P. Temple-boyer, « Développement des microtechnologies pour les applications capteurs Application à la (bio)chimie », présentation CMC2, 2011.

P. B. Luppa, L. J. Sokoll, and D. W. Et-chan, Immunosensors???principles and applications to clinical chemistry, Clinica Chimica Acta, vol.314, issue.1-2, pp.1-26, 2001.
DOI : 10.1016/S0009-8981(01)00629-5

D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, Electrochemical biosensors: recommended definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1, Biosensors and Bioelectronics, vol.16, issue.1-2, pp.121-131, 2001.
DOI : 10.1016/S0956-5663(01)00115-4

L. C. Clark, Monitor and control of blood and tissue oxygenation, Tr Am Soc Artif Intern Organ, vol.2, pp.41-45, 1956.

W. K. Ward, L. B. Jansen, E. Anderson, G. Reach, J. C. Klein et al., A new amperometric glucose microsensor: in vitro and short-term in vivo evaluation, Biosensors and Bioelectronics, vol.17, issue.3, pp.181-189, 2002.
DOI : 10.1016/S0956-5663(01)00268-8

X. Cia, N. Klauke, A. Glidle, P. Cobbold, G. L. Smith et al., Ultra-low-volume, real-time measurements of lactate from the single heart cell using microsystems technology, Anal. Chem, vol.74, pp.908-914, 2002.

R. M. Umek, S. W. Lin, J. Vielmetter, R. H. Terbrueggen, B. Irvine et al., Electronic Detection of Nucleic Acids, The Journal of Molecular Diagnostics, vol.3, issue.2, pp.74-84, 2001.
DOI : 10.1016/S1525-1578(10)60655-1

G. J. Maclay, W. J. Buttner, and J. R. Stetter, Microfabricated amperometric gas sensors, IEEE Transactions on Electron Devices, vol.35, issue.6, pp.793-799, 1988.
DOI : 10.1109/16.2533

G. Durand and «. Potentiométrie, Définitions et principes généraux », traité Analyse et Caractérisation, pp.2115-2117, 1983.

C. Maccà, Response time of ion-selective electrodes, Analytica Chimica Acta, vol.512, issue.2, pp.183-190, 2004.
DOI : 10.1016/j.aca.2004.03.010

H. Nilsson, A. C. Akerlund, and K. Mosbach, Determination of glucose, urea and penicillin using enzyme-pH-electrodes, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.320, issue.2, pp.529-534, 1973.
DOI : 10.1016/0304-4165(73)90333-4

R. Tor and F. A. , New enzyme membrane for enzyme electrodes, Analytical Chemistry, vol.58, issue.6, pp.1042-1046, 1986.
DOI : 10.1021/ac00297a013

J. J. Kulys, Urease sensors based on differential antimony electrodes, Biosensors, vol.2, issue.1, pp.35-44, 1986.
DOI : 10.1016/0265-928X(86)85011-8

W. Sant, M. L. Pourciel, J. Launay, T. Conto, . Do et al., Development of chemical field effect transistors for the detection of urea, Sensors and Actuators B: Chemical, vol.95, issue.1-3, pp.95-309, 2003.
DOI : 10.1016/S0925-4005(03)00430-1

W. Sant, P. Temple-boyer, E. Chanié, J. Launay, and A. Martinez, On-line monitoring of urea using enzymatic field effect transistors, Sensors and Actuators B: Chemical, vol.160, issue.1, 2011.
DOI : 10.1016/j.snb.2011.07.012

URL : https://hal.archives-ouvertes.fr/hal-01511364

I. Humenyuk, B. Torbiéro, S. Assié-souleille, R. Colin, X. Dollat et al., Development of pNH4-isfets microsensors for water analysis, Microelectronics Journal, vol.37, issue.6, pp.475-479, 2006.
DOI : 10.1016/j.mejo.2005.09.024

N. Jaffrezic-renault, A. Soldatkin, C. Martelet, P. Temple-boyer, W. Sant et al., Tailoring enzymatic membranes for ENFETs for dialysis monitoring, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), pp.1188-1191, 2003.
DOI : 10.1109/SENSOR.2003.1216984

L. Campanella, C. Colapicchioni, G. Favero, M. P. Sammartino, and M. Tomassetti, Organophosphorus pesticide (Paraoxon) analysis using solid state sensors, Sensors and Actuators B: Chemical, vol.33, issue.1-3, pp.25-33, 1996.
DOI : 10.1016/0925-4005(96)01909-0

J. M. Chovelon, Préparation de couches minces d'oxynitrure de silicium par PECVD en vue de greffage chimique. Application à un ISFET pH, Thèse de doctorat, école centrale de Lyon, 1991.

S. V. Dzyadevych, A. P. Soldatkin, A. V. El-'skaya, C. Martelet, and N. Jaffrezic-renault, Enzyme biosensors based on ion-selective field-effect transistors, Analytica Chimica Acta, vol.568, issue.1-2, pp.248-258, 2006.
DOI : 10.1016/j.aca.2005.11.057

URL : https://hal.archives-ouvertes.fr/hal-00140605

M. Castellarnau, N. Zine, J. Bausells, C. Madrid, A. Juarez et al., Integrated cell positioning and cell-based ISFET biosensors, Sensors and Actuators B: Chemical, vol.120, issue.2, pp.615-620, 2007.
DOI : 10.1016/j.snb.2006.01.057

B. K. Sohn and C. S. Kim, A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen, Sensors and Actuators B: Chemical, vol.34, issue.1-3, pp.435-440, 1996.
DOI : 10.1016/S0925-4005(97)80017-2

S. P. Sorensen, Enzyme studies II: measurement and significance of hydrogen ion concentration in enzyme processes, Biochemische Zeitschrift, vol.21, pp.131-304, 1909.

W. M. Clarke, THE DETERMINATION OF HYDROGEN IONS, The American Journal of the Medical Sciences, vol.177, issue.1, p.126, 1929.
DOI : 10.1097/00000441-192901000-00018

J. Tan, M. Lascon, and F. Sevilla, Potentiometric pH sensor based on an oil paste containing Quinhydrone Asian conference on sensors, IEEE Kuala Lumpur Malaysia, pp.39-42, 2005.

G. F. Huang and M. K. Guo, Resting dental plaque pH values after repeated measurements at different sites in the oral cavity, In Nat. Sci. Counc. ROC. B, vol.24, pp.187-192, 2000.

C. R. Caflisch, L. R. Pucacco, and N. W. Carter, Manufacture and utilization of antimony pH electrodes, Kidney International, vol.14, issue.2, pp.126-141, 1978.
DOI : 10.1038/ki.1978.100

B. J. Deboux, E. Lewis, P. J. Scully, and R. Edwards, A novel technique for optical fiber pH sensing based on methylene blue adsorption, Journal of Lightwave Technology, vol.13, issue.7, pp.1407-1414, 1995.
DOI : 10.1109/50.400705

J. A. Ferguson, B. G. Healey, K. S. Bronk, S. M. Barnard, and W. D. , Simultaneous monitoring of pH, CO2 and O2 using an optical imaging fiber, Analytica Chimica Acta, vol.340, issue.1-3, pp.123-131, 1997.
DOI : 10.1016/S0003-2670(96)00510-7

C. Ruan, K. Zeng, and C. A. Grimes, A mass-sensitive pH sensor based on a stimuli-responsive polymer, Analytica Chimica Acta, vol.497, issue.1-2, pp.123-131, 2003.
DOI : 10.1016/j.aca.2003.08.051

C. Fenster, A. J. Smith, A. Abts, S. Milenkovic, and A. W. Hassel, Single tungsten nanowires as pH sensitive electrodes, Electrochemistry Communications, vol.10, issue.8, pp.1125-1128, 2008.
DOI : 10.1016/j.elecom.2008.05.008

H. Razmi, H. Heidari, and E. Habibi, pH-sensing properties of PbO2 thin film electrodeposited on carbon ceramic electrode, Journal of Solid State Electrochemistry, vol.72, issue.71, pp.1579-1587, 2008.
DOI : 10.1007/s10008-008-0523-5

M. Wang, S. Yao, and M. Madou, A long-term stable iridium oxide pH electrode, Sensors and Actuators B: Chemical, vol.81, issue.2-3, pp.313-315, 2002.
DOI : 10.1016/S0925-4005(01)00972-8

Y. Ha and M. Wang, Capillary Melt Method for Micro Antimony Oxide pH Electrode, Electroanalysis, vol.50, issue.11, pp.1121-1125, 2006.
DOI : 10.1002/elan.200603517

E. Pringsheim, E. Terpetschnig, and O. S. Wolfbeis, Optical sensing of pH using thin films of substituted polyanilines, Analytica Chimica Acta, vol.357, issue.3, pp.247-252, 1997.
DOI : 10.1016/S0003-2670(97)00563-1

A. Talaie, J. Y. Lee, Y. K. Lee, J. Jang, J. A. Romagnoli et al., Dynamic sensing using intelligent composite: an investigation to development of new pH sensors and electrochromic devices, Thin Solid Films, vol.363, issue.1-2, pp.163-166, 2000.
DOI : 10.1016/S0040-6090(99)00987-6

B. Adhikari and S. Majumdar, Polymers in sensor applications, Progress in Polymer Science, vol.29, issue.7, pp.699-766, 2004.
DOI : 10.1016/j.progpolymsci.2004.03.002

R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, Micromechanical cantilever as an ultrasensitive pH microsensor, Applied Physics Letters, vol.81, issue.16, pp.3091-3093, 2002.
DOI : 10.1063/1.1514825

J. Fritz, M. K. Baller, H. P. Lang, T. Strunz, E. Meyer et al., Stress at the Solid???Liquid Interface of Self-Assembled Monolayers on Gold Investigated with a Nanomechanical Sensor, Langmuir, vol.16, issue.25, pp.9694-9696, 2000.
DOI : 10.1021/la000975x

P. Bergveld, Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements, IEEE Transactions on Biomedical Engineering, vol.17, issue.1, pp.70-71, 1970.
DOI : 10.1109/TBME.1970.4502688

B. Hajji, P. Temple-boyer, J. Launay, T. Do-conto, and A. Martinez, pH, pK and pNa detection properties of SiO2/Si3N4 ISFET chemical sensors, Microelectronics Reliability, vol.40, issue.4-5, pp.40-783, 2000.
DOI : 10.1016/S0026-2714(99)00285-1

A. Errachid, A. Ivorra, J. Aguilo, R. Villa, N. Zine et al., New technology for multi-sensor silicon needles for biomedical applications, Sensors and Actuators B: Chemical, vol.78, issue.1-3, pp.1-3, 2001.
DOI : 10.1016/S0925-4005(01)00826-7

L. Bousse, D. Hanfeman, and N. Tran, Time-dependence of the chemical response of silicon nitride surfaces, Sensors and Actuators B: Chemical, vol.1, issue.1-6, pp.361-367, 1990.
DOI : 10.1016/0925-4005(90)80231-N

I. Kobayashi, T. Ogawa, and S. Hotta, Plasma-Enhanced Chemical Vapor Deposition of Silicon Nitride, Japanese Journal of Applied Physics, vol.31, issue.Part 1, No. 2A, pp.31-336, 1992.
DOI : 10.1143/JJAP.31.336

M. Lemiti, S. Audisio, J. C. Dupuy, and B. Balland, Silicon nitride films deposited by Hg-photosensitization chemical vapor deposition, Journal of Non-Crystalline Solids, vol.144, pp.261-268, 1992.
DOI : 10.1016/S0022-3093(05)80409-0

L. Van-der-vlekkert and . De-rooij, Hysteresis in Al2O3-gate ISFET, Sensors and actuators, issue.2, pp.103-110, 1990.

H. Van-der-vlekkert, L. Bousse, N. Rooij, and . De, The temperature dependence of the surface potential at the Al2O3/electrolyte interface, Journal of Colloid and Interface Science, vol.122, issue.2, pp.336-345, 1988.
DOI : 10.1016/0021-9797(88)90369-4

L. Bousse, S. Mostarshed, B. Van-der-schoot, N. F. Rooij, and . De, Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators, Sensors and Actuators B: Chemical, vol.17, issue.2, pp.157-164, 1994.
DOI : 10.1016/0925-4005(94)87044-6

M. N. Niu and X. F. Tong, Effect of two types of surfaces sites on the characteristics of Si 3 N 4 gate pH-ISFET, Sensors and actuators B37, pp.13-17, 1996.

B. D. Liu, Y. K. Su, and S. C. Chen, Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing, International Journal of Electronics, vol.67, issue.1, pp.59-63, 1989.
DOI : 10.1016/0250-6874(81)80047-9

C. E. Lue, T. C. Yu, C. M. Yang, D. G. Pijanowska, and C. S. Lai, Optimization of Urea-EnFET Based on Ta2O5 Layer with Post Annealing, Sensors, vol.11, issue.12, pp.4562-4571, 2011.
DOI : 10.3390/s110504562

Y. Ito, Long-term drift mechanism of Ta2O5 gate pH-ISFETs, Sensors and Actuators B: Chemical, vol.64, issue.1-3, pp.152-155, 2000.
DOI : 10.1016/S0925-4005(99)00499-2

A. Amari, Etude de la réponse au pH de structures microélectronique a membranes de nitrure de silicium fabriqué par LPCVD, Thèse de doctorat, université Paul Sabatier Toulouse III, 1984.

L. Bousse, N. F. Rooij, . De, and P. Bergveld, Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface, IEEE Transactions on Electron Devices, vol.30, issue.10, pp.1263-1270, 1983.
DOI : 10.1109/T-ED.1983.21284

D. L. Harame, L. J. Bousse, J. D. Shott, and J. D. Meindl, Ion-sensing devices with silicon nitride and borosilicate glass insulators, IEEE Transactions on Electron Devices, vol.34, issue.8, pp.1700-1707, 1987.
DOI : 10.1109/T-ED.1987.23140

G. F. Blackburn, M. Levy, and J. J. , Field-effect transistor sensitive to dipolar molecules, Applied Physics Letters, vol.43, issue.7, pp.43-700, 1983.
DOI : 10.1063/1.94536

P. Bergveld, J. Hendrikse, and W. Olthius, Theory and application of the material work function for chemical sensors based on the field effect principle, Measurement Science and Technology, vol.9, issue.11, pp.1801-1808, 1998.
DOI : 10.1088/0957-0233/9/11/003

H. Lorenz, M. Peschke, H. Riess, J. Janata, and I. Eisele, New suspended gate FET technology for physical deposition of chemically sensitive layers, Sensors and Actuators A 21, pp.23-1023, 1990.
DOI : 10.1016/0924-4247(90)87082-T

A. Karthigeyan, R. P. Gupta, K. Scharnagl, M. Burgmair, S. K. Sharma et al., A room temperature HSGFET ammonia sensor based on iridium oxide thin film, Sensors and Actuators B: Chemical, vol.85, issue.1-2, pp.145-153, 2002.
DOI : 10.1016/S0925-4005(02)00073-4

Z. Gergintschew, P. Kornetzky, and D. Schipanski, The capacitvely controlled field effect transistor (CCFET) as a new low power gas sensor, Sensors and Actuators B, pp.35-36, 1996.

R. Paris, S. Pawel, R. Herze, T. Doll, P. Kornetzky et al., Low drift air-gap CMOS-FET gas sensor, Proceedings of IEEE Sensors, 2002.
DOI : 10.1109/ICSENS.2002.1037128

M. Boucinha and V. Chu, Air-gap amorphous silicon thin film transistors, Applied Physics Letters, vol.73, issue.4, pp.502-504, 1998.
DOI : 10.1063/1.121914

H. Kotb, Microstructures en silicium polycristallin déposé sur verre Application à la réalisation et la caractérisation de transistors en couche mince à grille suspendue, Thèse de doctorat, 2004.

F. Bendriaa, Conception et fabrication de transistors à effet de champ à grille suspendue utilisables dans la détection d'espèces chimiques ou biologiques, Thèse de doctorat, 2006.

M. Harnois, Etude et réalisation d'un biocapteur de type transistor à grille suspendue pour la reconnaissance de l'hybridation moléculaire de l'ADN, Thèse de doctorat, 2008.

A. Girard, « Détection électronique par transistor à grille suspendue de marqueurs protéiques liés au métabolisme du fer. Application à la transferrine, Thèse de doctorat, 2008.

T. Vo-dinh and B. Cullum, Biosensors and biochips: advances in biological and medical diagnostics, Fresenius' Journal of Analytical Chemistry, vol.366, issue.6-7, pp.6-7, 2000.
DOI : 10.1007/s002160051549

C. Jianrong, M. Yuquing, H. Nongyue, W. Xiaohua, and L. Sijiao, Nanotechnology and biosensors, Biotechnology Advances, vol.22, issue.7, pp.505-518, 2004.
DOI : 10.1016/j.biotechadv.2004.03.004

M. Comtat and A. Bergel, Biocapteurs: r??ve ou r??alit?? industrielle ?, Biofutur, vol.1997, issue.171, pp.33-36, 1997.
DOI : 10.1016/S0294-3506(97)88042-8

B. Rashid, BioMEMS: state-of-the-art in detection, opportunities and prospects, Advanced Drug Delivery Reviews, vol.56, pp.1565-1586, 2004.

A. M. Jorgensen, K. B. Mogensen, J. P. Kutter, and O. Geschke, A biochemical microdevice with an integrated chemiluminescence detector, Sensors and Actuators B: Chemical, vol.90, issue.1-3, pp.90-105, 2003.
DOI : 10.1016/S0925-4005(03)00016-9

J. A. Chediak, Z. Luo, J. Seo, N. Cheung, L. P. Lee et al., Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems, Sensors and Actuators A: Physical, vol.111, issue.1, pp.1-7, 2004.
DOI : 10.1016/j.sna.2003.10.015

M. Guirardel, Conception, réalisation et caractérisation de biocapteurs micromécaniques résonants en silicium avec actionnement piézoélectrique intégré : détection de l'adsorption de nanoparticules d'or, Thèse de doctorat, 2003.

M. Su, S. Li, and V. P. Et-dravid, Microcantilever resonance-based DNA detection with nanoparticle probes, Applied Physics Letters, vol.82, issue.20, pp.3562-3564, 2003.
DOI : 10.1063/1.1576915

T. S. Lammerink, M. Elwenspoek, and J. H. Fluitman, Integrated micro-liquid dosing system, [1993] Proceedings IEEE Micro Electro Mechanical Systems, pp.254-259, 1993.
DOI : 10.1109/MEMSYS.1993.296913

P. Gravesen, J. Branebjerg, and O. S. Et-jensen, Microfluidics-a review, Journal of Micromechanics and Microengineering, vol.3, issue.4, pp.168-182, 1993.
DOI : 10.1088/0960-1317/3/4/002

S. Shoji and M. Et-esashi, Microflow devices and systems, Microflow devices and systems, pp.157-171, 1994.
DOI : 10.1088/0960-1317/4/4/001

S. C. Jacobson, R. Hergenroder, L. B. Koutny, and J. M. Ramsey, High-Speed Separations on a Microchip, Analytical Chemistry, vol.66, issue.7, pp.1114-1118, 1994.
DOI : 10.1021/ac00079a029

A. Manz, N. Graber, and H. M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B: Chemical, vol.1, issue.1-6, pp.244-248, 1990.
DOI : 10.1016/0925-4005(90)80209-I

M. A. Mcclain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims et al., Microfluidic Devices for the High-Throughput Chemical Analysis of Cells, Analytical Chemistry, vol.75, issue.21, pp.75-5646, 2003.
DOI : 10.1021/ac0346510

J. W. Choi, Y. W. Oh, A. Han, N. Okulan, A. C. Wijayawardhana et al., Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection, Biomedical Microdevices, vol.3, issue.3, pp.191-200, 2001.
DOI : 10.1023/A:1011490627871

E. T. Lagally, P. C. Simpson, and R. A. Mathies, Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system, Sensors and Actuators B: Chemical, vol.63, issue.3, pp.63-138, 2000.
DOI : 10.1016/S0925-4005(00)00350-6

E. T. Lagally, C. A. Emrich, and R. A. Mathies, Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis, Lab on a Chip, vol.1, issue.2, pp.102-107, 2001.
DOI : 10.1039/b109031n

I. Nachamkin, N. J. Panaro, M. Li, H. Ung, P. K. Yuen et al., Agilent 2100 Bioanalyzer for Restriction Fragment Length Polymorphism Analysis of the Campylobacter jejuni Flagellin Gene, Journal of Clinical Microbiology, vol.39, issue.2, pp.754-757, 2001.
DOI : 10.1128/JCM.39.2.754-757.2001

Y. Fouillet, « Plate-forme microfluidique discrète et électromouillage », 18ème Congrès Français de Mécanique Grenoble, 2007.

N. Sundararajan, D. Kim, and A. A. Berlin, « Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography, Lab Chip, vol.5, pp.350-354, 2005.

J. C. Yoo, G. S. La, C. J. Kang, and Y. S. Kim, Microfabricated polydimethylsiloxane microfluidic system including micropump and microvalve for integrated biosensor, Current Applied Physics, vol.8, issue.6, pp.692-695, 2008.
DOI : 10.1016/j.cap.2007.04.050

J. W. Choi, C. H. Ahn, S. Bhansali, and H. T. Henderson, A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems, Sensors and Actuators B: Chemical, vol.68, issue.1-3, pp.34-39, 2000.
DOI : 10.1016/S0925-4005(00)00458-5

K. Sato, M. Tokeshi, T. Odake, H. Kimura, T. Ooi et al., Integration of an Immunosorbent Assay System:?? Analysis of Secretory Human Immunoglobulin A on Polystyrene Beads in a Microchip, Analytical Chemistry, vol.72, issue.6, pp.72-1144, 2000.
DOI : 10.1021/ac991151r

J. C. Yoo, H. J. Her, C. J. Kang, and Y. S. Kim, Polydimethylsiloxane microfluidic system with in-channel structure for integrated electrochemical detector, Sensors and Actuators B: Chemical, vol.130, issue.1, pp.65-69, 2008.
DOI : 10.1016/j.snb.2007.07.116

J. Voldman, R. A. Braff, M. Toner, M. L. Gray, and M. A. Schmidt, Holding Forces of Single-Particle Dielectrophoretic Traps, Biophysical Journal, vol.80, issue.1, pp.531-541, 2001.
DOI : 10.1016/S0006-3495(01)76035-3

C. Y. Lee, G. B. Lee, J. L. Lin, F. C. Huang, and C. S. Liao, Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification, Journal of Micromechanics and Microengineering, vol.15, issue.6, pp.15-1215, 2005.
DOI : 10.1088/0960-1317/15/6/011

D. A. Boehm, P. A. Gottlieb, and S. Z. Hua, On-chip microfluidic biosensor for bacterial detection and identification, Sensors and Actuators B: Chemical, vol.126, issue.2, pp.508-514, 2007.
DOI : 10.1016/j.snb.2007.03.043

J. C. Yoo, M. C. Moon, Y. J. Choi, C. J. Kang, and Y. S. Kim, A high performance microfluidic system integrated with the micropump and microvalve on the same substrate, Microelectronic Engineering, vol.83, issue.4-9, pp.1684-1687, 2006.
DOI : 10.1016/j.mee.2006.01.202

T. M. Lee and I. M. Hsing, DNA-based bioanalytical microsystems for handheld device applications, Analytica Chimica Acta, vol.556, issue.1, pp.26-37, 2006.
DOI : 10.1016/j.aca.2005.05.075

V. Srinivasan, V. K. Pamula, and R. B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluidsThe Science and Application of Droplets in Microfluidic Devices.Electronic supplementary information (ESI) available: five video clips showing: high-speed transport of a droplet of blood across 4 electrodes; sample injection into an on-chip reservoir using an external pipette; droplet formation from an on-chip reservoir using only electrowetting forces; droplets moving in-phase on a 3-phase transport bus; and a pipelined glucose assay, showing sample and reagent droplet formation, mixing, splitting and colorimetric reaction. See http://www.rsc.org/suppdata/lc/b4/b403341h/, Lab on a Chip, vol.4, issue.4, pp.310-315, 2004.
DOI : 10.1039/b403341h

C. L. Colyer, S. D. Mangru, and D. J. Harrison, Microchip-based capillary electrophoresis of human serum proteins, Journal of Chromatography A, vol.781, issue.1-2, pp.781-271, 1997.
DOI : 10.1016/S0021-9673(97)00502-5

L. C. Waters, S. C. Jacobson, N. Kroutchinina, J. Khandurina, R. S. Foote et al., Multiple Sample PCR Amplification and Electrophoretic Analysis on a Microchip, Analytical Chemistry, vol.70, issue.24, pp.5172-5176, 1998.
DOI : 10.1021/ac980447e

O. Leistiko and P. Jensen, Integrated Bio/Chemical Microsystems Employing Optical Detection: A Cytometer, Proc. µTASWorkshop, pp.291-295, 1998.
DOI : 10.1007/978-94-011-5286-0_68

M. L. Chabinyc, D. T. Chiu, J. C. Mcdonald, A. D. Stroock, J. F. Christian et al., An Integrated Fluorescence Detection System in Poly(dimethylsiloxane) for Microfluidic Applications, Analytical Chemistry, vol.73, issue.18, pp.73-4491, 2001.
DOI : 10.1021/ac010423z

L. Brigo, T. Carofiglio, C. Fregonese, F. Meneguzzi, G. Mistura et al., An optical sensor for pH supported onto tentagel resin beads, Sensors and Actuators B: Chemical, vol.130, issue.1, pp.477-482, 2008.
DOI : 10.1016/j.snb.2007.09.020

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. De-rooij et al., Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection, Journal of Microelectromechanical Systems, vol.10, issue.4, pp.482-491, 2001.
DOI : 10.1109/84.967369

M. Han, X. Gao, J. Z. Su, and S. Nie, « Quantum-dottagged microbeads for multiplexed optical coding of biomolecules, pp.19-631, 2001.

T. Masadome, K. Yada, and S. I. Wakida, Microfluidic Polymer Chip Integrated with an ISFET Detector for Cationic Surfactant Assay in Dental Rinses, Analytical Sciences, vol.22, issue.8, pp.1065-1069, 2006.
DOI : 10.2116/analsci.22.1065

T. M. Lee, M. C. Carles, and I. M. Hising, Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection, Lab on a Chip, vol.3, issue.2, pp.100-105, 2003.
DOI : 10.1039/b300799e

J. W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall et al., An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities, Lab on a Chip, vol.2, issue.1, pp.27-30, 2002.
DOI : 10.1039/b107540n

S. Y. Lee, Z. T. Yu, M. Wong, and Y. Zohar, Gas flow in a microdevice with a mixing layer configuration, Journal of Micromechanics and Microengineering, vol.12, issue.1, pp.96-102, 2002.
DOI : 10.1088/0960-1317/12/1/315

M. Koch, C. G. Schabmueller, A. G. Evans, and A. Brunnschweiler, Micromachined chemical reaction system, Micromachined chemical reaction system, pp.207-210, 1999.
DOI : 10.1016/S0924-4247(98)00318-5

H. Mohamed, L. D. Mccurdy, D. H. Szarowski, S. Duva, J. N. Turner et al., Development of a Rare Cell Fractionation Device: Application for Cancer Detection, IEEE Transactions on Nanobioscience, vol.3, issue.4, pp.251-256, 2004.
DOI : 10.1109/TNB.2004.837903

H. Tani, K. Maehana, and T. Kamidate, Chip-Based Bioassay Using Bacterial Sensor Strains Immobilized in Three-Dimensional Microfluidic Network, Analytical Chemistry, vol.76, issue.22, pp.6693-6697, 2004.
DOI : 10.1021/ac049401d

N. Chronis and L. P. Lee, Electrothermally activated SU-8 microgripper for single cell manipulation in solution, Journal of Microelectromechanical Systems, vol.14, issue.4, pp.857-863, 2005.
DOI : 10.1109/JMEMS.2005.845445

M. S. Yang, C. W. Li, and J. Yang, Cell Docking and On-Chip Monitoring of Cellular Reactions with a Controlled Concentration Gradient on a Microfluidic Device, Analytical Chemistry, vol.74, issue.16, pp.74-3991, 2002.
DOI : 10.1021/ac025536c

C. W. Li, C. N. Cheung, J. Yang, C. H. Tzang, and M. S. Yang, PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters, The Analyst, vol.128, issue.9, pp.1137-1142, 2003.
DOI : 10.1039/b304354a

J. Lahann, M. Balcells, H. Lu, T. Rodon, K. F. Jensen et al., Reactive Polymer Coatings:?? A First Step toward Surface Engineering of Microfluidic Devices, Polymer Coatings: A First Step toward Surface Engineering of Microfluidic Devices, pp.2117-2122, 2003.
DOI : 10.1021/ac020557s

A. Revzin, K. Sekine, A. Sin, R. G. Tompkins, and M. Toner, Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes, Lab on a Chip, vol.5, issue.1, pp.30-37, 2005.
DOI : 10.1039/b405557h

W. C. Chang, L. P. Lee, and D. Liepmann, Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel, Lab on a Chip, vol.5, issue.1, pp.64-73, 2005.
DOI : 10.1039/b400455h

K. Länge, G. Blaess, A. Voigt, R. Gotzen, and M. Rapp, Integration of a surface acoustic wave biosensor in a microfluidic polymer chip, Biosensors and Bioelectronics, vol.22, issue.2, pp.227-232, 2006.
DOI : 10.1016/j.bios.2005.12.026

M. C. Cole and P. J. Kenis, Multiplexed electrical sensor arrays in microfluidic networks, Sensors and Actuators B: Chemical, vol.136, issue.2, pp.350-358, 2009.
DOI : 10.1016/j.snb.2008.12.010

E. Ghafar-zadeh, M. Sawan, and D. Therriault, Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results, Sensors and Actuators A: Physical, vol.134, issue.1, pp.27-36, 2007.
DOI : 10.1016/j.sna.2006.05.022

K. H. Na, Y. S. Kim, and C. J. Kang, Fabrication of piezoresistive microcantilever using surface micromachining technique for biosensors, Ultramicroscopy, vol.105, issue.1-4, pp.223-227, 2005.
DOI : 10.1016/j.ultramic.2005.06.040

V. Raimbault, D. Rebière, C. Dejous, M. Guirardel, and V. Conedera, Acoustic Love wave platform with PDMS microfluidic chip, Sensors and Actuators A: Physical, vol.142, issue.1, pp.160-165, 2008.
DOI : 10.1016/j.sna.2007.05.026

URL : https://hal.archives-ouvertes.fr/hal-00183746

V. Raimbault, D. Rebière, C. Dejous, M. Guirardel, and J. L. Lachaud, Molecular weight influence study of aqueous poly(ethylene glycol) solutions with a microfluidic Love wave sensor, Sensors and Actuators B: Chemical, vol.144, issue.1, pp.318-322, 2010.
DOI : 10.1016/j.snb.2009.10.070

URL : https://hal.archives-ouvertes.fr/hal-00548722

V. Raimbault, D. Rebière, C. Dejous, M. Guirardel, J. Pistré et al., High frequency microrheological measurements of PDMS fluids using saw microfluidic system, Sensors and Actuators B: Chemical, vol.144, issue.2, pp.467-471, 2010.
DOI : 10.1016/j.snb.2009.10.044

URL : https://hal.archives-ouvertes.fr/hal-00548730

P. L. Cobben, R. J. Egberink, J. G. Bomer, E. J. Sudholer, P. Bergveld et al., Chemically modified ion-sensitive field-effect transistors: application in flow-injection analysis cells without polymeric encapsulation and wire bonding, Analytica Chimica Acta, vol.248, issue.2, pp.307-313, 1991.
DOI : 10.1016/S0003-2670(00)84646-2

M. Lehmann, W. Baumann, M. Brischwein, R. Ehret, M. Kraus et al., Non-invasive measurement of cell membrane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical applications, Biosensors and Bioelectronics, vol.15, issue.3-4, pp.117-124, 2000.
DOI : 10.1016/S0956-5663(00)00065-8

C. Gao, X. Zhu, J. W. Choi, and C. H. Ahn, A Disposable polymer field effect transistor (FET) for pH measurement, The 12th International Conference on Solid State Sensors Actuators and Microsystems, pp.1172-1175, 2003.

D. S. Kim, J. E. Park, J. K. Shin, P. K. Kim, G. Lim et al., An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes, Sensors and Actuators B: Chemical, vol.117, issue.2, pp.488-494, 2006.
DOI : 10.1016/j.snb.2006.01.018

M. L. Pourciel-gouzy, W. Sant, I. Humenyuk, L. Malaquin, X. Dollat et al., Development of pH-ISFET sensors for the detection of bacterial activity, Sensors and Actuators B: Chemical, vol.103, issue.1-2, pp.247-251, 2004.
DOI : 10.1016/j.snb.2004.04.056

M. L. Pourciel-gouzy, S. Assié-souleille, L. Mazenq, J. Launay, and P. Temple-boyer, pH-ChemFET-based analysis devices for the bacterial activity monitoring, Sensors and Actuators B: Chemical, vol.134, issue.1, pp.339-344, 2008.
DOI : 10.1016/j.snb.2008.04.029

T. Masadome, S. Kugoh, M. Ishikawa, E. Kawano, and S. I. Wakida, Polymer chip incorporated with anionic surfactant-ISFET for microflow analysis of anionic surfactants, Sensors and Actuators B: Chemical, vol.108, issue.1-2, pp.888-892, 2005.
DOI : 10.1016/j.snb.2004.11.062

P. Truman, P. Uhlmann, and M. Stamm, Monitoring liquid transport and chemical composition in lab on a chip systems using ion sensitive FET devices, Lab on a Chip, vol.93, issue.9, pp.1220-1228, 2006.
DOI : 10.1039/b604815c

B. J. Polk, Design and Fabrication of pH Sensitive Field-Effect Transistor for Microfluidics with an Integral Reference Electrode, ECS Transactions, 2006.
DOI : 10.1149/1.2753278

Q. Zhang, L. Jagannathan, and V. Subramanian, Label-free low-cost disposable DNA hybridization detection systems using organic TFTs, Biosensors and Bioelectronics, vol.25, issue.5, pp.972-977, 2010.
DOI : 10.1016/j.bios.2009.09.008

A. Poghossian, J. W. Schultze, and M. J. Schöning, Application of a (bio-)chemical sensor (ISFET) for the detection of physical parameters in liquids, Electrochimica Acta, vol.48, issue.20-22, pp.483289-3297, 2003.
DOI : 10.1016/S0013-4686(03)00392-X

K. Mourgues, Réalisation de transistors en couches minces de silicium polycrsitallin par des procédés basse température (600°C) sans étape d'hydrogénation, Thèse de doctorat, 2000.

B. Rodrigues, O. De-sagazan, A. Salaün, S. Crand, L. Bihan et al., Humidity Sensor Thanks Array of Suspended Gate Field Effect Transistor, ECS Transactions, vol.31, issue.31 1, pp.441-448, 2010.
DOI : 10.1149/1.3474190

URL : https://hal.archives-ouvertes.fr/hal-00667803

A. Salaün, L. Bihan, F. Mohammed-brahim, and T. , Modeling the high pH sensitivity of Suspended Gate Field Effect Transistor (SGFET), Sensors and Actuators B: Chemical, vol.158, issue.1, pp.138-143, 2011.
DOI : 10.1016/j.snb.2011.05.056

E. Jacques, Microsystème et capteur intégrés en technologie couches minces basse température, Thèse de doctorat, 2008.