisé une expérimentation en badminton dans laquelle des experts et des non-experts devaient prédire la direction
de frappes de volant à partir d’une présentation vidéo et d’une présentation à base de points lumineux. Ils ont montré que l’avantage des experts dans la prise d’information précoce ne différait pas en fonction du mode de présentation de la scène visuelle (voir aussi, Ward et al., 2002). Abernethy et al. (2001, expérimentation 1), dans une étude sur le squash, ont également trouvé cette diminution de la justesse de prédiction des experts. Cependant, ils ont montré que cela n’avait pas d’impact sur l’identification des moments clés de prise d’information afin d’anticiper.

A l’opposé, Shim et al. (2005, expérimentation 1) ont réalisé une expérimentation dans laquelle ils ont testé des experts et des novices dans trois conditions distinctes : un dispositif de points lumineux, un dispositif vidéo 2D et une situation in situ (3D). Les participants faisaient face à quatre coups différents : passings « long de ligne » ; passings courts croisés ; lobs croisés ou lobs « long de ligne ». Shim et al. (2005) ont obtenu des résultats qui sont significativement supérieurs à la chance pour les experts et pour les novices dans toutes les conditions. De plus, ils ont montré que les joueurs experts étaient plus précis que les novices lorsque l’anticipation avait lieu à partir de vidéo ou in situ ; cependant, dans la condition à base de points lumineux, ils n’ont pas trouvé de différence significative entre les experts et les novices.

Bien qu’il semble que les prédictions soient un peu moins précises lors de l’utilisation de dispositifs à base de points lumineux par rapport à une présentation réelle ou en vidéo, ces dispositifs permettent néanmoins, dans la majorité des cas, de discriminer les joueurs experts et les novices. Le grand intérêt de cette méthode est qu’elle permet de manipuler la cinématique du mouvement qui précède la frappe. Les auteurs ont donc utilisé cette méthode afin de déterminer quelles sources cinématiques fournissent l’information permettant de discriminer les différentes frappes. Abernethy et Zawi (2007, expérimentation 2) ont, par exemple, cherché quelles sont les sources d’information permettant de discriminer un coup long de ligne et un coup croisé au badminton. Pour cela, ils ont examiné la prise d’information sur certains segments corporels lorsque ceux-ci subissent leur déplacement le plus important lors de la réalisation de la frappe. Ils ont inclus dans le protocole de points lumineux des occlusions spatiales et temporelles. Les résultats obtenus montrent une forte diminu-
tion du taux d’erreur de prédiction pour les joueurs experts (contrairement aux participants non-experts) dans la fenêtre temporelle où la raquette subit son déplacement le plus important. Ils en ont conclu que seuls les experts étaient capables de prendre de l’information sur la raquette. En procédant de manière similaire, ils ont également conclu que seuls les experts étaient capables d’utiliser des informations cinématiques sur le bas du corps afin de prédire la direction de frappe au badminton. Par la suite, Abernethy, Zawi et Jackson (2008) ont utilisé un protocole similaire afin d’analyser les informations cinématiques permettant de discriminer la profondeur des frappes. Ils ont conclu que seuls les experts étaient capables d’utiliser l’information cinématique sur le bas du corps afin de prédire la profondeur des frappes au badminton.

Plus récemment encore, Cañal-Bruland et Williams (2010) ont demandé à des participants novices en tennis soit de prédire la direction d’une frappe soit d’estimer les similitudes entre différents mouvements de frappe. Ils ont réalisé en parallèle des occlusions et manipulations spatiales à partir d’un dispositif à base de points lumineux. Ils ont montré que les sources d’information utilisées lorsqu’ils doivent reconnaître des frappes et lorsqu’ils doivent anticiper ne sont pas les mêmes. Par exemple, dans la condition dans laquelle ils réalisaient une manipulation spatiale du bras et de la raquette, ils ont observé une forte diminution de la prédiction alors que cela n’avait pas d’impact sur la reconnaissance.

L’utilisation de la méthode des points lumineux engendre, nous l’avons vu dans la plupart des cas, une diminution de la performance de prédiction montrant donc que les points lumineux ne sont pas suffisants pour extraire la totalité de l’information véhiculée par un adverse. Néanmoins, les experts conservent leur avantage de prédiction par rapport aux novices. De plus, elle facilite des manipulations spatiales de la cinématique qui permettent l’identification de signaux utiles pour anticiper. Ceci a d’ailleurs été développé de manière récente dans une volonté de comprendre de manière plus synthétique la prise d’information sur l’adversaire.

### 3.1.2.4 Profilage biomécanique et techniques de réduction de données
Pour aller plus loin dans l'identification des sources d'information, des études récentes ont eu pour objectif de dépasser l’approche analytique consistant à manipuler des temps d’occlusions ou des zones d’occlusion en rentrant dans une approche synthétique visant à identifier des éléments synthétiques ou macroscopiques dans les sources d’information utilisées pour anticiper. La méthode utilisée consiste à réaliser des analyses biomécaniques sur les différences qui peuvent exister entre deux actions distinctes afin de permettre d’identifier les sources d’informations potentiellement disponibles pour discriminer ces actions. Au tennis, par exemple, l’analyse d’un coup croisé ou long de ligne peut permettre de faire émerger des différences biomécaniques qui peuvent être utilisées par les joueurs afin d’anticiper correctement le coup joué par l’adversaire. Les données biomécaniques peuvent être analysées à différents niveaux. Le niveau le plus simple consiste à examiner les données en utilisant un traçage angle/angle ou en extrayant des mesures quantitatives simples telles qu’une chaîne de mouvement, un déplacement angulaire et des vitesses angulaires ou linéaires. Des corrélations croisées peuvent être utilisées pour examiner les aspects des coordinations inter-membres.

Une approche plus élaborée consiste à utiliser des techniques de réduction de données telles que les régressions multiples ou l’analyse en composantes principales pour identifier des différences macroscopiques entre différentes actions (e.g., Huys, Smeeton, Hodges, Beek & Williams, 2008). L’analyse en composantes principales peut être utilisée pour réduire un grand nombre de données en un petit nombre de structures ou composants. Cette technique peut aider à identifier les facteurs discriminants entre deux séries données (par exemple, les différences biomécaniques entre une frappe « long de ligne » et une frappe « croisée » lors d’un coup droit au tennis).

Un autre avantage de collecter des données biomécaniques est qu’elles peuvent être utilisées pour créer des simulations en 3D. Celles-ci peuvent permettre de présenter une scène visuelle avec des angles de vue ou des perspectives différents alors que certains aspects de la situation comme un membre particulier peut être souligné, enlevé ou déformé et que certains aspects peuvent être amplifiés.
Pollick, Fidopiastis et Braden (2001) ont par exemple mis en place une tâche de reconnaissance de service de tennis en fonction de l’effet utilisé par le serveur (plat, lifté, slicé). Pour cela, ils ont développé une technique permettant de construire des mouvements humains « exagérés » ou « amplifiés » qui permettait de faciliter la reconnaissance des différents type de service montrant ainsi qu’ils avaient bien identifié les paramètres essentiels à la reconnaissance de ces services.

Par la suite, Huys et al. (2008, expérimentation 1) ont réalisé une analyse en composante principale des frappes de fond de court en tennis faisant ressortir un nombre limité de pattern résumant les différences entre des coups croisés et décroisés. Cela leur a donné la possibilité de faire une description « économique » des coups droits permettant de distinguer la direction des frappes. Dans une seconde expérimentation (Huys et al., 2008 expérimentation 2), ils ont cherché à identifier quelles étaient les structures minimales nécessaires à présenter à des joueurs afin de leur permettre d’anticiper. Ils ont montré que l’information qui permet de réaliser des prédictions précises de la direction de frappes de balle est en grande partie dynamique et se situe dans trois structures indépendantes résumant l’essentiel des informations utiles à la prédiction.

Dans la même perspective, Huys, Cañal-Bruland, Hagemann, Beek, Smeeton et Williams (2009) ont mis en place deux protocoles afin d’étudier sur la dynamique des frappes de balle. Dans la première expérimentation, ils ont utilisé des figurines en bâtons réalisant des frappes croisées ou long de ligne. Ils ont réalisé des occlusions spatiales qui leur ont permis de mettre en évidence les éléments dynamiques qui caractérisent les frappes croisées et décroisées. Ils ont utilisé ces résultats pour faire varier la structure dynamique des frappes de balles présentées dans la deuxième expérimentation. Pour cela, ils ont réalisé des manipulations biomécaniques permettant de neutraliser l’impact de certaines parties du corps (e.g., dans une frappe long de ligne, le mouvement du bras est remplacé par un mouvement neutre entre celui de la frappe long de ligne et celui de la frappe croisée). Leur objectif était d’examiner l’importance d’informations dynamiques locales afin d’anticiper. Ils ont montré une diminution de la performance lorsque l’information locale au niveau du bras, de la raquette, du tronc ou des jambes était manipulée. Cependant, ils ont conclu que leurs résultats sug-
géraient que les participants anticipaient les frappes de balle en utilisant une approche perceptive plus globale.


3.1.2.5 L’enregistrement des mouvements oculaires

Des appareils vidéo-oculographiques d’enregistrement de la direction du regard ont souvent été employés afin d’étudier les stratégies visuelles utilisées et mieux comprendre l’accès à l’information pour anticiper. Ces appareils permettent d’enregistrer la direction du regard et donc de relever les zones de fixation et les déplacements oculaires. La localisation des fixations indique une aire d’intérêt alors que le nombre et la durée des fixations permettent d’estimer l’importance de l’information traitée. Malgré l’intérêt de cette approche, il faut noter quelques limites à cette ap-
proche. En effet, il est difficile de faire la distinction entre « voir » et « regarder » ou entre « fixer » et « extraire » : on peut fixer une zone sans extraire d’information de cette zone et inversement extraire de l’information en vision périphérique d’une zone non fixée. Ces limites nécessitent que les chercheurs emploient une méthodologie complémentaire telle que des protocoles verbaux ou des protocoles d’occlusion par exemple afin de confirmer l’utilisation des informations (e.g., Williams, Janelle & Davids, 2004).

Initialement, l’enregistrement des mouvements oculaires nécessitait que le participant reste stable, sans bouger la tête pendant qu’il regardait des images statiques de sport (Williams, Davids & Williams, 1999). Cependant, des systèmes récents sont beaucoup plus faciles à utiliser et permettent de collecter des données de manière dynamique avec des mouvements de réponse en laboratoire ou sur le terrain. De plus, les procédures de calibration et de collecte des données sont maintenant plus simples et moins coûteuses en temps. Enfin, le développement des caméras hautes fréquences permettent d’enregistrer des données à des fréquences très élevées (supérieures à 200 hz).

Une des premières études dans laquelle des techniques d’enregistrement oculographique ont été utilisées a été menée par Ripoll et Fleurance en 1988. Cette technique leur a permis d’investiguer les comportements visuo-moteurs de cinq joueurs experts en tennis de table. Ils ont montré que les joueurs ne suivaient pas la balle des yeux pendant toute la trajectoire mais fixaient seulement quelques points de la trajectoire. De plus, il semble que les joueurs ne regardent pas spécifiquement la balle au moment où ils la frappent.

Par la suite, les auteurs ont utilisé cette technique pour analyser la prise d’information sur la frappe de l’adversaire. Les études ont tout d’abord montré que les joueurs experts et les joueurs novices n’utilisent pas les mêmes stratégies de prise d’information. Par exemple, Savelsbergh, Williams, Van Der Kamp et Ward (2002) ont montré que les gardiens de but experts présentaient un nombre de fixations moins important que les novices. Cependant, la durée de ces fixations était plus grande. Enfin, les aires fixées semblaient être moins disparates.
Les chercheurs ont aussi essayé d’analyser quelles sont les zones qui sont fixées. Goulet et al. (1989, expérimentation 1) ont montré que le couple bras/raquette était fixé plus longtemps par les joueurs experts. Ce résultat a été confirmé par Singer, Cauraugh, Chen, Steinberg et Frehlich (1996) dans une expérimentation sur des coups de fond de court ; les joueurs experts se focalisaient sur les régions centrales du corps (en particulier la hanche) et sur la zone du contact balle/raquette pendant que les joueurs novices observaient surtout la balle et la raquette. Williams, Ward, Knowles et Smeeton (2002, expérimentation 1) ont montré que les joueurs experts fixent plutôt la tête, les épaules et le tronc. A l’opposé, les joueurs novices ont tendance à fixer la raquette.

Plus récemment, Savelbergh, Van Der Kamp, Williams et Ward (2005) ont montré des différences à l’intérieur d’un groupe des gardiens de but experts. En effet, les meilleurs gardiens regardaient plus longtemps la jambe qui ne frappait pas que les gardiens d’un niveau inférieur. Cependant, des résultats contraires ont été trouvés dans des études de terrain dans lesquelles il était demandé aux participants de réaliser des actions d’interception face à un adversaire qui frappait le ballon. En effet, dans ces conditions, le comportement visuel était presque exclusivement fixé sur le ballon avant et après la frappe (e.g., Panchuk & Vickers, 2006). Ce résultat suggère que les conditions de réalisation déterminent la stratégie perceptive avec une plus grande focalisation sur le ballon en situation réelle. En situation virtuelle, il n’est pas impossible que des informations annexes soient prélevées.

Pour essayer d’analyser l’origine des ces différentes prises d’information, Dicks, Button et Davids (2010a) ont demandé à des gardiens de but de football de prédire ou d’intercepter des pénaltys. Ils ont manipulé différents facteurs : la condition de vision (simulation vidéo, simulation in situ) ; la condition de réponse (réponse verbale, réponse avec mouvement, tentative d’interception du ballon). Ils ont montré que dans toutes les conditions expérimentales, le regard était dirigé vers le torse et la tête pendant les 500 premières millisecondes de la phase d’approche. Par la suite, le regard était dirigé différemment entre la situation dans laquelle le gardien devait intercepter le ballon et lorsqu’il leur était juste demandé de prédire la direction du tir. En situation d’interception, les gardiens regar-
daient en priorité le ballon alors que dans la situation de prédiction ils étaient davantage fixés vers la jambe de tir et la jambe d’appui. Ce résultat suggère que les modalités de réponse influencent la prise d’information. Cette question a fait l’objet de traitements récents et nombreux qui sont présentées dans la partie sur « les diverses modalités de réponse ».

3.1.2.6 Les protocoles de rapports verbaux

La méthodologie du rapport verbal a tout d’abord été utilisée pour déterminer sur quelles sources d’information se basent les sujets pour prédire la trajectoire de la balle à venir. Ainsi, les participants devaient expliciter ce qu’ils regardaient. Buckolz, Prapavesis et Fairs (1988) ont demandé à des joueurs de tennis de prédire la direction de passing et de lister les indices sur lesquels ils se basaient pour réaliser ces prédictions. Par la suite, Tennenbaum, Levy-Kolker, Sade, Lieberman et Lidor (1996) ont utilisé cette méthodologie dans le but de faire émerger quels étaient les indices pertinents pour de prédire des frappes de fond de court en tennis. Ils ont montré que les joueurs novices faisaient émerger un seul indice qui n’était pas forcément pertinent, pendant que les joueurs experts utilisaient simultanément plusieurs indices.

Cependant, il y a eu un débat important sur la validité des protocoles de comptes rendus verbaux. Il semblerait, en effet, que les comptes rendus soient beaucoup plus précis quand les participants doivent exprimer verbalement à quoi ils pensent pendant qu’ils réalisent une tâche que lorsqu’ils expliquent les raisons pour lesquelles ils ont répondu d’une certaine manière. Ericsson et Simon (1993) ont mis en lumière les conditions nécessaires aux participants afin que ceux-ci puissent exprimer de manière précise les processus qu’ils utilisent. Les expérimentateurs demandent aux participants soit de « penser à voix haute » (verbalisation pendant la tâche), soit de verbaliser immédiatement après la tâche. D’après ces auteurs, le facteur clé semble être de demander aux participants d’exprimer à quoi ils pensent pendant qu’ils réalisent l’action plutôt que d’essayer d’expliquer la réponse qu’ils ont fournie.

Malgré les efforts réalisés dans ce domaine notamment au niveau de la systématisation de l’approche, il reste des limites importantes qui sont liées au médiateur utilisé pour accéder aux processus mis en jeu dans les situations qui nous intéressent. En effet, l’utilisation du langage pour décrire des processus qui se déroulent en quelques fractions de seconde est à questionner et on peut s’interroger sur l’accessibilité des processus impliqués qui se situent très certainement pour une
large part à des niveaux implicites, sensori-moteurs ou cognitifs n’étant pas ou difficilement verbali-
sables.

3.2 **La reconnaissance des situations et l’utilisation des informations tactiques, des probabilités de jeu et du contexte**

La supériorité des experts à prédire l’action à venir semble également être liée à l’utilisation
d’informations contenues à l’intérieur de la configuration globale de jeu avant même que des infor-
mations sur la gestuelle de l’adversaire ne soient disponibles (e.g., Abernethy et al., 2001). La recon-
naissance des situations ou de l’adversaire et de ses probabilités de jeu aident les joueurs à anticiper
sur ce que l’on appelle classiquement les connaissances tactiques (e.g., McRobert et al., 2011). Enfin,
la connaissance du contexte de jeu (par exemple en tennis, une balle de break, un jeu décisif ou les
frappes réalisées antérieurement par l’adversaire) semble également permettre aux joueurs experts
d’améliorer la pertinence de leurs anticipations (e.g., Paull & Glencross, 1997).

Dans ce contexte, Abernethy et al. (2001, expérimentation N°2) ont par exemple montré dans
une expérience *in situ* que des experts en squash étaient capables d’anticiper avec un taux de réuss-
site supérieur à la chance pour des occlusions aussi précoces que 620 ms avant la frappe adverse. Les
auteurs en ont conclu que les joueurs experts étaient capables de prélever et d’utiliser d’autres in-
formations que celles liées à la frappe adverse certainement indisponibles pour des occlusions aussi
précoces. Ils ont attribué cet avantager aux connaissances tactiques des joueurs liées au contexte et
aux probabilités de jeu.

Dans un registre différent, Crognier et Fery (2005) ont étudié l’impact du degré d’initiative tac-
tique dans le point sur la performance d’anticipation de joueurs de tennis à la volée. Pour cela, ils ont
utilisé trois conditions d’initiative : a) un haut degré d’initiative correspond à une situation dans la-
quelle un joueur impose ses intentions de jeu en montant au filet ; au cours d’un échange, il choisit de monter en envoyant la balle agressive à droite ou à gauche et en plaçant son adversaire en situation défavorable ; b) un degré modéré d’initiative correspond à une situation dans laquelle le joueur est déjà à la volée ; il choisit s’il envoie la balle directement à droite ou à gauche sans échange préalable ; c) un faible degré d’initiative correspond à une situation dans laquelle c’est l’adversaire qui choisit d’où il envoie le passing ; le participant se situe déjà au filet. Ils ont montré que le pourcentage de bonnes réponses dans la condition de haut degré d’initiative est significativement supérieur à la chance ce qui n’est pas le cas pour les autres conditions. Ainsi, les auteurs ont conclu qu’en fonction de leur position dans le rapport de force, les joueurs sont capables d’utiliser des informations en lien avec les possibilités de jeu de l’adversaire et ce d’autant plus facilement que leur adversaire est dans une situation contraignante qu’ils ont été capables de lui imposer.

Ces deux études indiquent clairement que le contexte et les informations tactiques sont utilisés pour anticiper la réponse adverse. Cette capacité est d’abord liée à la capacité à reconnaître les situations de jeu.

### 3.2.1 La reconnaissance des situations de jeu

Le premier facteur qui peut permettre aux joueurs experts de mieux anticiper au plan tactique est lié à leur compétence à reconnaître des situations de jeu. En effet, des chercheurs ont montré que la reconnaissance des situations de jeu serait un processus essentiel mis en jeu lors de l’anticipation et de la prise de décision (e.g., Chabris & Hearst, 2003 ; Rhodes, Tan, Brake & Taylor, 1989 ; Williams & Davids, 1995 ; Williams et al., 2006). L’idée sous-jacente est que pour anticiper correctement ou pour prendre une décision, les sportifs doivent d’abord reconnaître la situation dans laquelle ils se trouvent.

Les premières études sur la reconnaissance des situations de jeu ont été menées aux échecs par De Groot (1965) puis poursuivies par Simon et Chase (1973) (cf Cadre théorique, partie 1). Allard, Graham et Paarsulu (1980) ont été les premiers auteurs à étudier la reconnaissance des situations de...
jeu dans le domaine sportif. Ils ont réalisé une expérimentation dans laquelle ils ont montré des diapositives issues de situations de match de basket et d’autres provenant d’échauffement de basket à des joueurs expérimentés et moins expérimentés. Les participants devaient reconnaître les diapositives qu’ils avaient vu lors de la première phase et celles qui étaient nouvelles. Les joueurs expérimentés ont reconnu avec plus de réussite les diapositives que les joueurs moins expérimentés. Cependant, cet avantage n’est présent que pour les diapositives présentant des situations de match. Ainsi, leur supériorité semble liée à la reconnaissance de situations ayant du sens pour eux.

Plus récemment, des chercheurs ont étudié les mécanismes sous-jacents de la reconnaissance des situations de jeu et l’influence de cette compétence sur l’anticipation et la prise de décision.

Williams et al. (2006, expérimentation 1) ont présenté à des joueurs de football expérimentés et des joueurs moins expérimentés des séquences de jeu de football sous la forme de séquences vidéo. Ils ont montré que les joueurs expérimentés sont capables de reconnaître plus vite et de manière plus précise que les joueurs moins expérimentés les séquences qui leur sont « familières » (qu’ils rencontrent régulièrement lors de la pratique de leur activité) et celles qui ne le sont pas. En utilisant un paradigme d’occlusion spatiale sur certains éléments particuliers (expérimentation 3), ils ont de plus montré une diminution de la précision de réponse particulièrement chez les plus expérimentés. Ils ont pu ainsi conclure que la position de certains joueurs clés, des coéquipiers et des adversaires ainsi que leurs relations dans la continuité de la séquence avaient un impact sur les habiletés de reconnaissance des situations de jeu. Ces habiletés reposeraient donc sur l’analyse des caractéristiques structurelles du jeu, des relations entre les joueurs et des informations basées sur des connaissances tactiques.

Par la suite, North, Williams, Hodges, Ward et Ericsson (2009) ont réalisé une expérimentation sur la reconnaissance de situations de jeu en football ainsi que sur la comparaison des mécanismes sollicités lors de l’anticipation et de la reconnaissance de situations. Ils ont présenté des séquences vidéo à des joueurs expérimentés et moins expérimentés qui devaient anticiper l’action à venir. Dans un second temps, des séquences de jeu étaient présentées aux participants sous la forme de films
vidéo ou de dispositifs de points lumineux. Les participants devaient reconnaître les séquences qu’ils avaient vues au préalable. Les résultats ont montré que les joueurs les plus expérimentés présentaient des habiletés d’anticipation supérieures et discriminaient plus facilement les séquences vues au préalable et les nouvelles séquences que les joueurs moins expérimentés. Il est apparu néanmoins que les mouvements oculaires et les fixations visuelles étaient différents entre la tâche d’anticipation et celle de reconnaissance ce qui suggère que les processus utilisés lors de ces tâches ne soient pas les mêmes. Ainsi, même si la capacité des experts à reconnaître les situations de jeu peut participer à la justesse des anticipations, le lien de causalité n’est pas clairement démontré entre les capacités de reconnaissance et les capacités d’anticipation (voir aussi North, Ward, Ericsson et Williams, 2011, pour des conclusions similaires lors d’une étude utilisant des rapports verbaux lors de tâches d’anticipation et de reconnaissance). Il se pourrait que la capacité à prédire le déroulement d’action de jeu soit basée sur des modèles plus globaux et différents de ceux utilisés pour reconnaître une situation lors de deux présentations successives.

3.2.2 L’incidence du contexte


D’après Paull et Glencross (1997), la connaissance du contexte et des principes généraux de l’activité permet également aux joueurs d’augmenter leur performance de prédiction dans des situations sportives. Tout d’abord, cette connaissance permet de diriger l’attention du joueur vers des régions où les informations utiles sont censées apparaître ce qui réduit de manière importante l’incertitude et les temps de réponse. Dans un deuxième temps, elle permet également de réaliser un
tri préliminaire dans la mémoire à long terme de l’information qui devrait servir pour l’action à venir. Ces auteurs (1997, expérimentation N°1) ont étudié l’évolution de la performance des batteurs de baseball à prédire le lancer à partir d’occlusion temporelle en fonction des informations sur le contexte de jeu en termes de nombre de balles, de « strikes » et de batteurs éliminés, sur le score et les coups enregistrés contre le lanceur. De plus, une représentation graphique du terrain permettait aux participants d’avoir une visibilité sur la localisation de ses coéquipiers au niveau des bases. Chaque scénario correspondait à un lancer qui était déterminé au préalable comme étant le plus probable par des receveurs professionnels. C’est donc cette réponse qui était attendue. Les résultats ont montré que les joueurs experts présentaient des temps de réaction plus faibles que les joueurs novices et que leurs erreurs de prédiction étaient significativement inférieures à celles des novices. De plus, les joueurs experts et les joueurs intermédiaires ont été capables d’utiliser l’information contextuelle afin de réduire leur temps de réponse (environ 60 ms plus rapide) et leur taux d’erreur de prédiction. Ces résultats ont permis de conclure que l’accès à l’information sur le contexte de jeu et son utilisation afin d’améliorer des performances d’anticipation étaient possible relativement tôt au cours de la formation des joueurs.

3.2.3 L’utilisation des probabilités de jeu inhérentes à un joueur

Si les joueurs experts sont capables d’utiliser des informations en lien avec le contexte et les principes généraux de l’activité, ils sont aussi capables d’utiliser des informations probabilistiques en lien avec les frappes ou lancer précédents réalisés par un adversaire donné. McRobert et al. (2011) ont travaillé sur l’utilisation de ces informations en cricket dans deux conditions expérimentales : a) condition avec une information probabilistique faible : 24 lancers provenant de six lanceurs différents dans un ordre aléatoire ; b) condition avec une information probabilistique élevée : 24 lancers par blocs de six lancers de suite du même lanceur. Les joueurs experts ont montré une précision de la prédiction de la trajectoire du lancer plus importante que les participants moins expérimentés. Les deux groupes ont montré de plus une amélioration de leur précision dans la condition où

3.3 La nature de la scène visuelle

Nous avons vu dans ce cadre théorique des expérimentations dans lesquelles la nature de la scène visuelle qui était présentée aux participants était variée avec l’utilisation d’écran d’ordinateurs, d’écrans de vidéoprojection de grande dimension, des scènes visuelles filmées en situation réelle ou reconstruite à base de points lumineux, des stimulations utilisant des figurines en bâtons ou des expérimentations se déroulant sur le terrain. Il est est intéressant d’essayer de comprendre les raisons et les effets de l’utilisation d’une telle variété de supports.

Tout d’abord, il semble important de préciser que dans le cadre de la mise en place de protocoles expérimentaux ayant pour objectif d’analyser les habiletés perceptivo-motrices, les théories de Brunswick (1955) et Gibson (1979) soulignent la nécessité de mettre en place des protocoles expéri-mentaux qui incluent des stimuli représentatifs de l’environnement naturel. Cependant, il semble intéressant de se demander si cela engendre obligatoirement la nécessité d’une stimulation in situ.
Dans les premières études, les chercheurs ont beaucoup le paradigme de l’occlusion temporelle en laboratoire. Cela leur permettait d’une part un contrôle plus rigoureux et d’autre part de répliquer la scène visuelle à l’identique à travers les différents essais contrairement à une étude de terrain. De plus, les premières études, ayant pour objectif de travailler sur l’anticipation, étaient réalisées sur des écrans d’ordinateurs ce qui avait pour effet de réduire le réalisme des situations présentées ; en effet, la diminution du champ visuel et la présentation en 2D ont pour potentiel effet de dénaturer la stimulation visuelle. En effet, Isaacs et Finch (1983) et Féry et Crognier (2001) ont par exemple montré que la présentation des films sur ordinateur ne permettait pas d’évaluer précisément la longueur des trajectoires.

C’est pourquoi depuis une dizaine d’années, les chercheurs ont essayé d’améliorer le réalisme de leurs expérimentations soit en augmentant la taille des écrans (e.g., Williams et al., 2002, expérimentation 1) afin d’obtenir un adversaire de la même taille qu’en situation réelle sur le terrain, soit en réalisant l’expérimentation directement sur le terrain grâce au port de lunettes d’occlusion à cristaux liquides de type PLATO permettant une occlusion de la scène visuelle en quelques millisecondes (Milgram, 1987). Utilisant ce dispositif, Starkes, Edwards, Dissanayake et Dunn (1995) ont demandé à des volleyeurs experts et novices de prédire la localisation de service de volley en milieu naturel. L’occlusion avait lieu à différents moments avant et après la frappe du ballon. Ils ont montré une supériorité des joueurs experts dans leur capacité de prédiction. Par la suite, Müller et Abernethy (2006) ont également utilisé ces lunettes d’occlusion afin de réaliser une expérimentation in situ en cricket. Ils ont montré une capacité supérieure des joueurs les plus expérimentés à utiliser les informations les plus précoces (avant rebond) pour guider avec succès la frappe de balle.

Cependant, ces résultats avaient déjà été démontrés à travers des protocoles basés sur des stimulations vidéo (e.g., Farrow & Abernethy, 2003). C’est pourquoi, certains auteurs ont mis en place des expérimentations ayant pour objectif de comparer les résultats obtenus en fonction de stimulations variées. Shim et al. (2005, expérimentation 1) ont réalisé une expérimentation dans laquelle ils ont testé des experts et des novices en tennis dans trois conditions distinctes : un dispositif à base de...
points lumineux, un dispositif vidéo 2D et une situation in situ (3D). Ils n’ont pas obtenu d’effet significatif du type de condition. Cependant, il existe une interaction significative entre l’expertise et le type de présentation. La précision de prédiction des joueurs novices diminue plus la condition est proche de la situation in situ, pendant que celle des joueurs experts augmente. Ils ont conclu que les joueurs experts sont capables d’extraire plus d’information de la vidéo et en condition in situ par rapport à la présentation avec un dispositif à base de points lumineux. Cette diminution de la performance de prédiction des experts lors de présentation de stimulations à base de points lumineux a été démontrée par d’autres auteurs (cf, partie 3.1.2.3). D’autre part, Féry et Crognier (2001) ont réalisé une expérience dans laquelle des joueurs de tennis devaient indiquer la zone de rebond de la balle (longueur d’un passing shot) en pressant un bouton suite à une occlusion qui intervenait 100 ms après la frappe de l’adversaire sur le terrain avec des lunettes du même type et face à un écran de télévision. L’erreur de prédiction était supérieure à deux mètres et était la même dans les deux conditions de vision.

Même si la présentation in situ semble présenter des avantages (dans l’appréciation des longueurs par exemple), il semble que la présentation vidéo semble suffire à obtenir des résultats fiable à condition de conserver les éléments représentatifs de l’environnement naturel.

3.4 **Les diverses modalités de réponse**

Pour terminer, nous avons vu tout au long de ce cadre théorique que les modalités de réponse dans les différentes expérimentations présentées diffèrent (réponses écrites, verbales, presse bouton ou impliquant des mouvements corporels plus ou moins proches des actions réelles à produire sur un terrain de sport). Si on se réfère à la théorie écologique (Gibson, 1979), il existe un couplage fonctionnel entre perception et action. C’est pourquoi, des études récentes ont abordé le rôle du couplage perception/action sur les performances d’anticipation en s’appuyant sur l’idée de Gibson (1979) de l’importance de l’action sur la perception des affordances, c’est-à-dire des informations perçues en termes de possibilités d’action.

Par la suite, les auteurs ont cherché à analyser l’impact de diverses modalités de réponse sur la performance de prédiction des participants. Farrow et Abernethy (2003) ont abordé cette question en tennis dans une tâche de prédiction du service in situ en utilisant des réponses couplées (réelles) et non couplées (i.e., verbales) dans des conditions où le geste de frappe et/ou la trajectoire de balle étaient occultés. Ils ont montré que les performances étaient supérieures pour les réponses couplées seulement lorsque la trajectoire de la balle était présente. C’est pourquoi, ces auteurs ont proposé l’existence d’un processus dédié aux mouvements d’interception en lien avec l’utilisation de l’information sur la trajectoire de la balle (voir aussi Farrow et al., 2005).

Par la suite, Mann, Abernethy et Farrow (2010) ont utilisé un paradigme d’occlusion temporelle in situ. Des batteurs de cricket novices et expérimentés devaient prédire la direction des balles envoyées vers eux dans quatre conditions de réponse qui faisaient varier la nature du couplage perception/action (réponse verbale, mouvement du bas du corps, mouvement de tout le corps en réalisant une frappe virtuelle, mouvement de tout le corps avec frappe correspondant à une réponse habituelle). Ils ont montré une amélioration de la performance d’anticipation des joueurs experts en fonction du couplage dans les conditions d’occlusion où les participants ne voyaient pas la trajectoire ou uniquement le début de celle-ci. En effet, les joueurs expérimentés ont amélioré leur performance dès qu’un faible degré de couplage perception/action était présent dans la réponse par rapport à une prédiction verbale. De plus, un mouvement complet du corps avec utilisation de la batte engendre une meilleure anticipation qu’un mouvement équivalent sans batte. Il semble donc que l’implication du participant dans l’action permet une meilleure perception. Ce résultat est cohérent.
avec l'idée du cycle perception/action dans lequel l’action joue un rôle déterminant pour la perception (Gibson, 1979).

Ces résultats récents montrent des effets de l’action sur la perception. Cependant, cet effet semble relativement limité et ne diminue pas la portée des résultats obtenus avec des modalités de réponse plus simples.
Problématique et démarche
Nous avons vu qu’il existe de nombreux travaux visant à étudier l’anticipation dans les sports de balle. Les différences entre experts et novices apparaissent nettement et les sources d’information prédictives sont de mieux en mieux identifiées. Cependant, il est intéressant de noter que la question de l’utilisation de cette compétence n’a jamais véritablement été posée. De manière étonnante, il n’existe aucune étude ayant eu pour but de déterminer la mise en jeu des processus d’anticipation en situation réelle. Or, Ericsson et Smith (1991) dans « l’approche de la performance experte » préconisent une première étape qui repose sur l’analyse de cette compétence in situ chez les experts. Pour cela, il existe différentes possibilités, telles que des tests de laboratoire et de terrain, mais la stratégie la plus efficace reste l’analyse de situations de jeu réel. Cela permet d’identifier de manière objective les comportements qui caractérisent l’expertise. Cette approche s’appuie sur les travaux de Brunswick (1955) qui a mis en avant l’importance d’étudier les relations organisme/environnement dans une structure méthodologique globale appelée « Tâches représentatives (Representative design) ». Brunswick souligne que les stimuli expérimentaux doivent être prélevés dans l’environnement naturel pour être représentatifs de la population de stimuli auxquels l’organisme s’est adapté et auxquels les résultats pourront être généralisés. Cette étape doit aboutir à l’élaboration de tâches représentatives qui vont permettre de capturer de manière contrôlée les phénomènes de l’expertise. La majorité des recherches qui se sont intéressées à l’étude de l’anticipation dans les sports de balle a tenté de capturer la performance en utilisant des protocoles d’occlusion temporelle et d’occlusion spatiale, des dispositifs avec des points lumineux, des profilages biomécaniques et des techniques de réduction de données, des enregistrements de mouvements oculaires et des protocoles de rapports verbaux. Ces approches ont permis de démontrer la supériorité des joueurs experts par rapport à des joueurs moins expérimentés. Cependant, l’analyse de l’utilisation de cette compétence en situation de jeu réel n’a pas été étudiée.

En effet, les chercheurs sont toujours partis du postulat que l’anticipation est fondamentale dans les sports de balle et notamment les sports de raquette tels que le tennis. Cependant, la première
étape de la démarche d’Ericsson et Smith (1991) n’a pas été réalisée. Les chercheurs pourraient par exemple tenter de répondre à des questions du type : quelle est la fréquence des comportements d’anticipation en tennis ? Est-ce que l’anticipation a lieu dans une situation de jeu particulière (par exemple en tennis : échange, retour de service, à la volée, en passing) ? Est-ce qu’il existe un lien entre la possibilité de gagner ou de perdre le point et la fréquence d’anticipation (rapport de force) ? Est-ce que la surface de jeu (surfaces plus ou moins rapides) a une incidence sur l’anticipation ?

Suite à cette analyse in situ, la deuxième étape proposée par Ericsson et Smith (1991) consiste à identifier les mécanismes sous-jacents de l’expertise. Pour cette analyse, les chercheurs doivent développer des protocoles permettant de tester la mise en jeu de ces mécanismes et les différences qualitatives (mécanismes différents) et quantitatives (mécanismes optimisés) entre experts, intermédiaires et novices. La connaissance des processus fondamentaux peut également aider à faciliter le développement théorique et améliorer la compréhension des facteurs qui contribuent à la performance des experts. Cette deuxième étape doit s’appuyer sur les résultats obtenus lors de l’analyse in situ afin de mettre en place des protocoles expérimentaux susceptibles de réellement analyser les capacités d’anticipation telles qu’elles sont sollicitées en situation réelle.

Pour finir, la troisième étape consiste à déterminer comment les experts acquièrent ces habiletés nécessaires à une performance experte. Cette dernière étape repose sur l’étude des trajectoires des experts et leurs expériences. Elle s’appuie également sur la mise en place de protocoles d’apprentissage permettant d’étudier comment on devient expert dans une activité donnée.

Nous avons donc choisi, pour cette thèse, d’étudier les anticipations réalisées par les experts en tennis en suivant la démarche proposé par Ericsson et Smith (1991) et en tentant d’illustrer chacune des trois étapes. Comme expliqué précédemment, nous avons choisi l’activité tennis comme support de cette étude car elle présente l’avantage d’être caractérisée par un duel entre les deux protagonistes qui est très standardisé et se répète à chaque frappe de balle de l’un des deux joueurs. Cette activité présente également l’avantage d’offrir de nombreuses bases de données vidéo sur les joueurs du plus haut-niveau.
Dans un premier temps, nous avons réalisé une analyse quantitative de l’anticipation en situation de jeu réel ainsi qu’une étude qualitative des moments de l’anticipation. Pour cela, des frappes de balle provenant de matchs de haut niveau ont été analysées. L’objectif de cette étude était d’analyser en milieu naturel les situations de jeu et les contraintes qui vont engendrer des anticipations afin d’identifier les éléments déterminants de l’anticipation pour ensuite créer des tâches représentatives ayant pour but de mieux comprendre les mécanismes d’anticipation réellement mis en jeu.

Dans un deuxième temps, l’objectif était donc de mettre en place des tâches représentatives en se basant sur les résultats obtenus lors de l’étude N°1 afin d’analyser les mécanismes sous-jacents de l’anticipation puis dans un troisième temps, notre objectif était de traiter la question de l’apprentissage. Pour suivre la logique de la démarche, la problématique et les hypothèses des études expérimentales réalisées dans cette thèse ne sont pas présentées à ce stade puisqu’elles ont découlé de l’étude N°1, qui va faire l’objet de la partie qui suit. Elles seront donc présentées dans le manuscrit à l’issue de cette première étude.
Partie empirique
4. L’analyse in situ. Etude N°1 : Quantifier l’anticipation chez les joueurs de tennis professionnels


Quantifying the nature of anticipation in professional tennis

RUNNING TITLE: Anticipation in tennis: a task analysis

Key words: ball sports; expertise; perception; prediction

Abstract

We quantify the nature and frequency of anticipation behaviours in professional tennis using video coding of incidents where the time delay between the opponent’s stroke and the reaction of the player were recorded. We argued that anticipation is based on uncertain information and should lead in some situations to erroneous decisions. We identified the transition between reaction (with 100% accuracy in the selection of where the ball was played on the court) and anticipation (with less than 100% accuracy) as being 140-160 ms after ball contact. According to these criteria, anticipation behaviours occurred on between 6.14% and 13.42% of the coded situations. These anticipation behaviours appeared almost exclusively in ‘unfavourable’ situations, where the opponent has a significant tactical advantage, with the type of playing surface having only a limited effect. Moreover, the decrease in accuracy with shorter response times was not monotonic, with an increase in response
accuracy being observed for times shorter than 120 ms before ball contact. We propose that very early anticipation behaviours occurred when players use significant context-specific information before the opponent’s stroke. When such information is not available, players produce anticipation behaviours which are closer to the moment of ball-racket contact using information that is more likely to be based on the opponent’s preparation of the stroke. This study opens new directions for research focusing on testing and training anticipation in fast ball sports.
Introduction

An ability to anticipate the actions of opponents is crucial to performance in many sports, particularly where the uncertainty and spatiotemporal constraints on performance are significant (Williams, Ford, Eccles, & Ward, 2010). The superior anticipation of skilled compared to less skilled individuals has been demonstrated in tennis (Cañal-Bruland & Williams, 2010; Williams, Ward, Knowles, & Smeeton, 2002), cricket (McRobert, Williams, Ward, & Eccles, 2009; Müller, Abernethy, & Farrow, 2006), soccer (Dicks, Button, & Davids, 2010a; Williams & Davids, 1998), and badminton (Abernethy & Zawi, 2007; Abernethy, Zawi, & Jackson, 2008). Anticipation is thought to result from dynamic interactions between a number of perceptual-cognitive skills (Williams, 2009; Williams et al., 2010). These perceptual-cognitive skills include a capacity to identify familiarity and structure in sequences of play (North, Ward, Ericsson, & Williams, 2011; North, Williams, Hodges, Ward, & Ericsson, 2009), a more refined knowledge of likely event probabilities given the evolving context of the situation (Abernethy, Gill, Parks, & Packer, 2001; Crognier & Fery, 2005; McRobert, Williams, Eccles, & Ward, in press), and the ability to pick up advance information from the movement preparation of opponents (Abernethy et al., 2008; Ward & Williams, 2003). Moreover, experts have generally been shown to use different visual search behaviours when scanning the display (Williams, Janelle, & Davids, 2004).

Although researchers have improved understanding of the relationship between perception and kinematics, there is a complicit belief that anticipation behaviours are equally important in each instance and at all times in sport. However, there have been few attempts to quantify the role of anticipation in-situ during actual competition (for an exception, see Hughes & Moore, 1998). Moreover, the frequency of anticipation behaviours may differ markedly depending on the constraints of the situation that are imposed on the player (e.g., score in the game, characteristics of the playing surface, type of shot of the opponent, time available and distance to reach the ball). In order to enhance understanding, it is necessary to identify empirically when, and under what constraints, the ability to anticipate is important to performance (Hughes & Bartlett, 2002; Williams & Ericsson, 2005).
The value of undertaking a detailed task-analysis prior to designing suitable experimental tasks was outlined in the expert performance approach proposed by Ericsson and Smith (1991). In the first stage of this approach, the aim is to capture the key components of performance in-situ in order to design representative tasks for systematic investigation under controlled experimental conditions (cf., Brunswick, 1955). The majority of researchers interested in examining anticipation have typically attempted to capture performance using film-based simulations (e.g., Helsen & Starkes, 1999; Williams & Davids, 1998; Williams et al., 2002). While such approaches have been successful in identifying differences between skilled and less skilled individuals, providing a modicum of construct validity for the approach, there have been no a-priori attempts to quantify the frequency of anticipation or the factors that influence such behaviours in real sport situations.

A key limitation is that the decision as to which task best captures anticipation is largely based on intuition or anecdotal evidence rather than any objective criteria. The implicit assumption is that the ability to successfully anticipate in the task under investigation (e.g., the tennis serve or a particular groundstroke) is fundamental to performance in the domain. A more parsimonious approach would be to initially undertake an objective task-analysis as proposed by Ericsson and Smith (1991). In order to ensure that the representative task employed effectively captures anticipation behaviour in, for instance, tennis, several questions need to be answered: a) How frequently do players demonstrate anticipation behaviours (i.e., what proportion of behaviours are anticipatory in nature)? b) Are anticipation behaviours more evident in one type of situation more than another (e.g., returning serve, playing a rally, facing a player at the net, being at the net)? c) Does the frequency of anticipation behaviours change depending on whether players are more or less likely to win the point (i.e., favourable and unfavourable conditions based on a cost-benefit analysis)? d) How, if at all, does the nature of the playing surface which changes the speed of the rallies (e.g., Brody, 2003) influence the frequency of anticipation behaviours? It is essential to identify the situations and constraints under which anticipation behaviours occur in order to develop representative tasks that effectively capture the processes involved.
A few have tried to capture the nature of anticipation using in-situ data collection procedures. Howarth, Walsh, and Abernethy (1984) employed high-speed film analysis to examine anticipation behaviour in squash. Skilled players initiated their responses on average 112.5 ms after the opponent’s stroke, whereas lesser skilled individuals commenced their response with a mean delay of 363 ms. Based on traditional laboratory studies of visual reaction time, which suggest visuomotor delay periods of 200 ms (e.g., Hick, 1952), skilled players anticipate the actions of their opponents by making a decision around 87.5 ms before the ball is struck, whereas less skilled individuals typically respond some 163 ms after ball-racket contact.

Also, using real squash matches with players wearing liquid occlusion glasses, Abernethy, Gill, Parks, and Packer (2001, experiment 2) showed that experts were able to accurately anticipate which side of the court an opponent will play the ball to as early as 580 ms before the ball is struck. In these latter situations, decisions are likely made based on tactical information (including strategic, situational, contextual or probabilistic knowledge; e.g., Gray, 2002; Williams, 2009) because information from the opponent’s movements is probably not useful at this moment. The importance of tactical information was highlighted by Crognier and Fery (2005) in a study where participants had to predict the direction of a passing shot after the visual scene was occluded 240 ms before the opponent’s stroke. Tennis players were more accurate in situations in which they had a high level of tactical initiative providing more control of the rally by placing the opponent on the defensive and reducing his response possibilities rather than in situations in which the tactical initiative and the control was moderate or weak.

James and Bradley (2004) used high-speed film to analyse the temporal sequence of responses in squash where the opponent had to play a shot in a relatively simple situation. The aim of using such types of strokes was to limit the use of situational probabilities by the opponent. On average, skilled players initiated their response 270 ms after the opponent’s stroke. A suggestion is that this much later response may be due to the relative absence of tactical information and the greater opportunity for players to disguise their shots. The use of anticipation strategies in elite squash players was less
prevalent than previously suggested; the authors suggest that the cost of making an inaccurate judgment may outweigh the benefits of anticipation and when such judgments are made these may be based on access to situational information and a-priori expectations rather than on information from the opponent’s stroke.

In sum, there are only a few published reports involving an analysis of anticipation behaviours in situ and the findings are not consistent. There is a notable paucity of systematic study on a large sample of data that could provide a broader view of anticipation in fast ball sports (Mann, Williams, Ward, & Janelle, 2007). We therefore used video analysis of actual, competitive matches and measured using a large sample of situations the response latency of tennis players when producing a significant movement oriented to one side of the court or the other (left or right). We argue that anticipation behaviours are based on uncertain information and involve some errors in response, while reaction behaviours are based on certain information resulting in accurate responses. For all responses recorded at each response time, we calculated the percentage of correct responses to determine the transition between reaction (based on certain information resulting in 100% accuracy) and anticipation (based on uncertain information resulting in less than 100% accuracy). The first aim of this study was to identify the response time which can be considered as anticipation and to quantify this behaviour in professional tennis matches.

A second aim was to examine whether different constraints influence the occurrence of anticipation behaviours. An increasing body of research illustrates how performance is shaped and moulded by numerous constraints (e.g., see Davids, Button, & Bennett, 2008; Dicks, Davids, & Button, 2010b; Williams et al., 2004). We were particularly interested in examining how the frequency of anticipation behaviours was influenced by specific constraints in the match and in the rallies.

We wanted to examine whether anticipation is a key variable in ball sports such as tennis and if it occurs at a relatively high frequency at a professional level. Moreover, based on an intuitive cost-benefit analysis, we expected the anticipation was influenced by the situation in the rally (e.g., Crespo & Cooke, 1999) with a higher frequency of such behaviours in situations where the spatio-
temporal constraints imposed on players are particularly severe compared to more neutral situations with less severe constraints (e.g., when the opponent is at the net compared to when in the back court regions or when about to return 1\textsuperscript{st} compared to 2\textsuperscript{nd} serve). Similarly, the speed of play is often perceived to be higher on grass than on hard court and clay surfaces, with the latter being perceived to be the slowest of the three surfaces (O’Donoghue & Ingram, 2001), so we predict that the frequency of anticipation behaviours will be higher on grass compared to hard court and clay, with the latter surface necessitating the lowest frequency of anticipation behaviours. Finally, the frequency of anticipation behaviours is predicted to be influenced by the balance of power in the rally and to be higher where players are in a favourable situation (compared to more neutral situations) as a significant tactical advantage in the rally should constrain the opponent to have fewer response possibilities (cf., Cognier & Féry, 2005).

Method

Participants

The research work was carried out under the ethical approval of the lead institution. The analysis was based on video footage recorded from broadcast coverage of matches played during the 2007 season in Association of Tennis Professionals (ATP) Tournaments (Grand Slams: Australian Open, Roland Garros, Wimbledon, the ATP World Tour Finals at Shangai, Masters 1000: Miami, Monte-Carlo, Roma, Master 500: Halle). The observed players were male (M age = 25 years, SD = ±2.45) and had played tennis at a professional level for an average of nine years (±2.16) and all had reached the world top ten in the ranking established by the ATP over the preceding 5 years (best ranking - M = 4.2, SD = ±3.58). Altogether, 19 matches were played on grass, 22 on clay, and 21 on hard court surfaces. The matches were played against 27 different opponents that were, or had previously been ranked as, top 20 players in the World according to the ATP.

Video-coding process

The movement behaviours of tennis players were analysed when facing strokes from various opponents. The film footage was analysed frame-by-frame using Dartfish 4.5.2.0 (Dartfish, Fribourg,
Switzerland) software with a frequency of 50Hz providing an accuracy of +/- 10 ms. For each observed situation, the delay between the opponent striking the ball (t=0) and the observable beginning of a response from the player under investigation was measured. This time period, which was termed response time, could be either positive (i.e., movement after ball contact [ABC] by the opponent) or negative (i.e., response occurred before ball contact [BBC]). The initial movement of the ball after it had struck the opponent’s racket towards one side of the court or the other corresponded to the first frame. The movements of the players were filmed from a front on perspective and their response was deemed to occur at the first frame where there was an observable and significant lateral motion – right or left – of the racket, the hips, the shoulder or the feet which was made in order to move to the future location of the next strike. This behaviour generally occurred during or just after the ‘split-step/landing’ sequence (see, Aviles, Benguigui, Beaudoin & Godart, 2002) which is a key phase during which the players make decisions (Uzu, Shinya & Oda, 2009). The viewing perspective employed during the analysis is highlighted in Figure 1.

Figure 1. Some typical sample images of situations with responses that occurs (A) +200 ms after the stroke (image 3 in the top panel), (B) -280 ms before the stroke with a correct anticipation (image 1 in the middle panel) and (C) -100 ms before the stroke with a wrong foot (image 2 below second image from the right).
The response accuracy of each player was reported. A correct response corresponded to an initial movement that was oriented in the same direction (right or left) as the ball was eventually played. An incorrect response corresponded to an initial movement that was oriented in the opposite direction to the location where the ball would eventually be played, what is commonly referred to in the sport as a ‘wrong foot’.

The behaviours of each of the ten players were analysed for 300 situations respectively, making a total of 3,000 situations. These behaviours were equally distributed across three different playing surfaces involving grass, clay and hard court (1,000 on each surface). The players were observed on each surface against two different opponents (50 situations against each opponent) to minimise the possible effect of playing against a single opponent. The observed situations, involving all 27 opponents, were randomly selected with the proviso that 25 situations were selected at the beginning of a set (i.e., the first four games played by the individual in a set) and 25 selected at the end of the set (i.e., the last four games in a set) to control the possible effect of the time periods within the match (Sève, Saury, Ria, & Durand, 2003). Altogether, only 25 out of the 3,000 situations could not be analysed because there was no clearly observable lateral movement from the player to one side or to the other.

We also coded the type of situations and the balance of power involved in the point. The types of situations included return of first serve, return of second serve, facing the opponent in the back court in a rally, being at the net, facing an opponent at the net. The balance of power between the two players in the situation included favourable, unfavourable or neutral situations. These situations were defined according to the relative position of the two players on the court at the moment of the opponent’s stroke. More precisely, we defined a favourable situation as that when the player was very close to the baseline or inside his court and when his opponent was in a difficult situation playing the ball far behind from his baseline (approximately more than 3 m) or away from vertical mid-line on the court (approximately 4 m). Moreover, a favourable position included situations when the opponent had to play the ball very close to the second bounce of the ball (at or below the level of the
knees) or when he was at the net but positioned very close to the first bounce of the ball (before or after the bounce at or below the level of the knees). An unfavourable situation corresponded to a response given to a stroke played by the opponent when he was positioned at least 2 m inside the court with a ball played at least at the height of the hips or situations in which the observed player was not able to return to the center of his court ahead of the opponent’s stroke. A neutral situation corresponded to a response during a rally when both players were on or behind the baseline in situations different from the ones describe above. As these variables were reported a posteriori, the number of situations in each condition was not equal and a complete combination of these variables was not possible.

**Inter- and intra-observer agreement**

The data coding was undertaken by two independent observers who were expert coaches in tennis, having the qualifications required by the French Tennis Federation. We conducted between (inter-observer agreement) and within (intra-observer agreement) Intra Class Correlations (ICC) to assess the objectivity of the analyses regarding response time and the definition of situations (e.g., see Atkinson & Nevill, 1998). The two observers coded the same sample of 100 situations on two separate occasions in order to calculate within and between coder ICC. The sample of 100 situations was chosen at random from the larger sample of 3,000 situations. For response time, the within analysis showed an ICC of 0.998 for one observer and 0.988 for the other and the between analysis showed an ICC of 0.972. For the coding of balance of power (favourable, unfavourable and neutral), the within analysis showed an ICC of 1 for each observer and the between analysis an ICC of 0.78. Finally, for the coding of the point situations (rally, first serve return, second serve return, volley or passing), all the analyses showed an ICC of 1. These analyses indicate good agreement both within and between coders and confirm that our data coding procedures were objective.

**Data analyses**

The first step of our analysis examined the distribution of responses according to response time. We also analysed the mean response time and the mean percentage of correct and incorrect (or
wrong-foot) responses. Next, we analysed the percentages of correct responses according to the response time. In order to have more consistent data, especially for the very early response times for which there were only a few occurrences, we used a moving average technique (Arce, 2005.). The score of each data point corresponds to the mean percentage of correct responses for five response times (e.g., the indicated percentage for 200 ms was the mean of the percentages of 160, 180, 200, 220, 240 ms).

The goal of this analysis was to identify at which response time errors occurred and thus, according to our proposal, for which response time anticipation occurred. According to this proposal, anticipation is necessarily based on uncertain information and involves some errors in responses. So, a score which is significantly different from 100% indicates that anticipation is present for this response time. To determine for what response time the transition occurred between reaction (based on certain information with 100% accuracy) and anticipation (uncertain information with less than 100% accuracy), we used a one-tailed Student-t test to examine the percentage of correct responses obtained for the ten players and for each response time to a 100% response accuracy. We also employed a one-tailed Student-t test to ascertain whether there was a time for which responses were given on the basis of a complete guess by the players by comparing the percentage of correct responses to the 50% chance level.

Results

The distribution of responses as a function of time relative to the opponent’s stroke is highlighted in Figure 2. The median was 200 ms and the mean response time was 183 ms. The mean percentage of correct responses was 97.71%.
Figure 2. The distribution of responses for all surfaces and the temporal components of the opponent’s stroke. The right vertical dashed line indicates the median of the distribution. The left vertical dashed line indicates the proposed transition between reaction and anticipation.

A one-tailed Student t test analysis of the percentage of correct responses as a function of response time revealed that it was not significantly different from 100% for a response time equal to or longer than 160 ms ABC. For a response time of 140 ms ABC, the percentage of correct responses was significantly different from 100% with a score of 96%. This significant difference was present for all response times shorter than 140 ms ABC, suggesting that anticipation is present at response times equal to or shorter than this period.

For responses occurring earlier, a logical expectation would have been a monotonic decrease of response accuracy leading up to a floor effect around the chance level (i.e., 50%) as useful sources of information are expected to be less available when the time before the stroke increases. In contrast, the percentage of correct responses never reached the 50% chance level except for the single response time of 60 ms ABC for which the response accuracy was not significantly different from 50%. This finding suggests that for almost all response times, players anticipated with levels of accuracy higher than chance. Moreover, after a plateau between 60 ms ABC and 120 ms BBC for which the percentage of correct responses remains stable around 70%, the response accuracy appears to increase to around 80% for response time equal or inferior to 140 ms BBC. Figure 3 suggests that four specific temporal windows are apparent:
- Window 1 with response times under 140 ms BBC \((-\infty; -140]\)) and with an accuracy above 80% (mean = 83%);
- Window 2 with response times between 120 ms BBC and 60 ms ABC \([-120; 60]\)) and with an accuracy under 70% (mean = 68%);
- Window 3 with response times between 80 ms ABC and 140 ms ABC \([80; 140]\)) with a progressive increase of accuracy from 70% to 100% (mean = 84%);
- Window 4 with response times equal or superior to 160 ms ABC \([160; +\infty]\) with an accuracy of 100%.

![Figure 3](image-url)

Figure 3. The percentage of correct responses as a function of the response time related to the opponent stroke \((t = 0\ ms,\ vertical\ line)\) for all surfaces.

It can be considered that window 4 with 100% accuracy includes only reactive behaviours. This time window corresponds to 86.58% of the situations coded. Conversely, windows 1, 2 and 3 represent 13.42% of the situations in which anticipation is potentially present. Window 3 which represents 7.28% of responses corresponds to a transition between reaction and anticipation in which it is difficult to distinguish the respective part for each type of behaviours. Windows 1 and 2 probably correspond to pure anticipation behaviours with very early responses that occur 60 ms after the opponent’s stroke or earlier and with low accuracy scores. These instances represent 6.14% of the situations coded; 4.35% for window 1 and 1.79% for window 2. According to our criteria for distinguishing
the different windows of response, anticipation behaviours occurred in between 6.14% and 13.42% of the situations analysed (between 184 and 402 of the 3,000 situations).

The paradoxical difference in response accuracy between windows 1 and 2 would suggest two types of anticipation behaviours. Window 1 corresponds to anticipation based on information which is picked up very early, at least 240 to 340 ms before the opponent strikes the ball, assuming a visuomotor delay between 100 and 200 ms. Consequently, the information which is used is probably related to tactical aspects of the game because as it has been shown that the preparation of the shot by the opponent is not advanced enough to provide useful postural cues for anticipation (Farrow et Abernethy, 2003; Farrow et al., 2005). When such tactical information is not available, players probably wait longer in order to pick up information from the opponent’s action, but have lower response accuracy.

We decided to include these windows (1, 2, 3 and 4) as a within-participants variable in a number of factorial two-way ANOVAs in which a second within-participant factor was either playing surface, balance of power, or situation on the court, respectively. The percentage of occurrences was transformed to a Fisher Z score. All significant main effects and interactions were followed up using posthoc Newman Keuls tests.

Playing surface

ANOVA examining the frequency of anticipation behaviours across the different playing surfaces revealed a main effect for time window, F(3, 27) = 428, p<.05, η²=.98, and a significant interaction between Playing Surface x Time Window, F(6, 54) = 3.09, p<.05, η²=.26. Posthoc tests showed that the percentage of reactions in window 4 ([+160; +∞[) was significantly higher on clay (89.6%) than on both grass (84.9%) and hard court (85.6%) (see Figure 4).
Figure 4. The distribution of responses according to the four windows and (A) the three different playing surfaces, (B) the three different balance of power conditions and (C) the five situations during the point.

**Balance of power**

Table 1 shows the distribution of situations according to the balance of power in the point. ANOVA revealed main effects for balance of power, $F(2,18) = 13.56$, $p<.05$, $\eta^2 = .60$, and time window, $F(3,27) = 158.43$, $p<.05$, $\eta^2 = .95$. Moreover, there was an interaction between time window and balance of power, $F(6,54) = 46.93$, $p<.05$, $\eta^2 = .84$. Posthoc tests revealed that while the percentage of occurrences was significantly higher in window 4 than in the three other windows for the favourable and neutral situations, the percentage of occurrences was significantly higher in window 1 than in the other windows for the unfavourable situation (see Figure 4).

**Type of situations**

Table 1 shows the distribution of the different situations. ANOVA showed a main effect for time window, $F(3,27) = 83.12$, $p<.05$, $\eta^2 = .90$. Moreover, there was interaction between time window and type of situation during the point, $F(12,108)=13.47$, $p<.05$, $\eta^2 = .60$. Posthoc tests revealed that while the percentage of occurrence was significantly higher in window 4 than in the three other windows for the four situations of rally, 1st and 2nd serve and volley, the percentage of occurrences was significantly higher in window 1 than in the three other windows for the situation of passing shot (see Figure 4).
Table 1. The distribution of the observed situations according to (a) the balance of power involved in the point and (b) the type of situation.

<table>
<thead>
<tr>
<th>(a) Balance of Power</th>
<th>Favourable situations</th>
<th>Unfavourable Situations</th>
<th>Neutral Situations</th>
<th>Not coded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>199 (6.63%)</td>
<td>227 (7.57%)</td>
<td>2549 (84.97%)</td>
<td>25 (0.83%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Type of situation</th>
<th>Return of 1st serve</th>
<th>Return of 2nd serve</th>
<th>Opponent in the back court</th>
<th>Being at the net</th>
<th>Opponent at the net</th>
<th>Not coded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>509 (16.97%)</td>
<td>266 (8.87%)</td>
<td>1995 (66.50%)</td>
<td>124 (4.13%)</td>
<td>81 (2.70%)</td>
<td>25 (0.83%)</td>
</tr>
</tbody>
</table>

Discussion

We completed a video-based analysis of tennis matches involving professional players in order to quantify the frequency and nature of anticipation. A total of 3,000 situations involving matches between players ranked by the ATP in the World’s top 20 were coded. We expected to observe a high frequency of anticipation behaviours in these matches, with the relative frequency being higher in situations where the time-constraints imposed on players are particularly severe. Consequently, we analysed the effects of playing surface, type of situation on the court and the balance of power within the rally. We expected that the frequency of anticipation behaviours would be higher when matches were played on a faster surface (grass) and lower when matches were played on a slower surface (clay). In similar vein, we expected more anticipation behaviours when one player was at the net compared to when both players were in the back court region or when the player was about to return 1st compared to 2nd serve. Finally, the frequency of anticipation behaviours was predicted to be higher in situations that were either favourable or unfavourable as opposed to neutral situations where the balance of power was not weighted more towards one player or another.
We found a mean response time of 183 ms, which is shorter than reported by James and Bradley (2004; 270 ms) and longer than suggested by Howarth et al. (1984; 112.5 ms). A comparison between these times is difficult because of the different sports employed. Howarth et al. (1984) used a very restricted range of observations, while James and Bradley (2004) specifically attempted to control and eliminate the use of tactical information. The amount of data collected and the more refined analyses employed in this study present a better view of the nature of anticipation in a fast ball sport such as tennis.

We measured the number of correct responses according to the response time relative to the opponent’s stroke. We argued that anticipation is based on uncertain information which can lead in some cases to erroneous decisions, while reaction is based on certain information resulting in 100% accuracy of response. According to this postulate, the transition between reaction and anticipation occurs between 160 and 140 ms ABC. For response time equal to or greater than 160 ms ABC, which correspond to 86.58% of the observed situations, the percentage of correct responses is not significantly different from 100%. Where response accuracy scores of 100% are reported, we propose that responses were based on certain information. It can be suggested that this information includes elements related to pre- and post-stroke events and probably information from ball flight after the stroke which identifies ball direction with a high degree of certainty.

Our findings suggest that ball flight information can be used with latency as short as 160 ms. A possibility is that expert tennis players could have a shorter visuomotor delay periods that enable them to pick-up information from ball flight and to produce responses with a shorter latency than 200 ms. This latter suggestion would be consistent with Le Runigo, Benguigui and Bardy (2005, 2010) who reported that experts have shorter visuomotor delays than novices in an interception task with deviated trajectories, with typical values below 200 ms. Similarly, Shim, Carlton, Chow and Chae (2005) reported a response time of 129 and 179 ms for tennis experts when facing a live hitter and a ball machine, respectively.
A significant decrease in response accuracy was observed for response times equal to or shorter than 140 ms ABC. If we accept this time as an indicator of the transition between anticipation and reaction, anticipation occurred in 13.42% of the situations coded. Figure 3 showed that the decrease in response accuracy occurs for response times between 140 and 80 ms after the opponent’s stroke. This latter temporal window probably corresponds to a transition phase between reaction, with full information, and anticipation, with uncertain or partial information. According to this line of reasoning, anticipation would occur when response times are equal or inferior to 60 ms ABC and correspond to only 6.14% of the situations coded. It appears based on our findings that observable anticipation behaviours in professional tennis occur on between 6.14% and 13.42% of the shots played.

The observable instances of anticipation behaviour may be perceived to be low especially when considering the number of published reports that present anticipation as a key factor underpinning superior performance in tennis. The ability to predict the stroke to be played by an opponent is not used too frequently in competitive matches at the highest level of the sport. In a majority of situations in professional tennis the time available for responding is sufficient for the players to view the initial portion of ball flight before initiating a response. An explanation could be that the professional tennis players are physically able to react very quickly with the split-step landing sequence (Aviles et al., 2002; Uzu et al., 2009) and to cover the court very quickly. The costs involved in anticipating incorrectly are relatively high compared to the benefits associated with a ‘conservative’ strategy which consists of waiting longer before initiating a response in order to collect more consistent information (Alain & Proteau, 1980). Fajens (2005) proposed that the visual control of successful action is supported by the actor’s sensitivity to his own action capabilities, whereas Dicks et al. (2010b) demonstrated that soccer goalkeepers initiate their responses in a penalty kick task relative to their own action capabilities. We speculate that players are more likely to anticipate when they perceive that if they wait they would not physically be able to appropriately respond to the opponent’s stroke. The very small number of incorrect responses (2.29%) supports the use of such a strategy.
Although the overall frequency of observable anticipation behaviours is low, it is feasible that situations which require anticipation are pivotal to the outcome of some rallies and matches. A possibility is that anticipation occurs in very critical situations and the appropriate use of such a strategy can enable players to win (or save) points that would have been lost. Moreover, if a typical rally consists of 4 to 5 strokes from both opponents (a mean calculated from our data base of 1314 rallies), the likelihood is that anticipation behaviour will be observed on at least one stroke every two rallies.

Our results did not show a monotonic decrease in response accuracy with shorter response times. First, between 60 ms ABC and 120 ms BBC, the percentage of correct responses did not differ (at around 65-70%). Second, this percentage increased up to 80% for response times equal to or less than 140 ms BBC. A possibility is that early (i.e., under 140 ms BBC) and most frequent anticipation behaviours occur when players collect sufficient tactical information which allows them to achieve a high rate of success. This latter observation would concur with the findings of Abernethy et al. (2001) who showed that expert players in squash recorded accuracy scores above chance in their decision to move to the side of the court where the ball was going to be played as early as 580 ms before the opponent’s stroke. The tactical information can be picked up by the players on the basis of strategic, situational, contextual or probabilistic knowledge (Williams, 2009).

When access to tactical information is limited, as is the case for instance in a neutral situation or when no probabilistic tendencies can be extracted, players wait longer and potentially make anticipation responses based on information arising from the postural orientation of the opponent immediately prior to ball-racket contact. In this case, the accuracy of response is low, yet consistent with previous research using the occlusion paradigm. Shim et al. (2005), in a study in which no tactical information was available, reported a level of accuracy close to 70% when participants were asked to produce time-coupled actions specific to real tennis shots hit by opponents with occlusion at the ball-racquet contact. Abernethy et al. (2008) reported accuracy scores of 70-75% when filmed footage of an opponent was occluded 167ms or 83ms prior to ball-racket contact. Although these “late” anticipation behaviours, potentially based on postural information are less frequent (1.79% of the coded
situations) than the “early” anticipation based on tactical information (4.35% of the coded situations), there is far more published reports focusing on the former compared with the latter type of anticipation behaviours, illustrating an important gap in the literature.

Our analyses of how different constraints (playing surface, balance of power, type of situations) influenced anticipation provided mixed results. First, we report a significant interaction between the playing surface and response windows revealing that players produced more reaction behaviours (i.e., corresponding to the window 4) on clay than on the two other surfaces and less anticipation behaviours. However, the reported differences between surfaces are smaller than expected. A suggestion is that in recent years the International Tennis Federation has attempted to standardise conditions of play by requiring that organisers of tennis tournaments use an appropriate combination between ball and playing surface so as to reduce variability (ITF Website, 2011). It is possible that organisers select “slow balls” for use on “fast surfaces” and vice versa using standardised tests, reducing considerably the differences between surfaces that likely existed in the past.

The second surprising finding was the relative absence of anticipation behaviours in the return of serve situation, with no differences being apparent on the 1st compared with 2nd serve. Although it has been proposed that “the service return in tennis is like the penalty kick in soccer for the goalkeeper, the player has to choose one side hoping that it is the good one” (reported from the tennis coach Thierry Tulasne in Liberation Website, 1998), the analysis of 509 returns of first serve in our sample of 3,000 situations suggest the players systematically use of a “conservative” strategy. Perhaps anticipation behaviours in returning serves only occur in very special circumstances when in a match the efficiency of the server reaches a level which gives no other option for the returner.

More frequent anticipation behaviours were observed in situations that were deemed to be unfavourable rather than favourable or neutral. Moreover, the frequency of anticipation behaviours was higher when the opponent was at the net compared to other situations within the rally (i.e., 1st and 2nd serve return, rally and when at the net). Players anticipate more when they are under high spatiotemporal constraints corresponding to situations in which their opponents have a significant
advantage. Consequently, anticipation in tennis may more often than not reflect a defensive behaviour by a player in order to increase his/her chances of reaching difficult balls with the risk of making a wrong decision and losing the point. This result contrasts with the findings from Crognier and Fery (2005) who reported that tennis players were more accurate in their prediction of the interception point of the ball when they were presented with favourable rather than neutral situations. An explanation for the contradictory findings may be that players can potentially better predict the evolution of the situation when they dominate a rally because the options of their opponent are more limited but they choose not use this capacity because they have enough time in these situations to react on the basis of information from ball flight rather than taking a risk by anticipating the opponent’s response.

A limitation of our work may be the potentially subjective nature of the coding process and the relatively low sampling frequency used in the video analysis. However, we reported very high the intra-class and inter-class correlations, providing support for the objectivity of our coding procedures, while we analysed a very large sample of incidents (3000) and significant differences were noted across conditions. Another limitation is that we were only able to code observable anticipation behaviours. We acknowledge that there may be a number of situations in matches where players are making anticipation judgments yet choose not to physically respond to these decisions by making an observable movement in one direction or another. The notion that players are more likely to employ a ‘conservative’ rather than a more risky, ‘anticipation’ strategy does not necessarily imply that these expert players are not continually engaging in thought processes that involve prediction and forward planning. It is possible that tactical and postural information collected before the opponent’s strokes are consistently used to prepare the initial reaction to move in the correct direction (Van der Kamp, Rivas, Van Doorn, & Savelsbergh, 2008). Moreover, our analysis does not take into account potential individual differences in anticipation behaviour. It is likely that individual differences exist in the tendency of players to make anticipation behaviours and that these tendencies could be determined by specific perceptual skills as well as physical and technical capabilities (Dicks et al., 2010b). Players
who are able to move quickly around the court may need to anticipate less frequently than players who are less mobile or agile around the court.

In conclusion, our data show that the observed frequency of anticipation observations in professional tennis is relatively low, occurring in between 6.14 and 13.42% of the situations analysed. Moreover, the frequency of anticipation behaviours is strongly influenced by task and situational constraints (cf., Davids et al., 2008; Dicks et al., 2010b; Williams et al., 2004. In particular, the balance of power and the spatio-temporal constraints of the match have a significant impact on these behaviours. Players are more likely to overtly demonstrate anticipation behaviours in unfavourable situations which occur most frequently when their opponent is at the net. In these latter situations, the cost/benefit ratio of anticipation is greater than the likelihood of losing the point by choosing to react to the opponent’s stroke. Finally, our results reveal the importance of tactical information in shaping anticipation behaviours. The use of this type of information has not been extensively studied to date (McPherson & Kernodle, 2003), with the more typical emphasis being on clarifying the nature of the information emerging from an opponent’s postural orientation ahead of ball-racket contact and during ball-flight. In sum, these results provide useful information for designing representative tasks that accurately and reliably capture anticipation in sport. In future, researchers should explore how tactical information influences anticipation in tennis as well as how these underlying processes interact with the availability of information from an opponent’s body position and movements ahead of ball-racket contact in a dynamic manner during performance.
La première étude que nous venons de présenter avait pour objectif de quantifier l’anticipation dans des matchs *in situ* de tennis professionnel. Elle correspond à la première étape de l’approche de la performance experte (Ericsson & Smith, 1991). La deuxième étape consiste à s’appuyer sur les résultats obtenus afin de mettre en place des tâches représentatives ayant pour objectif d’analyser les compétences dans le domaine de l’anticipation.

L’étude N°1 a mis en évidence deux fenêtres temporelles distinctes présentant des caractéristiques spécifiques dans le cadre de l’anticipation : une fenêtre temporelle précoce avec un fort taux de bonnes réponses ; l’anticipation serait basée sur des informations tactiques ; une fenêtre temporelle plus tardive présentant un taux de bonnes réponses plus faible ; l’anticipation serait basée sur des informations sur la gestuelle adverse. Ces résultats et ces hypothèses nous ont conduits à mettre en place deux protocoles expérimentaux ayant pour but de mieux comprendre l’utilisation de ces deux sources d’informations distinctes et notamment les informations tactiques qui jusqu’à présent ont été relativement moins étudiées (McPherson & Kernodle, 2003).
5. *La mise en place de tâches représentatives*

La deuxième étape de « l’approche de la performance experte » d’Ericsson et Smith (1991) est de capturer l’expertise à l’aide de tâches expérimentales représentatives définies de manière rationnelle afin d’identifier les processus sous-jacents et pour ce qui nous intéresse ceux impliqués dans l’anticipation de la frappe adverse. Afin de proposer des tâches qui sollicitent les processus mis en jeu en situation réelle, nous allons nous appuyer sur les résultats obtenus lors de l’étude N°1 qui a permis de quantifier l’anticipation en situation de jeu et de déterminer les moments et les situations dans lesquels les joueurs anticipent. Les résultats obtenus nous ont permis de mettre en évidence deux fenêtres temporelles distinctes d’anticipation. Nous avons émis l’hypothèse que dans la fenêtre temporelle la plus précoce ([−∞; -140 ms]), l’anticipation pourrait être basée sur des informations tactiques (e.g., Abernethy et al., 2001) alors que dans la deuxième fenêtre temporelle ([−120 ms; 60 ms]), les informations pour anticiper pourraient être liées à la posture et la gestuelle de l’adversaire (e.g., Farrow & Abernethy, 2003).

L’objectif de cette deuxième partie composée de deux études (N°2 et N°3) était de tester ces hypothèses en faisant varier la difficulté des séquences présentées en termes de possibilités d’anticipation ainsi que le temps de présentation. Afin de sélectionner les clips vidéo nécessaires à ces expérimentations, nous avons testé la difficulté des différentes séquences de jeu à travers un pré-test. Ces séquences ont été présentées à des entraîneurs professionnels. Le postulat sur lequel nous nous sommes appuyés est qu’il existe des séquences de jeu qui sont plus ou moins faciles à anticiper et que cela refléterait la disponibilité ou non d’informations tactiques. Pour ce faire, nous avons préparé des clips occultés très tôt (-340 ms avant la frappe) en considérant que cette précocité ne permettait pas d’accéder à des informations exploitables sur la préparation du geste de frappe. Dans ces conditions, les séquences les plus simples à prédirer (ayant des scores supérieurs ou égaux à 80%) ont été considérées comme très pertinentes au plan tactique tandis que les plus difficiles à
prédir (ayant des scores proches de 50%) ont été considérées comme dépouillées d'information tactique.

Nous allons, dans un premier temps, présenter le pré-test mis en œuvre pour distinguer la valeur tactique des situations de jeu. Dans un deuxième temps, nous présenterons une expérimentation qui avait pour objectif d'étudier en parallèle l'utilisation d'informations posturales et/ou tactiques afin d'anticiper (étude N°2). Pour cela, les participants ont fait face à des séquences de jeu dans lesquelles l'information tactique était plus ou moins présente. De plus, ces séquences de jeu ont été occultées avant le début du geste ou juste avant la frappe de la balle. Enfin, dans un troisième temps, nous présenterons une expérimentation basée sur les informations tactiques (étude N°3). Cette expérimentation avait pour objectif d'étudier la construction de l'information tactique au fur et à mesure du point en faisant varier le nombre de frappes de balle visibles avant l'occlusion.
5.1 **Le pré-test**

Ce pré-test reposait sur des séquences de jeu se terminant par un coup gagnant de l’adversaire et qui conformément aux résultats de l’étude n°1 auraient nécessité une anticipation pour donner au joueur la possibilité d’être en mesure de retourner le coup adverse. En effet, cette première étude a clairement montré que les joueurs anticipaient essentiellement dans les situations très défavorables dans lesquelles le risque de perdre le point est très important. Ce pré-test avait pour objectif de discriminer des séquences de jeu plus faciles à prédire et d’autres plus difficiles avec des occlusions précoces (340 ms avant la frappe) ne donnant pas d’informations sur la gestuelle de l’adversaire. Il s’agissait de sélectionner des séquences de jeu en fonction de la pertinence de l’information tactique présente dans celles-ci. Ces séquences étaient présentées aux participants sous la forme de clips. Ces clips, une fois triés, ont été utilisés comme supports pour les études N°2 et N°3. Pour réaliser cette distinction, nous avons testé 107 clips auprès d’entraîneurs de tennis professionnels. Le moment d’occlusion choisi pour ces clips se situait 340 ms avant la dernière frappe. Ce choix correspond à la volonté de ne pas donner d’informations sur la gestuelle du joueur et repose sur les résultats de notre étude N°1 et la logique suivante : a) l’étude N°1 a suggéré que les anticipations basées sur des informations tactiques se situaient dans l’intervalle ]-∞ ; -140 ms]; or, si on considère un délai visuo-moteur de 200 ms, cela signifie que les informations ont été prélevées au minimum 340 ms avant la frappe de balle ; b) de plus, Farrow et Abernethy (2003) ont montré que l’intervalle critique de prise d’informations sur la gestuelle d’un joueur se situe entre 300 ms avant la frappe et la frappe de balle ; cet intervalle a été confirmé par Farrow et al. (2005). En choisissant un tel moment d’occlusion, nous pouvons considérer que les participants ne disposaient pas d’informations en lien avec la gestuelle du joueur mais qu’ils avaient à leur disposition l’essentiel des informations tactiques.
5.1.1 Méthode

5.1.1.1 Participants

Les clips réalisés ont été testés auprès de 13 entraîneurs de tennis professionnels détenteurs du Brevet d’Etat d’Educateur Sportif option Tennis du 1er ou du 2e degré qui leur avait été délivré par le Ministère de la Jeunesse et des Sports. Ils étaient âgés en moyenne de 30 ans (±6.03) et exerçaient depuis 9 ans (±6.65). Ils entraînaient en moyenne 29h par semaine (±13,15). Ils ont participé de manière volontaire et ont signé une fiche de consentement avant de prendre part à l’expérimentation.

5.1.1.2 Réalisation des clips

Les clips utilisés ont été élaborés à partir de matchs de tennis masculins télévisés filmés dans l’axe longitudinal du terrain. Les joueurs présents dans les séquences de jeu étaient ou avaient été classés parmi les 12 meilleurs joueurs du classement mondial établi par l’association des joueurs de tennis professionnels (ATP). Chaque essai commençait par un compte à rebours « 3 », « 2 », « 1 ». Puis, le clip démarrait par un arrêt sur image de deux secondes présentant la première image de la séquence. La vidéo commençait 200 ms avant la première frappe de la séquence puis se poursuivait par cinq frappes de balle et s’arrêtait 340 ms avant la sixième frappe réalisée par le joueur en haut de l’écran (joueur vu de face). Pour éviter que le participant ne soit influencé par le comportement du joueur qui était de dos (joueur auquel devait se substituer le participant), celui-ci était caché à l’aide d’un rectangle noir 200 ms après sa dernière frappe. La sixième frappe, qui était occultée, était toujours un coup gagnant du joueur en haut de l’écran que le joueur en bas de l’écran ne parvenait pas à toucher pour les raisons décrites précédemment. Les coups gagnants présentés dans cette étude pouvaient être des coups droits et des revers de fond de court ainsi que des volées et des smashs. L’occlusion se situait 340 ms avant la frappe pour les raisons décrites dans l’introduction de ce pré-test.
5.1.1.3 Le logiciel

Un programme a été créé à l’aide du logiciel E-Prime® (Psychology Software Tools, Inc.) afin de présenter les clips aux participants et d’enregistrer leurs réponses. L’expérimentation se déroulait sur un ordinateur portable de marque Dell avec un écran de 17”. Les participants se tenaient à environ 40 cm de l’écran. Les joueurs ne disposaient pas d’informations auditives pendant la durée de l’expérimentation.

5.1.1.4 Déroulement du pré-test

Avant de commencer l’expérimentation, les participants remplissaient une fiche dans laquelle des informations sur leur identité ainsi que leur expérience en tant que joueur et en tant qu’entraîneur leur étaient demandées. Une explication de l’expérimentation était donnée sur cette fiche, puis le pré-test commençait par une série de familiarisation qui comprenait sept essais. Ensuite, les participants devaient répondre à 10 séries de 10 clips. Les séries ainsi que les clips à l’intérieur de celles-ci étaient présentés de manière aléatoire. Lorsque l’image était occultée, 340 ms avant la frappe, l’écran devenait noir et le participant disposait alors de deux secondes pour répondre si le joueur réalisait un coup orienté sur la droite ou sur la gauche du court en utilisant les touches « A » (pour désigner un coup gagnant dirigé vers la gauche du participant) et « P » (pour désigner un coup gagnant dirigé vers la droite du participant) du clavier.

Pour maintenir l’intérêt des participants et aussi obtenir des informations informelles sur la tâche de la part des entraîneurs, un feed-back, en trois temps, était alors donné au participant : a) une inscription apparaissait : « bonne réponse », « mauvaise réponse » ou « no response detected » (le participant n’avait pas répondu dans le temps qui lui était imparti) ; b) le clip était rejoué complètement sans occlusion ; c) à la fin de chaque série, un feed-back indiquant le pourcentage de bonnes réponses de la série apparaissait.

L’expérimentation était réalisée en une seule session et durait approximativement une heure.
5.1.5 Variables dépendantes

L’exactitude de la réponse (droite/gauche) pour chaque séquence et le temps de réponse à partir du moment de l’occlusion ont été mesurés.

5.1.6 Analyse de données / Traitement des résultats

A partir de ce pré-test, nous avons calculé la moyenne des bonnes réponses pour chaque séquence de jeu. Cela nous a permis d’estimer la difficulté des clips. Le postulat sur lequel était basé ce pré-test était que les clips difficiles étaient dépourvus d’information tactique pertinente alors que les clips faciles présentaient de l’information tactique utilisable pour anticiper. Ainsi, nous avons classé ces clips en fonction de leur pourcentage de bonnes réponses. Nous avons alors pu sélectionner les clips nécessaires pour les études N°2 et N°3.

5.2 Résultats

Le pourcentage moyen de bonnes réponses pour l’ensemble des participants était de 59% (±4,7%). Le temps de réponse moyen est de 559 ms (±170 ms). La figure 1 présente la répartition des séquences de jeu en fonction du pourcentage de bonnes réponses pour l’ensemble des participants. Ce pourcentage nous a permis d’estimer la pertinence de l’information tactique présente dans ces séquences. Tous les clips ayant été coupés 340 ms avant la frappe de la balle adverse, nous avons fait l’hypothèse que dans ces conditions les participants n’avaient pas accès aux informations relatives à la posture et à la gestuelle de l’adversaire. Ils ne pouvaient utiliser que les informations en lien avec les probabilités de jeu et la tactique afin de réaliser leur choix d’anticipation. C’est pourquoi, les séquences de jeu présentant des scores très largement supérieurs au score de chance de 50% pouvaient être considérées comme contenant des informations tactiques exploitées pour prédire le côté de la frappe adverse. Les séquences de jeu situées très en dessous des 50% pouvaient être considérées comme des séquences dans lesquelles des informations tactiques étaient également dispo-
Nibles mais induisant des erreurs de décision. Pour ces clips, il est vraisemblable que le joueur observé jouait un coup qui allait à l’encontre des principes tactiques identifiables par des experts du jeu. Enfin, des taux de réussite proches de 50% pouvaient être considérés comme correspondants à des clips dépourvus d’information tactique exploitable.

Figure 1. Répartition des clips en fonction du pourcentage de bonnes réponses des participants pour chaque clip

Bien qu’il s’agisse d’un pré-test, nous avons cherché à analyser les relations entre les temps de réponse et les pourcentages de réussite. Cette relation pourrait en effet avoir des implications intéressantes concernant les sources d’informations utilisées et/ou la complexité des situations ainsi que les stratégies utilisées par les participants. Nous avons dans un premier temps analysé la relation entre le temps de réponse et le pourcentage de réussite pour chaque clip (Figure 2). Il était en effet possible d’attendre que les participants puissent mettre plus de temps à répondre pour les séquences de jeu riches ou au contraire les moins riches sur le plan tactique. Cela aurait pu signifier que le temps pour prélever et utiliser l’information est dépendant de la difficulté des séquences de jeu. Bien que les résultats obtenus montrent une courbe en U inversé allant dans le sens de cette attente, le faible R² de l’équation du second degré ne permet pas de confirmer cette relation.
Nous avons également analysé la relation entre le temps de réponse moyen et le pourcentage de réussite moyen pour chaque participant afin de faire éventuellement émerger des stratégies temporelles différentes et leur lien avec les taux de réussite. La figure 3 présente le pourcentage moyen de bonnes réponses en fonction du temps moyen de réponse pour chaque participant avec un lien significatif entre le temps de réponse et le pourcentage de bonnes réponses montrant que les participants les plus lents à répondre sont aussi les meilleurs (F(1,11) = 6.167, p<.05, η² = .359). Cette figure permet également de distinguer deux groupes distincts, l’un ayant des temps de réponse courts et des scores de bonnes réponses assez faibles et l’autre ayant des temps de réponses élevés mais des scores de bonnes réponses plus élevés traduisant un échange en termes de stratégies entre temps et précision.

Figure 3. Pourcentage moyen de bonnes réponses en fonction du temps de réponse moyen pour chaque participant. Deux groupes peuvent être distingués (un groupe avec un temps de réponse court et un pourcentage de bonnes réponses faible et un groupe avec un temps de réponse élevé et un pourcentage de bonnes réponses élevé)
5.1.3 Discussion

L’objectif de ce pré-test était de discriminer les séquences de jeu en fonction de leur difficulté et par hypothèse de la disponibilité de l’information tactique. Le but était de sélectionner des séquences de jeu nécessaires aux études N°2 et N°3. Nous en avons profité pour effectuer à titre exploratoire quelques analyses sur les temps de réponse et les relations avec les pourcentages de réussite.

5.1.3.1 Sélection des clips

L’étude N°2 ayant pour objectif d’analyser la prise d’information sur la gestuelle et sur la tactique pour prédire la frappe adverse, nous avons sélectionné des séquences de jeu qui peuvent être considérées comme dépourvues d’information tactique du fait de scores proches de 50% de bonnes réponses et d’autres qui peuvent être considérés comme contenant de l’information tactique du fait de scores proches de 80%. Ce dernier principe est étayé par l’étude N°1 dans laquelle nous avons identifié une fenêtre précoce d’anticipation avec des scores proches de 80% pour laquelle nous avons émis l’hypothèse que ces anticipations étaient basées sur des informations tactiques exploitable. Sur cette base, un certain nombre de clips ont également été sélectionnés pour l’étude N°3 qui a pour objectif d’étudier la construction de l’information tactique au travers de séquences de jeu plus ou moins longues.

5.1.3.2 Relation entre le pourcentage de bonnes réponses et le temps moyen de réponse pour chaque clip

On pouvait s’attendre à ce que pour les séquences de jeu présentant des pourcentages de bonnes réponses élevés ou faibles et qui, par hypothèse, contiennent des informations tactiques signifiantes, les temps de réponses soient plus courts que pour les séquences de jeu dont le pourcentage de bonnes réponses se situe autour de 50% (niveau équivalent à la chance) avec peu ou pas d’information tactique disponible. Les résultats obtenus montrent qu’il existe un léger effet de la
difficulté des clips sur le temps de réponse en rapport avec notre attente (Figure 2). Cependant, le faible $R^2$ ne nous permet pas de tirer des conclusions fortes en rapport avec cette attente.

5.1.3.3 Relation entre le pourcentage moyen de bonnes réponses et le temps moyen de réponse pour chaque participant

5.2 **Étude N°2 : Information gestuelle vs. information tactique pour prédire la frappe adverse**

L’étude N°1, qui avait pour objectif de quantifier l’anticipation dans les matchs de tennis professionnels, a permis de dégager deux fenêtres temporelles d’anticipations distinctes. La première fenêtre correspond à des anticipations précoces avec un fort taux de réussite qui selon notre hypothèse seraient basées sur des informations tactiques. La deuxième fenêtre correspond à des anticipations plus proches de la frappe de la balle avec un taux de bonnes réponses plus faible et des choix des joueurs qui pourraient se faire par une analyse des informations liées à la gestuelle et à la posture de l’adversaire. Si de nombreuses études dans la littérature ont montré une supériorité des experts à utiliser de l’information sur la gestuelle et la posture de l’adversaire par rapport aux novices (e.g., Farrow & Abernethy, 2003), les études concernant l’utilisation des informations tactiques sont plus rares.

L’objectif de l’étude N°2 était de faire varier la quantité d’information sur la gestuelle et la situation tactique qui était présentée aux participants. Nous avons ainsi voulu analyser l’utilisation de ces différentes informations en fonction du niveau d’expertise des participants. Dans ce but, nous avons utilisé des séquences de jeu de joueurs de tennis de haut niveau avec des critères de sélection et d’occultation en rapport avec nos hypothèses, les résultats de l’étude N°1 et la sélection du pré-test.

Concernant la question des informations liée à la gestuelle de l’adversaire, nous avons réalisé des clips dans lesquels la gestuelle de l’adversaire était ou n’était pas visible jusqu’au contact balle/raquette. Concernant la question des informations tactiques, nous avons différencié sur la base du pré-test des séquences de jeu dans lesquelles l’information tactique était potentiellement disponible de séquences qui semblaient dépourvues de ce type l’information. Les séquences identifiées lors du pré-test qui présentaient environ 80% de bonnes réponses ont été considérées comme présentant de l’information tactique et celles avoisinant les 50% de bonnes réponses (pourcentage
équivalent à la chance dans une tâche proposant deux réponses possibles) ont été considérées comme dépourvues d’information tactique pertinente.

Nous avons montré ces séquences à des joueurs de haut niveau et à des joueurs novices. Les participants devaient indiquer la direction de la balle qui suivait l’occlusion. Nous avons enregistré le pourcentage de bonnes réponses ainsi que le temps de réponse.

Nous avons émis comme hypothèse que le pourcentage de bonnes réponses des experts serait supérieur à celui des participants novices dans les conditions expérimentales où l’information gestuelle et l’information tactique seraient disponibles traduisant une meilleure capacité des experts à utiliser ces informations. Concernant les informations sur la gestuelle, cette attente était en lien avec les données de la littérature qui montrent clairement cet effet dans de nombreuses études (e.g., Williams et Burwitz, 1993 ; Farrow & Abernethy, 2003 ; cf, partie 1.4.1). Concernant les informations sur les aspects tactiques abordées dans des études moins nombreuses (e.g., Abernethy et al., 2001 ; Williams et al., 2006), cette attente était surtout liée aux données obtenues lors de l’étude N°1 qui a montré que les anticipations précoces étaient les plus nombreuses avec des taux de réussite plus élevés traduisant un rôle prépondérant de ces informations dans les décisions d’anticipation. Dans cette logique, il était d’ailleurs possible d’attendre à ce que les différences experts/novices soient plus importantes dans les situations où l’information tactique est disponible que dans celle où l’information gestuelle est disponible.

5.2.1 Méthode

5.2.1.1 Participants

Deux groupes ont participé à cette expérimentation. Le groupe des experts était composé de 14 joueurs professionnels masculins ayant tous été classés par l’association des Joueurs de Tennis Professionnels (ATP) à l’exception d’un joueur dont le niveau était cependant très proche de ce niveau. Le meilleur classement obtenu par ces joueurs s’échelonnait entre la 1600ème et la 37ème place. En moyenne, ils étaient âgés de 23.86 ans (±6.85) et pratiquaient le tennis depuis 16.71 ans (±6.49). Le
groupe des novices était composé de 14 participants masculins. Ils étaient âgés en moyenne de 30.21 ans (±14.01). Ils n’avaient jamais pratiqué cette activité et ne suivaient pas le tennis au cours de retransmissions télévisées. Tous les participants ont réalisé cette expérimentation de manière volontaire et ont signé une fiche de consentement avant d’y prendre part.

5.2.1.2 Réalisation des clips vidéo

Les clips vidéo ont été sélectionnés à partir du pré-test pour composer deux séries distinctes :
- 40 clips dont le pourcentage de bonnes réponses était proche de 80% (81% ; ±6%) qui étaient considérés comme présentant des séquences de jeu fournissant une information tactique exploitable (information tactique disponible : ITD).
- 40 clips avec un pourcentage de bonnes réponses proche de 50% (49% ; ±4%) qui étaient considérés comme dépourvus d’information tactique exploitable (information tactique indisponible : ITI).

Chacun de ces clips pouvait être présenté soit avec une occlusion précoce avant la frappe (340 ms avant la frappe de balle pour ne pas donner d’informations sur la gestuelle de l’adversaire), soit avec une occlusion tardive avant la frappe (20 ms avant la frappe de balle pour fournir des informations sur la gestuelle).

Le plan expérimental choisi pour cette étude est le suivant : Information (2 : ITD vs. ITI) x Occlusion (2 : -340 ms vs. -20 ms) x 10 essais pour un total de 40 essais.

5.2.1.3 Déroulement de l’expérimentation

Le logiciel utilisé pour réaliser cette étude est le même que celui utilisé lors du pré-test (E-Prime® (Psychology Software Tools, Inc.)).

L’expérimentation commençait par une série de familiarisation au protocole. Cette série était constituée de huit clips (quatre clips coupés 340 ms avant la frappe et quatre clips coupés 20 ms avant la frappe). Ensuite le participant devait répondre à cinq séries de huit clips comprenant cha-
cune deux clips ITD coupés 340 ms avant la frappe, deux clips ITD coupés 20 ms avant la frappe, deux clips ITI coupés 340 ms avant la frappe et deux clips ITI coupés 20 ms avant la frappe. Les séries étaient présentées de manière aléatoire, ainsi que les clips à l’intérieur de chaque série. Chaque essai commençait par un compte à rebours, « 3 », « 2 », « 1 ». Le participant visionnait alors le clip et devait répondre avec les touches « A » et « P » (cf protocole du pré-test) dans les deux secondes qui suivaient l’occlusion. Aucun feed back n’était donné à l’issue de la réponse. Un nouvel essai commençait immédiatement après la réponse. À la fin de chaque série, un feed back indiquant le pourcentage de bonnes réponses de la série apparaissait pour maintenir l’intérêt des participants. Aucune information auditive n’était disponible concernant les frappes de balle dans la mesure où le son de la frappe n’était pas équivalent dans tous les clips.

Deux conditions de passation différentes ont été réalisées afin d’équilibrer le protocole. Les clips coupés tôt dans la condition 1 étaient présentés avec l’occlusion tardive dans la condition 2 et inversement. Ainsi, tous les clips ont été présentés de manière équilibrée avec les deux moments d’occlusion.

5.2.1.4 Analyse des données

Les données ont été analysées en fonction d’un plan expérimental Expertise (2) x Occlusion (2) x Information (2). Le pourcentage de bonnes réponses ainsi que le temps de réponse ont été enregistrés. Nous avons normalisé les pourcentages de bonnes réponses obtenus à partir d’une transformation Arc-sinus de la racine carrée de ces données (Legendre & Legendre, 1998 ; Sokal & Rohlf, 1995). Nous avons réalisé des analyses de régression et des ANOVAS. De plus, nous avons analysé l’évolution des réponses au cours de l’expérience pour vérifier s’il existait une adaptation des participants. Enfin, nous avons réalisé une analyse de régression pour comparer le pourcentage de bonnes réponses de chaque participant avec son temps moyen de réponse.
5.2.2 Résultats

5.2.2.1 Pourcentage de bonnes réponses

Le tableau 2 présente les différents pourcentages de bonnes réponses obtenus en fonction des différentes conditions expérimentales (groupe expert et groupe novice ; ITI et ITD ; occlusion 340 ms et 20 ms avant la frappe).

Tableau 2. Pourcentage de bonnes réponses en fonction des différentes conditions expérimentales pour les experts et les novices

<table>
<thead>
<tr>
<th></th>
<th>ITI -340 ms</th>
<th>ITD -340 ms</th>
<th>ITI -20 ms</th>
<th>ITD -20 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experts</td>
<td>61.6%</td>
<td>72.9%</td>
<td>65.1%</td>
<td>88.4%</td>
</tr>
<tr>
<td>Novices</td>
<td>47.8%</td>
<td>77.9%</td>
<td>55.5%</td>
<td>76.4%</td>
</tr>
</tbody>
</table>

L’ANOVA a révélé un effet principal de l’expertise, $F(1,26) = 4.335, p<.05, \eta^2 = .143$. Les joueurs experts présentaient un pourcentage moyen de bonnes réponses supérieur à celui des novices (72% (±6.5%) vs. 64.4% (±6.5%)). L’ANOVA a également montré un effet principal du moment d’occlusion, $F(1,26) = 13.732, p<.05, \eta^2 = .346$. Le pourcentage moyen de bonnes réponses pour les clips présentant une occlusion 340 ms avant la frappe de balle était de 65% (±17.8%). Pour l’occlusion se situant 20 ms avant la frappe de balle, le pourcentage moyen de bonnes réponses était de 71.4% (±18.9%). L’ANOVA a aussi indiqué un effet principal de la disponibilité de l’information tactique, $F(1,26) = 37.216, p<.05, \eta^2 = .589$. Le pourcentage moyen de bonnes réponses pour les clips ITI était de 57.5% (±15.6%), alors que le pourcentage pour les clips ITD était de 78.9% (±14.7%). L’ANOVA a enfin révélé une interaction entre le moment d’occlusion et l’expertise, $F(1,26) = 5.726, p<.05, \eta^2 = .180$ (Figure 4). Le test post hoc sur cette interaction a montré que les experts contrairement aux novices amélioraient de manière significative leur pourcentage de réussite de la condition -340 ms à la condition -20 ms. Ce résultat suggère une capacité à utiliser de l’information sur la posture et la gestuelle de l’adversaire avant la frappe afin d’anticiper.
La figure 5 présente l’évolution du pourcentage de bonnes réponses pour les joueurs experts et les participants novices au fur et à mesure de l’expérimentation. Ce résultat ne montre aucun effet d’adaptation au cours de l’expérience.

Figure 5. Evolution du pourcentage de bonnes réponses pour les experts et les novices au cours de l’expérimentation

### 5.2.2.2 Temps de réponse

Le tableau 3 présente le temps de réponse moyen pour les experts et pour les novices dans les différentes conditions expérimentales (deux moments d’occlusion : 20 ms et 340 ms avant la frappe ; ITI et ITD).
**Tableau 3. Temps moyen de réponse pour les experts et pour les novices en fonction des conditions expérimentales pour les joueurs experts et pour les novices**

<table>
<thead>
<tr>
<th></th>
<th>ITI -340 ms</th>
<th>ITD -340 ms</th>
<th>ITI -20 ms</th>
<th>ITD -20 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experts</td>
<td>956 ms</td>
<td>814 ms</td>
<td>736 ms</td>
<td>563 ms</td>
</tr>
<tr>
<td>Novices</td>
<td>742 ms</td>
<td>642 ms</td>
<td>570 ms</td>
<td>509 ms</td>
</tr>
</tbody>
</table>

L’ANOVA a révélé un effet principal du moment d’occlusion, $F(1,26) = 29.048$, $p<.05$, $\eta^2 = .435$. Le temps moyen de réponse lors de l’occlusion 340 ms avant la frappe était plus long que celui correspondant aux occlusions qui avaient lieu 20 ms avant la frappe (786 ms ($\pm$297) vs. 598 ms ($\pm$347)). L’ANOVA a également montré un effet principal de la disponibilité de l’information tactique, $F(1,26) = 61.311$, $p<.05$, $\eta^2 = .702$. Le temps moyen de réponse dans la condition ITI était plus long que dans la condition ITD (754 ms ($\pm$359) vs. 629 ms ($\pm$299)).

La figure 6 présente l’évolution du temps moyen de réponse au fur et à mesure de l’expérimentation pour les joueurs experts et pour les participants novices. Les joueurs experts présentent un temps de réponse qui reste relativement stable au cours de l’expérience. A l’opposé, les participants novices présentent un temps de réponse qui augmente au cours de l’expérience, $F(1,38) = 6.037$, $p<.05$, $\eta^2 = .137$ et qui se rapproche de celui des experts.

![Figure 6. Evolution du temps de réponse au cours de l’expérimentation pour les experts et pour les novices](image-url)
2.2.2.3 Lien entre le pourcentage de bonnes réponses et le temps de réponse

Enfin, la figure 7 présente le pourcentage moyen de bonnes réponses pour chaque participant en fonction du temps moyen de réponse. Alors que le temps de réponse n'est pas déterminant des pourcentages de réponse chez les experts, il apparaît une tendance chez les novices. Les participants qui mettent le plus de temps à répondre sont aussi ceux qui ont les meilleurs pourcentages de réussite, F(1,12) = 3.083, p = .10.

![Graphique de la figure 7](image)

Figure 7. Pourcentage moyen de bonnes réponses pour chaque participant en fonction de son temps moyen de réponse

5.2.3 Discussion

Nous avons réalisé une expérimentation dans laquelle nous avons fait varier la quantité d'information sur la gestuelle de l'adversaire et sur la situation tactique. L'objectif de cette expérimentation était d'étudier comment ces information étaient utilisées afin de réaliser une anticipation correcte en fonction de l'expertise. Nous avions émis l'hypothèse que les novices présenteraient des pourcentages de bonnes réponses inférieurs aux experts dans les différentes conditions expérimentales. En lien avec les données de la littérature (cf, partie 3.1), nous nous attendions à avoir une utilisation de l'information gestuelle plus importante pour les joueurs experts que pour les joueurs novices. De plus, en lien avec les données obtenues lors de l'étude N°1, on pouvait penser que l'information tactique jouait un rôle prépondérant dans les décisions d'anticipation et que cela pouvait engendrer des différences experts/novices plus importantes.

Les analyses ont également montré un effet de la disponibilité de l’information tactique confirmant la pertinence de cette différenciation. Néanmoins, contrairement à notre hypothèse, cet effet est présent de manière équivalente chez les experts comme chez les novices. Les experts ne sont donc pas meilleurs dans l’exploitation des informations tactiques potentiellement disponibles dans ces clips. Cela suggère que cette information visiblement très utilisée par les joueurs sur le terrain est accessible même pour des novices. Ces résultats sont cohérents avec les résultats obtenus par Paull et Glencross (1997) dans une étude sur le baseball. Ils ont montré que les joueurs experts et les joueurs intermédiaires étaient capables d’utiliser les informations en lien avec le contexte général de jeu afin de réduire leur taux d’erreur de prédiction. Ainsi, ils ont conclu que l’accès à l’information sur le contexte de jeu et son utilisation afin d’améliorer des performances d’anticipation étaient possibles relativement tôt au cours de la formation des joueurs. En revanche, Abernethy et al. (2001) ont montré que seuls les joueurs experts étaient capables de prélever de l’information en lien avec le contexte et les probabilités de jeu afin d’anticiper avec un niveau supérieur à la chance. Cependant, les occlusions, qu’ils ont réalisées, étaient plus précoces que celles qui ont été mises en place dans notre expérimentation. Il est donc possible qu’il existe différentes sources d’informations tactiques et contextuelles auxquelles les experts et les novices ont ou n’ont pas accès.

Concernant les temps de réponse, les résultats ont montré un effet du moment d’occlusion ainsi que de la disponibilité de l’information tactique. Concernant le moment d’occlusion, deux interprétations...
tions sont possibles. La première interprétation est de considérer que l’apport d’informations jusqu’à -20 ms avant la frappe sur la gestuelle adverse permet de répondre plus vite. La seconde consiste à penser que la diminution du temps de réponse est liée au décalage du temps de référence entre les deux conditions d’occlusion (-320 ms et -20 ms ce qui engendre un décalage de 300 ms). Concernant la disponibilité de l’information tactique, son impact sur le temps de réponse, en lien avec les résultats de notre étude N°1, est moins ambigu et traduit le gain de temps quand cette information est disponible. Les joueurs ont présenté un temps de réponse d’environ 125 ms plus faible pour les séquences de jeu dans lesquelles l’information tactique était disponible. Ces résultats sont en lien avec ceux obtenus par Paull et Glencross (1997) qui ont montré que les experts et les novices en baseball étaient capables d’utiliser des informations liées au contexte de jeu afin de diminuer de 60 ms leur temps de réponse. Ce résultat a d’ailleurs tendance à soutenir la première proposition, en ce qui concerne le moment d’occlusion, formulée ci-dessus.

De plus, il est assez étonnant que les experts ne soient pas plus rapides que les novices. Il semblerait même que la tendance soit inverse même si la différence n’est pas significative (Tableau 3, Figures 6 et 7). Il faut préciser à nouveau ici que les contraintes temporelles étaient faibles lors de notre expérimentation et que les experts n’avaient donc pas d’intérêt à répondre particulièrement vite. Ce résultat confirme ceux de Proteau, Lévesque, Laurencelle et Girouard (1989) montrant que les experts ne réduisent leur temps de réponse de choix dans des conditions de pré-information sur les probabilités seulement lorsque la pression temporelle est importante. Même si cela présente des perspectives de recherche, on peut rappeler que le but était ici de déterminer l’accès ou l’utilisation de différents types d’information.

Concernant les analyses sur l’évolution des scores de bonnes réponses, celles-ci montrent une stabilité tout au long de l’expérimentation aussi bien chez les experts que chez les novices. On peut penser que cela est lié à deux paramètres. Tout d’abord, aucun feedback n’était donné aux participants au cours de l’expérimentation. De plus, de nombreux joueurs différents sont utilisés dans les points qui sont présentés dans l’expérimentation. Or, il semble difficile pour les participants de cons-
truire des connaissances réutilisables car la gestuelle et les probabilités de jeu de chaque joueur sont en partie personnelles. Cela montre donc qu’il n’y a pas d’adaptation au cours de l’expérimentation.

Pour les temps de réponse, il n’y a pas d’évolution non plus chez les experts. En revanche, celui des participants novices augmente de manière significative avec les essais. On peut émettre deux hypothèses explicatives pour expliquer ce résultat. La première hypothèse laisserait penser qu’ils font face à une tâche inhabituelle et qu’ils fatiguent au cours de l’expérience ce qui engendrerait un temps de réponse plus long. La deuxième hypothèse serait liée à une adaptation des participants novices à l’expérimentation. Ils se donneraient plus de temps pour répondre afin d’essayer d’être plus performants. Ceci est d’ailleurs pour partie confirmé par l’augmentation du temps de réponse liée à l’augmentation des scores de réponse (Figure 6). De manière similaire, il apparaît une tendance chez les novices qui montre que les participants ayant le temps de réponse le plus long étaient aussi ceux qui répondent avec le plus de justesse. La précision de ces participants et les temps de réponses des novices en général en fin d’expérimentation se rapprochent d’ailleurs de ceux des experts. Ces résultats sont à rapprocher de ceux de Moreno et al. (2002) qui dans un protocole d’apprentissage perceptif ont entraîné des joueurs loisirs de tennis à répondre à des frappes de balle réalisées par des joueurs professionnels. Ils ont noté qu’une augmentation du taux de bonnes réponses était accompagnée d’une augmentation du temps de réponse. Ce ralentissement du temps de réponse est peut-être une étape nécessaire pour devenir capable d’extraire au mieux des informations prédictives.
5.3 Étude N°3 : Conditions temporelles d’accès à l’information tactique au cours de l’écchange

L’objectif de cette expérimentation était de manipuler la quantité d’information tactique qui était présentée au sujet en faisant varier la durée des échanges avant l’occlusion. Nous avons cherché à analyser comment l’information tactique se construit. Lorsqu’un joueur choisit d’anticiper, utilise-t-il des informations tardives telles que la position de son adversaire et la sienne dans les instants qui précèdent la frappe pour prendre une décision ou s’appuie-t-il sur l’ensemble de la construction de l’écchange pour réaliser son choix ? Dans cette expérimentation, nous avons utilisé des séquences de jeu de joueurs de tennis de haut niveau, testées lors du pré-test, qui présentaient environ 80% de bonnes réponses et qui contenaient donc une information tactique exploitable. Sur cette base, nous avons choisi trois temps de présentation différents en réalisant des clips qui montraient une, trois ou cinq frappes avant l’occlusion. Comme dans l’écétude précédente, la tâche consistait à d’indiquer la direction de la balle qui suivait l’occlusion et nous avons enregistré le pourcentage de bonnes réponses ainsi que le temps de réponse.

Nous avons proposé comme hypothèses que l’information tactique se construit tout au long du point (en fonction du nombre de frappes présentées) et que cela devrait avoir un effet sur les pourcetanges de bonne réponse et les temps de réponse. De plus, nous nous attendions à avoir un pourcentage de bonnes réponses pour les joueurs experts supérieur aux participants novices et une interaction de l’expertise avec le nombre de frappes montrant que les experts sont capables de mieux prendre en compte les informations en amont de la situation d’anticipation.

5.3.1 Méthode

5.3.1.1 Participants
Deux groupes de joueurs ont participé à cette expérimentation. Le groupe expert était composé de 13 joueurs masculins. Ce sont des joueurs professionnels étaient ou avaient été tous classés dans le classement mondial établi par l’Association des Joueurs de Tennis Professionnels (ATP). Le meilleur classement obtenu par ces joueurs s’échelonnait entre la 1231ᵉ et la 37ᵉ place. Ils étaient âgés en moyenne de 25,5 ans (±5.04) et pratiquaient le tennis depuis 19,5 ans (±4.82). Le groupe des novices était composé de 13 hommes. Ils n’avaient jamais pratiqué cette activité et ne regardaient pas ou peu le tennis à la télévision. Ils étaient âgés en moyenne de 35,3 ans (±11.32). Toutes ces personnes ont participé de manière volontaire et ont signé une fiche de consentement avant de prendre part à cette expérimentation. Aucun de ces participants n’avait pris part à l’étude N°2.

5.3.1.2 Réalisation des clips vidéo

Les séquences de jeu ont été sélectionnées à partir du pré-test. Nous avons choisi 33 séquences dont le pourcentage de bonnes réponses se situait aux alentours des 80% (moyenne = 82.75%, ±8.39%) dans lesquelles nous avons considéré qu’il existait une information tactique exploitable. En effet, dans l’étude N°1, nous avons montré que dans la première fenêtre, qui correspond aux anticipations basées sur la tactique, le pourcentage moyen de réussite était proche de 80%. Chaque séquence de jeu commençait 200 ms avant la première frappe du joueur vu de dos (considéré comme le joueur devant anticiper) et pouvait être composée d’une, de trois ou de cinq frappes réalisées par les joueurs avant l’occlusion. Celle-ci avait toujours lieu 340 ms avant la frappe du joueur vu de face (en haut de l’écran). Nous avons choisi de conserver cette occlusion afin de ne pas donner d’information sur la gestuelle de l’adversaire. Au total 33 situations ont été utilisées pour constituer 99 clips en fonction des trois conditions de frappes préalables. Trois conditions de passation différentes (3 x 33 clips) ont été réalisées, une des trois étant proposée de manière aléatoire à chacun des participants.

5.3.1.3 Déroulement de l’expérimentation
L’expérimentation commençait par une série de familiarisation au protocole comprenant six clips, présentant dans un ordre aléatoire deux fois une frappe, deux fois trois frappes et deux fois cinq frappes avant l’occlusion. L’expérimentation se déroulait ensuite en une seule série de 33 clips comprenant 11 clips dans chacune des conditions. Les clips étaient présentés de manière aléatoire à l’intérieur de la série.

Comme dans l’expérience précédente, chaque essai commençait par un compte à rebours, « 3 », « 2 », « 1 ». Ensuite, le clip commençait par une image figée de trois secondes présentant le départ du point et sur laquelle était inscrit le nombre de frappes précédant l’occlusion (une, trois ou cinq) pour éviter que les participants soient surpris par l’occlusion. Le participant visionnait le clip et devait répondre avec les touches « A » et « P » (cf, protocole du pré-test) dans les deux secondes qui suivaient l’occlusion. Il n’y avait pas de feed back. A la fin de la série, un feed back indiquant le pourcentage de bonnes réponses apparaissait pour maintenir la motivation des participants. Aucun son n’était associé aux différents clips.

5.3.1.4 Analyse des données

Les données ont été traitées à partir d’ANOVA selon le plan expérimental Expertise (2) x Nombre de frappes avant l’occlusion (3). Le pourcentage de bonnes réponses ainsi que le temps de réponse ont été enregistrés. Nous avons normalisé les pourcentages de bonnes réponses obtenus à partir d’une transformation Arc-sinus de la racine carrée de ces données (Legendre & Legendre, 1998 ; Sokal & Rohlf, 1995). Nous avons réalisé également des analyses de régression pour étudier l’évolution des réponses et de possibles adaptations des participants au cours de l’expérience. Enfin, nous avons réalisé une analyse de régression pour chercher une éventuelle relation entre le temps moyen de réponse de chaque participant et son pourcentage de bonnes réponses.
5.3.2 Résultats

5.3.2.1 Pourcentage de bonnes réponses

Le tableau 4 présente les différents pourcentages de bonnes réponses pour les joueurs experts et pour les participants novices en fonction des différentes occlusions : une frappe, trois frappes ou cinq frappes visibles avant l’occlusion.

Tableau 4. Pourcentage moyen de bonnes réponses en fonction des différentes occlusions pour les joueurs experts et pour les participants novices.

<table>
<thead>
<tr>
<th></th>
<th>1 frappe</th>
<th>3 frappes</th>
<th>5 frappes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experts</td>
<td>84.2%</td>
<td>84.7%</td>
<td>81.7%</td>
</tr>
<tr>
<td>Novices</td>
<td>66.1%</td>
<td>71.3%</td>
<td>64.5%</td>
</tr>
</tbody>
</table>

L’ANOVA a révélé un effet principal de l’expertise, F(1,24) = 12.494, p<.05, η² = .342. Les joueurs experts présentaient une moyenne de bonnes réponses supérieure à 80% (83.5%, ±12.8) alors que les participants novices avaient une moyenne inférieure à 70% (67.3%, ±16.9). Il n’y a pas d’effet significatif du temps de présentation ni d’interaction entre ces deux facteurs.

La figure 8 présente l’évolution du pourcentage de bonnes réponses pour les joueurs experts et les participants novices au fur et à mesure de l’expérimentation. L’analyse de régression ne montre aucun lien significatif entre ces deux variables. Le pourcentage de bonnes réponses pour les joueurs experts et pour les participants novices reste stable tout au long de l’expérimentation.
Figure 8. Evolution du pourcentage de bonnes réponses pour les experts et les novices au cours de l’expérimentation

5.3.2.2 Temps de réponse

Le tableau 5 présente le temps moyen de réponse pour les joueurs experts et pour les participants novices en fonction du moment d’occlusion : une frappe, trois frappes ou cinq frappes sont visibles avant l’occlusion.

Tableau 5. Temps moyen de réponses en fonction des différentes occlusions pour les joueurs experts et pour les participants novices.

<table>
<thead>
<tr>
<th></th>
<th>1 frappe</th>
<th>3 frappes</th>
<th>5 frappes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experts</td>
<td>624 ms</td>
<td>632 ms</td>
<td>593 ms</td>
</tr>
<tr>
<td>Novices</td>
<td>662 ms</td>
<td>653 ms</td>
<td>588 ms</td>
</tr>
</tbody>
</table>

L’ANOVA sur le temps de réponse a révélé un effet principal du moment d’occlusion, \( F(2,48) = 3,5601, p<.05, \eta^2 = .129 \). Le test post hoc a montré que le temps de réponse était plus court dans la condition cinq frappes (591 ms, ±204) que dans les deux autres conditions (643 ms, ±237 ; 642 ms, ±230) (Figure 9).
Figure 9. Temps moyen de réponse en fonction du moment d’occlusion

La figure 10 présente l’évolution du temps moyen de réponse au fur et à mesure de l’expérimentation. Le temps de réponse moyen des joueurs experts et des joueurs novices est stable tout au long de l’expérimentation (pas de lien significatif entre le nombre d’essai et le temps de réponse).

Figure 10. Evolution du temps de réponse au cours de l’expérimentation pour les experts et pour les novices

5.3.2.3 Lien entre le pourcentage de bonnes réponses et le temps de réponse

Enfin, la figure 11 présente le pourcentage de bonnes réponses pour chaque participant en fonction de son temps de réponse. Contrairement aux résultats de l’étude précédente, les participants les plus rapides apparaissent aussi comme les plus précis. Cela paraît vrai chez les novices comme chez les experts, mais c’est pour les experts que ce lien paraît le plus consistant avec un $R^2$ de 0.26 proche
du seuil de significativité ($F(1,11) = 3.944, p = .07$). On peut donc penser qu’il existe des différences interindividuelles dans l’utilisation des informations tactiques très importantes à l’intérieur du groupe des joueurs experts.

Figure 11. Pourcentage moyen de bonnes réponses pour chaque participant en fonction de son temps moyen de réponse

5.3.3 Discussion

Les résultats obtenus lors de l’étude N°1 nous ont conduits à penser que l’information tactique jouait un rôle prépondérant dans l’anticipation alors même que l’utilisation de celle-ci n’a été que peu étudiée (cf, partie 3.2). En conséquence, nous avons réalisé une expérimentation dans laquelle nous avons fait varier le temps de présentation des clips. L’objectif de cette expérimentation était d’étudier comment l’information tactique se construit tout au long du point. Nous avions émis l’hypothèse que les novices présenteraient des pourcentages de bonnes réponses inférieurs aux experts dans les différentes conditions expérimentales. De plus, nous avons cherché à comprendre si l’information tactique se construit tout au long du point ou si c’est uniquement la position des joueurs au moment de l’anticipation qui est utilisée. Enfin, nous avons fait l’hypothèse que les experts pourraient être meilleurs pour exploiter des informations tactiques prélevées en amont de la situation d’anticipation.

Les résultats concernant l’expertise ont montré un effet principal avec des experts qui obtiennent un score de 83.5%, légèrement supérieur à celui des entraîneurs testés dans le prétest (83.5%),
et supérieur au résultat des novices (67.3%). Ce résultat confirme la supériorité des joueurs experts sur les novices dans la capacité à extraire des informations tactiques. Ce résultat est en cohérence avec les données obtenues par Abernethy et al. (2001, expérimentation n°2) pour des conditions d’occlusion très préoces (entre 620 ms et 220 ms avant la frappe) et montre une différence qui n’apparaissait pas dans l’étude précédente. Il apparaît dans cette étude que les experts ont des scores supérieurs à ceux des experts de l’étude précédente dans la condition équivalente tandis que les novices ont ici des scores inférieurs à ceux obtenus par les novices de l’étude précédente. Cela montre qu’en plus de l’expertise ou de l’absence d’expertise telle que nous l’avons définie pour composer nos groupes des facteurs individuels interviennent dans la capacité à exploiter les informations tactiques. La performance en tennis impliquant de nombreux facteurs, il n’est pas impossible que certains experts aient très peu développé cette qualité et s’appuient sur d’autres qualités où ils sont très performants pour compenser (Le Runigo et al, 2010). A l’opposé, il est apparu que certains novices, en dépit de nos critères de sélection qui devaient exclure des participants ayant une connaissance suffisante de l’activité, aient des capacités d’analyse suffisantes pour avoir des niveaux de prédiction proches de celui de certains experts.

En revanche, il n’est pas apparu de différence dans les résultats au niveau des différents temps de présentation. Experts comme novices ont des scores qui restent identiques quelle que soit la condition de présentation. Cependant, Crognier et Féry (2005) ont montré que plus un joueur a un taux d’initiative important plus ses prédicitions seront précises. On peut donc penser que soit nos résultats sont en contradiction avec les leurs (pas d’effet du moment d’occlusion sur le taux de bonnes réponses), soit la séquence présentée, étant extraite d’une réelle situation de jeu, était suffisante pour que les participants puissent se faire une idée du contexte. On peut néanmoins moduler cette absence de différence au niveau des temps de présentation par le fait que les temps de réponse sont plus courts dans la condition de présentation des clips la plus longue donnant une représentation élargie de la situation tactique. Les frappes précédentes semblent donc permettre aux participants de répondre plus vite en diminuant le temps de traitement de l’information. Ces résul-
tats sont cohérents avec ceux obtenus par Paull et Glencross (1997) qui avaient montré que les participants diminuaient leur temps de réponse d’environ 60 ms dans une tâche de frappe de balle au baseball quand ils avaient accès à de l’information contextuelle.

Ces résultats mitigés concernant le temps de présentation montrent que l’accès à l’information tactique pour la prédiction se situe pour l’essentiel dans les derniers instants qui précèdent la frappe et qui caractérisent la situation d’anticipation avec notamment la position respective des deux joueurs sur le terrain et dans le rapport de force. La possibilité d’avoir des informations préalables permet d’améliorer la vitesse d’extraction des informations utiles sans qu’il y ait de différence observée entre les experts et les novices.

Concernant les analyses en fonction des essais, il est apparu que les scores et les temps de réponses sont restés stables tout au long de l’expérimentation chez les experts et les novices. Ainsi, il n’y a pas d’adaptation des participants au cours de l’expérimentation. Les résultats obtenus sont en lien avec leurs compétences et ne sont pas liés à une adaptation à la tâche.

Enfin, il est apparu des profils de réponses particuliers induisant plus ou moins d’efficacité dans la tâche proposée cette fois chez les experts plus que chez les novices. Il semble effectivement exister un lien dans cette expérimentation entre le temps de réponses des participants experts et leur efficacité qui est d’ailleurs opposé à celui montré dans l’étude précédente. En effet, les participants répondant le plus vite étaient aussi ceux qui avaient le meilleur score de réponse. Ce résultat souligne la diversité des profils et des différences interindividuelles dans le choix des stratégies et dans les capacités à prédire avec rapidité et précision. Il apparaît des participants dans cette expérience qui sont peut-être au maximum des capacités d’anticipation et qui sont capables de concilier précision et rapidité dans ces prédictions.
6. *La mise en place de protocoles d'apprentissage. Etude*

*N°4 : apprentissage générique ou spécifique de l'anticipation chez des experts*

La troisième étape dans l'approche de la performance experte d’Ericsson et Smith (1991) se déroule en deux temps. Tout d'abord, il s'agit d’analyser les carrières des experts et notamment leur accession à une performance experte afin de mettre en évidence des invariants dans leurs profils historiques. Dans un deuxième temps, les chercheurs essaient de tester des protocoles d’apprentissage afin d'améliorer les habiletés des joueurs. C’est ce dernier aspect qui va nous intéresser dans cette étude.

Pour définir l’apprentissage, on peut se référer à Reuchlin (1964) qui considère qu’« il y a apprentissage lorsqu’un organisme, placé plusieurs fois dans la même situation modifie sa conduite de façon systématique et relativement durable ». Cela signifie que l’apprentissage engendre une modification chez l’individu et que celle-ci ne doit pas être éphémère mais stable dans le temps. De manière similaire, d’après Schmidt (1982) « l’apprentissage moteur est un ensemble de processus associés à l’exercice ou à l’expérience conduisant à des modifications relativement durables du comportement habile ». Enfin, Gibson (1969) considère l’acquisition d’habileté comme un processus d’adaptation aux contraintes environnementales qui est le résultat d’apprentissage des stratégies les plus économiques pour la tâche. En termes d’apprentissage perceptif de l’anticipation, cela implique la reconnaissance d’éléments caractéristiques clés qui aident à prédire l’évolution de la situation. Les experts seront capables de focaliser leur attention vers les éléments les plus pertinents de l’environnement.

Il existe un certain nombre d’études dans la littérature qui ont essayé de mettre en place et de tester des protocoles d’apprentissage ou d’entraînement de la perception et de l’anticipation. Ces travaux ont principalement étudié les possibilités d’apprentissage dans la perception et le décodage
de la gestuelle du joueur adverse. Les résultats ont montré que ces protocoles permettaient d’améliorer la justesse des réponses et/ou de diminuer les temps de réponse.


Concernant l’amélioration des temps de réponses, ceci a été montré par Farrow et al. (1998) qui ont réalisé une étude dans laquelle des débutants en tennis apprenaient à prêter attention à certains éléments jugés importants pour anticiper tels que la position des pieds du serveur, le lancer de balle, la position de la raquette et sa vitesse. Après huit séances d’entraînement de 15 min dans lesquelles les joueurs voyaient des vidéos de services variés de « bons joueurs » avec des occlusions temporelles, le groupe entraîné a amélioré significativement ses temps de réponse. De manière similaire, Williams, Ward et Chapman (2003) ont entraîné des joueurs de hockey sur gazon. Ils ont noté une amélioration du temps de réponse suite à une séance d’entraînement de 45 min.

D’autres études ont montré des effets combinés de la pratique sur la précision et les temps de réponse. Par exemple, Moreno et al. (2002) ont entraîné des joueurs de tennis « de loisirs » à répondre à des vidéos de frappes de balle réalisées par des joueurs professionnels. Les résultats ont révélé un échange entre rapidité des réponses et précision qui n’était pas équivalent pour l’ensemble des participants. Ainsi, pour certains, on a pu observer une diminution du temps de réponse associée à une diminution de la précision des réponses et inversement. Il existe donc des différences interindividuelles dans les apprentissages et la priorité entre le temps et la précision des réponses peut-être variable.
Même si de nombreuses études montrent des améliorations de la performance suite à un entraînement perceptif, Williams et Grant (1999), dans une revue d’études sur l’entraînement perceptif ont soulevé un certain nombre de limites présentes dans ces recherches. Tout d’abord, on peut noter l’absence de groupe placebo ou de groupe contrôle dans de nombreuses recherches. Ainsi, l’amélioration de la performance pourrait être liée uniquement à une meilleure connaissance du test (familiarisation) et ne pas correspondre à un véritable apprentissage. Ensuite, on peut soulever l’absence de tests de transfert afin de vérifier si cet entraînement améliore bien les performances en situation réelle et si celles-ci sont robustes en situation de stress.


D’un point de vue méthodologique, il semble important de s’interroger sur la manière de créer des simulations efficaces à des fins d’entraînement perceptif. La vidéo est le paradigme le plus utilisé dans les protocoles d’apprentissage. Cette méthode présente de nombreux avantages. Tout d’abord, et si l’on se place d’un point de vue des applications possibles plus que d’un point de vue empirique, l’athlète peut travailler quand il le souhaite, même lorsqu’il est blessé ou fatigué et les équipements sont relativement peu onéreux et assez facilement accessibles. D’une manière plus générale, il est assez aisé de manipuler les images vidéo afin de souligner ou de cacher certaines sources d’informations. Ainsi, pour réaliser ces expérimentations, le paradigme le plus classique consistait à réaliser des vidéos proches de ce que peuvent voir réellement les joueurs sur le terrain et de les présenter soit à vitesse normale, soit au ralenti en demandant aux participants de porter leur attention sur les signaux les plus pertinents. Par exemple, Scott et al. (1998) ont trouvé des améliorations de la précision de la réponse sur le terrain chez des joueurs de tennis intermédiaires. Dans ce cas, l’entraînement exigeait des joueurs de prédire le type de service, la profondeur et le point d’impact.
sur des vidéos de services qui s’arrêtaient au contact balle/raquette. Au départ, les vidéos étaient passées à une vitesse correspondant à 1/30e de la vitesse normale. Puis la vitesse des vidéos était progressivement accélérée jusqu’à atteindre la vitesse normale. Après entraînement, tous les joueurs ont amélioré leur performance en retour de service sur le terrain. Cependant, l’absence de groupe d’apprentissage travaillant uniquement sur des vidéos à vitesse réelle ne permet pas de tirer de conclusions concernant l’apport d’un travail sur des vidéos à vitesse réduite.

Il apparaît de plus que la question des méthodes d’apprentissage puisse avoir un impact important sur les possibilités de transfert et de rétention des apprentissages en situation de stress (e.g., Smeeton et al., 2005). Les méthodes d’apprentissage utilisées ont été dans un premier temps organisées sur un mode directif ou prescriptif. En effet, les chercheurs fournissaient aux participants des instructions et des feedbacks détaillés. Abernethy et al. (1999) ont par exemple mis en place un protocole d’intervention comprenant 20 séances pendant quatre semaines dans le but d’améliorer les compétences de débutants en squash à anticiper la direction et la profondeur des frappes en coup droit et revers. Le programme était découpé en six parties incluant un enseignement formel sur les propriétés biomécaniques des coups droits et des revers et sur les signaux les plus importants pour anticiper la longueur de la frappe et la direction. Les autres parties du protocole ont servi à entraîner le participant à se centrer sur ces sources d’information et à réaliser une réponse verbale ou physique appropriée. Les résultats de cet entraînement perceptif traditionnel ont montré, comme on l’a déjà vue, une amélioration de leur temps de réponse et/ou de la justesse de leur prédiction (voir aussi, Singer et al., 1994 ; Farrow et al., 1998).

Pour aller au-delà de ces premiers résultats, certains chercheurs ont tenté d’utiliser des approches moins prescriptives. Williams et al. (2002, expérimentation 2) ont par exemple comparé une méthode d’apprentissage par « découverte guidée » avec une autre méthode d’entraînement plus traditionnelle dans une tâche de prédiction de trajectoires de coups de fond de court en tennis sur un grand écran. Les participants devaient initier un déplacement dans la direction où la balle était envoyée (droite, gauche, devant, derrière). Ils ont comparés quatre groupes : a) un groupe d’instruction explicite : les informations clés permettant d’identifier la direction des frappes de fond de court étaient détaillées pendant des sessions vidéo et de pratique sur le terrain de 45 min ; b) un groupe « découverte guidée »: un apprentissage plus implicite ou ciblé sur le problème ; les apprenants étaient dirigés vers les régions qui étaient potentiellement informatives telles que le tronc ou les hanches et on les encourageait à essayer de trouver des relations entre ce qu’ils observaient et les trajectoires de balle ; c) un groupe placébo qui regardait une vidéo généraliste sur le tennis ; d) un
groupe contrôle qui ne faisait que le pré-test et le post-test. L’entraînement était réalisé en laboratoire, cependant, les pré et post tests avaient lieu à la fois en laboratoire et sur le terrain. Les participants devaient alors répondre face à un vrai joueur. Les résultats ont montré une diminution du temps de réponse pour le groupe « instruction explicite » et pour le groupe « découverte guidée ». Cependant, ils n’ont pas montré de différences entre ces deux groupes d’entraînement. Cela signifie qu’un apprentissage « directif » n’apporte pas plus qu’un apprentissage par « découverte guidée ». Les participants identifient par eux-mêmes les informations utiles quand on les oriente vers les régions informatives sans avoir besoin d’explications détaillées.

Dans une autre étude réalisée en 2002, Farrow et Abernethy ont également comparé les apprentissages explicite et implicite. Un paradigme d’occlusion temporelle progressive a été utilisé pour examiner avant et après entraînement les habiletés des joueurs à prédire la direction du service adverse sur le court de tennis. Les joueurs devaient répondre soit en réalisant un retour de service soit par une prédiction verbale de la direction du service. Le protocole comprenait quatre groupes : a) un groupe d’apprentissage explicite auquel on présentait des vidéos de services avec un enseignant de tennis qui explicitait des relations entre les informations biomécaniques clés et la direction des services ; b) un groupe d’apprentissage implicite ; on montrait aux participants les mêmes vidéos sans leur donner d’informations ; ils devaient en revanche essayer d’évaluer la vitesse de la balle au service ; c) un groupe placebo auquel on ne donnait aucun élément autre que celui de regarder des vidéos de tennis ; d) un groupe contrôle auquel on ne montrait aucune vidéo. Les résultats ont révélé que seul le groupe d’apprentissage implicite a significativement amélioré la précision de ses prédictions de direction après entraînement. Cependant, l’effet de cet entraînement a disparu après un intervalle de rétention de 32 jours. Ce résultat montre un avantage de l’apprentissage implicite sur l’apprentissage explicite, montré dans d’autres tâches et d’autres protocoles d’apprentissage (Masters, 1992 ; Maxwell et al., 2000), avec néanmoins un apprentissage implicite qui ne s’inscrit pas dans la durée.
Dans la même logique, Smeeton et al. (2005) ont mis en place un protocole d’apprentissage en tennis avec quatre groupes : a) un groupe « explicite » ; l’apprentissage se déroulait en deux temps : on leur indiquait quelles sont les parties du corps à observer, puis, on leur donnait des informations sur les signaux permettant de discriminer les différentes trajectoires de balle ; b) un groupe « découverte guidée » ; on indiquait à ce groupe les parties du corps à observer ; cependant, ils étaient encouragés à observer les liens entre l’orientation de ces parties du corps et les frappes qui en découlaient sans leur donner d’informations explicites ; c) un groupe « découverte » qui devait chercher par lui-même à réaliser des liens entre des signaux perceptifs et des frappes de balle ; d) un groupe contrôle. Les trois groupes d’entraînement ont amélioré leur temps de réponse en laboratoire ainsi que sur le terrain. Cependant, le groupe « découverte » a mis plus de temps pour faire baisser son temps de réponse. Enfin, le groupe explicite a montré une diminution de ses performances en situation de stress en phase avec certains travaux sur les apprentissages implicites et explicites (Masters, 1992 ; Maxwell, Masters & Eves, 2000). Afin de créer cette situation de stress, l’expérimentateur disait au joueur qu’il était évalué et que les résultats seraient donnés à son entraîneur.


La question de la période clé pour réaliser ces apprentissages a également été abordée dans certaines études sur l’apprentissage perceptif. En effet, les entraîneurs se demandent souvent à quel âge il faut commencer l’entraînement perceptif et si cet entraînement doit avoir lieu tôt ou tard dans le processus d’apprentissage. Il n’existe actuellement que très peu d’études sur ce thème. Abernehty (1988) a montré que les habiletés perceptives d’anticipation augmentent avec l’âge et l’expérience tandis que French et Thomas (1987) et Ward et Williams (2003) ont montré que les athlètes élites peuvent se différencier des moins experts dès l’âge de 8 à 10 ans. Cependant, il semble exister dans
la littérature des résultats contradictoires montrant soit une amélioration des capacités d’anticipation des enfants suite à un entraînement perceptif (e.g., McPherson & Thomas, 1989), soit une absence d’amélioration (voir, Williams et Ward, 2003, pour une revue de littérature). De plus, French et McPherson (1999) ont suggéré que le développement des connaissances tactiques et stratégiques est lié au développement des habiletés motrices. Ainsi, les enfants ne peuvent pas développer des habiletés cognitives ou perceptives en lien avec une tâche s’ils n’ont pas développé au préalable les habiletés motrices nécessaires à la réalisation de celle-ci.

Nous avons vu que les protocoles d’apprentissage perceptifs mis en place, soit au travers de vidéos, soit par des séances de terrain, peuvent contribuer à l’amélioration des habiletés perpectives et prédictives en sport. Cependant, la plupart des études sur l’entraînement perpectif ont été centrées sur l’amélioration de l’utilisation des informations gestuelles pour anticiper. Qu’en est-il de l’amélioration de l’anticipation basée sur d’autres sources d’information telles que l’utilisation des informations tactiques ? Il semble intéressant de traiter cette question car nous avons vu que l’utilisation des informations tactiques contenues dans le point (e.g., Abernethy et al., 2001), les probabilités de jeu (e.g., McRobert et al., 2011) et le contexte (e.g., Paull & Glencross, 1997) peuvent être considérés comme des facteurs importants en ce qui concerne l’expertise dans le domaine de l’anticipation dans les sports de balles rapides (cf. Cadre théorique, Partie 3.2). L’étude N°1 a aussi montré que la majorité des anticipations apparaissait très tôt avant la frappe (-140 et plus tôt) suggérant l’utilisation prédominante d’informations tactiques pour anticiper. Il apparaît de plus que les pourcentages de bonnes réponses sont meilleurs dans ces conditions d’anticipation que dans les conditions plus tardives. Enfin, la reconnaissance des situations de jeu peut être considérée comme un préalable qui va orienter le prélèvement et l’utilisation des informations tactiques, puis sur la gestuelle enfin sur la trajectoire de balle.

A notre connaissance, seules deux études ont abordé la question de l’entraînement des capacités à reconnaître des situations de jeu. Christina, Barresi et Shaffner (1990) ont utilisé un entraînement vidéo pour améliorer les capacités de reconnaissance de situations et de prise de décision chez des

Parmi les nombreuses questions qui restent posées concernant les apprentissages tactiques l’une d’elles correspond aux principes génériques ou spécifiques de ces apprentissages. En effet, est-ce que les experts apprennent des règles générales applicables à l’ensemble des adversaires qu’ils rencontrent ou au contraire des règles spécifiques correspondant à un adverse particulier ayant des façons de faire qui lui sont propres. Cette question a également un versant appliqué puisqu’il est assez fréquent dans les sports de balles que les entraîneurs et sportifs utilisent la vidéo pour étudier et analyser le jeu de leurs futurs adversaires. Cette pratique est néanmoins souvent informelle et son efficacité n’est pas démontrée. Il paraît donc aussi intéressant de poser la question de l’entraînabilité de ces compétences chez des experts d’un point de vue spécifique.

Dans cette optique, la présente étude a pour but de comparer les possibilités d’amélioration de l’anticipation dans le cadre d’un apprentissage concernant les informations tactiques (dans la continuité de l’étude N°1) face à un adverse particulier ou face à plusieurs adversaires différents. Il s’agit de déterminer si des experts sont capables d’améliorer leurs prédictions face à un même adverse dont il voit de nombreuses séquences ou face à plusieurs adversaires dont ils extraient certains principes généraux. Dans ces conditions, nous nous sommes intéressés à l’apprentissage en l’absence d’informations sur la gestuelle adverse. C’est pourquoi, suite aux études N°2 et N°3, nous avons utilisé des clips qui étaient occultés 340 ms avant la frappe de la balle et ne donnaient accès qu’à des informations tactiques.

Concrètement, nous avons comparé l’utilisation des informations tactiques d’un joueur particulier et d’un groupe de joueurs. Nous avons donc mis en place trois groupes : un groupe d’« apprentissage spécifique » confronté à un joueur expert particulier ; un groupe d’« apprentissage non spécifique » confronté à un groupe de joueurs experts ; un groupe contrôle qui ne suit pas de
protocole d’entraînement. Testant des joueurs de tennis experts afin de donner une référence du
plus haut niveau de jeu pour cette étude initiale ayant un caractère exploratoire, nous avons fait
l’hypothèse que les performances s’amélioreraient davantage pour le groupe « apprentissage spécí-
ifique » que pour le groupe « apprentissage non spécifique ». En effet, on peut penser que des
joueurs experts ont déjà appris les principes généraux de l’anticipation sur des bases tactiques et que
par conséquent l’apprentissage se situerà pour eux surtout sur des aspects plus spécifiques liés à la
connaissance des régularités des choix tactiques effectués par un joueur spécifique.

6.1 Méthode

6.1.1 Participants

Trente neuf joueurs experts ont participé à cette expérimentation. Ils étaient âgés en moyenne
de 28.1 ans (±9.92). Tous les joueurs étaient de niveau national voire international et leur meilleur
classesent se situait entre N°7 ATP et 15 qui est le premier classement de la seconde série nationale
regroupant globalement les 8000 meilleurs joueurs français. Douze joueurs avaient un classement
ATP de joueurs professionnels et 27 joueurs amateurs étaient classés en seconde série nationale
correspondant à un bon ou à très bon niveau régional. Les joueurs ont été répartis aléatoirement
dans trois groupes de 13 joueurs : un groupe contrôle, un groupe « apprentissage spécifique » et un
groupe « apprentissage non spécifique » en veillant à ce que le nombre de joueurs amateurs et pro-
essionnels soit le même dans chaque groupe (9+4). Le nombre de joueurs professionnels et ama-
teurs ne permettait pas de prendre cette distinction comme un facteur. Cependant, des observations
et analyses de contrôle ont montré qu’il n’y avait pas a priori de différences dans les résultats obte-
nus par ces deux sous- groupes dans les pré- et post-tests. Par conséquent, la distinction n’a pas été
retenue et n’est pas abordée dans la suite du document. De manière globale, les joueurs avaient une
pratique du tennis de 17.38 ans en moyenne (±8.5). Tous ces joueurs ont participé de manière volon-
taire et ont signé une fiche de consentement avant de prendre part à l’expérimentation.
6.1.2 Réalisation des clips

Comme dans les études précédentes, les clips utilisés ont été élaborés à partir de matchs de tennis masculins professionnels télévisés filmés dans l’axe longitudinal du terrain. Ces clips se terminaient systématiquement par un point gagnant réalisé par le joueur vu de face qui aurait nécessité une anticipation du joueur vu de dos pour avoir une chance de renvoyer la balle. Les joueurs présents dans les séquences de jeu ont appartenu au classement mondial établi par l’association des joueurs de tennis professionnels (ATP). Le joueur expert de référence contre lequel les participants du groupe « apprentissage spécifique » devaient apprendre à anticiper était un joueur de tennis ayant été N°4 au classement ATP et étant professionnel depuis 1999. Ce joueur apparaissait également dans le pré et le post-test. Pour les clips du groupe « apprentissage non spécifique » 12 joueurs différents ont été utilisés. Tous étaient des joueurs ayant appartenu au classement ATP et dont le meilleur classement se situait entre N°1 et N°12 mondial.

Comme précédemment, chaque essai commençait par un compte à rebours « 3 », « 2 », « 1 ». Puis, le clip démarrait par un arrêt sur image de deux secondes présentant la première image de la séquence. La vidéo commençait 200 ms avant la première frappe de la séquence puis se poursuivait par trois frappes de balle. 340 ms avant la quatrième frappe qui devait être réalisée par le joueur en haut de l’écran (joueur vu de face), la vidéo s’arrêtait. Pour éviter que le participant ne soit influencé par le comportement du joueur qui était de dos (joueur auquel devait se substituer le participant), celui-ci était caché à l’aide d’un rectangle noir 200 ms après sa dernière frappe. La quatrième frappe, qui était occultée, était toujours un coup gagnant du joueur en haut de l’écran que le joueur en bas de l’écran ne parvenait pas à toucher. Nous avions fait le choix de ne travailler que sur des coups gagnants en lien avec les résultats des études présentées précédemment. Ces coups gagnants auraient potentiellement nécessité une anticipation pour donner une chance d’atteindre la balle.

6.1.3 Moment d’occlusion
Comme dans les études N°2 et N°3, nous avons choisi un moment d’occlusion se situant 340 ms avant la dernière frappe. En choisissant un tel moment d’occlusion, nous pouvions considérer que les participants ne disposaient pas d’informations en lien avec la gestuelle du joueur mais qu’ils avaient à leur disposition accès aux informations tactiques présentes dans le point (voir études N°2 et N°3).

6.1.4 Le logiciel

Un programme a été créé afin de présenter les clips aux participants et d’enregistrer leurs réponses. Ce programme a été réalisé à l’aide du logiciel E-Prime® (Psychology Software Tools, Inc.) (voir le programme utilisé dans les études N°2 et N°3). L’expérimentation se déroulait sur un ordinateur portable de marque Dell avec un écran de 17”. Les participants se tenaient à environ 40 cm de l’écran.

6.1.5 Déroulement de l’expérimentation

Avant de commencer l’expérimentation, les participants remplissaient une fiche dans laquelle des informations sur leur identité ainsi que leur expérience en tant que joueur leur étaient demandées. Une explication de l’expérimentation était donnée sur cette fiche.


Lors de chaque essai, après l’occlusion du clip 340 ms avant la frappe, l’écran devenait noir et les participants disposaient alors de deux secondes pour répondre si le joueur réalisait un coup gagnant sur la droite ou sur la gauche du court en utilisant les touches « A » (pour désigner un coup gagnant dirigé vers la gauche du participant) et « P » (pour désigner un coup gagnant dirigé vers la droite du participant) du clavier. Il leur était demandé de répondre en étant les plus précis et les plus rapides possible. A la suite de l’expérimentation, les participants étaient invités sur un mode non directif à indiquer les éléments sur lesquels ils avaient porté leur attention.
6.1.6 **Le pré-test et le post-test**

Le pré-test et le post-test étaient composés de 12 essais dans lesquels le joueur observé de référence réalisait un coup gagnant. Aucun feedback n'était donné aux participants à la suite du clip. En fin de série, le pourcentage de bonnes réponses sur l’ensemble de la série apparaissait pour maintenir la motivation des participants.

6.1.7 **Les séries d’apprentissage**

Les séries d’entraînement du groupe « apprentissage spécifique » étaient composées chacune de 12 essais dans lesquels le joueur expert observé de référence réalisait un coup gagnant. A la suite de la réponse du participant, deux feedbacks lui étaient donnés : il était tout d’abord indiqué au participant si sa réponse était bonne ou fausse ; dans un deuxième temps, celui-ci visionnait à nouveau la séquence sans occlusion. Dès la fin du clip avec la réponse, un nouvel essai démarrait. En fin de série, le pourcentage de bonnes réponses sur l’ensemble de la série apparaissait.

6.1.8 **Les séries du groupe « apprentissage non spécifique »**

Les séries du groupe « apprentissage non spécifique » étaient constituées de 12 essais dans lesquels d’autres joueurs que le joueur de référence réalisaient un coup gagnant. A la suite de la réponse du participant, deux feedbacks lui étaient donnés : il était tout d’abord indiqué au participant si sa réponse était bonne ou fausse ; dans un deuxième temps, celui-ci visionnait à nouveau la séquence sans occlusion. En fin de série, le pourcentage de bonnes réponses sur l’ensemble de la série apparaissait.

6.1.9 **Variables dépendantes**

L’exactitude de la réponse (droite/gauche) pour chaque séquence et le temps de réponse suite à l’occlusion ont été mesurés.
6.1.10 Analyse de données / Traitement des résultats

Les données ont été analysées en fonction du plan expérimental Groupe (3) x Pré/post test (2). Le pourcentage de bonnes réponses ainsi que le temps de réponse ont été enregistrés. Nous avons normalisé les pourcentages de bonnes réponses obtenus à partir d’une transformation Fisher. De plus, nous avons analysé l’évolution des réponses au cours de l’expérience pour les groupes « apprentissage spécifique » et « apprentissage non spécifique ».

6.2 Résultats

6.2.1 Pourcentage de bonnes réponses

L’ANOVA Groupe (3) x Pré/post test (2) a révélé un effet principal du groupe, F(2,36) = 4.005, p<.05, $\eta^2 = .182$ et une interaction entre Groupe et Pré/post test (Figure 12), F(2, 36) = 3.528, p<.05, $\eta^2 = .164$. Les tests post-hoc ont montré que les pourcentages de bonnes réponses pour les trois groupes lors du pré-tests ne sont pas différents. Pour le post-test, le pourcentage de bonnes réponses du groupe « apprentissage spécifique » est significativement différent des pourcentages de bonnes réponses obtenus par ce groupe lors du pré-test et par les groupes contrôle et « apprentissage non spécifique » lors du pré-test mais aussi du post-test.

![Figure 12. Pourcentage moyen de bonnes réponses lors du pré-test et du post-test pour chaque groupe](image-url)
6.2.2 Temps de réponse

Les temps moyens de réponse lors du pré-test et du post-test pour les différents groupes sont présentés dans le tableau 6.

Tableau 6. Temps moyens de réponse pour les différents groupes lors du pré-test et du post-test

<table>
<thead>
<tr>
<th></th>
<th>Apprentissage spécifique</th>
<th>Apprentissage non spécifique</th>
<th>Contrôle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pré test</td>
<td>735 ms</td>
<td>584 ms</td>
<td>687 ms</td>
</tr>
<tr>
<td>Post test</td>
<td>464 ms</td>
<td>431 ms</td>
<td>589 ms</td>
</tr>
</tbody>
</table>

L’ANOVA Groupe (3) x Pré/post test (2) a révélé un effet principal pré/post test, $F(1,36) = 20.09, p<.05, \eta^2 = .358$. Le temps moyen de réponse lors du pré test pour l’ensemble des participants était de 669 ms ($\pm77$). Lors du post test, le temps moyen de réponse était de 495 ms ($\pm84$).

6.2.3 Evolution du pourcentage de bonnes réponses du groupe « apprentissage spécifique » et du groupe « apprentissage non spécifique » au cours de l’expérimentation.

Le pourcentage de bonnes réponses du groupe « apprentissage spécifique » augmente de manière significative tout au long de l’expérimentation (Figure 13), $F(1,94) = 10.09, p<.05, R^2 = .10$. 

118
Le pourcentage de bonnes réponses du groupe « apprentissage non spécifique » reste stable au cours de l’expérimentation (Figure 14).

6.2.4 Evolution du temps de réponse du groupe « apprentissage spécifique » et du groupe « apprentissage non spécifique » au cours de l’expérimentation
Le temps moyen de réponse du groupe « apprentissage spécifique » diminue puis se stabilise. En effet, la fonction qui prédit le mieux cette évolution est une fonction logarithmique, $R^2 = .61$ (Figure 15).

![Figure 15. Evolution du temps moyen de réponse du groupe « apprentissage spécifique » en fonction des essais au cours de l’expérimentation](image)

De manière similaire au groupe « apprentissage spécifique », le temps de réponse du groupe « apprentissage non spécifique » diminue au début de l’expérimentation pour se stabiliser par la suite. L’évolution du temps de réponse suit également une courbe logarithmique, $R^2 = .38$ (Figure 16).

![Figure 16. Evolution du temps moyen de réponse du groupe « apprentissage non spécifique » en fonction des essais au cours de l’expérimentation](image)

6.3 **Discussion**
La troisième étape de l’approche de la performance experte d’Ericsson et Smith (1991) consiste à déterminer comment les experts acquièrent les habiletés nécessaires à une performance expérte. Ainsi, cette dernière étape doit permettre la mise en place de protocoles d’apprentissage. Dans ce cadre, l’objectif de cette expérimentation était donc de tester un protocole d’apprentissage de type « découverte » (e.g., Farrow & Abernethy, 2002) en lien avec des informations tactiques soit de type générique (différents adversaires) soit de type spécifique (face à un seul et même adversaire).

Les résultats que nous avons obtenus montrent que seul le groupe « apprentissage spécifique » ayant réalisé un entraînement face à un joueur particulier a amélioré ses scores de bonnes réponses. Cette amélioration de 11.52% peut paraître relativement réduite, mais elle vient s’ajouter à des scores déjà élevés puisque ce test s’adressait à des pratiquants experts du meilleur niveau. L’absence de progrès du groupe contrôle et du groupe « apprentissage non spécifique » permet de conclure que les progrès du groupe « apprentissage spécifique » sont bien liés à cette condition de pratique et non à une habituation à la tâche (Williams & Grant, 1999). On peut supposer de plus que cet apprentissage est d’autant plus robuste qu’il a été réalisé dans une situation de type « découverte » (Masters, 1992).

Même si celui-ci aurait pu être limité, on aurait pu s’attendre à un apprentissage du groupe « non spécifique ». On peut faire l’hypothèse que le niveau d’expertise des participants ayant pris part à cette expérimentation était déjà très élevé dans les connaissances tactiques et qu’aucun apprentissage sur les bases tactiques génériques n’était possible dans la condition présentée. L’utilisation de différents joueurs ne permettait en effet que d’apprendre des principes généraux. Il serait intéressant de tester dans un tel protocole des pratiquants moins avancés dans leur performance ou des débutants. On pourrait s’attendre à ce qu’ils progressent moins dans la condition « spécifique » qui nécessite sans doute des connaissances plus approfondies mais davantage dans la condition générique qui permet d’extraire des principes plus généraux et donc plus accessibles.

En ce qui concerne les temps de réponse, on a noté une amélioration chez tous les groupes. On peut donc penser qu’il existe un apprentissage de la tâche et une diminution du temps de réponse...
liée aux conditions de l’expérience. Cependant, les joueurs du groupe « apprentissage spécifique » répondent en moyenne 271 ms plus vite lors du post test par rapport au pré test, pendant que l’amélioration du groupe « apprentissage non spécifique » est de 153 ms et celle du groupe contrôle de 98 ms. De plus, nous avons analysé l’évolution du temps de réponse au fur et à mesure de l’expérimentation pour les groupes « apprentissage spécifique » et « apprentissage non spécifique ». Cette évolution semble suivre une fonction logarithmique. Ainsi, les joueurs diminuent rapidement leur temps de réponse puis celui-ci semble se stabiliser autour des 400 ms. Ce temps de réponse peut paraître important vu qu’on se place dans un protocole sur l’anticipation. Cependant, l’information est prélevée par les participants au minimum 340 ms avant la frappe. Donc, même si le temps mis pour traiter l’information semble long, les réponses se situent à l’intérieur de la fenêtre d’anticipation définie dans l’étude N°1. On peut cependant penser que le fait de ne pas être placés en situation de forte contrainte temporelle, engendre un temps de traitement de l’information plus important de la part des participants.

De plus, il est intéressant de noter que le groupe « apprentissage spécifique » a amélioré ses performances de prédiction mais également son temps de réponse. La double amélioration des scores et du temps de réponse du groupe « spécifique » est intéressante et assez nouvelle par rapport aux études antérieures. En effet, dans la littérature, nous avons vu que les études réalisées ont montré des améliorations soit au niveau de leur pourcentage de bonnes réponses (e.g., Scott et al., 1998 ; Abernethy et al., 1999), soit de leur temps de réponse (e.g., Singer et al., 1994 ; Farrow et al., 1998; Williams et al.,2003) ou encore des inversions entre le temps de réponse et le pourcentage de bonnes réponses, une amélioration de l’un engendrant une diminution de performance de l’autre (Moreno et al., 2002). Il faut noter cependant que les protocoles d’apprentissage mis en place avaient pour objectif d’étudier l’utilisation des informations gestuelles. Notre protocole était basé sur l’utilisation des informations tactiques. Cela peut expliquer que nous ayons obtenu des résultats plus marqués et présents à la fois au niveau des scores que du temps. Dans le cadre de l’amélioration
de l’anticipation, la question des informations tactiques semble donc être un domaine particulièrement intéressant à investiguer.

Nos résultats sont dans la continuité de ceux d’Abernethy et al. (2001) qui avaient montré que les joueurs experts étaient capables d’anticiper avec un taux de réussite supérieur à la chance même lorsque l’occlusion a lieu 620 ms avant la frappe en squash et donc d’utiliser des informations tactiques. Ils confirment également ceux de McRobert et al. (2011) qui ont montré que le taux de bonnes réponses face à un joueur est plus important que lorsque les participants sont confrontés à plusieurs joueurs différents lors de prédicition de lancers en cricket.

Nos résultats montrent donc qu’un entraînement face à un joueur spécifique permet d’améliorer le taux de prédiction de ses actions.

La question qui se pose à la suite de ce résultat est de comprendre l’origine de cette amélioration des performances. Dans leur étude à laquelle notre étude peut-être comparée par certains aspects, McRobert et al. (2011) ont montré une augmentation du nombre de rapports verbaux en lien avec la prédiction et la planification dans la situation où les participants étaient confrontés à un seul joueur. On peut donc penser que les participants sont capables d’utiliser les essais précédents afin d’émettre des hypothèses en lien avec les probabilités du lancer à venir et donc de réaliser des prédictions et de planifier la réponse à venir. Pour notre part, suite à l’expérimentation, nous avons demandé aux participants d’ explicitier les éléments sur lesquels ils avaient porté leur attention ainsi que les invariants de jeu qu’ils avaient relevés. Cela nous a permis de faire émerger un certain nombre de situations de jeu dans lesquelles le joueur de référence semblait adopter des schémas de jeu récurrents. On peut identifier trois schémas principaux qui ont été relevés par les participants : lorsque le joueur sert vers l’extérieur du court, la frappe qui suit est jouée dans l’espace libre ; lorsque le joueur réalise un coup droit de décalage en situation très favorable, il joue le long de la ligne ; enfin, lors de la réalisation des smashs, il joue essentiellement décroisé.

Pour étayer ces commentaires ayant une large part anecdotique, nous avons analysé les clips de manière séparée. Pour cela, nous avons tout d’abord identifié les dix clips présentant le taux
d’amélioration le plus fort (i.e., la pente la plus élevée) au cours de l’expérimentation à partir d’analyses de régression sur chacun de ces clips avec le rang d’ordre du clip comme axe horizontal et la réussite comme axe vertical. Nous avons ensuite analysé la situation de jeu présente dans ces clips. Nous avons identifié deux clips dans lesquels le joueur réalise un smash décroisé et un clip avec un smash croisé, deux clips avec un service externe et une frappe à l’opposé, un coup droit décroisé dans l’espace libre et un coup droit croisé à contre pied en situation favorable, une volée dans l’espace libre en situation favorable, une volée à contre pied en situation défavorable et un passing de revers croisé. Il semble donc que les participants se soient améliorés dans plusieurs situations de jeu et notamment dans de frappes de type « pénaltys », notamment lors des smashs dans lesquels la situation est très défavorable comme pour un gardien de but face au tireur de pénalty. Cette analyse a néanmoins une portée limitée puisqu’elle ne permet pas d’identifier les éléments fortement récurrents qui auraient été extraits par les participants. Cette question reste ouverte pour une large part à la suite de cette étude dont le caractère exploratoire est évident. Suite à cette étude, il serait nécessaire d’approfondir ces observations en manipulant la distribution de certaines séquences identifiées afin d’analyser comment elles sont prises en compte par les participants au moment d’anticiper. Par exemple, quel est le nombre de répétitions requis pour une séquence ou quelle est la fréquence requise afin que les joueurs réalisent une prédiction correcte ou simplement fassent le choix d’anticiper sur un schéma donné ?

Une autre question qui peut être posée est celle du transfert vers des situations de jeu réel comme cela est par exemple posé par Williams et Grant (1999). Dans notre étude, nous n’avons pas mis en place de test de transfert sur le terrain. Il y a tout lieu de penser que ce transfert pourrait être effectif comme cela a pu être montré auparavant par Scott et al. (1998) ou Williams et al. (2003) par exemple. Il faut noter cependant que les temps de réponses observés dans cette étude sont très longs et ne correspondent pas à des temps requis sur le terrain. Avant de tenter des tâches de transferts, il serait d’ailleurs intéressant d’étudier comment évoluent ces temps de réponse et les scores de réussite quand les participants doivent répondre en situation de pression temporelle dans des
procédures analogues à celles mises en œuvre par Proteau et al. dans les années 70 et 80 (e.g., Alain & Proteau, 1980 ; Proteau et al., 1989).

Enfin, on peut également rapprocher nos résultats de ceux obtenus par Paull et Glencross (1997, expérimentation 1) qui ont montré que la connaissance du contexte de jeu en baseball permettait également d’améliorer les prédicitions mais aussi de diminuer le temps de réponse des participants d’environ 60 ms. De manière similaire, on pourrait penser qu’en tennis la situation de jeu (balle de break, premier point du jeu…) peut avoir un impact sur la prédiction par exemple de trajectoire de services.

En résumé, on peut conclure que les joueurs experts parviennent à améliorer leurs habiletés d’anticipation dans le cadre d’un entraînement face à un joueur spécifique. Cela ouvre des perspectives intéressantes du point de vue de l’application à l’entraînement. La question de savoir ce qui est réellement appris reste encore ouverte. A ce sujet, les études sur l’anticipation basée sur des informations tactiques, et notamment l’étude de McRobert et al. (2011) et celle de Paull et Glencross (1997) tendent à montrer que les connaissances tactiques, contextuelles et des probabilités de jeu de l’adversaire permettent d’améliorer les prédicitions. Suite à cette étude, il semble donc intéressant d’essayer de mettre en place des protocoles d’apprentissage permettant de traiter séparément ces différents aspects. Si le domaine de l’anticipation sur une base tactique est essentiel comme cela a pu être montré par la première étude de cette thèse, il reste encore très largement inexploré.
Discussion générale, limites et perspectives
7. **Discussion générale**

L'objet de cette thèse était de questionner les phénomènes d'anticipation qui sont décrits comme l'un des facteurs de l'expertise dans les sports de balle en prenant comme support l'activité tennis. Afin de questionner cette habileté expérte, nous avons choisi d'utiliser la démarche de l'approche de la performance expérte d'Ericsson et Smith (1991). Cette approche préconise trois étapes afin d'analyser l'anticipation expérte en tennis : une analyse quantitative de l'anticipation *in situ* chez les joueurs de tennis experts ; la mise en place de tâches représentatives afin d'analyser l'anticipation ; la mise en place de protocoles d'apprentissage. Même si l'anticipation a fait l'objet de nombreuses études, son utilisation *in situ* n'avait jamais été analysée. De plus, l'analyse combinée des anticipations sur la base d'informations sur la gestuelle et sur la situation tactique est également rare dans la littérature. Enfin, les questions d'apprentissage n'ont été abordées que très récemment.

7.1 **Quantifier l'anticipation**

La première étape de notre travail a consisté à analyser des matchs de tennis de haut niveau afin de quantifier les comportements d'anticipation en situation réelle et de déterminer les contraintes qui engendrent des anticipations. Il semble important de rappeler que nous sommes partis du postulat que l'anticipation sert à gagner du temps sur la réponse et qu'elle contient toujours une dose de pari et une prise de risque qui doit surtout se manifester lorsque le joueur se retrouve en crise de temps. En effet, selon notre définition, on parle d'anticipation lorsque le joueur réalise un choix en se basant sur des événements à venir encore incertains. En tennis comme dans bon nombre d’autres sports de balle et même de duel, la question du choix du côté pour agir est cruciale. Pour réaliser ce choix, le joueur dispose d’informations qui proviennent du déplacement de la balle après la frappe et d’informations provenant de la gestuelle adverse et des aspects tactiques avant la frappe. On peut supposer que les informations extraites de la trajectoire de balle ont un caractère prédicatif très fort.
et que les erreurs de choix sur la base de ces informations sont rares. C’est pour cette raison sans doute que l’on considère que l’anticipation dans son acceptation la plus classique est réalisée sur la base d’informations prélevées avant la frappe adverse qui sont donc en lien avec la gestuelle adverse ou les aspects tactiques. Ces informations étant par nature incertaines, elles engendrent beaucoup plus fréquemment des erreurs d’orientation du déplacement. En effet, si l’anticipation est incorrecte, le joueur sera pris à contre pied et il aura de très fortes risques de perdre le point. C’est pourquoi la notion d’anticipation s’inscrit dans un rapport coût/bénéfice.

Dans cette première étude, nous avons mesuré le temps de réponse des joueurs de tennis experts sur 3000 frappes de balle. Ce temps de réponse correspond au délai entre la frappe d’un joueur et le premier mouvement réalisé par son adversaire dans le but de se déplacer pour aller frapper la balle. Ce temps de réponse pouvait donc être positif si un joueur initiait son déplacement après la frappe de son adversaire ou négatif s’il entamait son déplacement avant. Dans notre étude, nous avons trouvé un temps de réponse moyen de 183 ms. A partir de notre postulat, qui était que l’anticipation était basée sur des informations partielles et qu’elle engendrait des erreurs, nous avons établi une transition entre anticipation et réaction. Pour des temps de réponse de 160 ms et plus, nous avons observé des pourcentages de bonnes réponses de 100% et donc considéré cette fenêtre temporelle comme étant celle correspondant aux réactions certaines, sans anticipation. Au contraire, pour des temps de réponse égaux ou inférieurs à 60 ms, les comportements observés ont été interprétés comme des anticipations pures avec des scores de bonnes réponses assez bas et assez constants. La fenêtre temporelle entre 80 ms et 140 ms correspond à une zone de transition dans laquelle les joueurs en fonction de leurs caractéristiques et des situations sont soit en réaction soit en anticipation.

—

2 Il faut noter cependant les résultats obtenus sur les balles à effet latéral et les mouvements de rebroussement associés qui montrent des erreurs d’orientation du comportement sur la base d’informations sur la trajectoire de balle (Dessing & Craig, 2010 ; Lenoir, Vansteenkiste, Vermeulen & De Clercq, 2005 ; Montagne, Laurent, Durey & Bootsma, 1999). Cependant, ces erreurs d’orientations sont paradoxalement liées à la mise en œuvre d’un contrôle prospectif qui implique une régulation continue de l’action et elles sont très peu fréquentes en situation réelle.
Ces résultats donnent tout d’abord des informations sur le délai visuo-moteur (DVM) entre la prise d’information et la production de la réponse des joueurs de tennis experts dans des situations de matchs. En effet, à partir d’un temps de réponse de 160 ms, ils ne font plus d’erreur de réponse ce qui peut donc être considéré comme le temps minimal pour exploiter des informations sur la trajectoire de balle. Ce temps de 160 ms peut donc correspondre à un DVM qui est particulièrement court quand on prend en compte la complexité de la réponse à produire en termes de possiblités d’action. Ce DVM est néanmoins en phase avec les travaux de Le Runigo et al. (2005, 2010) et Shim et al. (2005) sur l’expertise en sport de balle.

Ensuite, en se basant sur les différents repères établis par cette étude, on peut considérer que l’anticipation ne représente qu’entre 6.14% et 13.42% des situations de jeu dans le tennis professionnel masculin. Les joueurs semblent donc utiliser de manière préférentielle une stratégie conservatrice dans laquelle ils anticipent relativement peu. Cela leur permet d’éviter les erreurs de décision (ou contre-pieds) qui ne représentent que 2.29% des observations. Ce type de stratégie avait déjà été observé au plan expérimental par Alain et Proteau (1977). Cela est certainement lié au fait que beaucoup de situations ne nécessitent pas d’anticipation du fait de la qualité et de la vitesse de déplacement des joueurs experts. Ainsi, dans de nombreuses situations, ils n’ont pas besoin de partir en avance pour être au bon endroit au bon moment. Dicks et al. (2010b) ont d’ailleurs montré à ce sujet que les joueurs agissent en fonction de leurs possibilités de jeu et de leurs qualités physiques. Ainsi, lorsqu’ils estiment que leur chance d’atteindre la balle est bonne compte tenu de leur possibilité d’action et de la situation (voir aussi Fajens, 2005), ils vont choisir de ne pas anticiper. Cela explique que notre analyse qualitative montre que les joueurs anticipent essentiellement lorsqu’ils sont en situation défavorable et souvent face à un adversaire ayant pris l’avantage au filet. Les joueurs anticipent donc lorsque le risque de perdre le point est grand. Cela dépend donc de leur situation sur le terrain, de la position de leur adversaire mais également de leurs qualités physiques et des possibilités de jeu de leur adversaire. En résumé, les contraintes semblent essentielles pour comprendre l’expression de l’anticipation.
Enfin, cette étude nous a également permis de mettre en évidence deux fenêtres temporelles différentes de temps de réponse correspondant à des anticipations distinctes. La première fenêtre temporelle correspond à des anticipations très précoces avec un fort taux de réussite. On peut supposer que ces anticipations ont lieu quand il existe des informations tactiques exploitable (e.g., Abernethy et al., 2001). La deuxième fenêtre temporelle correspond à des anticipations plus tardives. On peut comparer ces situations à des pénaltys au football. L’information tactique est peu ou pas présente et le joueur essaie d’attendre un maximum avant de réaliser son anticipation. Il cherche alors à prélever et traiter un maximum d’information sur la gestuelle et sur la posture de son adversaire (e.g., Farrow & Abernethy, 2003). Cependant, ces informations sont plus difficiles à analyser et le taux de réussite de ces anticipations est plus faible. Celui-ci est d’ailleurs comparable aux taux de réussite observés dans les études qui traitent de cette question à travers l’utilisation d’un paradigme d’occlusion (e.g., Shim et al., 2005 ; Abernethy et al., 2008).

En résumé, nous avons montré à travers cette étude : a) que les joueurs anticipent lorsqu’ils sont en situation défavorable et que le risque de perdre le point est grand et b) qu’il existe deux fenêtres temporelles distinctes d’anticipation qui peuvent correspondre à l’utilisation d’informations spécifiques avec une fenêtre précoce correspondant à l’utilisation d’informations tactiques et une fenêtre plus tardive correspondant à l’utilisation d’informations sur la gestuelle et la posture.


Plutôt que de présenter un résumé des différentes études, nous allons aborder dans cette discussion les différentes questions transversales posées par les trois études expérimentales réalisées telles que l’utilisation des informations sur les aspects tactiques et sur la gestuelle adverse, les diffé-
rences experts/novices dans l’anticipation, l’échange précision/temps, l’apprentissage et l’entraînement. Nous préciserons ensuite un certain nombre de limites et nous tracerons quelques perspectives pour la suite de ce travail.

7.2 Les informations concernant les aspects tactiques et la gestuelle adverse

Si on se réfère aux recherches antérieures relatées dans la littérature, l’anticipation experte serait liée à la compétence des joueurs experts à prélever et utiliser de l’information précoce sur la gestuelle et la posture de l’adversaire ainsi qu’à leur compétence à utiliser l’information tactique, contextuelle et les probabilités de jeu. Les résultats obtenus dans notre étude N°1 confirment ces résultats. De plus, nos résultats suggèrent que les joueurs anticipent plus tôt lorsque l’information tactique est pertinente et qu’ils passent plus de temps à analyser la situation lorsqu’elle est absente afin de prélever de l’information sur la gestuelle. Ce résultat a été confirmé par l’expérimentation N°2. En effet, dans la condition où l’information tactique était disponible, les joueurs répondaient plus vite (cf, partie 5.2.2). De plus, les résultats de l’étude N°3 montrent que le déroulement du point qui potentiellement donne davantage d’information tactique a un impact sur le temps de réponse qui diminue dans la condition où cinq frappes étaient présentées. Dans le contexte des sports de balle rapide, cette diminution du temps de réponse n’est évidemment pas négligeable. Ainsi, les informations prélevées par les joueurs tout au long du point permettent de produire une réponse motrice plus précoce (Paull et Glencross, 1997). Ceci est probablement dû à des attentes plus précises sur l’action à venir qui permettent le moment venu d’être plus rapide dans la réponse.

Concernant la précision des réponses, les résultats sont plus mitigés. S’il est bien apparu dans l’étude N°2 l’effet attendu concernant la disponibilité supposée d’informations tactiques pertinentes dans les clips que nous avions sélectionnés dans le pré-test, nous n’avons pas montré dans la troisième expérimentation d’effet du temps de présentation sur la précision des réponses lorsque trois

Concernant la prise d’information sur la gestuelle de l’adversaire, nos résultats montrent au niveau de la deuxième étude l’importance de la fenêtre temporelle [-300 ms ; frappe] (Farrow & Abernethy, 2003 ; Farrow et al., 2005). Cette fenêtre permet d’accéder à des informations sur la gestuelle et d’améliorer les prédictions. D’ailleurs, ceci est surtout vrai pour les experts, ce qui nous conduit à la question des différences experts/novices.

7.3 Les différences experts/novices dans l’anticipation

Les compétences nécessaires pour réaliser des performances expertes dans le domaine des sports de raquette sont très variées : physiologiques, biomécaniques, psychologiques et informationnelles. Dans chaque grand domaine, les facteurs sont à nouveau multiples. La performance a donc un caractère très fortement multifactoriel et on peut considérer que l’expertise est la somme de petites différences qui caractérisent la grande différence entre des experts et des novices. Cela signifie que lorsqu’on s’intéresse à un domaine particulier de l’expertise, il n’est pas étonnant d’observer des différences qui parfois peuvent paraître limitées, mais doivent se comprendre dans un ensemble beaucoup plus complexe et en forte interaction.
En ce qui concerne l'utilisation de la gestuelle afin d'anticiper, les résultats de l'étude N°2 ont montré que seuls les joueurs experts étaient capables d’utiliser l’information relative à la gestuelle de l’adversaire afin d’anticiper correctement. Ces résultats sont en cohérence avec ceux obtenus par exemple par Farrow et Abernethy (2003) ou Farrow et al. (2005). En revanche, les résultats de l’étude N°2 ne montrent pas de différence entre les experts et les novices dans l’utilisation des informations tactiques. Ce résultat pourrait être en cohérence avec celui de Paull et Glencross (1997) qui ont montré qu’il n’était pas nécessaire d’être au meilleur niveau de pratique pour utiliser des informations contextuelles. À l’opposé, Abernethy et al. (2001, expérimentation 2) ont montré une supériorité des experts par rapport aux novices dans les prédictions très précoces et donc potentiellement dans l’utilisation de cette source d’information. Pour expliquer le résultat de l’étude N°2, on peut se demander si notre groupe de novices ne contenait pas de faux novices qui auraient, sur cette compétence spécifique, des résultats comparables à ceux des experts et inversement, des experts ayant des résultats faibles dans ce domaine. Cette difficulté est inhérente aux études sur l’expertise dont le caractère pluri-factoriel, souligné ci-dessus, expose à ce type de résultat quand on étudie seulement l’un de ces facteurs sur des échantillons limités. D’ailleurs, les résultats obtenus dans notre troisième étude montrent bien que les experts sont meilleurs que les novices face à des clips occultés de manière précoce et contenant de l’information tactique. La question reste donc relativement ouverte et d’autres études viendront confirmer sans doute la capacité supérieure des experts au tennis à extraire les informations tactiques.

7.4 L’échange précision/temps de réponse

Au moment d’anticiper, le joueur s’inscrit dans une dialectique précision/temps. Son objectif sera de réaliser une prévision correcte sur la base d’un maximum d’informations utiles et aussi de répondre le plus rapidement possible afin de réussir l’interception. L’étude N°1 a montré clairement que les experts utilisent une stratégie conservatrice qui les conduit à faire relativement rarement le choix de l’anticipation et de la prise de risque qui s’y rapporte pour limiter les erreurs. Cependant,
quand la pression temporelle imposée par l’adversaire devient trop grande, il est nécessaire d’agir et donc d’anticiper. La question du temps de prélèvement mais aussi du temps de traitement est donc un élément crucial dans la pertinence du choix.

Concernant nos études expérimentales, les résultats sont assez contrastés du fait sans doute de différences inter-individuelles dans les stratégies de réponse et de contraintes moindres dans les tâches proposées qui n’impliquait pas de vraies réponses motrices. Par exemple, les résultats de l’étude N°2 montrent que les novices qui ont le temps de réponse le plus long sont ceux qui répondent avec la plus grande précision. Ainsi, soit les participants prennent du temps pour analyser la situation de jeu et ils sont assez performants dans leur prédiction, soit ils essaient de répondre rapidement au détriment de la précision. Ce résultat est intéressant si on se place du point de vue de l’apprentissage qui sera repris par la suite.

Les résultats de l’étude N°2 montrent aussi des temps de réponse relativement élevés pour les experts. Cela confirme les résultats de Proteau et al. (1989) qui ont montré que les experts ne réduisent leur temps de réponse que lorsque la pression temporelle est importante. Or, dans nos études, les sujets devaient répondre dans les deux secondes qui suivaient l’occlusion. On peut donc penser que cette pression temporelle n’était pas assez importante pour avoir un impact sur les réponses.

De manière contrastée, les résultats des participants experts dans l’étude N°3 confirment qu’il existe de fortes différences inter-individuelles. Certains experts semblent posséder des compétences pour anticiper très élevées. Ils répondent avec un fort taux de réussite, et ce, avec un temps de réponse faible. A l’opposé, d’autres sont à la fois lents et peu précis et de ce fait ne peuvent pas être considérés comme des experts dans ce domaine de compétence. Cela rejoint l’idée du caractère pluri-factoriel de la performance qui permet à certains de réaliser des performances expertes grâce à des compétences très développées dans certains domaines qui compensent certains autres.
7.5 **Apprentissages perceptifs**

Dans l’étude N°4, mais aussi dans les études N°2 et N°3 et même dans le pré-test, nous avons examiné l’évolution de la précision et des temps de réponse au cours du déroulement des expéri- mentations. Même si cette question a fait l’objet d’études récentes (e.g., Williams et al., 2003 ; Smeeton et al., 2005), les données sont rares et souvent contradictoires. Cet examen permet néanmoins de traiter la troisième étape de l’approche de la performance experte d’Ericsson et Smith (1991) qui est essentielle à la transposition des connaissances vers des protocoles de formation ou d’entraînement. Il permet également de mieux comprendre les stratégies choisies par les partici- pants notamment vis-à-vis du conflit précision/temps.

Dans les études N°2 et N°3, on ne peut pas véritablement parler d’apprentissage puisque nous n’avions ni pré/post test, ni feed back, mais plutôt d’adaptation à la tâche proposée. Même si les résultats en termes de temps de réponse et de justesse de la réponse sont stables dans l’étude N°3, pour les experts et pour les novices, l’étude N°2 montre une augmentation des temps de réponse des novices au cours de l’expérience alors qu’ils restent stables chez les experts. Ce résultat peut signifier que les novices ont cherché au cours de l’expérience à se donner plus de temps pour trouver plus de précision, même si leur précision n’a pas véritablement augmenté.

Pour l’étude N°4, qui avait pour but d’étudier l’apprentissage à proprement parler, l’objectif était d’examiner l’apprentissage de l’anticipation face aux seuls aspects tactiques de la situation. En effet, l’apprentissage face aux éléments liés à la gestuelle adverse a déjà été abordé dans un certain nombre d’études (e.g., Singer et al., 1994 ; Abernethy et al., 1999 ; Williams et al., 2002, expéri- men-tation 2).

Dans ce protocole, nous avions réparti les participants dans trois groupes : un groupe « apprentissage spécifique » qui apprenait face à un joueur particulier ; un groupe « apprentissage non spécifique » qui apprenait contre plusieurs adversaires ; un groupe contrôle qui ne suivait pas de séance d’entraînement. Les résultats ont montré que seul le groupe « apprentissage spécifique » améliorait son pourcentage de bonnes réponses entre le pré-test et le post-test. De plus, il est intéressant de
noter que ce groupe « apprentissage spécifique » a également diminué son temps de réponse. On peut donc conclure à un véritable apprentissage de la part de ce groupe pendant cette expérimentation à la fois sur le pourcentage de bonnes réponses et sur le temps de réponse. Cela est particulièrement intéressant au regard des données de la littérature. En effet, les études sur l’apprentissage perceptif ont montré soit une augmentation du pourcentage de bonnes réponses (e.g., Abernethy et al., 1999) soit une diminution du temps de réponse (e.g., Singer et al., 1994). Ces études étaient basées sur l’utilisation des informations relatives à la gestuelle. Il apparaît donc que l’apprentissage en lien avec l’utilisation des aspects tactiques permette à la fois une augmentation du pourcentage de bonnes réponses et une diminution du temps de réponse ce qui est très intéressant dans le cadre de l’entraînement.

Le groupe « apprentissage non spécifique » n’a pas amélioré son pourcentage de bonnes réponses, mais on a observé une diminution de leurs temps de réponse mais moins marquée que pour le groupe « spécifique » pouvant traduire dans ces conditions une habitation à la tâche. On peut penser que les joueurs experts ont déjà des connaissances importantes sur les aspects tactiques généraux et que la présentation de joueurs différents présentant des choix tactiques de jeu qui leur sont propres les a conduits à rester sur des choix génériques qui ne se sont pas améliorés au cours du test.

La question pourrait être reposée chez des novices ou des joueurs de niveau intermédiaire. En effet, on peut penser que contrairement aux résultats observés pour les joueurs experts, on pourrait trouver une amélioration pour l’« apprentissage non spécifique » qui serait en lien avec une meilleure utilisation des informations tactiques génériques. Par contre, on pourrait s’attendre à ce qu’ils aient moins facilement accès aux probabilités de jeu spécifiques d’un joueur particulier.
8. **Limites du travail présenté**

Ce travail présente un nombre non négligeable de limites qui permettent aussi de mesurer sa portée. La première qui s’applique à l’ensemble du travail réalisé concerne son caractère exploratoire qui présente l’avantage d’ouvrir des pistes de recherche nouvelles notamment sur les contraintes qui caractérisent l’anticipation mais également sur les sources d’information tactique, mais qui se révèle limité dans l’identification des sources d’information utilisées.

Concernant l’étude N°1, le reproche principal qui peut lui être fait est que nous n’avons relevé que les comportements observables. Ainsi, il existe probablement de nombreuses situations en matchs dans lesquelles les joueurs peuvent réaliser des jugements anticipatoires ou utiliser l’information tactique et posturale afin de préparer leurs actions (Van Der Kamp et al., 2008) même s’ils ne réalisent pas d’anticipations observables. Ces jugements peuvent par exemple être utilisés pour réduire de quelques fractions de seconde leur temps de réponse dans de nombreuses situations. Ce n’est donc pas parce que les joueurs semblent employer des stratégies conservatrices, qu’ils ne sont pas engagés dans des processus continus de prédiction. Cela signifie que l’anticipation est très certainement beaucoup plus présente dans le tennis et montre tout l’intérêt qu’il y a à étudier cette compétence. Les 10% environ de comportements observables que nous avons pu mettre en évidence chez les joueurs de haut niveau masculin dans la première étude ne représentent sans doute que la part visible de l’iceberg.

Concernant les autres études, la question de l’utilisation de la vidéo peut être discutée. En effet, Williams et Ward (2003) se sont demandés si la vidéo était la méthode de test ou d’entraînement la plus efficace. En effet, même si Helsen et Starkes (1999) et Starkes et Lindley (1994) ont montré que la simulation vidéo est plus efficace que la présentation de diapositives pour un entraînement perceptif, on peut se demander si l’utilisation de simulateurs et d’environnements virtuels ne serait pas des protocoles plus efficaces (e.g., Bideau, Kulpa, Vignais, Brault, Multon, & Craig, 2010). Cependant, comme ces protocoles sont beaucoup plus coûteux et moins accessibles que les protocoles vidéo, on

Toujours en lien avec l’utilisation de la vidéo, on pourrait s’interroger sur la qualité et le point de vue des images présentée aux participants. En effet, les clips présentés sont des points de tennis extraits de matchs télévisés avec un point de vue relativement lointain. On pourrait ainsi penser que les participants n’ont pas eu accès à toute l’information nécessaire notamment au niveau de la gestuelle de l’adversaire et qu’ils ont été influencés par le joueur de dos. Concernant le premier point, Mann et al. (2010) ont montré que de faibles taux de floutage n’ont pas d’impact sur les capacités d’anticipation de batteurs experts au cricket. Ainsi, nous pouvons penser que les clips réalisés ont permis aux participants de prélever l’information nécessaire et que la qualité n’a pas eu d’impact sur leur performance. D’ailleurs, la possibilité de voir la séquence jusqu’à la frappe a permis aux participants experts d’atteindre des scores proches de ceux observé dans l’étude N°1 (i.e., proche de 60-70%) et proches de ce que l’on observe dans les études ayant porté sur ce sujet (e.g., Goulet, Bard & Fleury, 1989 ; Farrow & Abernethy, 2003 ; Farrow et al., 2005).

Concernant le point de vue de vidéos réalisées, les situations qui devaient être anticipées n’étaient pas présentées du point de vue du participant, comme c’est traditionnellement le cas, mais d’un point de vue extérieur. Ainsi, le joueur de face était observé d’un point de vue qui surplombait légèrement le terrain. Ainsi, le participant voyait les deux adversaires, c’est-à-dire également le joueur de dos auquel il devait, d’une certaine manière, se substituer. La présence de ce joueur pou-
vaît également être considérée comme source de perturbation mais était aussi nécessaire pour identifier la nature du rapport de force dans l’échange. On peut considérer que le fait de le masquer 200 ms après sa dernière frappe empêchait que son comportement de réponse n’influence la réponse des participants.

Concernant le point de vue extérieur, Rowe et Mc Kenna (2001) ont montré qu’il n’y avait pas de différence dans des jugements selon que la vidéo était présentée du point de vue du joueur (égocentré) ou bien présentée d’un point de vue extérieur (allocentré) et plus élevé comme dans nos études. Dans les deux cas, les experts ont reconnu le coup joué par l’adversaire plus tôt que les novices. Cela suggère que l’identification du coup n’est pas dépendante du point de vue.

Une question qui se pose aussi concerne les différents niveaux d’expertise que l’on aurait pu analyser ou distinguer. Cette question est d’une manière générale peu abordée dans la littérature sur l’expertise. Le plus souvent, des experts du plus haut niveau sont comparés à des novices. C’est d’ailleurs ce que nous avons fait ici. Parfois des groupes intermédiaires sont aussi testés. Cela pose la question de la nature de l’expertise et de la difficulté de son approche. Le problème principal est le caractère pluri-factoriel de l’expertise qui fait que l’on peut par exemple être un expert du plus haut niveau en tennis tout en étant relativement faible dans certains secteurs du jeu pourtant reconnus comme nécessaires à la performance. Ainsi, certains joueurs capables de servir à des vitesses très élevées et de conclure le point en une ou deux frappes, peuvent se révéler très faibles sur des qualité d’endurance pourtant nécessaires et très développées par d’autres. En ce qui nous concerne, il est possible que certains de nos experts testés, malgré leur très haut niveau, soit très médiocres dans leurs capacités d’anticipation parce qu’ils ont d’autres qualités qui leur permettent de compenser cette faiblesse. Cela signifie que regarder dans le détail les résultats des experts ou les performances en fonction du niveau d’expertise peut se révéler très surprenant avec parfois des experts qui sont moins bons que des novices. C’est pour cette raison que l’on a constitué des groupes assez importants pour éviter des résultats qui ne seraient liés qu’à des différences inter-individuelles ponctuelles. C’est aussi pour cette raison que de plus en plus d’études s’intéressent aussi à l’expertise dans la
tâche proposée et constituent les groupes d’experts a posteriori. Encore est-il nécessaire de s’être assuré que la tâche initiale est néanmoins discriminante de l’expertise. C’est d’ailleurs ce premier travail que nous avons réalisé à travers nos études.

Concernant le choix de n’étudier que des matchs masculins en simple, il a été dicté par un souci d’uniformiser les études réalisées et aussi par une question d’accès à des sources d’images vidéo plus nombreuses. Il aurait été intéressant de travailler également sur le double et le simple féminin. Cela aurait permis d’émettre des hypothèses en lien avec les spécificités de ces jeux de tennis. Le double étant considéré comme un jeu plus rapide avec plus de coups gagnants, on aurait pu s’attendre à observer des anticipations plus nombreuses. Concernant le simple féminin, on aurait pu faire des hypothèses inverses puisqu’il est considéré comme un peu moins rapide. Ceci étant, il est aussi communément admis que le jeu pratiqué est également plus stéréotypé ce qui peut le rendre plus facile à analyser pour les joueuses qui pourront ainsi anticiper plus facilement. D’autre part, les joueuses ont des déplacements moins rapides et par conséquent peuvent se retrouver dans des situations difficiles plus fréquentes ce qui pourrait engendrer le recours plus fréquent aux anticipations. Ceci pourrait être renforcé par des prises de balle plus précoces des joueuses en retour de service et dans le jeu en général qui peuvent nous laisser penser qu’elles réalisent des jugements anticipatoires plus fréquents, notamment en situation favorable. Il s’avère donc que le jeu féminin possède des spécificités qui lui sont propres et qui pourraient conduire à des hypothèses spécifiques liées à ces contraintes.

Dans la dernière partie de ce manuscrit, nous allons proposer des pistes de travail permettant de traiter certaines questions soulevées par nos résultats, la discussion générale et les limites de notre recherche.
9. **Perspectives**

9.1 **Les informations utilisées**

Comme nous l’avons dit précédemment, ce travail a révélé l’utilisation importante des informations tactiques pour anticiper au tennis, mais il n’a pas permis d’identifier précisément la nature de ces informations. Un objectif qui pourrait faire suite à ce travail pourrait consister à déterminer précisément quelles sont les informations tactiques qui sont utilisées par les joueurs lorsqu’ils anticipent. Si de nombreuses études ont été mises en place concernant l’information gestuelle disponible, ce travail n’a pas été réalisé sur l’utilisation d’information tactique. Il serait par exemple intéressant de mettre en place un protocole basé sur un dispositif de « points lumineux » afin d’analyser les informations tactiques essentielles qui sont utilisées. Ce dispositif pourrait permettre de ne représenter que par un seul point lumineux et donc d’éliminer toutes les informations en lien avec la gestuelle. Dans un tel protocole, on pourrait manipuler en les présentant ou non les différentes informations que sont la balle, les joueurs et le terrain afin de déterminer quels sont les éléments essentiels pour prélever l’information tactique pertinente afin d’anticiper correctement.

9.2 **Les protocoles d’apprentissage et d’entraînement**

9.2.1 **Reconnaissance des situations nécessitant d’anticiper**

L’étude N°1 a montré que les joueurs anticipent essentiellement quand le risque de perdre le point est grand. En d’autres termes, ils anticipent pour éviter que leur adversaire ne réalise un coup gagnant (c’est-à-dire un coup non touché). Nous avons également vu que l’anticipation est un pari et qu’une anticipation erronée engendre presque irrémédiablement la perte du point. De plus, les résultats de l’étude N°1 ont montré que les anticipations sont assez peu nombreuses et on peut se demander s’il ne serait pas intéressant d’un point de vue fondamental mais aussi appliqué de travailler sur la pertinence du choix d’anticiper. Il n’est en effet pas impossible que les joueurs ou certains joueurs soient sur des stratégies trop conservatrices et n’utilisent pas assez l’anticipation.
On peut ainsi envisager de mettre en place une expérimentation dans laquelle on montrerait des séquences de jeu à des joueurs experts et à des participants novices. Ces séquences se concluraient soit par une frappe non décisive et atteignable soit par un coup décisif que l’adversaire ne pourrait pas toucher. Il serait alors demandé aux participants d’indiquer le plus rapidement possible si la frappe occultée est ou n’est pas un coup décisif. Nous pourrions alors observer une supériorité des joueurs experts par rapport aux participants novices dans cette capacité à reconnaître les situations de jeu nécessitant d’anticiper. La question de l’information gestuelle et de l’information tactique pourrait être reposée de manière particulièrement pertinente. Un coup gagnant demande une vitesse de bras et des appuis particuliers (gestuelle) mais s’inscrit également dans une situation de jeu bien particulière (tactique). On pourrait compléter cette étude par la connaissance ou non du joueur vu de dos qui fait face à l’attaque adverse. En fonction de son profil de réactivité et de déplacement, on pourrait s’attendre à ce que les experts modulent leur jugement selon que ce joueur est connu comme réagissant et se déplaçant très vite ou au contraire comme étant plus lent. Cela serait une belle façon de montrer comment l’anticipation est déterminée par la situation et les caractéristiques du joueur impliqué (Dicks et al., 2010).

9.2.2 La structuration des protocoles d’entraînement

Enfin, la question de la structuration des protocoles d’entraînement est également cruciale. Il existe de nombreuses études sur les protocoles d’entraînement des habiletés motrices. Au contraire, les études sur l’entraînement perceptive sont très limitées. À l’heure actuelle, nous ne disposons que de peu de renseignements sur la durée et la fréquence optimales des sessions d’entraînement. Quelle est la période la plus opportune pour développer ces habiletés au cours de la formation d’un joueur ? Quelles sont la durée et la fréquence optimales de développement de ces compétences ? Existe-t-il une période spécifique pour les développer dans la programmation annuelle ? Enfin, existe-t-il un niveau maximal de performance au-delà duquel on ne peut plus les améliorer ?

Comme on peut le constater, les questions à traiter dans le futur sont nombreuses. De plus, on pourrait ajouter celles concernant les tests de terrain et de transferts des situations simulées aux situations réelles ou encore celles en lien avec les possibilités d’action des joueurs et joueuses. En ce qui concerne le transfert des habiletés d’anticipation sur le terrain, il ne faut pas perdre de vue que l’objectif de ces apprentissages perceptifs est de rendre les joueurs plus efficaces sur le terrain et si possible que cette efficacité soit maintenue en situation de stress qui est une composante indéniable du haut niveau. Ainsi, il parait important de réaliser des tests qui permettraient de recontextualiser l’apprentissage en milieu naturel. D’autre part, et comme évoqué plus haut, Dicks et al. (2010b) ont montré que les différences inter-individuelles ont une influence sur le timing des mouvements de réponse de gardiens de but faisant face à un penalty. Ainsi, il existe une relation entre les qualités de vitesse intrinsèques des participants et l’initiation de leur mouvement. En effet, plus ils sont capables de bouger vite et plus ils initient tard leur mouvement. Ainsi, une frappe qui est un coup gagnant pour un joueur ne le sera peut-être pas pour un autre joueur. Cette modification du timing d’initiation du mouvement, en lien avec les qualités intrinsèques des joueurs, pourrait déterminer des prises d’information qui seraient spécifiques à chaque joueur.

Pour conclure, ce travail réalisé dans le cadre d’une approche intégrée de l’expertise (Ericsson & Smith, 1991) a d’abord permis de réaliser la première étude systématique et quantitative de l’anticipation en tennis chez des joueurs professionnels en montrant clairement ce qui peut être considéré comme la part visible de l’anticipation. Il a également permis d’identifier deux types
d’anticipation qui semblent s’appuyer sur différents types d’information au niveau tactique d’une part et gestuel d’autre part. À ce sujet, les études empiriques réalisées donnent des indications sur les différences entre experts et novices dans l’utilisation de ces informations. Cette question reste bien évidemment à approfondir. Concernant l’apprentissage et l’entraînement, nos résultats montrent chez des experts une amélioration des prédictions et une diminution de leur temps de réponse quand ils s’entraînent face à un adversaire spécifique. Ici aussi, la question de l’identification des informations utilisées reste à approfondir. De futures recherches pourront permettre de faire progresser ce domaine particulièrement prometteur.
Références bibliographiques


LES DIFFERENTES NATURES DE L’ANTICIPATION EN TENNIS : DE LA QUANTIFICATION AUX APPRENTISSAGES PERCEPTIFS

L’objectif de ce travail était de questionner l’anticipation dans les sports de balle en prenant support de l’activité tennis. Pour anticiper, les informations utilisées peuvent provenir de deux sources principales : d’une part, la gestuelle de l’adversaire et d’autre part, des connaissances tactiques sur le jeu, les probabilités ou le contexte.

Pour réaliser ce travail, nous nous sommes appuyés sur « l’approche de la performance experte » d’Ericsson et Smith (1991). Dans une première étude, nous avons réalisé une analyse in situ de l’anticipation chez des joueurs de tennis de haut niveau. Les résultats de cette première étude ont montré que les joueurs anticipent essentiellement quand ils sont en situation défavorable et que le risque de perdre le point est grand. De plus, deux fenêtres temporelles distinctes d’anticipation sont apparues : une fenêtre précoce dans laquelle le taux de réussite est important et les informations utilisées peuvent être en lien avec les aspects tactiques ; une fenêtre plus tardive dans laquelle le taux de réussite est plus faible et les informations utilisées peuvent être en lien avec la gestuelle adverse.

Dans une deuxième étape, nous avons mis en place des protocoles expérimentaux permettant d’étudier ces deux fenêtres temporelles et ces différentes sources d’informations. Dans l’étude N°2, nous avons fait varier la disponibilité de l’information gestuelle en fonction de la pertinence de l’information tactique. Les résultats obtenus ont montré que seuls les experts étaient capables d’utiliser de l’information sur la posture et la gestuelle de l’adversaire afin d’anticiper. Dans l’étude N°3, nous avons manipulé la quantité d’information tactique présente dans le point en contrôlant la durée de présentation précédant la réponse. Les résultats n’ont pas montré de différences dans la justesse des anticipations entre les différents temps de présentation. Cependant, le temps de réponse était plus court dans la condition où le temps de présentation était le plus long indiquant donc des prises de décision plus rapides pour anticiper dans cette condition.

Enfin, dans une troisième étape, nous avons réalisé un protocole d’entraînement afin d’essayer d’améliorer l’anticipation basée sur les connaissances tactiques et probabilistiques en lien avec un adversaire particulier. Celui-ci a permis une amélioration de la performance d’anticipation et une diminution du temps de réponse pour le groupe apprentissage spécifique.

Les résultats obtenus à travers ce travail fournissent des données quantitatives sur l’anticipation experte en tennis permettant la mise en place de tâches représentatives. De plus, ils suggèrent l’existence de moments clés d’utilisation des différentes sources d’informations disponibles afin d’anticiper. Pour finir, il semble possible d’améliorer les habiletés d’anticipation, même chez des joueurs experts, en mettant en place des protocoles d’entraînement. Ce travail ouvre des perspectives de recherche nombreuses qui pourront permettre par exemple de formaliser de manière plus précise la nature des informations utilisées pour anticiper.

Mots clés: Expertise, Anticipation, Tennis

THE DIFFERENT NATURES OF TENNIS ANTICIPATION: FROM QUANTIFICATION TO PERCEPTIVE LEARNING

The aim of this work was to analyse anticipation in fast ball sport by using the support of tennis. For anticipation, two different sources of information can be used: on one hand, the opponents’ postural cues and on the other hand, tactical and contextual information.

To achieve this work, we used the « expert performance approach » proposed by Ericsson and Smith (1991). To begin, we carried out an in situ analysis of expert tennis player anticipation (study 1). The results showed that experts anticipate when they are in an unfavorable situation and when the risk to lose the point is high. Moreover, two different temporal windows appeared: a very early temporal window in which the level of response accuracy is high and information used can be related to tactics; a later temporal window in which response accuracy is weaker and information can be related to the opponents’ postural cues.

Secondly, we ran two experiments in order to analyse these two windows, using different types of information. In study 2, we worked on the availability of postural cues according to tactical information. We showed that experts contrary to novices could use postural cues information to improve anticipation accuracy. In the third study, we varied the amount of tactical information inside the point with different conditions presenting 1, 3 or 5 strokes before the occlusion. Results didn’t show any differences in prediction accuracy between different occlusion conditions. However, response time was shorter in the five strokes condition than in other conditions, revealing that the decision for anticipation was taken sooner in this condition.

Finally, in a third step, we ran a learning protocol. The aim was to improve anticipation based on tactical and probabilistic knowledge of one particular opponent. The results showed an improved anticipation performance and a shorter response time for the specific learning group.

The results, we obtained during this PhD work, give quantitative data on expert anticipation in tennis. These results provide a basis to design representative tasks to explore with more details anticipation. Moreover, they suggest the possibility of using the different sources of information to anticipate. To conclude, it seems possible to improve anticipation skills, even for some expert players, by running training protocols. This work opens a lot of perspectives of research which can allow, for example, to formalize with more accuracy the nature of information used to anticipate.

Key words: Expertise, Anticipation, Tennis