J. M. Bauchire, C. Zaepffel, and D. Hong, Spark discharge in Air-CH 4 mixture : Experimental and numerical studies, pp.5-8
URL : https://hal.archives-ouvertes.fr/hal-00449016

S. M. Starikovskaia, Plasma assisted ignition and combustion, Journal of Physics D: Applied Physics, vol.39, issue.16, p.265, 2006.
DOI : 10.1088/0022-3727/39/16/R01

R. Maly, Spark ignition : its physics and effect on the internal combution engine. Fuel Economy in road vehicles powered by spark ignition engines, 1983.

A. Agneray and E. Morillon, Allumage et phase initiale de la combustion, 1997.

G. G. Soete, The influence of isotropic turbulence on the critical ignition energy, 13th Symp. Int. On Combustion, pp.735-743, 1971.
DOI : 10.1016/S0082-0784(71)80076-0

P. Pischinger and J. B. Heywood, How Heat Losses to the Spark Plug Electrodes Affect Flame Kernel Development in an SI-Engine, SAE Technical Paper Series, pp.53-73, 1990.
DOI : 10.4271/900021

Y. Ujie, K. Niu, T. Tsukamot, and M. Kono, Development of flame kernels produced by capacitance sparks in ignition process of combustible mixture, JSAE Review, vol.10, pp.21-27, 1989.

G. G. Soete, Aspects fondamentaux de la combustion en phase gazeuse, 1976.

E. Morillon, Besoins en énergie d'allumage et richesse (locale) Note Technique Renault EM, 1998.

T. X. Phuoc, C. M. White, and D. Mcneill, Laser spark ignition of a jet diffusion flame, Optics and Lasers in Engineering, vol.38, issue.5, pp.217-232, 2002.
DOI : 10.1016/S0143-8166(01)00173-7

T. X. Phuoc, Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases, Optics Communications, vol.175, issue.4-6, pp.419-423, 2000.
DOI : 10.1016/S0030-4018(00)00488-0

T. X. Phuoc and F. P. White, Laser-induced spark ignition of CH4/air mixtures, Combustion and Flame, vol.119, issue.3, pp.203-216, 1999.
DOI : 10.1016/S0010-2180(99)00051-6

T. X. Phuoc, Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures, Combustion and Flame, vol.122, issue.4, pp.508-510, 2000.
DOI : 10.1016/S0010-2180(00)00137-1

M. H. Morsy and S. H. Chung, Laser-induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixture, Experimental Thermal and Fluid Science, vol.27, issue.4, pp.491-497, 2003.
DOI : 10.1016/S0894-1777(02)00252-2

J. D. Dale and A. K. Oppenheim, Enhanced ignition for I.C engines with premixed gases, Trans, SAE Paper, vol.810146, issue.901, pp.606-621, 1981.
DOI : 10.4271/810146

A. Klimov, V. Brovkin, and V. Bityurin, Plasma assisted combustion, 39th Aerospace Sciences Meeting and Exhibit, 2001.
DOI : 10.2514/6.2001-491

F. Auzas, Décharge radiofréquence produite dans le gaz à pression élevée pour le déclenchement de combustion, 2008.

G. G. Soete, Effet de certains phénomènes physiques sur le stade initial de propagtion des flammes allumées par étincelles, 1987.

D. R. Ballal and H. Lefebvre, The influence of spark discharge characteristics on minimum ignition energy in flowing gases, Combustion and Flame, vol.24, pp.99-108, 1975.
DOI : 10.1016/0010-2180(75)90132-7

D. R. Ballal and H. Lefebvre, Ignition and flame quenching in flowing gazeous mixtures, Proc.R.Soc.Lond, A, pp.163-181, 1977.

E. Samson, Etude Expérimentale de la Propagation de Flammes en Expansion dans un Milieu à Richesse Stratifiée, 2002.

H. Daneshyar, The structure of small-scale turbulence and its effect on combustion in spark ignition engines, Progress in Energy Combustion Science, pp.47-73, 1987.
DOI : 10.1016/0360-1285(87)90006-2

. F. Buda, Mécanismes cinétiques pour l'amélioration de la sécurité des procédés d'oxydation des hydrocarbures, 2006.

R. P. Lindstedt and L. Q. Maurice, DETAILED KINETIC MODELLING OF N-HEPTANE COMBUSTION, Combustion Science and Technology, vol.10, issue.4-6, 1995.
DOI : 10.1016/0010-2180(88)90096-X

H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, A Comprehensive Modeling Study of n-Heptane Oxidation, Combustion and Flame, vol.114, issue.1-2, pp.149-177, 1998.
DOI : 10.1016/S0010-2180(97)00282-4

N. Peters, G. Paczko, R. Seiser, and K. Seshadri, Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane, Combustion and Flame, vol.128, issue.1-2, pp.38-59, 2002.
DOI : 10.1016/S0010-2180(01)00331-5

H. L. Olsen, E. L. Gayhart, and R. B. Edmonson, Propagation of the incepient spark-ignited flames in hydrogen-air and propane-air mixtures, 4th Symp.Inter. On Combustion, pp.139-143, 1953.

J. S. Arnold and R. K. Sherburne, Observations of the ignition and inceptions flame growth in hydrocarbon-air mixtures, 4th Symp.Inter. On Combustion, 1953.

M. Champion and B. Deshaies, Spherical flame initiation: Theory versus experiments for lean propane???air mixtures, Combustion and Flame, vol.65, issue.3, pp.319-337, 1986.
DOI : 10.1016/0010-2180(86)90045-3

Y. Ko, V. S. Arpaci, and R. W. Anderson, Spark ignition of propane-air mixtures near the minimum ignition energy: Part II. A model development, Combustion and Flame, vol.83, issue.1-2, pp.88-105, 1991.
DOI : 10.1016/0010-2180(91)90205-P

R. Herweg and R. Maly, A fundamental model for flame kernel formation in S.I engines, SAE Technical Paper Series, p.922243, 1992.

Y. Ko, V. S. Arpaci, and R. W. Anderson, Spark ignition of propane-air mixtures near the minimum ignition energy: Part I. An experimental study, Combustion and Flame, vol.83, issue.1-2, pp.75-87, 1991.
DOI : 10.1016/0010-2180(91)90204-O

M. Weis and N. Zarzalis, Model,software development for calculation of markstein numbers and minimum ignition energies, 2004.

M. Weis and N. Zarzalis, Calculation of markstein numbers, their influence on the minimum ignition energy and implementation of practical software, 2006.

N. Moreau and S. Pasquiers, Propane dissociation in a non-thermal high-pressure nitrogen plasma, Journal of Physics D: Applied Physics, vol.43, issue.28, 2010.
DOI : 10.1088/0022-3727/43/28/285201

URL : https://hal.archives-ouvertes.fr/hal-00569649

J. Herron, Evaluated chemical kinetics data for reacions of N( 2 D), N( 2 P), and N 2 (A 3 ? + u ) in the gas phase, Journal of chem.Ref.Data, issue.5, p.28, 1999.

W. Mallard and F. Westley, NIST Chemical Kinetics Database, version 2Q98, National Institute of Standards and Technology, 1998.

L. Magne and S. Pasquiers, Production and reactivity of the hydroxyl radical in homogeneous high pressure plasmas of atmospheric gases containing traces of light olefins, Journal of Physics D: Applied Physics, vol.40, issue.10, p.40, 2007.
DOI : 10.1088/0022-3727/40/10/015

W. Tsang, Chemical Kinetic Data Base for Combustion Chemistry. Part 3: Propane, Journal of Physical and Chemical Reference Data, vol.17, issue.2, 1988.
DOI : 10.1063/1.555806

R. Atkinson, Estimations of OH radical rate constants from H-atom abstraction from C?H and O?H bonds over the temperature range 250-1000 K, International Journal of Chemical Kinetics, vol.33, issue.5, p.18, 1986.
DOI : 10.1002/kin.550180506

S. Pasquiers and S. Bentaleb, Towards a kinetic understanding of the ignition of airpropane mixture by a non-equilibrium discharge : the decomposition mechanisms of propane, Internationa Journal of Aerodynamics, 2012.

N. Moreau, Décharge nanoseconde dans l'air et en mélange air/propane Application au déclenchement de combustion, 2011.

S. A. Bozhenkov, S. M. Starikovskaia, A. Yu, and . Starikovskii, Nanosecond gas discharge ignition of H2??? and CH4??? containing mixtures, Combustion and Flame, vol.133, issue.1-2, pp.133-146, 2003.
DOI : 10.1016/S0010-2180(02)00564-3

S. V. Pancheshny, S. V. Sobakin, S. M. Starikovskaya, A. Yu, and . Starikovskii, Discharge dynamics and the production of active particles in a cathode-directed streamer, Plasma Physics Reports, vol.26, issue.12, pp.1054-1065, 2000.
DOI : 10.1134/1.1331141

V. G. Samoilovich and V. I. Gibalov, Physical Chemistry of Barrier Discharge, 1989.

S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, D. V. Zatsepin, A. Yu et al., Pulsed breakdown at high overvoltage: development, propagation and energy branching, Plasma Sources Science and Technology, vol.10, issue.2, pp.344-355, 2001.
DOI : 10.1088/0963-0252/10/2/324

P. Tardiveau, Contribution à l'étude du déclenchement de la combustion par décharge électrique en milieu diphasique, 2002.

P. Tardiveau, E. Marode, and A. Agneray, Tracking an individual streamer branch among others in a pulsed induced discharge, Journal of Physics D: Applied Physics, vol.35, issue.21, p.2823, 2002.
DOI : 10.1088/0022-3727/35/21/319

E. M. Van-veldhuizen, Pulsed positive corona streamer propagation and branching, Journal of Physics D: Applied Physics, vol.35, issue.17, p.2169, 2002.
DOI : 10.1088/0022-3727/35/17/313

K. Hassouni, F. Massines, and J. M. Pouvesle, Plasmas hors-équilibre à des pressions atmosphériques . Plasmas froids : Génération , caractérisation et technologies, 2004.

H. Raether, Electron avalanches breakdown in gases, 1964.

J. M. Meek and J. D. Graggs, Electrical breakdown of gases, 1953.

L. B. Loeb, Electrical Coronas, 1965.

B. F. Schonland, Atmospheric Electricity, 1953.

E. M. Van-veldhuizen and W. Rutgers, Corona discharges : fundamentals and diagnosticsThe netherlands, Proc.Frontiers in Low.Tem. Plasma Diagn.IV, Rodulc, pp.40-49, 2001.

S. V. Pancheshnyi, Role of electronegative gas admixtures in streamer start, propagation and branching phenomena, Plasma Sources Science and Technology, vol.14, issue.4, pp.645-653, 2005.
DOI : 10.1088/0963-0252/14/4/002

URL : https://hal.archives-ouvertes.fr/hal-00113389

B. Senouci, Influence des impuretés sur la formation et le mode de la décharge dans le SF 6 comprimé en polarité positive, 1987.

G. Berger, E. Marode, O. Belabed, B. Senouci, and I. Gallimberti, for positive polarity, Journal of Physics D: Applied Physics, vol.24, issue.9, pp.1551-1556, 1991.
DOI : 10.1088/0022-3727/24/9/006

O. Guaitella, Nature de la synergie plasma-photocatalyseur pour la destruction d'un composé organique volatile type : l'acétylène, 2006.

U. Kogelschatz, Dielectric-Barrier Discharges : Their History, Discharge Physics, and Industrial Applications, Plasma Chemistry and plasma Processing, vol.23, issue.1, 2003.

B. Eliasson, M. Hirth, and U. Kogelschatz, Ozone synthesis from oxygen in dielectric barrier discharges, Journal of Physics D: Applied Physics, vol.20, issue.11, p.1421, 1987.
DOI : 10.1088/0022-3727/20/11/010

S. V. Pancheshnyi and S. M. Starikovskaia, Role of photoionization processes in propagation of cathode-directed streamer, Journal of Physics D: Applied Physics, vol.34, issue.1, 2001.
DOI : 10.1088/0022-3727/34/1/317

S. V. Pancheshnyi and M. Nudnova, Development of a cathode-directed streamer discharge in air at different pressures: Experiment and comparison with direct numerical simulation, Physical Review E, vol.71, issue.1, p.71, 2005.
DOI : 10.1103/PhysRevE.71.016407

URL : https://hal.archives-ouvertes.fr/hal-00126034

A. Bourdon, V. P. Pasko, N. Y. Liu, S. Celestin, P. Segur et al., Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations, Plasma Sources Science and Technology, vol.16, issue.3, p.656678, 2007.
DOI : 10.1088/0963-0252/16/3/026

N. Liu, S. Celestin, A. Bourdon, V. P. Pasko, and E. Marode, Application of photoionization models based on radiative transfer and the Helmholtz equations to studies of streamers in weak electric fields, Applied Physics Letters, vol.91, issue.21, pp.91-211501, 2007.
DOI : 10.1063/1.2816906

URL : https://hal.archives-ouvertes.fr/hal-00222730

O. Eichwald, O. Ducasse, D. Dubois, A. Abahazem, N. Merbahi et al., Experimental analysis and modelling of positive streamer in air: towards an estimation of O and N radical production, Journal of Physics D: Applied Physics, vol.41, issue.23, p.41, 2008.
DOI : 10.1088/0022-3727/41/23/234002

R. S. Sigmund, The residual streamer channel: Return strokes and secondary streamers, Journal of Applied Physics, vol.56, issue.5, pp.1355-1369, 1984.
DOI : 10.1063/1.334126

E. Marode, The mechanism of spark breakdown in air at atmospheric pressure between a positive point and a plane. I. Experimental: Nature of the streamer track, Journal of Applied Physics, vol.46, issue.5, pp.2005-2015, 1975.
DOI : 10.1063/1.321882

E. Marode, The mechanism of spark breakdown in air at atmospheric pressure between a positive point and plane. II. Theoretical: Computer simulation of the streamer track, Journal of Applied Physics, vol.46, issue.5, pp.2016-2020, 1975.
DOI : 10.1063/1.321814

S. K. Dahli and P. F. Williams, Two???dimensional studies of streamers in gases, Journal of Applied Physics, vol.62, issue.12, pp.4696-4707, 1987.
DOI : 10.1063/1.339020

A. A. Kulikovsky, Positive streamer between parallel plate electrodes in atmospheric pressure air, Journal of Physics D: Applied Physics, vol.30, issue.3, pp.441-450, 1997.
DOI : 10.1088/0022-3727/30/3/017

A. A. Kulikovsky, Production of active species in the air by a single positive streamer in a nonunifom field, IEEE transactions on plasma science, vol.25, pp.2483-2493, 1995.

A. A. Kulikovsky, between parallel-plate electrodes, Journal of Physics D: Applied Physics, vol.28, issue.12, pp.2483-2493, 1995.
DOI : 10.1088/0022-3727/28/12/015

X. Jaffrezic, Etude de l'amorçage de la combustion dans un mélange air-propane par un plasma non-thermique. Application à l'optimisation de l'allumage sur un moteur, 1995.

F. Auzas, P. Tardiveau, V. Puech, M. Makarov, and A. Agneray, Heating effects of a non-equilibrium RF corona discharge in atmospheric air, Journal of Physics D: Applied Physics, vol.43, issue.49, p.43495204, 2010.
DOI : 10.1088/0022-3727/43/49/495204

N. Chintala, A. Bao, G. Lou, and I. Adamovich, Measurements of combustion efficiency in nonequilibrium RF plasma-ignited flows, Combustion and Flame, vol.144, issue.4, pp.744-756, 2006.
DOI : 10.1016/j.combustflame.2005.08.040

S. M. Bozhenkov and S. M. Starikovskaia, Combustion mixtures ignition in a wide pressure range nanoseconde high-voltage discharge ignition. 41st Aerospace Science Meeting and Exhibit, 2003.

P. Tardiveau, N. Moreau, F. Jorand, C. Postel, S. Pasquiers et al., Nanosecond Scale Discharge Dynamics in High Pressure Air, IEEE Transactions on Plasma Science, vol.36, issue.4, pp.895-897, 2008.
DOI : 10.1109/TPS.2008.917770

E. Domingues, M. Burey, B. Lecordier, and P. Vervisch, Ignition in an SI Engine using Nanosecond Discharges generated by a Spark Gap Plasma Igniter (SGPI) Society of Automotive Engines, SAE, 2008.

J. Liu and F. Wang, Transient plasma ignition, IEEE Transactions on Plasma Science, vol.33, issue.2, pp.326-327, 2005.

D. Messina, B. Attal-tretout, and F. Grisch, Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering, Proceedings of the combustion institute, pp.825-832, 2007.
DOI : 10.1016/j.proci.2006.07.169

S. V. Pancheshnyi, D. A. Lacoste, C. O. Bourdon, and . Laux, Ignition of Propane–Air Mixtures by a Repetitively Pulsed Nanosecond Discharge, IEEE Transactions on Plasma Science, vol.34, issue.6, p.34, 2006.
DOI : 10.1109/TPS.2006.876421

S. V. Pancheshnyi, D. A. Lacoste, A. Bourdon, and C. O. Laux, Ignition of Propane-Air Mixtures by a Sequence of Nanosecond Pulses, 37th AIAA Plasmadynamics and Lasers Conference, 2005.
DOI : 10.2514/6.2006-3769

G. Lou, A. Bao, M. Nishihara, S. Keshav, Y. Utkin et al., Ignition of premixed hydrocarbon-air flows by repetitively pulsed, nanosecond pulse duration plasma, Proceedings of the Combustion Institute, pp.313327-3334, 2007.

S. M. Starikovskaia and E. N. Kukaev, Analysis of the spatial uniformity of the combustion of a gaseous mixture initiated by a nanosecond discharge, Combustion and Flame, vol.139, issue.3, pp.177-187, 2004.
DOI : 10.1016/j.combustflame.2004.07.005

S. M. Starikovskaia, I. Kosarev, A. V. Krasnochub, E. I. Mintoussov, and A. Starikovskii, Control of combustion and ignition of hydrocarbon-containing mixtures by nanosecond pulsed discharges. 43 rd, AIAA Aerospace Science Meeting and Exhibit, 2005.

I. N. Kosarev, N. L. Aleksandrov, S. V. Kindisheva, S. M. Starikovskaia, A. Yu et al., Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: C2H6- to C5H12-containing mixtures, Combustion and Flame, vol.156, issue.1, pp.221-233, 2009.
DOI : 10.1016/j.combustflame.2008.07.013

J. Liu, F. Wang, L. Lee, N. Theiss, P. Ronney et al., Effect of Discharge Energy and Cavity Geometry on Flame Ignition by Transient Plasma, 42nd AIAA Aerospace Sciences Meeting and Exhibit, pp.5-8, 2004.
DOI : 10.2514/6.2004-1011

J. B. Liu, P. D. Ronney, and M. A. Gundersen, Premixed flame ignition by transient plasma discharges. Proceeding of the 3 rd Joint Meeting of the U Sections. The combustion Institute, 2003.
DOI : 10.2514/6.2004-837

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.490.8957

F. Wang, C. Jiang, and A. Kuthi, Transient plasma ignition of hydrocarbon-air mixture in pulse detonation engines. 42 nd AIAA Aerospace Sciences Meeting and Exhibit, 2004.

F. Wang, J. B. Liu, and A. Kuthi, Transient plasma ignition of quiescent and flowing air/fuel mixtures, IEEE Transactions on Plasma Science, vol.33, issue.2, 2005.

A. G. Repev and P. B. Repin, Dynamics of the optical emission from a high-voltage diffuse discharge in a rod-plane electrode system in atmospheric-pressure air, Plasma Physics Reports, vol.32, issue.1, pp.72-78, 2006.
DOI : 10.1134/S1063780X06010077

T. Shao, V. F. Tarasenko, C. Zhang, I. D. Kostyrya, H. Jiang et al., Generation of Runaway Electrons and X-rays in Repetitive Nanosecond Pulse Corona Discharge in Atmospheric Pressure Air, Applied Physics Express, vol.4, issue.6, p.66001, 2011.
DOI : 10.1143/APEX.4.066001

V. F. Tarasenko, S. I. Yakovlenko, .. N. Tkachev, and I. D. Kostyrya, Energy distribution of runaway and fast electrons upon nanosecond volume discharge in atmospheric-pressure air, Laser Physics, vol.16, issue.7, pp.1039-1049, 2006.
DOI : 10.1134/S1054660X06070036

L. Pecastaing, Conception et réalisation d'un système de génération d'impulsions haute tension ultra brèves Application aux radars larges bandes, 2001.

P. Tardiveau, N. Moreau, S. Bentaleb, C. Postel, and S. Pasquiers, Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage, Journal of Physics D: Applied Physics, vol.42, issue.17, p.42175202, 2009.
DOI : 10.1088/0022-3727/42/17/175202

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, Optical diagnostics of atmospheric pressure air plasmas, Plasma Sources Science and Technology, vol.12, issue.2, pp.125-138, 2003.
DOI : 10.1088/0963-0252/12/2/301

C. O. Laux, Optical diagnostics and radiative emission of air plasmas, 1993.

C. O. Laux, Radiation and non-equilibrium collisional radiative models, 2002.

G. A. Grandin, Développement et exploitation de techniques de diagnostic optique pour la compréhension des phénomènes de combustion assistée par décharges nanosecondes impulsionnelles répétitives, 2011.

I. K. Bronic and K. Grosswendt, Ionization coefficient in propane, propane-based tissue equivalent and dimethyl-ether in strong non-uniform electric fields, Journal of Physics D: Applied Physics, vol.32, issue.24, pp.3179-3187, 1999.
DOI : 10.1088/0022-3727/32/24/314

A. E. Heylen, Ionization coefficients and sparking voltages from methane to butane, International Journal of Electronics, vol.1237, issue.6, pp.653-660, 1975.
DOI : 10.1080/00207217508920532

V. L. Bychkov, I. V. Kochetov, D. V. Bychkov, and S. A. Volkov, Air–Propane Mixture Ionization Processes in Gas Discharges, IEEE Transactions on Plasma Science, vol.37, issue.12, p.37, 2009.
DOI : 10.1109/TPS.2009.2026755

S. T. Arnold, R. A. Morris, and A. A. Viggiano, with Various Alkanes:?? Competition between Hydrogen Abstraction and Reactive Detachment, The Journal of Physical Chemistry A, vol.102, issue.8, pp.1345-1348, 1998.
DOI : 10.1021/jp9733429

Y. P. Raizer, Gas discharge physics, 1997.
DOI : 10.1007/978-3-642-61247-3

T. L. Cottrell, W. J. Pollock, and I. Walker, Electron drift velocities in quadrupolar and polar gases, Transactions of the Faraday Society, vol.64, pp.2260-2266, 1968.
DOI : 10.1039/tf9686402260

Y. D. Korolev and G. A. Mesyats, Physics of pulsed breakdown in gases, 1998.

S. V. Pancheshnyi, A. Yu, and . Starikovskii, Streamer breakdown development in chemically active mixtures in long discharge gaps, Physics, pp.2-5

G. V. Naidis, On photoionization produced by discharges in air, Plasma Sources Science and Technology, vol.15, issue.2, pp.253-255, 2006.
DOI : 10.1088/0963-0252/15/2/010

J. W. Au, Absolute photoabsorption and photoionization studies of large polyatomic molecules by hifh energy electron impact and mass spectroscopy, 1992.

Y. Zuzeek, I. Choi, M. Uddi, I. V. Adamovich, and W. R. Lempert, Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene???air nanosecond pulse discharge plasmas, Journal of Physics D: Applied Physics, vol.43, issue.12, p.43124001, 2010.
DOI : 10.1088/0022-3727/43/12/124001

Y. P. Raizer, Gas Discharge Physics, 1991.
DOI : 10.1007/978-3-642-61247-3

L. P. Babich, E. N. Donskoy, R. I. Il-'kaev, I. M. Kutsyk, and R. A. Roussel-dupre, Fundamental parameters of a relativistic runaway electron avalanche in air, Plasma Physics Reports, vol.30, issue.7, pp.616-624, 2004.
DOI : 10.1134/1.1778437

V. F. Tarasenko and S. I. Yakovlenko, The electron runaway mechanism in dense gases and the production of high-power subnanosecond electron beams. Reviews of tropical problems, pp.887-905, 2004.

J. I. Levatter and S. Lin, Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high gas pressures, Journal of Applied Physics, vol.51, issue.1, pp.210-222, 1980.
DOI : 10.1063/1.327412

D. Singleton, S. J. Pendleton, and M. A. Gundersen, ???air, Journal of Physics D: Applied Physics, vol.44, issue.2, p.22001, 2011.
DOI : 10.1088/0022-3727/44/2/022001

T. Shiraishi, T. Urushihara, and M. Gundersen, A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition, Journal of Physics D: Applied Physics, vol.42, issue.13, p.42135208, 2009.
DOI : 10.1088/0022-3727/42/13/135208

. Starikovskii, Ignition of hydrocarbon-containing mixtures by nonequilibrium plasma . Experiment and numerical modelling, Physics, pp.881-884, 2007.

G. J. Gibbs and H. F. Calcote, Effect of Molecular Structure on Burning Velocity., Journal of Chemical & Engineering Data, vol.4, issue.3, pp.226-237, 1959.
DOI : 10.1021/je60003a011

M. Gerstein, O. Levine, and E. L. Wong, Flame Propagation. II. The Determination of Fundamental Burning Velocities of Hydrocarbons by a Revised Tube Method, Journal of the American Chemical Society, vol.73, issue.1, pp.418-422, 1957.
DOI : 10.1021/ja01145a136

S. G. Davis and C. K. Law, Laminar flame speeds abd oxydation kinetics of iso-octane-air and n-hpetane-air flames, 27th Symposium International on Combustion. The Combustion Institute, pp.521-527, 1998.

C. M. Vagelopoulos and F. Egolfopoulos, Direct experimental determination of laminar flame speeds, 27th Symposium International on Combustion. The Combustion Institute, pp.513-518, 1998.
DOI : 10.1016/S0082-0784(98)80441-4

P. Tardiveau, N. Moreau, S. Bentaleb, C. Postel, and S. Pasquiers, Laboratoire De Physique, Université Paris-sud, and Orsay Cedex. Pressure scaling effects on a nanosecond range diffuse discharge in air, pp.0-3

S. Pasquiers, N. Blin-simiand, P. Jeanney, and F. Jorand, Kinetic of propane in homogeneous high pressure low temperature plasmas of atmospheric, Proc. 63th GEC, p.78, 2010.

H. Seiser, H. Pitsch, K. Seshadri, W. J. Pitz, and H. J. Curran, Extinction and autoignition of n-heptane in counterflow configuration, Proceedings of the Combustion Institute, pp.2029-2037, 2000.
DOI : 10.1016/S0082-0784(00)80610-4