«. Click and ». , Greffage des polymères par des ?-CD via une réaction, p.158

L. Dynamique-de, Diffusion, p.166

.. 'eau, Formation de copolymères greffés supramoléculaires dans l, p.166

L. Brunsveld, B. J. Folmer, E. W. Meijer, and R. P. Sijbesma, Supramolecular Polymers, Chemical Reviews, vol.101, issue.12, pp.4071-4098, 2001.
DOI : 10.1021/cr990125q

D. Greef, T. F. Smulders, M. M. Wolffs, M. Schenning, A. P. Sijbesma et al., Supramolecular Polymerization, Chemical Reviews, vol.109, issue.11, pp.5687-5754, 2009.
DOI : 10.1021/cr900181u

G. M. Whitesides and B. Grzybowski, Self-Assembly at All Scales, Science, vol.295, issue.5564, pp.2418-2421, 2002.
DOI : 10.1126/science.1070821

E. M. Todd and S. C. Zimmerman, Supramolecular Star Polymers. Increased Molecular Weight with Decreased Polydispersity through Self-Assembly, Journal of the American Chemical Society, vol.129, issue.47, pp.14534-14535, 2007.
DOI : 10.1021/ja075453j

E. M. Todd and S. C. Zimmerman, Bis-ureidodeazapterin (Bis-DeAP) as a general route to supramolecular star polymers, Tetrahedron, vol.64, issue.36, pp.8558-8570, 2008.
DOI : 10.1016/j.tet.2008.05.076

C. Fouquey, J. Lehn, and A. Levelut, Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components, Advanced Materials, vol.100, issue.5, pp.254-257, 1990.
DOI : 10.1002/adma.19900020506

T. Kato and J. M. Frechet, A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures, Journal of the American Chemical Society, vol.111, issue.22, pp.8533-8534, 1989.
DOI : 10.1021/ja00204a044

H. Kihara, T. Kato, T. Uryu, and J. M. Fréchet, Supramolecular Liquid-Crystalline Networks Built by Self-Assembly of Multifunctional Hydrogen-Bonding Molecules, Chemistry of Materials, vol.8, issue.4, pp.961-968, 1996.
DOI : 10.1021/cm9505456

W. C. Yount, D. M. Loveless, and S. L. Craig, Strong Means Slow: Dynamic Contributions to the Bulk Mechanical Properties of Supramolecular Networks, Angewandte Chemie International Edition, vol.34, issue.18, pp.2746-2748, 2005.
DOI : 10.1002/anie.200500026

S. Boileau, L. Bouteiller, F. Laupretre, and F. Lortie, Soluble supramolecular polymers based on urea compounds, New Journal of Chemistry, vol.24, issue.11, pp.845-848, 2000.
DOI : 10.1039/b006742n

V. Simic, L. Bouteiller, and M. Jalabert, Highly Cooperative Formation of Bis-Urea Based Supramolecular Polymers, Journal of the American Chemical Society, vol.125, issue.43, pp.13148-13154, 2003.
DOI : 10.1021/ja037589x

L. Bouteiller, Assembly via Hydrogen Bonds of Low Molar Mass Compounds into Supramolecular Polymers, In Hydrogen Bonded Polymers, vol.207, pp.79-112, 2007.
DOI : 10.1007/12_2006_110

A. Tessa-ten-cate and R. P. Sijbesma, Coils, Rods and Rings in Hydrogen-Bonded Supramolecular Polymers, Macromolecular Rapid Communications, vol.23, issue.18, pp.1094-1112, 2002.
DOI : 10.1002/marc.200290011

U. S. Schubert and C. Eschbaumer, Functionalized oligomers and copolymers with metal complexing segments: a simple and high yield entry towards 2,2???:6???,2???-terpyridine monofunctionalized telechelics, Macromolecular Symposia, vol.163, issue.1, pp.177-188, 2001.
DOI : 10.1002/1521-3900(200101)163:1<177::AID-MASY177>3.0.CO;2-K

W. T. Huck, L. J. Prins, R. H. Fokkens, N. M. Nibbering, F. C. Van-veggel et al., Convergent and Divergent Noncovalent Synthesis of Metallodendrimers, Journal of the American Chemical Society, vol.120, issue.25, pp.6240-6246, 1998.
DOI : 10.1021/ja974031e

G. V. Oshovsky, D. N. Reinhoudt, and W. Verboom, Supramolecular Chemistry in Water, Angewandte Chemie International Edition, vol.12, issue.14, pp.2366-2393, 2007.
DOI : 10.1002/anie.200602815

M. Miyauchi and A. Harada, Construction of Supramolecular Polymers with Alternating ??-, ??-Cyclodextrin Units Using Conformational Change Induced by Competitive Guests, Journal of the American Chemical Society, vol.126, issue.37, pp.11418-11419, 2004.
DOI : 10.1021/ja046562q

K. Ohga, Y. Takashima, H. Takahashi, I. Y. Kawaguchi, H. Yamagushi et al., Preparation of Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules: Control of Structure by Linker Flexibility, Macromolecules, vol.38, issue.14, pp.5897-5904, 2005.
DOI : 10.1021/ma0508606

A. Harada, Y. Takashima, and H. Yamaguchi, Cyclodextrin-based supramolecular polymers, Chemical Society Reviews, vol.129, issue.4, pp.875-882, 2009.
DOI : 10.1039/b705458k

G. Fernández, E. M. Pérez, L. Sánchez, and N. Martín, Self-Organization of Electroactive Materials: A Head-to-Tail Donor???Acceptor Supramolecular Polymer, Angewandte Chemie International Edition, vol.46, issue.6, pp.1094-1097, 2008.
DOI : 10.1002/anie.200703049

C. P. Lillya, R. J. Baker, S. Hutte, H. H. Winter, Y. G. Lin et al., Linear chain extension through associative termini, Macromolecules, vol.25, issue.8, pp.2076-2080, 1992.
DOI : 10.1021/ma00034a003

S. Abed, S. Boileau, L. Bouteiller, and N. Lacoudre, Supramolecular association of acid terminated polydimethylsiloxanes, Polymer Bulletin, vol.33, issue.1, pp.317-324, 1997.
DOI : 10.1007/s002890050154

S. Abed, S. Boileau, and L. Bouteiller, Supramolecular Association of Acid-Terminated Poly(dimethylsiloxane)s. 2. Molecular Weight Distributions, Macromolecules, vol.33, issue.22, pp.8479-8487, 2000.
DOI : 10.1021/ma000048x

R. A. Koevoets, R. M. Versteegen, H. Kooijman, A. L. Spek, R. P. Sijbesma et al., Molecular Recognition in a Thermoplastic Elastomer, Journal of the American Chemical Society, vol.127, issue.9, pp.2999-3003, 2005.
DOI : 10.1021/ja0451160

E. Tarkin-tas, C. A. Lange, and L. Mathias, Hydrogen-bonded supramolecular polymers from derivatives of ??-amino-??-caprolactam: A bio-based material, Journal of Polymer Science Part A: Polymer Chemistry, vol.80, issue.11, pp.2451-2460, 2011.
DOI : 10.1002/pola.24676

D. H. Merino, A. T. Slark, H. M. Colquhoun, W. Hayes, and I. W. Hamley, Thermo-responsive microphase separated supramolecular polyurethanes, Polymer Chemistry, vol.85, issue.1, pp.1263-1271, 2010.
DOI : 10.1039/c0py00122h

F. H. Beijer, R. P. Sijbesma, H. Kooijman, A. L. Spek, and E. W. Meijer, Strong Dimerization of Ureidopyrimidones via Quadruple Hydrogen Bonding, Journal of the American Chemical Society, vol.120, issue.27, pp.6761-6769, 1998.
DOI : 10.1021/ja974112a

J. H. Hirschberg, F. H. Beijer, H. A. Van-aert, P. C. Magusin, R. P. Sijbesma et al., Supramolecular Polymers from Linear Telechelic Siloxanes with Quadruple-Hydrogen-Bonded Units, Macromolecules, vol.32, issue.8, pp.2696-2705, 1999.
DOI : 10.1021/ma981950w

URL : http://repository.tue.nl/587828

N. E. Botterhuis, D. J. Van-beek, G. M. Van-gemert, A. W. Bosman, and R. P. Sijbesma, Self-assembly and morphology of polydimethylsiloxane supramolecular thermoplastic elastomers, Journal of Polymer Science Part A: Polymer Chemistry, vol.41, issue.12, pp.3877-3885, 2008.
DOI : 10.1002/pola.22680

B. J. Folmer, R. P. Sijbesma, R. M. Versteegen, J. A. Van-der-rijt, and E. W. Meijer, Supramolecular Polymer Materials: Chain Extension of Telechelic Polymers Using a Reactive Hydrogen-Bonding Synthon, Advanced Materials, vol.12, issue.12, pp.874-878, 2000.
DOI : 10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C

H. M. Keizer, R. Van-kessel, R. P. Sijbesma, and E. W. Meijer, Scale-up of the synthesis of ureidopyrimidinone functionalized telechelic poly(ethylenebutylene), Polymer, vol.44, issue.19, pp.5505-5511, 2003.
DOI : 10.1016/S0032-3861(03)00631-1

H. Kautz, D. J. Van-beek, R. P. Sijbesma, and E. W. Meijer, Cooperative End-to-End and Lateral Hydrogen-Bonding Motifs in Supramolecular Thermoplastic Elastomers, Macromolecules, vol.39, issue.13, pp.4265-4267, 2006.
DOI : 10.1021/ma060706z

B. D. Mather, C. L. Elkins, F. L. Beyer, and T. E. Long, Morphological Analysis of Telechelic Ureidopyrimidone Functional Hydrogen Bonding Linear and Star-Shaped Poly(ethylene-co-propylene)s, Macromolecular Rapid Communications, vol.16, issue.16, pp.1601-1606, 2007.
DOI : 10.1002/marc.200700331

H. M. Keizer, R. P. Sijbesma, J. F. Jansen, G. Pasternack, and E. W. Meijer, Polymerization-Induced Phase Separation Using Hydrogen-Bonded Supramolecular Polymers, Macromolecules, vol.36, issue.15, pp.5602-5606, 2003.
DOI : 10.1021/ma034284u

URL : http://repository.tue.nl/587721

P. Shokrollahi, H. Mirzadeh, W. T. Huck, and O. A. Scherman, Effect of self-complementary motifs on phase compatibility and material properties in blends of supramolecular polymers, Polymer, vol.51, issue.26, pp.6303-6312, 2010.
DOI : 10.1016/j.polymer.2010.10.039

D. J. Van-beek, M. A. Gillissen, B. A. Van-as, A. R. Palmans, and R. P. Sijbesma, Supramolecular Copolyesters with Tunable Properties, Macromolecules, vol.40, issue.17, pp.6340-6348, 2007.
DOI : 10.1021/ma0705927

E. Greco, A. E. Aliev, V. G. Lafitte, K. Bala, D. Duncan et al., Cytosine modules in quadruple hydrogen bonded arrays, New Journal of Chemistry, vol.53, issue.vi, pp.2634-2642, 2010.
DOI : 10.1039/c0nj00197j

K. Yamauchi, J. R. Lizotte, D. M. Hercules, M. J. Vergne, and T. E. Long, Combinations of Microphase Separation and Terminal Multiple Hydrogen Bonding in Novel Macromolecules, Journal of the American Chemical Society, vol.124, issue.29, pp.8599-8604, 2002.
DOI : 10.1021/ja020123e

T. F. De-greef, M. M. Nieuwenhuizen, R. P. Sijbesma, and E. W. Meijer, Competitive Intramolecular Hydrogen Bonding in Oligo(ethylene oxide) Substituted Quadruple Hydrogen Bonded Systems, The Journal of Organic Chemistry, vol.75, issue.3, pp.598-610, 2010.
DOI : 10.1021/jo902053t

A. Karatzas, M. Talelli, T. Vasilakopoulos, M. Pitsikalis, and N. Hadjichristidis, Micellization of ??-Functionalized Diblock Copolymers in Selective Solvent. Study on the Effect of Hydrogen Bonds, Macromolecules, vol.39, issue.24, pp.8456-8466, 2006.
DOI : 10.1021/ma061396n

J. H. Hirschberg, A. Ramzi, R. P. Sijbesma, and E. W. Meijer, Ureidotriazine-Based Supramolecular Copolymers, Macromolecules, vol.36, issue.5, pp.1429-1432, 2003.
DOI : 10.1021/ma025723c

URL : http://repository.tue.nl/587717

T. S. Burkoth, T. L. Benzinger, D. N. Jones, K. Hallenga, S. C. Meredith et al., C-Terminal PEG Blocks the Irreversible Step in ??-Amyloid(10-35) Fibrillogenesis, Journal of the American Chemical Society, vol.120, issue.30, pp.7655-7656, 1998.
DOI : 10.1021/ja980566b

I. W. Hamley, I. A. Ansari, V. Castelletto, H. Nuhn, A. Rösler et al., Solution Self-Assembly of Hybrid Block Copolymers Containing Poly(ethylene glycol) and Amphiphilic ??-Strand Peptide Sequences, Biomacromolecules, vol.6, issue.3, pp.1310-1315, 2005.
DOI : 10.1021/bm049286g

E. Jahnke, I. Lieberwirth, N. Severin, J. P. Rabe, and H. Frauenrath, Topochemical Polymerization in Supramolecular Polymers of Oligopeptide-Functionalized Diacetylenes, Angewandte Chemie International Edition, vol.98, issue.32, pp.5383-5386, 2006.
DOI : 10.1002/anie.200600610

S. T. Phillips, M. Rezac, U. Abel, M. Kossenjans, and P. A. Bartlett, )-pyridinone Unit as a ??-Strand Mimic, Journal of the American Chemical Society, vol.124, issue.1, pp.58-66, 2001.
DOI : 10.1021/ja0168460

X. Zhao, X. Wang, X. Jiang, Y. Chen, Z. Li et al., Hydrazide-Based Quadruply Hydrogen-Bonded Heterodimers. Structure, Assembling Selectivity, and Supramolecular Substitution, Journal of the American Chemical Society, vol.125, issue.49, pp.15128-15139, 2003.
DOI : 10.1021/ja037312x

X. Wang, X. Li, X. Shao, X. Zhao, P. Deng et al., Selective Rearrangements of Quadruply Hydrogen-Bonded Dimer Driven by Donor???Acceptor Interaction, Chemistry - A European Journal, vol.9, issue.12, pp.2904-2913, 2003.
DOI : 10.1002/chem.200204513

G. B. Ligthart, H. Ohkawa, R. P. Sijbesma, and E. W. Meijer, Complementary Quadruple Hydrogen Bonding in Supramolecular Copolymers, Journal of the American Chemical Society, vol.127, issue.3, pp.810-811, 2005.
DOI : 10.1021/ja043555t

URL : http://repository.tue.nl/587673

C. G. Overberger and Y. Inaki, Graft copolymers of nucleic acid bases on polyethyleneimine: Interaction of the polymers, Journal of Polymer Science: Polymer Chemistry Edition, vol.17, issue.6, pp.1759-1769, 1979.
DOI : 10.1002/pol.1979.170170617

Y. Kita, T. Uno, Y. Inaki, and K. Takemoto, Functional monomers and polymers. XCIV. Photochemical reactions on the synthetic polymers containing thymine bases in the presence of adenine derivatives, Journal of Polymer Science: Polymer Chemistry Edition, vol.19, issue.12, pp.3315-3324, 1981.
DOI : 10.1002/pol.1981.170191224

Y. Inaki, K. Ebisutani, and K. Takemoto, Functional monomers and polymers. CXXXII. Template polymerization of methacrylamide derivatives containing nucleic acid bases, Journal of Polymer Science Part A: Polymer Chemistry, vol.24, issue.12, pp.3249-3262, 1986.
DOI : 10.1002/pola.1986.080241209

A. Khan, D. M. Haddleton, M. J. Hannon, D. Kukulj, and A. Marsh, Hydrogen Bond Template-Directed Polymerization of Protected 5???-Acryloylnucleosides, Macromolecules, vol.32, issue.20, pp.6560-6564, 1999.
DOI : 10.1021/ma990283j

A. S. Karikari, B. D. Mather, and T. Long, -lactide)s Containing Nucleobase Multiple Hydrogen Bonding, Biomacromolecules, vol.8, issue.1, pp.302-308, 2007.
DOI : 10.1021/bm060869v

URL : https://hal.archives-ouvertes.fr/hal-01270570

M. T. Hunley, A. S. Karikari, M. G. Mckee, B. D. Mather, J. M. Layman et al., Taking Advantage of Tailored Electrostatics and Complementary Hydrogen Bonding in the Design of Nanostructures for Biomedical Applications, Macromolecular Symposia, vol.17, issue.1, pp.1-7, 2008.
DOI : 10.1002/masy.200851001

J. Sartorius and H. Schneider, A General Scheme Based on Empirical Increments for the Prediction of Hydrogen-Bond Associations of Nucleobases and of Synthetic Host???Guest complexes, Chemistry - A European Journal, vol.60, issue.11, pp.1446-1452, 1996.
DOI : 10.1002/chem.19960021118

V. G. Lafitte, A. E. Aliev, P. N. Horton, M. B. Hursthouse, K. Bala et al., Quadruply Hydrogen Bonded Cytosine Modules for Supramolecular Applications, Journal of the American Chemical Society, vol.128, issue.20, pp.6544-6545, 2006.
DOI : 10.1021/ja0587289

V. G. Lafitte, A. E. Aliev, E. Greco, K. Bala, P. Golding et al., Quadruple hydrogen bonded cytosine modules: N-1 functionalised arrays, New Journal of Chemistry, vol.117, issue.7, pp.1522-1527, 2011.
DOI : 10.1039/c1nj20162j

S. J. Rowan, P. Suwanmala, and S. Sivakova, Nucleobase-induced supramolecular polymerization in the solid state, Journal of Polymer Science Part A: Polymer Chemistry, vol.204, issue.22, pp.3589-3596, 2003.
DOI : 10.1002/pola.10967

S. Sivakova, D. A. Bohnsack, M. E. Mackay, P. Suwanmala, and S. J. Rowan, Utilization of a Combination of Weak Hydrogen-Bonding Interactions and Phase Segregation to Yield Highly Thermosensitive Supramolecular Polymers, Journal of the American Chemical Society, vol.127, issue.51, pp.18202-18211, 2005.
DOI : 10.1021/ja055245w

M. Y. Sen, J. E. Puskas, D. E. Dabney, C. Wesdemiotis, and C. Absalon, Precision synthesis and characterization of thymine-functionalized polyisobutylene, Journal of Polymer Science Part A: Polymer Chemistry, vol.40, issue.16, pp.3501-3506, 2010.
DOI : 10.1002/pola.24058

S. Kurzhals and W. H. Binder, Telechelic polynorbornenes with hydrogen bonding moieties by direct end capping of living chains, Journal of Polymer Science Part A: Polymer Chemistry, vol.75, issue.23, pp.5522-5532, 2010.
DOI : 10.1002/pola.24362

M. J. Kunz, G. Hayn, R. Saf, and W. H. Binder, Hydrogen-bonded supramolecular poly(ether ketone)s, Journal of Polymer Science Part A: Polymer Chemistry, vol.8, issue.3, pp.661-674, 2004.
DOI : 10.1002/pola.10858

W. H. Binder, M. J. Kunz, and E. Ingolic, Supramolecular poly(ether ketone)-polyisobutylene pseudo-block copolymers, Journal of Polymer Science Part A: Polymer Chemistry, vol.21, issue.2, pp.162-172, 2004.
DOI : 10.1002/pola.10979

W. H. Binder, S. Bernstorff, C. Kluger, L. Petraru, and M. J. Kunz, Tunable Materials from Hydrogen-Bonded Pseudo Block Copolymers, Advanced Materials, vol.24, issue.23, pp.2824-2828, 2005.
DOI : 10.1002/adma.200501505

F. Herbst, K. Schr-ter, I. Gunkel, S. Gr-ger, T. Thurn-albrecht et al., Aggregation and Chain Dynamics in Supramolecular Polymers by Dynamic Rheology: Cluster Formation and Self-Aggregation, Macromolecules, vol.43, issue.23, pp.10006-10016, 2010.
DOI : 10.1021/ma101962y

E. Ostas, K. Schröter, M. Beiner, T. Yan, T. Thurn-albrecht et al., Poly(??-caprolactone)-poly(isobutylene): A crystallizing, hydrogen-bonded pseudo-block copolymer, Journal of Polymer Science Part A: Polymer Chemistry, vol.29, issue.(6), pp.3404-3416, 2011.
DOI : 10.1002/pola.24777

O. Adekunle, F. Herbst, K. Hackethal, and W. H. Binder, Synthesis of nonsymmetric chain end functionalized polyisobutylenes, Journal of Polymer Science Part A: Polymer Chemistry, vol.39, issue.13, pp.2931-2940, 2011.
DOI : 10.1002/pola.24729

S. K. Chang and A. D. Hamilton, Molecular recognition of biologically interesting substrates: synthesis of an artificial receptor for barbiturates employing six hydrogen bonds, Journal of the American Chemical Society, vol.110, issue.4, pp.1318-1319, 1988.
DOI : 10.1021/ja00212a065

V. Berl, M. Schmutz, M. J. Krische, R. G. Khoury, and . Lehn, Supramolecular Polymers Generated from Heterocomplementary Monomers Linked through Multiple Hydrogen-Bonding Arrays???Formation, Characterization, and Properties, Chemistry - A European Journal, vol.8, issue.5, pp.1227-1244, 2002.
DOI : 10.1002/1521-3765(20020301)8:5<1227::AID-CHEM1227>3.0.CO;2-0

H. Zeng, R. S. Miller, R. A. Flowers, and B. Gong, A Highly Stable, Six-Hydrogen-Bonded Molecular Duplex, Journal of the American Chemical Society, vol.122, issue.11, pp.2635-2644, 2000.
DOI : 10.1021/ja9942742

H. Zeng, X. Yang, R. A. Flowers, and B. Gong, A Noncovalent Approach to Antiparallel ??-Sheet Formation, Journal of the American Chemical Society, vol.124, issue.12, pp.2903-2910, 2002.
DOI : 10.1021/ja010701b

X. Yang, F. Hua, K. Yamato, E. Ruckenstein, B. Gong et al., Supramolecular AB Diblock Copolymers, Angewandte Chemie International Edition, vol.14, issue.47, pp.6471-6474, 2004.
DOI : 10.1002/anie.200460472

H. S. Bazzi and H. Sleiman, Adenine-Containing Block Copolymers via Ring-Opening Metathesis Polymerization:?? Synthesis and Self-Assembly into Rod Morphologies, Macromolecules, vol.35, issue.26, pp.9617-9620, 2002.
DOI : 10.1021/ma025676o

H. Ohkawa, G. B. Ligthart, R. P. Sijbesma, and E. W. Meijer, Supramolecular Graft Copolymers Based on 2,7-Diamido-1,8-naphthyridines, Macromolecules, vol.40, issue.5, pp.1453-1459, 2007.
DOI : 10.1021/ma062317a

L. P. Stubbs and M. Weck, Towards a Universal Polymer Backbone: Design and Synthesis of Polymeric Scaffolds Containing Terminal Hydrogen-Bonding Recognition Motifs at Each Repeating Unit, Chemistry - A European Journal, vol.9, issue.4, pp.992-999, 2003.
DOI : 10.1002/chem.200390122

F. H. Beijer, R. P. Sijbesma, J. A. Vekemans, E. W. Meijer, H. Kooijman et al., Hydrogen-Bonded Complexes of Diaminopyridines and Diaminotriazines:?? Opposite Effect of Acylation on Complex Stabilities, The Journal of Organic Chemistry, vol.61, issue.18, pp.6371-6380, 1996.
DOI : 10.1021/jo960612v

W. H. Binder, D. Gloger, H. Weinstabl, G. Allmaier, and E. Pittenauer, ??? Methodology, Macromolecules, vol.40, issue.9, pp.3097-3107, 2007.
DOI : 10.1021/ma0628376

K. E. Feldman, M. J. Kade, T. F. De-greef, E. W. Meijer, E. J. Kramer et al., Polymers with Multiple Hydrogen-Bonded End Groups and Their Blends, Macromolecules, vol.41, issue.13, pp.4694-4700, 2008.
DOI : 10.1021/ma800375r

O. Altintas, T. Rudolph, and C. Barner-kowollik, Single chain self-assembly of well-defined heterotelechelic polymers generated by ATRP and click chemistry revisited, Journal of Polymer Science Part A: Polymer Chemistry, vol.132, issue.12, pp.2566-2576, 2011.
DOI : 10.1002/pola.24688

O. Altintas, P. Gerstel, N. Dingenouts, and C. Barner-kowollik, Single chain self-assembly: preparation of ??,??-donor???acceptor chains via living radical polymerization and orthogonal conjugation, Chemical Communications, vol.38, issue.34, pp.6291-6293, 2010.
DOI : 10.1039/c0cc00702a

O. Altintas, U. Tunca, and C. Barner-kowollik, Star and miktoarm star block (co)polymers via self-assembly of ATRP generated polymer segments featuring Hamilton wedge and cyanuric acid binding motifs, Polymer Chemistry, vol.8, issue.5, pp.1146-1155, 2011.
DOI : 10.1039/c0py00395f

A. D. Celiz, T. Lee, and O. A. Scherman, Polymer-Mediated Dispersion of Gold Nanoparticles: Using Supramolecular Moieties on the Periphery, Advanced Materials, vol.112, issue.38??????39, pp.3937-3940, 2009.
DOI : 10.1002/adma.200901291

A. D. Celiz and O. A. Scherman, A facile route to ureidopyrimidinone-functionalized polymers via RAFT, Journal of Polymer Science Part A: Polymer Chemistry, vol.57, issue.24, pp.5833-5841, 2010.
DOI : 10.1002/pola.24391

J. Bernard, F. Lortie, and B. Fenet, Design of Heterocomplementary H-Bonding RAFT Agents - Towards the Generation of Supramolecular Star Polymers, Macromolecular Rapid Communications, vol.34, issue.2, pp.83-88, 2009.
DOI : 10.1002/marc.200800586

URL : https://hal.archives-ouvertes.fr/hal-00374296

M. N. Higley, J. M. Pollino, E. Hollembeak, and M. Weck, A Modular Approach toward Block Copolymers, Chemistry - A European Journal, vol.60, issue.10, pp.2946-2953, 2005.
DOI : 10.1002/chem.200401221

A. V. Ambade, C. Burd, M. N. Higley, K. P. Nair, and M. Weck, Orthogonally Self-Assembled Multifunctional Block Copolymers, Chemistry - A European Journal, vol.39, issue.53, pp.11904-11911, 2009.
DOI : 10.1002/chem.200801647

A. V. Ambade, S. K. Yang, and M. Weck, Supramolecular ABC Triblock Copolymers, Angewandte Chemie International Edition, vol.130, issue.16, pp.2894-2898, 2009.
DOI : 10.1002/anie.200805116

S. K. Yang, A. V. Ambade, and M. Weck, Supramolecular ABC Triblock Copolymers via One-Pot, Orthogonal Self-Assembly, Journal of the American Chemical Society, vol.132, issue.5, pp.1637-1645, 2010.
DOI : 10.1021/ja908429e

I. H. Lin and C. Cheng, Synthesis and Assembly Behavior of Heteronucleobase-Functionalized Poly(??-caprolactone), Macromolecules, vol.43, issue.3, pp.1245-1252, 2010.
DOI : 10.1021/ma9026614

W. H. Binder, M. J. Kunz, and E. Ingolic, Supramolecular poly(ether ketone)-polyisobutylene pseudo-block copolymers, Journal of Polymer Science Part A: Polymer Chemistry, vol.21, issue.2, pp.162-172, 2004.
DOI : 10.1002/pola.10979

T. Park and S. C. Zimmerman, A Supramolecular Multi-Block Copolymer with a High Propensity for Alternation, Journal of the American Chemical Society, vol.128, issue.43, pp.13986-13987, 2006.
DOI : 10.1021/ja064116s

D. J. Van-beek, M. A. Gillissen, B. A. Van-as, A. R. Palmans, and R. P. Sijbesma, Supramolecular Copolyesters with Tunable Properties, Macromolecules, vol.40, issue.17, pp.6340-6348, 2007.
DOI : 10.1021/ma0705927

F. Herbst, I. Schr-ter, S. Ger, T. Thurn-albrecht, J. Balbach et al., Aggregation and Chain Dynamics in Supramolecular Polymers by Dynamic Rheology: Cluster Formation and Self-Aggregation, Macromolecules, vol.43, issue.23, pp.10006-10016, 2010.
DOI : 10.1021/ma101962y

M. Y. Sen, J. E. Puskas, D. E. Dabney, C. Wesdemiotis, and C. Absalon, Precision synthesis and characterization of thymine-functionalized polyisobutylene, Journal of Polymer Science Part A: Polymer Chemistry, vol.40, issue.16, pp.3501-3506, 2010.
DOI : 10.1002/pola.24058

E. M. Todd and S. C. Zimmerman, Supramolecular Star Polymers. Increased Molecular Weight with Decreased Polydispersity through Self-Assembly, Journal of the American Chemical Society, vol.129, issue.47, pp.14534-14535, 2007.
DOI : 10.1021/ja075453j

K. E. Feldman, M. J. Kade, T. F. De-greef, E. W. Meijer, E. J. Kramer et al., Polymers with Multiple Hydrogen-Bonded End Groups and Their Blends, Macromolecules, vol.41, issue.13, pp.4694-4700, 2008.
DOI : 10.1021/ma800375r

URL : http://repository.tue.nl/650111

J. Bernard, F. Lortie, and B. Fenet, Design of Heterocomplementary H-Bonding RAFT Agents - Towards the Generation of Supramolecular Star Polymers, Macromolecular Rapid Communications, vol.34, issue.2, pp.83-88, 2009.
DOI : 10.1002/marc.200800586

URL : https://hal.archives-ouvertes.fr/hal-00374296

A. D. Celiz and O. A. Scherman, A facile route to ureidopyrimidinone-functionalized polymers via RAFT, Journal of Polymer Science Part A: Polymer Chemistry, vol.57, issue.24, pp.5833-5841, 2010.
DOI : 10.1002/pola.24391

O. Altintas, P. Gerstel, N. Dingenouts, and C. Barner-kowollik, Single chain self-assembly: preparation of ??,??-donor???acceptor chains via living radical polymerization and orthogonal conjugation, Chemical Communications, vol.38, issue.34, pp.6291-6293, 2010.
DOI : 10.1039/c0cc00702a

O. Altintas, U. Tunca, and C. Barner-kowollik, Star and miktoarm star block (co)polymers via self-assembly of ATRP generated polymer segments featuring Hamilton wedge and cyanuric acid binding motifs, Polymer Chemistry, vol.8, issue.5, pp.1146-1155, 2011.
DOI : 10.1039/c0py00395f

M. N. Higley, J. M. Pollino, E. Hollembeak, and M. Weck, A Modular Approach toward Block Copolymers, Chemistry - A European Journal, vol.60, issue.10, pp.2946-2953, 2005.
DOI : 10.1002/chem.200401221

A. V. Ambade, S. K. Yang, and M. Weck, Supramolecular ABC Triblock Copolymers, Angewandte Chemie International Edition, vol.130, issue.16, pp.2894-2898, 2009.
DOI : 10.1002/anie.200805116

S. K. Yang, A. V. Ambade, and M. Weck, Supramolecular ABC Triblock Copolymers via One-Pot, Orthogonal Self-Assembly, Journal of the American Chemical Society, vol.132, issue.5, pp.1637-1645, 2010.
DOI : 10.1021/ja908429e

K. Matyjaszewski and J. Xia, Atom Transfer Radical Polymerization, Chemical Reviews, vol.101, issue.9, pp.2921-2990, 2001.
DOI : 10.1021/cr940534g

M. K. Georges, R. P. Veregin, P. M. Kazmaier, and G. K. Hamer, Narrow molecular weight resins by a free-radical polymerization process, Macromolecules, vol.26, issue.11, pp.2987-2988, 1993.
DOI : 10.1021/ma00063a054

D. Taton, A. Wilczewska, and M. Destarac, Direct Synthesis of Double Hydrophilic Statistical Di- and Triblock Copolymers Comprised of Acrylamide and Acrylic Acid Units via the MADIX Process, Macromolecular Rapid Communications, vol.22, issue.18, pp.1497-1503, 2001.
DOI : 10.1002/1521-3927(20011201)22:18<1497::AID-MARC1497>3.0.CO;2-M

G. Moad, E. Rizzardo, and S. H. Thang, Living Radical Polymerization by the RAFT Process ??? A Second Update, Australian Journal of Chemistry, vol.62, issue.11, pp.1402-1472, 2009.
DOI : 10.1071/CH09311

C. L. Houillot, M. Bui, ;. Save, C. Charleux, ;. Farcet et al., Synthesis of Well-Defined Polyacrylate Particle Dispersions in Organic Medium Using Simultaneous RAFT Polymerization and Self-Assembly of Block Copolymers. A Strong Influence of the Selected Thiocarbonylthio Chain Transfer Agent, Macromolecules, vol.40, issue.18, pp.6500-6509, 2007.
DOI : 10.1021/ma0703249

D. S. Germack and K. L. Wooley, Isoprene polymerizationvia reversible addition fragmentation chain transfer polymerization, Journal of Polymer Science Part A: Polymer Chemistry, vol.40, issue.17, pp.4100-4108, 2007.
DOI : 10.1002/pola.22226

D. S. Germack and K. L. Wooley, RAFT-Based Synthesis and Characterization of ABC versus ACB Triblock Copolymers Containingtert-Butyl Acrylate, Isoprene, and Styrene Blocks, Macromolecular Chemistry and Physics, vol.40, issue.23, pp.2481-2491, 2007.
DOI : 10.1002/macp.200700433

A. Favier, C. Barner-kowollik, T. P. Davis, and M. H. Stenzel, A Detailed On-Line FT/NIR and1H NMR Spectroscopic Investigation into Factors Causing Inhibition in Xanthate-Mediated Vinyl Acetate Polymerization, Macromolecular Chemistry and Physics, vol.205, issue.7, pp.925-936, 2004.
DOI : 10.1002/macp.200300179

G. Pound, J. B. Mcleary, J. M. Mckenzie, R. F. Lange, and B. Klumperman, In-Situ NMR Spectroscopy for Probing the Efficiency of RAFT/MADIX Agents, Macromolecules, vol.39, issue.23, pp.7796-7797, 2006.
DOI : 10.1021/ma061843z

J. Bernard, F. Lortie, and B. Fenet, Design of Heterocomplementary H-Bonding RAFT Agents - Towards the Generation of Supramolecular Star Polymers, Macromolecular Rapid Communications, vol.34, issue.2, pp.83-88, 2009.
DOI : 10.1002/marc.200800586

URL : https://hal.archives-ouvertes.fr/hal-00374296

R. ]. Binder, W. H. Kunz, M. J. Ingolic, and E. , Supramolecular poly(ether ketone)-polyisobutylene pseudo-block copolymers, Journal of Polymer Science Part A: Polymer Chemistry, vol.21, issue.2, pp.162-172, 2004.
DOI : 10.1002/pola.10979

K. E. Feldman, M. J. Kade, T. F. De-greef, E. W. Meijer, E. J. Kramer et al., Polymers with Multiple Hydrogen-Bonded End Groups and Their Blends, Macromolecules, vol.41, issue.13, pp.4694-4700, 2008.
DOI : 10.1021/ma800375r

«. Click and ». , Greffage des polymères par des ?-CD via une réaction, p.158

L. Dynamique-de, Diffusion, p.166

.. 'eau, Formation de copolymères greffés supramoléculaires dans l, p.166

M. Miyauchi and A. Harada, Construction of Supramolecular Polymers with Alternating ??-, ??-Cyclodextrin Units Using Conformational Change Induced by Competitive Guests, Journal of the American Chemical Society, vol.126, issue.37, pp.11418-11419, 2004.
DOI : 10.1021/ja046562q

T. Loftsson and M. E. Brewster, Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization, Journal of Pharmaceutical Sciences, vol.85, issue.10, pp.1017-1025, 1996.
DOI : 10.1021/js950534b

K. Uekama, F. Hirayama, and T. Irie, Cyclodextrin Drug Carrier Systems, Chemical Reviews, vol.98, issue.5, pp.2045-2076, 1998.
DOI : 10.1021/cr970025p

M. E. Brewster, T. Loftsson, and . Adv, Cyclodextrins as pharmaceutical solubilizers, Advanced Drug Delivery Reviews, vol.59, issue.7, pp.645-666, 2007.
DOI : 10.1016/j.addr.2007.05.012

J. Zhou and H. Ritter, Cyclodextrin functionalized polymers as drug delivery systems, Polymer Chemistry, vol.14, issue.2, pp.1552-1559, 2010.
DOI : 10.1039/c0py00219d

F. Yhaya, A. M. Gregory, and M. H. Stenzel, Polymers with Sugar Buckets ??? The Attachment of Cyclodextrins onto Polymer Chains, Australian Journal of Chemistry, vol.63, issue.2, pp.195-210, 2010.
DOI : 10.1071/CH09516

J. Storsberg and H. Ritter, Cyclodextrins in polymer synthesis: free radical polymerization of cyclodextrin host-guest complexes of methyl methacrylate or styrene from homogenous aqueous solution, Macromolecular Rapid Communications, vol.21, issue.5, pp.236-241, 2000.
DOI : 10.1002/(SICI)1521-3927(20000301)21:5<236::AID-MARC236>3.0.CO;2-K

T. T. Nielsen, V. Wintgens, C. Amiel, R. Wimmer, and K. L. Larsen, Facile Synthesis of ??-Cyclodextrin-Dextran Polymers by ???Click??? Chemistry, Biomacromolecules, vol.11, issue.7, pp.1710-1715, 2010.
DOI : 10.1021/bm9013233

A. Maciollek, M. Munteanu, and H. Ritter, New Generation of Polymeric Drugs: Copolymer from NIPAAM and Cyclodextrin Methacrylate Containing Supramolecular-Attached Antitumor Derivative, Macromolecular Chemistry and Physics, vol.36, issue.2, pp.245-249, 2010.
DOI : 10.1002/macp.200900436

J. Zhang and P. X. Ma, Polymeric Core-Shell Assemblies Mediated by Host-Guest Interactions: Versatile Nanocarriers for Drug Delivery, Angewandte Chemie International Edition, vol.46, issue.5, pp.964-968, 2009.
DOI : 10.1002/anie.200804135

A. Harada, Y. Takashima, and H. Yamaguchi, Cyclodextrin-based supramolecular polymers, Chemical Society Reviews, vol.129, issue.4, pp.875-882, 2009.
DOI : 10.1039/b705458k

K. Ohga, Y. Takashima, H. Takahashi, I. Y. Kawaguchi, H. Yamagushi et al., Preparation of Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules: Control of Structure by Linker Flexibility, Macromolecules, vol.38, issue.14, pp.5897-5904, 2005.
DOI : 10.1021/ma0508606

J. Wang and M. Jiang, Polymeric Self-Assembly into Micelles and Hollow Spheres with Multiscale Cavities Driven by Inclusion Complexation, Journal of the American Chemical Society, vol.128, issue.11, pp.3703-3708, 2006.
DOI : 10.1021/ja056775v

S. Ren, D. Chen, and M. Jiang, Noncovalently connected micelles based on a ??-cyclodextrin-containing polymer and adamantane end-capped poly(??-caprolactone) via host-guest interactions, Journal of Polymer Science Part A: Polymer Chemistry, vol.129, issue.17, pp.4267-4278, 2009.
DOI : 10.1002/pola.23479

J. Wu, H. He, and ;. Gao, ??-Cyclodextrin-Capped Polyrotaxanes: One-Pot Facile Synthesis via Click Chemistry and Use as Templates for Platinum Nanowires, Macromolecules, vol.43, issue.5, pp.2252-2260, 2010.
DOI : 10.1021/ma902255v

J. Wu and C. Gao, Sliding Supramolecular Polymer Brushes with Tunable Amphiphilicity: One-Step Parallel Click Synthesis and Self-Assembly, Macromolecules, vol.43, issue.17, pp.7139-7146, 2010.
DOI : 10.1021/ma100956y

Z. Ge, H. Liu, Y. Zhang, and S. Liu, Supramolecular Thermoresponsive Hyperbranched Polymers Constructed from Poly(N-Isopropylacrylamide) Containing One Adamantyl and Two ??-Cyclodextrin Terminal Moieties, Macromolecular Rapid Communications, vol.46, issue.1, pp.68-73, 2011.
DOI : 10.1002/marc.201000367

. Stadermann, H. Komber, M. Erber, F. Britz, H. Ritter et al., Diblock Copolymer Formation via Self-Assembly of Cyclodextrin and Adamantyl End-Functionalized Polymers, Macromolecules, vol.44, issue.9, pp.3250-3259, 2011.
DOI : 10.1021/ma200048a

R. C. Petter, J. S. Salek, C. T. Sikorski, G. Kumaravel, and F. T. Lin, Cooperative binding by aggregated mono-6-(alkylamino)-.beta.-cyclodextrins, Journal of the American Chemical Society, vol.112, issue.10, pp.3860-3868, 1990.
DOI : 10.1021/ja00166a021

;. S. Amajjahe, M. Choi, . Munteanu-;-h, and . Ritter, Pseudopolyanions Based on Poly(NIPAAM-co-??-Cyclodextrin Methacrylate) and Ionic Liquids, Angewandte Chemie International Edition, vol.9, issue.18, pp.3435-3437, 2008.
DOI : 10.1002/anie.200704995

B. S. Sumerlin, N. V. Tsarevsky, G. Louche, R. Y. Lee, and K. Matyjaszewski, Highly Efficient ???Click??? Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP, Macromolecules, vol.38, issue.18, pp.7540-7545, 2005.
DOI : 10.1021/ma0511245

W. Zhang, W. Zhang, and . Zhang, SET-RAFT Polymerization of Progargyl Methacrylate and a One-Pot/One-Step Preparation of Side-chain Functionalized Polymers via Combination of SET-RAFT and Click Chemistry, Macromolecular Rapid Communications, vol.63, issue.15, pp.1354-1358, 2010.
DOI : 10.1002/marc.201000008

A. Layre, G. Volet, and V. Wintgens, Associative Network Based on Cyclodextrin Polymer: A Model System for Drug Delivery, Biomacromolecules, vol.10, issue.12, pp.3283-3289, 2009.
DOI : 10.1021/bm900866p

T. Une-solution-de, 51 g, 1.81 mmol), de Thy-OH (1.18 g, 3.98 mmol) et de PPh 3 (1.04 g, 3.97 mmol)) est préparée dans 200 mL de THF anhydre et placée dans un bain de glace à 0 °C sous atmosphère inerte (argon) Une

. Ml-d-'eau-distillée, La phase organique est ensuite séchée avec du sulfate de magnésium anhydre (MgSO 4 ) et reconcentrée sous pression réduite. Le produit brut est finalement purifié par chromatographie sur colonne de silice (dichlorométhane:éthanol, 30:1), l'agent de transfert TTC-Thy se présente sous la forme d'une pâte jaune-orange

. Reconcentrée-sous-vide, Un dérivé bromé de la diaminopyridine DAP2 est ainsi obtenu après purification par chromatographie sur colonne de silice (acétate d'éthyle:cyclohexane 1:1), sous forme d'un solide cristallin blanc

H. Nmr, (d, -S-CH(CH 3 )-, 3H), 1.75 (m, CH 3, 2H), 2.34 (t, -(O=C)-CH 2 -, 2H), 4.92 (q, -S-CH(CH 3 )-, 1H), pp.0-99735, 2003.

. Une-solution-de-dap-br, 6 g, 1.91 mmol) et de xanthogénate de potassium (0.92 g, 5.73 mmol) est préparée dans 100 mL d'acétone séché sur tamis moléculaire

. De-dicyclohexylcarbodiimide, 76 mmol) et de 4- diméthylaminopyridine (DMAP, 0.07 g, 0.59 mmol) est préparée dans 200 mL de dichlorométhane anhydre Après une nuit d'agitation à température ambiante, la solution est filtrée et le solvant évaporé sous vide. Le produit brut est ensuite purifié par chromatographie sur colonne de silice (cyclohexane :acétate d'éthyle, ). L'agent RAFT TTC-Ada se présente sous la forme huile orange (1.14 g, 81%)

. Le-protocole-de-synthèse-de-ce-monomère-est-adapté-de-celui-de-ladmiral, Une solution d'alcool 3-(triméthylsilyl)propargylique (11.6 mL, p.78

H. Nmr, CDCl 3 , ?, ppm): 0.17 (s, -Si-(CH 3 ) 3 , 9H), pp.95-99

. La-polymérisation-de-l, acrylate de n-butyle (nBuA) a été effectuée en masse, en employant les agents RAFT TTC-Thy, DTB-DAP ou TTCnf, p.71

R. La-polymérisation-du-styrène-a-Été-effectuée-en-masse, D. Ttc-thy, A. Ou, and A. , Par exemple, l'agent RAFT TTC-Thy (40 mg, 4.8 x 10 -5 mol), l'ACPA-Thy (1.03 mg, 1.2 x 10 -6 mol), étalon interne) ont été dissous le styrène (2.2 mL, pp.5-10

. Mol, La solution a été dégazée par une série de 5 cycles de congélation-décongélation sous vide. Le tube Schlenk a été placé dans un bain d'huile à 80 °C. La réaction a été stoppée en plongeant le tube dans l'azote liquide

. La-polymérisation-de-l, isoprène a été effectuée en solution dans le toluène, en employant l'agent RAFT TTC-Thy et l'amorceur DCP (peroxyde de dicumyle) Par exemple, l'agent RAFT TTC-Thy (34.5 mg, 4.1 x 10 -5 mol), et l'isoprène

. La-polymérisation-de-l, acétate de vinyle (VAc) a été effectuée en masse, en employant l'agent RAFT X-DAP, et l'amorceur AIBN. Par exemple, l'agent RAFT X-DAP (42 mg

L. Polymères-fonctionnalisés-thymine-ou-diaminopyridine, Chapitre III) ont été analysés par spectrométrie de masse MALDI-TOF (« Matrix Assisted Laser Desorption Ionization Time of Flight ») au moyen d'un spectromètre Voyager-DE PRO (Applied Biosystems, Framingham, MA) equipé d'un laser N2 émettant à 337 nm avec une durée de pulse de 3 ns, en mode linéaire et réflectron. Les ions ont été accélérés par un potentiel de 20 kV, avec une détection des ions positifs. Le dithranol a été utilisé comme matrice

L. Polymères-fonctionnalisés-thymine and . Diaminopyridine, Chapitre III) ont été analysé avec un appareillage SEC dans le THF à 25 °C (débit : 1 mL.min -1 ), constitué d'une pompe

V. Viscotek, ) et d'un détecteur d'indice de réfraction (RI) Viscotek VE3580. Les masses molaires moyennes des polymères PnBuA, PS, PVAc et PI ont été évaluées sur la base d'une courbe de calibration basée sur des PS, 2005.

L. Polymères-ptbua-fonctionnalisés-adamantane, ainsi que les polymères à fonctions alcynes protégées PTMSPMA (Chapitre V) ont été analysés avec un appareillage SEC fonctionnant dans le DMF

V. Viscotek, de trois colonnes Waters HR4 et d'un détecteur d'indice de réfraction (RI)

V. Viscotek, Les masses molaires moyennes des polymères été évaluées sur la base d'une courbe de calibration basée sur des PS standards de masses molaires comprises entre 500 et 50000 g, p.1

Y. Mitsukami, M. S. Donovan, A. B. Lowe, and C. L. Mccormick, Water-Soluble Polymers. 81. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymers and Block Copolymers in Aqueous Solution via RAFT, Macromolecules, vol.34, issue.7, pp.2248-2256, 2001.
DOI : 10.1021/ma0018087

R. C. Petter, J. S. Salek, C. T. Sikorski, G. Kumaravel, and F. T. Lin, Cooperative binding by aggregated mono-6-(alkylamino)-.beta.-cyclodextrins, Journal of the American Chemical Society, vol.112, issue.10, pp.3860-3868, 1990.
DOI : 10.1021/ja00166a021

. Thy, = 3 x 10 -3 mol.L -1 , concentrations croissantes en motifs DAP

. Au-cours-de-la-dernière-décennie, quelques (rares) exemples de copolymères à blocs présentant des liens supramoléculaires entre les blocs constitutifs ont été décrits. En raison du caractère réversible de l'association des blocs macromoléculaires, de tels polymères sont d'un grand intérêt pour le développement de matériaux nanostructurés