Skip to Main content Skip to Navigation
Theses

Etude multidisciplinaire le long de la Faille Nord Anatolienne, Turquie : Paléosismologie marine et paléomagnétisme en Mer de Marmara : Etude géomorphologique du décalage de la rivière Kızılırmak par utilisation des isotopes cosmogéniques

Abstract : This PhD work is divided in two parts. The first part focuses on obtaining a new paleoseismological record of earthquakes in the Marmara Sea (West of Turkey) using different analysis to pinpoint and characterize earthquake-related sedimentary disturbance in the studied cores. We seek to provide a spatio-temporal understanding of earthquakes in the Marmara Sea allowing greater insight into long-term fault behaviour and seismic interaction by integrating historical and new paleosismological data (recurrence rate in the Sea of Marmara). We characterized earthquake-related sedimentary events by combining X-ray imagery, magnetic susceptibility, granulometry and XRF (chemical analyses) measurements. Geochemistry data also allowed us to trace between basin anthropogenic and environmental changes occurring in the Marmara Sea. We also aim at establishing a reliable and robust chronology of the cores combining radiocarbon dating (bulk sedimentation, foraminifers, shelves), 210Pb and 137Cs data to connect seismoturbidites to historical seismicity. Magnetic variations were also recorded in the cores to obtain a time constrain for the cores. The down-core changes in magnetic properties suggest taking into account possible delays in the acquisition of magnetization and have been correlated to lower sapropelic layers in the Marmara Sea.The second part deals with geomorphology and tectonic in the central part of the North Anatolian Fault situated in Turkey. There, three terraces preserved in two pull-apart and incised by the longest river in Turkey (the Kizilirmak River) are mapped. The main results of this work are several constraints on the ages of the terraces using 10Be, 26Al and 36Cl cosmogenic dating methods. The obtained in situ cosmogenic 36Cl exposure ages calculated are 6 ka for the lowest terrace, 50ka for the middle terrace, and 80ka for the highest terrace in the areas preserved from erosion. The highest terrace shows a contribution of younger ages due to erosion of the nearby limestone catchment. The obtained results imply a climatic origin of the terraces, and a mean incision rate of about 3 mm/yr since the early Holocene along the Kizilirmak River.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-00736082
Contributor : Abes Star :  Contact
Submitted on : Thursday, September 27, 2012 - 3:36:31 PM
Last modification on : Thursday, October 29, 2020 - 3:01:35 PM
Long-term archiving on: : Friday, December 16, 2016 - 6:13:55 PM

File

VD2_DRAB_LAUREEN_04052012.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00736082, version 1

Collections

Citation

Laureen Drab. Etude multidisciplinaire le long de la Faille Nord Anatolienne, Turquie : Paléosismologie marine et paléomagnétisme en Mer de Marmara : Etude géomorphologique du décalage de la rivière Kızılırmak par utilisation des isotopes cosmogéniques. Sciences de la Terre. Université Paris Sud - Paris XI, 2012. Français. ⟨NNT : 2012PA112073⟩. ⟨tel-00736082⟩

Share

Metrics

Record views

797

Files downloads

254