U. Amaldi and G. Kraft, Radiotherapy with beams of carbon ions, Reports on Progress in Physics, vol.68, issue.8, pp.1861-1882, 2005.
DOI : 10.1088/0034-4885/68/8/R04

H. Paganetti, H. Jiang, K. Parodi, R. Slopsema, and M. Engelsman, Clinical implementation of full Monte Carlo dose calculation in proton beam therapy, Physics in Medicine and Biology, vol.53, issue.17, pp.53-4825, 2008.
DOI : 10.1088/0031-9155/53/17/023

J. Seco, H. Jiang, D. Herrup, H. Kooy, and H. Paganetti, A Monte Carlo tool for combined photon and proton treatment planning verification, Journal of Physics: Conference Series, vol.74, p.21014, 2007.
DOI : 10.1088/1742-6596/74/1/021014

N. Zahra, T. Frisson, L. Grevillot, P. Lautesse, and D. Sarrut, Influence of Geant4 parameters on dose distribution and computation time for carbon ion therapy simulation, Physica Medica, vol.26, issue.4, 2010.
DOI : 10.1016/j.ejmp.2009.12.001

URL : https://hal.archives-ouvertes.fr/hal-00633360

K. Niita, T. Sato, H. Iwase, H. Nose, H. Nakashima et al., PHITS ? a particle and heavy ion transport code system, Space Radiation Transport, Shielding, and Risk Assessment Models, 2006.

C. Z. Jarlskog and H. Paganetti, Physics settings for using the Geant4 toolkit in proton therapy, IEEE, vol.55, pp.1018-1024, 2008.

J. Wellisch, Geant4 hadronic physics status and validation for large HEP detectors, Computing in High Energy and Nuclear Physics, 2003.

L. Sihver, D. Matthiä, T. Koi, and D. Mancusi, Dose calculations at high altitudes and in deep space with GEANT4 using BIC and JQMD models for nucleus???nucleus reactions, New Journal of Physics, vol.10, issue.10, 2008.
DOI : 10.1088/1367-2630/10/10/105019

W. Maire, T. Pokorski, N. Sasaki, L. Starkov, D. Urban et al., Geometry and physics of the Geant4 toolkit for high and medium energy applications, Radiat. Phys. Chem, vol.78, pp.859-873, 2009.

. Geant4-collaboration, Physics Reference Manual for Geant4, CERN, 2009.

S. W. Peterson, J. Polf, M. Bues, G. Ciangaru, L. Archambault et al., Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons, Physics in Medicine and Biology, vol.54, issue.10, pp.54-3217, 2009.
DOI : 10.1088/0031-9155/54/10/017

. Trache, Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation, Phys. Med. Biol, vol.54, pp.519-527, 2009.

N. Kanematsu, Alternative scattering power for Gaussian beam model of heavy charged particles, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, issue.23, pp.5056-5062, 2008.
DOI : 10.1016/j.nimb.2008.09.004

B. Gottschalk, On the scattering power of radiotherapy protons, Medical Physics, vol.34, issue.6, pp.352-367, 2010.
DOI : 10.1118/1.3264177

M. Berger, J. Coursey, M. Zucker, and J. Chang, Proton Stopping Power and Ranges, Nuclear Institute of Standards and Technology Available from: <http:// physics.nist.gov/PhysRefData, 2009.

J. F. Ziegler, Stopping of energetic light ions in elemental matter, Journal of Applied Physics, vol.85, issue.3, pp.1249-1272, 1999.
DOI : 10.1063/1.369844

S. Agostinelli, Geant4???a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.506, issue.3, pp.250-303, 2003.
DOI : 10.1016/S0168-9002(03)01368-8

URL : https://hal.archives-ouvertes.fr/in2p3-00020246

I. J. Chetty, B. Curran, J. E. Cygler, J. J. Demarco, G. Ezzell et al., Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning, Medical Physics, vol.32, issue.12, pp.34-4818, 2007.
DOI : 10.1088/0031-9155/50/5/006

I. J. Chetty, M. Rosu, M. L. Kessler, B. A. Fraass, R. K. Haken et al., Reporting and analyzing statistical uncertainties in Monte Carlobased treatment planning, Int. J. Radiat. Oncol. Biol. Phys, pp.65-1249, 2006.
DOI : 10.1016/j.ijrobp.2006.03.039

D. Sarrut and L. Guigues, Region-oriented CT image representation for reducing computing time of Monte Carlo simulations, Medical Physics, vol.33, issue.3, pp.1452-1463, 2008.
DOI : 10.1118/1.2161409

URL : https://hal.archives-ouvertes.fr/hal-00443457

J. Soltani-nabipour, D. Sardari, and G. , Cata-Danil, Sensitivity of the Bragg peak curve to the average ionization potential of the stopping power, Rom. J. Phys, vol.54, pp.321-330, 2008.

P. Andreo, On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams, Physics in Medicine and Biology, vol.54, issue.11, pp.205-215, 2009.
DOI : 10.1088/0031-9155/54/11/N01

M. Bethesda, Stopping Powers for Electrons and Positrons, ICRU Report, vol.37, 1984.

M. Bethesda, ICRU Report 49: Stopping Powers and Ranges for Protons and Alpha Particles, 1993.

C. J. Mertens, M. F. Moyers, S. A. Walker, and J. Tweed, Proton lateral broadening distribution comparisons between GRNTRN, MCNPX, and laboratory beam measurements, Advances in Space Research, vol.45, issue.7, pp.884-891, 2010.
DOI : 10.1016/j.asr.2009.08.013

A. Stankovskiy, S. Kerhoas-cavata, R. Ferrand, C. Nauraye, and L. Demarzi, Monte Carlo modelling of the treatment line of the Proton Therapy Center in Orsay, Physics in Medicine and Biology, vol.54, issue.8, pp.54-2377, 2009.
DOI : 10.1088/0031-9155/54/8/008

H. Szymanowski, A. Mazal, C. Nauraye, S. Biensan, R. Ferrand et al., Experimental determination and verification of the parameters used in a proton pencil beam algorithm, Medical Physics, vol.13, issue.6, pp.28-975, 2001.
DOI : 10.1118/1.1376445

T. Frisson, N. Zahra, P. Lautesse, and D. Sarrut, Monte-Carlo based prediction of radiochromic film response for hadrontherapy dosimetry, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.606, issue.3, pp.606-749, 2009.
DOI : 10.1016/j.nima.2009.04.027

URL : https://hal.archives-ouvertes.fr/in2p3-00407993

D. Kirby, S. Green, H. Palmans, R. Hugtenburg, C. Wojnecki et al., LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry, Physics in Medicine and Biology, vol.55, issue.2, pp.55-417, 2010.
DOI : 10.1088/0031-9155/55/2/006

F. Rademakers and R. Brun, Root: an object-oriented data analysis framework, Linux J, issue.51, 1998.

L. Grevillot, Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.268, issue.20, pp.3295-3305, 2010.
DOI : 10.1016/j.nimb.2010.07.011

U. Amaldi and G. Kraft, Radiotherapy with beams of carbon ions, Reports on Progress in Physics, vol.68, issue.8, pp.1861-82, 2005.
DOI : 10.1088/0034-4885/68/8/R04

M. J. Berger, J. S. Coursey, M. A. Zucker, and C. J. , Stopping Powers and Ranges for Protons National Institute of Standards and Technology (NIST) http://physics.nist.gov/PhysRefData, p.63, 2009.

]. A. Lomax, T. Böhringer, A. Bolsi, D. Coray, F. Emert et al., Treatment planning and verification of proton therapy using spot scanning: Initial experiences, INSA de Lyon, tous droits réservés References, pp.313150-3157, 2004.
DOI : 10.1118/1.1779371

O. Jäkel, C. Jacob, D. Schardt, C. P. Karger, and G. H. Hartmann, Relation between carbon ion ranges and x-ray CT numbers, Medical Physics, vol.39, issue.4, pp.701-703, 2001.
DOI : 10.1118/1.1357455

H. Paganetti, H. Jiang, K. Parodi, R. Slopsema, and M. Engelsman, Clinical implementation of full Monte Carlo dose calculation in proton beam therapy, Physics in Medicine and Biology, vol.53, issue.17, pp.534825-4853, 2008.
DOI : 10.1088/0031-9155/53/17/023

B. Bednarz, J. Daartz, and H. Paganetti, Dosimetric accuracy of planning and delivering small proton therapy fields, Physics in Medicine and Biology, vol.55, issue.24, pp.7425-7438, 2010.
DOI : 10.1088/0031-9155/55/24/003

A. J. Lomax, T. Bortfeld, G. Goitein, J. Debus, C. Dykstra et al., A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy, Radiotherapy and Oncology, vol.51, issue.3, pp.257-271, 1999.
DOI : 10.1016/S0167-8140(99)00036-5

M. Fippel and M. Soukup, A Monte Carlo dose calculation algorithm for proton therapy, Medical Physics, vol.42, issue.8, pp.312263-2273, 2004.
DOI : 10.1118/1.1769631

S. Honore, A. S. Kerhoas-cavata, V. Kirov, M. Kohli, M. Koole et al., GATE: a simulation toolkit for PET and SPECT, Physics in Medicine and Biology, p.494543, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-00021834

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol et al., GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Physics in Medicine and Biology, vol.56, issue.4, p.881, 2011.
DOI : 10.1088/0031-9155/56/4/001

URL : https://hal.archives-ouvertes.fr/in2p3-00559709

M. Dosanjh, B. Jones, and R. Meyer, ENLIGHT and other EU-funded projects in hadron therapy, The British Journal of Radiology, vol.83, issue.994, pp.811-813, 2010.
DOI : 10.1259/bjr/49490647

L. Grevillot, T. Frisson, D. Maneval, N. Zahra, J. Badel et al., Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4, Physics in Medicine and Biology, vol.56, issue.4, p.903, 2011.
DOI : 10.1088/0031-9155/56/4/002

URL : https://hal.archives-ouvertes.fr/in2p3-00842390

L. Grevillot, T. Frisson, N. Zahra, D. Bertrand, F. Stichelbaut et al., Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, issue.20, pp.2683295-3305, 2010.

L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4, Physics in Medicine and Biology, vol.56, issue.16, pp.5203-5219, 2011.
DOI : 10.1088/0031-9155/56/16/008

URL : https://hal.archives-ouvertes.fr/hal-00630709

S. Agostinelli, Geant4 ? a simulation toolkit. Nuclear Instruments and Methods in Physics Research, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

H. Paganetti, Dose to water versus dose to medium in proton beam therapy, Physics in Medicine and Biology, vol.54, issue.14, pp.4399-4421, 2009.
DOI : 10.1088/0031-9155/54/14/004

S. Camarasu-pop, T. Glatard, J. Mo´scickimo´scicki, H. Benoit-cattin, and D. Sarrut, Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE, Journal of Grid Computing, vol.119, issue.6, pp.241-259
DOI : 10.1007/s10723-010-9153-0

J. V. Siebers, P. J. Keall, A. E. Nahum, and R. Mohan, Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations, Physics in Medicine and Biology, vol.45, issue.4, pp.983-995, 2000.
DOI : 10.1088/0031-9155/45/4/313

H. Palmans and F. Verhaegen, Assigning nonelastic nuclear interaction cross sections to Hounsfield units for Monte Carlo treatment planning of proton beams, Physics in Medicine and Biology, vol.50, issue.5, pp.991-1000, 2005.
DOI : 10.1088/0031-9155/50/5/021

H. and H. Liu, Dm rather than Dw should be used in Monte Carlo treatment planning, Medical Physics, vol.29, issue.5, pp.922-923, 2002.
DOI : 10.1118/1.1473137

W. Schneider, T. Bortfeld, and W. Schlegel, Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions, Physics in Medicine and Biology, vol.45, issue.2, pp.459-478, 2000.
DOI : 10.1088/0031-9155/45/2/314

M. Soukup, M. Fippel, and M. Alber, A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations, Physics in Medicine and Biology, vol.50, issue.21, pp.5089-5104, 2005.
DOI : 10.1088/0031-9155/50/21/010

J. Apostolakis, M. Asai, A. G. Bogdanov, H. Burkhardt, G. Cosmo et al., Geometry and physics of the Geant4 toolkit for high and medium energy applications, Use of Monte Carlo Techniques for Design and Analysis of Radiation Detectors, pp.78859-873, 2009.
DOI : 10.1016/j.radphyschem.2009.04.026

. Geant4-collaboration, Physics Reference Manual for Geant4, CERN, 2009.

A. Lomax, Intensity modulation methods for proton radiotherapy, Physics in Medicine and Biology, vol.44, issue.1, pp.185-205, 1999.
DOI : 10.1088/0031-9155/44/1/014

P. Seroul and D. Sarrut, Vv : Viewer for the evaluation of 4d image registration, Medical Image Computing and Computer-Assisted Intervention MICCAI, 2008.

A. Stankovskiy, S. Kerhoas-cavata, R. Ferrand, C. Nauraye, and L. Demarzi, Monte Carlo modelling of the treatment line of the Proton Therapy Center in Orsay, Physics in Medicine and Biology, vol.54, issue.8, pp.2377-2394, 2009.
DOI : 10.1088/0031-9155/54/8/008

L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4, Physics in Medicine and Biology, vol.56, issue.16, pp.5203-5219, 2011.
DOI : 10.1088/0031-9155/56/16/008

URL : https://hal.archives-ouvertes.fr/hal-00630709

L. Guigues, C. Maigne, Y. Morel, . Perrot, . Rehfeld et al., GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Physics in Medicine and Biology, vol.56, issue.4, pp.881-901, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00559709

N. Zahra, T. Frisson, L. Grevillot, P. Lautesse, and D. Sarrut, Influence of Geant4 parameters on dose distribution and computation time for carbon ion therapy simulation, Physica Medica, vol.26, issue.4, pp.202-208, 2010.
DOI : 10.1016/j.ejmp.2009.12.001

URL : https://hal.archives-ouvertes.fr/hal-00633360

D. Grevillot, F. Bertrand, N. Dessy, D. Freud, and . Sarrut, A Monte Carlo Pencil Beam Scanning model towards TPS Quality Assurance using GATE/GEANT4. Particle Therapy Co- Operative Group (PTCOG) 50, Poster Presentations in International Conferences L, 2011.

P. Gueth, S. Camarasu-pop, T. Glatard, L. Grevillot, and D. Sarrut, PBS proton treatment plan simulation with the GATE-Lab. Particle Therapy Co-Operative Group (PTCOG) 50, p.105, 2011.

. Insa-de-lyon, M. Tous-droits-réservés, H. Vidal, C. Szymanowski, L. Nauraye et al., An analytical model for proton beam collimator scattering dose calculation Validation of a new GATE module for radiation therapy: simulation of a 6 MV Elekta Precise linear accelerator head, European Society for Radiotherapy and Oncology (ESTRO), vol.29, 2009.

J. Ferlay, D. M. Parkin, and E. Steliarova-foucher, Estimates of cancer incidence and mortality in Europe in 2008, European Journal of Cancer, vol.46, issue.4, p.765781, 2010.
DOI : 10.1016/j.ejca.2009.12.014

I. Torunn, . Yock, J. Nancy, and . Tarbell, Technology insight: Proton beam radiotherapy for treatment in pediatric brain tumors, ):97103; quiz 1 p following 111, 2004.

M. Dosanjh, B. Jones, and R. Meyer, ENLIGHT and other EU-funded projects in hadron therapy, The British Journal of Radiology, vol.83, issue.994, p.811813, 2010.
DOI : 10.1259/bjr/49490647

A. J. Lomax, T. Bortfeld, G. Goitein, J. Debus, C. Dykstra et al., A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy, Radiotherapy and Oncology, vol.51, issue.3, p.51257271, 1999.
DOI : 10.1016/S0167-8140(99)00036-5

B. Eugen and . Hug, Protons versus photons: a status assessment at the beginning of the 21st Century, Radiother Oncol, vol.73, issue.2, pp.35-37, 2004.

A. Eleanor, . Blakely, Y. Polly, and . Chang, Late eects from hadron therapy, Radiother Oncol, vol.73, issue.2, pp.134-140, 2004.

H. Tsujii, J. Mizoe, T. Kamada, M. Baba, S. Kato et al., Overview of clinical experience on carbon ion therapy at NIRS, Radiother. Oncol, vol.73, p.4149, 2004.

T. Okada, T. Kamada, H. Tsuji-etsu-mizoe, M. Baba, S. Kato et al., Carbon Ion Radiotherapy: Clinical Experiences at National Institute of Radiological Science (NIRS), Journal of Radiation Research, vol.51, issue.4, p.51355364, 2010.
DOI : 10.1269/jrr.10016

E. Stephanie, M. Combs, T. Ellerbrock, D. Haberer, A. Habermehl et al., Heidelberg ion therapy center (hit): Initial clinical experience in the rst 80 patients, Acta Oncol, issue.7, p.4911321140, 2010.

H. Suit, T. Delaney, S. Goldberg, H. Paganetti, B. Clasie et al., Proton vs carbon ion beams in the denitive radiation treatment of cancer patients, Radiother Oncol, vol.95, issue.1, p.322, 2010.

M. Hélène-baron, P. Pommier, V. Favrel, G. Truc, J. Balosso et al., A ???One-day survey???: As a reliable estimation of the potential recruitment for proton- and carbon- ion therapy in France, Radiotherapy and Oncology, vol.73, issue.2, pp.15-17, 2004.
DOI : 10.1016/S0167-8140(04)80005-7

R. Mayer, U. Mock, R. Jäger, R. Pötter, C. Vutuc et al., Epidemiological aspects of hadron therapy: a prospective nationwide study of the austrian project medaustron and the austrian society of radiooncology (oegro), Radiother Oncol, vol.73, issue.2, pp.24-28, 2004.

M. Johannesma, Y. Pommier, and . Lievens, Cost-eectiveness of particle therapy: Current evidence and future needs, Radiother Oncol, vol.89, p.127134, 2008.

R. Orecchia, . Zurlo, . Loasses, . Krengli, . Tosi et al., Particle beam therapy (hadrontherapy): basis for interest and clinical experience, European Journal of Cancer, vol.34, issue.4, p.459468, 1998.
DOI : 10.1016/S0959-8049(97)10044-2

M. Lodge, . Johannesma, A. J. Stirk, . Munro, T. Ruysscher et al., A systematic literature review of the clinical and cost-eectiveness of hadron therapy in cancer, Radiother Oncol, vol.83, p.110122, 2007.

A. Peeters, J. Grutters, M. Johannesma, . Reimoser, J. Ruysscher et al., How costly is particle therapy? Cost analysis of external beam radiotherapy with carbon-ions, protons and photons, Radiotherapy and Oncology, vol.95, issue.1, p.4553, 2010.
DOI : 10.1016/j.radonc.2009.12.002

O. Jäkel, S. Beate, . Combs, J. Schulz-ertner, and . Debus, On the cost-eectiveness of carbon ion radiation therapy for skull base chordoma, Radiother Oncol, vol.83, p.133138, 2007.

S. Agostinelli, Geant4 a simulation toolkit. Nuclear Instruments and Methods in Physics Research, p.250303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

P. Grichine, A. Gumplinger, I. Heikkinen, V. N. Hrivnacova, J. Ivantchenko et al., Geometry and physics of the geant4 toolkit for high and medium energy applications, Use of Monte Carlo Techniques for Design and Analysis of Radiation Detectors, pp.78859-873, 2009.

J. P. Wellisch, Geant4 hadronic physics status and validation for large HEP detectors Computing in High Energy and Nuclear Physics and La Jolla and California and, 2003.

J. Carrier, L. Archambault, and L. Beaulieu, , an object-oriented Monte Carlo toolkit, for simulations in medical physics, Medical Physics, vol.46, issue.3, pp.484-492, 2004.
DOI : 10.1118/1.1644532

E. Poon and F. Verhaegen, for radiotherapy applications, Medical Physics, vol.362, issue.6, p.16961711, 2005.
DOI : 10.1103/PhysRev.78.526

A. Lechner, M. Pia, and M. Sudhakar, Validation of Geant4 low energy physics models against electron energy deposition and backscattering data, 2007 IEEE Nuclear Science Symposium Conference Record, 2007.
DOI : 10.1109/NSSMIC.2007.4436546

I. Pshenichnov, I. Mishustin, and W. Greiner, Comparative study of depthdose distributions for beams of light and heavy nuclei in tissue-like media. Nuclear Instruments and Methods in, Physics Research B, vol.266, p.10941098, 2008.

C. O. Thiam, V. Breton, D. Donnarieix, B. Habib, and L. Maigne, Validation of a dose deposited by low-energy photons using GATE/GEANT4, Physics in Medicine and Biology, vol.53, issue.11, p.5330393055, 2008.
DOI : 10.1088/0031-9155/53/11/019

URL : https://hal.archives-ouvertes.fr/in2p3-00336331

I. Pshenichnov, . Botvina, W. Mishustin, and . Greiner, Nuclear fragmentation reactions in extended media studied with Geant4 toolkit. Nuclear Instruments and Methods in, Physics Research B, vol.268, p.604615, 2010.

C. , Z. Jarlskog, and H. Paganetti, Physics Settings for Using the Geant4 Toolkit in Proton Therapy, IEEE, vol.55, issue.3, p.10181024, 2008.

. Quesada, Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy

A. Lechner, V. Ivanchenko, and J. Knobloch, Validation of recent Geant4 physics models for application in carbon ion therapy. Nuclear Instruments and Methods in, Physics Research Section B, vol.268, p.23432354, 2010.

D. Vieira, R. Visvikis, E. Van-de-walle, C. Wieërs, and . Morel, GATE: a simulation toolkit for PET and SPECT, Physics in Medicine and Biology, issue.19, p.494543, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-00021834

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol et al., GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Physics in Medicine and Biology, vol.56, issue.4, p.881, 2011.
DOI : 10.1088/0031-9155/56/4/001

URL : https://hal.archives-ouvertes.fr/in2p3-00559709

D. Sarrut and L. Guigues, Region-oriented CT image representation for reducing computing time of Monte Carlo simulations, Medical Physics, vol.33, issue.3, p.14521463, 2008.
DOI : 10.1118/1.2161409

URL : https://hal.archives-ouvertes.fr/hal-00443457

L. Grevillot, T. Frisson, D. Maneval, N. Zahra, J. Badel et al., Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4, Physics in Medicine and Biology, vol.56, issue.4, p.903, 2011.
DOI : 10.1088/0031-9155/56/4/002

URL : https://hal.archives-ouvertes.fr/in2p3-00842390

A. J. Lomax, T. Böhringer, A. Bolsi, D. Coray, F. Emert et al., Treatment planning and verication of proton therapy using spot scanning: initial experiences

U. Amaldi and G. Kraft, Radiotherapy with beams of carbon ions, Reports on Progress in Physics, vol.68, issue.8, p.18611882, 2005.
DOI : 10.1088/0034-4885/68/8/R04

]. A. Lomax, Intensity modulation methods for proton radiotherapy, Physics in Medicine and Biology, vol.44, issue.1
DOI : 10.1088/0031-9155/44/1/014

M. Krämer, . Jäkel, . Haberer, . Kraft, U. Schardt et al., Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization, Physics in Medicine and Biology, vol.45, issue.11, p.4532993317, 2000.
DOI : 10.1088/0031-9155/45/11/313

M. Soukup, M. Fippel, and M. Alber, A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations, Physics in Medicine and Biology, vol.50, issue.21, p.5050895104, 2005.
DOI : 10.1088/0031-9155/50/21/010

A. Gemmel, . Hasch, W. Ellerbrock, M. Weyrather, and . Krämer, Biological dose optimization with multiple ion elds, Physics in Medicine and Biology, vol.53, p.69917012, 2008.

O. Jäkel, M. Krämer, C. P. Karger, and J. Debus, Treatment planning for heavy ion radiotherapy: clinical implementation and application, Physics in Medicine and Biology, vol.46, issue.4, p.11011116, 2001.
DOI : 10.1088/0031-9155/46/4/314

P. L. Petti, Dierential-pencil-beam dose calculations for charged particles, Med Phys, vol.19, issue.1, p.137149, 1992.

P. L. Petti, Evaluation of a pencil-beam dose calculation technique for charged particle radiotherapy, International Journal of Radiation Oncology*Biology*Physics, vol.35, issue.5, p.10491057, 1996.
DOI : 10.1016/0360-3016(96)00233-7

B. Schaner, E. Pedroni, and A. Lomax, Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity eects in the analytical dose calculation, Phys Med Biol, vol.44, issue.1, p.2741, 1999.

H. Szymanowski, A. Mazal, C. Nauraye, S. Biensan, R. Ferrand et al., Experimental determination and verication of the parameters used in a proton pencil beam algorithm, Med Phys, issue.6, p.28975987, 2001.

R. Kohno, N. Kanematsu, T. Kanai, and K. Yusa, Evaluation of a pencil beam algorithm for therapeutic carbon ion beam in presence of bolus, Medical Physics, vol.48, issue.8, p.3122492253, 2004.
DOI : 10.1118/1.1766422

N. Kanematsu, Alternative scattering power for Gaussian beam model of heavy charged particles . Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.266, issue.23, pp.5056-5062, 2008.

R. Fujimoto, T. Kurihara, and Y. Nagamine, GPU-based fast pencil beam algorithm for proton therapy, Physics in Medicine and Biology, vol.56, issue.5, p.13191328, 2011.
DOI : 10.1088/0031-9155/56/5/006

E. Pedroni, S. Scheib, T. Böhringer, A. Coray, M. Grossmann et al., Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams, Physics in Medicine and Biology, vol.50, issue.3, p.541561, 2005.
DOI : 10.1088/0031-9155/50/3/011

M. Krämer and M. Scholz, Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose, Physics in Medicine and Biology, vol.45, issue.11, p.33193330, 2000.
DOI : 10.1088/0031-9155/45/11/314

H. Paganetti, H. Jiang, K. Parodi, R. Slopsema, and M. Engelsman, Clinical implementation of full Monte Carlo dose calculation in proton beam therapy, Physics in Medicine and Biology, vol.53, issue.17, pp.534825-4853, 2008.
DOI : 10.1088/0031-9155/53/17/023

S. W. Peterson, J. Polf, M. Bues, G. Ciangaru, L. Archambault et al., Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons, Physics in Medicine and Biology, vol.54, issue.10, p.5432173229, 2009.
DOI : 10.1088/0031-9155/54/10/017

K. Parodi, H. Paganetti, E. Cascio, B. Jacob, . Flanz et al., PET/CT imaging for treatment verication after proton therapy: a study with plastic phantoms and metallic implants, Med Phys, vol.34, issue.2, p.419435, 2007.

K. Parodi, A. Ferrari, F. Sommerer, and H. Paganetti, Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code, Physics in Medicine and Biology, vol.52, issue.12, p.33693387, 2007.
DOI : 10.1088/0031-9155/52/12/004

S. España, X. Zhu, J. Daartz, G. Fakhri, T. Bortfeld et al., The reliability of proton-nuclear interaction cross-section data to predict proton-induced PET images in proton therapy, Physics in Medicine and Biology, vol.56, issue.9, p.5626872698, 2011.
DOI : 10.1088/0031-9155/56/9/003

M. Moteabbed, S. España, and H. Paganetti, Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verication in proton therapy, Phys Med Biol, vol.56, issue.4, p.10631082, 2011.

F. Roellingho, M. Richard, M. Chevallier, J. Constanzo, D. Dauvergne et al., Design of a Compton camera for 3D prompt-gamma imaging during ion beam therapy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators and Spectrometers and Detectors and Associated Equipment, 2011.

E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le-foulher et al., Dose prole monitoring with carbon ions by means of prompt-gamma measurements. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Proceedings of the Seventh International Symposium on Swift Heavy Ions in Matter, pp.993-996, 2009.

F. , L. Foulher, M. Bajard, M. Chevallier, D. Dauvergne et al., Monte Carlo Simulations of Prompt-Gamma Emission During Carbon Ion Irradiation, IEEE Transactions on Nuclear Science, vol.57, issue.5, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00480024

K. Niita, T. Sato, and H. Iwase, Hiroyuki Nose, Hiroshi Nakashima, and Lembit Sihver. PHITSa particle and heavy ion transport code system Space Radiation Transport and Shielding and and Risk Assessment Models, 2006.

A. Fasso, . Ferrari, P. Roesler, . Sala, . Ballarini et al., The physics models of FLUKA: status and recent developments, Computing in High Energy and Nuclear Physics, pp.24-28, 2003.

J. F. Ziegler, Stopping of energetic light ions in elemental matter, Journal of Applied Physics, vol.85, issue.3, p.12491272, 1999.
DOI : 10.1063/1.369844

J. F. Janni, Proton Range-Energy Tables and 1KeV -10 GeV: Energy Loss and Range and Path Length and Time-of-Flight and Straggling and Multiple Scattering and Nuclear Interaction Probability. Part I: For 63 compounds. Atomic Data and Nuclear Data Tables, p.147349, 1982.

M. J. Berger, J. S. Coursey, M. A. Zucker, and J. Chang, Stopping Powers and Ranges for Protons, National Institue of Standards and Technology (NIST), 2009.

B. Gottschalk, passive beam Spreading in Proton radiation Therapy, 2004.

P. Andreo, On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams, Physics in Medicine and Biology, vol.54, issue.11, pp.205-215, 2009.
DOI : 10.1088/0031-9155/54/11/N01

M. J. Berger, J. S. Coursey, M. A. Zucker, and J. Chang, Stopping Powers and Ranges for Electrons, 2009.

T. Bortfeld, An analytical approximation of the Bragg curve for therapeutic proton beams, Medical Physics, vol.71, issue.12, 1997.
DOI : 10.1118/1.598116

B. Gottschalk, A. M. Koehler, R. J. Schneider, J. M. Sisterson, and M. S. Wagner, Multiple Coulomb scattering of 160 MeV protons. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.74, issue.4, pp.467-490, 1993.

B. Gottschalk, On the scattering power of radiotherapy protons, Medical Physics, vol.34, issue.6, pp.352-367, 2010.
DOI : 10.1118/1.3264177

H. Palmans and F. Verhaegen, Assigning nonelastic nuclear interaction cross sections to Hounseld units for Monte Carlo treatment planning of proton beams, Phys Med Biol, vol.50, issue.5, p.9911000, 2005.

K. Gunzert-marx, H. Iwase, D. Schardt, and R. S. Simon, C ions in water and their dose contributions in carbon ion radiotherapy, New Journal of Physics, vol.10, issue.7, p.75003, 2008.
DOI : 10.1088/1367-2630/10/7/075003

T. Elsässer and M. Scholz, Cluster eects within the local eect model, Radiat Res, vol.167, issue.3, p.319329, 2007.

M. Scholz, A. M. Kellerer, W. Kraft-weyrather, and G. Kraft, Computation of cell survival in heavy ion beams for therapy. The model and its approximation, Radiat Environ Biophys, vol.36, issue.1, p.5966, 1997.

Y. Furusawa, . Fukutsu, H. Aoki, K. Itsukaichi, H. Eguchi-kasai et al., Inactivation of aerobic and hypoxic cells from three dierent cell lines by accelerated 3

G. Kraft, Tumor Therapy with Heavy Charged Particles, Progress in Particle and Nuclear Physics, p.473544, 2000.

M. Krämer and M. Scholz, Rapid calculation of biological eects in ion radiotherapy, Phys Med Biol, vol.51, issue.8, p.19591970, 2006.

H. Paganetti, A. Niemierko, M. Ancukiewicz, E. Leo, M. Gerweck et al., Relative biological eectiveness (RBE) values for proton beam therapy, Int J Radiat Oncol Biol Phys, vol.53, issue.2, p.407421, 2002.

G. Kraft and S. Kraft, Research needed for improving heavy-ion therapy, New Journal of Physics, vol.11, issue.2, 2009.
DOI : 10.1088/1367-2630/11/2/025001

D. Schardt, . Elsässer, and . Schulz-ertner, Heavy-ion tumor therapy: Physical and radiobiological benefits, Reviews of Modern Physics, vol.82, issue.1, p.383425, 2010.
DOI : 10.1103/RevModPhys.82.383

T. Inaniwa, T. Furukawa, Y. Kase, N. Matsufuji, T. Toshito et al., Treatment planning for a scanned carbon beam with a modied microdosimetric kinetic model, Phys Med Biol, issue.22, pp.556721-6737, 2010.

A. Uzawa, K. Ando, S. Koike, Y. Furusawa, Y. Matsumoto et al., Comparison of biological eectiveness of carbon-ion beams in Japan and Germany, Int J Radiat Oncol Biol Phys, issue.5, p.7315451551, 2009.

N. Zahra, T. Frisson, L. Grevillot, P. Lautesse, and D. Sarrut, Influence of Geant4 parameters on dose distribution and computation time for carbon ion therapy simulation, Physica Medica, vol.26, issue.4, pp.202-208, 2010.
DOI : 10.1016/j.ejmp.2009.12.001

URL : https://hal.archives-ouvertes.fr/hal-00633360

. Geant4-collaboration, Physics Reference Manual for Geant4, CERN, 2009.

C. J. Mertens, M. F. Moyers, S. A. Walker, and J. Tweed, Proton lateral broadening distribution comparisons between GRNTRN, MCNPX, and laboratory beam measurements, Life Sciences in Space, pp.884-891, 2010.
DOI : 10.1016/j.asr.2009.08.013

B. Gottschalk, R. Platais, and H. Paganetti, Nuclear interactions of 160 MeV protons stopping in copper: A test of Monte Carlo nuclear models, Medical Physics, vol.79, issue.12, p.25972601, 1999.
DOI : 10.1118/1.598799

H. Paganetti and B. Gottschalk, Test of GEANT3 and GEANT4 nuclear models for 160

K. Henkner, H. Sobolevsky, and . Paganetti, Test of the nuclear interaction model in SHIELD-HIT and comparison to energy distributions from GEANT4, Physics in Medicine and Biology, vol.54, issue.22, p.509517, 2009.
DOI : 10.1088/0031-9155/54/22/N01

I. Rinaldi, . Ferrari, . Mairani, . Paganetti, P. Parodi et al., An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups, Physics in Medicine and Biology, vol.56, issue.13, p.40014011, 2011.
DOI : 10.1088/0031-9155/56/13/016

A. Tourovsky, A. J. Lomax, U. Schneider, and E. Pedroni, Monte Carlo dose calculations for spot scanned proton therapy, Physics in Medicine and Biology, vol.50, issue.5, p.971981, 2005.
DOI : 10.1088/0031-9155/50/5/019

L. Grevillot, T. Frisson, N. Zahra, D. Bertrand, F. Stichelbaut et al., Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, issue.20, pp.2683295-3305, 2010.

L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4, Physics in Medicine and Biology, vol.56, issue.16, p.52035219, 2011.
DOI : 10.1088/0031-9155/56/16/008

URL : https://hal.archives-ouvertes.fr/hal-00630709

H. Paganetti, H. Jiang, S. Y. Lee, and H. M. Kooy, Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility, Medical Physics, vol.25, issue.7, p.3121072118, 2004.
DOI : 10.1118/1.1762792

J. C. Polf, S. Peterson, M. Mccleskey, B. T. Roeder, A. Spiridon et al., Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation, Physics in Medicine and Biology, vol.54, issue.22, pp.54-519, 2009.
DOI : 10.1088/0031-9155/54/22/N02

D. Schardt, P. Steidl, M. Krmer, U. Weber, K. Parodi et al., Precision Bragg-curve measurements for light-ion beams in water, 2008.

F. Rademakers and R. Brun, ROOT: An Object-Oriented Data Analysis Framework, Linux Journal and Issue, vol.51, 1998.

H. Paganetti, Dose to water versus dose to medium in proton beam therapy, Physics in Medicine and Biology, vol.54, issue.14, p.43994421, 2009.
DOI : 10.1088/0031-9155/54/14/004

B. Bednarz, J. Daartz, and H. Paganetti, Dosimetric accuracy of planning and delivering small proton therapy elds, Phys Med Biol, vol.55, issue.24, p.74257438, 2010.

S. Camarasu-pop, T. Glatard, J. Mo±cicki, H. Benoit-cattin, and D. Sarrut, Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE, Journal of Grid Computing, vol.119, issue.6
DOI : 10.1007/s10723-010-9153-0

H. Paganetti, Four-dimensional Monte Carlo simulation of time-dependent geometries, Physics in Medicine and Biology, vol.49, issue.6, pp.75-81, 2004.
DOI : 10.1088/0031-9155/49/6/N03

B. Bednarz, H. Lu, M. Engelsman, and H. Paganetti, Uncertainties and correction methods when modeling passive scattering proton therapy treatment heads with Monte Carlo, Physics in Medicine and Biology, vol.56, issue.9, p.28372854, 2011.
DOI : 10.1088/0031-9155/56/9/013

K. Parodi, . Brons, . Cerutti, . Ferrari, . Mairani et al., The FLUKA code for application of Monte Carlo methods to promote high precision ion beam therapy, 12th International Conference on Nuclear Reaction Mechanisms, Villa Monastero, 2009.

M. Berger, Proton Monte Carlo Transport Program PTRAN, 1993.

U. Schneider and E. Pedroni, Proton radiography as a tool for quality control in proton therapy, Medical Physics, vol.22, issue.4, p.353363, 1995.
DOI : 10.1118/1.597470

U. Schneider, J. Besserer, P. Pemler, M. Dellert, M. Moosburger et al., First proton radiography of an animal patient, Medical Physics, vol.22, issue.5, p.3110461051, 2004.
DOI : 10.1118/1.1690713

N. Depauw and J. Seco, Sensitivity study of proton radiography and comparison with kV and MV x-ray imaging using GEANT4 Monte Carlo simulations, Physics in Medicine and Biology, vol.56, issue.8, p.5624072421, 2011.
DOI : 10.1088/0031-9155/56/8/006

O. Gabriel, X. R. Sawakuchi, F. Zhu, K. Poenisch, G. Suzuki et al., Experimental characterization of the low-dose envelope of spot scanning proton beams, Phys Med Biol, issue.12, p.5534673478, 2010.

W. Schneider, T. Bortfeld, and W. Schlegel, Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions, Physics in Medicine and Biology, vol.45, issue.2, p.459478, 2000.
DOI : 10.1088/0031-9155/45/2/314