
HAL Id: tel-00733856
https://theses.hal.science/tel-00733856

Submitted on 19 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static and Dynamic Methods of Polyhedral Compilation
for an Efficient Execution in Multicore Environments

Benoit Pradelle

To cite this version:
Benoit Pradelle. Static and Dynamic Methods of Polyhedral Compilation for an Efficient Execution
in Multicore Environments. Hardware Architecture [cs.AR]. Université de Strasbourg, 2011. English.
�NNT : �. �tel-00733856�

https://theses.hal.science/tel-00733856
https://hal.archives-ouvertes.fr

N° d’ordre :

École Doctorale Mathématiques, Sciences de
l’Information et de l’Ingénieur

UdS – INSA – ENGEES

THÈSE

présentée pour obtenir le grade de

Docteur de l’Université de Strasbourg

Discipline : Informatique

par

Benoît Pradelle

Static and Dynamic Methods of Polyhedral
Compilation for an Efficient Execution in

Multicore Environments

Méthodes Statiques et Dynamiques de Compilation Polyédrique
pour l’Exécution en Environnement Multi-Cœurs

Soutenue publiquement le 20 décembre 2011

Membres du jury:

Directeur de thèse : Philippe Clauss, Professeur, UdS, Strasbourg
Rapporteur : Albert Cohen, Directeur de Recherche, INRIA - ENS, Paris
Rapporteur : Sanjay V. Rajopadhye, Associate Professor, CSU, Fort Collins, USA
Examinateur : William Jalby, Professeur, UVSQ - Exascale, Versailles
Examinateur : Jean Christophe Beyler, Senior Software Engineer, Intel, Versailles

Laboratoire des Sciences de l’Image, de l’Informatique, et de la Télédétection UMR 7005

2

3

«Le véritable voyage de découverte ne consiste
pas à chercher de nouveaux paysages, mais à

avoir de nouveaux yeux.» — Marcel Proust

4

Contents

Résumé en Français 15

1 Introduction 39

2 Basic Concepts and Related Work 43
2.1 Static Methods . 44

2.1.1 Polyhedral Parallelization . 44
2.1.2 Binary Code Parallelization and Rewriting 45

2.2 Static-Dynamic Collaborative Methods 46
2.2.1 Iterative Compilation . 46
2.2.2 Hybrid Code Selection . 47

2.3 Dynamic Methods . 48
2.3.1 Dynamic Code Selection . 48
2.3.2 The Inspector/Executor Model 49
2.3.3 Thread-Level Speculation . 50
2.3.4 Binary Code Parsing . 51
2.3.5 Inline Code Generation and Transformation 52

2.4 The Polyhedral Model . 53
2.4.1 Mathematical Background and Notations 53
2.4.2 Scope and SCoP . 55
2.4.3 Statement and Iteration Vector 56
2.4.4 Iteration Domain . 56
2.4.5 Access Functions . 57
2.4.6 Schedule . 58
2.4.7 Data Dependence . 60
2.4.8 Transformation . 62
2.4.9 Code Generation . 65
2.4.10 Extensions to the Polyhedral Model 65
2.4.11 Tools . 66

2.5 Conclusion . 67

3 Binary Code Parallelization 69
3.1 Introduction . 69
3.2 Decompiling x86-64 Executables . 71

3.2.1 Basic Analysis . 71
3.2.2 Memory Access Description . 71

5

6 CONTENTS

3.2.3 Induction Variable Resolution 72
3.2.4 Tracking Stack Slots . 73
3.2.5 Branch Conditions and Block Constraints 76

3.3 Polyhedral Parallelization . 78
3.3.1 Memory Accesses . 78
3.3.2 Operations . 80
3.3.3 Scalar References . 82
3.3.4 Parallelization . 84
3.3.5 Reverting the Outlining . 84
3.3.6 Live-in Registers . 85
3.3.7 Live-out Registers . 86
3.3.8 Implementation . 86

3.4 Evaluation . 88
3.4.1 Loop Coverage . 88
3.4.2 Binary-to-binary vs. Source-to-source 89
3.4.3 Binary-to-binary vs. Hand-Parallelization 92

3.5 Extension to Complex Codes . 94
3.5.1 Extension to Parametric Codes 94
3.5.2 Extension to Polynomial Codes 96
3.5.3 In-Place Parallelization . 99

3.6 Related Work . 103
3.6.1 Decompilation and Address Expressions 103
3.6.2 Parallelization and Transformation Strategy 104

3.7 Conclusion and Perspectives . 104

4 Code Version Selection 107
4.1 Introduction . 107
4.2 Selection Framework Overview . 108
4.3 Generating Different Code Versions . 109
4.4 Profiling the Code Versions . 110

4.4.1 Strategy 1 . 112
4.4.2 Strategy 2 . 116
4.4.3 Parametric Ranking Table . 122

4.5 Runtime Selection . 122
4.5.1 Iteration Count Measurement 124
4.5.2 Load Balance . 125
4.5.3 Predicting the Execution Time 126
4.5.4 Discussion . 126

4.6 Experiments . 127
4.6.1 Dynamic Scheduling of Regular Codes 130
4.6.2 Execution Context Characteristics 132
4.6.3 Execution Time Gains . 134
4.6.4 Accuracy . 134

4.7 Conclusion and Perspectives . 137

CONTENTS 7

5 Speculative Parallelization 139
5.1 Introduction . 139
5.2 Overview . 140

5.2.1 Speculations . 140
5.2.2 General overview . 142
5.2.3 Evaluation Environment . 143
5.2.4 Chunking . 144

5.3 Online Profiling . 146
5.3.1 Inspector Profiling . 146
5.3.2 Profiling on a Sample . 147
5.3.3 Chosen Solution . 147

5.4 Dependence Construction . 148
5.5 Scheduling . 148

5.5.1 PLUTO . 148
5.5.2 Offline Profiling and Scheduling 149
5.5.3 Generic Schedules . 150
5.5.4 Dependence Testing . 151
5.5.5 Chosen Solution . 152

5.6 Code Generation . 153
5.6.1 Runtime Compilation . 153
5.6.2 Hybrid Code Generation . 155
5.6.3 Static Code Generation . 156
5.6.4 Chosen Solution . 157

5.7 Speculation Verification . 157
5.7.1 Parallel Speculation Verification 157
5.7.2 Verification Implementation . 159
5.7.3 Test Implementation . 160
5.7.4 Chosen Solution . 161

5.8 Commit and Rollback . 161
5.8.1 Transactions and Chunks . 162
5.8.2 fork-based Transactional System 163
5.8.3 memcpy-based Transactional System 165
5.8.4 Interrupting the Threads . 166
5.8.5 Rollback Strategies . 166
5.8.6 Chosen Solution . 167

5.9 Putting it all Together . 168
5.9.1 Overview . 168
5.9.2 Evaluation . 168

5.10 Conclusion and Perspectives . 169

6 Conclusion and Perspectives 171
6.1 Contributions . 171
6.2 Future work . 173

Bibliography 178

8 CONTENTS

List of Figures

1 Aperçu du système de parallélisation. (1) Les nids de boucles analysables
sont convertis en programmes C contenant seulement les accès mémoires
et le code de contrôle. (2) Cette représentation intermédiaire est envoyée
à un paralléliseur source-à-source. (3) Le programme parallèle résultant
est complété avec les calculs sur les données puis recompilé avec un
compilateur C classique. 16

2 Implémentation du mécanisme de parallélisation de programmes binaires. 19
3 Parallélisation avec CETUS ou PLUTO depuis 1) le code source original

2) le code source extrait du programme binaire. 20
4 Comparaison de notre système à une parallélisation manuelle et à l’état

de l’art. 21
5 Schéma général du sélecteur de versions. 23
6 Temps d’exécution (en secondes) réel et prédit de toutes les versions

du programme 2mm dans tous les contextes testés, trié par le temps
d’exécution réel. Sur Core i7 avec la stratégie 1. 28

7 Temps d’exécution (en secondes) réel et prédit de toutes les versions
du programme 2mm dans tous les contextes testés, trié par le temps
d’exécution réel. Sur Core i7 avec la stratégie 1. 28

8 Les différentes étapes de notre paralléliseur spéculatif. 29
9 Boucle d’exemple (à gauche) et sa parallélisation spéculative (à droite). 32
10 Stratégie de ré-exécution spéculative. 33

2.1 Sample loop nest (left) and the iteration domain of S (right). 56
2.2 Sample loop nest with two statements. 59
2.3 A matrix-vector product. 62

3.1 Overview of the parallelization system. (1) Analyzable portions of the
sequential binary program are raised to simple C loop nests only con-
taining the correct memory accesses, and (2) sent to a back-end source-
to-source parallelizer. (3) The resulting parallel loop nest is filled with
actual computations, and compiled using a standard compiler. 70

3.2 Symbolic address expressions in a loop nest of depth two in binary code in

SSA form: (a) after recursive register substitution, and (b) after induction

variable resolution. Indentation is used to highlight the loop levels. “@”

denotes address expressions. 74
3.3 Sample CFG (left), its corresponding reversed CFG (center), and post-

dominator tree (right). 77

9

10 LIST OF FIGURES

3.4 Sample code parallelization using PLUTO. 79
3.5 Matrix multiply as it is extracted from the binary code. 81
3.6 Matrix multiply after simplifying the memory accesses. 81
3.7 Matrix multiply after forward substitution. 82
3.8 Matrix multiply after scalar to array conversion. 83
3.9 Matrix multiply after transformation by PLUTO and semantics restora-

tion. 85
3.10 General scheme of the implementation. 87
3.11 Redirecting the execution flow to the parallel loop nests (left to right). 87
3.12 Parallelization back-ends applied to 1) the original source code, and to

2) the binary code (kernel only). 91
3.13 Speedup comparison for three parallelization strategies. (initialization

+ kernel). 93
3.14 Original code. 95
3.15 Code as seen by the dependence analyzer. 95
3.16 Corresponding runtime tests. 95
3.17 Execution times (and speedups) for swim on the train dataset. 96
3.18 Execution times (and speedups) for mgrid on the train dataset. 98
3.19 Overwriting loop bounds with a new loop counter (left to right). 100

4.1 Framework overview. 109
4.2 Performance of a simple parallel version relatively to the data size. . . . 110
4.3 Performance of several versions relatively to the data size. 111
4.4 Performance of the parallelized kernels relatively to the number of threads

used. 112
4.5 Code pattern. The profiling code is generated from this code pattern

after some syntactic replacements. 114
4.6 Sample code. 115
4.7 Sample profiling code for the loop nest presented in Figure 4.6. 116
4.8 Sample parameterized loop nest. Increasing M does not increase the

number of iterations. 117
4.9 Sample iteration domain. A square of 5 × 5 iterations can fit in it, so

we can guarantee that each loop level executes at least 5 consecutive
iterations. 117

4.10 The intersection of P and P ′ defines all the points such that B can fit
in P , if A is in P . 118

4.11 Intersection of the translated polyhedron copies in 2D space. The inter-
section is not empty, the polyhedron can enclose the square. 119

4.12 Intersection of the translated polyhedron copies in 2D space. The inter-
section is empty: the square cannot be contained in the polyhedron. . . 119

4.13 Profiling code pattern for strategy 2. 121
4.14 Code sample to profile. 121
4.15 Profiling code generated from the code in Figure 4.14. 123
4.16 A loop nest (left) and its corresponding prediction nest (right). 125
4.17 Sample loop nest and the corresponding iteration domain where the

iterations are grouped by thread. 125

LIST OF FIGURES 11

4.18 Speedup of OpenMP dynamic over static on Core i7. 131
4.19 Speedup of Cilk over OpenMP static on Core i7. 131
4.20 Speedup of OpenMP dynamic over static on Opteron. 131
4.21 Speedup of Cilk over OpenMP static on Opteron. 131
4.22 Speedup of OpenMP dynamic over static on Phenom II. 131
4.23 Speedup of Cilk over OpenMP static on Phenom II. 131
4.24 Execution times for adi on Opteron (5 threads). Version 2 is the best

one for the fifth dataset. 132
4.25 Execution times for adi on Core i7 (5 threads). Version 2 is the worst

one for the fifth dataset. 132
4.26 Execution times for gemver on Core i7 (1 thread). Version 1 is the best

one for the first dataset. 133
4.27 Execution times for gemver on Core i7 (8 threads). Version 1 is the

worst one for the first dataset. 133
4.28 Execution times for mgrid on Phenom (4 threads). Version 4 is the best

one for the last dataset, but is inefficient for the third dataset. 133
4.29 Execution time of every version of 2mm in every execution context, sorted

by actual execution time on Core i7 with strategy 1. 136
4.30 Execution time of every version of 2mm in every execution context, sorted

by actual execution time on Core i7 with strategy 2. 136
4.31 Execution time of every version of jacobi-2d in every execution context,

sorted by actual execution time on Opteron with strategy 1. 136
4.32 Execution time of every version of jacobi-2d in every execution context,

sorted by actual execution time on Opteron with strategy 2. 136
4.33 Execution time of every version of gemver in every execution context,

sorted by actual execution time on Phenom II with strategy 1. 137
4.34 Execution time of every version of gemver in every execution context,

sorted by actual execution time on Phenom II with strategy 2. 137

5.1 Main phases of the speculative system. 142
5.2 Sample loop nest (left) and its chunked counterpart (right). 144
5.3 Speedup of each code over its sequential version, relatively to the chunk

size. 145
5.4 Compared compilation and execution times using GCC and LLC at the

O1 and O3 optimization levels. 154
5.5 Sample code (left) and its speculative parallel counterpart (right). . . . 160
5.6 Sample loop (top), its transformed counterpart (bottom), and the cor-

responding memory accesses performed (right). 162
5.7 Execution of chunk i+1 cancelled (left) or commited (right). 163
5.8 Speedup over the sequential version when using a fork-based transac-

tional system. 164
5.9 Speedup over the sequential version when using a memcpy-based trans-

actional system. 165
5.10 Runtime strategy. 167

12 LIST OF FIGURES

Remerciements

Je profite de ces quelques lignes de liberté pour remercier les personnes qui ont influencé
ces travaux. Tout d’abord, merci à Philippe pour m’avoir soutenu et aidé durant toutes
ces années. Encadrer une thèse n’est pas un vain mot pour toi et j’ai beaucoup appris
à tes côtés. J’emporterai avec moi l’idée que l’innovation a besoin d’une touche de folie
pour se révéler.

Merci à Alain et Vincent avec qui j’ai eu le très grand plaisir de travailler. Votre
expérience et votre culture m’ont été d’une très grande aide au travers de vos conseils
avisés. La plupart des travaux présentés dans cette thèse n’auraient pas été possibles
sans vous. Merci à Alexandre, Alexandra, et Olivier qui m’ont supporté dans notre
bureau. Merci à Stéphane, Julien, Romaric, Éric, Matthieu, Jean-François, et Étienne
avec qui il est toujours très agréable de partager la journée. D’une façon générale, un
grand merci à toute l’équipe ICPS pour l’ambiance formidable que chaque membre
s’attache à faire régner. Merci également aux anciens de l’ICPS, en particulier à Jean-
Christophe qui m’a ouvert la porte de l’équipe, et à Benoît «Homie» qui m’a initié aux
secrets du modèle polyédrique. New York m’accompagne désormais.

Je remercie également tous mes amis strasbourgeois. Avec vous, j’ai toujours eu (y
compris pendant la thèse) un endroit où trouver de la bonne humeur, de la chaleur,
et des bons moments. Merci plus particulièrement à Emil pour toutes nos discussions
passionnées et passionnantes qui m’aident à prendre du recul.

Je remercie ma famille qui m’a toujours soutenu et qui m’a laissé libre de trouver
ma voie. Le calme et l’apaisement que je trouve à vos côtés me sont d’une grande aide.

Enfin, merci à toi, Annick, pour ton soutien sans faille et ta patience infinie durant
toute cette thèse. Du haut de ton innocence, tu colores notre monde et, sans toi, tout
cela n’aurait pas la même saveur.

13

14 REMERCIEMENTS

Résumé en Français

Introduction

Jusqu’au début des années 2000, le développement logiciel était dans une situation très
favorable. En effet, les fabricants de matériel augmentaient rapidement la fréquence des
processeurs à chaque nouvelle génération. Si un programme était trop lent, il suffisait
simplement d’attendre la prochaine génération de processeurs pour qu’il s’exécute plus
rapidement. Dans un tel contexte, le rôle d’un compilateur se borne principalement à
transcrire un programme écrit dans un langage de programmation haut-niveau vers une
suite d’instructions pour le processeur. Les optimisations appliquées sur le programme
ne sont généralement pas vitales.

Cependant, certaines limites physiques ont été atteintes et il n’est plus possible
d’augmenter encore la fréquence des processeurs. Les fabricants ont alors décidé
d’augmenter le nombre de cœurs de calcul par puce afin de continuer à augmenter
la puissance théorique des processeurs. Ce changement d’approche impacte fortement
le développement logiciel. Pour profiter des améliorations du matériel, les logiciels
doivent désormais être ré-écrits dans une version parallèle.

Cependant, les développeurs sont en général très peu sensibilisés à la programma-
tion parallèle et préfèrent souvent ne pas la pratiquer. Étant donné que le rôle d’un
compilateur est d’adapter un programme pour qu’il puisse s’exécuter efficacement sur
l’ordinateur ciblé, il est raisonnable de considérer que c’est en réalité au compilateur
de réaliser cette parallélisation si le programmeur ne le fait pas.

C’est ce qui a motivé toutes les approches à la parallélisation automatique pro-
posées jusque là. L’inconvénient de ces approches automatiques est qu’elles ne sont
pas vraiment prêtes pour une utilisation à grande échelle. D’immenses progrès ont
été réalisés dans le domaine mais les techniques existantes ne sont pas encore assez ro-
bustes. L’urgence provoquée par l’arrivée massive de matériel multi-cœur nous pousse à
développer davantage ces techniques. Nous proposons ainsi d’étendre la parallélisation
automatique dans trois directions principales.

Nous proposons tout d’abord un système permettant de paralléliser les programmes
qui sont exprimés sous leur forme a priori finale : le code binaire. Ensuite, nous pro-
posons un mécanisme à l’exécution qui permet de sélectionner une implémentation
efficace d’un programme parallèle parmi plusieurs afin de bénéficier au mieux des spé-
cificités du contexte dans lequel ce programme s’exécute. Enfin nous proposons une
solution de parallélisation spéculative utilisant le modèle polyédrique afin de trans-
former et paralléliser efficacement les programmes même lorsque leur structure est
complexe et empêche la parallélisation à la compilation.

15

16 RÉSUMÉ EN FRANÇAIS

����������	A���

BCDE�	F���

�����A�����

����������	A���

�A�A�����

�

�

�

��������� ��!

"��

�A�A��C��B�E�B

B�E����#�B�E���

Figure 1: Aperçu du système de parallélisation. (1) Les nids de boucles analysables
sont convertis en programmes C contenant seulement les accès mémoires et le code de
contrôle. (2) Cette représentation intermédiaire est envoyée à un paralléliseur source-
à-source. (3) Le programme parallèle résultant est complété avec les calculs sur les
données puis recompilé avec un compilateur C classique.

Ces trois approches forment une réponse cohérente au problème de la paralléli-
sation automatique des programmes. Elles utilisent tous les moments de la vie d’un
programme depuis sa compilation jusqu’à son exécution afin d’exploiter autant que pos-
sible les opportunités de parallélisation. Enfin ces trois approches utilisent le modèle
polyédrique dans des contextes nouveaux, permettant d’étendre son utilisation vers le
code binaire, les contextes d’exécutions changeant, et les programmes dont la structure
est difficilement analysable à la compilation.

Parallélisation de Code Binaire

Introduction

Alors que les outils de parallélisation automatique exploitent généralement le code
source des programmes, il peut être intéressant de pouvoir paralléliser des programmes
compilés. Cette approche permet la parallélisation d’applications dont le code source
est inaccessible au moment de la compilation. Par exemple des programmes anciens
dont le code source est perdu, des applications commerciales dont le code source est
tenu secret, ou des librairies utilisées par un programme, peuvent ainsi être paral-
lélisés. Ainsi, les programmes peuvent être parallélisés au moment de leur déploiement
sur différentes machines d’exécution. De cette manière, les développeurs peuvent con-
tinuer à développer et compiler normalement leurs programmes séquentiels qui seront
parallélisés lors de leur installation, par le système d’exploitation par exemple.

Nous proposons un système de parallélisation de code binaire à trois étapes. La pre-
mière étape consiste à décompiler le programme binaire pour en extraire une représen-
tation intermédiaire de ses nids de boucles affines. Cette représentation intermédiaire
doit être suffisamment précise pour permettre leur parallélisation. Lorsque cette par-
allélisation à été réalisée, le programme est alors recompilé en un programme binaire
parallèle. Un aperçu de notre système est présenté en Figure 1. Comme illustré dans
la figure, notre système utilise un paralléliseur source-à-source pour réaliser la paral-

RÉSUMÉ EN FRANÇAIS 17

lélisation des nids de boucles. Cette capacité lui permet par exemple d’appliquer des
transformations polyédriques sur les programmes binaires.

Décompilation et Analyse

La première tâche réalisée par notre système de parallélisation de code binaire est
la décompilation. L’objectif de cette étape est d’analyser le programme binaire afin
d’extraire une représentation intermédiaire suffisamment précise pour permettre la par-
allélisation des nids de boucles par un outil source-à-source. La parallélisation automa-
tique est possible lorsque les structures de contrôle du programme ainsi que les accès
mémoires sont exprimés dans une représentation facilement exploitable. Ce sont donc
les deux informations que l’analyse extrait du programme compilé.

Analyse de base

Pour analyser le programme, nous utilisons principalement des techniques classiques
d’analyse de programmes, combinés avec les résultats récents de Ketterlin et Clauss [67].
Le programme binaire est décompilé vers une suite d’instructions assembleur. Depuis
cette représentation, les limites des blocs de base sont déterminées, et un graphe de flot
de contrôle est calculé par routine. L’arbre des dominateurs est calculé et les boucles
sont déterminées. Si une routine contient des boucles irréductibles, elle est ignorée. Le
programme est ensuite mis sous forme SSA (Static Single Assignment). Les registres
processeurs sont alors des variables et la mémoire est une variable unique M.

Substitution récursive

Dans le code binaire pour les architectures x86-64, les adresses accédées sont sous la
forme Base + s × Index + o, où Base et Index sont des registres et s et o sont des
petites constantes. Cette représentation ne permet par directement une analyse de
dépendances précise. Afin de simplifier ces adresses, les registres Base et Index sont
récursivement remplacés par leurs définitions. Lors de ce remplacement, des φ-fonctions
peuvent être rencontrées. Une résolution de variables d’induction permet alors de
construire des expressions dépendant d’indices virtuels de boucles. Lorsqu’une zone
mémoire est rencontrée lors de la substitution récursive, une analyse de dépendance
simple est réalisée en distinguant les accès à la pile des autres accès. Cela permet de
poursuivre le remplacement lorsqu’une valeur temporaire est placée dans la pile de la
fonction.

Résultat

À la fin de l’analyse, les adresses accédées sont exprimées, lorsque c’est possible, sous
forme de fonctions linéaires dépendant d’indices virtuels de boucle ainsi que d’autres
registres définis hors de la boucle. Des conditions d’exécutions des blocs de base sont
également déterminées afin d’en déduire les conditions de sortie des boucles. Toutes
ces informations rassemblées permettent de construire un programme C simpliste dans

18 RÉSUMÉ EN FRANÇAIS

lequel le flot de contrôle ainsi que les accès à la mémoire sont équivalents à ceux présents
dans le code binaire original.

Parallélisation Polyédrique

Le résultat de l’analyse génère un programme C simple qui permet la parallélisation
du programme. Cependant, en l’état, ce programme simple pose plusieurs problèmes
aux paralléliseurs source-à-source existant. Avant d’être parallélisé, le code source
reconstruit depuis le programme binaire est donc simplifié.

De la mémoire aux tableaux

Les accès mémoires, même après la substitution récursive, sont sous une forme complexe
dans le fichier binaire : les accès tableaux du code source original du programme sont
linéarisés et les adresses de base des tableaux statiques sont de très grandes valeurs.
C’est pourquoi, lorsque les bornes des boucles sont non paramétriques, nous proposons
de reconstituer les dimensions des tableaux. Pour ce faire, la mémoire est séparée en
zones disjointes et les dimensions des tableaux sont reconstruites par un algorithme
simple évaluant toutes les dimensions possibles. Ces simplifications permettent une
analyse de dépendance plus précise.

Les scalaires

Les écritures dans des scalaires provoquent de nombreuses dépendances qui ne sont
généralement pas traitées dans les paralléliseurs source-à-source existant, en particulier
les outils polyédriques. Des techniques classiques telles que la résolution de variables
d’induction ainsi que l’analyse de «Forward Substitution» permettent d’éliminer cer-
taines références à des scalaires. En plus de ces techniques, nous remplaçons, lorsque
c’est possible, les références à des scalaires par des références à des tableaux existants
qui génèrent généralement moins de dépendances. Cette technique peut être vue comme
une expansion des scalaires suivi d’un renommage du tableau résultant de l’expansion
en un autre tableau déjà présent dans le code source.

Parallélisation

Après simplification, le code à paralléliser contient des boucles et des tests ainsi que
des accès mémoires. Les opérations réalisées sur les données, inutiles pour l’analyse
de dépendances, sont remplacées par un opérateur générique tel que «+». Ce code
simplifié est facilement analysable par les outils existants et peut donc être paral-
lélisé. Dans notre implémentation, deux paralléliseurs automatiques source-à-source
sont utilisés : CETUS [6], un paralléliseur relativement simple, et PLUTO [23], un
paralléliseur polyédrique. Ces deux outils produisent en sortie un code C parallélisé
avec OpenMP [95].

RÉSUMÉ EN FRANÇAIS 19

���������

	A�B�CDE��F��

�FBD�FDFC

�EC�

�C���F	�

��D�����C�

����FDC���D����C

�D��D���C

�DF�F���

������

��	�A

Figure 2: Implémentation du mécanisme de parallélisation de programmes binaires.

Restauration de la sémantique

Après la parallélisation du programme, les opérations sur les données sont ré-introduites
dans le code source du programme. Ces opérations sont réalisées par des instructions
assembleurs insérées dans le programme C parallélisé. Les registres SSA deviennent
cependant des variables C classiques.

Le résultat est donc un ensemble de nids de boucles parallèles exprimés en langage
C, et faisant référence à des variables dont le contenu est exploité par des opérations
en assembleur. Ces nids sont finalement compilés par un compilateur classique pour
produire la version parallèle du programme binaire initial.

Implémentation

La Figure 2 présente un schéma général du mécanisme permettant l’exécution des
versions parallèles des nids de boucles. Les boucles parallélisées sont compilées dans
une librairie dynamique, chargée dans l’espace mémoire du programme séquentiel. Au
démarrage de l’application, un composant d’observation place des points d’arrêt au
début de chaque boucle parallélisée dans le programme séquentiel. Lorsque ces points
d’arrêts sont rencontrés, le composant d’observation reprend le contrôle et redirige
l’exécution du programme vers la version parallèle du nid de boucle. Cette opération
s’appuie sur une zone de mémoire partagée dans laquelle la librairie aura déclaré la
position en mémoire des nids parallèles.

Évaluation

Sensibilité à l’entrée

Les optimisations appliquées lors de la compilation du programme séquentiel orig-
inal ont un impact sur le nombre de boucles que notre système peut paralléliser.
Afin de mieux évaluer cet impact, nous avons compilé les programmes de la suite
de test PolyBench [100] avec ICC 12.1, GCC 4.5, et LLVM 2.8 en utilisant les niveaux

20 RÉSUMÉ EN FRANÇAIS

 0

 2

 4

 6

 8

 10

 12

 14

 16

2m
m

3m
m

atax
bicg

correlation

covariance

doitgen

gem
m

gem
ver

gram
schm

idt

jacobi-2d-im
per

lu

src/PLUTO
bin/PLUTO
src/CETUS
bin/CETUS

Figure 3: Parallélisation avec CETUS ou PLUTO depuis 1) le code source original 2)
le code source extrait du programme binaire.

d’optimisation O2 et O3. Nous avons ensuite analysé les différents codes séquentiels
résultats avec notre système. Toutes les boucles sont trouvées mais, avec un niveau
d’optimisation avancé, une part non négligeable de ces boucles ne peut pas être traitée
: 77 % peuvent être traitées au niveau O2, et 72 % au niveau O3. La plupart des prob-
lèmes proviennent des appels de fonctions qui compliquent l’analyse (même si celle-ci
est intra-procédurale). Les transformations complexes de code sont également une
source d’abandon de parallélisation.

L’analyse inter-procédurale et une étape d’inversion des transformations de codes,
comme le déroulage de boucles, pourraient augmenter fortement la proportion des
boucles parallélisables par notre système.

Code binaire ou code source ?

En Figure 3, nous présentons des accélérations obtenues sur une machine quadri-cœurs
Intel Xeon W3520. CETUS et PLUTO sont comparés dans la figure lorsque la paral-
lélisation est réalisée depuis le code source original du programme ou depuis le code
source extrait du programme binaire par notre système.

On peut s’apercevoir que notre système permet en général une parallélisation du
programme binaire à peu près aussi efficace que celle réalisée à partir du code source
original du programme. L’analyse du programme est donc suffisamment précise pour
permettre une parallélisation efficace et le système dynamique qui redirige l’exécution
a un coût très raisonnable. On peut également noter que CETUS fonctionne mieux
depuis le binaire car il bénéficie dans ce cas des simplifications réalisée lors de la com-
pilation initiale du programme séquentiel.

RÉSUMÉ EN FRANÇAIS 21

 0

 2

 4

 6

 8

 10

 12

 14

2m
m

3m
m

atax
bicg

correlation

covariance

doitgen

gem
m

gem
ver

gram
schm

idt

jacobi-2d-im
per

lu

manual OpenMP
bin/PLUTO
bin/CETUS
Kotha et al.

Figure 4: Comparaison de notre système à une parallélisation manuelle et à l’état de
l’art.

Autres méthodes

Un graphe similaire est présenté en Figure 4, mais les deux paralléliseurs utilisés par
notre système sont alors comparés à une parallélisation manuelle du code source origi-
nal, ainsi qu’au système présenté par Kotha et al. dans [74]. Notre système, lorsqu’il
s’appuie sur le paralléliseur PLUTO, est le seul capable de réaliser des transforma-
tions polyédriques. Cet avantage est décisif dans certains programmes tels que 2mm

ou covariance. Cependant, dans d’autres programmes, les fonctions d’accès ou les
transformations appliquées lors de la compilation du programme séquentiel ne nous
permettent pas d’analyser ou de paralléliser aussi efficacement les nids de boucles.
Notre système est également très dépendant de l’efficacité des paralléliseurs utilisés
et ne parvient pas à atteindre de bonnes performances lorsque les paralléliseurs ne le
permettent pas. C’est le cas par exemple avec lu ou jacobi-2d-imper.

Extensions

Codes paramétriques

Après l’analyse du programme, le code extrait est simplifié pour faciliter la parallélisa-
tion. La plupart des techniques de simplification sont exactes lorsque ni les accès mé-
moires, ni les bornes des boucles ne contiennent de paramètres. Dans le cas contraire,
notre système émet des hypothèses qui lui permettent de simplifier les programmes
contenant des paramètres. Si les bornes des boucles sont paramétriques, Kotha et
al. ont proposé dans [74] de diviser la mémoire en tableaux disjoints en considérant
l’adresse de base des accès comme indice pour distinguer les tableaux. Nous proposons

22 RÉSUMÉ EN FRANÇAIS

une technique similaire lorsque l’adresse de base des tableaux est un registre, ce qui
arrive fréquemment lorsque la mémoire est allouée dynamiquement dans le programme
original.

Lors de l’exécution du programme, des tests sont évalués pour s’assurer que les
références pour lesquelles on a supposé qu’elles accèdent à des tableaux différents, le
font effectivement. Ces tests paramétriques peuvent être générés automatiquement à
l’aide d’outils tels que ISL [138]. Cette technique permet de paralléliser par exemple le
programme swim de la suite SpecOMP 2001 [5]. Sur un processeur quadri-cœurs récent,
notre système atteint une accélération de 1,2 × en comparaison à une accélération
référence de 1,5 ×.

Références polynomiales

Jusque là, nous nous sommes principalement intéressés aux références mémoire linéaires.
Il est pourtant fréquent de rencontrer des références non linéaires dans les programmes
compilés, par exemple si des tableaux dynamiques sont utilisés. Afin de paralléliser ces
programmes, nous proposons d’utiliser une technique basée sur l’expansion de Bern-
stein [31] afin de s’assurer à l’exécution que la boucle externe du nid ne porte pas de
dépendance et peut donc être parallélisée.

Avec cette possibilité, notre système peut paralléliser des programmes tels que
mgrid de la suite SpecOMP 2001. Sur le même processeur que précédemment, nous
atteignons une accélération de 1,8 × en comparaison à l’accélération référence de 3,1 ×.
Comme pour l’exemple précédent, la référence consiste en une parallélisation manuelle
dans laquelle un expert a indiqué que la parallélisation est possible, tandis que notre
système est entièrement automatique.

Parallélisation sur place

Jusque là, chaque nid de boucle parallélisé est rajouté au code total du programme.
Si un nid de boucle est parallélisé sans être transformé comme c’est le cas en présence
d’accès non linéaires, il est possible de ne pas augmenter sensiblement la taille du
programme en le parallélisant.

Pour cela, le composant d’observation qui redirige l’exécution vers les versions par-
allèles des nids de boucles va modifier le code binaire séquentiel lorsqu’un point d’arrêt
est rencontré. Les fonctions présentes dans la librairie dynamique gèrent alors les
threads qui exécutent simultanément le code séquentiel initial, réalisant la paralléli-
sation. Les modifications réalisées par le composant d’observation, garantissent que
l’exécution est correcte.

Conclusion

Nous avons présenté un système de parallélisation de code binaire. Ce système est
l’approche statique de parallélisation, il est donc la première brique de notre approche
générale. Notre système, même s’il est limité aux nids de boucles analysables et paral-
lélisables statiquement, présente deux nouveautés principales : il est statique contraire-
ment à la majorité des systèmes de parallélisation de code binaire proposés jusque là

RÉSUMÉ EN FRANÇAIS 23

���������	�� ��ABCDEF��� ����C����

�E�D����

	DE���A��F

������C�EC������B����EAA�

���F��F�������	�FC��

��D�	F���

����C���� ����C�������

�����EAA�

��C�C�ED

���

����CD���

����C��

	��C�C�

��ABCDEFC��

����CDE��

���	�FC��

Figure 5: Schéma général du sélecteur de versions.

et il est modulaire. Différents paralléliseurs source-à-source peuvent être utilisés, y
compris des paralléliseurs polyédriques qui améliorent sensiblement la performance des
programmes par rapport à l’existant.

Cette approche permet également d’étendre les applications du modèle polyédrique
vers les programmes binaires, pour lesquels le format du code est a priori plus complexe.

Les détails sur les techniques présentées et leur implémentation sont disponibles
dans le Chapitre 3.

Sélection de Versions de Programmes

Introduction

Le deuxième système que nous proposons est un système hybride : il réalise certaines
opérations au moment de la compilation du programme mais bénéficie également des
informations disponibles au moment de son exécution. En exploitant ces différentes
phases, notre système permet de sélectionner différentes versions de nids de boucles
polyédriques en fonction du contexte d’exécution courant. Ce contexte d’exécution
impacte la performance des programmes et consiste principalement en deux facteurs
sur les architectures multi-cœurs modernes : l’équilibre de charge et la taille des données
utilisées. Notre système se concentre donc sur ces deux facteurs.

Comme présenté en Figure 5, les différentes versions des nids de boucles polyé-
driques sont générées lors de la compilation, chacune résultant de l’application d’optimisations
différentes sur le nid de boucle original. Ces versions sont observées dans une phase
de profilage, typiquement exécutée lors de l’installation du programme. À l’exécution,
le résultat de ce profilage est combiné avec le contexte d’exécution observable lors de
l’exécution du programme pour sélectionner une version supposée la plus performante.

24 RÉSUMÉ EN FRANÇAIS

Génération des Versions

Lors de nos tests, nous avons généré les versions en appliquant manuellement des trans-
formations polyédriques différentes sur les programmes exemples. Les transformations
diffèrent par l’ordonnancement des itérations, le nombre de niveaux de tuilage, et la
taille des tuiles utilisées. Les paralléliseurs polyédriques automatiques peuvent facile-
ment générer plusieurs versions d’un nid polyédrique en utilisant des heuristiques par
exemple. La nature itérative de LetSee [104] fait de ce paralléliseur un très bon candi-
dat pour générer automatiquement différentes versions d’un nid de boucles.

Profilage

Après avoir généré les versions, elles sont profilées dans une phase unique dédiée, typ-
iquement exécutée lors de l’installation du programme. Il s’agit alors de mesurer
l’impact de l’équilibre de charge et de la taille des données sur les performances de
chaque version. Pour ne pas avoir à mesurer cette performance pour toutes les tailles
de données possibles, nous approximons que l’ordre relatif des versions pour des grandes
données est représentatif de l’ordre relatif des versions pour toutes les tailles de don-
nées. La précision de la sélection est ainsi amoindrie, mais en pratique, le système reste
très efficace avec cette approximation en particulier pour les grandes données, où le
temps de calcul est plus important.

Lors du profilage, il faut alors mesurer le temps nécessaire en moyenne pour exécuter
une itération du nid pour les grandes données et pour les différents équilibres de charges
possibles. Nous proposons deux stratégies différentes pour réaliser cette mesure.

Profilage 1

La première stratégie de profilage a pour objectif de mesurer la performance des versions
dans des domaines d’itérations aussi similaires que possible. Pour contrôler l’équilibre
de charge et la taille des données, les bornes du nid de boucles sont modifiées. Après
avoir appliqué la transformation polyédrique, ces bornes de boucles sont supprimées
et remplacées par des contraintes simples. Ces contraintes assurent que les boucles
commencent à 0, que la boucle parallèle exécute par_sz itérations, et que les autres
boucles exécutent N_min itérations. Ces deux nouveaux paramètres sont modifiés au
cours du profilage pour mesurer des temps d’exécution pour des grandes données et
pour contrôler le nombre d’itérations parallèles (et donc l’équilibre de charge).

Cette méthode est simple et fonctionne pour n’importe quel nid de boucle. Son
inconvénient principal est qu’elle détruit les bornes des boucles et donc que certains
effets de bords tels que le coût du contrôle sont mal évalués lors du profilage.

Profilage 2

La deuxième méthode de profilage préserve le nid de boucle dans son état initial. Le
nombre de threads actifs est contrôlé par l’utilisation de la méthode omp_set_num_threads

d’OpenMP. La taille des données est contrôlée par les paramètres présents dans les
bornes des boucles du nid.

RÉSUMÉ EN FRANÇAIS 25

Afin de déterminer comment augmenter la taille du domaine d’itération à l’aide
des paramètres existants, nous privilégions une approche polyédrique. Un nouveau
paramètre N_min est considéré. Il représente la taille d’un hypercube qui doit pouvoir
rentrer dans le polyèdre du domaine d’itération pour garantir qu’un certain nombre
d’itérations seront exécutées. Le lien entre N_min et les paramètres du nid de boucle
est obtenu grâce aux outils polyédriques tels que PIP [45]. Le résultat pour chaque
paramètre est une expression qui définit la valeur du paramètre en fonction de N_min

pour garantir qu’un certain nombre d’itérations seront exécutées par le nid de boucles.

Utilisation du code de profilage

Quelle que soit la méthode de profilage choisie, chaque version disponible est exécutée
pour une grande taille de données, et une mesure de temps d’exécution est réalisée
pour chaque nombre de threads actifs. Le résultat de cette étape est stocké dans une
table de classement qui sera utile pour prédire la performance de chacune des versions.

Sélection des Versions

Une fois le profilage réalisé, la sélection des versions peut avoir lieu avant chaque
exécution du nid de boucles. Pour ce faire, le temps d’exécution de chacune des versions
dans le contexte d’exécution courant est prédit. Cette prédiction est réalisée grâce à
un nid de boucle dédié, le nid de prédiction, qui mesure l’équilibrage de charge courant.

Nombre d’itérations

Le nid de prédiction est en charge de mesurer le nombre de threads actifs pour chaque
itération du nid de boucles. C’est de cette mesure que l’équilibre de charge sera déduit
plus tard.

Le nid de prédiction est construit à partir du nid de boucle exécuté. Le contenu
de la boucle parallèle est remplacé par un polynôme d’Ehrhart qui définit le nom-
bre d’itérations exécutées dans l’itération courante de la boucle parallèle. Ce nombre
d’itérations est assigné à un compteur propre au thread qui le calcule. À la fin de
l’exécution du nid de prédiction, il est donc possible de consulter le nombre d’itérations
exécutées par chaque thread.

Temps d’exécution

En faisant l’hypothèse que le temps d’exécution par itération est constant, on peut
facilement déduire la mesure inverse du nombre d’itérations exécutées par chaque
thread, c’est à dire le nombre de threads actifs lors de l’exécution de chacune des
itérations. Pour cela, il suffit de trier les mesures obtenues par le nid de prédiction en
ordre décroissant et de considérer les différences entre deux entrées successives. Par
exemple, si on mesure qu’un thread a exécuté trois itérations et que l’autre thread en
a exécuté 5, on peut déduire que les deux threads ont été actifs pendant l’exécution de
trois itérations alors qu’un seul thread a été actif pendant l’exécution de deux itérations.

26 RÉSUMÉ EN FRANÇAIS

On appelle NC le nombre de cœurs de calcul disponibles, Nitv
t le nombre d’itérations

exécutées par t threads (le résultat du nid de prédiction de la version v), et ET v
t le

temps d’exécution d’une itération en utilisant la version v et t threads (le résultat du
profilage). Le temps d’exécution prédit pour la version v est alors défini par :

NC
∑

t=0

(t×Nitv
t × ET v

t)

En utilisant cette formule simple, on peut prédire un temps d’exécution pour chaque
version juste avant d’exécuter le calcul. Il suffit alors d’effectuer le calcul en utilisant
la version pour laquelle le temps d’exécution prédit est le plus petit.

Évaluation

L’évaluation de notre système a été réalisée sur trois machines, décrites dans le Chapitre 4,
en utilisant différentes versions de programmes, dont les détails sont également disponibles
dans ce chapitre. Les versions sont évaluées dans différents contextes qui se distinguent
par la taille des données utilisées et par le nombre de cœurs de calculs disponibles sur
chacun des ordinateurs considérés.

Influence du contexte

En évaluant les versions des programmes pour plusieurs tailles de données, on s’aperçoit
que le contexte d’exécution influence les programmes de différentes manières. En pre-
mier lieu, et de façon évidente, on peut remarquer que la machine qui exécute le
programme influence la performance de ce programme. Ce n’est alors pas toujours
la même version du programme qui est la plus efficace selon l’ordinateur considéré.
Ensuite, la taille des données a aussi un impact sur la performance du programme.
Selon la taille des données, ce n’est pas toujours la même version qui est la plus rapide.
Enfin, le nombre de cœurs de calculs disponible influence également la performance
relative des versions.

Différents exemples chiffrés sont présentés dans la section expérimentale du Chapitre 4.

Temps d’exécution

Afin d’évaluer la performance de notre système de sélection, nous avons mesuré l’accélération
des programmes qu’il réalise dans différents contextes d’exécution par rapport à un
système de sélection de versions parfait. Les résultats sont présentés dans la Table 1.
Un résultat de 100% indique une performance maximale en considérant les versions
disponibles. La performance de chacune des stratégies de profilage est présentée avec
celle de la meilleure version statique. Celle-ci est la plus rapide dans tous les contextes
d’exécution testés, elle a été déterminée après avoir testé toutes les versions. Notre sys-
tème atteint des performances comparables à cette meilleure version statique, et arrive
même à la dépasser dans certains cas. Le surcoût du nid de prédiction est considéré dans
ces mesures. On peut déduire de ces mesures que notre système de sélection est efficace
et permet de bénéficier d’accélérations spécifiques à certains contextes d’exécutions.

RÉSUMÉ EN FRANÇAIS 27

Processeur Programme Stratégie 1 Stratégie 2
Meilleure version

statique

Corei7

2mm 100.0 % 98.9 % 100.0 %

adi 99.6 % 98.7 % 97.5 %

covariance 96.6 % 95.8 % 99.7 %

gemm 93.4 % 84.7 % 93.5 %

gemver 80.6 % 98.3 % 91.6 %

jacobi-1d 99.5 % 99.5 % 99.9 %

jacobi-2d 90.2 % 94.8 % 99.6 %

lu 91.2 % - 98.3 %

matmul 98.5 % 97.9 % 98.5 %

matmul-init 100.0 % 97.6 % 100.0 %

mgrid 97.0 % 99.9 % 97.0 %

seidel 99.5 % 99.8 % 99.6 %

Opteron

2mm 100.0 % 100.0 % 100.0 %

adi 99.1 % 99.6 % 97.3 %

covariance 99.8 % 99.8 % 99.8 %

gemm 97.8 % 96.5 % 96.7 %

gemver 99.7 % 99.4 % 99.8 %

jacobi-1d 99.6 % 99.6 % 100.0 %

jacobi-2d 100.0 % 98.5 % 100.0 %

lu 100.0 % - 100.0 %

matmul 100.0 % 96.9 % 100.0 %

matmul-init 100.0 % 100.0 % 100.0 %

mgrid 96.2 % 99.0 % 98.5 %

seidel 98.9 % 99.5 % 98.3 %

Phenom

2mm 100.0 % 100.0 % 100.0 %

adi 98.7 % 99.5 % 97.5 %

covariance 99.9 % 99.9 % 99.9 %

gemm 99.2 % 97.2 % 96.9 %

gemver 99.7 % 99.1 % 99.8 %

jacobi-1d 99.7 % 99.7 % 100.0 %

jacobi-2d 99.4 % 98.7 % 100.0 %

lu 100.0 % - 100.0 %

matmul 100.0 % 100.0 % 100.0 %

matmul-init 100.0 % 100.0 % 100.0 %

mgrid 95.9 % 99.7 % 98.1 %

seidel 99.0 % 98.9 % 99.0 %

Table 1: Accélération des deux stratégies de profilage et de la meilleure version statique
par rapport à un mécanisme parfait de sélection de versions.

28 RÉSUMÉ EN FRANÇAIS

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

execution time
predicted time

Figure 6: Temps d’exécution (en secon-
des) réel et prédit de toutes les versions
du programme 2mm dans tous les contextes
testés, trié par le temps d’exécution réel.
Sur Core i7 avec la stratégie 1.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

execution time
predicted time

Figure 7: Temps d’exécution (en secon-
des) réel et prédit de toutes les versions
du programme 2mm dans tous les contextes
testés, trié par le temps d’exécution réel.
Sur Core i7 avec la stratégie 1.

Précision

Même si la performance atteinte en utilisant les deux stratégies de profilage est com-
parable, nous avons évalué la précision de chacune de ces stratégies. Pour ce faire
nous présentons en Figure 6 et 7 le temps d’exécution réel et prédit de chacune des
stratégies pour toutes les versions dans tous les contextes d’exécution testés pour un
programme sur un processeur. Le trait plein indique le temps d’exécution réel, le trait
pointillé indique le temps d’exécution prédit. Les versions dans les différents contextes
d’exécutions sont présentées horizontalement. Le temps d’exécution est représenté sur
la direction verticale. Les mesures sont triées par temps d’exécution réel croissant. On
peut s’apercevoir que les deux courbes sont proches : le temps prédit est très proche
du temps d’exécution réel. La stratégie 2 semble cependant plus précise. D’autres
mesures similaires sont présentées dans le Chapitre 4.

Conclusion

Nous avons présenté un système de sélection de version hybride qui constitue la deux-
ième brique de notre approche générale. Bien que limité aux boucles affines, il exploite
à la fois la période de compilation et celle de l’exécution du programme pour effectuer
une sélection de versions parallèles efficace et précise dès la première exécution du
nid. Il permet ainsi de bénéficier du contexte d’exécution courant pour accélérer les
programmes par rapport à une version unique.

Comme il exploite le modèle polyédrique, notre système peut être vu comme une
extension de ce modèle vers l’amélioration de la performance des programmes en prof-
itant des particularités des contextes d’exécution.

Le Chapitre 4 présente les détails de la méthode, les implémentations réalisées, et
d’autres mesures pour argumenter de la validité de notre approche.

RÉSUMÉ EN FRANÇAIS 29

��������	

ABC�D�EF	

���	CA	C�	� ���C����D����C
��C������C

A	���A	

����F���C

��������	

�����������C
�	��F�

������	

����A����C

�����	��	

Figure 8: Les différentes étapes de notre paralléliseur spéculatif.

Parallélisation Spéculative

Introduction

Le troisième mécanisme que nous proposons est dynamique, il exploite principalement
la période d’exécution des programmes pour les paralléliser. Il consiste en un système
de parallélisation spéculative capable d’appliquer des transformations polyédriques sur
les nids de boucle pour les paralléliser efficacement même s’ils ne sont pas analysable
statiquement.

Les systèmes spéculatifs sont intéressants car ils permettent la parallélisation de
codes complexes qui contiennent par exemple des accès pointeurs impossibles à analyser
statiquement. Ils permettent également le traitement de programmes qui ne sont paral-
lèles que dans certaines phases de leur exécution. L’apport principal de notre méthode
est la possibilité d’appliquer des transformations polyédriques de façon spéculative.

La Figure 8 présente les différentes étapes d’un tel système. Tout d’abord, le
programme est observé sur une courte période, plusieurs éléments tels que les accès
mémoires, la valeur de certains scalaires, et les bornes de certaines boucles sont in-
strumentées. Si ces éléments peuvent être décrits par une fonction linéaire, alors le
système suppose que cette caractérisation sera valable pour toute l’exécution du pro-
gramme. Partant de cette hypothèse, les dépendances du programmes sont construites
puis une transformation polyédrique est choisie. Le code correspondant est alors généré
puis exécuté. Pendant l’exécution parallèle, les hypothèses émises par le système sont
vérifiées et, si elles s’avèrent incorrectes, l’exécution est partiellement annulée avant de
recommencer un cycle de parallélisation.

Profilage en-ligne et Dépendances

Lorsqu’un nid de boucle intéressant est exécuté, la première tâche réalisée par le sys-
tème est d’observer le comportement de ce nid. Cette observation a pour principal
objectif de déterminer si les accès mémoires peuvent être décrits par des fonctions
linéaires, condition préalable à l’application du modèle polyédrique. Certains scalaires
sont fréquemment la source de nombreuses dépendances dans les nids de boucles. Dans
certains cas ils peuvent être traités statiquement, par privatisation par exemple. Les
codes complexes que notre système considère contiennent fréquemment des scalaires qui

30 RÉSUMÉ EN FRANÇAIS

ne peuvent pas être traités statiquement mais dont la valeur est une fonction linéaire
des indices des boucles englobantes. Ces valeurs sont donc également observées afin de
supprimer les dépendances associées aux scalaires et permettre la parallélisation. Pour
permettre l’implémentation d’un mécanisme transactionnel, le nombre d’itérations des
boucles while est également observé et exprimé sous forme de fonction linéaire lorsque
c’est possible.

Profilage

Les adresses accédées sont donc instrumentées ainsi que la valeur des scalaires qui
provoquent des dépendances qui ne peuvent pas être éliminées statiquement. De la
même façon, le nombre d’itérations des boucles while est également mesuré pour former
une fonction linéaire lorsque c’est possible. Cette instrumentation est exécutée pendant
trois itérations de chaque niveau de boucle, le temps de mesurer un nombre suffisant
de valeurs pour construire les fonctions linéaires. Cependant, dans certains cas, il
est nécessaire d’observer les boucles pendant une plus longue période. C’est le cas
par exemple si un accès mémoire est présent dans un test qui n’est pas pris à chaque
itération. Si des données d’instrumentation sont manquantes après trois itérations, le
profilage continue jusqu’à au plus dix itérations.

Construction des dépendances

Lorsque tous les éléments profilés sont identifiés comme étant linéaires, le système
fait l’hypothèse que ce comportement est représentatif du comportement général de
l’application. C’est l’aspect spéculatif du système. Sous cette hypothèse, qui sera
vérifiée plus tard, les dépendances du nid de boucle sont construites. Ces dépendances
sont représentées sous forme de polyèdres de dépendance qui sont une représentation
compacte mais exacte des dépendances dans le cadre polyédrique. Ces dépendances
sont utilisées plus tard pour choisir une transformation pour le nid de boucle.

Ordonnancement

Les dépendances construites sont spéculatives. Si les éléments observés comme étant
linéaires pendant le profilage en ligne le sont effectivement, alors ces dépendances sont
celles qui ont lieu lors de l’exécution du nid. Il faut alors choisir une transformation
polyédrique qui respecte ces dépendances. Cette transformation sera correcte et ne
nécessitera pas de retour arrière si les dépendances spéculatives sont correctes durant
toute l’exécution du programme.

Profilage hors-ligne

Le choix d’une transformation polyédrique en fonction de dépendances est extrêmement
complexe et les techniques existantes ont un coût qui ne peut pas être facilement amorti
dans un système dynamique. Notre système effectue donc un profilage hors-ligne (avant
l’exécution du programme) afin d’étudier le comportement des éléments qui seront
profilés plus tard lors de l’exécution du programme par la phase de profilage en-ligne.

RÉSUMÉ EN FRANÇAIS 31

Si, lors du profilage hors-ligne, il s’avère que ces éléments sont majoritairement linéaires,
alors les dépendances observées sont reconstruites et un ensemble de transformations
possibles est identifié. Ces transformations sont alors embarquées dans le programme
séquentiel et pourront être sélectionnées si les dépendances spéculatives le permettent.

Ordonnancements génériques

En plus des transformations choisies lors de la phase de profilage hors-ligne, il est
intéressant de considérer d’autres transformations qui peuvent être également embar-
quées avec le programme pour être sélectionnées si jamais aucune autre transformation
ne peut l’être.

Dans ce cas, il faut générer un ensemble de transformations qui ont une chance
raisonnable d’être compatibles avec les dépendances spéculatives et qui permettent
une parallélisation relativement efficace. Une des nombreuses possibilités pour attein-
dre cet objectif est de considérer des transformations simples telles que des inversions
de boucles pour ramener successivement toutes les boucles vers l’extérieur combinées
avec du tuilage pour améliorer la localité des données. Un parcourt diagonal peut
aussi être intéressant pour certains codes. Ces différentes transformations ne sont pas
nécessairement valides ou efficaces. Elles représentent juste des transformations sou-
vent suffisantes pour paralléliser les programmes et le tuilage limite les effets d’une
mauvaise localité des données.

Validité d’un ordonnancement

Les ordonnancements construits avant l’exécution du programme sont donc embarqués
avec le programme. Après la construction des dépendances spéculatives, il faut déter-
miner lesquels sont valides en fonction des dépendances. Pour cela, des tests de vacuité
sont classiquement appliqués aux polyèdres de dépendance construits. Cette méth-
ode est coûteuse et peut être approximée par des méthodes plus simples mais moins
robustes tels que les vecteurs de distance de dépendance [143].

Une fois un ordonnancement valide trouvé, un niveau de boucle parallèle doit être
détecté, s’il en existe au moins un. Pour ce faire, une approche classique consiste là
encore en un certain nombre de tests de vacuité sur des polyèdres de dépendance. Des
tests heuristiques existent également tels que le test GCD, ou le I test. Notre système
utilise ces heuristiques combinées à des tests exacts pour déterminer un ordonnance-
ment valide et un niveau de boucles parallèle dans cet ordonnancement.

Génération de Code

Étant donné que les transformations sont choisies avant l’exécution du programme, le
code correspondant à chacun de ces ordonnancements peut être généré hors-ligne égale-
ment. Les techniques de génération de code existantes sont utilisées sans modification
majeure. Les hypothèses de spéculations qui seront faites puis vérifiées garantissent
que ce code parallèle est correct, ou effectueront un retour-arrière dans le cas contraire.

32 RÉSUMÉ EN FRANÇAIS

while (p != NULL) {

...

p = p->next;

}

while (!end) {

forall (i = CHUNK_START; i < CHUNK_END; i++) {

p = base1 + i * scale1;

if (p == NULL) { end = 1; break; }

...

assert &(p->next) == base2 + i * scale2;

p = p->next;

assert p == base1 + (i + 1) * scale1;

}

CHUNK_START = CHUNK_END;

CHUNK_END = CHUNK_END + CHUNK_SIZE;

}

Figure 9: Boucle d’exemple (à gauche) et sa parallélisation spéculative (à droite).

Vérification de la Spéculation

Une fois le code parallèle disponible, il est exécuté. Mais il faut encore vérifier que
les hypothèses émises depuis la fin du profilage en-ligne sont effectivement valides.
Pour cela, notre système surveille tous les éléments prédits pour s’assurer que leur
comportement réel est bien représenté par la fonction linéaire qui a été construite lors
du profilage en-ligne.

La vérification consiste simplement en une comparaison entre la valeur réelle et celle
prédite pour chaque élément spéculé. Cette vérification est réalisée concomitamment
à l’exécution parallèle du nid. Nous prouvons dans le Chapitre 5 que cette vérification
est correcte même après avoir transformé le nid de boucles.

La Figure 9 présente un nid d’exemple simple et sa version parallèle dans laquelle
le code de vérification est ajouté. On peut en effet apercevoir différentes assertions
qui échouent si la valeur du scalaire spéculé p ne respecte pas la prédiction. Ce même
scalaire est initialisé en début de boucle afin de pouvoir le privatiser et supprimer ainsi
la dépendance qu’il induit entre chaque itération de la boucle initiale. Les coefficients
des fonctions linéaires base1, scale1, base2, et scale2 sont ceux déterminés lors du
profilage en-ligne et définissent les fonctions linéaires spéculatives. On peut également
voir que l’adresse de l’accès pointeur est aussi prédite et vérifiée. Enfin, on remarque
que l’exécution a lieu par tranches d’itérations consécutives. Cette découpe du domaine
d’itération en tranches permet d’appliquer efficacement le retour arrière si une erreur
de prédiction est détectée.

Système Transactionnel

En cas d’erreur de prédiction, la validité des dépendances n’est plus garantie et donc
la sémantique du programme parallèle n’est plus forcément identique à celle du pro-
gramme séquentiel. Il faut donc annuler le dernier groupe d’itérations exécuté pour
recommencer l’exécution à l’aide d’un ordonnancement sûr : l’ordre séquentiel.

RÉSUMÉ EN FRANÇAIS 33

������

������

��	AB���

��	AB���

	C
	D
��	

AB
���

	C	D��	AB���

EFA�����D�D��B	����

�	D�A���	����

��������D�B

��C��B�	�D��B	���

�A��FA�����D�B

��B	���D�	D�A���	����

EFA�����D�BD��C��B�	�

��B	���D�	D�B�B�����

EFA�����D�BD��C��B�	�

��B	���D�	D�A���	����

�������D��C���B��

�	����	�

�������D��D��A�����C	D��A���	���

Figure 10: Stratégie de ré-exécution spéculative.

Arrêt des threads

La première chose à faire en cas d’erreur de spéculation est d’arrêter les threads. Pour
ce faire, un bit est associé à chacun d’entre eux. Tous ces bits sont activés lorsqu’un
thread détecte une erreur de prédiction, provocant l’arrêt de tous les threads. Cela
implique que tous les threads observent régulièrement l’état du bit d’arrêt qui leur est
associé, et donc un surcoût lors de l’exécution parallèle.

Annulation des itérations

Une fois les threads arrêtés, il faut annuler les calculs réalisés dans la tranche du
domaine d’itération courante. Avant d’exécuter la tranche courante, un copie mémoire
simple aura sauvegardé toutes les cases mémoires écrites dans la tranche courante.
Cette copie est donc restaurée pour annuler les calculs éventuellement réalisés avant la
détection d’une erreur de prédiction.

Les outils polyédriques classiques tels que PIP permettent de calculer facilement une
sur-approximation des éléments mémoire écrits par chacun des accès dans la tranche
d’itérations courante. Si aucune erreur n’est détectée, la copie effectuée pour la tranche
courante est simplement écrasée par la suivante.

Stratégie de ré-exécution

Le calcul annulé doit être ré-exécuté afin de poursuivre l’exécution du programme.
La prédiction n’est pas correcte, il n’est donc plus possible d’utiliser directement une
version parallèle du nid. La dernière tranche d’itérations est donc ré-exécutée en util-
isant l’ordonnancement séquentiel original du programme. Nous démontrons dans le
Chapitre 5 que cette ré-exécution partielle est suffisante pour garantir que la séman-
tique du programme est bien identique à celle du programme original en cas d’erreur
de prédiction.

Une fois la tranche d’itérations ré-exécutée, une stratégie dynamique est entreprise
afin de reprendre efficacement l’exécution. Cette stratégie est présentée en Figure 10.
L’exécution parallèle continue normalement tant qu’il n’y a pas d’erreur de prédiction.
Les erreurs de prédiction rares provoquent une ré-exécution de la tranche courante
en séquentiel, mais les erreurs fréquentes provoquent l’exécution de plusieurs tranches
séquentielles. Cette distinction est basée sur l’observation qu’un programme peut avoir

34 RÉSUMÉ EN FRANÇAIS

Programme Référence Parallèle Spéculation OK Séquentiel Spéculation ÉCHEC
ind 280 ms (×5.3) 600 ms (×2.5) 1,495 ms 620 ms

llist 495 ms (×6.3) 985 ms (×3.1) 3,100 ms 1,050 ms
rmm 330 ms (×31.3) 890 ms (×11.6) 10,330 ms 890 ms

switch 620 ms (×6.4) 1,400 ms (×2.8) 3,960 ms 1,500 ms

Table 2: Évaluation du système spéculatif.

différentes phases dont certaines ne sont pas parallélisables, et qu’il peut également
rencontrer un comportement temporairement non linéaire.

Évaluation

Le système que nous avons décrit a été évalué avec des programmes simples qui ne peu-
vent être parallélisés que par un système spéculatif. Les transformations polyédriques
réalisées par notre système permettent non seulement de paralléliser ces programmes
mais également d’améliorer la localité des données lors de l’exécution.

La Table 2 présente les temps d’exécution et accélérations de quatre programmes
de tests. Les résultats de la version parallélisée manuellement (Référence Parallèle)
accompagne le résultat de notre système lorsqu’aucune erreur de spéculation n’a lieu
(Spéculation OK). La version séquentielle est également présentée (Séquentiel) ainsi que
le surcoût du système lorsque toutes les tranches sont annulées mais pas ré-exécutées
(Spéculation ÉCHEC). Le pire coût de notre système correspond environ au temps
séquentiel plus un sixième de la dernière entrée en considérant que cinq tranches sont
exécutées si des erreurs fréquentes sont détectées. Ce surcoût est provoqué par la
restauration de la mémoire écrasée plus l’exécution parallèle qui a été annulée. Dans
le meilleur cas, notre système peut atteindre une accélération de près de la moitié de
ce qui peut être obtenu manuellement après avoir ré-écrit le programme pour s’assurer
qu’il peut être parallélisé.

Conclusion

Ce système est la troisième brique de notre approche générale. Il exploite princi-
palement la phase d’exécution du programme pour pouvoir le paralléliser. Il utilise
également le modèle polyédrique et étend donc en quelque sorte ce modèle pour des pro-
grammes qui ne sont pas analysables statiquement. Son implémentation complète per-
mettra l’application du modèle polyédrique aux programmes qui ne sont pas analysables
statiquement.

Le Chapitre 5 présente différentes alternatives envisageables pour implémenter
chaque partie du système. Les choix présentés sont évalués et comparés à ces al-
ternatives. Les preuves de validité du mécanisme de vérification et de retour arrière
sont également détaillées.

RÉSUMÉ EN FRANÇAIS 35

Conclusions et Travaux Futurs

Contributions

Nous avons présenté trois systèmes différents qui profitent des différents moments de
la vie d’un programme pour le paralléliser.

Le premier système présenté permet la parallélisation statique de code binaire. Il
exploite uniquement une étape de compilation pour paralléliser des programmes dont
le format est complexe. Les principaux atouts de ce système sont les suivants :

• Il s’agit d’un système statique. Contrairement à la majorité des mécanismes de
parallélisation de code binaire existants, il ne nécessite pas de support pour la
parallélisation spéculative, y compris matériel.

• Il est modulaire. N’importe quel paralléliseur source-à-source existant ou futur
peut être utilisé pour paralléliser les programmes, à condition que l’information
extraite soit suffisante pour qu’il fonctionne. La plupart des systèmes existants
ne permettent qu’une seule technique de parallélisation.

• Il est compatible avec les transformations polyédriques. Ces transformations per-
mettent d’améliorer sensiblement les performances des programmes parallélisés.
Elles étaient jusque là impossibles à appliquer sur du code binaire.

• Les extensions que nous proposons permettent notamment de paralléliser des
programmes pour lesquels les fonctions d’accès aux données ne sont pas linéaires.
Il est également possible de paralléliser les programmes sans augmenter sensible-
ment la taille du programme lorsque le nid de boucles n’est pas transformé.

Le deuxième système présenté est un mécanisme hybride de sélection de versions de
nids de boucles affines. Il exploite une phase de profilage en plus du programme en lui
même pour pouvoir le paralléliser. Les principales contributions de ce système sont les
suivantes :

• Il permet la sélection de versions parallèles. La plupart des systèmes existants
ne peuvent fonctionner qu’avec des programmes séquentiels. Les programmes
parallèles induisent des défis particuliers qui sont relevés par notre système.

• La version sélectionnée l’est dès la première exécution. Beaucoup des systèmes
proposés jusque là nécessitent de nombreuses ré-exécutions des parties du pro-
gramme traitées. Notre système peut donc fonctionner avec des nids de boucle
rarement exécutés.

• Notre système est entièrement automatique. Contrairement aux autres mécan-
ismes de sélection, il ne nécessite pas de décrire le programme, ou de le ré-écrire
dans un langage spécifique, ni de l’alimenter avec des données d’entraînement qui
doivent souvent être sélectionnées manuellement.

• Le modèle polyédrique contraint la forme des boucles qui peuvent être traitées.
Cette limite est la garantie de sa précision. Les codes traités sont connus et

36 RÉSUMÉ EN FRANÇAIS

clairement définis. Il est donc beaucoup moins facile de construire un programme
qui sera mal prédit que pour les autres systèmes qui peuvent être piégés par de
nombreux programmes aux performances très irrégulières.

La troisième partie présente un mécanisme de parallélisation spéculative, d’une nature
dynamique. Le cœur de la parallélisation est réalisé lors de l’exécution du programme.
Les principales contributions du système spéculatif sont les suivantes :

• La parallélisation spéculative peut être accompagnée de transformations polyé-
driques. Ces transformations sont jusque là ignorées dans les travaux existants.
Notre système est donc le premier à pouvoir profiter des bénéfices du modèle
polyédrique avec des programmes qui ne sont pas analysables statiquement.

• La parallélisation polyédrique est souvent considérée comme étant applicable
seulement statiquement. Nous présentons ici une approche dynamique, aboutis-
sant à utiliser le modèle polyédrique sur des programmes jusque là hors de sa
portée.

• Le système spéculatif est efficace sans nécessiter de support pour la spéculation.
Aucun matériel spécifique n’est imposé pour effectuer la parallélisation.

Les trois parties, mises en commun, forment une approche complète et cohérente qui
répond au problème de la parallélisation des programmes. Nous ne résolvons bien
entendu pas l’ensemble du problème mais proposons des avancées significatives. Les
différents systèmes permettent en effet d’améliorer les performances des programmes
afin de mieux exploiter les ressources parallèles disponibles. Chacune des étapes de la
vie d’un programme sont exploitées dans ce but.

Perspectives

Le système de parallélisation statique peut être amélioré dans plusieurs directions dif-
férentes. Sa sensibilité aux optimisations appliquées aux programmes binaires séquen-
tiels peut être amoindrie en annulant certaines de ces optimisations avant de paralléliser
les programmes. Par exemple le déroulage de boucles peut être annulé pour améliorer
la robustesse de l’analyse. Certaines parties du flot de contrôle qui restent complexes
à traiter peuvent être cachées dans une boîte noire et approximées pour réaliser la
parallélisation. Par exemple des tests sur les données peuvent être considérés comme
toujours vrais afin de sur-approximer les dépendances. Enfin, si le programme binaire
est entièrement analysable, il peut être intéressant de le traduire complètement vers
une autre représentation binaire afin de permettre la parallélisation de code binaire
x86 vers GPU ou FGPA par exemple.

Le système de sélection de code peut également être amélioré. La limite majeure de
notre approche est la limitation aux nids de boucles affines. Cette contrainte pourrait
être légèrement relâchée mais la précision du système risque alors d’être amoindrie.
Réaliser une sélection de versions dans un contexte hétérogène est une autre extension
intéressante. Ainsi, il pourrait être bénéfique de considérer des versions pour CPU
et d’autres pour GPU et de déterminer automatiquement quelle version sera la plus
rapide avant de l’exécuter.

RÉSUMÉ EN FRANÇAIS 37

La parallélisation spéculative n’a pas été complètement implémentée. Le premier
objectif est de terminer cette implémentation et d’ajuster éventuellement la stratégie
proposée. Partant de ce système, de nombreuses perspectives sont ouvertes. Une paral-
lélisation polyédrique entièrement dynamique permettrait d’améliorer des programmes
qui restent aujourd’hui encore hors du champ d’application du modèle polyédrique.
Cette évolution vers plus de dynamisme peut se faire progressivement à partir de
l’approche que nous proposons.

L’apparition rapide des systèmes multi-cœurs s’est accompagnée d’une attente très
forte pour des systèmes logiciels plus efficaces. Les évolutions du matériel que nous
entre-apercevons aujourd’hui permettent de supposer que cette pression ne fera qu’augmenter
au cours des prochaines années. Les problèmes de cohérence de cache, d’économie
d’énergie, et l’hétérogénéité croissante des ordinateurs sont des exemples des problèmes
que le logiciel, et donc les compilateurs, devront résoudre.

38 RÉSUMÉ EN FRANÇAIS

Chapter 1

Introduction

Until the early 2000’s, the software developers were in a very favorable situation, de-
scribed by Sutter in [129] as a “Free Lunch” situation. This period is characterized by
the rapid increase in processor frequencies. Those frequencies were increasing nearly
as fast as the number of transistors in chips. In this context, a slow program just had
to wait for the next processor generation to be executed faster. It was then sufficient
to write a sequential program and to compile it once to automatically benefit from
the improvements of the hardware. The compiler role was then mostly to perform
a simple translation of the program source code to a low-level representation. Some
optimizations performed by the compiler were already complex but mostly interest a
small community of users having specific needs. Those optimizations were not really
vital for users.

As stated by Sutter, “the free lunch is over”. It is over since the early 2000’s be-
cause the hardware designers have met physical limits which prevent them to increase
further the processors frequency. In order to still enhance their products, they have
come to the solution of increasing the number of cores instead. This decision has two
major consequences for the software developers. First, the free lunch is over: a sequen-
tial program will not anymore automatically benefit from the progresses achieved by
the processors. To exploit parallelism, the programs have to be rewritten or, at least
re-compiled, which has severe consequences for code legacy. Second, there is a tremen-
dous pressure on parallelism extraction. Languages and compilers transformations for
parallelism have been designed at a time when the only parallel computers where rare
machines designed for scientific computations. Then, as there were only a few con-
cerned users, the software compilation techniques have somehow accumulated a delay
compared to the impressive progress of hardware. Nowadays, nearly every computing
machine sold has some parallel computing resources, and the softwares have to exploit
them.

The programmers have at their disposal several languages and programmings mod-
els which allow them to write parallel programs. However, they are often not trained
for parallelism and prefer the sequential model unless being forced to go into parallel
programming. An interesting survey can be performed by any computer user, who
can notice that, except for some domain-specific compute-intensive applications such
as multimedia tools, most of the programs installed on a general-purpose computer are

39

40 CHAPTER 1. INTRODUCTION

sequential ones. One could argue that it is the compiler responsibility to make the best
usage of the available hardware resources. Thus, automatic parallelization of sequential
programs has to be targeted, with as less as possible help from the program developers.
In fact, several automatic parallelization tools have been proposed with this objective
in mind. Important progresses have been made in this field in the past decades but
those technologies are not yet fully operational for a large scale deployment and still
fail to parallelize programs for many different reasons.

Among the different existing techniques, the polyhedral model and associated tools
have emerged as part of the solution for automatic parallelization. The polyhedral
model is a mathematical framework which allows a precise representation of some parts
of the programs. In this representation, some loop transformations can be performed
to enhance the data locality and to uncover parallelism. Several polyhedral paral-
lelizers are already able to exploit this model to automatically parallelize the “easily”
analyzable parts of the programs.

Aiming at re-opening the “free lunch”, we also target a setting where the software
developers can continue to develop sequential applications, while a compiler automat-
ically parallelizes them. With this goal in mind, we propose to extend the existing
techniques and tools in three directions. First, the existing programs have to be par-
allelizable, even if they are legacy programs for which the source code is lost. For that
purpose, we present a system able to parallelize sequential binary programs. Second,
the parallelism extraction has to take into account the current external environment to
reach the maximal performance. We present the possible gains and propose an efficient
system to exploit the maximal amount of parallelism in different execution contexts.
Third, the parallelization can be complex or impossible to perform using only static
tools. Thus, we propose a speculative parallelization system to handle programs which
are hard to analyze.

The tremendous pressure on parallelism extraction pushes us to exploit any situa-
tion. For that reason, the three proposed systems runs at different stages.

The binary parallelization is performed statically, before the program execution.
It is able to precisely analyze a binary program in order to extract an intermediate
representation. This intermediate representation is precise enough to automatically
parallelize the program using the existing source-to-source parallelizers.

The second system is able to select the best implementation of a loop nest consid-
ering the current context. It exploits both static and dynamic information to perform
an efficient and accurate code selection. An offline profiling step extracts information
about the different parallel implementations of the loop nests. This information allows
a runtime system to predict the execution time of each version in the current execution
context. The version predicted as being the fastest is then executed.

Finally, the speculative system is mostly dynamic and exploits as much as possible
the information available when the program is running. Existing polyhedral paralleliz-
ers are used at compile time to parallelize the program based on a profiling run. If the
runtime behavior of the loop nest seems to allow the use of this parallel version, it is
speculatively run, back-tracking the execution if the program behavior is finally not
the one expected.

Those three systems form a fully fledged approach which addresses a broad range

41

of issues related to automatic parallelization of programs.
The polyhedral model representations and tools are exploited by the proposed sys-

tems to reach their goals. In some sense, they all extend the polyhedral model scope to
unexpected horizons. The binary parallelization shows that the polyhedral represen-
tation and techniques are useful on low-level representations, i.e. even when the code
format is complex. The code selection mechanism extends the use of the polyhedral
model to complex execution contexts. Finally, the speculative parallelization system
allows the polyhedral model to be used on programs which have a complex inherent
code structure.

All those three systems, which form the basic bricks of our general approach are
presented in the next chapters. First, we describe the base notions of the polyhedral
model and present the existing techniques related to our work. In Chapter 3, we present
the static binary parallelizer. Chapter 4 describes the code selection mechanism, while
Chapter 5 details our last proposal: the speculative parallelizer based on the polyhedral
model.

42 CHAPTER 1. INTRODUCTION

Chapter 2

Basic Concepts and Related Work

There are two important epochs in the life of a program: the compile time and the
execution time. We consider those epochs to classify the existing code transformation
techniques in three families.

The static methods are applied offline, before executing the program. They can be
complex and time consuming as the program is compiled only once by its developers.
However, the information available at this time is only the program itself, usually as
a source code. This program description is often insufficient to determine the exact
behavior of the programs in every possible execution context. Thus, the transforma-
tions belonging to this family have usually only little information on the impact of a
specific runtime factor on the program performance. For that reason, they generally
target an average execution context and try to not over-specialize the program for a
specific runtime context, such as a specific workload for instance.

To get a more precise program characterization, some collaborative static and dy-
namic methods, or hybrid methods, have been proposed. The first category of hybrid
systems combine a compile time approach with a runtime extension. As much as pos-
sible, the transformation is applied at compile time, and a dynamic system performs
the final steps of this transformation when a more precise program description can be
obtained. The second category of hybrid systems evaluate the programs during one or
several profiled executions in order to collect some statistical information. This better
characterization of the programs is used to perform more precise code transformations
at compile time. In some sense, they also combine a static and a dynamic approach.

The dynamic methods transform the programs while they execute, allowing the
transformations to be specific to the current execution context. This enables a very
effective transformation as more information related to the program execution is avail-
able. However those methods have to maintain a very low overhead as they are run
simultaneously to the program. Notice that the dynamic systems often require at least
a small static step to be effective. For instance, a Java program has to be compiled into
bytecode before running it. When the main transformation is performed at runtime,
we still consider that the system is dynamic.

The recent wide spreading of multicore processors heavily increases the pressure
on parallelism extraction. The current parallelization techniques have to be extended
in several ways in order to exploit any possible gain. Thus, we propose a new par-

43

44 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

allelization mechanism in each of those families. We propose to statically transform
and parallelize binary programs using the polyhedral model. We also show that a fast
and accurate code selection mechanism can be implemented using an hybrid static-
dynamic approach. Finally, we propose a speculative parallelization system able to
perform advanced code transformations at runtime on complex programs. Despite a
part of this system is executed at compile time, its core functionalities are run while
the program is executed, defining a mostly-dynamic system. We present in this chap-
ter an overview of the existing systems related to our proposals and compare them.
We introduce in Section 2.1 some static systems which can be related to our binary
parallelizer. In Section 2.2, some important collaborative static and dynamic mecha-
nisms are presented and compared to our proposals. Finally, we discuss in Section 2.3
the relation of some dynamic mechanisms with our systems. Although the presented
techniques do not cover all the existing program transformations, they should give to
the reader a general idea of the main contributions related to our proposals.

The mechanisms that we propose are exploiting the polyhedral model to perform
precise program analysis and advanced loop nest transformations. We present in Sec-
tion 2.4 the common notations and concepts used in this model, and we introduce the
main techniques and tools exploiting this representation.

2.1 Static Methods

The static transformations are applied on the program before executing it. They
are performed in a unique compilation phase, usually by the application developers.
Thanks to this property, those transformations can be complex and can consume a
large amount of resources. We present in Chapter 3 our static system able to perform
polyhedral transformations on loop nests at the binary level. To better evaluate the
contributions of this work, we briefly discuss the links of this parallelization system
with other existing static mechanisms.

2.1.1 Polyhedral Parallelization

The main contribution of our binary parallelizer is its ability to perform polyhedral
transformations and parallelization at the binary level. In the past, the polyhedral
model has been successfully experienced on different representations. Obviously the
source level is preferred for its expressiveness, and many polyhedral parallelizers are
source-to-source compilers. In CHiLL [27], the user can specify a list of transfor-
mations to apply on a loop nest including common polyhedral transformations and
other advanced loop transformations. PLUTO [23, 99] uses heuristics to automat-
ically determine a transformation sequence to apply on the loop nest. The LetSee
compiler [105, 104] is an exception as it is indeed an hybrid system, using iterative
compilation to determine the best optimization sequence. Although those paralleliz-
ers are research tools, some production-level polyhedral compilers have been designed
such as RStream [119]. More details on those tools and the operations they perform
are provided in Section 2.4.

2.1. STATIC METHODS 45

Recently, efforts have been made to port the polyhedral model in production com-
piler as with GIMPLE in GCC [135], and Polly in LLVM [55]. This implies to apply
polyhedral transformation on the compiler intermediate representation, which is sig-
nificantly lower-level than the source code. The system that we propose goes one step
deeper. The representation we use, the binary code, is less expressive than any other
experimented representation. However, we show that the automatic transformations
and parallelization of loop nests are still possible, while still using the existing source-
to-source compilers.

No representation appears to be ideal, each one has its own pros and cons. At high
level, more information is embedded and the analysis is easier, while low-level represen-
tations allow optimizations specifically targeting a given architecture. Moreover, those
low-level representations also makes it possible to parse any program independently
from its origin: any programming language is handled, and libraries or proprietary
codes can also be parallelized.

2.1.2 Binary Code Parallelization and Rewriting

Despite they are not able to perform polyhedral loop transformations, several binary
code parallelizers have been proposed. To our knowledge, Kotha and colleagues have
proposed the only fully static binary parallelizer [74]. Since this work is very close to
ours, we present a topic-by-topic comparison with their approach after having detailed
our system in Chapter 3. The other binary code parallelizers are dynamic systems
which are presented in the appropriate section.

Kotha et al. use a static binary rewriter to inject the parallelized loop nests back
into the original program. Several static binary rewriters have been proposed in the
past, and, as they are an important component of binary code parallelization, we first
discuss them here.

One of the common optimization targeted by those static binary rewriter is code
reorganization based on a previous profiling run. Spike [35] propose this optimization
on WinNT/Alpha systems, alto [91] has a similar approach on a different operating
system, and PLTO [126] solves similar issues on IA32 processors. ATOM [127] is a
generic framework where the user can define its own analysis tool. The tools can be
called before or after any procedure, basic block, or instruction. At runtime, ATOM
exposes to the tools some low-level information such as current register values, allowing
them to observe the program execution. Etch [120] is targeting Win32/x86 platforms
but provides similar facilities. Pebil [75] is also a generic framework but focuses on
reducing the overhead of the instrumentation tools by preparing the program before
instrumenting it. Diablo [136] is also a generic framework but it is retargetable and
can use several platforms.

Other tools such as HPCVIEW [85] or MAQAO [42] perform a precise analysis of
binary programs with the final goal of providing optimization hints to the programmers.
MAQAO also allows the users to insert some dynamic instrumentation in programs in
order to build a more precise program characterization.

Two points have to be distinguished here: the analysis capacities of the tools and
their binary rewriting functionalities. The binary program analysis is often naive and

46 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

most of the rewriters do not need to extract more information than basic block bound-
aries or function boundaries. A notable exception is presented with the program an-
alyzers such as MAQAO. Those tools usually extract precise information related to
the program such as loop structures. However, they usually do not perform a complex
static memory analysis such as the one we perform to parallelize loop nests in the
binary parallelizer presented in Chapter 3.

Relatively to the binary rewriting capacities, we can observe a broad variety of
systems, often dedicated to a specific operating system and processor architecture.
The other systems which offer genericity are also often adding some extra-overhead
compared to specialized systems which can more easily perform platform-specific op-
timizations. We have implemented our own binary rewriting tool to parallelize binary
applications. It is compatible with our experimental configuration and it is specialized
to our usage, limiting its overhead. However, it is dynamic as the implementation of
such dynamic rewriting tools is easier on Linux platforms. We present other dynamic
rewriting tools in the dynamic methods section, and compare them with our approach.

2.2 Static-Dynamic Collaborative Methods

Static methods only exploit the program listing which may be an insufficient source of
information. In some cases, a transformation can benefit from additional information
which is difficult or impossible to obtain at compile time. Thus, the static method can
be combined with a dynamic system to form a hybrid mechanism.

We present in this section two main categories of hybrid mechanisms related to
our proposals. First, the iterative compilers can be considered as a special form of
code selection systems as they are able to determine which optimization performs best
among several. Second, we present the most relevant code selection mechanisms that
use an hybrid approach. As the purely dynamic approach is often privileged by such
systems, dynamic selection systems are evaluated in the next section.

2.2.1 Iterative Compilation

The first type of code selection mechanisms we present target code selection at compile
time. In this setting, the compiler evaluates several distinct optimization sequences
before choosing one for the final program. The compilation is said iterative as the
program is compiled and evaluated several times before deciding which optimization
sequence has to be applied.

In [21], Bodin et al. present a case study where an efficient optimization sequence
is searched using a simple algorithm. They show that a few evaluations are required
to obtain an efficient program. Kisuki et al. present in [72] an iterative compiler able
to outperform a static compiler with a few evaluations. The approach is generalized
in [38] where a generic iterative compiler is presented. It is able to minimize an objective
function specified by the user and is then not restricted to the execution time. Some
machine-learning techniques are used to traverse the optimization space. This is also
the case in [134], where Triantafyllis et al. combine machine-learning techniques with
execution simulations to accelerate the evaluations. They also propose to use heuristics

2.2. STATIC-DYNAMIC COLLABORATIVE METHODS 47

to direct the search. Similarly, in [1], the authors propose to use machine learning to
build a model directing the search. The model predicts the optimizations that have a
high chance of being profitable for a given class of programs. A recent production-scale
implementation of an iterative compiler has been proposed with Milepost GCC [52].
It exploits a database, shared among the users, to collect data linking some program
features to programs performance.

Fursin et al. have proposed in [51] a system taking advantage of the program phases
to accelerate the evaluation of optimization sequences. Their system predicts phases
in the execution to evaluate several versions in a single program run. When all the
versions have been evaluated, the best version is also used for the rest of the execution.
This system is singular since it is a dynamic code selection system used for offline code
selection.

The polyhedral model provides a large set of loop transformations but no analytical
performance model exists to determine their profitability. Thus, the polyhedral model
is a natural target for iterative compilers. The first attempt in that direction was
proposed by Nisbet with the GAPS framework [93] which uses genetic algorithms to
select an efficient transformation using the UTF framework [66]. This framework is
also used by Long and Fursin in [80] where a more comprehensive system is proposed.
In [105, 104], Pouchet et al. describe an iterative strategy to select efficient polyhedral
loop nest transformations in the polyhedral model. They propose to restrict the search
space to the legal schedules only in order to limit its size. They have proposed later
to combine iterative compilation with a model-driven approach in [106] in order to
accelerate the search in that space. Park et al. have proposed in [96] to use a machine
learning approach with hardware counters to perform a fast transformation selection.

Iterative compilation is a code selection mechanism but is intended to be used of-
fline. No dynamic system is associated with iterative compilers. The different optimiza-
tion sequences are generally evaluated on full runs, at compile time. For that reason,
the results obtained are closely related to the execution context occurring during the
compilation. They are not generally suitable to any circumstance — for instance, to
distribute an efficient multi-platform executable, or to fine-tune memory and processor
loads. On the contrary, our code selection framework is able to exploit the specificities
of the current execution model to select at runtime an efficient version among several
ones.

2.2.2 Hybrid Code Selection

More closely to the code selection mechanism that we present in Chapter 4, we evaluate
some hybrid code selection systems. Our system is based on preliminary profiling runs,
it is then hybrid as the other code selection mechanisms presented below.

Numerical libraries, tuned at installation time, are commonly used for scientific
computing. For instance, the ATLAS project [141] is a linear algebra library where
empirical timings are used at installation time in order to choose the best computation
methods for a given architecture “in a matter of hours”. Such libraries suffer from the
same flaws as iterative compilers: finding an efficient version is time consuming and
only one version is finally generated.

48 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

The STAPL adaptive selection framework [130] runs a profiling execution at in-
stall time to extract architectural-dependent information. This information is used at
runtime to select the best version, combined with previous runs and training runs per-
formance measurements through machine learning. This system requires many training
runs before being able to take relevant decisions.

More recently Tian et al. [133] propose an input-centric program behavior analysis
for general programs, which is a statistical approach where program inputs have to
be characterized differently depending on the target application — input size, data
distribution, etc. —, and the program behavior is represented by relations between
some programs parameters, as for instance loop trip-counts. This modeling can be
exploited to achieve some dynamic version selection. Such relevant statistical relations
seem difficult to be determined for any kind of programs. Moreover, the system requires
several distinct valid inputs emphasizing different characteristics of the program in
order to build the different versions. In general, it may be extremely complex to
determine and provide such inputs to the system. Overall, this work does not consider
parallel programs.

Those systems require several training runs before being efficient, and the paral-
lelism is often out of the scope of the proposed systems. We show in Chapter 4 that
our hybrid code selection system is able to select an efficient version since the very
first execution of the loop nest and can handle the specific challenges of parallelism.
Moreover, our system is fully automatic and does not require any human intervention
to propose the versions, their description, or some training data.

More code selection mechanisms are presented in the next section and are compared
to our system.

2.3 Dynamic Methods

While some approaches are performed at compile time, it is useful in some cases to
apply the code transformations at runtime. Indeed, when the program is running,
it can be more precisely analyzed and its execution context is known. Then, some
aggressive transformations, specific to the current execution context, can be applied.

Among the existing dynamic systems, some have a direct link with our proposals.
We present in this section some relevant mechanisms and compare them to ours.

2.3.1 Dynamic Code Selection

We have already presented the hybrid code selection mechanisms, however, most of the
existing code selection frameworks are dynamic.

For instance, in the ADAPT system [140], a specific language allows the user to
describe optimizations and heuristics for applying these optimizations dynamically.
However, the resulting optimizer is run on a free processor or on a remote machine
across the network. Such an approach seems only suitable for programs with long
execution times and a lot of available hardware resources, particularly when tuning
parallel programs.

2.3. DYNAMIC METHODS 49

PetaBricks [2] provides a language and a compiler, where having multiple imple-
mentations of algorithms is the natural way of programming. The associated runtime
system uses a choice dependency graph to select one or another algorithm and imple-
mentation at different steps of the whole computation. Such an approach is suitable
for programs where it is obviously possible to switch from one algorithm to another
while still making progress in the whole computation, such as in divide and conquer
algorithms. Further, the changing behavior of the executed algorithms must not induce
overheads due to a compulsory cache flush for instance.

Mars and Hundt’s static/dynamic SBO framework [83] consists in generating at
compile time several versions of a function that are related to different dynamic sce-
narios. These scenarios are identified at runtime thanks to the micro-processor event
registers. Execution is dynamically rerouted to the code relevant to the current iden-
tified scenario. However, execution is not rerouted during a function call, but for the
next calls. Further, it seems difficult to use this approach with parallel programs since
it is actually quite challenging with multicore processors to deduce accurate global
multithreaded program behaviors from registers disseminated on the cores.

The dynamic code selection systems suffer from the same flaws as the hybrid ones.
They often require several executions before being efficient, they do not target parallel
codes, and they are not fully automatic. Our code selection mechanism, presented
in Chapter 4, addresses all those issues by providing a fast automatic code selection
mechanism for parallel codes.

2.3.2 The Inspector/Executor Model

In Chapter 5, we present a speculative parallelization scheme using the polyhedral
model. This system is part of a broader category, namely the dynamic parallelizers,
which is based either on the inspector/executor model, or the speculative methods.

In the inspector/executor model, sequential programs are divided in two compo-
nents. The first one, called the inspector, is in charge of extracting the program depen-
dences, usually between loop iterations. Then, an executor runs the tasks as soon as
all their dependences have been satisfied. This model has been first proposed by Zhu
and Yew in [147], and has been later extended in many directions. Chen et al. describe
the CYT model [28] which allows one to reuse the result of the inspector across loop
executions, and to partially overlap loop iterations. Many other extensions have been
proposed in this generic frame. For instance, Padua, Rauchwerger et al. primarily fo-
cus in applying privatization and reduction to expose more parallelism [115, 114, 113].
Saltz et al. have extensively studied different runtime scheduling techniques that can
be used in that model [124, 123, 88, 102]. Leung and Zahorjan later extend in [77] their
parallel inspector into a more efficient one. Another interesting parallelization scheme
for the inspector loops is proposed by Philippsen et al. in [86], where the inspection
phase is performed by two highly optimized parallel loops.

Other inspector/executor systems, able to perform advanced program transforma-
tions, have also been proposed. For instance Ding and Kennedy propose in [41] to
apply locality grouping and dynamic data packing on irregular codes to improve their
performance. Mitchell et al. also propose in [89] to use the inspector/executor model

50 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

combined with some other data optimizations to enhance the performance of irregular
applications. Strout et al. later unify this technique in a general framework in [128].
Despite they apply runtime transformations using the inspector/executor model, those
techniques are restricted to indirect array references. Moreover, the proposed trans-
formations are related to data reordering, and ignore program transformations such as
those provided by the polyhedral model.

In general, this model is efficient if the addresses computation is clearly separated
from the actual computation, allowing the creation of an efficient inspector. More-
over, to capture the dependences with no restriction, some control bits are commonly
associated to every array element during the inspector phase. This often restricts
those methods to array accesses, and can lead to major memory overheads. Moreover,
pointer references can strongly disturb the automatic inspector creation, limiting the
applicability of this method.

2.3.3 Thread-Level Speculation

Other methods performing dynamic parallelization are based on Thread-Level Specu-
lation (TLS). In these methods, some assumptions are made on the general behavior
of the application, allowing one to speculatively parallelize the program. During the
parallel execution, the hypothesis are confronted to the real application behavior, and
if an assumption appears to be wrong, the parallel execution is partially back-tracked
and re-executed in a different way, usually using the original sequential program.

POSH [79] is a compilation framework for transforming the program code into a
TLS-compatible version, by using profile information to improve speculation choices.
A similar approach is presented in [63]. The Mitosis compiler [109] generates spec-
ulative threads as well as pre-computation slices (p-slices) dedicated to compute in
advance the values required for initiating the threads. The LRPD test [116] specu-
latively parallelizes forall loops that access arrays and performs runtime detection of
memory dependences. Such technique is applicable only when the array bounds are
known at compile time. Tian et al. [132] focus on the efficient exploitation of pipeline
parallelism using a data-speculation runtime system which creates on-demand copies
of statically, as well as dynamically allocated data.

SPICE [111] is a technique using selective value prediction to convert loops into
data parallel form. A similar approach is proposed in [131]. In [30], a speculative
parallelization in chunks of the outermost loop is proposed, using a sliding window
for reducing the impact of load imbalance. However this last proposal is limited to
array-only applications.

Softspec [24] is a technique whose concepts represent preliminary ideas of our ap-
proach presented in Chapter 5. Linear memory accesses and scalar values sequences
are detected, but only for innermost loops. Hence one-variable interpolating functions
are built and used for simple dependence analysis via the GCD test. Thus, only the
innermost loop can be parallelized.

Finally, Zhong et al. present in [146] several code transformation techniques to
uncover the hidden parallelism and improve TLS efficiency, as speculative loop fission,
infrequent dependence isolation, or speculative prematerialization. Our system goes

2.3. DYNAMIC METHODS 51

further, as it is able to perform more advanced loop transformations, and does not
require any specific hardware.

The existing speculative systems are often able to handle any kind of dependency.
It allows them to consider a broad variety of codes, but it can also lead to important
memory and performance overheads, which are often deported to some dedicated hard-
ware mechanisms. As in Softspec, we restrict our speculative parallelizer to loops where
the addresses accessed define a linear function of the loop indices. Using this represen-
tation, we can apply advanced transformations on the loops, significantly improving
their efficiency, while limiting the runtime overhead induced by the speculation. Our
system could be combined with an existing dynamic system to handle non-linearity as
well as linear codes.

2.3.4 Binary Code Parsing

Thread level speculation is currently a major category of systems that has to extract
high-level information from low-level, executable code. Then, it is interesting to com-
pare the analysis we perform for the binary code parallelization that we propose in
Chapter 3 to those systems.

A typical example of TLS mechanism is the POSH system [79], where the code is
statically analyzed to extract tasks and where the runtime environment is responsible
for verifying the absence of conflicts. In the words of the authors [79, Introduction]:
“[TLS] compilers are unique in that they do not need to fully prove the absence of
dependences across concurrent tasks — the hardware will ultimately guarantee it”.
More closely related to binary code parallelization, DeVuyst and colleagues write [40,
Section 3]: “Without the high-level code, we cannot guarantee that parallel iterations
of [a] loop wont attempt to modify the same data in memory”. These two short
quotations are sufficient to highlight what makes our static binary parallelizer original
regarding binary code parsing.

TLS systems do not perform static dependence analysis, but rather rely on some
transactional memory mechanisms to ensure the correctness of the parallel execu-
tion [60]. On the other hand, static binary parallelizers produce a parallel program
off-line, which means that they need some precise and definitive characterization of the
data dependences right out the binary code. Therefore, most TLS systems for binary
code perform control-flow analysis, extracting routines and loops [94, 40, 60]. Some
go as far as putting the program into SSA form to perform a simple form of data-
flow analysis [144]. However, as far as we know, no system is able to build symbolic
expressions for memory accesses. This is easily understandable: static binary paral-
lelization systems need this description to perform static dependence analysis, whereas
TLS systems leave that part to the runtime environment. On the other hand, binary
parallelization systems restrict themselves to loop nests, whereas TLS systems target a
much wider range of program structures, including, unfortunately, loop nest that could
be handled statically.

52 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

2.3.5 Inline Code Generation and Transformation

Going further in the dynamic approach leads to fully dynamic code generation and
transformation mechanisms. The most common occurrences of those dynamic systems
are just-in-time compilers in virtual machines [4]. Java [53] or Common Language
Runtime [84] are well-known examples of this approach.

Some other tools perform dynamic code instrumentation, allowing the user to insert
at runtime extra instructions to observe a program. One of the first dynamic instru-
mentation tool proposed is DynInst [62] developped in the Paradyn project [87]. This
tool is able to add trampolines in the code in order to redirect the execution toward
instrumentation code. A similar approach is developed in Vulcan [44]. The main dif-
ference with DynInst is the high-level form used to expose the program structure to
the user. Pin [82] is another famous example of dynamic code instrumentation tool.
The user writes C++ PinTools using the Pin API to implement the desired instrumen-
tation. PIN inserts calls to the PinTool directly in the executed binary code. Several
optimizations, such as code caches, are used to limit the overhead of this instrumenta-
tion strategy. Another approach is chosen by Valgrind [92], where the final performance
is not the main concern. This tool targets heavy instrumentation as every basic block
is decompiled to a high-level representation. The instrumentation is inserted in this
high-level representation, which is later recompiled.

Some systems go further and propose to modify the code of the program while it is
running. Dynamo [8] and DynamoRIO [25] interpret the code to determine hot regions
of the program while it is running. Once those regions are found, they are dynamically
transformed, including with conventional optimizations such as loop unrolling. Kistler
and Franz present another system in [71] which can continuously profile a running
program and optimize it using data reordering and trace optimizations. Several versions
of the program are generated during its execution to perform those transformations.
ADORE [81] uses a second thread and hardware counters to observe the phases in the
program execution in order to apply simple optimizations such as prefetching when
the program behavior is stable. Beyler has proposed later a fully software solution
to instrument memory loads and model their behavior in order to dynamically insert
prefetching instructions when it is profitable [15, 16]. Another kind of dynamic code
optimization is performed by dynamic translators where the program is converted to
another instruction set while it is running. For example, DAISY [43] translates a
program to VLIW primitives and parallelizes them at runtime.

One case of dynamic optimization is particularly interesting to us. It is proposed by
Yardımcı and Franz in [145], and represents the first attempt at binary parallelization.
Their system is mostly dynamic and identifies control flow that behaves like loops
at runtime, including recursive function calls. It is able to dynamically parallelize
or vectorize those code slices using naive techniques to test the dependences and to
perform the parallelization. As their system is highly dynamic, it can handle complex
code structures, however, it cannot rely on complex decision algorithms. Therefore, it
can only parallelize loops where no data dependence occurs, which strongly limits its
scope.

The static binary parallelization presented in Chapter 3 outperforms this dynamic
parallelizer as it can apply complex loop transformations on the code. Similarly for

2.4. THE POLYHEDRAL MODEL 53

the speculative parallelizer presented in Chapter 5. Despite those techniques can only
handle loop nests, they can perform exact dependence analysis and parallelize loops in
the presence of dependences, going one step further.

The code instrumentation and manipulation tools can be compared to our static
binary code parallelizer implementation. Indeed, in Chapter 3, we use a simple dynamic
binary optimization process to re-inject the parallelized loop nests in the original binary
program. Most of the existing dynamic code instrumentation tools are huge machineries
with large APIs and infinite instrumentation possibilities. The price to pay for this
genericity is usually large runtime overheads. Moreover, the tools which are not generic
framework are limited to some specific architectures and exploit architecture-specific
methods. Our binary re-injection process is naive and not well optimized. However, it
works on our architecture and provokes a negligible overhead which can often not be
guaranteed by more complex frameworks.

2.4 The Polyhedral Model

In the next chapters, we propose three systems able to enhance the program perfor-
mance using each of the three different approaches. All of them make an intensive
use of the polyhedral model and its associated tools. This model aims at representing
exactly the execution of the program at compile time. In order to provide useful and
consistent representations, it largely exploits linear algebra, linear programming, and
convex optimization theory. The premises of this model are proposed by Karp, Miller,
and Winograd with a method to automatically map computations of uniform recur-
rence equations [64]. It is later extended to techniques related to systolic arrays, before
being connected to imperative programs [45, 48].

Our work is not intended to extend this model. We rather show that this model and
the associated techniques can be successfully exploited in difficult contexts, whereas it
is sometimes considered as being limited to a very restricted class of programs. Despite
we are users of this model, we present the main internal characteristics of the polyhedral
model, in order to help the reader to better understand the possibilities it offers. We
do not provide an extensive review of the polyhedral model here, but we present the
main terms, representations, and tools associated to the model and which are used
later in this dissertation. For a more comprehensive understanding of the model, the
reader is referred to the extensive work of Feautrier [45, 46, 48, 49, 50].

2.4.1 Mathematical Background and Notations

The notions used in the polyhedral model are based on simple mathematical notions
that we introduce here before going into the details of the polyhedral model itself.

A vector is noted ~v, its dimensionality is noted |~v|, and the ith element of ~v is ~v[i].
To clarify the reading, we make no distinction between a row vector and a column
vector. This property can be determined according to the context. Two vectors can
be concatenated using |, ~v1|~v2 is the vector whose elements are made of those of ~v1,
followed by those of ~v2. A matrix made of real elements with n rows and m columns
is noted A ∈ Rn×m. The element at row i and column j is noted A[i, j], while the

54 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

ith row is A[i, ∗] and the jth column is A[∗, j]. A matrix-vector product is noted A~v.
Depending on the context, 0 can denote the integer value or a vector of an arbitrary
size containing only zeros.

Definition. (Affine function) A function f : Km → Kn is said affine if it exists a
matrix A ∈ Kn×m and a vector ~b ∈ Kn such that:

∀~x ∈ Km, f(~x) = A~x +~b

We also use the terms linear function to name those functions.

Definition. (Affine hyperplane) An affine hyperplane is a n− 1-dimensional subspace
splitting a n-dimensional space in two distinct parts. Considering a vector ~a ∈ Kn and
a scalar b ∈ K, an affine hyperplane is defined by the vectors ~x ∈ Kn such that:

~a · ~x = b

Definition. (Affine half-space) An affine hyperplane splits a space into two half-spaces.
Considering a vector ~a ∈ Kn and a scalar b ∈ K, an affine half-space of Kn is defined
by all the vectors ~x ∈ Kn such that:

~a · ~x ≥ b

Definition. (Convex polyhedron) A convex polyhedron P ⊆ Kn is a set defined by the
intersection of a finite number of affine half-spaces of Kn. A polyhedron can also be
considered as a set of m affine constraints, represented in a matrix A ∈ Km×n and a
vector ~b ∈ Km:

P = {~x ∈ Kn|A~x +~b ≥ 0}

Definition. (Parametric polyhedron) The set P(~p) ⊆ Kn is a polyhedron parameter-
ized by the vector of symbolic values ~p. It can be represented by a matrix A ∈ Km×n,
and a matrix of parameter coefficients B ∈ Km×p if we consider p parameters, i.e.
|~p| = p, and a vector ~b ∈ Km such that:

P(~p) = {~x ∈ Kn|A~x + B~p +~b ≥ 0}

Definition. (Polytope) A polyhedron is a polytope if it can be enclosed in a hypercube,
i.e. if it is bounded.

For more details, the reader is referred to Schrijver’s book [125]. In the rest of this
dissertation, we are mostly interested in the points with integer coordinates contained
in polyhedra. Thus, unless if specified differently, we consider that K = Z. Notice
that this representation is not the most precise one and that other representations
can sometimes be considered in the polyhedral model such as in the Z-polyhedral
model [57].

2.4. THE POLYHEDRAL MODEL 55

2.4.2 Scope and SCoP

Traditional compiler representations usually focus on static relations between the in-
structions. For instance the abstract syntax trees, the control flow graphs, or the
Static Single Assignment analysis ignore the time when an instruction is executed. If
this instruction is executed several times, they do not provide sufficient information to
distinguish between those different executions. Then, they are insufficient to represent
and manipulate the different executions of the instructions.

The polyhedral representation aims at solving this issue. It is able to represent,
among other things, the different executions of an instruction and their associated
execution order. Using those representations, it becomes possible to reason about the
dynamic execution of the program at compile time. This compile-time representation
of the execution can be exact only for the parts of the programs whose control flow is
statically known. Those program regions are called Static Control Parts (SCoP) [34].

Definition. (Static Control Part) A Static Control Part (SCoP) is a program region
defined as the longer sequence of consecutive instructions such that the only allowed
control structures are affine loops and conditional instructions, where the loop bounds
and conditions are defined as boolean combination of affine functions of the surrounding
loop indices and global parameters.

A parameter in the polyhedral model is a symbolic value whose value is unknown at
compile-time, which is defined outside of the SCoP, and then remains constant during
its execution. The so-defined SCoPs are sequences of instructions and loop nests which
are not necessarily perfectly nested, i.e. some instructions are not at the maximal
depth in the nest. The following code, for instance, defines a valid SCoP:

out = 0;

for (iter = 0; iter < tsteps; iter++) {

for (i = 0; i <= length - 1; i++)

for (j = 0; j <= length - 1; j++)

c[i][j] = 0;

for (i = 0; i <= length - 2; i++) {

for (j = i + 1; j <= length - 1; j++) {

sum_c[i][j][i] = 0;

for (k = i + 1; k <= j-1; k++)

sum_c[i][j][k] = sum_c[i][j][k - 1] + c[i][k] + c[k][j];

c[i][j] = sum_c[i][j][j-1] + W[i][j];

}

}

out += c[0][length - 1];

}

The constraints put on the SCoP format cover a large set of scientific computation
kernels, despite full programs can generally not been represented.

56 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

for (i = 1; i <= N; i++)

for (j = 1; j <= N; j++)

if (i + j <= 9)

S

�

�

� �

�

�
������

������

������ ������

�	�����A

Figure 2.1: Sample loop nest (left) and the iteration domain of S (right).

2.4.3 Statement and Iteration Vector

The polyhedral model does not pay attention to the operations performed during the
program execution. A common usage is to consider that those operations are performed
in statements which represent an instruction or a sequence of consecutive instructions
in a basic block. The statements are considered as atomic black boxes and the only
information which is associated to them is the memory accesses they perform.

The statements represent a static feature of the program which is similar to the
notion of instruction in a source code. It is not very helpful to represent the dynamic
execution of the program. Thus, we introduce the iteration vectors to represent the
different time steps in the overall SCoP dynamic execution.

Definition. (iteration vector) An iteration vector ~i of a given statement S consists in
the value of the indices of the loops surrounding S, ordered by increasing loop depth.

A couple made of a statement S and an iteration vector~i defines an instance
〈

S,~i
〉

of S. It corresponds to a specific execution of a given statement. This notion of
instance is at the base of the polyhedral representation as it allows us to represent
different executions of a single statement.

2.4.4 Iteration Domain

Consider a statement S enclosed in d loops. An instance
〈

S,~i
〉

of this statement can

be represented in Zd, using ~i as coordinates. For instance, consider the loop nest
presented in Figure 2.1. We can represent the first execution of S as the point (1, 1)
in Z2, called the iteration space of S. One can notice that not all the points in the
iteration space are actually executed because of the loop bounds and tests surrounding
the statement. The iteration space of S, restricted to the actually executed iterations,
is called the iteration domain of S. The iteration domain of S in our example is
represented graphically in Figure 2.1.

A more precise definition of the iteration domain is given by the following definition.

2.4. THE POLYHEDRAL MODEL 57

Definition. (iteration domain) If a statement S is enclosed in d loops, the set of
iterations vectors~i describing the different executions of S defines the iteration domain
of S which can be represented as a parametric polyhedron:

DS(~p) = {~i ∈ Zd|A~i + B~p +~b ≥ 0}

The notion of iteration domain is extremely useful as it characterizes exactly all
the executed instances of a given statement. This characterization is at the base of the
rest of the model. The execution of the program can be seen as scanning the integer
points in an iteration domain. The execution order is then the order used to perform
this scanning. This strong connection between the iteration domain and the loop nest
leads to consider that a loop level in the source code is similar to a dimension of the
iteration domain.

As the constraints defining the iteration domain are affine inequalities, we can
express this iteration domain as a set of affine constraints. Using the matrix repre-
sentation defined earlier, we can represent the iteration domain of the loop shown in
Figure 2.1 as being:

DS =

















1 0
−1 0

0 1
0 −1
−1 −1

















(

i
j

)

+

















0
1
0
1
0

















(

N
)

+

















−1
0
−1

0
9

















≥ 0

A more compact representation is commonly considered, appending the column of
the two matrices with the vector, resulting in the following representation:

DS =

















1 0
−1 0

0 1
0 −1
−1 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0
1
0
1
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1
0
−1

0
9



























i
j
N
1











≥ 0

2.4.5 Access Functions

To guarantee that an exact program analysis can be performed later, we require that
the memory accesses are defined by array accesses where the subscript functions are
affine. The scalars are treated as arrays where only the first element is accessed. In
that frame, we can represent the addresses reached by memory references as couples
〈A, f〉, where A is the name of the array and f is a multi-dimensional affine function
mapping the loop indices to an array element.

To precisely describe the behavior of a statement S, we distinguish the values which
are written in memory and those only read when S is executed. We note WS the set
of memory writes performed by S, and RS the set of read accesses in S.

Consider the following instruction, where i and j are the indices of the two sur-
rounding loops:

A[i][j+1] += B[i+j][j] - c;

58 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

This statement contains the following memory references:
WS = {〈A, fA〉}

RS =
{

〈A, fA〉 , 〈B, fB〉 ,
〈

c, fc(~i) = 0
〉}

The array subscript functions are defined as:

fA(~i) =

(

i

j + 1

)

fB(~i) =

(

i + j

j

)

The affine subscript functions can be represented using the matrix representation.
If a single parameter N is used in the SCoP, the affine functions have the following
form:

fA(~i) =

[

1 0
0 1

∣

∣

∣

∣

∣

0
0

∣

∣

∣

∣

∣

0
1

]











i

j

N
1











fB(~i) =

[

1 1
0 1

∣

∣

∣

∣

∣

0
0

∣

∣

∣

∣

∣

0
0

]











i

j

N
1











This representation is commonly used as it is very compact and can be easily
implemented on computers using integer matrices.

2.4.6 Schedule

We have defined several representations allowing us to describe the execution of a SCoP.
However, we still lack of a fundamental feature as we are not yet able to describe the
relative execution order of the statement instances. For that purpose, we assign a
logical execution date to every statement instance. The logical dates define an order
which can be used to sort the instances by execution order. To assign an execution
date to every instance, we use scheduling functions.

Definition. (Scheduling function) The scheduling function of a statement S, or sched-
ule of S, is a function that maps every instance of S to a logical timestamp, defining
when this instance can be executed relatively to the other instances executed in the
SCoP.

∀~i ∈ DS, θS(~i) = t

2.4. THE POLYHEDRAL MODEL 59

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

S1

S2

}

Figure 2.2: Sample loop nest with two statements.

Timestamps

The timestamps t can be scalar values [48], however Feautrier has shown that unidi-
mensional timestamps cannot represent the schedules in every class of programs. He
has proposed in [49] to use instead multidimensional timestamps, which are able to
represent the schedules in every possible SCoP.

The multidimensional timestamps are vectors which can be seen as logical clocks.
The most important value is the first one, while the last vector element is the less
important. Intuitively, this is equivalent to vectors containing days, hours, minutes,
seconds, . . . Two multidimensional timestamps are sorted according to the lexico-
graphic order, noted ≪, and defined as:

(a1, . . . , an)≪ (b1, . . . , bn)⇔ ∃i : 1 ≤ i ≤ n, ∀m : 1 ≤ m < i, am = bm ∧ ai < bi

The timestamps, once lexicographically sorted, describe the original execution order of
their associated statements instances.

One could think that the iteration vectors can be directly used as multidimensional
timestamps to characterize the original sequential execution order. However, it cannot
express the textual order information which also accounts to determine the execution
order. For instance, if we consider the loop nest in Figure 2.2, we can see that during
the whole execution of the nest, both statements have the same iteration vectors despite
they are not executed exactly at the same time: S1 is executed before S2.

A simple solution to that problem is to interleave the iteration vector entries with
constant values to represent the relative textual order at every common loop level. In
our example, the following timestamps can be used to represent the sequential execution
order:

θS1((i, j)) = (0, i, 0, j, 0)
θS2((i, j)) = (0, i, 0, j, 1)
The two first constant values are identical, representing the fact that both state-

ments are enclosed in the same loops. The last constant value indicates that S2 is
executed after S1 at every iteration of the innermost loop.

Interestingly, the timestamps can still be sorted by lexicographical order to represent
the execution order of their associated instances. This solution has been proposed by
Feautrier in [49], and can be applied automatically by traversing the AST to determine
the relative textual position of the statements.

60 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

Scheduling Matrices

We impose that the schedules are affine functions in order to perform code generation
later [12]. Thus, we can use a matrix to represent a schedule, leading to the following
definition:

∀~i ∈ DS, θS(~i) = ΘS~i = ~t

Where ΘS is the scheduling matrix of S, and is such that ΘS ∈ Zdt×(d+p+1) with dt =
∣

∣

∣

~t
∣

∣

∣.
A canonical form of the scheduling matrix proposed by Girbal et al. in [11, 34].

This format encodes the scheduling matrix as:

ΘS =



























0 · · · 0
AS[1, 1] · · · AS[1, d]

0 · · · 0
AS[2, 1] · · · AS[2, d]

...
. . .

...
AS[d, 1] · · · AS[d, d]

0 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 · · · 0
ΓS[1, 1] · · · ΓS[1, p]

0 · · · 0
ΓS[2, 1] · · · ΓS[2, p]

...
. . .

...
ΓS[d, 1] · · · ΓS[d, p]

0 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

βS
0

ΓS[1, p + 1]
βS

1

ΓS[2, p + 1]
...

ΓS[d, p + 1]
βS

d



























In this format, the scheduling matrix is actually made of three sub-matrices: AS,
ΓS, and βS. The first one, AS, is related to the loop indices and is then able to
represent any combination of loop interchange, reversal, and skewing. The second
component, ΓS, is applied on parameters and can represent shifting transformations.
The last sub-matrix, βS, is in charge of encoding the relative textual position of the
statements, which allows one to perform loop fission, loop fusion, and code motion.
The two matrices AS and ΓS are the dynamic components of ΘS as they can reorder
the instances of S, while βS is the static component of ΘS, in charge of representing
the relative order of the statements in the source code.

We can use this format to describe the original execution order of our example from
Figure 2.2. The resulting matrices actually generate the same timestamps as presented
earlier.

AS1 =

[

1 0
0 1

]

ΓS1 =

[

0 0
0 0

]

βS1 =







0
0
0







AS2 =

[

1 0
0 1

]

ΓS2 =

[

0 0
0 0

]

βS2 =







0
0
1







The scheduling matrix can be exploited to encode different execution orders than
the original sequential execution order. The modifications applied on matrices have a
direct impact on the represented execution order. Thus, as shown later, we can perform
code transformations directly in this representation.

2.4.7 Data Dependence

Before performing code transformations, we have to define a tool able to represent the
correctness of a program with regard to the original sequential semantics. The data
dependences have been created for that purpose.

2.4. THE POLYHEDRAL MODEL 61

Definition. (data dependence) Two statement instances
〈

Sa, ~ia

〉

and
〈

Sb, ~ib

〉

are data
dependent if they access to the same memory location, and if one of those accesses is
a write. By extension, the statements Sa and Sb are said data dependent if one of the
following case occurs:

WSa ∩RSb 6= ∅

RSa ∩WSb 6= ∅

WSa ∩WSb 6= ∅

If
〈

Sa, ~ia

〉

is executed before
〈

Sb, ~ib

〉

, the statement Sa is called the source of the
dependence, and Sb is the destination. Different kinds of data dependences are distin-
guished, depending on the order of the memory accesses performed. If we consider two
instances a and b accessing the same location with a being executed before b, then, the
following dependences can occur:

• A true dependence (aδb) if a writes a memory element later read by b. Those
dependences are also called Read-After-Write (RAW) dependences.

• An anti dependence (aδ−1b) if a reads a memory element overwritten by b after-
wards. They are also called Write-After-Read (WAR) dependences.

• An output dependence (aδob) if a writes to a location overwritten by b afterwards.
They are also called Write-After-Write (WAW) dependences.

A WAR or WAW dependence appears when a memory location is reused. Such depen-
dence can be removed by separating the memory locations used by the two instances.
Techniques such as scalar expansion or array expansion can be used for that pur-
pose [47, 26]. On the other hand, the true dependences capture the program semantics
and necessarily have to be considered when applying code transformations on the pro-
gram.

Data dependence is of major importance because it is strongly related to the pro-
gram semantics. If two instances are data dependent, then they cannot be executed
in any order as it may impact the program semantics. For example, if an instance
a is writing to a memory location read later by another instance b, it is incorrect to
execute a after b, which would read an incorrect value in that case. However, nothing
prohibits the reordering of two instances which are not data dependent. The schedules
representing execution orders which preserve the correct ordering of the dependent in-
stances, are said legal, or valid. Notice that the correct ordering of dependent instances
is defined by the original sequential program.

We use a compact representation of the dependences proposed by Feautrier in [46].
In this representation, considering two dependent statements Sa and Sb, we build a
dependence polyhedron Pe which is a subset of the Cartesian product of the iteration
domains of Sa and Sb. To be correctly defined, a dependence polyhedron contains the
following constraints:

• The instances of the two statements have to exist, i.e. their iteration vectors have
to be in the iteration domain of the statement: ~ia ∈ D

Sa and ~ib ∈ D
Sb .

62 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

for (i = 0; i < N; i++) {

S1: b[i] = 0;

for (j = 0; j < N; j++)

S2: b[i] = b[i] + A[i][j] * x[j];

}

Figure 2.3: A matrix-vector product.

• The two accesses have to access the same memory location. This is the case when
the two conflicting memory references use the same array and access to the same
element: fSa(~ia) = fSb(~ib).

• The source has to be executed before the destination in the original execution
order: θSa(~ia)≪ θSb(~ib).

A dependence between a source statement Sa and Sb, the destination, is then expressed
using the following notation δ (Sa, Sb,Pe).

Consider the matrix-vector product presented in Figure 2.3. There is a true depen-
dence provoked by the write b[i] in S1 which is read later in S2. The corresponding de-
pendence polyhedron Pe, defining all the conflicting instances 〈S1, (i1)〉 and 〈S2, (i2, j2)〉
can be expressed by the following constraints:

Pe =











((i1), (i2, j2))

∣

∣

∣

∣

∣

∣

∣

0 ≤ i1, i2, j2 < N
i1 = i2

i1 ≤ i2











Iteration domains
Same element accessed
Source before destination

This polyhedron represents all the pairs of iterations vectors (i1) and (i2, j2) such
that 〈S1, (i1)〉 is dependent with 〈S2, (i2, j2)〉.

This representation is very convenient as all the dependent instances are represented
in a polyhedron which can be expressed as matrices describing a set of affine constraints.

A legality property can be expressed using this notation: considering a given de-
pendence δ (Sa, Sb,Pe), the schedule expressed by θSa and θSb is legal iff

∀(~ia, ~ib) ∈ Pe, θSa(~ia)≪ θSb(~ib)

2.4.8 Transformation

The data dependences constrain the execution orders which produce the same result as
the sequential execution. Despite those constraints, the instances can often be executed
in a different order while preserving the program semantics. Such new execution order
can be defined by new scheduling matrices.

Definition. (program transformation) A program transformation is a transformation
of the statement instances execution order. It is often performed in order to enhance
the locality of the program, or to exhibit a parallel loop level for instance. The result
of a program transformation is expressed by scheduling matrices ΘS associated to the
statements S.

2.4. THE POLYHEDRAL MODEL 63

Obviously, we are interested in legal schedules, where the dependent statement
instances are executed in the same order as in the original program. Two different
approaches have been proposed to constrain the transformations by the dependences.

One could first envisage to build a schedule and test if it is legal with regard to the
dependences afterwards. Different methods can be used to determine if the schedule is
legal. The simplest one consists in ensuring that the legality constraint is respected in
every dependence polyhedron.

Consider a dependence δ (Sa, Sb,Pe), then, to test if the schedules θSa and θSb lead
to a semantically correct execution, we augment Pe with the following constraint:

∀(~ia, ~ib) ∈ Pe, θSb(~ib)≪ θSa(~ia)

which is the inverse of the legality constraint. The emptiness of the polyhedron is then
computed. If this augmented dependence polyhedron is empty, i.e. if it contains no
point with integer coordinates, then, the scheduling functions are correct with regard
to this dependence. The test performed actually ensures that there is no couple of
dependent instances such that the destination of the dependence is executed before
the source, considering the execution order described by θSa and θSb . The emptiness
check can be performed by a Fourier-Motzkin elimination restricted to the integer
solutions [108]. Notice that, if the schedules are not legal, Vasilache et al. have proposed
in [137] a solution to correct them by loop-shifting whenever possible.

The second approach to constrain the transformations by the dependences, is to
express the space of the valid transformations and to consider only the program trans-
formations in this space. This characterization is based on the affine form of the Farkas
Lemma [125]:

Lemma. (Affine form of the Farkas lemma) Let D be a non-empty polyhedron de-
fined by the inequalities A~x + ~b ≥ 0. Then, any affine function f(~x) is non-negative
everywhere in D iff it is a positive affine combination of the polyhedron faces:

f(~x) = λ0 + ~λ(A~x +~b), with λ0 ≥ 0 and ~λ ≥ 0

Consider a dependence δ (Sa, Sb,Pe). Let Θ′Sa and Θ′Sb be two scheduling matrices
whose entries are unknown. Those matrices represent all the possible schedules for Sa

and Sb. We want to constrain their entries to only represent the legal schedules with
regard to the dependence. In order for the dependence to be considered, the source
has to be executed before the destination. This can be expressed as

∀(~ia, ~ib) ∈ Pe, Θ′Sb(~ib)−Θ′Sa(~ia)≫ 0

We can represent this difference in the form presented in the Farkas lemma, leading
to the following equality, where APe and ~bPe define the constraints defining Pe:

∀~ia, ~ib, Θ′Sb(~ib)−Θ′Sa(~ia) = λ0 + ~λ(APe(~ia|~ib) +~bPe), with λ0 ≥ 0 and ~λ ≥ 0

On the left-hand side, all the entries of the iteration vectors ~ia and ~ib have unknown
coefficients defined by the generic scheduling matrices. On the right-hand side, those

64 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

vector entries coefficients depend on ~λ, and on the coefficients of the dependence poly-
hedron matrix APe , which are known. Those iteration vectors coefficients of both sides
are equated, resulting in a new system involving the Farkas multipliers λ0 and ~λ and
the generic scheduling matrices entries. This system is augmented with the positivity
constraints on the Farkas multipliers, exploiting the Farkas lemma. Using the Fourier-
Motzkin projection algorithm [125], one can eliminate the Farkas multiplier from the
system and build a set of constraints only involving the scheduling matrix coefficients.
Those constraints represent the space of valid transformations only. More details on
this method and examples can be found in the literature, as for instance in [103]. This
second approach is the most common one and is used in many existing scheduling
methods [48, 49, 78, 22, 103].

Once a transformation is chosen for the SCoP, with one of those two presented
methods, one can determine if a dimension in the new execution order is parallel. We
introduce the notion of loop-carried dependence for that purpose. A dependence is
carried by a loop if the same memory element is accessed at two distinct iterations of
that loop. A loop that carries no dependence is parallel.

In order to determine if it exist a loop at level l which carries the dependence
δ(Sa, Sb,Pe), we add the following constraint to every dependence polyhedron in the
SCoP:

∀(~ia, ~ib) ∈ Pe, ΘSb [l, ∗] · ~ib < ΘSa [l, ∗] · ~ia

If this augmented dependence polyhedron is not empty, then, some instances are
such that the destination is executed at a different iteration than the source, meaning
that the loop at this level carries the dependence. If several loops carry the dependence,
it is considered that only the outermost loop carries the dependence.

For instance, consider the example presented in Figure 2.3. In this example, we
focus on the dependence provoked by the write to b[i] performed in S1 and the cor-
responding read in S2. The corresponding dependence polyhedron has been presented
before. We perform a loop fission on the original program to move the initialization S1

before the computation nest, resulting in an initialization loop with only S1 followed
by a different computation nest with S2 only. This transformation is legal and can be
expressed as the following scheduling matrices:

AS1 =
[

1
]

ΓS1 =
[

0
]

βS1 =

[

0
0

]

AS2 =

[

1 0
0 1

]

ΓS2 =

[

0 0
0 0

]

βS2 =







1
0
0







In order to determine if the dependence prohibits the parallelization at the outer-
most level, we test for the emptiness of the augmented dependence polyhedron:

Pe =



















(i1, i2, j2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ i1, i2, j2 < N
i1 = i2

i1 ≤ i2

1× i1 > 1× i2 + 0× j2



















Iteration domains
Same element accessed
Source before destination
Parallelization test for level 0

2.4. THE POLYHEDRAL MODEL 65

We can see that the extra constraint contradicts the others. Thus, the augmented
dependence polyhedron is empty, meaning that the dependence is not carried by the
loops at this level. If similar results are obtained with all the dependences, the loops
at this level can be parallelized.

2.4.9 Code Generation

Once a transformation is chosen, an interesting feature in the polyhedral model is
the ability to generate a program which can execute the SCoPs according to the new
execution order defined by the transformed schedules. This generated code actually
scans the points in the iteration domains of the statements using the new execution
order.

Bastoul et al. have designed CLooG [12] which is currently one of the most ef-
ficient code generator in the polyhedral model. It significantly outperforms previous
techniques such as Kelly’s et al. in the Omega framework [65]. CLooG is an extension
of the algorithm proposed by Quilleré et al. in [110] which was the first algorithm able
to directly eliminate redundant control in the generated code, as opposed to previous
methods where a naive code was generated and simplified afterwards.

This code generator can produce very efficient codes to scan polyhedra. However,
they deal with complex problems where a lot of cases has to be evaluated separately,
possibly leading to large compilation times for some unfavorable inputs. For more
details about CLooG, the reader is referred to Bastoul’s thesis [13].

In our different proposals, we use CLooG, directly or through polyhedral compilers,
in order to generate transformed programs once a transformation has been chosen.

2.4.10 Extensions to the Polyhedral Model

Starting from the base representation and techniques presented before, several exten-
sions have been developed. As the polyhedral model accepts only a very restricted set
of loops; extending its scope is a natural evolution. Several researchers have proposed
to extend the polyhedral model representation to handle more complex code structures
such as while loops or data dependent conditions. Collard has proposed a speculative
model to transform and parallelize loop nests with a while loop in [36]. In his pro-
posal, some iterations of a while loop can be optimistically executed, and then reverted
using a back-tracking mechanism, when it turns out that those iterations should not
have been executed. On the other hand, Griebl et al. have proposed a conservative
scheme where only relevant iterations are executed. The two main problems are then to
know if a particular iteration has to be executed, and to determine when the execution
has ended (see for example [76]). More recently, Benabderrahmane et al. have pro-
posed in [14] an extension to the polyhedral model representation where the statements
can be predicated by data-dependent conditions. They show that, with an adequate
code generation algorithm, implemented in irCLooG, most of the expressiveness of the
polyhedral model can be used on loop nests with while loops and data-dependent
conditions.

Despite those proposals allow the parallelization of complex code structures, they

66 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

generally rely on common linear dependence analysis, or approximate non-linear depen-
dence analysis such as Fuzzy Array Dataflow Analysis [37] or the Range Test [18]. To
parallelize complex binary codes in Chapter 3, we use a more precise approach based on
the symbolic Bernstein expansion strategy proposed by Clauss and Tchoupaeva in [31].

Grösslinger et al. present in [56] another extension targeting non-linear iteration
domains and show how it can be used to handle parametric tiling for instance. Despite
they adapt the polyhedral model to handle some more complex programs, they are
specifically targeting non-linear domain constraints. Moreover, they perform complex
operations on polynomials which limits the scalability of their approach.

Recently, Baghdadi et al. have presented in [7] a preliminary study targeting a
synergistic use of the polyhedral model both offline and online. The speculative paral-
lelizer presented in Chapter 5 addresses similar issues although our approach is more
dynamic-oriented.

Tiling is an important optimization which can have a major impact on the program
performance. The polyhedral model can represent with no difficulty a tiled iteration
domain when the tile sizes are fixed, although efficient code generation might be an
issue [54]. However, the model cannot naturally handle parametric tiling, where the
tile size is a compile-time parameter instantiated at runtime. Several systems have
been proposed to address the different issues of parametric tiling in the polyhedral
model. Renganarayanan et al. have proposed TLOG [117] which can generate sequen-
tial parametrically tiled code. They have later extended it with HiTLoG [69] to handle
multiple levels of tiling. Those systems are limited to perfectly nested loops but the
authors show in [68] how to handle imperfectly nested loops. Another approach to
handle imperfectly nested loops is proposed by Hartono et al. with PrimeTile [59].
The parallelization of those loop nests can be performed by PTile [10] or with the
fully dynamic system DynTile [58]. Those different tools are often based on the poly-
hedral representation and polyhedral code generation tools which serve as a base for
the overall tiling process. In some sense, the parametric tiling is a selection system
which can be compared to our proposal in Chapter 4. Although parametric tiling sys-
tems can represent an arbitrary number of versions corresponding to the different tile
sizes, our selection mechanism is not restricted to tiling and can handle the full set of
transformations defined the polyhedral model.

2.4.11 Tools

In the polyhedral model representation, many tools are available and allow a com-
fortable but powerful manipulation of the different representations. We use several of
those techniques in next chapters. In order to give to the reader a quick overview of
the polyhedral model opportunities, we present here several tools used to implement
the techniques described later.

Several geometric operations are useful to directly manipulate polyhedra. For in-
stance, computing the union or the intersection of two polyhedra is a commonly per-
formed operation. The convex hull of two polyhedra can be helpful to build simple
approximation. Some affine transformations can also be applied on polyhedra.

Finding the lexicographic minimum or maximum in a polyhedron is a very useful

2.5. CONCLUSION 67

operation. It can be used for instance to determine what is the iteration vector of
the first valid iteration in a domain, to determine a random point in a polyhedron,
or to check for emptiness. The emptiness operation can also be performed using the
Fourier-Motzkin elimination which solves a system of affine inequalities.

Another important operation is the computation of the number of integer points
in a polyhedron. The resulting count is expressed as a parametric Ehrhart polynomial
which is a piecewise affine polynomial depending on the polyhedron parameters [32].
This counting can serve several purposes such as estimating the memory use of a SCoP.

Concrete implementations have been proposed to perform all these operations. The
PolyLib [101] and the Parma Polyhedral Library [107] provide facilities to manipulate
polyhedra. PIP [45] allows to determine the lexicographic minimum in a parametric
polyhedron. The PolyLib and ISL/barvinok [139, 138] are able to build the Ehrhart
polynomials counting the integer points in a polyhedron. Currently, ISL [138] is one
of the most advanced tools and implements many important operations on integer sets
and relations.

The polyhedral compilers are probably the most evolved tools exploiting the poly-
hedral model. Those compilers use internally the polyhedral representation to perform
different operations from memory analysis to automatic transformation and paralleliza-
tion of loop nests. Some production-scale compilers implement the polyhedral model
such as IBM XL/C, the GRAPHITE extension of GCC [135], Polly [55] in LLVM, or the
source-to-source parallelizer R-Stream [119] from Reservoir Labs. We extensively use
PLUTO [23, 99] in our different proposals which is a research-level polyhedral com-
piler able to perform automatic transformations and parallelization of SCoPs, while
optimizing communications and locality. Another relevant tool is the PoCC framework
and more precisely LetSee [105, 104] which uses iterative compilation to determine an
efficient transformation to apply on programs. This tool can be used to automatically
generate efficient versions for our code selection mechanism.

2.5 Conclusion

We have presented the most relevant techniques related to our work. This should give
to the reader a better understanding of the relation between our proposals and the
existing techniques. It also presents the main issues with those techniques which are
solved in this thesis.

We have also introduced the important notions related to the polyhedral model to
delimit the possibilities in this model. We do not extend the model in this dissertation.
Instead, we use the existing representations, techniques, and tools to perform advanced
binary code parallelization, efficient dynamic code selection, and speculative polyhe-
dral transformations. We show that the polyhedral model can be successfully used
in difficult contexts to enhance the performance of programs which are not initially
considered as its natural targets.

68 CHAPTER 2. BASIC CONCEPTS AND RELATED WORK

Chapter 3

Binary Code Parallelization

3.1 Introduction

There is a persistent hiatus between the software vendors, having to distribute generic
programs, and the users, running them on a variety of hardware platforms, with vary-
ing amount of available parallel hardware resources. The next decade may well see an
increasing variety of parallel hardware, as it has already started to appear in the em-
bedded system market. In the same time, one can expect more and more architecture-
specific automatic parallelization techniques, e.g., GPU or FPGA oriented scheduling
algorithms. Therefore, the widening gap between software production and its execution
becomes a critical issue in the adoption of parallelism as a mean to efficiently build,
deploy, and use computing infrastructures.

In this chapter, we present an approach that could be named parallelization as a
service, whose aim is to solve that issue. In this setting, the operating system or run-
time environment provides tools that take sequential binary programs and transforms
them into parallel executable code. The transformation is performed statically, e.g.,
at installation time, and may use any source-to-source parallelization back-end. As it
is performed on binary programs, closed-source third party applications, legacy pro-
grams, and the libraries used by the program can be parallelized, independently from
their original source language.

The basic strategy of a static binary program parallelizer can be summed up in
three phases: raising, parallelizing, and lowering. The raising phase has to bring the
binary code into an intermediate representation that is precise enough to conduct any
analysis required for parallelization. The parallelizing phase uses this result to generate
a set of transformations to apply to the code. Finally, the lowering phase is in charge
of creating the resulting binary program, ready to run on the target hardware. The
system we propose works applying this scheme on x86-64 binary programs. It targets
loop-intensive kernels and applies different parallelization strategies depending on the
code complexity. This includes advanced polyhedral transformations on relevant loop
nests. To our knowledge, such advanced parallelization of binary codes, if already
considered, has never been implemented before.

We present in Figure 3.1 an overview of our parallelization system in which the
three main steps can be clearly identified. The raising phase transforms the analyzable

69

70 CHAPTER 3. BINARY CODE PARALLELIZATION

���������	

A���BCDE�	�

FD�B��B��

��B�		�	

A���BCDE�	�

�

�

�

���F���������

�FF

�� !"��#D��B�		�	�$�B%

Figure 3.1: Overview of the parallelization system. (1) Analyzable portions of the
sequential binary program are raised to simple C loop nests only containing the correct
memory accesses, and (2) sent to a back-end source-to-source parallelizer. (3) The
resulting parallel loop nest is filled with actual computations, and compiled using a
standard compiler.

loop nests in the sequential executable file to restricted C programs which contain
only analyzable loop nests and memory references. Those programs are sent to a
back-end source-to-source parallelizer such as PLUTO [23], a polyhedral parallelizer,
or CETUS 1.3 [6], a non transforming parallelizer. The original computations on the
memory values are re-injected in the resulting parallelized loop nest, which is then
compiled using a classical C compiler.

Our static approach contrasts with the existing binary code parallelizers where a
dynamic and speculative approach is often chosen by the authors [40, 60, 94]. Despite
the static approach limits the complexity of the programs that can be treated, it
provides two main advantages over the existing dynamic methods. First, our static
system has no runtime overhead and does not require any speculation framework nor
any hardware mechanism to support speculation. Second, we can perform advanced
loop transformations which often greatly improve the performance of the parallel codes.
Our approach is in fact complementary to the dynamic approaches: our system should
be used to parallelize loop nests that can be handled statically, while the more complex
codes should be parallelized using the existing dynamic binary parallelizers. This static
system is also the first brick of our general approach and statically applies polyhedral
transformations on the programs when their format is complex.

The raising phase is detailed in Section 3.2. We explain how the binary code is
analyzed, and what kind of intermediate representation is extracted. In Section 3.3, we
detail some adaptations performed on the intermediate representation in order to meet
the usual requirements of our source-to-source parallelizers, and we also describe the
lowering phase. We evaluate the efficiency of our approach in Section 3.4 by comparing
with equivalent parallelization from the original source code. We also compare our
system to the current state of the art of binary parallelization. We extend our technique
in Section 3.5 to target more complex codes. Static binary code parallelization has not
seen much work in the last years. Before concluding the chapter, we give a detailed
comparison of our approach and methodology with the one used in the single paper we
have found with similar ambitions in Section 3.6.

3.2. DECOMPILING X86-64 EXECUTABLES 71

3.2 Decompiling x86-64 Executables

Compiled applications are packed in executable files, using the ELF format on Unix
for example, which basically contain all the program code and data, and describe
the program memory layout. The executable code can be extracted from such files
and raised to a more usable representation in an operation called disassembling. This
operation can be extremely complex for example in the case of obfuscated code or
self-modifying codes. We consider those cases as out of scope in this chapter. The
representation resulting from disassembling a binary program is a list of assembly
instructions. This instruction list cannot be directly parallelized as it is: since we
target loop nests, they have to be found back, and the memory accesses have also
to be identified in order to perform the dependence analysis prior to the loop nest
parallelization. The analysis techniques presented in this section are either basic code
analysis methods or recent results of Ketterlin and Clauss [67].

3.2.1 Basic Analysis

The first step is to handle one routine at a time, extracting basic block boundaries and
a complete control-flow graph (CFG). A dominator tree is computed from the CFG,
and natural loops are recognized and organized into a hierarchy. Routines where the
CFG cannot be reconstructed even after applying some compiler-specific heuristics,
or routines that contain irreducible loops, are discarded and will not be transformed.
Similar passes appear in virtually every optimizing compiler, and excellent descriptions
of their details are available in [3, 90].

The next step consists in a data-flow analysis, where each instruction is analyzed
to extract the sets of variables it uses and defines. When dealing with binary code,
all machine registers, including flags, are considered, and a single monolithic variable
called M is used to represent memory. Each definition of M, i.e. each memory store,
implicitly uses the currently visible definition of M, i.e., M is weakly updated. The
Static Single Assignment (SSA) form of the program is then computed, using essentially
the original algorithm [39]. The result is a set of use-def links, as well as new φ-functions
placed on appropriate basic blocks entry point. The SSA form is the basic intermediate
representation on which the rest of the process applies.

3.2.2 Memory Access Description

An accurate description of the memory accesses is required to perform an exact data
dependence analysis. The most important knowledge to extract from the assembly code
is obviously the addresses targeted by the memory accesses. On x86-64 architectures,
addresses appearing in the code are of the form Base + s × Index + o, where Base
and Index are register names and s and o are small immediate values, all terms are
optional. This expression effectively represents an address, but it is usually equivalent
to a function of virtual loop indices and global parameters (symbolic values invariant
for the loop execution). Expressing those memory accesses in terms of virtual loop
indices and parameters actually simplifies the dependence analysis performed later.

72 CHAPTER 3. BINARY CODE PARALLELIZATION

To build back those expressions from the addresses, one can recursively follow SSA
use-def links from the uses of Base and Index. The resulting symbolic expression
uses definitions that dominate the memory access whenever possible. This recursive
substitution process is applied to all memory operands in all instructions, effectively
traversing all instructions that participate in the address computation, while ignoring
others.

Given a representation model for the addresses, e.g., the integer linear model, this
recursive substitution stops in four distinct situations:

1. when reaching the routine entry point, i.e., when using an input parameter;

2. when reaching an instruction that, after parsing, would lead to an expression that
is outside the representation model, e.g., an instruction CVTSD2SI that converts
a floating point value into an integer;

3. when reaching one of the φ-functions introduced by the SSA form;

4. when reaching a definition that uses memory.

The first two situations are strict limitations: the first is due to the fact that we use
an intra-procedural analysis, and the second is due to the expressiveness of our de-
scription model. Note that this limitation applies only to instructions that are actually
involved in address computations. The last two limitations, however, can be overcome.
The φ-functions, when resolved by scalar evolution, can be replaced by their equiva-
lent expression involving virtual loop indices. This is described below. The following
subsections also describe techniques to solve cases where address computations involve
memory cells.

At the end of this resolution, every versioned register involved in an address com-
putation is associated with an expression whenever possible. It is then legal to replace
every use of these registers version by their equivalent expressions.

3.2.3 Induction Variable Resolution

This section explains how the third limitation to address expression reconstruction,
namely φ-functions, can be overcome. A φ-function at the head of a loop typically
expresses the fact that the register (or memory cell) “enters” the loop with an initial
value, which is then modified at each iteration. Because we target regular programs
manipulating arrays, φ-functions used in address computations are, more often than
not, linear induction variables. Consider the following typical simple example, where
superscripts indicate defined version, subscripts are used versions, and where the line
starting with # is a comment giving the definition of the φ-function:

mov r94, 0x20

L:

r95 = φ (r94, r96)

...

add r96
5, 0x8

jmp L

3.2. DECOMPILING X86-64 EXECUTABLES 73

A closed form for r95 is easy to derive: starting with value 0x20 and incremented by
0x8 at each iteration, r95 has value 0x20+0x8×i at the ith iteration.

Therefore, to solve induction variables, we introduce a new, unique virtual counter
for each loop, and consider all φ-functions that are used in address computations. For
any φ-function r = φ(r1, r2), where r2 is the value defined inside the body of the loop:

• if, after complete expression substitution, r2 is of the form r + α with α being
loop-invariant, the definition of r becomes r1 + i× α;

• if r2 is of the form β+i×γ, with both β and γ being loop-invariant, this expression
becomes the definition of r if r1 and β are identical.

In both cases, i is the normalized virtual loop counter, whose initial value is zero and
which is virtually incremented by one at each new iteration. Once the definition of
a φ-function is known, every occurrence of the φ-function inside the loop body can
be replaced by its definition, thereby replacing loop-varying register occurrences with
occurrences of the virtual loop counter and of loop-invariant expressions.

Figure 3.2 shows an extract from the swim_m benchmark of the SPEC OMP-2001
benchmark suite [5]. This figure shows how memory access descriptions are formed, and
how induction variables are solved. After register substitution and induction variable
resolution, all memory accesses, preceded by @, are expressed in terms of normalized
loop counters, along with register definitions that cannot be further substituted. How-
ever, in some cases, these definitions can use a value stored in some memory cell, which
is often a stack slot. The next section explains how to handle such cases.

3.2.4 Tracking Stack Slots

All but the simplest programs use memory cells to store intermediate results, which
are later used in address computations. For the class of programs we target, these
memory cells are almost always stack slots. A typical example is given in the following
code fragment, where comments give the address expressions obtained so far, rsp1 is
the value of the stack pointer upon routine entry, and i is some loop counter:

1. mov [rsp+0x20], rax # address = rsp1 - 0x38

...

2. mov [rcx+8*r9], xmm1 # address = rdi1 + 30416 × i

...

3. mov r12, [rsp+0x20] # address = rsp1 - 0x38

...

4. movsdq xmm0, [r12]

In this fragment, register r12 is used to address memory at line 4. The definition of
r12 at line 3 uses memory: recursive substitution is not possible anymore because of
the use of a memory operand ([rsp+0x20]). Even though it seems obvious on this
fragment that the value assigned to r12 is the value of rax used the instruction at
line 1, the substitution process must be able to infer that the instruction at line 2

does not interfere with values stored at rsp+0x20: in x86-64 code, no implicit rule can

74
C

H
A

P
T

E
R

3.
B

IN
A

R
Y

C
O

D
E

P
A

R
A

L
L

E
L

IZ
A

T
IO

N

Instructions Definitions (a) (b)
mov r15, 0x1 r152 = 0x1

[...] r153 = φ(r152, r154) 1+I
mov rsi, 0x1 rsi3 = 0x1

[...] rsi4 = φ(rsi3, rsi5) 1+J
lea r11, [rsi+0x1] r114 = rsi4 + 0x1 2+J
[...]
movsdq xmm0, [rax+r9*8] @0x...b0+8×rsi4 @0x...88+8×J

+30416×r153 +30416×I
addsdq xmm0, [rax+rbx*8] @0x...a8+8×rsi4 @0x...80+8×J

+30416×r153 +30416×I
mulsd xmm0, xmm4
mulsdq xmm0, [rax+rdx*8] @0x..70+8×rsi4 @0x...48+8×J

+30416×r153 +30416×I
movsdq [rax+rdx*8+0x...], xmm0 @0x...90+8×rsi4 @0x...68+8×J

+30416×r153 +30416×I
[...]
mov rsi, r11 rsi5 = r114 rsi4+0x1 2+J

[...]
add r15, 0x1 r154 = r153+0x1 2+I

Figure 3.2: Symbolic address expressions in a loop nest of depth two in binary code in SSA form: (a) after recursive register substitution,

and (b) after induction variable resolution. Indentation is used to highlight the loop levels. “@” denotes address expressions.

3.2. DECOMPILING X86-64 EXECUTABLES 75

ensure this property from the code fragment shown above, thus it has to be proved by
a further analysis.

To have a tractable and fast memory cell tracker, we have chosen to distinguish
between two separate memory regions: first the current stack frame, which is expected
to hold intermediate address computations that we would like to track; and second the
rest of the address space, which is expected to hold program data, and where we have
small hope of being able to follow any data-flow. Our analysis proceeds in two steps:

1. find out which register points to which region, at all program points;

2. use this information to find the “last write” to any memory cell used at some
point in an address computations.

The first problem can be solved by associating two bits to each register definition,
which indicate whether the register may contain an address inside the corresponding
region. At routine entry, the rsp register is known to contain an address in the current
stack frame only, and all other registers are supposed to point to the rest of the address
space. From this initial situation, this simple “points-to” information is propagated
along all control-flow edges until a fixed point is reached. For each instruction and
φ-function, each bit of the defined registers is set by applying the logical OR on the
corresponding bits of all used registers. Memory has two pairs of bits, one for the stack
frame, the other for the rest of the address space. In practice, this simple analysis is
remarkably robust and surprisingly accurate.

Typically, in the example given above, the result of the simple points-to analysis
just described would be that:

• both occurrences of rsp1-0x38 represent addresses located in the current stack
frame, because so does rsp1;

• address rdi1+30416×i represents an address not pointing to the current stack
frame.

This is enough to assume independence between the use of memory at line 3 and the
definition of memory at line 2.

Once we know where every register points to, the source of the value of a memory
cell can often be found, especially if that cell is in the current stack frame. Starting
with a use like [rsp+0x20] in the instruction at line 3, all what is required is to be
able to follow the chain of the memory stores, from nearest to farthest, while checking
whether we have found the specific cell we are looking for. We use a simple decision
procedure: if both addresses point to distinct regions, they cannot interfere; else if
the difference of their address expressions is not constant, we cannot decide and take
a conservative “may” decision; otherwise, if the difference is zero we have found the
last write, and if the difference is non zero we can continue the search at the previous
memory store.

This simple dependence test is clearly tailored to locate stack slots, whose addresses
are usually of the form rsp+α, and would give weak results on other memory cells.
That’s exactly what it was designed for, and gives excellent results on the programs we
tested. In our example, addresses at lines 1 and 3 both resolve to the same expression,

76 CHAPTER 3. BINARY CODE PARALLELIZATION

namely rsp1-0x38. Therefore, we can insert a synthetic use-def link between the
memory operand at line 3 and the memory operand at line 1. Also, parsing the
instruction lets one conclude that the address accessed at line 4 is actually equal to
the value of rax at line 1, and the recursive substitution can proceed by following the
use-def link starting there.

However, there is one point we have hidden so far, namely the case where the search
for the source reaches a φ-function on M, the variable representing memory as a whole.
In that case, a new φ-function is created for the specific memory cell whose source is
searched for, if such a φ does not already exist at that program point. The parameters
of this new φ-function are initialized with the result obtained by recursively calling the
search procedure on the parameters of the φ-function on M. Those parameters are then
memory accesses possibly aliasing with the searched source. This is actually equivalent
to defining “virtual registers” corresponding to specific memory cells. These virtual
registers are used like any other, real register, and, in particular, may be subjected to
induction variable resolution as explained above. In all situations, memory operands
used in memory computations for which one is able to find the source behave exactly like
registers, and exact points-to links can be used similarly to the SSA use-def information.

3.2.5 Branch Conditions and Block Constraints

The last aspect of the binary code that needs to be captured are the conditions that
govern the control-flow inside loop bodies, from which we derive the loop bounds. To
extract these characteristics, we introduce two notions:

• a branch condition is a simple logical comparison between zero and an expression,
with one of the operators <, ≤, >, ≥, = and 6=; branch conditions are typically
parsed from conditional jump instructions;

• a block constraint is a logical combination of branch conditions, of arbitrary
complexity, typically represented in disjunctive normal form.

Branch conditions are directly extracted from the binary. Consider the following frag-
ment of code appearing inside a loop with normalized counter i, where the comment
shows the result of induction variable resolution on a stack slot:

L:

M[rsp+0x8] = 0x0 + 0x8*i

...

cmp r152, [rsp+0x8]

jg L

From this code fragment, the branch condition is equivalent to 0x8×i < r152.
Block constraints are constructed with the help of the control-dependences, which

are given by the dominator tree of the reverse control-flow graph, i.e. the post-
dominator tree. A node w in the CFG is control-dependent on a node u if a condition
evaluated by u determines if w is executed. The nodes w control-dependent on u are
such that it exists a CFG edge u→ v and w post-dominates v, but w does not strictly

3.2. DECOMPILING X86-64 EXECUTABLES 77

�

�

�

�

� �

�

�

�

�

��

�

�

�

Figure 3.3: Sample CFG (left), its corresponding reversed CFG (center), and post-
dominator tree (right).

post-dominates u [90, ch. 9]. The first condition expresses that, if v is executed, it is
guaranteed that w will be executed too. The second condition tells us that the end
of the CFG can be reached from u without executing w. It means that u ends by a
conditional jump and all the blocks w are executed only when the condition of going
from u to v is true, provided the control has reached u.

If we note Cu the constraints applying to block u, and 〈u → v〉 the condition of
going from u to v, then the basic blocks w control-dependent on u are constrained by:

Cu ∧ 〈u→ v〉

This is illustrated in Figure 3.3 with, for example, the edge from A to C in the
CFG. Nodes C and D post-dominate C and do not strictly post-dominate A, they are
then control-dependent on A. Intuitively, we see on the CFG that a conditional branch
is taken when going from A to C and the basic blocks C and D are executed only
when this branch is taken. The condition under which those two blocks are executed
is then the condition to reach A and the condition of going from A to C. The node
E post-dominates C, but also post-dominates A, thus it is not control dependent on
A. This is logical as the condition of executing E does not depend on the condition of
going from A to C for instance.

To compute constraints on all blocks of a loop with head h, we first set Ch to true,
and Cb to false for all b 6= h. Then we consider the loop body, i.e., the sub-graph of the
CFG restricted to the blocks of the loop with back-edges removed: this is an acyclic
graph, which therefore defines a topological order on the blocks. The blocks are then
traversed in that order. For each block ending with a conditional jump, we apply the
constraint propagation just described. After all blocks have been processed, constraints
will have been propagated to all blocks of the loop. The constraints propagated back
to the head of the loop will define the condition under which a new iteration is started:
if this condition is formed from expressions containing only the loop counter and loop-
invariant quantities, then it defines the loop trip-count.

For many common cases, the procedure outlined above produces an expression for
the loop bound. Edges branching out of the loop are often placed in such a way
that the whole loop can be translated into a for-loop, i.e., the conditions on the loop

78 CHAPTER 3. BINARY CODE PARALLELIZATION

counter are the same for all blocks defining the loop body. Conditional control-flow
inside loops is anyway preserved, potentially leading to generate tests inside the loop
body. The whole decompilation procedure has proved to be extremely effective for
the programs we targeted. The next section shows several examples of C code that is
directly derived from the SSA intermediate representation, and that can serve as input
to the parallelization tools of the following phase.

3.3 Polyhedral Parallelization

At the end of the raising phase, a C source code, equivalent to the assembly represen-
tation of the loop nests, is built. For-loops are generated using the virtual loop indices
and the discovered loop bounds. The memory accesses are expressed as functions of
those loop indices and of some parameters. In this section, we specifically focus on
affine loop nests. Other cases are discussed in Section 3.5.

We consider two different back-end source-to-source parallelizers to perform the
loop nest parallelization: CETUS 1.3 and PLUTO. CETUS [6] is a classical parallelizer
which uses approximate dependence analysis to determine if a loop in the nest can be
parallelized. It is not able to perform data locality optimizations. PLUTO [23, 99]
is a polyhedral parallelizer which can perform advanced loop nest transformations to
enhance data locality and exhibit a parallel loop level. Both parallelizers consider a C
program as input, affine access functions and loop bounds, but are very sensitive to
several characteristics of the input program. In order to allow them to work at their
full potential, we adapt the C code which is extracted from the binary program in order
to better suite their needs. This section describes all the adaptations performed.

3.3.1 Memory Accesses

Array Splitting

The memory accesses extracted by the analysis steps all refer to a unique one dimen-
sional array M whose base address is zero. As the programs’ data segments are usually
far from address zero, huge values can appear in the memory access functions. This
often makes the dependence analyzers fail. We alleviate this issue in the following way.
When the loop bounds are numeric constants, we can statically determine the range
of addresses reached by every memory reference. Thus, we can easily split the unique
memory array M into several different arrays defined over non-overlapping chunks of
memory.

The algorithm to split these accesses is fairly simple: for each memory reference,
its minimal and maximal addresses are computed using polyhedral tools such as PIP,
defining an address space. If this address space overlaps an other one, both are merged
together in a single array. Otherwise the address space defines a new array. Once
every memory reference has been processed, a set of arrays with their associated base
addresses is obtained, and a unique name is assigned to each array. Those arrays can
then be used for the dependence analysis, hiding the large memory offsets. For example
a reference to M[0x600e850 + 8*i] can become the reference A[8*i], considering

3.3. POLYHEDRAL PARALLELIZATION 79

for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)

A[i][j] = A[i+1][j];

−−−−−→
forall (j = 0; j < 10; j++)

for (i = 0; i < 10; i++)

A[i][j] = A[i+1][j];

for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)

A[10*i+j] = A[10*i+j+10];

−−−→

for (x = 0; x < 64; x++)

forall (y = max(⌈(5*x)/6⌉, x-9);

y <= min(⌊(5*x+9)/6⌋, x);

y++)

A[5*x-4*y]=A[5*x-4*y+10];

Figure 3.4: Sample code parallelization using PLUTO.

that the array A starts at address 0x600e850. The parametric cases are addressed
specifically in the following sections.

Array Dimensions Rebuilding

We show on Figure 3.4 two equivalent codes (on the left) being parallelized by PLUTO
(on the right). On the top, a classical multi-dimensional access is performed leading to
a simple loop interchange, while, on the bottom, the access is linearized and PLUTO
selects a more complex transformation. We clearly see that the schedule chosen by
PLUTO is influenced by the format of the access functions. In the C language, it is
assumed that all the array subscript expressions are positive and lower than the di-
mension size. This leads to a slightly stricter dependence analysis of multi-dimensional
accesses and then to better transformations. Unfortunately, after compilation, all the
array accesses are linearized; we then rebuild the array dimensions whenever possible.

Consider that the linearized access function has the following form:

base + C +
NL
∑

l=0

(~c[l]×~i[l])

Where the full expression is a constant C plus a sum of loop indices ~i[l] times a
coefficient ~c[l] for each loop level l, while base is the array base address.

A brute-force algorithm presented in Algorithm 3.1 is then run to rebuild the array
dimensions. In the algorithm, dom_max is the function returning the maximum values of
the given expression in the iteration domain. Similarly, dom_min returns the minimum
expression value in the iteration domain. All the possible dimension sizes are tested in
decreasing order. For each tested dimension size, two subscripts are generated to define
a two-dimensional array access equivalent to the original one-dimensional access. For
instance, A[8*i+j] can be expressed as A[i][j] if the last array dimension size is eight.
A dimension size is considered as a possible result if it leads to valid subscripts, i.e.
if the right subscript always take positive values lower than the tested dimension size
and if the left subscript always take positive values. The algorithm fails if no such
solution exists. To rebuild an arbitrary number of dimensions, this algorithm can be
repeated on the left subscript as long as it does not fail. In any case, care must be

80 CHAPTER 3. BINARY CODE PARALLELIZATION

Algorithm 3.1 Array dimensions reconstruction.
maxc ← max(abs(~c[l]), 0 ≤ l < NL)

for each dimension size L from maxc to 2

fnleft ← ⌊C/L⌋
fnright ← C % L
left_min←⌊C/L⌋
right_max← C % L
for each loop level l from 0 to NL

coeff left ← ⌊~c[l]/L⌋
coeffright ← ~c[l] % L

fnleft = fnleft + coeffleft * ~i[l]
fnright = fnright + coeffright * ~i[l]
left_min← left_min + dom_min(~i[l] * coeffleft)

right_max← right_max + dom_max(~i[l] * coeffright)

if right_max >= 0 and right_max < L and left_min >= 0

return [fnleft][fnright] (L)

failure

taken to ensure that all references to the same array have the same dimensions (number
and sizes). The result of the algorithm is then made of dimension sizes and subscripts
realizing a multi-dimensional access equivalent to the linearized access.

3.3.2 Operations

The C code reconstructed from the binary program does not contain the operations
on data. Indeed, the processor instructions used in the binary code have often no
equivalent representation in pure C code. This is not a problem anyway as, most of
the time, the parallelizers only exploit the data and control flows information. To
create a parsable C program, we outline the operations on data: every operation is
considered to be equivalent to a neutral operation, noted ⊙. This operation can be
implemented by any operator in the actual C code sent to the parallelizer, for example
“+”. Each instruction in the binary code is then represented as an equality where the
registers are C variables, and the memory accesses are array references. The written
(defined) operand is on the left-hand side of the equality, while the read (used) ones
are on the right-hand side, combined by ⊙.

We show in Figure 3.5, the C code extracted from a matrix multiply binary program.
Figure 3.6 shows the same code after splitting M into three disjoint arrays and rebuilding
the array dimensions. Notice that all the operations on data are outlined in the neutral
operator ⊙.

3.3. POLYHEDRAL PARALLELIZATION 81

for (t1 = 0; -511 + t1 <= 0; t1++)

for (t2 = 0; -511 + t2 <= 0; t2++) {

M[10494144 + 4096*t1 + 8*t2] = 0;

xmm1 = 0;

for (t3 = 0; -511 + t3 <= 0; t3++) {

xmm0 = M[6299808 + 4096*t1 + 8*t3];

xmm0 = xmm0 ⊙ M[8396960 + 8*t2 + 4096*t3];

xmm1 = xmm1 ⊙ xmm0;

}

M[10494144+4096*t1+8*t2] = xmm1;

}

Figure 3.5: Matrix multiply as it is extracted from the binary code.

for (t1 = 0; -511 + t1 <= 0; t1++)

for (t2 = 0; -511 + t2 <= 0; t2++) {

A2[t1][8*t2] = 0;

xmm1 = 0;

for (t3 = 0; -511 + t3 <= 0; t3++) {

xmm0 = A1[t1][8*t3];

xmm0 = xmm0 ⊙ A3[t3][8*t2];

xmm1 = xmm1 ⊙ xmm0;

}

A2[t1][8*t2] = xmm1;

}

Figure 3.6: Matrix multiply after simplifying the memory accesses.

82 CHAPTER 3. BINARY CODE PARALLELIZATION

for (t1 = 0; -511 + t1 <= 0; t1++)

for (t2 = 0; -511 + t2 <= 0; t2++) {

A2[t1][8*t2] = 0;

xmm1 = 0;

for (t3 = 0; -511 + t3 <= 0; t3++)

xmm1 = xmm1 ⊙ (A1[t1][8*t3]⊙ A3[t3][8*t2]);

A2[t1][8*t2] = xmm1;

}

Figure 3.7: Matrix multiply after forward substitution.

3.3.3 Scalar References

Every reference to a register in the program results in a scalar reference in the C
code. These scalar references usually cause many data dependences and could often
better be handled by privatization. Although privatization is a simple task in non-
transforming parallelizers, it is much more complex in the case of polyhedral compilers,
since statements may be moved around by the scheduling transformations. At the time
we performed our experiments, support for privatization appeared to be broken in two
of the most advanced parallelizing compilers: PLUTO and PoCC [106]. Thus, we have
to remove as many privatizable scalar references as possible before parallelizing the C
code.

The induction variable resolution performed during the analysis is often able to
detect that a given SSA version of a register is equivalent to an expression depending
on the loop indices and, sometimes, on parameters. This is especially frequent for
registers that contain addresses. It allows us to replace those scalar references by their
equivalent affine function. As all the uses of those register versions are replaced, we
also ignore the instructions that define them.

Classical forward substitution is also applied, helping to remove many scalar depen-
dencies. Figure 3.7 shows the matrix multiply code after forward substitution. Notice
that references to scalar xmm0 have been removed, but the xmm1 variable is still present,
causing data dependences at each loop level.

The last applied scalar simplification tries to replace those remaining scalar refer-
ences by array references, considering that they usually generate less data dependencies.
We consider scalars whose first reference in the loop nest is a write, and which are not
defined as a φ-function: they correspond to the privatizable scalars. For each of such
scalars, we look for a memory slot unused during the scalar life-span and necessarily
written after every reference to the scalar. If this memory slot does not intersect with
any other slot accessed since the scalar definition, then it can be used in place of the
scalar while preserving the code semantics. The detailed algorithm is given in Algo-
rithm 3.2 and can be seen as a in-place scalar expansion, i.e. a scalar expansion with
no extra memory requirement.

In the presented algorithm, the terms “before”, “after”, “first”, and “last” actually
refer to the execution order in a single loop iteration. When considering a single basic
block, the execution order is actually equivalent to the textual order of the instructions

3.3. POLYHEDRAL PARALLELIZATION 83

Algorithm 3.2 Scalar to array replacement algorithm.

for each scalar s whose first access is a write

fsref ← first reference to s
lsref ← last reference to s
for each memory write mw executed after lsref

dependence← false

for each memory access ma executed after fsref and before mw
if mw intersects with ma

dependence← true

if not dependence
replace s by the element written by mw
continue with the next s

for (t1 = 0; -511 + t1 <= 0; t1++)

for (t2 = 0; -511 + t2 <= 0; t2++) {

A2[t1][8*t2] = 0;

for (t3 = 0; -511 + t3 <= 0; t3++)

A2[t1][8*t2] = A2[t1][8*t2]

⊙ (A1[t1][8*t3] ⊙ A3[t3][8*t2]);

}

Figure 3.8: Matrix multiply after scalar to array conversion.

in the source code. For multiple basic blocks, this textual order can still be used under
two conditions:

1. The first reference to the scalar s must dominate every other reference to s.

2. The memory write mw must post-dominate every reference to the scalar s.

The first condition ensures that the scalar is privatizable, i.e. that, for each loop
iteration, the scalar is always written before being used. The second condition ensures
that the memory slot used to replace the scalar reference is always written after all the
scalar references: whatever is the value of the scalar during its life-span, the memory
slot is overwritten later.

Applying this algorithm on our example results in the code shown in Figure 3.8.
Notice that no scalar reference remains: the refactored code causes less dependences
and is easier to handle by source-to-source parallelizers. If some scalar references
remain, they could be handled using classical scalar expansion, but usually at the price
of an heavily increased memory consumption.

84 CHAPTER 3. BINARY CODE PARALLELIZATION

3.3.4 Parallelization

The main specificity of codes extracted from binary program is their inherent complex-
ity. The assembly instructions often refer to registers, causing many scalar references.
The memory accesses have been linearized and rebuilding array accesses is not always
a straightforward task. The control flow can also be more complex for some machine-
specific reasons: for instance GCC generates data-dependent tests on floating point
values to specifically handle NaN on x86-64. Finally the compiler optimizations such as
loop unrolling, vectorization or basic block merging can transform a simple loop nest
in a very complex code structure which is hard to raise to a C loop nest. Those limi-
tations are especially met on highly optimized codes and could probably be overcome
by using powerful de-optimization methods.

In our “parallelization as a service” model, we consider that binary executable
should be distributed in their intermediate-optimized form, which is already the case
in practice for portability reasons. However, even at intermediate optimization levels,
some difficulties can remain and the code simplifications we propose are not sufficient
to reach a representation simple enough for a common source-to-source parallelizer.

When a simple code representation can be reached, the sequential C program is sent
to a back-end parallelizer. This modular approach is very interesting as it means that
potentially, any source-to-source parallelizer can be used. We show with PLUTO that
even transforming parallelizers can be used, unleashing the power of such advanced
tools to binary programs. Currently there is a unique limit put on the back-end par-
allelizers: they are expected not to split a statement in several others, in order to
simplify the code generation performed later. Apart from that, they can perform any
code transformation, including duplicating and moving statements in the parallel code.

Once the loop nest has been parallelized, some operations are performed to restore
the code semantics that was hidden to the parallelizer, and to link the parallel code to
the original binary program. This is the topic of the next subsections.

3.3.5 Reverting the Outlining

The state of the program at that point is a parallel C code where every operation is
hidden in ⊙. Before compiling the code back to a x86-64 binary, we need to revert this
outlining and to set back the correct semantics in the parallel code.

One could simply consider replacing each C instruction in the parallelized loop nests
by the corresponding assembly code extracted from the original binary program. This
would be wrong since the induction variable resolution leads to replace some registers
with equivalent affine functions. Thus, the dependence analysis is performed on the
code without those register references, and we cannot guarantee a correct semantics if
we directly re-inject them. Instead, the registers are represented as equivalent thread-
local C variables, and their definitions are evaluated in pure C. The actual operations
on these registers are expressed as inlined assembly code. When SIMD instructions are
present in the original binary code, they are re-injected using SIMD compiler intrin-
sics. Indeed, for each SIMD instruction, there is often an equivalent compiler intrinsic
function which provides more information to the compiler than the equivalent inline
assembly code, generally considered as a black box until code generation.

3.3. POLYHEDRAL PARALLELIZATION 85

#pragma omp parallel for private(t1,t2,t3,t4)

for (t1=0; t1<=15; t1++)

for (t2=0; t2<=15; t2++)

for (t3=32*t1; t3<=32*t1+31; t3++)

for (t4=32*t2; t4<=32*t2+31; t4++)

((double)(10494144+4096*t3+8*t4)) = 0;

#pragma omp parallel for private(t1,t2,t3,t4,t5,t6,xmm01,xmm02)

for (t1=0; t1<=15; t1++)

for (t2=0; t2<=15; t2++)

for (t3=0; t3<=15; t3++)

for (t4=32*t1; t4<=32*t1+31; t4++)

for (t5=32*t2; t5<=32*t2+31; t5++)

for (t6=32*t3; t6<=32*t3+31; t6++) {

xmm01 = _mm_loadsd((double *)(6299808 + 4096*t4 + 8*t6));

m128d tmp1 = _mm_loadsd((double*)(8396960+8*t5+4096*t6));

xmm02 = _mm_mulsd(xmm01, tmp1);

m128d tmp2 = _mm_loadsd((double*)(10494144+4096*t4+8*t5));

tmp2 = _mm_addsd(tmp2, xmm02);

_mm_storesd((double *)(10494144+4096*t4+8*t5), tmp2);

}

Figure 3.9: Matrix multiply after transformation by PLUTO and semantics restoration.

For example, if rax3 has been determined as being equal to 1024 + 8× i, then the
instruction mov rbx7, rax3, is replaced by the following code:

long int rbx7;

long int rax5 = 1024 + 8 * i;

asm ("mov %0, %1", rbx7, rax5);

We show in Figure 3.9 the matrix multiply code after transformation, paralleliza-
tion, and code semantics restoration. One can see that the initialization of the result
matrix has been split out of the main loop nest by PLUTO. Some C variables, repre-
senting hardware registers, are used in addition to some SIMD intrinsic functions. The
parallelization is achieved through simple OpenMP directives.

3.3.6 Live-in Registers

In the parallel code, when the code semantics has been restored, the memory addresses
are evaluated as C expressions, and each register version becomes a C variable which
has to be initialized. Distinct situations lead to generate different code to initialize
those variables:

• the register versions for which an equivalent expression is known are simply ini-
tialized with this expression;

86 CHAPTER 3. BINARY CODE PARALLELIZATION

• the registers removed by forward substitution or in-place scalar expansion are
re-introduced as thread-private C variables, and left uninitialized as their first
reference is necessarily a write;

• some registers, used in expressions, are initialized before executing the loop nest.
If their definition is alive at the loop nest entry, then the value of the corre-
sponding hardware register at the nest entry is used to initialize the variable.
Otherwise, the value of the register version is tentatively rebuilt as a linear com-
bination of the other alive register values. If this is not possible, the value of
the corresponding hardware register is read during the life-span of the register
versions, using an instrumentation code. The different instrumentation codes are
merged, as much as possible, into common profiling points where several register
values are read, limiting the overhead of this instrumentation

3.3.7 Live-out Registers

An equivalent problem also occurs for registers updated during the loop nest execution
and used after it has completed. The loop nest is now parallel and may have been
rescheduled. It is then complex to determine in the general case what should be the
register value at the end of the loop nest execution. Complex mechanisms could be
designed where the threads dynamically check which one of them computes this value,
giving it the role to store the register value at the proper iteration. However, it is
extremely rare to observe that a register used in the actual computation is read after
the loop nest execution.

On the other hand, registers devoted to the control flow are commonly used after
the loop nest execution, but their value is known. For instance the register used to store
the loop counter can sometimes be used for the next loop nest. When those registers
are handled by scalar evolution, the correct value of those registers at loop exit can be
easily computed using common polyhedral tools and the corresponding affine function.

3.3.8 Implementation

After parallelization, the parallel loop nests could have been re-injected in the appli-
cation using an existing binary rewriter such as PLTO [126], or DIABLO [136]. The
parallel versions of the loops would then be part of the binary executable and perma-
nent links would be set from the sequential code to the parallelized loop nests.

We actually use another technique which allows a more dynamic behavior: no
permanent modification of the original application is performed, and the execution
can be easily rerouted, depending on some runtime criteria, to the sequential or to
the parallel version. This is especially important for the runtime tests presented in
Section 3.5 as the execution flow may be redirected back to the sequential loop nest if
they fail. Moreover, the binary executable file is left untouched, allowing one to execute
the application in sequential or parallel by running, or not, the dynamic process. This
can really ease the debugging process.

In our system, two processes coexist: the main application and an automatically
generated runtime component (RC) which is in charge of managing the execution of

3.3. POLYHEDRAL PARALLELIZATION 87

�������

�	�A	����

B�CDEDF

����

AEDE����

�	���

��ED������	DF

�D����E�

AD	�DE�

������

��	�A

Figure 3.10: General scheme of the implementation.

�������

���	

A���BBCB

DEFC�

�������B

A�E����

��A

��A

�	��CF��C�E�� ��E������C�E��

��EDC��E��DE��C��

�������

���	

A���BBCB

DEFC�

�������B

A�E����

��A

��A

�	��CF��C�E�� ��E������C�E��

���������	AB

��EDC��E��DE��C��

Figure 3.11: Redirecting the execution flow to the parallel loop nests (left to right).

the application. This is illustrated in Figure 3.10. The main application is extended by
a dynamic library which mainly contains the parallelized loop nests, compiled in differ-
ent functions by a standard C compiler at the end of the parallelization process. This
dynamic library is loaded in the memory space of the original application at startup
using the LD_PRELOAD environment variable. A shared memory space is created with
all required permissions (including code execution) to allow communication between
the RC and the main shared library. Most of those communications are related to
executable code positions in both components. The RC has a full control of the appli-
cation thanks to the ptrace system call, which allows it to read and write in the full
memory space of the application, including the processor registers.

Before calling its entry point, the original application stalls. The runtime compo-
nent takes advantage of it to overwrite the head of the loops which have been paral-
lelized with a breakpoint. The program is then run, and the RC stalls.

When a breakpoint is met, the RC redirects the execution flow from the sequential
loop nest to the parallel version of the loop nest. To do so, it writes in the shared mem-
ory space the instruction call *(rip). This instruction performs a regular function
call whose destination address is stored just after the instruction itself. The program
counter of the original application hardware context is then set to this shared memory

88 CHAPTER 3. BINARY CODE PARALLELIZATION

area: the next instruction that the application executes is this function call. The stack
pointer register is set to a free memory space in order for the parallel loop function to
execute in a safe environment. Once this is done, the application is resumed from that
point. This is illustrated in Figure 3.11 where the original situation (just before the
breakpoint is met) is presented on the left, while the state of the program after the RC
intervention is presented on the right. On x86-64, the program counter is called rip

and the stack pointer register is rsp.
The nest parallelization is achieved using OpenMP which automatically handle

thread management, including thread creation, synchronization, and destruction. Thus,
no extra control is required for the thread management. Once a parallel loop nest has
finished its execution, the RC is awaken and performs the opposite operation, resuming
the execution back to the end of the original sequential loop nest. The overhead of
those two code redirections is mainly two ptrace system calls per loop nest execution,
which is negligible compared to the benefits of the parallelization.

3.4 Evaluation

We have evaluated our implementation on the PolyBench benchmark suite [100]. This
suite is made of kernels commonly used in scientific and multimedia codes. The goal of
this section is to provide answers to three basic questions one may want to ask about
static parallelization of binary code:

• How many loops can be extracted by the decompilation phase? Does the use of
binary code entail any loss in coverage? What is the effect of compiler optimiza-
tions on coverage?

• Does the use of binary code entails any loss in performance compared to the use
of source code? Does this depend on the power of the parallelization back-end?

• How does the performance speedup obtained by automatic binary code paral-
lelization compares to that of hand-made, directive-based parallelization? To
other published systems?

The next three sections focus on each of these questions in turn, using an Intel
Xeon W3520 processor with four cores and two threads per core, and running Linux
as the testing platform.

The reader should be warned of an easily missed characteristic of the Polybench
programs: they include a main computation kernel, along with an initialization loop
nest. This initialization loop is trivially parallelizable and can account for a major part
of the execution time. Even though every program is clearly built around its kernel
loop nest, some researchers have also included the initialization loop in evaluation runs.
In the following experiments, we mention explicitly which part of the programs we use.

3.4.1 Loop Coverage

To evaluate the quality of the decompilation process, we have used three different
compilers, each one using two distinct optimization levels. The compilers involved are

3.4. EVALUATION 89

Clang 2.8 from the LLVM suite, GCC 4.5, and the Intel ICC compiler version 12.1.
Each benchmark program was compiled at the -O2 and -O3 optimization levels with
each of these compilers. The resulting binary was the submitted to the static binary
code decompilation described in Section 3.2.

In all cases, all loops have been correctly located in the binary code. However, not
all loops are usable.

We define the coverage of our system as the number of loops that can be safely
transmitted to the parallelization back-end. We have chosen to not make use of “back-
ground knowledge” about library function calls. For instance, a single call to sqrt in
the main loop of the correlation program makes the outer loop non parallelizable.
This has to be contrasted with source-to-source tools that require explicit directives
(e.g. PLUTO), where the programmer is supposed to leave only “harmless” function
calls, which are then ignored. We have left the usage of external knowledge on function
calls for future research.

Table 3.1 shows counts and percentages for every combination of compiler and
optimization level. For each such combination, the table shows first the number of
loops that can safely be transmitted to the parallelization back-end, then the total
number of loops located in the binary code, and finally the corresponding percentage,
with an average at the bottom of the column.

There are two main causes for abandoning a loop. The first one is the presence
of function calls. All benchmarks include a final loop nest in charge of printing the
computed data structure. This accounts for the vast majority of loops ignored in Clang
and GCC binaries. The remaining failures are caused by the difficulty of tracking
register values across calls without making simplifying assumptions. Besides printf,
some PolyBench programs include calls to sqrt, and some compiler’s handling of this
call lead to data-dependent control-flow, which the decompilation phase cannot handle.
For instance, GCC use a native processor instruction to perform this operation, except
if the value is NaN, in which case a library call is performed. The second major cause for
abandoning loops is the use of sophisticated program transformations. As it appears
from the numbers in Table 3.1, ICC makes heavy use of loop transformations, at
both -O2 and -O3 levels. In the worst case (2mm at -O3), less than half of the loops
remain analyzable. We suspect this is due to loop tiling, which ICC seems to apply
automatically. The problem here is that tiling produces non-strictly linear address
expressions, using max compute bounds on “side-tiles”. Even though we could detect
such cases, we think a more general loop restructuring phase is needed to handle highly
optimized codes, and have left this phase for future research.

3.4.2 Binary-to-binary vs. Source-to-source

The goal of our second set of experiments is to evaluate whether parallelization applied
to binary code is fundamentally inferior to automatic parallelization of the source code.
The core of our binary parallelizer uses a source-to-source back-end parallelizer acting
on a skeleton program extracted from the binary. Then, we compare the code generated
by the back-end parallelizers when their input is 1) the original source code, or 2) the
skeleton code extracted from the binary. The experiments in this case are applied to

90
C

H
A

P
T

E
R

3.
B

IN
A

R
Y

C
O

D
E

P
A

R
A

L
L

E
L

IZ
A

T
IO

N

Program
Clang GCC ICC

-O2 -O3 -O2 -O3 -O2 -O3

2mm 6/8 75% 6/8 75% 6/8 75% 6/8 75% 18/21 86% 10/23 43%
3mm 9/11 82% 9/11 82% 9/11 82% 9/11 82% 26/29 90% 15/33 45%

atax 6/7 86% 6/7 86% 5/7 71% 5/7 71% 5/7 71% 5/7 71%
bicg 5/6 83% 5/6 83% 5/6 83% 5/6 83% 4/6 67% 4/6 67%

correlation 10/13 77% 10/13 77% 8/13 62% 8/14 57% 21/27 78% 19/25 76%
covariance 11/13 85% 11/13 85% 11/13 85% 11/16 69% 16/22 73% 16/23 70%

doitgen 10/13 77% 10/13 77% 10/13 77% 10/13 77% 9/14 64% 9/15 60%
gemm 9/11 82% 9/11 82% 9/11 82% 9/11 82% 11/14 79% 4/12 33%

gemver 9/10 90% 9/10 90% 9/10 90% 9/10 90% 15/17 88% 11/13 85%
gramschmidt 8/10 80% 8/10 80% 7/10 70% 7/10 70% 8/11 73% 8/11 73%

jacobi-2d 7/9 78% 7/9 78% 7/9 78% 7/9 78% 5/10 50% 5/10 50%
lu 6/8 75% 6/8 75% 4/7 57% 4/7 57% 9/14 64% 9/14 64%

average 81% 81% 76% 74% 74% 61%

Table 3.1: Coverage of our analysis step. The notation X/Y indicates that X loops are successfully raised to a C program which
can be treated by a back-end parallelizer among the Y loops present in the program.

3.4. EVALUATION 91

 0

 2

 4

 6

 8

 10

 12

 14

 16

2m
m

3m
m

atax
bicg

correlation

covariance

doitgen

gem
m

gem
ver

gram
schm

idt

jacobi-2d-im
per

lu

src/PLUTO
bin/PLUTO
src/CETUS
bin/CETUS

Figure 3.12: Parallelization back-ends applied to 1) the original source code, and to 2)
the binary code (kernel only).

the kernel part only.
We have selected two source-to-source parallelizers, CETUS 1.3 and PLUTO, to

act as back-end components. Each of them has been used to:

1. generate a parallel version of the source code, which is then compiled with gcc

-O3;

2. generate a parallel version of the loops extracted from the binary code, which
has been compiled with gcc -O2.

The resulting speedups are shown on Figure 3.12, with the base execution time being
the sequential execution of the program. The goal here is not to compare both par-
allelizers, since they use significantly different strategies, but rather to compare the
speedups obtained on both original source code and source extracted from the binary.

The behavior of both back-end parallelizers is clearly different. In the case of
PLUTO, the performance varies slightly between both versions in most of the cases.
However, these variations can hide large differences in the nature of transformations
applied. For instance, binary-to-binary parallelization slightly outperforms source-to-
source for correlation, even though fewer loops have been parallelized in the binary
case because of the presence of a call to sqrt. Conversely, the presence of a function
call in gramschmidt completely annihilates performance in the binary case, whereas
on source code, PLUTO simply assumes that the call may not interfere with the rest
of the loop nest. The only case where the difference is significant is gemver, where the
techniques applied on the binary code to remove the scalar references are insufficient,
preventing PLUTO from applying a parallelization as efficient as with the source code.

92 CHAPTER 3. BINARY CODE PARALLELIZATION

The case of CETUS is also interesting, in that it doesn’t find anything profitable to
do on source programs. This is due to the timing functions present in the benchmark
programs which make the alias analysis of CETUS 1.3 fail. In some cases this has
been corrected when using binary code directly, because the analyzable loop nests are
extracted from the rest of the program by our system (in 2mm, 3mm, doitgen, and
gemm). In other cases, the loop nests were simply too complex or required parallelizing
transformations, which were out of reach of CETUS.

3.4.3 Binary-to-binary vs. Hand-Parallelization

The goal of our last experiment is to compare our solution first to a skilled programmer
using OpenMP directives, and second to the best results achieved by a published
automatic binary parallelizer (as far as we know). The four contenders are:

• a unnamed programmer using OpenMP directives, placing parallelism directives
in the best possible way on the original source code without transformation;

• our binary parallelization system with PLUTO as a back-end (which performs
code transformations);

• our binary parallelization system with CETUS 1.3 as a back-end (no transforma-
tion);

• the results published by Kotha and colleagues [74] (no transformation).

Numbers in the last category have been taken directly from the paper [74, Section VIII,
Table II] when available, using experiments on an architecture similar to the one we
have used. No attempt has been made to reproduce their system (see their “Acknowl-
edgments” section). The various speedups are shown on Figure 3.13.

An important aspect of this experiment is that parallelization is applied to the whole
program, and not only on the kernel loop nests. For those experiments, all loops in sight
have been parallelized when possible, including initialization loops (see the discussion
of the PolyBench programs at the beginning of this section). The reader may wish
to compare the strong impact of including initialization in the resulting numbers by
comparing speedups show on Figure 3.12 with those of Figure 3.13 for similar setting,
e.g., on atax or bicg. We would like to state here that we do not consider whole-
program benchmarking to be a significant way to evaluate parallelization systems on
the PolyBench suite; we show these results for the sake of comparison with other
systems.

The reader should also remember that, among the four parallelizers used, only
the PLUTO back-end is able to apply code transformations, giving it a significant
advantage on some programs. We have kept the polyhedral back-end in this set of
results to illustrate the modularity of our system.

These results can be roughly divided into four categories:

1. 2mm, 3mm, and gemm, where all non-transforming systems obtain similar results,
and polyhedral transformations lead to a spectacular gain; atax could be included
in this category, except that polyhedral techniques cannot compensate for the fact
that the only parallel loop is buried inside a non-parallel outer loop;

3.4. EVALUATION 93

 0

 2

 4

 6

 8

 10

 12

 14

2m
m

3m
m

atax
bicg

correlation

covariance

doitgen

gem
m

gem
ver

gram
schm

idt

jacobi-2d-im
per

lu

manual OpenMP
bin/PLUTO
bin/CETUS
Kotha et al.

Figure 3.13: Speedup comparison for three parallelization strategies. (initialization +
kernel).

2. covariance and correlation, where polyhedral techniques also dominate clearly,
although at a smaller scale: the locality optimization allowed by the polyhedral
model has a strong impact, compensating in both cases for the fact that some
loops were not parallelized;

3. gemver, gramschmidt, and lu, where the presence of function calls and the com-
plex expansion and privatization requirements make most automatic system fail.
The system described by Kotha and colleagues seems to perform very well on
gemver, but results on the last two programs have not been published;

4. bicg, doitgen, and jacobi, where our automatic system is clearly suboptimal
compared to manual, OpenMP parallelization (for reasons similar to the previous
category), and where both of these are far below the system by Kotha and col-
leagues. We have to admit that we have no explanation for this last fact: despite
our best efforts (including hand tweaking), we have not been able to even ap-
proach the results published in [74], especially on jacobi, which is a stencil-like
kernel.

Overall, our conclusion on this diverse set of experiments is first that our automatic
binary parallelization competes with equivalent systems in most cases, and second that
the ability to use polyhedral techniques can make a significant difference in some cases.

94 CHAPTER 3. BINARY CODE PARALLELIZATION

3.5 Extension to Complex Codes

Our system is performing well on the kernels provided in the PolyBench benchmark
suite. However, those kernels are not representative of all existing programs. Strong
restrictions prevent the application of polyhedral transformations on more complex
codes. We present in this section some extensions which widen the scope of the handled
binary codes. As the codes we target here are more complex, we do not transform the
loop nests, but target immediately parallelizable loop nests.

3.5.1 Extension to Parametric Codes

The programs tested in the previous section are all made of non-parametric loop bounds
and access functions. However, in many situations, a developer chooses to use paramet-
ric loop bounds or dynamic arrays, leading to registers appearing in the code extracted
from the binary code. There is no strong restriction preventing our system to handle
these cases, as the polyhedral model and its associated tools are already able to solve
parametrized problems.

In the case of parametric loop bounds, Kotha et al. [74] propose to group memory
accesses according to their base addresses: if the base addresses of two references differ
by less than a determined constant threshold, they are considered as being part of the
same reference group (RG). Memory references in the same group are then considered
as referring to the same array. For example, consider to memory references, accessing
the addresses 8× i + 4000 and 8× i + 4005. We can consider that both references are
actually using the same array A, whose base is at address 4000. Then, the first access
becomes A[8× i] and the second access becomes A[8× i + 5].

Some runtime tests are generated to ensure that the references in different groups
are effectively disjoints. The runtime tests proposed by Kotha et al. are based on
simple patterns filled by the loop bounds [74, Section III]. This pattern represents the
minimal and maximal addresses reached by a memory reference. The address ranges
of all the groups are then compared to determine if they are actually disjoints.

In the polyhedral model, some tools such as ISL [138] allows one to determine the
minimum and maximum of a linear expression in a given iteration domain. Computing
those parametrized minimum and maximum for every memory reference in each group,
and checking for range intersection between the groups at runtime, leads to more robust
runtime checks, as we can consider non-rectangular iteration domains, and guarded
memory accesses. Those runtime tests are generated at compile time and run before
the loop nest execution. The general form of those tests is presented in Algorithm 3.3.
If one of such test fails, the sequential version of the loop nest is executed as the
assumptions made for the dependence analysis cannot be proven.

There are generally a few different reference groups that are generated by this
procedure. Thus the time spent performing the runtime check is negligible. In the
Algorithm 3.3, the minimal and maximal addresses of reference groups are used. They
are simply computed by finding at runtime the minimal or maximal addresses over all
the references in the group.

This solution is far from being exact. For example, it can fail if large offsets are
used in access functions, or if constants are used in the largest subscript of a multi-

3.5. EXTENSION TO COMPLEX CODES 95

Algorithm 3.3 Generated runtime check to ensure reference groups separation.
For each reference group g1

amin
1 ←minimal address accessed in g1

amax
1 ←maximal address accessed in g1

For each reference group g2 6= g1

amin
2 ←minimal address accessed in g2

amax
2 ←maximal address accessed in g2

if [amin
1 ; amax

1] ∩ [amin
2 ; amax

2] 6= ∅

failure (sequential execution required)

for (t1 = 0; t1 <= rsi; t1++)

for (t2 = 0; t2 <= rdi; t2++) {

M[rax + 8*t1] = ...

...

M[rbx + 8*t1 + 8*t2] = ...

}

Figure 3.14: Original code.

for (t1 = 0; t1 <= rsi; t1++)

for (t2 = 0; t2 <= rdi; t2++) {

A0[8*t1] = ...

...

A1[8*t1 + 8*t2] = ...

}

Figure 3.15: Code as seen by the depen-
dence analyzer.

if (rax + 8*rsi >= rbx && rax <= rbx)

return FAIL;

if (rbx + 8*rsi + 8*rdi >= rax && rbx <= rax)

return FAIL;

Figure 3.16: Corresponding runtime tests.

dimensional array reference. It can also be over-approximative if some arrays are
smaller than the threshold used to distinguish the groups. However, this technique
allows parallelization in many simple cases and is correct thanks to the runtime check.

If the program uses dynamic array allocation, registers can also appear as base
address in the memory references. In that case, we group the memory references using
the registers used as base addresses. The rest of the process remains identical: the
same tests are performed and they are generated exactly in the same way as when the
base address is a numerical constant.

We present in Figure 3.14 a sample loop nest that could have been extracted from
a binary program. The loop bounds are parametric and the nest body is made of two
memory references whose base addresses are also parameters. On Figure 3.15, one can
see the effects of grouping memory accesses: the two references have different base
addresses and are then put in two different groups. Each group and its corresponding
base address are associated to a different array name. Those array names are used

96 CHAPTER 3. BINARY CODE PARALLELIZATION

Sequential Source parallelization Binary parallelization
47.06 s 30.76 s (1.5) 40.79 s (1.2)

Figure 3.17: Execution times (and speedups) for swim on the train dataset.

for the dependence analysis to assume that the two references never reach the same
memory location. Once the parallelization is performed, some runtime tests are added
before the parallel code. They are presented in Figure 3.16. They ensure that the two
references actually cannot intersect considering the value of the registers used. In case
of possible memory conflict, the sequential code is executed.

This technique allows us to handle codes like swim from the SPEC OMP-2001
benchmark suite [5]. As our scalar removal process cannot handle all possible cases,
polyhedral transformation of this code is not yet possible. However, our system is still
able to parallelize it using non-transforming parallelization techniques. One can see on
Figure 3.17 that our system is able to perform a reasonable speedup compared to the
speedup obtained from the reference source code parallelization. The executions are
performed on our Intel Xeon W3520 with four cores and two threads per core. It is
important to remember here that our system is automatic and that it does not need
the source code of the program, whereas the reference speedup is reached after human
intervention to provide parallelization directives to the compiler in that source code.

3.5.2 Extension to Polynomial Codes

Another common issue in binary codes is provoked by array linearization. The compi-
lation pass that transforms multi-dimensional array accesses into flat memory access
functions often yields non-linear expressions. For instance, the following code fragment
shows an array declaration and a simple use of this array in a loop nest:

void fun(int n, int m) {

int A[n][m];

for (i = 0; i < n; i++)

for (j = 0; j < m; j++)

A[i][j] = ...

...

}

If the array sizes n and m are not known at compile time, the compiler transforms the
array access into the expression Base + 4 ∗ j + 4 ∗ i ∗ m where Base represents the
array base address and can be either a register or a constant value. This expression
is not linear and thus cannot be analyzed using the polyhedral model. Unfortunately
such non-linear expressions are frequent in common binary codes, especially in Fortran
programs where dynamic arrays are commonly used.

In order to parallelize such programs, we propose to use an approximate and con-
servative dependence analysis method handling parametrized polynomial memory ref-
erences. We denote by rk(~ik, ~pk) a memory reference where ~ik is the list of variables,

3.5. EXTENSION TO COMPLEX CODES 97

and ~pk the list of parameters used. Variables ~ik are the indices of the loops enclosing
the memory reference. Those loop indices are constrained by the loop bounds: their
possible values define a convex polyhedron Dk, the iteration domain of the memory
reference rk. We note ~ik[d] the iterator of the loop at depth d in the hierarchy of the
loops enclosing the memory reference. Parameters ~pk are usually array-size parameters
whose values are stored in processor registers.

Consider two memory references r1(~i1, ~p1) and r2(~i2, ~p2) inside a loop nest. At
least one of those accesses is a write, and both r1(~i1, ~p1) and r2(~i2, ~p2) are non-linear
parametrized expressions, more precisely multivariate parametrized polynomials. If
we are able to ensure that those memory accesses do not provoke any dependency
between iterations of the outermost loop, then this loop can be parallelized. A sufficient
condition is the statement:

for any ~i1 ∈ D1 and ~i2 ∈ D2 such that ~i1[0] 6=~i2[0],
r1(~i1, ~p1) < r2(~i2, ~p2) or r1(~i1, ~p1) > r2(~i2, ~p2)

(3.1)

This condition ensures that there is no intersection between the values reached through
r1(~i1, ~p1) and the values reached through r2(~i2, ~p2) across distinct iterations of the out-
ermost loop, i.e. r1(~i1, ~p1) 6= r2(~i2, ~p2) for any~i1[0] 6=~i2[0], and thus, that those memory
accesses do not induce any dependence carried by the outermost loop. Ensuring (3.1)
for every couple of memory accesses where at least one is a write allows us to par-
allelize the outermost loop. Notice that r1 and r2 can be the same memory write to
handle self-dependences. Very little information or even nothing is known about the
parameters values, usually only positivity of some parameters. Hence (3.1) can only
be satisfied subject to some conditions on the values of the parameters.

To find some sufficient conditions on the parameter values ensuring that (3.1) is
satisfied, we use a method based on symbolic Bernstein expansion of polynomials de-
fined over parametrized convex polyhedra, described in [31, 33] and implemented in the
ISL library [138]. This method allows us to compute the maximum value that can be
reached by a polynomial. Hence when the maximum value of r1(~i1, ~p1)− r2(~i2, ~p2) (re-
spectively r2(~i2, ~p2)−r1(~i1, ~p1)) is strictly negative, we obviously prove that r1(~i1, ~p1) <
r2(~i2, ~p2) (respectively r1(~i1, ~p1) > r2(~i2, ~p2)).

Consider the following example built from one of the handled binary codes:



















































r1(i1, j1, k1, M, N, P) = 8 + P + 8M + 8N + 8i1N + 8j1M + 8k1

r2(i2, j2, k2, M, N, Q) = 8 + Q + 8M + 8N + 8i2N + 8j2M + 8k2

0 ≤ i1 ≤ L− 1, 0 ≤ j1 ≤ L− 1, 0 ≤ k1 ≤ L− 1

0 ≤ i2 ≤ L− 1, 0 ≤ j2 ≤ L− 1, 0 ≤ k2 ≤ L− 1

i1 6= i2

L > 2, M > 0, N > 0, P > 0, Q > 0

98 CHAPTER 3. BINARY CODE PARALLELIZATION

Sequential Source parallelization Binary parallelization
89.29 s 28.98 s (3.1) 48.46 s (1.8)

Figure 3.18: Execution times (and speedups) for mgrid on the train dataset.

Using the ISL library, we automatically compute the sufficient condition statements:






















































































if (−8 + 8L)M + (−8 + 8L)N + 8L + P −Q− 8 < 0

then r1(i1, j1, k1, M, N, P) < r2(i1, j1, k1, M, N, Q) when i1 > i2

if (−8 + 8L)M − 8N + 8L− P + Q− 8 < 0

then r1(i1, j1, k1, M, N, P) > r2(i1, j1, k1, M, N, Q) when i1 > i2

if (−8 + 8L)M − 8N + 8L + P −Q− 8 < 0

then r1(i1, j1, k1, M, N, P) < r2(i1, j1, k1, M, N, Q) when i1 < i2

if (−8 + 8L)M + (−8 + 8L)N + 8L− P + Q− 8 < 0

then r1(i1, j1, k1, M, N, P) > r2(i1, j1, k1, M, N, Q) when i1 < i2

The conditions computed with ISL can be merged in a single test considering that
the two references must not intersect when i1 < i2 and when i1 > i2. In our example,
the generated test is then:

if ((−8 + 8L)M + (−8 + 8L)N + 8L + P −Q− 8 < 0
or
(−8 + 8L)M − 8N + 8L− P + Q− 8 < 0)

and
((−8 + 8L)M − 8N + 8L + P −Q− 8 < 0
or
(−8 + 8L)M + (−8 + 8L)N + 8L− P + Q− 8 < 0)

then there is no dependency between r1 and r2 carried at level 0

Similar tests are generated for every couple of memory accesses where at least one
is a write. Those tests are evaluated at runtime and, if one of them fails, the paral-
lelization of the outermost loop cannot be proven correct and the sequential version of
the loop nest has to be executed. Notice that we have focused on the outermost loop
parallelization only. Similar tests could be performed for other levels with several dis-
advantages, including the necessity of having several parallel versions (one per parallel
level), a large increase in the number of tests that have to be performed to decide if a
loop is parallelizable, and possible slowdowns when parallelizing the inner loop levels.
Thus, we only consider the parallelization of the outermost loop.

We have implemented this parallelization strategy as a different parallelization back-
end alongside the other back-ends. This strategy enables our system to parallelize codes
with polynomial memory references such as the mgrid code from the SPEC OMP
benchmark suite. Figure 3.18 shows the execution times and speedups reached by our
system compared to the reference parallelization from the source code. The execution
times have been measured on an Intel Xeon W3520 processor with four cores and

3.5. EXTENSION TO COMPLEX CODES 99

two threads per core. Once again, it is a good result, considering that our automatic
system does not need the source code and that few common parallelization techniques
can be applied in this case, since the access functions are not linear. It is also a good
example of the modularity of our approach, where various dependence analyzers and/or
parallelizers can be “plugged in” to handle various classes of problems. The overhead
induced by the tests performed before the loop nest execution is relatively low: there
are many tests (one per couple of memory accesses) but the execution of each one
accounts only for a few processor cycles which is negligible in regard to the benefits
offered by the loop nest parallelization.

3.5.3 In-Place Parallelization

During the analysis phase, interesting loop nests are raised to C codes, amenable to
parallelization by existing source-to-source parallelizers. After parallelization, the loop
nest semantics is restored and the parallel code is compiled as a new function, distinct
from the sequential code. However, many issues can be encountered using this strategy.

First, some performance issues can arise if the compiler has precisely optimized the
original sequential loop nest and is not able to perform as well on the parallelized code.
Second, creating a new version of the loop nest increases the code size. This can be
critical on some platforms such as embedded systems. Third, it can also be difficult
to raise some very specific assembly constructs to functional C code. For example,
GCC can generate some tests on floating point values to ensure that they are different
than NaN using the conditional flags of the processor. To translate this sequence as
an inline assembly code extract in a C program, a complex and inefficient sequence of
floating point operations, tests, and register savings and transfers have to be used in
the parallel code. The problem is exacerbated when the compiler does not support the
full set of instructions as inline assembly.

For those reasons, we have also considered an alternative parallelization method.
The key point of that method is to parallelize the binary code in-place, i.e. without
modifying nor moving the loop body. As the parallel binary code is identical to the
sequential one, no code transformation is allowed anymore. This is then particularly
suited to the extension on polynomial codes we have presented before. In this setting,
the threads are not anymore implicitly created using OpenMP but managed internally
using standard Linux threading facilities.

This parallelization method solves all the problems aforementioned: the resulting
parallelization uses the same loop body as the sequential loop nest and then benefits
from the same compiler optimizations, the loop nest does not need anymore to be
raised to C code and recompiled, and there is only one version of the loop nest for both
sequential and parallel execution.

A specific implementation is required for this technique, it is based on the same
two-processes approach as presented in Subsection 3.3.8.

Loop Bounds Overwrite

When the polyhedral parallelization strategy is used, the full parallel loop nest becomes
a function in the shared library loaded by the RC. When using in-place parallelization,

100 CHAPTER 3. BINARY CODE PARALLELIZATION

������������

��	����

AAA

	BC������D�EE

F��

AAA

FBC

AAA

��������	

������������

��	����

AAA

	BC������D�EE

FBC

AAA

FBC

��	���������������

F��

FBC
��������	

Figure 3.19: Overwriting loop bounds with a new loop counter (left to right).

the original sequential loop nest has to be executed in parallel without modifying or
moving it. A function in the library still contains some initialization and termination
code, but the original computation remains in the original program.

In the library, an initialization code of each loop nest is principally managing a
thread pool, created at the application start. When the parallel loop nest execution
starts, this initialization sequence also computes the first and last iterations of the
parallel loop that each thread has to execute. Once this is determined, every thread is
unlocked and executes its specific parallel loop iterations.

To control the iterations executed by each thread, a slight modification is applied
on the loop nest. The loop exit condition is usually performed using a conditional jump
evaluating the exit condition, i.e. the loop upper bound. We overwrite this conditional
jump with a unconditional jump which points to a “safe” code area, made of consecutive
instructions in the function body which are not part of the loop instructions, and which
can then be safely overwritten during the loop nest execution. We temporary overwrite
those instructions with the desired exit condition.

The exact code sequence computing the new exit condition is:

dec *(@TP_COUNTER)

jnz @LOOP_CONT

jmp *(@TERMINATION)

This short sequence decrements a thread-private loop counter, if this counter is not
equal to zero, the execution continues, otherwise a termination code is called. The full
code fragment can be stored in a 23 bytes binary sequence and does not modify any
register except from the flag register.

The main challenge is to find twenty three consecutive bytes in the function body
that are not used by the loop nest, and that are reachable from the exit jump. This
can be difficult as the overwritten exit jump can be a short jump, using a single byte as
offset. Those small offsets can prevent us to reach an address outside of the loop nest
body. Moreover such jumps cannot be overwritten with long jumps that are encoded
in longer binary sequences on the x86-64 architecture. Even if they exist, such cases
do not appear often in practice.

The loop bounds overwrite is illustrated in Figure 3.19 where the original loop
code (on the left) is transformed to use the new loop bounds (on the right). After

3.5. EXTENSION TO COMPLEX CODES 101

transformation, the new exit sequence is executed at every loop iteration, and the
execution stops only when the new loop bound is reached. The process is reverted at
the end of the nest execution: when the exit jump in the code fragment is executed,
the original loop bound is restored.

Notice that, to start the execution at the correct parallel iteration, it is sufficient to
correctly initialize registers and memory locations whose values depend on the parallel
loop counter. This means that, if the loop nest is not fully analyzable, this paralleliza-
tion is not possible.

Fast Thread-Private Data

The parallel loop has a new loop counter, used by the new exit sequence. This new
loop index has to be thread-private as the loop is parallel and each thread executes a
distinct set of iterations. Ideally it also has to be directly reachable for the code to be
efficient: no register should be written, and there should be no function or system call
to read or write the loop index value. Subject to those constraints, it is not possible
to use any of the classical threading functionalities, such as the pthread local storage
support, or the thread unique identifier.

We have used a specificity of our operating system implementation to find a directly
addressable thread-private memory location. All the recent operating systems with
multi-thread support have to maintain the threads’ states. This state includes, for
example, the current scheduling options, the synchronization data, and some private-
data facilities. On Windows and Linux for x86 and x86-64 platforms, this is achieved
through a segment register. One of those specific processor registers is pointing to
a thread-specific memory area, filled with the information related to the thread. On
Linux, the FS register is used for that purpose. The address FS:0 is then the address
of the information structure. Interestingly, on recent implementations, the structure
contain unused fields and some padding bytes.

On our system, as for most of the current x86-64 Linux systems, 64 bytes are then
available starting at address FS:0x280. This memory space is writable for the thread,
and thus, we store the loop counter at FS:0x280 which is a directly addressable memory
location, causing no specific overhead when accessing it. No function call is performed
and no register requires to be set to access this memory location.

Address in Position Independent Code

When the parallel loop execution ends, the RC has to be awaken in order to cleanup
the code and safely resume the sequential program execution. When polyhedral paral-
lelization is performed, OpenMP handles the thread synchronization and the execution
becomes sequential at the end of the parallel loop. But when in-place parallelization
is used, the thread synchronization has to be ensured and the execution has to be
resumed in sequential.

A naive solution would be to use a breakpoint at the end of the loop nest execution.
Each thread would then execute it to signal to the RC that it has finished its task.
Despite this solution is simple, this would interrupt all the threads every time a thread
finishes, provoking a huge overhead. Instead, at the end of the loop nest execution,

102 CHAPTER 3. BINARY CODE PARALLELIZATION

Algorithm 3.4 Finding the instruction-location canary.
uint8_t *addr;

for (addr = (uint8_t*) @FUNCTION; cnt < 7; addr++) {

if (*addr == 0xCC) {

cnt++;

} else {

cnt = 0;

}

}

while (*(addr++) == 0xCC);

return addr;

we redirect all the threads back to the shared library, right after the instruction that
provoked the execution of the parallel loop in the shared library. At that point, all the
threads are then synchronized and only one of them calls the breakpoint to let the RC
resume the execution.

To do so, the address of the instruction calling the parallel loop has to be deter-
mined in the library. The library is necessarily compiled as position-independent code,
meaning that it is impossible to determine it at compile time, and no specific language
functionality exists to determine at runtime the location of a specific instruction.

However, this can be achieved using a canary system: a specific instruction sequence
is inserted just after the call to the parallel loop nest. This sequence has not to be
generated by the compiler if not specifically asked for. It is searched for during the
initialization, starting at the beginning of the function code. Once found, we know the
address where the execution has to be redirected to, when the parallel loop nest ends.
We have chosen the canary to be seven occurrence of the specific int 3 instruction
(encoded as the byte 0xCC). The int 3 instruction is very specific and the compiler has
no reason to generate it without having been requested to do so. The seven occurrences
of this instruction avoids any confusion with program data such as memory addresses
encoded using this specific byte.

The algorithm used to find this canary is presented in Algorithm 3.4 as a C program
fragment. We can see that seven occurrences of the specific byte 0xCC are searched for.
Once found, the address is incremented until reaching a different byte, as the first 0xCC

bytes met can be the last bytes of some instructions preceding the canary sequence.
The address found can then be used to redirect the threads at the end of the parallel

execution. The thread synchronization code directly follows the canary sequence.

Putting it all Together

At startup, the library is injected in the original program memory space. The break-
points are inserted at the beginning of each loop which has been parallelized.

When a breakpoint is met, the application stalls and the RC overwrites the loop
bounds with the code sequence presented before. The RC then redirects the application
to a function in the shared library. In that function, the parallel loop iterations are

3.6. RELATED WORK 103

divided among the threads, and each thread initializes its specific loop counter, and
all the data depending on this loop counter. The address of the termination code is
found in the function body and set in the data used by the loop exit code sequence.
Every thread then jumps to the original loop to execute it in parallel. At the end of
the loop nest execution, every thread jumps back to the termination code in the library
function. The threads are then synchronized and a master thread awakes the runtime
component. The RC cleans the code and redirects the program after the sequential
loop nest in the program.

When the execution branches from the library code to the original application code
and back to the library code, all the registers are saved and restored in a procedure
similar to what is done by ptrace. It is also sometimes required that the threads use
private stacks, for instance when some loop indices are in the stack. When it is possible
to statically determine the stack area used in the loop nest, then the stack is privatized,
otherwise, the parallelization has to be aborted.

The cost of this system remains low and is mainly induced by the ptrace system
calls. One occurs at the beginning of the loop nest execution and one at the end. Each
call costs about a thousand processor cycles on recent hardware and Linux versions.
The full parallelization process has a negligible overhead compared to the gains usually
provided by the loop nest parallelization.

3.6 Related Work

In Chapter 2, we have presented several binary code parallelizers which are very often
dynamic systems. Recently, Kotha and colleagues have proposed a static binary par-
allelizer [74]. To our knowledge, this is the only static binary parallelizer proposed so
far. Since this work is very close to ours, we present in this section a topic-by-topic
comparison with their approach.

3.6.1 Decompilation and Address Expressions

The first major difference is how both systems extract address expressions. The system
proposed by Kotha et al. extracts address expressions by pattern matching binary
instructions with three classes of instructions:

• initial assignments of the form i← α, where α is a loop invariant quantity;

• increments of the form i ← i + d where d depends on the dimensions of the
assumed underlying array;

• loop counter upper bounds of the form i < u, where u is the upper bound of the
loop counter.

On the other hand, our system captures the data-flow between registers and stack slots,
and uses symbolic analysis to reconstruct address expressions built around normalized
loop counters. Although the naive approach seems sufficient on PolyBench programs,
we have found it inefficient on more complex loops, like the ones our decompilation

104 CHAPTER 3. BINARY CODE PARALLELIZATION

pass extracts from SPEC benchmarks (see Section 3.5). There are two major reasons
why we have switched to a more advanced analysis of binary code. The first is that
most programs put enough pressure on the register allocator to force spilling on registers
containing loop counters, if any. In fact, this is even true on PolyBench programs, when
they are compiled for a 32 bits x86 architecture. The second is that dependence analysis
needs loop trip-counts, which are seldom expressed as single compare instructions. The
approach we have developed in Subsection 3.2.5 is, in our experience, absolutely crucial
to obtain reasonable constraints on blocks and avoid an overly conservative dependence
analysis.

3.6.2 Parallelization and Transformation Strategy

Kotha et al. use several simple dependence tests to decide whether a given loop is
parallel or not. The dependence vectors are extracted with ad-hoc pattern-matching
techniques similar to the ones used in extracting addresses. A trivial analysis of the
dependence vector components selects parallel loops. This strategy is known to be fun-
damentally inferior to polyhedral techniques, where each dependence is represented as
a polyhedron, an abstraction strictly more expressive than dependence vectors. When
using PLUTO as a back-end parallelizer, we are able to benefit from this precise depen-
dence analysis. Another aspect is that decompilation and dependence analysis appear
strongly entangled in [74]. In contrast, we have demonstrated that the paralleliza-
tion phase can be “off-loaded” to an external component, and used two distinct such
components (PLUTO and CETUS).

The authors also claim to be able to extend their system with program transforma-
tions, on a way “orthogonal to [their paper]” [74, Section 5]. However, we consider this
claim to be overoptimistic. First because they do not substantiate their claim by any
experiment, and second because they do not seem to realize that applying affine trans-
formations to a program requires full knowledge of the control flow inside loop bodies,
e.g., conditionals that place additional constraints on some blocks of the body (see
our Subsection 3.2.5). By going from simple branch conditions to block constraints,
we have proved our system to be able to apply any combination of loop transforma-
tions to binary programs. Our experiments have shown an actual implementation of a
transforming parallelizer.

3.7 Conclusion and Perspectives

This chapter presents a system able to efficiently parallelize binary programs. Our
system is able to parallelize the program even if some advanced transformations are
required.

The contributions of this work are manifold. First, we present a parallelization
system able to use existing any existing source-to-source compiler to parallelize the
binary program. Second, we show that the static parallelization of complex binary
codes is possible. We present techniques to handle codes with parameters in loop
bounds or memory references, and non-linear memory references. Third, we present
a parallelization technique that limits the code size expansion and ensures that the

3.7. CONCLUSION AND PERSPECTIVES 105

optimizations applied on the sequential code can be exploited for non-transforming
parallelization. Fourth, the implementation of the system and its evaluation show
that the chosen solutions are viable and lead to good performance, comparable to
equivalent systems exploiting the source code, whereas the ability to use polyhedral
compilers provide a clear benefit over existing techniques.

This system is the first brick of our general approach: it is a static system which
can automatically extract parallelism and enhance the performance of sequential binary
programs, whose format is complex. It demonstrates that an efficient parallelization can
be performed when the source code of the program is not available, without requiring
any specific hardware to support a speculative approach. This static parallelizer can
nicely complement any other dynamic system in order to efficiently parallelize complex
programs where some parts can be treated statically.

From those results, we could envisage in the future to extend the same reasoning
to more complex optimizations. For instance, when the code is fully analyzable, this
work can be combined with the dynamic selection system presented in the next chapter
to perform this code selection at the binary level. A full decompilation could also be
achieved, allowing us to recompile the loop nests for different architectures. This would
result in a binary translation system able to generate optimized parallel code for GPUs
or FPGAs from sequential binary x86 programs. The static analysis could be enhanced
to revert more complex optimizations such as loop unrolling or tiling. This could allow
our system to parallelize more complex binary programs. Such advanced parallelizer,
combined with a dynamic binary parallelizer, would lead to a very robust and efficient
solution to parallelize binary programs.

106 CHAPTER 3. BINARY CODE PARALLELIZATION

Chapter 4

Code Version Selection

4.1 Introduction

During the long history of compilation, many optimization passes have been designed
and recent compilers are exploiting most of them. For instance, recent versions of
GCC exhibit more than 150 different options to control the optimizations applied on
a program. Considering this large number of optimization passes, one of the main
critical tasks for a compiler is then to find the ordered set of optimizations leading
to the best output, considering a given program and architecture. Due to the large
number of available optimization passes, to their interactions, and to the complexity of
the target architectures, the selection of a good optimization sequence is particularly
difficult in the general case [21, 72, 38, 134, 51, 1, 105, 52]. For instance, if we focus
on a loop, unrolling it can provide large performance improvement but, due to the
increased number of scalars, the register allocation pass may produce a less efficient
result, degrading the efficiency of the generated code.

Even worse, in many cases, the performance of the compiled application depends on
runtime parameters such as the input data size, or the number of available processor
cores. For instance, we observed on a matrix multiplication code using simple control
and data structures, that depending on the input data size, distinct parallel versions
provide the best performance, while running all versions on a single computer. Further,
we observed that the version offering the best performance is also not the same when
run on different machines, even with the same input data. Those parameters, impacting
the execution time of a program, define an execution context.

The static compilers cannot generate one unique code version always reaching the
maximal performance in every context. To reach this maximal performance, it is
required to consider several functionally equivalent versions of the application. Each
version can be optimized in a different way, targeting a distinct execution context. At
runtime, the best version according to the current execution context has to be executed.
The performance that can be reached with such systems can then outperform any
statically generated version.

Codes with deterministic and regular behavior are of particular interest for selection
systems as their performance can be precisely characterized. This is a fundamental
property when selecting code versions as the version performance must be predicted

107

108 CHAPTER 4. CODE VERSION SELECTION

at some point in order to determine which version to execute in the current context.
Another interesting property for selection systems is the version diversity. Having very
different versions resulting from the application of a wide variety of optimizations can
help the selection system to adapt to very different execution contexts. As presented
in Chapter 2, the polyhedral model cumulates those two aspects: the loop nests in this
model have a statically analyzable behavior with regular memory accesses, and a large
number of different optimizations can be applied on them. Thus, the polyhedral model
is a good frame in which performing dynamic code selection.

In the previous chapter, we have presented a parallelization system able to stati-
cally parallelize binary code. We present here a hybrid static-dynamic code selection
mechanism which can enhance the performance of a polyhedral loop nest when differ-
ent execution contexts are met. For this system, we consider that an execution context
is mostly defined by the current architecture, by the input data size and shape, and
by the number of available processor cores. When various execution contexts are met
by a program, we show that this hybrid system nicely complement a static polyhedral
parallelizer such as the one we have presented earlier.

We present an overview of our selection system in Section 4.2. It is able to predict
execution times for polyhedral loop nests in order to select the most efficient one for
a given execution context. The different code versions can be automatically generated
using existing tools as presented in Section 4.3. Those versions are then profiled on
the targeted computer in order to extract a performance characterization allowing us
to predict their execution times. This profiling step is presented in Section 4.4. At
runtime, before each loop nest execution, the performance of every version is predicted
using the strategy detailed in Section 4.5. Our system has been implemented; its accu-
racy and performance are evaluated on a set of polyhedral loop kernels in Section 4.6.

4.2 Selection Framework Overview

Our framework aims at selecting the best code version, i.e. the fastest one, before
any loop nest execution. To achieve this goal, we predict each code version execution
time in the current execution context and run the version predicted to be the fastest.
Predicting an accurate execution time in all the possible execution contexts is a very
difficult problem that we do not try to solve here. But rather, our framework computes
an approximation of the execution times which is accurate enough to provide a realistic
ranking of the different code versions.

To predict those execution times, our framework first measures, during an offline
profiling step, the execution time of each code version in various execution contexts
expected to be as representative as possible of all the actual contexts. Those execution
times are gathered in a parametric ranking table. A runtime prediction step adapts
those results according to the current context in order to predict an execution time
for each code version. This runtime prediction is preceding each execution of a loop
nest. It is embedded in the application binary and is run through a simple function
call replacing all the target loop nest executions.

Figure 4.1 shows an overview of the framework. The different phases are represented
vertically from the generation of the different code versions at compile time to the

4.3. GENERATING DIFFERENT CODE VERSIONS 109

����������� 	�ABCD�� 	����E��FC��F

����C������D�

��������D���C���������

��B��������F��B�

��D�����

���FC���� ���FC�������

 �C�C��D��BBDC���C��

�C���������

���

!��"CD��

��D�����

E��FC��

	�ABCD���CA�

!��"CDC����CA�

������C����CA�

Figure 4.1: Framework overview.

execution of the loop nest. All those steps are detailed below.

4.3 Generating Different Code Versions

The different versions of the loop nest differ in the optimizations that were applied
to it. Among all the existing optimizations, the polyhedral transformations are of
particular interest. Indeed, the polyhedral framework allows a large variety of high-
level transformations able to improve parallelism and data locality. Their impact on
performance is usually greater than common non-polyhedral optimization. We chose to
compare different versions where the main differences between the code versions are the
parallel schedules and the tile sizes. Both have a strong impact on performance: degree
of parallelism, load balancing, communication volume, cache locality, and vectorization
capability depend on them. Moreover, both the tiling levels and sizes [59, 118], and the
parallel schedules [105, 104] are difficult to determine at compile time, making them of
particular interest for a dynamic system.

For our benchmarks, we generated different versions by hand. In order to auto-
matically build several versions, current automatic parallelizers such as PLUTO [23]
or LetSee [105, 104] could be used to determine several probably efficient optimization
sequences. The iterative nature of LetSee makes it particularly amenable to this task.
Generating a tiled and a untiled version is also generally a good idea as the untiled
version is often more efficient for small problem sizes. Auto-parallelizing tools could
also consider different parallel schedules when they all lead to equivalent memory per-
formance. Another interesting approach would be to generate code versions supposed
less efficient due to some hardware hypothesis. For example a code version expected to
be inefficient due to its expected cache misuse could be the best one on a hardware ac-
celerator without a cache. The incorporation of such versions would give to our system
the opportunity of selecting and running efficient versions on very different hardwares.

110 CHAPTER 4. CODE VERSION SELECTION

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200 1400

M
fl
o

p
s

N (data size)

Jacobi-2D

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200

M
fl
o

p
s

N (data size)

Matrix product

Figure 4.2: Performance of a simple parallel version relatively to the data size.

4.4 Profiling the Code Versions

The final goal of the system is to select the fastest version in the current execution
context among all the provided ones. For this purpose, the system has to predict the
execution time of each version or at least to rank every version against the others.
Existing runtime selection systems often use previous runs of the program to “predict”
the performance of each version in the future: each version is executed and evaluated
in the encountered contexts. If a similar context is encountered again, this information
is used to select the correct version. This obviously imposes many executions of the
versioned code fragment. We want to predict execution times before every execution
of the loop nest in order to be more reactive, and then more efficient.

Naively, one could measure the execution time of each version in one specific ex-
ecution context and use the results to rank the versions in every execution context.
This would be correct if all the contexts lead to the same execution times. This is not
the case. When measuring the execution time of an application, one has first to evalu-
ate the impact of some characteristics of the context, the static factors, whose impact
is constant during the whole execution of a code fragment in every possible context.
They are taken into account when measuring the execution time of any run. For exam-
ple, the micro-architecture characteristics are static factors: instruction cycle, pipeline,
branch prediction, out-of-order execution, floating point operation latency, amount of
processor memory cache, etc. However other factors, the dynamic ones, can change
with the execution context and also have to be measured.

In Figure 4.2, one can see the performance of two polyhedral kernels (Jacobi-2D
and a matrix product) with different increasing data sizes on a recent computer. Those
kernels have been parallelized by hand. We clearly see that the performance of both
kernels evolves with the data size. This evolution is due to several complex factors
related to the memory hierarchy of the computer on which the kernels are run. For
instance the cache usage plays a large role on this performance evolution.

The impact of the data size on the execution time is difficult to characterize due
to the complexity of the underlying memory architecture. Moreover, each code version
can exhibit a specific behavior and, for a given code version, some large performance
variations can appear even with nearly identical data sizes. It means that, to precisely

4.4. PROFILING THE CODE VERSIONS 111

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 200 400 600 800 1000 1200 1400

M
fl
o

p
s

N (data size)

Jacobi-2D

v1
v2
v3
v4
v5

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 200 400 600 800 1000 1200

M
fl
o

p
s

N (data size)

Matrix product

v1
v2
v3
v4
v5
v6

Figure 4.3: Performance of several versions relatively to the data size.

characterize the performance of a code version, a fine sampling of the execution time for
many different sizes is required. However, such sampling would lead to large profiling
results and to very long profiling steps.

Nevertheless, one common point can generally be observed: at very large data sizes,
the processor caches are less effective and most of the performance perturbations due
to the caches are not occurring anymore. Moreover, code selection systems are more
useful for long computations, generally occurring when processing large data. Hence,
our framework measures the execution time of each code version when the data cannot
fit in the processor cache memory. The rank of each version is exact only for that
specific data size. However, we assume that this ranking is a good approximation over
all the possible sizes. In general, the different versions are indeed following performance
patterns that are roughly similar, except for some specific values and at small data
sizes. This is illustrated in Figure 4.3, where for both example kernels, we compare the
performance of different versions for several increasing data sizes. The versions differ
in the number of tiling levels, the tile sizes and the schedules applied. One can see
that there are fluctuations, especially at small data sizes. But the relative order of the
versions for the biggest data size remains a good approximation of the general order
over all the possible sizes.

We have chosen not to depend on any architecture-specific mean to detect when
the data overfills the cache memory. Instead, the profiling step performs a few mea-
surements while increasing the data size. When two successive measurements lead to
similar performance, we assume that this data size is bigger than size of the first cache
levels. This is a best-effort method that is never guaranteed to detect cache overfills,
but which works well in practice.

The second factor that can impact the code performance is the number of threads
used to perform the computation. For example, on Figure 4.4, we can see the perfor-
mance of a naive parallelization of both sample kernels when using different number
of threads. We obviously see that the number of used threads strongly impacts the
performance of the application.

There are two main reasons for variable numbers of available threads during the
execution of an application. First the operating system can decide to allocate a given
number of threads to the application according to the amount of available hardware

112 CHAPTER 4. CODE VERSION SELECTION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5

M
fl
o

p
s

Number of threads

Jacobi-2D

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5

M
fl
o

p
s

Number of threads

Matrix product

Figure 4.4: Performance of the parallelized kernels relatively to the number of threads
used.

resources. This amount can change depending on other applications running concur-
rently and on possible hardware failures. Second, the data size directly impacts the
load balance of the loop nest: if the trip count of the parallelized loop depends on
the data size, the performance may greatly vary with nearly identical datasets. For
example on a four-core processor, having four or five iterations to be executed by the
parallel loop leads to very different efficiency.

To precisely handle this factor, the profiling is repeated in successive measurements
for different number of active threads ranging from one to the number of logical pro-
cessor cores. The profiling result is therefore made of execution times for each possible
number of active threads. A runtime system is then in charge of determining how
many threads will be active during each iteration of the nest, in order to deduce an
execution time prediction. For the runtime system to be able to deduce execution times
at the iteration granularity, the result of the profiling step is actually made of average
execution times per iteration instead of absolute execution times.

In the following subsections, we propose two different profiling strategies. Those
strategies comply with the same contract: for each code version, they build an asso-
ciated profiling code that can be substantially different from the executed code, but
that is dedicated to measure relevant execution times per iteration on large domains
and for every possible number of active threads.

4.4.1 Strategy 1

In this subsection, we present a first strategy which aims at profiling the different code
versions in execution contexts which are as comparable as possible. We accept here to
perform major changes in the profiled code structure to ensure that all the versions are
evaluated with iteration domains that are as similar as possible. A few challenges have
to be addressed here: first, in order to perform the measurements while increasing the
data size (to overfill the first cache levels), the iteration domain size has to be increased.
Second, the number of used threads has to be controlled, and third, to ensure that the
domains are comparable, the strategy has to ensure that only full tiles are executed
when considering tiled loop nests.

4.4. PROFILING THE CODE VERSIONS 113

Strategy Goals and Concepts

The domain size has to be increased at each step of the profiling process and the
number of active threads has to be controlled. A simple way to do so is to remove
all the iteration domain boundary constraints, and then to bound the parallel loop
with a new parameter, par_sz, and the other dimensions with another new parameter,
N_min. The latter allows us to control the overall domain size, while par_sz controls the
number of active threads by defining the number of parallel iterations. It is equivalent
as considering that the loops range from zero to either N_min or par_sz.

To be efficient, the codes parallelized with polyhedral transformations are usually
tiled [142, 112]. Significant performance variations can be observed between codes
where tiles are fully executed and where only incomplete tile executions occur. The
number of incomplete tiles depends both on the schedule used in each code version
and on the iteration domain shape. Thus, a given code version can contain more
incomplete tiles than another version for a given domain shape. Since incomplete tiles
usually appear at the domain boundaries, there are generally less incomplete tiles than
full tiles, and thus we choose to build the profiling domain exclusively with full tiles in
this strategy. In order to ensure that full tiles are executed, only the first tiling level
is constrained by the new parameters, while others are left unconstrained. However, if
the domain is not tiled, all the dimensions are constrained.

The resulting profiling code domain is then made of two constraints per loop for
the first tiling level: one expressing the lower bound of the loop, and the second one
for the upper bound which is either N_min or par_sz. Those constraints are applied
on the transformed loop nest.

Time measurement instructions are added and execution times per iteration are
measured. In order to increase the domain size, the value of parameter N_min is
doubled at each step until reaching stable measurements, i.e. having less than 5%
of variation between two successive measurements. The value of par_sz is increased
from one to the number of logical processor cores to simulate all the possible threads
availability.

Building the Profiling Domain

The algorithm used to build the profiling loop nest for a given code version is given
in Algorithm 4.1. It generates a profiling nest from the polyhedral definition of the
considered loop nest version. The full profiling code, i.e. the profiling nest and the
code to control the new parameters, is generated by a syntactic replacement from the
code pattern shown in Figure 4.5. The profiling loop nest is inserted in the pattern,
and its iteration count, PROFILING_NEST_SIZE, defined by an Ehrhart polynomial, is
used to compute execution times per iteration. This Ehrhart polynomial is automat-
ically generated at compile time using the Barvinok library [139]. Notice the token
MEMORY_ALLOCATION which is replaced by some array allocation code. Those instruc-
tions allocate all the arrays such that they occupy nearly all the available memory.
This array allocation allows the system to profile the code for large domain sizes with
a single memory allocation.

The iteration domain bounds have been replaced in the profiling nest to introduce

114 CHAPTER 4. CODE VERSION SELECTION

Algorithm 4.1 Profiling code generation with the first strategy.
Apply the transformation

Remove all the boundary constraints

Create two parameters: N_min and par_sz
Constrain the parallel iterator p by 1 ≤ p ≤ par_sz
tiles1← loop iterators from the first tiling level

for i in tiles1

if i 6= p

Constrain i by 0 ≤ i < N_min

Generate the code

MEMORY_ALLOCATION

do {

old_result = copy_array(result);

N_min = N_min * 2;

for (par_sz = 1; par_sz <= NB_CORES; par_sz++) {

start = time();

PROFILING_NEST

end = time();

result[par_sz] = (end - start) / PROFILING_NEST_SIZE;

}

} while (difference(result, old_result) > 0.05

&& enough_memory(N_min*2));

MEMORY_FREE

Figure 4.5: Code pattern. The profiling code is generated from this code pattern after
some syntactic replacements.

4.4. PROFILING THE CODE VERSIONS 115

for (iT = 0; iT <= M / 64; iT++)

forall (jT = 0; jT <= N / 64; jT++)

for (i= 64 * iT; i <= min(64 * iT + 63, M); i++)

for (j = 64 * jT; j <= min(64 * jT + 63, N); j++)

S[j] += A[i][j];

Figure 4.6: Sample code.

the two parameters par_sz and N_min. Hence, there is no more guarantee that the
array subscript functions are always positive. For example consider a loop iterating
the index i starting from 1 and an array access where the element at position i - 1

is referenced. After replacing the domain constraints, the loop can start at 0 and the
first accessed element is then at position -1. To overcome this issue, the array base is
actually positioned in the middle of an allocated memory space. It does not guarantee
that no incorrect access happens but in practice, this is sufficient as the negative offsets
used in subscript functions are often small constants. More complex analysis could be
performed for cases where a loop index is used in a subscript function with a negative
coefficient. In particular, the relation between the first and last element accessed and
the loop bounds can be determined using the lexicographic minimum and maximum
of the subscript function. Such relation can be used to determine a value range that
the parameters par_sz and N_min can have for the access to fit in memory.

Figures 4.6 and 4.7 illustrate the profiling code generation. In Figure 4.6, we present
a code summing the columns of array A in array S. The loop nest is tiled and parallelized.
Figure 4.7 shows the corresponding profiling code generated from the pattern presented
in Figure 4.5. The domain boundaries are eliminated and the domain size is controlled
by both new parameters par_sz and N_min. While N_min is doubled until reaching a
stable measurement, par_sz is incremented from 1 to the number of available processor
cores. The domain size increase is stopped if the computation requires too much
memory. A simple implementation of this test is performed using the operating system
memory protection mechanisms. In practice, during our experiments, stability has
always been reached before overfilling the memory. The result is made of the last
measured execution times per iteration, for each considered number of parallel loop
trip counts.

For each value of both parameters, the execution time is measured using the regular
operating system timing function, although only the execution time for the last value
of N_min is saved. The expression used to compute the number of iterations (N_min

* par_sz * 64 * 64) is the Ehrhart polynomial representing the iteration domain
size. In the case of multiple statements in the nest, the domain size is the sum of each
statement domain size. This leads to consider the average execution time per iteration
over all the statements as the profiling results.

In this first strategy, the code versions are evaluated in execution contexts that are
as comparable as possible, considering that this similarity leads to better results. The
main drawback of this strategy is the strong code modifications performed to build the
profiling code. The loop bounds and the associated control code can be very different
from the loop bounds used in the original loop nest. This can lead the compiler to

116 CHAPTER 4. CODE VERSION SELECTION

do {

old_result = copy_array(result);

N_min = N_min * 2;

for (par_sz = 1; par_sz <= NB_CORES; par_sz++) {

start = time();

for (iT = 0; iT < N_min; iT++)

forall (jT = 0; jT < par_sz; jT++)

for (i= 64 * iT; i <= 64 * iT + 63; i++)

for (j = 64 * jT; j <= 64 * jT + 63; j++)

S[j] += A[i][j];

end = time();

result[par_sz] = (end - start) / (N_min * par_sz * 64 * 64);

}

} while (difference(result, old_result) > 0.05

&& enough_memory(N_min*2));

Figure 4.7: Sample profiling code for the loop nest presented in Figure 4.6.

apply different optimizations on the profiled code and on the actually executed loop
nest. Then, irrelevant profiled execution times can be measured.

4.4.2 Strategy 2

We present a second strategy whose goal is to maintain the source code as much as
possible in its original form, in order to profile a code as similar as possible to the
actually executed code. During the profiling, the number of active threads and the
iteration domain size are evolving. In this strategy, the number of active threads
is controlled using the OpenMP [95] omp_set_num_threads function, allowing us to
control this factor while preserving the original loop nest bounds. To control the
iteration domain size, we directly change the value of the parameters that are used in
the loop bounds, avoiding any code modification. If no such parameter exists, then the
data size is fixed and a single profiling for this specific data size is sufficient.

One could think that we could simply assign increasing values to the parameters to
increase the iteration domain size. It is actually not always possible as the loop bounds
can be defined as complex functions of those parameters. For instance, Figure 4.8 shows
a simple loop nest where increasing simultaneously the value of both parameters does
not increases the iteration domain size.

The Enclosed Hypercube Problem

We want to find parameter values that ensure a minimal iteration domain size. If
we can guarantee that each iteration domain dimension, i.e. each loop level, has at
least a given number of iterations, then we can ensure that the iteration domain has a
corresponding minimal size. Geometrically, an efficient way to do so is to ensure that

4.4. PROFILING THE CODE VERSIONS 117

for (i = 0; i < N; i++) {

for (j = 0; j < i - M ; j++) {

...

}

}

Figure 4.8: Sample parameterized loop nest. Increasing M does not increase the number
of iterations.

for (i = 0; i <= 10; i++)

for (j = 1; j <= i + 1; j++)

...

�

�

Figure 4.9: Sample iteration domain. A square of 5 × 5 iterations can fit in it, so we
can guarantee that each loop level executes at least 5 consecutive iterations.

the iteration domain polyhedron contains an axis-aligned hypercube, representing the
desired minimal domain size.

For instance, we can see in Figure 4.9 a two-dimensional example loop nest and its
corresponding polyhedral representation. We can ensure that the iteration domain has
at least 5 consecutive iterations for each loop level as we can fit a square of dimension
5 × 5 inside the polyhedron. The square represents the desired minimal size of the
iteration domain: if it can fit in the polyhedron, the domain has the required size.

Our goal is to increase this minimal domain size step by step during the profiling
process; this can be done by increasing the size of the hypercube that has to fit in
the iteration domain. The hypercube size is then controlled using a parameter Nmin.
Thus, the general problem is to know what are the iteration domain parameter values
that guarantee that an axis-aligned hypercube of size Nmin fits in the iteration domain.
Since the hypercube size is a parameter, the values of the domain parameters are then
expressed as functions of Nmin.

In a d-dimensional space, consider a vector
−→
AB with A, B ∈ Zd and a convex Z-

polyhedron P . We want first to know if
−→
AB can fit in P , i.e. if there exists two points

A and B inside P , whose relative position is defined by
−→
AB.

For a given point A in P , B is obviously the point whose coordinates are those of
A translated along

−→
AB. Thus, as all the possible points A are defined by P , all the

possible points B are defined as P ′, a copy of P translated along
−→
AB. For

−→
AB to fit

in P , B has also to be enclosed in P , thus all the possible B such that
−→
AB is enclosed

118 CHAPTER 4. CODE VERSION SELECTION

�
�

Figure 4.10: The intersection of P and P ′ defines all the points such that B can fit in
P , if A is in P .

Algorithm 4.2 Algorithm to determine if a hypercube is included in a polyhedron.
P ← Iteration domain polyhedron

Pinter ← P
H ← Hypercube to test against P
v1 ← A vertex of H considered as its origin

VH ← Vectors defined by v1 and any other vertex of H
for −→vec in VH

Pi ← copy of P
translate Pi along −→vec
Pinter ← Pinter ∩ Pi

return Pinter 6= ∅

in P are defined by the intersection of P and P ′. An illustration of this situation is
presented in Figure 4.10.

Let us now consider a hypercube H with NV vertices, vi being the ith vertex of H.
A specific vertex v1 with minimal coordinates is called the origin of H. We define the
set of vectors VH = {−−→viv1, 2 ≤ i ≤ NV } made of all the vectors generated from any
vertex except the origin of H and pointing to the origin vertex v1. By definition, if all
the vectors in VH can simultaneously fit in P , all the vertices of H can fit in P and
then, H can fit in P . We have seen before how to ensure that a vector is enclosed in
a hypercube. The same principle can be used for all the vectors in VH : a copy of P
is created and translated for each vector in VH . The intersection of all the translated
copies with P defines all the points where the origin of H can be placed. The full
algorithm is presented in algorithm 4.2 and illustrated in Figures 4.11 and 4.12.

Controlling the Parameters

We have not yet solved the whole problem: now we can determine if a hypercube can
fit in an iteration domain but we still have to determine the parameter values such
that the hypercube can fit in it.

We call Nmin the size of the hypercube: every loop level has to execute at least
Nmin iterations. In the algorithm 4.2, the intersection Pinter defines all the points in
P starting from which every loop level executes at least Nmin iterations. The points

4.4. PROFILING THE CODE VERSIONS 119

�

Figure 4.11: Intersection of the translated polyhedron copies in 2D space. The inter-
section is not empty, the polyhedron can enclose the square.

�

Figure 4.12: Intersection of the translated polyhedron copies in 2D space. The inter-
section is empty: the square cannot be contained in the polyhedron.

in Pinter should have one coordinate per loop level but we actually consider that the
iteration domain parameters are regular dimensions in the same way as any loop level.
It means that the iteration domain space has actually as many dimensions as the depth
of the nest plus the number of parameters1. The parameter dimensions coordinates of
integer points in Pinter provide a value for the parameters for which the hypercube fits
in P . Thus, if we pick a point in Pinter, its coordinates in the parameter dimensions
provide us parameter values which ensure that each loop level executes at least Nmin

iterations. As the hypercube size is parameterized, we actually obtain a relation be-
tween each loop nest parameter and Nmin. The size of the iteration domain can then
be controlled through this Nmin parameter.

We present in Algorithm 4.3 the complete algorithm to compute the parameter val-
ues. This algorithm successively considers all the statements. The hypercube problem
is solved for a hypercube of size Nmin for every statement domain: for each statement
s, we compute the polyhedron Ps

inter which defines the possible origins of the hyper-
cube. If the resulting intersection is empty, no relation can be found, the strategy fails,
and the first strategy must be used instead. Otherwise, we pick one point in Presult

and consider its parameter dimensions coordinates. All the parameterized translations
and intersections can directly be computed on the polyhedra defining the iteration do-
mains. To pick a point in Presult, we compute the lexicographic minimum of the set
using the PIP [45] library. In the case of tiled loops, the operations are performed over
the intra-tile dimensions to control the number of iterations in the domain, and not
the number of tiles. An example is provided below.

1Such parametric polyhedron representation is called the combined representation.

120 CHAPTER 4. CODE VERSION SELECTION

Algorithm 4.3 Computation of the parameters values.
for each statement s

Ds ← iteration domain of s
Ps

inter ← hypercube_pb(Nmin, Ds)

Presult =
⋂

Ps
inter

if Presult = ∅

failure

lex_min← lexicographic_minimum(Presult)

return coordinates of lex_min at parameter dimensions

Profiling Code Generation

Once the parameters values are known, the profiling code generation is straightforward.
The considered loop nest is syntactically inserted in a generic profiling code pattern
given in Figure 4.13.

The profiling code pattern used by this strategy is very similar to the code gener-
ated with the first strategy (subsection 4.4.1). The iteration domain parameters are
expressed as a function of the hypercube size, N_min, which indirectly controls the
domain size. The arrays referenced in the computation nests often have sizes defined
as functions of the parameters, thus we reallocate the arrays when the parameters
change. As in the previous strategy, the profiling is repeated for every possible number
of threads, from one to the number of cores, and until reaching less than 5% of vari-
ation between two consecutive measurements. In this strategy the maximum number
of active threads is controlled through a call to the OpenMP omp_set_num_threads

function.

Example

Figure 4.14 shows a code sample to be profiled with our system. The first step in the
profiling strategy is to determine the value of the parameters relatively to the parameter
N_min. The initial iteration domain is defined by four inequalities:



















i ≥ 0
−i + N ≥ 0

j ≥ 0
−3× j + 2×M ≥ 0

We apply a translation of −Nmin on every combination of dimensions and intersect
the results. Nmin is the size of the hypercube and is therefore positive, we then add
this constraint to the system. The resulting domain is the following:

4.4. PROFILING THE CODE VERSIONS 121

do {

old_result = copy_array(result);

N_min = N_min * 2;

PARAMETER_INITIALIZATION

MEMORY_ALLOCATION

COMPUTE_LOOP_NEST_SIZE

for (par_sz=1; par_sz<=NB_CORES; par_sz++) {

omp_set_num_threads(par_sz);

start = time();

LOOP_NEST

result[par_sz] = (time() - start);

result[par_sz] = result[par_sz] / LOOP_NEST_SIZE;

}

MEMORY_FREE

} while (difference(result, old_result) > 0.05

&& enough_memory(N_min*2));

Figure 4.13: Profiling code pattern for strategy 2.

int a[N+1][2*M+1];

...

forall (i = 0; i <= N; i++) {

for (j = 0; 3 * j <= 2 * M; j++) {

a[i][j] *= 5;

}

}

Figure 4.14: Code sample to profile.

122 CHAPTER 4. CODE VERSION SELECTION

of cores version 1 version 2 version 3
1 30 ms 28 ms 32 ms
2 10 ms 14 ms 15 ms
3 7 ms 9 ms 8 ms
4 5 ms 8 ms 6 ms

Table 4.1: Sample parametric ranking table built on a 4-cores processor for 3 code
versions. The table content is made of execution times per iteration.































Nmin ≥ 0
i ≥ 0

−i−Nmin + N ≥ 0
j ≥ 0

−3× j − 3×Nmin + 2×M ≥ 0

These inequations define the intersection of the translated domains. We now search
for an integer point in this polyhedron, by computing its lexicographic minimum. The
PIP library computes the lexicographic minimum as the point:



















i = 0
j = 0

N = Nmin

M = 2×Nmin − (Nmin/2)

The two last coordinates of this point define the relation between the program
parameters and the hypercube size, Nmin. The profiling code generated from those
parameter definitions is shown in Figure 4.15. We can see on the figure that the pattern
shown in Figure 4.13 is simply filled. The original computation nest is inserted, and
the parameter initialization is used to control the domain size depending on the value
of N_min. Notice the presence of an Ehrhart polynomial to compute the number of
executed iterations (dom_size).

4.4.3 Parametric Ranking Table

The ranking table, containing the execution times per iteration measured during the
profiling step, is two dimensional. One dimension is made of the different versions
while the second dimension represents the number of used processor cores. For a given
version, and a given number of cores available to the application, the ranking table
gives the average execution time per iteration of this version. A simple example of a
ranking table is presented in Table 4.1.

4.5 Runtime Selection

The profiling phase characterizes the performance of the code versions depending on
the number of threads used. In order to predict an execution time for each version,
the number of threads which can be used in the current execution context has to be

4.5. RUNTIME SELECTION 123

do {

old_result = copy_array(result);

N_min = N_min * 2;

N = N_min;

M = 2 * N_min - N_min / 2;

a = array_allocation(N + 1, 2 * M + 1);

dom_size = ((2./3.*M + ((M%3==0) ? 1:

(M%3==1) ? 1./3. : 2./3.)) * (N+1));

for (par_sz=1; par_sz<=NB_CORES; par_sz++) {

omp_set_num_threads(par_sz);

start = time();

forall (i = 0; i <= N; i++) {

for (j = 0; 3 * j <= 2 * M; j++) {

a[i][j] *= 5;

}

}

result[par_sz] = (time() - start);

result[par_sz] = result[par_sz] / dom_size;

}

array_free(a);

} while (difference(result, old_result) > 0.05

&& enough_memory(N_min * 2));

Figure 4.15: Profiling code generated from the code in Figure 4.14.

124 CHAPTER 4. CODE VERSION SELECTION

Simple counters No false sharing Ehrhart polynomial
3,665 ms 1,222 ms 20 ms

Table 4.2: Time to measure a number of executed iterations.

evaluated at runtime. A runtime component is then run to measure it before each loop
nest execution.

4.5.1 Iteration Count Measurement

The runtime component executes a very simplified copy of each version loop nest called
prediction nest. Its goal is to count how many threads are running simultaneously when
each loop iteration is executed. A simple solution to build such nest is to replace every
statement by the incrementation of thread-specific counters, the result can then easily
be deduced from them. The major performance issue resulting from this solution is
due to false-sharing between processor cores. Then, one must ensure that the counters
are not allocated contiguously in memory. Another performance issue is due to the
full execution of the loop nest while incrementing the counter. A possible solution is
to replace the inner sequential loops by the instantiation of the Ehrhart polynomial
representing the number of iterations executed by each thread. Such polynomial can
be built by tools such as Barvinok [139], considering that the indices of outer loops
until the parallel one are parameters. The polynomial can then be instantiated at each
iteration of the parallel loop with the current value of the parameters and outer loop
indices. Its value is then the number of iterations executed by the loops in the parallel
loop.

We have compared those approaches on a simple loop nest made of a single state-
ment enclosed by two tiled loops and where the outermost loop is parallel. The nest
executes ten billion iterations in total and four cores are available on the computer.
Table 4.2 presents the execution time needed for each method to compute the number
of iterations executed by each thread: first using a simple counter per thread, second
when avoiding false sharing and third when instantiating an Ehrhart polynomial. We
clearly see that the last solution outperforms naive counting. Indeed, it requires only
a few tests and computations to instantiate the polynomial, and the time needed for
each instantiation does not depend on the number of iterations executed inside the
parallel loop.

This is the solution we have chosen for the prediction nest. At compile time,
we syntactically replace the content of the parallel loop by the computation of the
Ehrhart polynomial counting the number of iterations executed in loops enclosed by
the parallel loop. The value defined by the polynomial is added to a counter, specific to
the thread which executes the current parallel iteration. The operation is performed per
statement: the counter contains the sum of the iteration counts for all the statements.
At the end of the prediction nest execution, each counter then stores the number of
executed iterations per thread.

Figure 4.16 presents a sample code and its associated prediction nest. Observe that
the innermost loop and the statement are replaced by a counting code. This counting

4.5. RUNTIME SELECTION 125

for (i = 0; i < M; i++)

forall (j = 0; j < N; j++)

for (k = i; k < j; k++)

A[j][k] = B[i] * 2;

for (i = 0; i < M; i++)

forall (j = 0; j < N; j++)

cnt[thread_id] += j - i;

Figure 4.16: A loop nest (left) and its corresponding prediction nest (right).

forall (i = 0; i < 4; i++)

for (j = i; j < 9 - i; j++)

...

�

�

Figure 4.17: Sample loop nest and the corresponding iteration domain where the iter-
ations are grouped by thread.

code increments the thread-specific counter with the trip count of the removed loop.
The Ehrhart polynomial j − i, generated at compile time, computes this number of
iterations. Despite this polynomial is very simple in this example, the method is robust
and can handle arbitrarily complex affine loop nests.

4.5.2 Load Balance

We assume that all the loop nest iterations have identical execution times. Under this
hypothesis, one can compute the number of iterations executed by each thread count.
First, the array of counters cnt is sorted in descending order. Then, for each position
1 ≤ i < number of threads, we can state that cnt[i-1] - cnt[i] iterations have been
executed in parallel by i threads.

In Figure 4.17, we present a sample two-dimensional iteration domain and its corre-
sponding code. The dimension i is parallel, four threads are available. The iterations
are grouped by thread in the figure, where each gray capsule is a group. The dashed
lines cross iterations which are executed simultaneously on different threads. No syn-
chronization is performed in the loop nest but we have assumed that the iterations
are all executed in the same amount of time, which leads to this regular execution
pattern. Notice that the threads do not necessarily have their first iteration when j =
0. One can see that the first thread, on the bottom, executes 9 iterations, the second
7 iterations, the third 5, and the fourth thread executes 3 iterations. The result of the
prediction nest is then cnt = {9, 7, 5, 3}. Using the technique described before,
we can deduce that 2 iterations are executed by one thread (9− 7), 2 by two threads
simultaneously (7 − 5), 2 by three threads (5 − 3), and 3 iterations are executed by
all the threads, each one executing 3 iterations. The same result can be observed on
Figure 4.17 considering the number of dashed lines for each possible number of ac-
tive threads. For instance, one can see three dashed lines crossing an iteration for all
threads.

126 CHAPTER 4. CODE VERSION SELECTION

The polyhedral loop nests usually have a very regular behavior. The different
executions of a statement often lead to similar execution times. Thus, assuming that
all the iterations can be executed in the same amount of time is a realistic hypothesis.

4.5.3 Predicting the Execution Time

The execution time can be directly deduced from the parametric ranking table and the
prediction nest results. We call NC the number of available processor cores, Nitv

t the
number of iterations executed by t threads (provided by the prediction nest of version
v), and ET v

t the execution time of one iteration of the nest in version v when t threads
can be used (provided by the profiling). We can then compute a predicted execution
time for the version v as being:

NC
∑

t=0

(t×Nitv
t × ET v

t)

For instance, consider the previous example where 3 iterations are executed simul-
taneously by all the threads, and where one, two, and three threads execute simultane-
ously 2 iterations while the other threads are idle. Consider also the profiled execution
times of the first profiled version in Table 4.1. The execution time is then computed as
4×3×5 ms for the part of the iteration domain executed by four threads, 3×2×7 ms
for the iterations executed by three threads, 2× 2× 10 ms for the iterations executed
by two threads plus 1 × 2 × 30 ms for the sequential iterations. This sum predicts
an execution time of 202 milliseconds. A predicted execution time is computed in the
same way for every version of the loop nest with the current execution context, before
running the one that has been predicted as being the fastest one.

Note that if any limit on the number of usable processor cores exists on the system,
for example to handle hardware failures, we assume that it remains constant from the
execution of the runtime component to the execution of the loop nest. The number of
threads available to execute the prediction nest is then constrained by the same limit
as when executing the actual loop nest.

4.5.4 Discussion

Links with the Polyhedral Model

Our system uses the polyhedral model at every step. The different versions can be
generated automatically while applying very different optimizations thanks to the poly-
hedral model and its associated tools. In both profiling strategies, the profiling nest
can be automatically generated as the loop nest polyhedral representation is available.
The datasets used for the profiling can also be automatically generated as they mostly
correspond to different parameter values. The profiling and prediction phases use the
polyhedral model to efficiently count the number of iterations that have been or will
be executed.

One could see the limits imposed on the code structure as a drawback. We claim
that it is an advantage for a code selection framework. When considering the full set
of possible code fragments, one has to consider for example loops with exit conditions

4.6. EXPERIMENTS 127

Model Frequency Processor cores Threads per core
Intel Core i7 920 2.6 Ghz 4 2

AMD Opteron 2431 2.4 Ghz 6 1
AMD Phenom II 965 3.4 Ghz 4 1

Table 4.3: Experimental configuration.

depending on the data. In that case, subtle changes in the dataset can have a large
unpredictable impact on the loop execution time. The polyhedral model offers a strict
frame where the loop nests are guaranteed to perform regular memory accesses in
iteration domains that are statically defined. This ensures that the execution time
predictions made by our system are accurate in many different execution contexts even
if only a few profiling runs have been launched. Thus, on the contrary of the other
existing systems, the execution contexts which can make our selection system fail are
much rarer, leading to a more robust selection.

Binary Size Increase

Each loop nest version is generated in a separate function in the binary file. Those
versions are increasing the total size of the binary file. This size increases heavily
depending on the number of registered versions, the target architecture and the loop
nest size. During our experiments, we measured a binary size increase of about a few
kilo-bytes for each loop nest version. This size growth has to be related to program sizes
and can be considered as negligible in modern general-purpose computers. Moreover,
if this factor is considered as highly important for a given architecture, e.g. embedded
systems, one can choose to limit the number of considered versions to a small but very
efficient subset.

Dynamic Thread Mapping

To predict an execution time, it is assumed that the mapping of the parallel iterations
to the threads is the same in the prediction nest and in the corresponding loop nest
version. It then excludes dynamic thread mapping, often implemented as work-stealing
methods, from the scope of our framework. Such systems would dynamically assign
each parallel iteration to a thread at runtime. Dynamic mapping systems have been
proven to be effective to enhance load balancing [20] but we show in the experimental
results section that such system tends to be counter-performing on very regular codes
such as the affine loop nests that our system targets.

4.6 Experiments

We run our experiments on three computers with different multicore processors de-
scribed in Table 4.3. All of them run a Linux 2.6.35 system. The programs are
compiled using the O3 optimization level of GCC 4.4.

128 CHAPTER 4. CODE VERSION SELECTION

The benchmark programs are 12 common polyhedral loop nests. The code 2mm

is made of two matrix multiply D = A × B × C, adi is the ADI kernel provided
for example with PLUTO, covariance is a covariance matrix computation, gemm and
gemver are taken from BLAS [17], jacobi-1d and jacobi-2d are the 1D and 2D
versions of the Jacobi kernel, lu is a LU decomposition kernel, matmul is a simple
matrix multiply, matmul-init is a matrix multiply combined with the initialization of
the result matrix, mgrid is a kernel extracted from the mgrid code in SPECOMP [5] and
seidel is a Gauss-Seidel kernel as provided with PLUTO. Those kernels are typically
put in libraries and called many times by applications cumulating the benefits of our
system.

For each benchmark program, many versions are generated. One of those version
is automatically generated by the PLUTO parallelizing compiler. Other versions have
been designed by an expert, changing the number of tiling levels and the tile sizes,
and performing polyhedral loop transformations. As explained in Section 4.3, those
versions could have been generated by automatic tools. Table 4.4 details how each
considered version has been built. In this table, each code version is associated with
its tile size and its parallel schedule. When codes are made of many statements, the
tile size is actually the tile size of the most time consuming statement. A letter next to
a tile size denotes different tiling of less representative statements. From each version,
the profiling and prediction codes are generated by a set of fully automatic scripts
in our implementation. The result of the prediction codes determines the framework
choice in each execution context.

Table 4.4: Considered code versions.

Name Tile sizes Sched.

2mm

1 × 1 × 1 A
16 × 16 × 16 B
32 × 32 × 32 B
1 × 32 × 32 C
1 × 16 × 16 C

adi

32 × 32 × 32 A
16 × 16 × 16 A
16 × 16 × 16 B
32 × 32 × 32 C

Continued on next page...

4.6. EXPERIMENTS 129

Name Tile sizes Sched.

covariance

32 × 32 × 32 A
32 × 32 × 32 B

32 × 32 × 32 (a) C
32 × 32 × 32 (b) C
32 × 32 × 32 (c) C

32 × 32 × 32 D

gemm

32 × 32 × 32 A
1 × 1 × 1 A

64 × 64 × 64 A
32 × 32 × 32 B

16 × 2 × 16 × 16 × 128 × 16 C
32 × 32 × 32 B
52 × 52 × 52 D

gemver

20 × 16 × 400 × 16 A
64 × 64 B
16 × 16 B
16 × 16 A
64 × 64 A

jacobi-1D

1 × 1 A
256 × 256 B
256 × 256 C
256 × 256 D

jacobi-2D

32×32×32 A
32×32×32 B
32×32×32 C
16×16×16 C
32×32×32 D

lu

16 × 2 × 16 × 16 × 100 × 16 A
32 × 32 × 32 B
32 × 32 × 16 B

matmul

16 × 2 × 16 × 8 × 128 × 8 A
16 × 16 × 16 A
32 × 32 × 32 A
64 × 64 × 64 A

128 × 128 × 64 A

matmul-init

8 × 2 × 8 × 8 × 128 × 8 A
16 × 16 × 16 A
32 × 32 × 32 A
16 × 16 × 16 B

Continued on next page...

130 CHAPTER 4. CODE VERSION SELECTION

Name Tile sizes Sched.

mgrid

32 × 32 × 32 A
16 × 16 × 16 A
32 × 32 × 32 B
32 × 32 × 128 B

seidel

10 × 15 × 15 A
16 × 16 × 16 A
16 × 16 × 16 B
16 × 16 × 16 C

8 × 8 × 8 A

The evaluated execution contexts are made of six different input data with increas-
ing random sizes and shapes. For example, if the input data is a matrix, some datasets
can be made of square and rectangular matrices of different sizes. The chosen data
usually lead to execution times ranging from half a second to a couple of minutes. For
each data size, all the different number of available cores is considered.

4.6.1 Dynamic Scheduling of Regular Codes

To measure the load balance in the current execution context, the prediction nest is run.
The way this measurement is done imposes that the mapping of the loop iterations to
the threads is reproducible from the load balance measurement to the actual execution.
This prevents us from using our system with a dynamic scheduler.

The dynamic schedulers are usually efficient for irregular applications, with various
task sizes and complex communication schemes [19]. They are however much less
efficient on regular applications such as the loop nests we target, meaning that the
static mapping of threads on processor is often the best solution for those applications.
To illustrate this, we have measured the speedup of two dynamic schedulers over the
default static blocked scheduling provided by OpenMP.

We show in Figures 4.18 to 4.23 the speedup of the OpenMP dynamic strategy
(on the left) and of Cilk version 8503 [19] (on the right) over the OpenMP static
blocked scheduling strategy. The tests have been run on the three test machines. Each
presented value is the average speedup of the best version of one program, over six
different data sizes.

We clearly notice on the figures that both dynamic schedulers fail to achieve good
performance in most of the tested cases: the dynamic strategies rarely outperform the
static one. Those runtime systems usually count on the tasks irregularity to compensate
their overhead. The programs we consider are regular and seem to rarely exhibit enough
irregularity to let those dynamic schedulers reach good performance. It means that,
not using a dynamic scheduler with our system is not a strong limitation.

4.6. EXPERIMENTS 131

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2m
m

adi
covariance

gem
m

gem
ver

jacobi-1d

jacobi-2d

lu m
atm

ul

m
atm

ul-init

m
grid

seidel

Figure 4.18: Speedup of OpenMP dynamic
over static on Core i7.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2m
m

adi
covariance

gem
m

gem
ver

jacobi-1d

jacobi-2d

lu m
atm

ul

m
atm

ul-init

m
grid

seidel

Figure 4.19: Speedup of Cilk over OpenMP
static on Core i7.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2m
m

adi
covariance

gem
m

gem
ver

jacobi-1d

jacobi-2d

lu m
atm

ul

m
atm

ul-init

m
grid

seidel

Figure 4.20: Speedup of OpenMP dynamic
over static on Opteron.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2m
m

adi
covariance

gem
m

gem
ver

jacobi-1d

jacobi-2d

lu m
atm

ul

m
atm

ul-init

m
grid

seidel

Figure 4.21: Speedup of Cilk over OpenMP
static on Opteron.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2m
m

adi
covariance

gem
m

gem
ver

jacobi-1d

jacobi-2d

lu m
atm

ul

m
atm

ul-init

m
grid

seidel

Figure 4.22: Speedup of OpenMP dynamic
over static on Phenom II.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2m
m

adi
covariance

gem
m

gem
ver

jacobi-1d

jacobi-2d

lu m
atm

ul

m
atm

ul-init

m
grid

seidel

Figure 4.23: Speedup of Cilk over OpenMP
static on Phenom II.

132 CHAPTER 4. CODE VERSION SELECTION

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

2996244819001352804256

Figure 4.24: Execution times for adi on
Opteron (5 threads). Version 2 is the best
one for the fifth dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

2996244819001352804256

Figure 4.25: Execution times for adi on
Core i7 (5 threads). Version 2 is the worst
one for the fifth dataset.

4.6.2 Execution Context Characteristics

In this subsection, we illustrate different cases using histograms. The histograms in
Figures 4.24 to 4.28 represent execution times of every version of a specific program
on a given architecture using a fixed number of threads. The execution times are
normalized over the one of the best version in each context: the best version has
always an execution time of 1, others are above as they necessarily perform worse. The
different data sizes and the different versions are distributed on the horizontal axis.
The darker bar is the version that our system selects using the strategy 2 to profile the
versions.

During our experiments, we observed many performance variations. First, signifi-
cant performance variations can be observed for a given code version among different
computers for a fixed problem size and number of cores. For example with adi, when
considering a problem size of 2448 (fifth dataset on figures) and 5 available processor
cores, version 2 is the best one with the Opteron processor (Fig. 4.24) but the worst
one with the Core i7 processor (Fig. 4.25).

We also observed performance variations when the number of available cores on a
given computer varies for a fixed problem size. For example, with the Core i7 processor,
with gemver and for a problem size of 10000 (first dataset on figures), the first version
is the best one when only one processor core is available (Fig. 4.26) but the worst one
when all the cores can be used (Fig. 4.27).

Finally, when the problem size changes, we can also observe performance variations
for a fixed computer and a fixed number of available cores (Fig. 4.28). For example,
with all the processor cores of the Phenom processor, the fourth version of mgrid is
inefficient for a problem size of 320 (third dataset on the figure) but is the best one for
a problem size of 500 (last dataset on figure).

This illustrates how the execution context, made of the input data, the architecture,
and the number of available processors, impacts the execution time of a program. Thus,
a dynamic system able to quickly detect the best version for the current context leads
to speedups. We show in the next subsections that our system is able to quickly and
accurately detect the best version in various contexts.

4.6. EXPERIMENTS 133

 0

 0.5

 1

 1.5

 2

 2.5

 3

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

150001400013000120001100010000

Figure 4.26: Execution times for gemver

on Core i7 (1 thread). Version 1 is the
best one for the first dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

150001400013000120001100010000

Figure 4.27: Execution times for gemver

on Core i7 (8 threads). Version 1 is the
worst one for the first dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

500440380320260200

Figure 4.28: Execution times for mgrid on Phenom (4 threads). Version 4 is the best
one for the last dataset, but is inefficient for the third dataset.

134 CHAPTER 4. CODE VERSION SELECTION

4.6.3 Execution Time Gains

Our runtime system is evaluated on each of the three computers, for each code with
six different problem sizes. Each measurement is repeated with a number of threads
varying from one to the number of logical cores, simulating different resource availabil-
ity. The statistics presented in Table 4.5 then enclose more than one thousand runs,
each measurement being the median value out of five executions (although we did not
notice much difference between different runs in identical contexts).

The theoretic best runtime mechanism would select at no cost the best code version
among all considered versions for any given execution context. All measurements
presented in Table 4.5 are speedup compared to this theoretic best runtime mechanism,
so they are necessarily below or equal to 100%. Having 100% in a table cell means
that the maximal performance has been reached using the considered code versions in
all the execution contexts.

For each processor and program, we present three measurements. The first two
columns correspond to the two profiling strategies presented in this chapter. The last
one, the best static version is one unique version of the program that performs best in
average in all the tested execution contexts. If one considers an oracle static compiler,
it is the version that this perfect offline compiler would generate. Note that no system
is currently able to generate this code version, it has been chosen here after having
tested all the possible versions in every execution context.

A data is missing with lu for the strategy 2 of our system because, due to its code
characteristics, the strategy 2 is not able to build a correct profiling code. Also note
that the presented numbers takes the runtime system overhead into account.

One can see that both strategies provide very good results. The runtime system is
able to exploit almost all of the available performance in all the tested cases. There is
no clear winner between the two strategies. One can also see that our system is able to
outperform in some cases the best static version. It means that even an oracle static
compiler would not be able to exploit as much performance as our system is able to in
those cases thanks to its dynamic nature. In every case, our system is able to compete
with this best static version.

4.6.4 Accuracy

We present in Figures 4.29-4.34 a graphical evaluation of our system accuracy in the
tested execution contexts. The horizontal axis represents the code versions of a program
in each execution context: each value on that axis represents one code version evaluated
on a specific dataset, using a specific number of threads. For each of those entries, we
present the actual execution time (full line) and the predicted execution time (dashed
line). Those values are sorted by the actual execution time. On the left, the predictions
are made using the strategy 1, on the right using the strategy 2. A good prediction
leads to a dashed line on the graphs that closely follow the variation of the full line.

We can see on the figures that the predicted execution times are very precise and
closely follow the actual execution times. There is no large misprediction: no efficient
version is predicted as being inefficient and no inefficient version is predicted as being
efficient.

4.6. EXPERIMENTS 135

Processor Program
Strategy 1 Strategy 2 Best static

performance performance performance

Corei7

2mm 100.0 % 98.9 % 100.0 %

adi 99.6 % 98.7 % 97.5 %

covariance 96.6 % 95.8 % 99.7 %

gemm 93.4 % 84.7 % 93.5 %

gemver 80.6 % 98.3 % 91.6 %

jacobi-1d 99.5 % 99.5 % 99.9 %

jacobi-2d 90.2 % 94.8 % 99.6 %

lu 91.2 % - 98.3 %

matmul 98.5 % 97.9 % 98.5 %

matmul-init 100.0 % 97.6 % 100.0 %

mgrid 97.0 % 99.9 % 97.0 %

seidel 99.5 % 99.8 % 99.6 %

Opteron

2mm 100.0 % 100.0 % 100.0 %

adi 99.1 % 99.6 % 97.3 %

covariance 99.8 % 99.8 % 99.8 %

gemm 97.8 % 96.5 % 96.7 %

gemver 99.7 % 99.4 % 99.8 %

jacobi-1d 99.6 % 99.6 % 100.0 %

jacobi-2d 100.0 % 98.5 % 100.0 %

lu 100.0 % - 100.0 %

matmul 100.0 % 96.9 % 100.0 %

matmul-init 100.0 % 100.0 % 100.0 %

mgrid 96.2 % 99.0 % 98.5 %

seidel 98.9 % 99.5 % 98.3 %

Phenom

2mm 100.0 % 100.0 % 100.0 %

adi 98.7 % 99.5 % 97.5 %

covariance 99.9 % 99.9 % 99.9 %

gemm 99.2 % 97.2 % 96.9 %

gemver 99.7 % 99.1 % 99.8 %

jacobi-1d 99.7 % 99.7 % 100.0 %

jacobi-2d 99.4 % 98.7 % 100.0 %

lu 100.0 % - 100.0 %

matmul 100.0 % 100.0 % 100.0 %

matmul-init 100.0 % 100.0 % 100.0 %

mgrid 95.9 % 99.7 % 98.1 %

seidel 99.0 % 98.9 % 99.0 %

Table 4.5: Speedup of our two strategies and the best static version compared to the
theoretic best runtime mechanism.

136 CHAPTER 4. CODE VERSION SELECTION

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

execution time
predicted time

Figure 4.29: Execution time of every ver-
sion of 2mm in every execution context,
sorted by actual execution time on Core i7
with strategy 1.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

execution time
predicted time

Figure 4.30: Execution time of every ver-
sion of 2mm in every execution context,
sorted by actual execution time on Core i7
with strategy 2.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180

execution time
predicted time

Figure 4.31: Execution time of every ver-
sion of jacobi-2d in every execution con-
text, sorted by actual execution time on
Opteron with strategy 1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 20 40 60 80 100 120 140 160 180

execution time
predicted time

Figure 4.32: Execution time of every ver-
sion of jacobi-2d in every execution con-
text, sorted by actual execution time on
Opteron with strategy 2.

4.7. CONCLUSION AND PERSPECTIVES 137

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120

execution time
predicted time

Figure 4.33: Execution time of every ver-
sion of gemver in every execution context,
sorted by actual execution time on Phe-
nom II with strategy 1.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120

execution time
predicted time

Figure 4.34: Execution time of every ver-
sion of gemver in every execution context,
sorted by actual execution time on Phe-
nom II with strategy 2.

One can also notice that the second strategy seems to be more precise in the pre-
sented cases as the predicted execution times are closer to the actual ones compared to
the first strategy. It means that it is preferable to use the strategy 2 whenever possible
as it leads to more precise predictions. With this strategy, the system is able to select a
good version even when only small benefits can be expected. This behavior is generally
observable on all the tested codes.

4.7 Conclusion and Perspectives

We have presented in this chapter a new framework able to select at runtime the fastest
version of a polyhedral loop nest. The contributions of this work are multiple. First we
identify two main factors that impact performance of a precisely defined set of codes
structures on modern multicore architectures. Second, we propose two fully automatic
techniques able to generate profiling codes and to profile those code structures according
to the identified factors. Third, we show how to automatically generate a very efficient
runtime component able to measure the identified performance factors. We also show
that, when put all together, those components constitute a very efficient code selection
system able to automatically select an efficient version of a parallel affine loop nest at
nearly no cost and since the very first execution.

The polyhedral model puts strong constraints on the codes which can be handled
by our system. A natural extension would then be to consider more complex code.
Some recent extensions to the polyhedral model [14] could be considered. The main
risk is a loss of precision as the loops performance would not be as stable. It could also
be interesting to adapt our system to use dynamic optimizations such as parametric
tiling: the versions would then be parallel parametrically tiled loop nests with different
schedules. Going further in the dynamic aspect, a fully dynamic system could be built
where no profiling is required but actual executions would fill the parametric ranking
table.

138 CHAPTER 4. CODE VERSION SELECTION

Chapter 5

Speculative Parallelization

5.1 Introduction

We present in this chapter the last part of our general approach, which consists in
a dynamic parallelization system. It complements the two other systems presented
earlier, and addresses another challenge for the polyhedral model, namely handling
more complex codes.

The polyhedral model is originally targeting statically analyzable loop nests with
affine loop bounds and memory references. However, many programs do not enter in
this category and contain some complex constructs which can often not be analyzed
offline. Different extensions to the polyhedral model have been proposed to specifically
overcome some of those obstacles such as non-linearity [31, 56], or data-dependent con-
trol flow [14]. However, despite techniques such as points-to analysis [61, 29] can help
to statically analyze pointer references, several memory references are unanalyzable at
compile-time. To handle those codes, dynamic parallelization has to be used.

Dynamic parallelization consists in parallelizing the program while it executes.
More information is actually available at runtime, allowing one to parallelize a pro-
gram which cannot be handled statically. For instance, in some programs, the memory
accesses performed allow the parallelization only during some phases of the program
execution. They require a dynamic system to detect and exploit those parallel phases.
We call those programs partially parallel programs.

The dynamic parallelization systems can be divided in two families: those based
on the inspector/executor model, and the speculative systems. The formers extract
the information required to validate and perform the parallelization at runtime. On
the other hand, the speculative systems emit hypothesis on the program behavior in
order to parallelize it. Those assumptions are verified while the program is run in
parallel, requiring a back-tracking system to rollback a part of the execution in case of
misprediction. Speculative systems can handle a broader class of programs as they can
parallelize programs for which it would be too costly, or even impossible to perform a
sufficient analysis before the parallelization. In this chapter, we focus on speculative
systems, and propose a speculative mechanism performing polyhedral transformations
on loop nests to parallelize them. Such system allows us to apply polyhedral transfor-
mations on programs which are currently out of the scope of the model, extending the

139

140 CHAPTER 5. SPECULATIVE PARALLELIZATION

benefits of the model to a wider class of programs. With such a system, the polyhe-
dral model can handle partially parallel programs, applying polyhedral transformations
only in some phases of the loop nests execution. It can also handle programs which are
not statically analyzable, and can parallelize loop nests with complex code structures
and memory references.

We present in Section 5.2 an overview of our parallelization system. We also in-
troduce some base concepts which are required for the rest of the chapter. In the
sections 5.3 to 5.8, we detail every phase of the parallelization and evaluate several
possible implementations. In Section 5.9 we decide on a general system and evaluate
it before concluding.

5.2 Overview

5.2.1 Speculations

The following code extract is a typical example of the loop nests targeted by our
speculative parallelization system:

while (p != NULL) {

...

if (error) {

...

}

p = p->next;

}

In that code, a linked list is traversed and a computation is performed on every element.
The loop bound is unknown at compile time, the linked list pointer p is updated at
each iteration provoking a dependence between every successive iterations. What has
to be particularly noticed is that if the list is allocated consecutively in memory, the
addresses reached by memory references can be described as an affine function. The
error test in the sample code is hopefully never taken in a normal execution.

The first adaptation performed by our system is to create a loop counter for each
while loop. This counter is starting at zero and incremented at every loop iteration. It
allows every loop to have a counter, independently from their control structure.

To exploit polyhedral techniques on such complex loop nests, several kinds of spec-
ulations are targeted by our system:

1. Address speculation: whenever possible, the parallelization system must be able
to infer that the memory references are linear in order to use polyhedral tech-
niques. In our example, we cannot statically prove that property for the memory
references accessing the linked list elements. Thus, our system checks if this can
be observed on a few loop nest iterations, assumes that this property is true
for the whole execution, and verifies the perpetuation of this property when the
program is run in parallel.

5.2. OVERVIEW 141

2. Value speculation: the pointer p prevents any parallelization of this loop nest as
it generates dependences between every couple of successive iterations. For each
iteration, the first access to this scalar is a read, thus, it cannot be privatized.
However, if one is able to characterize the successive values assigned to p, it
could be initialized at the beginning of every iteration and privatized, suppressing
the problematic dependences. Thus, our system speculates that the value of p

can be defined as an affine function of the surrounding loop indices and global
parameters. This function is then used to initialize it at the beginning of every
iteration.

3. Control speculation: if some dependences occur in the error test, they can usu-
ally be ignored. Ignoring the dependences provoked by such infrequent memory
accesses is the first objective of control speculation. Our system will then observe
the program for a few iterations and detect infrequent memory references. They
will be speculated to be never executed during the parallel execution, causing a
failure if the speculation appears to be incorrect. The second objective of con-
trol speculation is to speculate that the trip count of while loops are also linear
functions, allowing the system to use some of the techniques associated to the
polyhedral model even in presence of while loops.

Address speculation is performed for every memory reference which cannot be analyzed
statically. It allows us to have a linear characterization of those memory accesses,
enabling the use of polyhedral techniques afterwards.

Value speculation is performed only for scalars which cannot be privatized, which
are written in the loop nest, and whose successive values cannot be statically defined
through scalar evolution analysis. It is also limited to the scalars which participate in
address computations, as their is only little hope to observe linear behaviors for the
scalars used for the computations. The speculation allows us to initialize the concerned
scalars at the beginning of every iteration and to privatize them. This leads to remove
the dependences they provoke, and then to parallelize more loop nests.

Control speculation for while loops is obviously not attempted on the outermost
while loop. Indeed, it requires several full loop nest executions before being able
to characterize the trip count of such loops. For the other while loops, the linear
characterization of their trip counts allows us to exploit some polyhedral techniques
on the nest such as precisely determining the memory area reached by the accesses
during the nest execution. The while loops with data-dependent exit conditions are a
challenge in the polyhedral model and have to be specifically handled. A static method
able to apply loop transformations and parallelization in presence of such loops has
been proposed in [14]. We exploit this technique to allow such complex loop structures
in the parallelized program. We could have exploited the speculation on the while
loop trip counts to consider any loop as an affine for loop. The main issue here is the
speculation verification which has to ensure that the speculated trip count is correct,
even if the loop level may have been transformed. This is left for future research.

When put all together, the different speculations allow us to use the polyhedral
model and the associated techniques in presence of arbitrary complex control struc-
tures and memory references, as long as the speculated values can be defined by affine

142 CHAPTER 5. SPECULATIVE PARALLELIZATION

������

���	����A

B����C��D�

D��EF��DF���
�D��C����A

��C�

A�����F���

��������

���D�F���

����	�D�F���
���F���

������D�

���F���

�����F

Figure 5.1: Main phases of the speculative system.

functions.

5.2.2 General overview

We present in Figure 5.1 a scheme describing a system able to perform the speculations
aforementioned. The first step is to observe the application behavior during a short
online profiling step. In this phase, the speculated memory accesses, loop bounds, and
scalar values are instrumented to check if they can be characterized by a linear function.
This online profiling only last for a few loop iterations. If a linear characterization of
the loop nest can be built at this step, it is assumed to be valid for the rest of the
execution and used as a predictor.

In the next step, a dependence test is performed. From this dependence test, a
polyhedral transformation may be applied on the loop nest and the resulting parallel
code is generated. The resulting loop nest is then executed and, in the mean time,
a verification is performed to ensure that the speculation is actually correct. If the
actual program behavior does not follow the predicted one, a rollback is performed
to cancel the incorrect parallel execution part. Those iterations are then re-executed
using another schedule, and a new profiling is performed to check if the behavior of
the loop nest has changed. Then, a new schedule may be used to parallelize the next
iterations of the loop nest. All those steps are performed at runtime, and form a
dynamic parallelization system.

It is interesting to point out that there are no more invalid parallel schedules with
such a speculative parallelizer. In case of mispredictions, a rollback mechanism will
anyway cancel and replay the invalid iterations using another valid execution order
(usually the sequential one), leading to a valid execution in any case. However, the
number of rollbacks and their associated cost must be minimized in order to limit
the runtime overhead and maximize the effective parallelism. For instance, consider
a loop nest where the outermost loop carries a dependence and which is then not
parallel. One could try to speculatively parallelize it, leading to a rollback at every
iteration. On the other hand, if a loop interchange can bring a loop which does not
carry any dependence at the outermost level, the speculative parallelization of this
loop does not anymore provoke any rollback. The polyhedral model enables all sorts
of transformations, leading to different number of rollbacks. As our system speculates
on the dependences and transforms the nests accordingly, its goal is to minimize the

5.2. OVERVIEW 143

program sequential time # iterations # outermost iterations nest depth
ind 1,495 ms 25,000,000 5,000 2

llist 3,100 ms 50,000,000 50,000,000 1
rmm 10,330 ms 1,000,000,000 1,000 3

switch 3,960 ms 64,000,000 8,000 2

Table 5.1: Main characteristics of the reference programs.

number of rollbacks when the nest is not naturally parallelizable, compared to a naive
speculative parallelization of the original loop nest.

For clarity reasons, we still evoke in this chapter “valid” parallel schedules. This
validity notion is the classical non-speculative one, where the schedule is valid regarding
the speculated dependences, although any schedule is “valid” in the context of such a
speculative system.

5.2.3 Evaluation Environment

Different design options can be considered to build our speculative system. We describe
the most relevant ones in the following sections, their pros and cons are evaluated
separately on four example codes:

• ind which uses array indirections to compute the average of neighbors elements.
Such stencil computation is typical in image processing where a mask determines
where to apply the operation.

• llist is a linked list traversal where a computation is performed on every list
element.

• A matrix multiply rmm, where the arrays have been dynamically allocated, mak-
ing any static code analysis impossible for most of the existing tools.

• switch applies two different operations on the elements of an array according
to the value of linked list elements. Two different parallel schedules have to be
used to parallelize this application, as each operation references different stencil
of neighbors in the array.

Even a perfect static code analyzer could not determine the memory behavior of most
of those codes as it depends on dynamic characteristics such as the memory location
of linked list elements: if those elements are allocated successively, there is a high
probability to be located in consecutive memory locations, however, this cannot be
guaranteed at compile time. Thus, the presented programs are good targets for specu-
lative parallelization systems. Moreover, they all have a distinct behavior and emphasis
different functionalities that an advanced speculative system should provide.

The different steps of the speculative system and their associated alternative mech-
anisms are evaluated on a Linux 2.6.38 system, using a Intel Xeon W3520 processor
with four cores and two threads per core. The reference sequential execution time of
every benchmark program is presented in Table 5.1, accompanied by the number of

144 CHAPTER 5. SPECULATIVE PARALLELIZATION

for (i = 0; i < N; i++) {

...

}

for (cnum = 0;

cnum <= ceil(N / csize);

cnum++)

{

for (i = cnum * csize;

i < N && i < (cnum + 1) * csize);

i++)

{

...

}

}

Figure 5.2: Sample loop nest (left) and its chunked counterpart (right).

iterations executed in the nest, the number of outermost loop iterations, and the loop
nest depth.

5.2.4 Chunking

Before going into the details of every phase, we present our chunking mechanism.
Grouping the iterations of a parallelized loop nest by chunks is a common practice of
speculative parallelizers. Usually the chunks are assigned to different processors leading
to a parallel execution. We use a different approach which we detail here.

In the different phases of our speculative system, several operations have to be
performed only for a few successive iterations of the loop nest. For instance, the
online profiling has to be executed only for a few iterations, just enough to extract a
speculative characterization of the program. To allow different operations on successive
parts of the iteration domain, we divide it into several chunks.

Those chunks are groups of consecutive iterations of the original outermost loop.
The chunking is easily obtained by strip-mining this outermost loop. This transforma-
tion can also be applied on while loops as we have introduced virtual loop counters.
We show in Figure 5.2 a simple for loop, transformed to be executed by chunks of
csize iterations. This chunk size can be adapted to form chunks of different sizes if
needed. The resulting outermost loop, iterating over the chunks, is considered as not
being a part of the loop nest. If a polyhedral transformation is applied on the loop nest
later, this outermost loop is then left unchanged. It leads to transform and parallelize
the iterations in the chunks, while sequentially iterating over the chunks. This is espe-
cially important for the completeness and correctness of the speculation verification,
as explained in Section 5.7.

Performing this chunking on programs is not neutral for their performance, espe-
cially when a loop nest transformation is applied on the chunked program. This can
lead to extra controls in the parallelized version of the nest, and then to performance
drops in extreme cases. Moreover, the chunk size has a direct influence on the loop
nest performance, and choosing a correct chunk size is of capital importance. Indeed,
in a speculative context, larger chunks increase the cost of a misprediction as more
iterations have to be re-executed, while small chunks can provoke a shortage situation

5.2. OVERVIEW 145

 0

 5

 10

 15

 20

 25

 30

 35

 32 64 128 256 512 1024

S
p

e
e

d
u

p
 o

v
e

r
s
e

q
u

e
n

ti
a

l

Chunk size

ind
llist

rmm
switch

Figure 5.3: Speedup of each code over its sequential version, relatively to the chunk
size.

with unoccupied processor cores. For example, consider a loop nest which is not trans-
formed but only tiled and parallelized on the outermost tiling level. If the chunk size,
i.e. the number of iterations of the outermost loop nest dimension, is lower or equal to
the tile size, then only one iteration of the parallel loop is run during the execution of
each chunk, leading to execute the loop nest in sequential.

To illustrate this, we present in Figure 5.3 the speedup of the four example programs
parallelized and tiled with PLUTO, after having been rewritten to allow their static
parallelization. The speedups are computed over the original sequential version of
each loop nest. One can observe that the programs perform well only after a minimal
chunk size around 256 iterations. This size corresponds to the total number of processor
cores multiplied by the tile size used: good performance is reached when each processor
thread can be occupied. The case of rmm is specific as large improvements are provided
even with very small chunks thanks to the transformation applied by PLUTO which
greatly enhances the data locality. However, even in that case, one can observe a clear
performance increase when using large chunks.

Our system makes an heavy use of this chunking system for various purposes,
including the parallel execution. During this parallel execution, the chunk size is fixed
to be NP × TS where NP is the number of processor threads, and TS is the tile
size used. This chunk size is the minimal chunk size ensuring that the chunks does
not result in a severe load imbalance. Notice that other phases of the system can use
different chunk sizes, as for instance the online profiling step.

146 CHAPTER 5. SPECULATIVE PARALLELIZATION

5.3 Online Profiling

One of the first step in our speculative system is the online profiling. During that phase,
the different speculated elements (memory accesses, scalar values, and while loop trip
counts) are observed during a few iterations of the original loop nest. The result of
this short profiling period is used to build a linear function describing every speculated
element, whenever possible. Those linear functions of surrounding loop indices and
global parameters are then assumed to represent the actual behavior of the program
for the rest of the parallelization process. Later, a runtime verification phase ensures
that this is effectively true.

Every memory reference is instrumented and affine functions describing the ad-
dresses they reach are tentatively built. This includes the references which can be
statically analyzed. The goal is to obtain an exact characterization of the accessed
addresses in order to perform dependence tests directly on the affine functions. For
instance, if a pointer reference and an array access are both present in the loop nest, we
must build a linear function at runtime for both accesses in order to determine if they
can alias. The knowledge of the array access linearity is not sufficient for that purpose,
the addresses reached are required. However, if an access is statically analyzable, the
corresponding linear function is not speculative and does not need to be verified during
the parallel execution.

The value of the speculated scalars is also observed and affine functions are ten-
tatively built to describe their successive values. A similar operation is performed for
the instrumented while loops trip counts.

This online profiling is performed before any program transformation. It benefits
from the chunking transformation described earlier to execute only a few iterations of
the original loop nest.

5.3.1 Inspector Profiling

As in the inspector/executor model, we can notice that some of the actual computations
are sometimes not required to compute the correct values of the instrumented elements.
For instance, computations on linked list elements are often decoupled from the linked
list traversal. Thus, an inspector could be built only with the instructions required
to perform the correct memory accesses, scalar references, and number of iterations
of while loops. This instrumented inspector could then be used to gather the desired
data without having to execute all the computations. Note that we do not execute
the inspector for the whole loop nest execution as it is done in the inspector/executor
model. We only use it to perform a faster profiling during a few loop iterations.

The obvious advantage of that method is a limited overhead compared to profiling
the whole loop nest body. However, the computations that have not been executed
during the profiling still have to be performed later. Moreover, it can be tricky to
automatically generate such an inspector as we target some codes that can contain
complex pointer references.

Nevertheless, the performance of both a simple profiling and an inspector-based
approaches are presented in Table 5.2. The presented execution times correspond to a
full loop nest execution. The reference code is a sequential execution of the program

5.3. ONLINE PROFILING 147

program reference full profiling inspector profiling
ind 1,495 ms 1,910 ms 1,986 ms

llist 3,100 ms 3,720 ms 3,700 ms
rmm 10,330 ms 20,900 ms 26,120 ms

switch 3,960 ms 5,030 ms 4,970 ms

Table 5.2: Evaluation of the two profiling methods execution times.

without any instrumentation. We can see on the table that the costs of both profiling
methods are very high compared to the reference execution. It even reaches a slowdown
of more than 2× with rmm. The inspector profiler shows no clear benefit over the full
profiling method when a complete sequential execution is performed after the profiling.

Considering the small number of instrumented iterations, the gain which can be
obtained with that method is negligible, especially as the inspector profiler construction
may be extremely complex in some cases.

5.3.2 Profiling on a Sample

Three iterations per loop level are sufficient to build a linear function in the favor-
able cases. However it is convenient to instrument more iterations to handle complex
situations.

Some instructions can be enclosed in tests which are not taken at least three times
during the profiling step. In such case, the code has better to be profiled on a longer
period, increasing the probability of taking the branch at least three times. If this is
not the case despite this longer profiled run, one can assume that the test is never or
rarely taken. The dependences induced by the references in that test can be ignored in
later phases, but the system must verify whether the test is actually taken at runtime.
This leads the system to actually perform control speculation.

The extra cost induced by this longer profiling period can avoid an even higher
overhead if the parallel code is run and back-tracked later because of this non-linearity.

5.3.3 Chosen Solution

Considering the difficulty to build an inspector from some loop nests, the chosen method
is to profile the whole body of the original loop nest on a few iterations. Profiling three
iterations by default and continue for at most ten iterations can help the system to
quickly detect non-linear accesses and to handle conditional branches. If some profiled
memory references, scalar values, or while loops are enclosed in a test which is not
taken at least three times during the profiling phase, then they are ignored in later
steps. If that test is actually taken during the parallel execution, the system considers
that a misprediction has occurred.

For all those profiled items, the result is either a failure: at least one of them is not
linear and no parallelization can be performed, or a linear function is associated with
each profiled value. Those linear functions are speculated to be the behavior of the
program for the next iterations and the dependences are deduced from those functions.

148 CHAPTER 5. SPECULATIVE PARALLELIZATION

5.4 Dependence Construction

In the usual static polyhedral compilation sequence, the dependences are first built from
the program source code in order to generate a valid transformation later. Our system
targets programs which are not statically analyzable, and for which the dependences
cannot be determined at compile time. It uses instead the linear functions obtained
during the profiling step to build the dependences. Those dependences are correct if the
behavior observed during the profiling is representative of the rest of the execution. We
speculate that this is true and perform the dependence analysis under this hypothesis.
The following steps verify at runtime if this assumption is effectively correct.

We exploit the polyhedral model to represent the dependences as polyhedra [46].
This representation is convenient as it is a very compact way to represent dependences
between affine memory references. For each pair of references, a polyhedron is built
from the iteration domains of each reference in the pair, from an equality between
their linear functions, and from precedence constraints between the source and the
destination of the dependence. More details are provided in Chapter 2. Building
those dependence polyhedra from the linear functions is a trivial task whose cost is
negligible. It can even be accelerated by partially creating them offline, using the
information statically available. The main difference with common offline dependence
construction is that the only parameters used are those defining the bounds of the
currently executed chunk, and a fake bound for the while loops [14]. Indeed, those
polyhedra are created at runtime, when all the other parameter values are known.
Thus, the dependence polyhedra are simpler and the corresponding issues can be solved
more easily. The speculative dependence polyhedra are used at the next step to select
a code transformation to apply on the loop nest.

5.5 Scheduling

At that point, the speculated dependences are known and restrict the set of valid trans-
formations. A parallelizing transformation has to be chosen accordingly. The selected
transformation ideally has to optimize the data locality while exposing parallelism.
However, there exists some valid transformations leading to inefficient parallel execu-
tions. For this reason, the scheduling is generally a complex task which can only be
efficiently achieved by a few advanced tools, such as the PLUTO compiler, extended
with the framework presented in [14].

5.5.1 PLUTO

We have evaluated the execution time of PLUTO when parallelizing the sample pro-
grams. The results are presented in Table 5.3. In the first column, PLUTO is evalu-
ated when no tiling is requested, while the second one contains its performance when
parallelization and tiling are both requested. This execution time is measured using
simplified versions of the programs where all the memory references are rewritten to be
statically analyzable. We can see on the table that such an advanced transformation
selection is time consuming. If we use it in our system, PLUTO may have to be run

5.5. SCHEDULING 149

program PLUTO -notile PLUTO -tile
ind 155 ms 230 ms

llist 150 ms 220 ms
rmm 180 ms 370 ms

switch 150 ms 180 ms

Table 5.3: Execution time of PLUTO on our sample programs.

multiple times in case of mispredictions, and even if code caches are used, the induced
overhead would be hard to amortize.

Notice however that there is bias introduced in our measurements: some opera-
tions which are not required at runtime are actually performed here. For example,
the code parsing and the dependence construction are performed by PLUTO whereas
they are not required by our system. On the other hand, the considered programs
are simple and contain only a few memory references, whereas the execution time of
PLUTO exponentially grows as the programs becomes larger. Thus, although the cost
of scheduling is slightly over-approximated in our experiments, it can still be much
higher on more complex codes.

One could object that PLUTO is not intended to be used at runtime, which is true:
as all the existing polyhedral compilers, it has been designed as an offline tool. A
different conception could lead to better performance. For instance, we could imagine
to statically generate some intermediate representation of the problem, simplified using
the information available offline, and which could be easily parsed. However, the main
issue would probably still be the exponential complexity of the core algorithms used to
compute the new schedule. This leads us to the conclusion that lighter methods have
to be used.

5.5.2 Offline Profiling and Scheduling

One possible lighter approach is to perform an offline profiling of the program which
could provide a first approximation of the loop nest behavior. The addresses reached by
memory accesses, value of speculated scalars, and the trip count of while loops can be
profiled similarly to what is achieved by the online profiling. The non-linear loop nests
can be detected and ignored. Finally, the loop nests accounting for an insignificant
part of the execution can also be identified and left unparallelized.

The linear functions resulting from the offline profiling can be used to compute the
loop nest dependences that occurred during that profiling run. A valid and efficient
transformation can be deduced from those dependences, using PLUTO for instance
(extended to correctly handle while loops). The principle is to assume that the loop
nest behavior, observed during the offline profiling, is representative of what will hap-
pen at runtime. The generated transformation has then a high probability of being
valid during the actual execution. Moreover, this transformation is expected to be
efficient as it is computed by an advanced parallelizer. Notice here that a different
memory allocation is probably performed at runtime, leading to different linear func-
tions. Although the linear functions can differ from what has been observed during

150 CHAPTER 5. SPECULATIVE PARALLELIZATION

the offline profiling, the dependences can remain identical, still allowing the schedule
to be used in that case.

If different successive linear functions, characterizing different phases of the exe-
cution, can be associated to the memory references during the profiled execution, all
of them can then be considered to generate several corresponding transformations.
At runtime, one of these transformations can be selected according to the speculative
linear functions. If the behavior of the program changes, a misprediction will occur
followed by a short online profiling, which can lead to successively consider different
transformations.

The offline profiling can be accelerated using sampling. The loop nest is then
periodically profiled for a few iterations, reducing the overall instrumentation cost. The
system can also benefit from previous executions of the program to better characterize
the profiled accesses.

This offline method results in several transformations that are computed offline by
advanced tools. Those transformations are efficient as they are computed by advanced
parallelizers, add no runtime overhead as they are generated offline, and have a high
probability of being valid during the actual loop nest execution.

5.5.3 Generic Schedules

It may be possible that the loop nest behavior observed during the offline profiling
appears not to be representative of the actual loop nest behavior. In such case, the
transformations statically generated may not be valid for the dependences observed at
runtime. Thus, we have to provide some backup schedules which can be used in that
case.

The solution we envisage is to provide other generic schedules, alongside those
built during the offline profiling. Those new schedules are expected to allow the par-
allelization of common loop structures, but are not intended to reach the maximal
performance. In that sense, they are generic schedules, providing a decent backup
solution when the offline profiling result cannot be used.

The main issue with this method is that the space defining the valid transformations
is often huge, and many transformations in that space are clearly inefficient [103]. Thus,
one cannot randomly pick a transformation and hope for it to be efficient. However,
the space can be restricted to vital loop transformations. The transformations often
leading to inefficient parallel codes can be ignored, even if they are sometimes required
to parallelize some other applications. We restrict the iteration space in the following
way:

• The schedules can be generated considering the statically analyzable dependences
of the targeted loop nest, ensuring that no obviously incorrect schedule is gener-
ated. This already restricts the transformations to a limited set when a part of
the loop nest is statically analyzable.

• We ignore some advanced transformations often not required to reach decent
performance. For example loop splitting, reversal, fission, and fusion can be
ignored.

5.5. SCHEDULING 151

• On the other hand, tiling usually provides large performance improvement on
programs, and is then systematically applied. A single tiling level using default
tile sizes is generally sufficient to enhance the programs performance.

• We also consider a single transformation for every statement in the loop nest.

A few transformations can be chosen in this limited space. For example the identity
schedule, the loop interchanges bringing any loop at the outermost level, and a diagonal
schedule can be selected.

Again, nothing ensures that the parallel codes generated from those schedules are
efficient. For instance, the data locality can be deteriorated by the transformation
(despite the tiling limits that). The data dependences discovered at runtime can also
prohibit all those transformations, even if the loop nest is actually parallelizable. How-
ever, this strategy ends up with a few transformations which are expected to have a
reasonable probability of being valid with regard to the speculated dependences, and
to provide decent speedup.

When a set of transformations is statically generated, the scheduling mainly con-
sists in detecting which of the available transformations are valid according to the
dependences speculated at runtime. This is done in a dependence test which verifies if
each schedule is correct according to those dependences.

5.5.4 Dependence Testing

Two problems have to be solved in the dependence test: considering a schedule, stat-
ically generated, and a set of speculated dependences, we have to determine if the
schedule is valid, and if at least one loop in the transformed code can be parallelized.
With the generic schedules for instance, nothing ensures that a loop level is parallel
even if the new execution order is valid with regard to the speculative dependences.

The validity problem can be precisely solved by several emptiness tests on the de-
pendence polyhedra augmented by some precedence constraints (see Chapter 2). Such
emptiness tests can be non-trivial depending on the polyhedra. To evaluate the cost of
those emptiness tests, we have generated several thousands of random polyhedra with
realistic coefficients, and used ISL to check for their emptiness. The check is performed
in parallel: multiple polyhedra are evaluated simultaneously. In average, we are able
to evaluate 1,950 polyhedra per seconds on our reference computer. Considering this
performance, the dependence testing can quickly become a limitation on large prob-
lems, especially as the number of dependence polyhedra to test exponentially increases
with the number of memory references and with the number of loops enclosing them.
Alternatively, other exact dependence tests such as the Omega test [108] can also be
considered, however, as many exact dependence analysis techniques, it is also known
to be time-consuming [97].

The validity test can also be performed by less precise methods such as dependence
direction or dependence distance vectors [143]. With those simple dependence repre-
sentations, the validity test can be performed by a few comparisons for every couple
of accesses. The main issue with those representations is their low precision: they can
lead to consider a schedule as invalid whereas it is in fact valid.

152 CHAPTER 5. SPECULATIVE PARALLELIZATION

Once the schedule validity is proven, we have to determine if a loop level can be
parallelized in the resulting transformed loop nest. This can also be performed directly
and precisely on dependence polyhedra, using emptiness tests (see Chapter 2 for more
details). As the cost of this exact dependence testing may cause severe overheads, one
could envisage to use approximate methods, which can conservatively answer that the
parallelization is not possible, although it actually is. For example the GCD test [90],
could be considered despite it might be too approximate. Interestingly, Kim et al.
present in [70] a possible dynamic use of the GCD test, although they do not extend
its precision. More precise approximate tests can be used such as the Banerjee test [9],
or its extension, the I Test [73]. It may also be interesting to consider tests specifically
designed for runtime parallelization. For instance, the proposals of Rus et al. [122, 121]
could be adapted to our system, allowing it to perform an hybrid static and dynamic
test.

We have evaluated the I Test to have a better idea of the performance of such ap-
proximate methods. We have generated several random couples of access functions with
reasonable coefficients and evaluated them using the I Test implementation provided
in the PLATO library [98]. We have measured that 560,000 tests can be performed per
second on our reference computer. This performance illustrates how such approximate
dependence tests can be interesting alternatives to exact dependence tests. However,
note that such tests are heavily approximating the problem, especially as they can
often only handle simple loop structures. As an example, the loop bounds have to
be constants to use the I Test, which is obviously not the case for many loop nests,
especially after having been transformed.

As much as possible, exact dependence analysis should be preferred for its precision.
However, when the loop nest contains many memory references, heuristics could be
used to limit the induced overhead, at the cost of a reduced prediction. A gradual
analysis could also be considered, starting with heuristics to eliminate simple cases,
and using exact analysis when the heuristics could not prove the schedule validity or
the parallelism.

5.5.5 Chosen Solution

Considering the presented alternatives, we consider that the best solution is to pro-
file the whole application once. From that profiling, linear functions can be built to
precisely characterize the memory references. They are used by an offline paralleliza-
tion tool, and the generated transformations, alongside other generic transformations,
are considered. If several linear functions can be associated to a memory reference,
different schedules are generated by the automatic parallelizer, corresponding to the
different possible cases. This number can be bounded to a given threshold in order to
avoid generating too many schedules.

At runtime, the schedule selection is performed by exact dependence analysis on
the speculative dependences. If there are many memory references, the problem is first
approximated using inexact dependence tests such as the dependence distance vectors
and the I Test.

5.6. CODE GENERATION 153

5.6 Code Generation

Once the schedule is chosen, the corresponding parallel code has to be generated.
Different solutions are possible to generate this code, ranging from fully dynamic code
generation to statically generated code versions. Each method has different costs and
benefits which we evaluate in this section before deciding of an appropriate strategy.

5.6.1 Runtime Compilation

The number of considered parallel versions can be large, either because dynamic
scheduling is used, or because a large number of schedules are embedded in the appli-
cation. In that case, the size of the binary executable can grow unreasonably if the
code of every considered schedule is linked in the executable. Runtime code generation
is one solution that can avoid this.

Runtime code generation can be divided in two main parts: first the code genera-
tion, and second the code compilation. The former consists in converting the polyhedra
representing the transformed iteration domains into loop nests. The latter part com-
piles these loop nests into a binary form, executable by the processor. For our example
programs, the first step can be performed in a few tenth of milliseconds, using irCLooG
for instance. This tool is an extension of CLooG which supports data-dependent con-
trol flow, including while loops [14]. This execution time is relatively short but the
exponential nature of the algorithms used in such code generators can quickly lead
to execution times in order of seconds or minutes, depending on complexity of the
polyhedra.

The output of irCLooG can be any high-level representation as a C or a Fortran
program. It can also be a medium-level representation such as the LLVM interme-
diate representation. However, directly generating an efficient sequence of low-level
instructions is a complex task and it does not seem reasonable to adapt irCLooG to
directly generate it. For example register allocation has to be performed and is not
trivial, similarly for instruction selection, code alignment, vectorization, . . . One can
notice that the efficient binary code generation problem has already been addressed
in existing compilers, so the best tools able to perform this task are probably those
compilers. Then, we have measured their execution times on parallel versions of the
example programs to evaluate a possible runtime use where irCLooG could generate
high-level code which is later compiled.

We have compared three common C compilers: GCC 4.5, ICC 12.1, and LLVM 2.8
in a fair context: the only used flags are -O, to specify an optimization level, and
-fopenmp, to activate OpenMP. Notice that the LLVM front-end currently does not
support OpenMP, thus, we have used instead LLVM-GCC, which is a modified version
of GCC made of the GCC front-end plus the optimizations passes and back-ends of
LLVM. We measured two different usages of LLVM-GCC: first to generate a binary
program, and second to generate LLVM bytecode, later compiled into a binary program
using LLC. The latter case is particularly interesting as LLC uses LLVM bytecode
as input. Thus, its overhead is limited to some last-minute optimizations and code
generation. The bytecode is already optimized by LLVM and can be parsed more easily
than any high-level language. Thus, LLC is a good choice for runtime compilation.

154 CHAPTER 5. SPECULATIVE PARALLELIZATION

 0

 100

 200

 300

 400

 500

 600

 700

ind llist rmm switch

T
im

e
 (

m
s
.)

Comp. GCC O1
Comp. GCC O3
Comp. LLC O1
Comp. LLC O3
Exec. GCC O1
Exec. GCC O3
Exec. LLC O1
Exec. LLC O3

Figure 5.4: Compared compilation and execution times using GCC and LLC at the O1

and O3 optimization levels.

program
GCC ICC LLVM-GCC LLC

O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3

ind 80 90 100 150 190 200 115 100 100 70 70 70
llist 75 75 75 160 170 170 90 90 90 50 55 55
rmm 90 100 105 160 250 250 120 110 110 80 80 80

switch 85 90 95 160 180 190 95 95 100 65 65 65

Table 5.4: Compilation time (in milliseconds) of the sample programs using different
compilers and optimization levels.

We present the measured compilation times in Table 5.4, and the corresponding
execution times in Table 5.5. In the tables, the parallel version, generated by PLUTO,
of each rewritten program is compiled using every compiler at three different opti-
mization levels. LLVM-GCC refers to a complete compilation by LLVM, i.e. from the
source code to a binary program, while LLC refers to the transformation of the LLVM
bytecode into executable code. A graphical representation is provided in Figure 5.4 to
visually compare the execution and compilation times obtained with GCC and LLC.

With no surprise, we can see that LLC is the fastest to compile the loop nests.
Interestingly, the performance of the generated codes are often comparable to the other
compilers, illustrating the efficiency of LLC despite its reduced execution time. It can
then be considered as the best alternative. However, the absolute compilation times
remain too high: an overhead of several tenth of milliseconds just to compile the code
is not tolerable considering the execution times of the programs. This is exacerbated as
several different schedules can be required during the parallel execution, if the program

5.6. CODE GENERATION 155

program
GCC ICC LLVM-GCC LLC

O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3

ind 280 355 280 800 770 780 280 300 300 285 285 285
llist 495 495 495 800 700 650 495 495 495 495 495 495
rmm 600 330 330 520 450 500 600 600 600 600 600 600

switch 640 630 620 1,450 1,500 1,480 620 645 630 630 630 630

Table 5.5: Execution time (in milliseconds) of the sample programs compiled with
different compilers and optimization levels.

behavior evolves during the execution.
This solution is clearly the most robust, but it also exhibits a large overhead. Then,

other solutions, with lower execution times, have to be investigated to limit the overall
runtime overhead.

5.6.2 Hybrid Code Generation

Hybrid code generation is an alternative to runtime code generation. In this strategy, a
parallel code pattern is generated offline, and filled at runtime according to the chosen
schedule. The code pattern is made of the loops, the tests, and the computations.
However, the loop bounds and memory access functions are left unspecified in the
pattern. It is a generic version of the loop nest and is meant to represent the parallel
loop nest code for several different transformations. However, the patterns obviously
restrict the set of transformations which can be applied. For example different loop
splittings, fissions, or fusions cannot be performed in a single pattern.

Different implementations of this strategy can be considered, and we have measured
the impact of three distinct approaches to implement the hybrid code generation:

• Using function calls: in that implementation, every loop bound and access func-
tion is performed by a distinct function. When the schedule is selected, each
function is generated as a short binary sequence computing the correct loop
bound or memory address.

• Through parametrized expressions: loop bounds and access functions are replaced
by expressions depending on all the loop indices with unspecified coefficients. The
coefficients are filled to compute the correct functions according to the schedule
selected at runtime.

• Patching the executable code is the last studied implementation. The access
functions and the loop bounds are not generated in the pattern, but some padding
is inserted. This padding is then replaced at runtime by instructions computing
the corresponding expression directly in the loop nest binary code.

We have evaluated those three methods on the benchmark programs. The results
are presented in Table 5.6 and show the performance of the programs when the dif-
ferent approaches have been tried. The reference version is the statically generated
parallel version with the linear functions exposed in the source code. To simulate code

156 CHAPTER 5. SPECULATIVE PARALLELIZATION

program reference
function parametrized code

call expression patching
ind 280 ms 302 ms 295 ms 290 ms

llist 495 ms 515 ms 495 ms 510 ms
rmm 330 ms 1,955 ms 815 ms 710 ms

switch 620 ms 690 ms 680 ms 670 ms

Table 5.6: Execution times of the parallel programs for different hybrid code generation
strategies.

patching, some padding is inserted in the parallel code, disturbing the code generation
and increasing the code size. Considering those results, it is clear that the function call
approach is not efficient. Parametrized expressions are easier to implement and reach
performance comparable to the code patching, they are then the privileged approach
among those we have tested.

Let us now consider the pattern instantiation performed at runtime. It exists to
our knowledge no technique able to generate a loop nest scanning a polyhedron, where
the resulting nest is constrained by a given pattern. However, one can use existing
techniques to generate the transformed loop nest, and update the pattern according
to the generated code, aborting if the pattern is not generic enough to represent the
transformed loop nest. The main issue here is again the exponential complexity of the
existing code generation algorithms, which can lead to major overheads in complex
cases.

The last issue is the offline pattern generation. To achieve it, one can simply
consider the original sequential loop nest, and overwrite every memory access and
loop bound by a generic one. The complexity of the loop bound expressions can be
arbitrary, ranging from a single linear expression to a complex sequence of min, max,
integer divisions and linear expressions. Depending on the complexity of the pattern,
different transformations can be applied on the nest.

This method limits the overhead of code generation to a few writes after having
computed the correct access functions and loop bounds. However, this latter computa-
tion is not trivial and the pattern can strongly restrict the set of possible schedules if it
is not generic enough. Moreover, an extra cost has to be paid during the whole parallel
execution: the pattern is a generic code whose performance is worse than that of a
specialized parallel code, as shown in Table 5.6. Those drawbacks push us to explore
lighter approaches.

5.6.3 Static Code Generation

If we assume that the schedules are selected at compile time, as described in Sec-
tion 5.5, we can statically generate the corresponding transformed loop nests. Once a
transformation is chosen, the existing code generation tools such as irCLooG can stati-
cally generate the corresponding parallel code even when while loops or data-dependent
conditional instructions are present. The complex memory references actually cause
no difficulty for the code generation. They are transparently copied from the sequen-

5.7. SPECULATION VERIFICATION 157

tial source code to the parallel loop nest. The scheduling phase takes care of the
dependences they provoke, and guarantees that the transformed loop nest with those
complex memory references is correct. As for classical loop nest transformations, when
the loop indices are used in a statement, the initial loop indices are expressed as a
linear combination of the transformed loop indices in the parallel loop nest.

The main drawback of this code generation method is that many different parallel
versions have to be embedded in the application (one per possible schedule of each
loop). This is not always a severe issue, especially for general-purpose computers
with weak restrictions on memory, however, it can be critical on embedded platforms
for instance. This method guarantees that the code generation is feasible, which is
not always the case with hybrid code generation, and induce no particular runtime
performance overhead.

5.6.4 Chosen Solution

Considering the previous choices, the static code generation is the preferred solution
for general-purpose computers. A threshold can be used to decide between static
code generation and hybrid code generation. For example, above a given number of
transformations, hybrid code generation can be considered to avoid a large binary size
increase.

A fully runtime code generation seems to induce a large overhead, excepted for
hot loop nests where the compilation cost might be amortized by numerous and time-
consuming executions. If very fast polyhedral code generators and compilers are de-
veloped in the future, this approach should be re-considered as it does not restrict the
transformations that can be applied on the nest, and does not increase the program
size. Of course, it makes even more sense if a dynamic scheduling can be performed
before code generation, leading to a fully dynamic polyhedral system.

5.7 Speculation Verification

Once the parallel codes have been generated, they can be executed but the predicted
scalar values, memory addresses, and loop trip counts have to be checked against their
speculative linear functions to ensure that the whole speculative process is correct.
In Softspec [24], the addresses reached by the memory references are compared to
the speculative linear functions at each parallel iteration, using a simple equality. If
the addresses do not match the speculation, the semantics of the parallel code is not
guaranteed, and the speculative execution is then canceled. In our case, we have to
perform a similar operation, however, a transformation has been applied on the loop
nest. Thus, the parallel schedule is different from the sequential one and it is not
obvious to determine whether the verification can still be performed in parallel.

5.7.1 Parallel Speculation Verification

We prove in this subsection that we can actually perform the speculation verification
in parallel even after a code transformation. For that purpose, one has to notice that

158 CHAPTER 5. SPECULATIVE PARALLELIZATION

the only way to modify the addresses reached by a reference is to write something in a
memory slot which is read later to compute the address of the reference. For instance,
consider the indirect memory reference A[B[i]], the only way to change the element
accessed by A is to write in B. This fact is at the base of the proof developed below.

In this section, we distinguish between a memory reference which is an instruction
accessing the memory, possibly executed many times, and a memory access which is
an instance of a memory reference, i.e. a specific execution of a memory reference.

We consider two different execution orders of the program: the original sequential
execution order and the transformed parallel one. It is possible to verify if the spec-
ulation is correct in both execution orders. In the sequential version, the verification
is necessarily exact as this version serves as a reference. In this execution order, if a
memory access reaches an address which was not speculated, then, there is no reason
why the verification would not notice it. This is however not guaranteed for the parallel
execution order.

We impose two constraints related to those execution orders. First, the transfor-
mation used to build the parallel execution order has to be valid with regard to the
speculative dependences. Second, in both execution orders, the same operations are
performed on data. If a given operation is performed in one execution order, then it
has to be also performed in the other execution order, possibly at a different iteration.

Let a and b be two memory accesses. We note a ≺seq b the case when a is performed
before b in the sequential loop nest execution order. Similarly, we note a ≺par b the case
when a is executed before b in the parallel execution order. The relation induced by
the two operators is not a total order as it may be possible that two memory references
are executed in any order, especially in the parallel execution order.

We consider that every memory access a is always in one of the two following states:

• � if a reaches an address corresponding to the speculated linear function;

• ∼ if the address reached by a does not correspond to the speculative linear
function.

We note Sa
seq the state of a if the program is executed in the sequential order, and Sa

par

the state of a during the parallel execution. Then, we have Sa
seq, Sa

par ∈ {�,∼}.
Consider the case when a misprediction is not detected in the transformed parallel

execution order despite it would occur if the loop nest would have been executed in the
original sequential order. That case is an issue as the parallel execution would not fail
despite the program semantics would differ from the sequential semantics. We derive
a correctness definition from this remark. A speculation verification is said correct if
a misprediction is detected in parallel if one occurs when the loop nest is executed in
the original sequential order. This property can be expressed by the following lemma.

Lemma. Given a memory access a such as Sa
seq = ∼, it exists a memory access b such

that Sb
par = ∼.

Proof. Let a be a memory access such as Sa
seq = ∼. Let ar be another memory access

which reads a value used to compute the address reached by a. Let x be a memory
access leading to Sa

par = � (despite Sa
seq = ∼). To influence the state of a, the access

x writes to the location read by ar. The accesses ar and x are then data-dependent.

5.7. SPECULATION VERIFICATION 159

We decompose our proof in two main points.
First, there are two situations where x can influence a such that Sa

par = �: either
x ≺seq ar and ar ≺par x, or ar ≺seq x and x ≺par ar.

In the first case, x overwrites the value read by ar in the sequential execution,
changing the state of a from correctly predicted to mispredicted. If the access x is
scheduled after ar in the parallel execution, it cannot modify the state of a when the
loop nest is executed in the parallel order. This results in Sa

seq = ∼, while Sa
par = �.

In the second case, x overwrites the value read by ar after its execution in the
sequential order. Then, during the sequential execution, x has no impact on the state
of a. However, if x is run before ar in the parallel order and changes the state of a, it
leads to Sa

seq = ∼ and Sa
par = �.

Second, it is important to notice that, if Sar
par = � and Sx

par = �, then the depen-
dence between x and ar is known and is taken into consideration by the transformation,
leading ar and x to be executed in the same order during both the sequential and the
parallel execution. This contradicts the first point. Thus, either Sar

par = ∼, or Sx
par = ∼.

In conclusion, three possibilities can occur: (1) It exists no such access x and
Sa

par = ∼. (2) There is an access ar which participate in the address construction of a,
and which is such that Sar

par = ∼. (3) The memory access x, changing the state of a, is
such that Sx

par = ∼.
In any case, there is an access b such that Sb

par = ∼ when Sa
seq = ∼.

This lemma is proven true, meaning that the verification performed in parallel is
correct even if the sequential execution order is different from the parallel execution
order. If a misprediction occurs when executing the code in the original sequential
order, then a misprediction also occurs in parallel, possibly when checking a different
memory access.

5.7.2 Verification Implementation

To perform this verification during the parallel execution of the loop nest, some veri-
fication code is added to the parallel loop nest in order to ensure that the speculation
is correct. For every speculated memory reference, the actually accessed addresses
are tested against the speculative linear function, before performing the access. The
speculative functions built by the online profiling phase on the sequential loop nest are
transformed with the same transformation that has been applied to the loop nest.

The speculated scalars are initialized at the beginning of every iteration according
to their speculative function. A test is added at the end of the iteration to ensure that
their actual values match their predicted values for the next iteration in the sequential
execution order. Determining the value of the loop indices in the next sequential iter-
ation is not an issue, even when the transformation matrix is not invertible. Indeed,
to maintain correct array references, the code generation algorithm is forced to build
a relation between the loop indices in the transformed space and those in the original
iteration space. This relation can be used to determine what is the value of the trans-
formed loop indices for the next iteration in the sequential order, and then to compute
the scalar value for the next sequential iteration.

160 CHAPTER 5. SPECULATIVE PARALLELIZATION

while (p != NULL) {

...

p = p->next;

}

while (!end) {

forall (i = CHUNK_START; i < CHUNK_END; i++) {

p = base1 + i * scale1;

if (p == NULL) { end = 1; break; }

...

assert &(p->next) == base2 + i * scale2;

p = p->next;

assert p == base1 + (i + 1) * scale1;

}

CHUNK_START = CHUNK_END;

CHUNK_END = CHUNK_END + CHUNK_SIZE;

}

Figure 5.5: Sample code (left) and its speculative parallel counterpart (right).

Notice first that the operations performed on the predicted scalars do not depend
on the execution order of the loop iterations. Moreover, if the memory accesses are
correctly predicted, the values used by those operations during the parallel execution
are identical to those used in the sequential execution. Thus, the same operations are
performed on the same data in both execution orders. Then, the described verification
for the speculated scalar values is necessarily correct, i.e. a misprediction that would
occur in the original sequential execution order is detected when executing the code in
parallel.

The while loops are also verified when their trip counts are speculative. A counter
incrementation is added in the sequential while loops, before transforming the nest.
When the transformation is applied on the loop nest, this counter increment is con-
sidered as a regular statement which can be handled by reduction. In the transformed
nest, when the while loop exit condition is met, it contains the number of while loop
iterations executed. It is then compared to the speculation to ensure that this specu-
lation is correct.

The code used for the verification is illustrated with an example in Figure 5.5. In
that figure the value of the scalar p is speculated: in the parallel nest, it is initialized
at the beginning of the iteration and its value is tested at the end of the iteration. The
memory access performed at the address defined by p->next is also compared to the
speculative linear function. The coefficients base1, base2, scale1, and scale2 are
determined during the online profiling which associates a speculative linear function to
every predicted scalar value, memory reference, and loop trip count. In our example,
the outermost loop is a while loop, which is chunked to allow its parallelization by
conventional techniques. In our case, the exit condition is never true as the value of p

is speculated. However, a misprediction will happen for this scalar at the last iteration,
leading to execute the last chunk in sequential before stopping the execution.

5.7.3 Test Implementation

We have considered two implementations to check if the speculative value matches the
actual one. The first one compares both speculative and actual values using a test at

5.8. COMMIT AND ROLLBACK 161

program reference
conditional boolean
instruction flag

ind 280 ms 365 ms 330 ms
llist 495 ms 505 ms 510 ms
rmm 330 ms 780 ms 1,305 ms

switch 620 ms 645 ms 660 ms

Table 5.7: Execution time of the different verification strategies.

each iteration. The second one updates a boolean flag, testing its value only once after
several iterations, typically at the end of a chunk. This later strategy limits the num-
ber of tests performed and is then expected to be faster, at the price of an increased
overhead in case of mispredictions. Indeed, as the misprediction is detected several it-
erations later, when the actual test is performed, more parallel iterations are executed
before being canceled. We evaluate both strategies on our reference computer, aug-
menting the parallel code generated by PLUTO with the validity checks and measuring
the resulting execution times. They are presented in Table 5.7, where the reference
version is the original parallel code without any validity check. Surprisingly, the second
strategy does not provide any clear benefit over the naive one. Most of the time, the
compiler, GCC in our case, performs better at optimizing the tests than the boolean
operations. This can also be observed with LLVM and ICC. Both implementations
lead to overheads, especially for rmm whose reference version is highly optimized, but
the speculation verification is mandatory and its overhead remains limited compared
to the sequential execution times.

5.7.4 Chosen Solution

As we can ensure that the parallel verification is valid, we use this technique to verify
if the speculation is indeed correct. Considering the different test implementations
results, we use simple conditional instructions at every iteration. This approach seems
to be as efficient as the one based on the boolean flag, but is able to engage the
back-tracking as soon as a misprediction is detected.

5.8 Commit and Rollback

A remaining challenge is to build a transactional system able to revert the execution
in case of misprediction. Although some existing hardware mechanisms are able to
perform this operation, they remain very uncommon and software solutions should be
privileged for the sake of portability. In this section, we show that only the currently
executed chunk has to be canceled and re-executed sequentially to maintain the correct
program semantics. We also present two implementations of a simple software system
able to perform the required back-tracking. The first one is based on operating system
processes, while the second is a more common approach exploiting the benefits from
the polyhedral model.

162 CHAPTER 5. SPECULATIVE PARALLELIZATION

for (i = 0; i < 5; i++) {

*p = ...

... = A[B[i]];

}

�

�

�

��
��

� � � � �

�

for (i = 4; i >= 0; i--) {

*p = ...

... = A[B[i]];

}

�

�

�

��
��

� � � � �

�

Figure 5.6: Sample loop (top), its transformed counterpart (bottom), and the corre-
sponding memory accesses performed (right).

5.8.1 Transactions and Chunks

One can notice that the parallel validation can fail when testing an access which is
not related to the first access mispredicted in the sequential order. This is illustrated
in Figure 5.6, where an original loop is transformed by a loop reversal. The memory
accesses performed are represented on the right in the figure. In the initial loop, on
the top, the very first pointer access writes 3 in B[4], causing the last memory access
to be mispredicted. When executing in the reversed order, the initial state of B[4]
leads to a correctly predicted access for A[B[i]] and the verification has to wait for
the last iteration, where the non-linear pointer access happen, before failing. When
the faulty pointer access is detected, not only the last iteration has to be replayed, but
also the first one. In the worst case, the whole loop has to be re-executed when such
a misprediction is detected.

More formally, consider memory access a whose actual address accessed differs from
what has been speculated. Its speculated address was @spec while the correct address
for this access is actually @cor. We call Aspec the set of dependent memory accesses
which use the memory element at address @spec. Similarly, Acor is the set of dependent
memory accesses which use the memory element at address @cor. If the parallel schedule
is valid with regard to the speculated dependences, it ensures that a and the memory
accesses in Aspec are executed in the same relative order than during original sequential
execution. However, as a misprediction occurs, the access a has to be correctly ordered
with the accesses in Acor. Indeed, the accesses in Acor are in a dependence relation with

5.8. COMMIT AND ROLLBACK 163

������� ��������	

��������	

ABC� CBDDEF��

�CB�����	

�CB������

������� ��������	 �������

BCD� ECFF��

�DCE����	

�DCE����A

Figure 5.7: Execution of chunk i+1 cancelled (left) or commited (right).

a but has not been taken into account by the speculation. To guarantee the sequential
semantics, the transactional system has to ensure that a and the accesses in Acor are
executed in the same relative order as during the sequential execution.

We recall to the reader that the chunking system is performed on the original
outermost loop and that the chunks are executed in the sequential order, even if the
iterations inside the chunks may be executed in a different order. This chunking strat-
egy has a very interesting property: the iterations in the chunks preceding the current
chunk necessarily precede the iterations of the current chunk during the sequential
execution. Similarly, the iterations in the chunks executed after the current chunk are
necessarily executed after those of the current chunk during the sequential execution.
The sequential order is then imposed for two iterations in different chunks. Then, if
the transactional system re-executes the current chunk using the sequential execution
order, it can ensure that the relative order of an access in the current chunk with any
other access is in fact equivalent to the sequential execution order. It means that,
when a misprediction is detected, it is sufficient to re-execute the current chunk in the
sequential order to ensure the correct ordering of the accesses in Acor with a, and then
the correct program semantics.

5.8.2 fork-based Transactional System

A simple mechanism can be implemented using the standard operating system facil-
ities to perform the required back-tracking. Among the hundreds of tools offered by
operating systems, are the processes. They are of particular interest because of the
copy-on-write strategy used when duplicating processes in modern operating systems.
When a process is being duplicated, typically using fork, the process and its copy use
different memory spaces that have to be initialized to the same state. A naive approach
is to copy the process memory when the process is duplicated. With the copy-on-write
strategy, both processes initially share the same memory space, and before the first
write to a shared memory page, the page is copied to ensure that the write is local to
the process which performed it. This method is very efficient as only rewritten pages
are duplicated, limiting the amount of memory which has to be copied.

We can take advantage of this mechanism to build a simple transactional system
based on processes. In that implementation, the program is cloned using fork at the
beginning of a every chunk. The new process simply waits for its parent termination. In
the same time, the parent process executes the chunk and every modified memory slot is

164 CHAPTER 5. SPECULATIVE PARALLELIZATION

 0

 5

 10

 15

 20

 25

32 64 128 256 512 1024 2048

S
p

e
e

d
u

p
 o

v
e

r
s
e

q
u

e
n

ti
a

l

Chunk size

ind
llist

rmm
switch

Figure 5.8: Speedup over the sequential version when using a fork-based transactional
system.

automatically duplicated, thanks to the copy-on-write mechanism. If the speculation
fails, the main process simply exits, awakening its son which can start again from
the beginning of the chunk using another schedule. If the speculation succeeds, the
son is simply terminated and the original process can continue. This is illustrated in
Figure 5.7 with the execution of the chunk i+1 on process 1 which is either back-tracked
or validated.

The main issue with that implementation is its time overhead. We have evalu-
ated it on our reference computer and found that only a few processes can be created
during the program execution while maintaining decent performance. This is directly
related to the chunk size as it impacts the number of chunks required to execute the
full iteration domain, and then the number of processes being created. We present
our measurements in Figure 5.8 where the speedup of each program using the transac-
tional system is related to the chunk size. The speedups are referring to the sequential
execution. During that experiment, the process is duplicated at the beginning of each
chunk and its copy is terminated at the end of the chunk, simulating a commit after
every chunk. By comparing this figure with Figure 5.3, one can notice that the min-
imal chunk size required to perform an efficient execution is larger than without any
transactional mechanism. The most important point is in fact the missing data for
the llist program. Those data are missing because our operating system was not
able to handle the process management required for that specific application. Indeed,
with the tested chunk sizes, several thousands of processes are successively created and
destroyed in a few milliseconds, provoking some malfunctions. The only way of using
this implementation with llist is actually to use huge chunks, larger than 500,000
iterations. This is specific to llist because it is the only loop nest with such a large

5.8. COMMIT AND ROLLBACK 165

 0

 5

 10

 15

 20

 25

32 64 128 256 512 1024 2048

S
p

e
e

d
u

p
 o

v
e

r
s
e

q
u

e
n

ti
a

l

Chunk size

ind
llist

rmm
switch

Figure 5.9: Speedup over the sequential version when using a memcpy-based transac-
tional system.

number of outermost loop iterations.

5.8.3 memcpy-based Transactional System

We propose another implementation exploiting the polyhedral model. If the behavior
of the loop nest is correctly predicted, the addresses reached by every memory reference
and the loop bounds can be expressed as linear functions of the enclosing loop indices,
including the while loops. In that context, the memory space reached by each mem-
ory reference can be exactly defined. Thus, we can precisely determine the address
range modified by every write reference for the current chunk. This knowledge can
be exploited to perform a backup of the modified memory elements before executing
the chunk. In case of misprediction, this backup is restored and the chunk can be
re-executed, otherwise, it is just overwritten by the backup of the next chunk.

Tools such as ISL can represent the memory space reached by a reference, and
compute the minimal and maximal address reached depending on the chunk bounds.
In case of a strided access, the impacted memory space is over-approximated but is
contiguous, avoiding to perform expensive strided copies when saving the memory. The
cost of this address space computation remains small as it needs to be performed only
once when new speculative linear functions are profiled. The result of this method
is a memory copy per memory write, saving the modified memory elements before
executing the chunk, and the corresponding restoration copy in case of misprediction.
It is typically implemented using the optimized memcpy function call. Notice that, in
case of misprediction, the incorrect memory access has not to be performed as it will
reach a memory slot which may not have been saved.

166 CHAPTER 5. SPECULATIVE PARALLELIZATION

We have evaluated this method by copying the modified memory before running
each chunk in parallel. The results are presented in Figure 5.9. We can see that, with
that method, the program performs well even when small chunks are used. Moreover,
llist does not cause any trouble, illustrating how several thousands of copies can be
performed while still reaching good performance. A data is missing for llist with
chunks of 2048 iterations. This is due to the high memory use of the original program:
nearly all the memory is used by the original application and not enough space is left
to backup the data with such large chunks.

5.8.4 Interrupting the Threads

In case of misprediction, the thread which detects the misprediction has to stop all
the other threads as soon as possible before restoring the memory. Different designs
can be considered to interrupt the other threads. First, the other threads can simply
be killed. This is fast as the threads are immediately stopped, however, it requires
to destroy and create new threads at every misprediction. This thread destruction
and creation is very costly as many complex operations have to be performed by the
operating system every time a thread is created or destroyed. Second, a signal can be
used to notify to a thread that it has to stop. This approach allows one to reuse the
threads in case of misprediction, but the signal handling procedure is then extremely
complex to implement. Indeed, when a thread receives a signal, it has to enter in a
waiting state until a new task is assigned to it, and in the mean time, it has to exit the
signal handler in order to resume a normal execution. Executing simultaneously both
operations requires a very complex implementation whereas simpler solutions exist.
The third approach assigns a flag to every thread. Those flags are set by the thread
that detects a misprediction. Each threads frequently checks for its flag and stops
whenever it is set. The main overhead of the approach is an additional test, performed
typically at each iteration. This overhead can be reduced by checking less frequently
the flag value, for example only at every iteration of the outer loops. As each thread
has its own flag, they should be located on different cache lines, avoiding unnecessary
cache conflicts.

5.8.5 Rollback Strategies

Once the threads are stopped, the current chunk is canceled, and the memory is restored
in its state preceding the chunk execution. Then, the mispredicted chunk has to be re-
executed using the sequential schedule. One could envisage to take into consideration
the new dependence caused by the mispredicted access. Considering this dependence,
one could try to use any valid parallel schedule. This method leads to very specific
issues and is not trivially usable. It is left for future research.

Once the sequential re-execution has been performed, the behavior of the applica-
tion may have durably changed, for example if the program has entered a new phase.
Then, to distinguish between a local misprediction and a long-term phase change, the
program can be profiled again to determine if new linear functions can be associated
with the memory references. In that case, a new parallel schedule can be used to

5.8. COMMIT AND ROLLBACK 167

�������

��		���

��A���

��A���
AB
AC
��A
��
�

ABAC��A���

DE�	�F�CF��CA�EFC�

	��A��C�AC�����AF���
��B����CF��

A�EFC	��A�

����E�	�F�CF��

	��A�C�����AF�����

DE�	�F�CF��CA�EF

	��A�C�AC��������

DE�	�F�CF��CA�EF

	��A�C�AC�����AF���

����FC��B����A�

������AFC��������

Figure 5.10: Runtime strategy.

execute the next chunks.
The number of rollbacks has to be minimized to limit the overhead of multiple

failed parallelizations. Thus, in case of multiple successive mispredicted chunks, the
system can execute several sequential chunks (or a larger sequential chunk) before
trying again to profile and parallelize the loop nest. This is based on the observation
that the program may have unpredictable phases, alternating with predictable ones.

5.8.6 Chosen Solution

We present in Figure 5.10 a suggested runtime strategy. It is designed to distinguish
between two different kinds of mispredictions: rare local misspeculations and longer
unpredictable phases. The former case can appear for instance with a linked list whose
elements are allocated consecutively in memory. If this list is traversed whereas some
elements in that list have been removed, some localized and rare misprediction occurs.
The later case is related to program phases, considering that a loop nest can perform
different operations on different data during the loop nest execution. Some of those
phases may be predictable whereas others may not.

When the parallel execution fails, the chunk is re-executed sequentially and the
next chunk is profiled. If a non-linearity is observed during profiling, several chunks
are executed sequentially before profiling the loop nest again. Alternatively, a larger
chunk can be executed to limit the control overhead. This long sequential execution
can also occur if several consecutive parallel chunks are mispredicted, i.e. when a non-
predictable phase is detected. Otherwise, while the behavior of the loop nest is linear
and correctly predicted, it is executed in parallel. If the linear functions built when
re-profiling the nest are incompatible with the currently selected parallel schedule,
a different schedule is selected and the parallel execution continues with that other
schedule.

We consider that two consecutive parallel failures define an unpredictable phase.
Executing five sequential chunks to skip such a phase seems reasonable, allowing the
system to adapt to short phase switches while limiting the overhead of frequent profil-
ing. More dynamic strategies could be considered to limit this profiling overhead. For
instance, the number or the size of sequential chunks skipping unpredictable phases
can be increased at runtime if many successive unpredictable phases are detected.

168 CHAPTER 5. SPECULATIVE PARALLELIZATION

Considering the presented results, the transactional system used to perform the
rollback operation is implemented using the memcpy-based approach.

5.9 Putting it all Together

5.9.1 Overview

The decisions taken at every step are combined into one system. Before parallelizing
the application, it is observed during an offline profiling run. Loop nests with mostly
linear references are detected and some linear functions are built. Those linear functions
characterize the addresses reached by the memory references, the values taken by the
scalars used in address computation, and which cause inter-iteration dependences but
which cannot be privatized, and the trip count of while loop inside the loop nest. A
parallel schedule is selected using this speculative description of the program, assuming
that it is representative of the overall program behavior. If several linear functions can
be associated to the same memory reference, different schedules are generated to handle
the different cases. For every schedule built from the profiling plus several generic
schedules, the corresponding code is generated and is embedded in the application.
Those codes contain the actual memory references, some initialization code for the
predicted scalar references, and the verification code for the predicted scalar, memory
references, and loop trip counts.

At runtime, the first few iterations of the sequential nest are profiled, the depen-
dence are built from the observed linear functions and, if one of the available schedules
is valid with regard to the speculative dependences, it is used to speculatively run the
loop nest in parallel. During the execution, the verification is performed using condi-
tional instructions. In case of failure, the threads are stopped using boolean flags, and
the last executed chunk is reverted using a memcpy-based transactional system. The
runtime strategy presented before is then applied.

The main drawbacks of the system are, first, that it is restricted to the schedules
embedded with the application. Second, those schedules can heavily increase the binary
program size. Third the transactional memory mechanisms adds a significant overhead
to the parallelization. And fourth, this speculative system can only work in case of
linear memory references. However, it is able to transform and parallelize complex
applications which cannot be statically analyzed. As polyhedral transformations are
applied on the loop nests, the parallelized code can outperform any existing speculative
systems, which are not able to apply such advanced transformations. Moreover, thanks
to its dynamic nature, our system can handle piecewise linear functions and apply
different parallel schedules at different epochs of the execution. As our system restricts
the memory references to be linear, we are also able to propose a fast software-only
transactional system.

5.9.2 Evaluation

To evaluate our design decisions, we have simulated the effects of our system on the
example programs. The programs are statically transformed using PLUTO to generate

5.10. CONCLUSION AND PERSPECTIVES 169

program parallel speculative OK sequential speculative FAIL
ind 280 ms (×5.3) 600 ms (×2.5) 1,495 ms 620 ms

llist 495 ms (×6.3) 985 ms (×3.1) 3,100 ms 1,050 ms
rmm 330 ms (×31.3) 890 ms (×11.6) 10,330 ms 890 ms

switch 620 ms (×6.4) 1,400 ms (×2.8) 3,960 ms 1,500 ms

Table 5.8: Speculative system evaluation.

the parallel versions, assuming that a previous profiling step allowed us to build an
equivalent version of the programs with linear memory references. The parallel versions
are chunked, the transactional system is included, as well as the tests to validate the
speculation and to kill the other threads.

We present the evaluation results in Table 5.8. The presented times are execution
times of the full loop nests, sometimes accompanied by speedups over the original
sequential execution time. In the table, “parallel” represents the program parallelized
using PLUTO, assuming that it is able to analyze it, and where we guarantee that
every memory reference is actually linear. The column “speculative OK” presents the
execution time of the loop nest when no misprediction occurs, it can be considered
as the best case for our system. The extra costs induced by profiling and dependence
testing are considered: an extra 50 ms overhead is added to speculative measurements
per profiling step. We show that our implementation is able to reach speedups about
half of what can be performed by hand parallelization.

To evaluate the cost of a misprediction, we present in “speculative FAIL”, the
execution time of the loop nest with a rollback after every chunk. Those chunks are
not re-executed and the state of the memory after the execution is the same as before
the loop nest execution. The only purpose of this measurement is to better evaluate
the overhead of a misprediction. The worst case execution time of our system is about
the sum of the sequential execution time plus a sixth of this entry. This worst case
occurs when every chunk is profiled as being linear but they are all found non-linear
at the very last iteration of every chunk, and sequentially re-executed by group of five
chunks. This worst case overhead remains limited thanks to the optimizations applied
in cases of misprediction. First, if the failure occurs earlier in the chunk execution, only
a part of the chunk is executed in parallel before its sequential re-execution. Second,
if the runtime profiling detects this non-linearity, the chunk is even not executed in
parallel. And third, in case of consecutive failures, the system detects an unpredictable
phase and immediately execute five sequential chunks.

5.10 Conclusion and Perspectives

We have presented in this chapter a speculative system able to apply polyhedral trans-
formations on complex loop nests. Different designs are presented, and a full speculative

170 CHAPTER 5. SPECULATIVE PARALLELIZATION

system is proposed and evaluated on four example programs. The main contributions
of this work are twofold.

First, we detail each step required to build a speculative polyhedral system. For
each step, we present several implementations, and evaluate them on four example
programs, judging for their feasibility. The design choices are described, evaluated and
discussed at each step to allow an informed decision.

Second, based on the discussions about the different phases, we propose a com-
plete speculative system able to perform advanced transformations on complex loop
nests. This design is confronted to the four example programs and we show that good
performance can be expected from such a parallelization strategy.

In this chapter we have shown that advanced transformations can be applied when
the code itself is complex. Thanks to the polyhedral model, major optimizations can
be applied on programs which are even not analyzable by a static compiler. Our
implementation is fully software, allowing it to be used on current general-purpose
computers. It is not able to handle all the existing programs, however, alongside
other (possibly speculative) systems, it can provide major performance enhancement
on regular or partially regular loop nests even when no static analysis is possible.

The first perspective that comes in mind is a concrete implementation of this sys-
tem. Indeed, the main proof of feasibility for such a system is its implementation. This
could also allow us to evaluate the effects of this strategy on more complex programs
to adjust the strategy if needed. Different other enhancements can be proposed. A
clever incremental dependence analysis could be performed, testing the mispredicted
accesses against the schedules at runtime, to check if it actually creates a new in-
valid dependence or if the parallel execution can continue. To limit the overhead of
the verification and of the software transactional mechanism, the system could also
be evaluated with hardware transactional memory. Finally, an implementation of an
efficient runtime polyhedral parallelizer would be of major importance for our system
as it could avoid restricting the set of possible transformations. This implementation
could be progressive. The scheduling could be performed first on a restricted set of
transformations. With the adequate restrictions, a faster code generation could be
envisaged and adapted to the hybrid code generation we have presented. If this can
be done efficiently, the runtime scheduling and code generation can be progressively
extended until reaching an efficient runtime polyhedral scheduler.

Chapter 6

Conclusion and Perspectives

6.1 Contributions

We have proposed three systems which have the ambition of improving the state-of-
the-art. All together, they form a consistent approach to enhance the parallelization
capabilities of existing systems.

In Chapter 3, we present a binary parallelization system. This system provides the
following improvements compared to existing systems.

• It is a static system, on the contrary to most of the existing approaches, using
speculative parallelization to handle binary programs. We have shown that, some
of the loops in executable codes can already be parallelized statically, and do not
require to be handled at runtime. Thus, our system does not suffer from the
runtime overhead associated to any dynamic tool. Moreover, it does not require
any specific hardware to detect dependences between loop iterations. Although
our system can only handle polyhedral loop nests, it is a perfect complement to
any dynamic binary parallelization system. Such partnership provides an effi-
cient solution for statically parallelizable loop nest as well as other more complex
structures.

• Our approach is very modular: any source-to-source parallelizer can be used to
transform and parallelize the loop nests extracted from the binary programs.
Thus, it is not attached to any particular method to analyze the dependences,
transform the program, or parallelize loops. We have shown, using two different
back-end parallelizers, that different parallelization approaches can be considered
while maintaining high performance compared to an equivalent parallelization
from the original source code. This modularity allows our system to virtually
benefit from many parallelization or transformation techniques which have been
or will be developed, as soon as the skeleton extracted from the binary program
suffice them.

• The static binary parallelization we propose is the first attempt to apply polyhe-
dral transformations on an already compiled program. When using a polyhedral
parallelizer, we show that advanced loop optimizations can be efficiently applied

171

172 CHAPTER 6. CONCLUSION AND PERSPECTIVES

on affine loop nests. Our decompilation phase is generally sufficient to extract
enough information to allow such tools to perform well. The different steps per-
formed to recompile the program are also efficient, leading to benefit from nearly
all the gains of such advanced parallelization. The transformation applied can
sometimes clearly outperform all the existing static parallelizers, which do not
perform such loop transformation.

• We propose an extension to parallelize loop nests with non-linear memory refer-
ences. This extension is mandatory to handle more complex binary programs.
As it does not allow code transformations, we have also proposed a new paral-
lelization strategy dedicated to binary code, where the original binary program
can be parallelized without moving nor duplicating any code fragment.

This parallelization system is the first brick of our general approach and exploits the
compilation time to parallelize the programs, even when their format is complex.

The second proposed system is hybrid, exploiting both the compilation time and
the execution time to enhance the parallelization of programs. This code selection
mechanism is presented in Chapter 4. It provides several enhancements to the current
state-of-the-art:

• It targets parallel programs, while the existing code selections mechanisms are
often restricted to sequential programs. Parallel programs induce specific chal-
lenges which have to be handled specifically. Thus, the existing selection methods
can often not be directly ported to handle parallel programs. The approach we
present specifically focuses on parallel programs and addresses the related chal-
lenges.

• On the contrary to most of the existing systems, our system can select an effi-
cient code version since the first execution of the program. After a short profiling
period performed at the program installation, our system selects an efficient ver-
sion for every encountered execution context. Its high precision, coupled with
a negligible runtime overhead, leads to a very efficient system, able to quickly
adapt to changing execution contexts.

• Our selection system is fully automatic. It is interesting to note that most of the
existing systems require a human intervention at some point. With our approach,
the original program does not need to be rewritten in a specific language, it is
not needed to describe the operations performed in the program, neither to build
valid training data.

• The polyhedral approach used by this selection system is the warrant for its
precision. Indeed, the stable behavior of affine loop nests guarantees the precision
of the selection mechanism. The other mechanisms proposed until now cannot
benefit from any such property, and can be easily tricked by unstable programs.

This is the second brick of our general approach: we show that, by exploiting both
compilation and execution times, the parallelization performed on programs can be
enhanced toward changing execution contexts. We show that an efficient dynamic

6.2. FUTURE WORK 173

system, coupled with a static profiling step, can ensure an efficient selection of parallel
versions of a program.

The last system we have presented is a speculative parallelizer using the polyhedral
model. Despite it has not yet been totally implemented and evaluated, the first results
allow us to subsume that several advances can be performed relatively to existing
systems:

• As our system is the first allowing polyhedral transformations to be performed
on non statically analyzable loop nests, it is also the first one able to benefit from
the associated performance gains. It can then be expected that such a system
would clearly outperform the existing systems which cannot transform a loop
nest to enhance data locality nor to exhibit a parallel loop level when none is
naturally exposed.

• The polyhedral model is often considered to be useful only for static paralleliza-
tion. We show here that dynamic parallelization of non statically analyzable code
can be performed using the polyhedral model. This strongly widen the class of
programs which can be handled by this representation and its associated tools.
In some sense, this work is then extending the different approaches which have
been proposed to apply the polyhedral model on more complex programs.

• The constraint of linearity imposed on memory references helps to build an effi-
cient speculative system where no hardware is required. This is rare for specu-
lative parallelizers which often delegate the complex task of dependence analysis
and memory management to dedicated hardware, despite the few commercialized
hardware transactional mechanisms.

This system is the last brick where the runtime is considered at the moment to ap-
ply advanced parallelization techniques on non-statically analyzable loops. This third
system complements the two others to form a global approach where every specific
moment of the program lifetime is exploited to parallelize it or to enhance the per-
formed parallelization. Those three approaches together provide concrete solutions to
the automatic program parallelization problem.

From the polyhedral model point of view, we also show that, with no specific
modification to the model itself, it is possible to extend its uses to programs where
the format is complex (binary programs), where the execution context is complex, and
where the code structure itself is complex. We show that, on the contrary to what is
commonly assumed about this model, an efficient parallelization can be performed in
all those different situations.

6.2 Future work

The static binary parallelizer we have presented shows that complex loop transforma-
tions can be applied statically at the binary level. The system itself can be enhanced
and especially its robustness can be improved. The compilers that produce the sequen-
tial binary program can apply complex code transformations such as loop unrolling or

174 CHAPTER 6. CONCLUSION AND PERSPECTIVES

basic block fusion. This can disrupt the analysis performed on the binary program. If
the system would be able to revert those transformations, it could more easily paral-
lelize the programs in such cases. It may also be important to approximate the control
flow if it is unanalyzable. For instance, data-dependent conditions could be ignored.
This would lead to consider more dependences than there actually are, but would al-
low the parallelization of more complex programs. On the other hand, some programs
are fully analyzable and a very precise high-level representation of the program can
be reconstructed from the binary code. In that case, the translation to another archi-
tecture could be an interesting feature, allowing for instance to parallelize legacy x86
programs on GPUs. Moreover, our system is modular and can use any source-to-source
parallelizer, we could exploit this modularity for other goals than parallelization. For
instance code size, or energy consumption could be interesting alternative goals.

Our hybrid version selection system is restricted to regular, affine loop nests. Sev-
eral other approaches have shown some improvements on more general codes. Then,
it would be interesting to extend the system to a more general class of programs. The
main issue is, as explained before, that the polyhedral model gives us a very strict frame
in which we can ensure that the program behavior can be efficiently predicted. Other
extensions could target more complex architectural contexts. For instance, perform-
ing this code selection on platforms with multiple parallel hardware is an interesting
challenge. It would allow one to decide whether to execute a given kernel on a CPU
or a GPU for instance. Interestingly, one could also notice that combining the code
selection with the binary code approach could allow one to perform this selection at
the binary level.

The speculative parallelization we have presented has not yet been completely im-
plemented, on the contrary to the other presented systems. The first perspective is
to achieve this implementation. It could lead to several adjustments on the presented
techniques and strategies. From this implementation, a vast research area would be
opened, with the final goal of reaching fully dynamic application of the polyhedral
model. This would allow the polyhedral model to be applied on programs which are
currently not in its scope. It is not clear up to what point the polyhedral model can
be extended to this fully dynamic use, and several challenges have to be overcome,
including the complexity of the core algorithms used in this model.

Those three systems altogether form a global answer to the parallelization prob-
lematic. This dissertation is obviously not a final answer to this problem, but provides
solutions extending the automatic parallelization of programs towards a fully auto-
matic system able to handle complex program formats, complex execution contexts,
and complex code structures.

This parallelization problematic will probably become even more important in the
next years as the hardware designers already announced processors with hundreds of
cores. This will probably be accompanied by an increased complexity of the hardware
with the appearance of specialized parallel hardware, or simpler cache coherency on
processors for instance. Other problematics, related to those new hardwares, will prob-
ably emerge. For instance energy consumption or reliability will probably become more
and more important. It creates a complex architectural environment, with numerous
parallel resources that the softwares will have to correctly exploit. The automatic

6.2. FUTURE WORK 175

parallelization performed by compilers is then the first step towards this challenging
future.

176 CHAPTER 6. CONCLUSION AND PERSPECTIVES

Personal Bibliography

• Adaptive Runtime Selection of Parallel Schedules in the Polytope Model. Benoît
Pradelle, Philippe Clauss and Vincent Loechner. In 19th High Performance Com-
puting Symposium, ACM/SIGSIM, Boston, MA, USA, 2011.

• Context-Aware Runtime Selection of Parallel Loops on Multi-Core Platforms.
Benoît Pradelle, Philippe Clauss and Vincent Loechner. Technical report ICPS/
LSIIT. Submitted for publication in a journal. 2011.

• Transparent Parallelization of Binary Code. Benoît Pradelle, Alain Ketterlin and
Philippe Clauss. In First International Workshop on Polyhedral Compilation
Techniques, IMPACT 2011, in conjunction with CGO 2011, Chamonix, France,
2011.

• Polyhedral Parallelization of Binary Code. Benoît Pradelle, Alain Ketterlin and
Philippe Clauss. In 7th HiPEAC conference, ACM, Paris, France, 2012.

• Polyhedral Parallelization of Binary Code. Benoît Pradelle, Alain Ketterlin and
Philippe Clauss. To be published in Transactions on Architecture and Code
Optimization, TACO, ACM, 2012.

• Adapting the Polyhedral Model as a Framework for Efficient Speculative Par-
allelization. Alexandra Jimborean, Philippe Clauss, Benoît Pradelle, Luis Mas-
trangelo and Vincent Loechner. Technical report ICPS/LSIIT. Submitted for
publication. 2011.

177

178 PERSONAL BIBLIOGRAPHY

Bibliography

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’boyle,
J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learning to
focus iterative optimization. In Proceedings of the International Symposium on
Code Generation and Optimization (CGO), pages 295–305, 2006.

[2] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edel-
man, and Saman Amarasinghe. Petabricks: a language and compiler for algo-
rithmic choice. In PLDI ’09, pages 38–49. ACM, 2009.

[3] A. W. Appel and M. Ginsburg. Modern Compiler Implementation in C. Cam-
bridge University Press, 2004.

[4] Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F.
Sweeney. A survey of adaptive optimization in virtual machines. volume 93,
pages 449 –466, feb. 2005.

[5] Vishal Aslot, Max J. Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B.
Jones, and Bodo Parady. Specomp: A new benchmark suite for measuring paral-
lel computer performance. In WOMPAT ’01, pages 1–10. Springer-Verlag, 2001.

[6] Hansang Bae, Leonardo Bachega, Chirag Dave, Sang-Ik Lee, Seyong Lee, Seung-
Jai Min, Rudolf Eigenmann, and Samuel Midkiff. Cetus: A source-to-source
compiler infrastructure for multicores. In Proc. of the 14th Int’l Workshop on
Compilers for Parallel Computing (CPC’09), 2009.

[7] Riyadh Baghdadi, Albert Cohen, Cédric Bastoul, Louis-Noël Pouchet, and
Lawrence Rauchwerger. The Potential of Synergistic Static, Dynamic and Specu-
lative Loop Nest Optimizations for Automatic Parallelization. In Wei Liu, Scott
Mahlke, and Tin fook Ngai, editors, Pespma 2010 - Workshop on Parallel Ex-
ecution of Sequential Programs on Multi-core Architecture, Saint Malo, France,
2010.

[8] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a trans-
parent dynamic optimization system. In Proceedings of the ACM SIGPLAN
2000 conference on Programming language design and implementation, PLDI
’00, pages 1–12, New York, NY, USA, 2000. ACM.

[9] Utpal K. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, Norwell, MA, USA, 1988.

179

180 BIBLIOGRAPHY

[10] Muthu Manikandan Baskaran, Albert Hartono, Sanket Tavarageri, Thomas Hen-
retty, J. Ramanujam, and P. Sadayappan. Parameterized tiling revisited. In Pro-
ceedings of the International Symposium on Code Generation and Optimization
(CGO), pages 200–209, 2010.

[11] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Putting polyhedral
transformations to work. In LCPC’16 Intl. Workshop on Languages and Compil-
ers for Parallel Computers, LNCS 2958, pages 209–225, College Station, October
2003.

[12] Cédric Bastoul. Code generation in the polyhedral model is easier than you think.
In PACT’13, pages 7–16, September 2004.

[13] Cédric Bastoul. Improving Data Locality in Static Control Programs. PhD thesis,
University Paris 6, Pierre et Marie Curie, France, December 2004.

[14] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The poly-
hedral model is more widely applicable than you think. In ETAPS CC, 2010.

[15] Jean Christophe Beyler. Dynamic Software Optimization of Memory Accesses.
PhD thesis, University Louis Pasteur, Strasbourg, France, December 2007.

[16] Jean Christophe Beyler and Philippe Clauss. Performance driven data cache
prefetching in a dynamic software optimization system. In Proceedings of the
21st annual international conference on Supercomputing, ICS ’07, pages 202–209,
New York, NY, USA, 2007. ACM.

[17] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and
R. C. Whaley. An updated set of basic linear algebra subprograms (blas). ACM
Transactions on Mathematical Software, 28:135–151, 2001.

[18] William Blume and Rudolf Eigenmann. The range test: A dependence test for
symbolic, non-linear expressions. In Proceedings of Supercomputing ’94, Wash-
ington D.C, pages 528–537, 1994.

[19] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. In Journal of Parallel and Distributed Computing, pages 207–
216, 1995.

[20] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. J. ACM, 46(5), 1999.

[21] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’ Boyle, and Erven
Rohou. Iterative compilation in a non-linear optimisation space. In Workshop
on Profile and Feedback-Directed Compilation, Paris, France, 1998.

BIBLIOGRAPHY 181

[22] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanu-
jam, Atanas Rountev, and P. Sadayappan. Automatic transformations for
communication-minimized parallelization and locality optimization in the poly-
hedral model. In Proceedings of the Joint European Conferences on Theory and
Practice of Software, 17th international conference on Compiler construction,
CC’08/ETAPS’08, pages 132–146, Berlin, Heidelberg, 2008. Springer-Verlag.

[23] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A prac-
tical automatic polyhedral parallelizer and locality optimizer. In PLDI ’08, pages
101–113. ACM, 2008. http://pluto-compiler.sourceforge.net.

[24] Derek Bruening, Srikrishna Devabhaktuni, and Saman Amarasinghe. Softspec:
Software-based speculative parallelism. In ACM Workshop on Feedback-Directed
and Dynamic Optimization, Monterey, California, Dec 2000.

[25] Derek L. Bruening. Efficient, transparent, and comprehensive runtime code ma-
nipulation. PhD thesis, Cambridge, MA, USA, 2004. AAI0807735.

[26] Pierre-Yves Calland, Alain Darte, Yves Robert, and Frédéric Vivien. On the
removal of anti- and output-dependences. Int. J. Parallel Program., 26:285–312,
June 1998.

[27] C. Chen, J. Chame, and M. Hall. Chill: A framework for composing high-level
loop transformations. Technical Report 08-897, University of Southern California,
June 2008.

[28] Ding-Kai Chen, Josep Torrellas, and Pen-Chung Yew. An efficient algorithm for
the run-time parallelization of doacross loops. In Proceedings of the 1994 con-
ference on Supercomputing, Supercomputing ’94, pages 518–527, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press.

[29] Peng-Sheng Chen, Ming-Yu Hung, Yuan-Shin Hwang, Roy Dz-Ching Ju, and
Jenq Kuen Lee. Compiler support for speculative multithreading architecture
with probabilistic points-to analysis. In Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPoPP ’03, pages
25–36, New York, NY, USA, 2003. ACM.

[30] Marcelo Cintra and Diego R. Llanos. Toward efficient and robust software spec-
ulative parallelization on multiprocessors. In Proceedings of the ninth ACM SIG-
PLAN symposium on Principles and practice of parallel programming, PPoPP
’03, pages 13–24, New York, NY, USA, 2003. ACM.

[31] Ph. Clauss and I. Tchoupaeva. A Symbolic Approach to Bernstein Expansion for
Program Analysis and Optimization. In CC, 2004.

[32] Philippe Clauss. Counting solutions to linear and nonlinear constraints through
ehrhart polynomials: applications to analyze and transform scientific programs.
In Proceedings of the 10th international conference on Supercomputing, ICS ’96,
pages 278–285, New York, NY, USA, 1996. ACM.

http://pluto-compiler.sourceforge.net

182 BIBLIOGRAPHY

[33] Philippe Clauss, Federico Javier Fernández, Diego Garbervetsky, and Sven Ver-
doolaege. Symbolic polynomial maximization over convex sets and its application
to memory requirement estimation. IEEE Trans. Very Large Scale Integr. Syst.,
17, 2009.

[34] Albert Cohen, Sylvain Girbal, and Olivier Temam. A polyhedral approach to
ease the composition of program transformations. In in: Euro-Par’04, no. 3149
in LNCS, pages 292–303. Springer-Verlag, 2004.

[35] Robert S. Cohn, David W. Goodwin, and P. Geoffrey Lowney. Optimizing alpha
executables on windows nt with spike. Digital Tech. J., 9:3–20, April 1998.

[36] Jean-François Collard. Automatic parallelization of while-loops using speculative
execution. International Journal of Parallel Programming, 23:191–219, 1995.
10.1007/BF02577789.

[37] Jean-François Collard, Denis Barthou, and Paul Feautrier. Fuzzy array dataflow
analysis. SIGPLAN Not., 30:92–101, August 1995.

[38] Keith D. Cooper, Devika Subramanian, and Linda Torczon. Adaptive optimizing
compilers for the 21st century. Journal of Supercomputing, 23, 2001.

[39] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
TOPLAS, 13(4), 1991.

[40] Matthew DeVuyst, Dean M. Tullsen, and Seon Wook Kim. Runtime paralleliza-
tion of legacy code on a transactional memory system. In Proceedings of the 6th
International Conference on High Performance and Embedded Architectures and
Compilers, HiPEAC ’11, pages 127–136, New York, NY, USA, 2011. ACM.

[41] Chen Ding and Ken Kennedy. Improving cache performance in dynamic appli-
cations through data and computation reorganization at run time. In In Pro-
ceedings of the SIGPLAN ’99 Conference on Programming Language Design and
Implementation, pages 229–241, 1999.

[42] Lamia Djoudi, Denis Barthou, Patrick Carribault, Christophe Lemuet, Jean-
Thomas Acquaviva, and William Jalby. Maqao: Modular assembler quality ana-
lyzer and optimizer for itanium 2. In Workshop on Explicitly Parallel Instruction
Computing Techniques, 2005.

[43] Kemal Ebcioğlu and Erik R. Altman. Daisy: dynamic compilation for 100%
architectural compatibility. SIGARCH Comput. Archit. News, 25:26–37, May
1997.

[44] Andrew Edwards, Hoi Vo, and Amitabh Srivastava. Vulcan binary transformation
in a distributed environment. Technical Report MSR-TR-2001-50, Microsoft,
2001.

BIBLIOGRAPHY 183

[45] P. Feautrier. Parametric integer programming. RAIRO Recherche Opéra-
tionnelle, 22(3):243–268, 1988.

[46] P. Feautrier. Dataflow analysis of scalar and array references. Int. J. of Parallel
Programming, 20(1):23–53, 1991.

[47] Paul Feautrier. Array expansion. In In ACM Int. Conf. on Supercomputing,
pages 429–441, 1988.

[48] Paul Feautrier. Some efficient solutions to the affine scheduling problem, part 1 :
one dimensional time. International Journal of Parallel Programming, 21(5):313–
348, 1992.

[49] Paul Feautrier. Some efficient solutions to the affine scheduling problem, part 2
: multidimensional time. International Journal of Parallel Programming, 21(6),
1992.

[50] Paul Feautrier. Automatic parallelization in the polytope model. In Laboratoire
PRiSM, Université de Versailles St-Quentin en Yvelines, 45, avenue des États-
Unis, F-78035 Versailles Cedex, pages 79–103. Springer-Verlag, 1996.

[51] Grigori Fursin, Albert Cohen, Michael O’Boyle, and Olivier Temam. A practical
method for quickly evaluating program optimizations. In Proceedings of the Inter-
national Conference on High Performance Embedded Architectures & Compilers
(HiPEAC 2005), pages 29–46. Springer Verlag, 2005.

[52] Grigori Fursin, Yuriy Kashnikov, Abdul Memon, Zbigniew Chamski, Olivier
Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric
Courtois, Francois Bodin, Phil Barnard, Elton Ashton, Edwin Bonilla, John
Thomson, Christopher Williams, and Michael O’Boyle. Milepost gcc: Machine
learning enabled self-tuning compiler. International Journal of Parallel Program-
ming, 39:296–327, 2011.

[53] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1996.

[54] Georgios Goumas, Maria Athanasaki, and Nectarios Koziris. An efficient code
generation technique for tiled iteration spaces. IEEE Transactions on Parallel
and Distributed Systems, 14:1034, 2003.

[55] Tobias Grosser. Enabling Polyhedral Optimizations in LLVM. PhD thesis, Pas-
sau, Germany, 2011.

[56] Armin Größlinger, Martin Griebl, and Christian Lengauer. Introducing non-
linear parameters to the polyhedron model. In Michael Gerndt and Edmond
Kereku, editors, Proc. 11th Workshop on Compilers for Parallel Computers (CPC
2004), Research Report Series, pages 1–12. LRR-TUM, Technische Universität
München, July 2004.

184 BIBLIOGRAPHY

[57] Gautam Gupta and Sanjay Rajopadhye. The Z-polyhedral model. In Proceedings
of the 12th ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’07, pages 237–248, New York, NY, USA, 2007. ACM.

[58] A. Hartono, M.M. Baskaran, J. Ramanujam, and P. Sadayappan. Dyntile: Para-
metric tiled loop generation for parallel execution on multicore processors. In
Parallel Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1 –12, april 2010.

[59] Albert Hartono, Muthu Manikandan Baskaran, Cédric Bastoul, Albert Cohen,
Sriram Krishnamoorthy, Boyana Norris, J. Ramanujam, and P. Sadayappan.
Parametric multi-level tiling of imperfectly nested loops. In Proceedings of the
23rd international conference on Supercomputing, ICS ’09, pages 147–157, New
York, NY, USA, 2009. ACM.

[60] Ben Hertzberg and Kunle Olukotun. Runtime automatic speculative paralleliza-
tion. Code Generation and Optimization, IEEE/ACM International Symposium
on, CGO, 0:64–73, 2011.

[61] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In
PASTE’01, pages 54–61. ACM Press, 2001.

[62] Jeffrey Hollingsworth, Barton P. Miller, and Jon Cargille. Dynamic program
instrumentation for scalable performance tools. In In Scalable High Performance
Computing Conference, pages 841–850, 1994.

[63] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Speculative
thread decomposition through empirical optimization. In Proceedings of the 12th
ACM SIGPLAN symposium on Principles and practice of parallel programming,
PPoPP ’07, pages 205–214, New York, NY, USA, 2007. ACM.

[64] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The organization
of computations for uniform recurrence equations. J. ACM, 14:563–590, July
1967.

[65] Wayne Kelly, William Pugh, and Evan Rosser. Code generation for multiple
mappings. In Frontiers’95: the 5th symposium on the Frontiers of Massively
Parallel Computation, pages 332–341, 1994.

[66] Wayne Anthony Kelly. Optimization within a unified transformation framework.
PhD thesis, College Park, MD, USA, 1996. AAI9707628.

[67] Alain Ketterlin and Philippe Clauss. Recovering the Memory Behavior of Exe-
cutable Programs. In 10th IEEE Working Conference on Source Code Analysis
and Manipulation, SCAM, Timisoara, Romania, September 2010. IEEE Com-
puter Society Press.

[68] DaeGon Kim and Sanjay V. Rajopadhye. Parameterized tiling for imperfectly
nested loops. Technical Report CS-09-101, Colorado State University, February
2009.

BIBLIOGRAPHY 185

[69] DaeGon Kim, Lakshminarayanan Renganarayanan, Dave Rostron, Sanjay Ra-
jopadhye, and Michelle Mills Strout. Multi-level tiling: M for the price of one.
In Proceedings of the 2007 ACM/IEEE conference on Supercomputing, SC ’07,
pages 51:1–51:12, New York, NY, USA, 2007. ACM.

[70] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. Sd3: A scalable approach
to dynamic data-dependence profiling. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, pages
535–546, Washington, DC, USA, 2010. IEEE Computer Society.

[71] Thomas Kistler and Michael Franz. Continuous program optimization: Design
and evaluation. IEEE Trans. Comput., 50:549–566, June 2001.

[72] T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, and H. A. G. Wijshoff. Iterative
compilation in program optimization. Computing Systems, 2000.

[73] Xiangyun Kong, David Klappholz, and Kleanthis Psarris. The I Test: An im-
proved dependence test for automatic parallelization and vectorization. IEEE
Transactions on Parallel and Distributed Systems, 2(3), July 1991.

[74] Aparna Kotha, Kapil Anand, Matthew Smithson, Greeshma Yellareddy, and
Rajeev Barua. Automatic parallelization in a binary rewriter. MICRO ’43, 2010.

[75] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. PEBIL: Efficient
static binary instrumentation for linux. In ISPASS, 2010.

[76] Christian Lengauer and Martin Griebl. On the parallelization of loop nests
containing while loops. In Proc. 1st Aizu Int. Symp. on Parallel Algo-
rithm/Architecture Synthesis (pAs’95), pages 10–18. IEEE Computer Society
Press, 1995.

[77] Shun-Tak Leung and John Zahorjan. Improving the performance of runtime par-
allelization. In Proceedings of the fourth ACM SIGPLAN symposium on Princi-
ples and practice of parallel programming, PPOPP ’93, pages 83–91, New York,
NY, USA, 1993. ACM.

[78] Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing syn-
chronization with affine partitions. In Parallel Computing, pages 201–214. ACM
Press, 1998.

[79] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose Renau, and
Josep Torrellas. POSH: a TLS compiler that exploits program structure. In Pro-
ceedings of the eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, PPoPP ’06, pages 158–167, New York, NY, USA, 2006.
ACM.

[80] Shun Long and Grigori Fursin. A heuristic search algorithm based on unified
transformation framework. In In ICPPW ’05: Proceedings of the 2005 Interna-
tional Conference on Parallel Processing Workshops (ICPPW’05), pages 137–144.
IEEE Computer Society, 2005.

186 BIBLIOGRAPHY

[81] Jiwei Lu, Howard Chen, Pen-Chung Yew, and Wei chung Hsu. Design and imple-
mentation of a lightweight dynamic optimization system. Journal of Instruction-
Level Parallelism, 6:2004, 2004.

[82] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa, and Reddi Kim Hazelwood. Pin:
Building customized program analysis tools with dynamic instrumentation. In
Programming Language Design and Implementation, pages 190–200. ACM Press,
2005.

[83] Jason Mars and Robert Hundt. Scenario based optimization: A framework for
statically enabling online optimizations. In CGO ’09, pages 169–179. IEEE Com-
puter Society, 2009.

[84] Erik Meijer and John Gough. Technical overview of the common language
runtime. http: // research. microsoft. com/ en-us/ um/ people/ emeijer/

papers/ CLR. pdf , 2000.

[85] John Mellor-Crummey, Robert J. Fowler, Gabriel Marin, and Nathan Tallent.
Hpcview: A tool for top-down analysis of node performance. J. Supercomput.,
23:81–104, August 2002.

[86] Michael Philippsen, Nikolai Tillmann, and Daniel Brinkers. Double inspection for
run-time loop parallelization. In Proceedings of the 24th International Workshop
on Languages and Compilers for Parallel Computing (LCPC 2011), 2011.

[87] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce, Irvin Karen, L. Karavanic, Krishna Kunchithapadam,
and Tia Newhall. The paradyn parallel performance measurement tools. IEEE
Computer, 28:37–46, 1995.

[88] Ravi Mirchandaney, Joel H. Saltz, and Doug Baxter. Run-time parallelization
and scheduling of loops. IEEE Transactions on Computers, 40, 1991.

[89] Nicholas Mitchell, Larry Carter, and Jeanne Ferrante. Localizing non-affine ar-
ray references. In Proceedings of the 1999 International Conference on Parallel
Architectures and Compilation Techniques, PACT ’99, Washington, DC, USA,
1999. IEEE Computer Society.

[90] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[91] Robert Muth, Saumya Debray, Scott Watterson, and Koen De Bosschere. alto:
A link-time optimizer for the compaq alpha. Software - Practice and Experience,
31:67–101, 1999.

[92] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN con-
ference on Programming language design and implementation, PLDI ’07, pages
89–100, New York, NY, USA, 2007. ACM.

http://research.microsoft.com/en-us/um/people/emeijer/papers/CLR.pdf
http://research.microsoft.com/en-us/um/people/emeijer/papers/CLR.pdf

BIBLIOGRAPHY 187

[93] Andy Nisbet. Gaps: A compiler framework for genetic algorithm (ga) optimised
parallelisation. In In HPCN Europe, pages 987–989, 1998.

[94] K. Ootsu, T. Yokota, T. Ono, and T. Baba. Preliminary evaluation of a bi-
nary translation system for multithreaded processors. In Innovative Architecture
for Future Generation High-Performance Processors and Systems, 2002. Inter-
national Workshop on, pages 77 – 84, 2002.

[95] OpenMP Application Program Interface. http://www.openmp.org.

[96] Eunjung Park, Louis-Noël Pouchet, John Cavazos, Albert Cohen, and P. Sa-
dayappan. Predictive modeling in a polyhedral optimization space. In 9th
IEEE/ACM International Symposium on Code Generation and Optimization
(CGO’11), Chamonix, France, April 2011. IEEE Computer Society press.

[97] Paul M. Petersen and David A. Padua. Static and dynamic evaluation of data
dependence analysis. In Proceedings of the 7th international conference on Su-
percomputing, ICS ’93, pages 107–116, New York, NY, USA, 1993. ACM.

[98] PLAT0 library website. http://www.cs.utsa.edu/~plato/lib/platolib.

html.

[99] PLuTo website. http://pluto-compiler.sourceforge.net/.

[100] Polybenchs 1.0. http://www-rocq.inria.fr/pouchet/software/polybenchs.

[101] Polylib. http://icps.u-strasbg.fr/PolyLib.

[102] R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime compilation techniques for
data partitioning and communication schedule reuse. In Proceedings of the 1993
ACM/IEEE conference on Supercomputing, Supercomputing ’93, pages 361–370,
New York, NY, USA, 1993. ACM.

[103] Louis-Noël Pouchet. Iterative Optimization in the Polyhedral Model. PhD thesis,
University of Paris-Sud 11, Orsay, France, January 2010.

[104] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. Itera-
tive optimization in the polyhedral model: Part II, multidimensional time. In
PLDI’08, pages 90–100. ACM Press, June 2008.

[105] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and Nicolas Vasilache. It-
erative optimization in the polyhedral model: Part I, one-dimensional time. In
CGO’07, pages 144–156. IEEE Computer Society press, March 2007.

[106] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ra-
manujam, and P. Sadayappan. Combined iterative and model-driven optimiza-
tion in an automatic parallelization framework. In Conference on Supercomputing
(SC’10), New Orleans, LA, November 2010. IEEE Computer Society Press.

[107] PPL: The parma polyhedra library. http://www.cs.unipr.it/ppl/.

http://www.openmp.org
http://www.cs.utsa.edu/~plato/lib/platolib.html
http://www.cs.utsa.edu/~plato/lib/platolib.html
http://pluto-compiler.sourceforge.net/
http://www-rocq.inria.fr/pouchet/software/polybenchs
http://icps.u-strasbg.fr/PolyLib
http://www.cs.unipr.it/ppl/

188 BIBLIOGRAPHY

[108] William Pugh. The omega test: a fast and practical integer programming algo-
rithm for dependence analysis. In Proceedings of the 1991 ACM/IEEE conference
on Supercomputing, Supercomputing ’91, pages 4–13, New York, NY, USA, 1991.
ACM.

[109] Carlos García Quiñones, Carlos Madriles, Jesús Sánchez, Pedro Marcuello, An-
tonio González, and Dean M. Tullsen. Mitosis compiler: an infrastructure for
speculative threading based on pre-computation slices. In Proceedings of the 2005
ACM SIGPLAN conference on Programming language design and implementa-
tion, PLDI ’05, pages 269–279, New York, NY, USA, 2005. ACM.

[110] Fabien Quillere, Sanjay Rajopadhye, and Doran Wilde. Generation of efficient
nested loops from polyhedra. International Journal of Parallel Programming,
28:2000, 2000.

[111] Easwaran Raman, Neil Va hharajani, Ram Rangan, and David I. August. Spice:
speculative parallel iteration chunk execution. In Proceedings of the 6th annual
IEEE/ACM international symposium on Code generation and optimization, CGO
’08, pages 175–184, New York, NY, USA, 2008. ACM.

[112] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for
multicomputers. Journal of Parallel and Distributed Computing, 16(2):108–120,
1992.

[113] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. Run-time meth-
ods for parallelizing partially parallel loops. In Proceedings of the 9th interna-
tional conference on Supercomputing, ICS ’95, pages 137–146, New York, NY,
USA, 1995. ACM.

[114] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. A scalable
method for run-time loop parallelization. IJPP, 26:26–6, 1995.

[115] Lawrence Rauchwerger and David Padua. The privatizing doall test: A run-time
technique for doall loop identification and array privatization. In Proceedings of
the 1994 International Conference on Supercomputing, pages 33–43, 1994.

[116] Lawrence Rauchwerger and David Padua. The LRPD test: speculative run-
time parallelization of loops with privatization and reduction parallelization. In
Proceedings of the ACM SIGPLAN 1995 conference on Programming language
design and implementation, PLDI ’95, pages 218–232, New York, NY, USA, 1995.
ACM.

[117] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Rajopadhye, and
Michelle Mills Strout. Parameterized tiled loops for free. In Proceedings of the
2007 ACM SIGPLAN conference on Programming language design and imple-
mentation, PLDI ’07, pages 405–414, New York, NY, USA, 2007. ACM.

[118] Lakshminarayanan Renganarayanan and Sanjay V. Rajopadhye. Positivity,
posynomials and tile size selection. In SC’08, 2008.

BIBLIOGRAPHY 189

[119] Reservoir Labs. R-stream ® - high level compiler. https://www.reservoir.

com/rstream.

[120] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy,
Brian Bershad, and Brad Chen. Instrumentation and optimization of win32/intel
executables using etch. In In Proceedings of the USENIX Windows NT Workshop,
pages 1–7, 1997.

[121] Silvius Rus, Maikel Pennings, and Lawrence Rauchwerger. Sensitivity analysis
for automatic parallelization on multi-cores. In Proceedings of the 21st annual
international conference on Supercomputing, ICS ’07, pages 263–273, New York,
NY, USA, 2007. ACM.

[122] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Hybrid analysis: static
& dynamic memory reference analysis. Int. J. Parallel Program., 31:251–283,
August 2003.

[123] Joel H. Saltz and Ravi Mirchandaney. The preprocessed doacross loop. In Inter-
national Conference on Parallel Processing, pages 174–179, 1991.

[124] Joel H. Saltz, Ravi Mirchandaney, and Kathleen Crowley. The doconsider loop.
In Proceedings of the 3rd international conference on Supercomputing, ICS ’89,
pages 29–40, New York, NY, USA, 1989. ACM.

[125] Alexander Schrijver. Theory of linear and integer programming. John Wiley &
Sons, Inc., New York, NY, USA, 1986.

[126] Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew Legendre.
Plto: A link-time optimizer for the intel ia-32 architecture. In In Proc. 2001
Workshop on Binary Translation (WBT-2001), 2001.

[127] Amitabh Srivastava and Alan Eustace. Atom: A system for building customized
program analysis tools. pages 196–205. ACM, 1994.

[128] Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. Compile-time com-
position of run-time data and iteration reorderings. In Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and implementa-
tion, PLDI ’03, pages 91–102, New York, NY, USA, 2003. ACM.

[129] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software. Dr. Dobb’s Journal, 30(3), 2005.

[130] Nathan Thomas, Gabriel Tanase, Olga Tkachyshyn, Jack Perdue, Nancy M. Am-
ato, and Lawrence Rauchwerger. A framework for adaptive algorithm selection
in stapl. In PPoPP ’05, pages 277–288. ACM, 2005.

[131] Chen Tian, Min Feng, and Rajiv Gupta. Speculative parallelization using state
separation and multiple value prediction. In Proceedings of the 2010 international
symposium on Memory management, ISMM ’10, pages 63–72, New York, NY,
USA, 2010. ACM.

https://www.reservoir.com/rstream
https://www.reservoir.com/rstream

190 BIBLIOGRAPHY

[132] Chen Tian, Min Feng, Vijay Nagarajan, and Rajiv Gupta. Copy or discard exe-
cution model for speculative parallelization on multicores. In Proceedings of the
41st annual IEEE/ACM International Symposium on Microarchitecture, MICRO
41, pages 330–341, Washington, DC, USA, 2008. IEEE Computer Society.

[133] Kai Tian, Yunlian Jiang, Eddy Z. Zhang, and Xipeng Shen. An input-centric
paradigm for program dynamic optimizations. In OOPSLA ’10, pages 125–139.
ACM, 2010.

[134] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I.
August. Compiler optimization-space exploration. In Proceedings of the inter-
national symposium on Code generation and optimization, pages 204–215. IEEE
Computer Society, 2003.

[135] Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li, Tobias Grosser,
Harsha Jagasia, Razya Ladelsky, Sebastian Pop, Jan Sjödin, and Ramakr-
ishna Upadrasta. GRAPHITE Two Years After: First Lessons Learned From
Real-World Polyhedral Compilation. In GCC Research Opportunities Workshop
(GROW’10), Pisa, Italie, January 2010.

[136] L. Van Put, D. Chanet, B. De Bus, B. De Sutler, and K. De Bosschere. Diablo:
a reliable, retargetable and extensible link-time rewriting framework. In Signal
Processing and Information Technology, 2005.

[137] Nicolas Vasilache, Albert Cohen, and Louis-Noel Pouchet. Automatic correction
of loop transformations. In Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques, PACT ’07, pages 292–304,
Washington, DC, USA, 2007. IEEE Computer Society.

[138] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Pro-
ceedings of the Third international congress conference on Mathematical software,
ICMS’10, pages 299–302, Berlin, Heidelberg, 2010. Springer-Verlag.

[139] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice
Bruynooghe. Counting integer points in parametric polytopes using Barvinok’s
rational functions. Algorithmica, 48(1):37–66, June 2007. DOI: 10.1007/s00453-
006-1231-0.

[140] Michael J. Voss and Rudolf Eigemann. High-level adaptive program optimization
with ADAPT. In PPoPP ’01, pages 93–102. ACM, 2001.

[141] R. Clinton Whaley, Antoine Petitet, and Jack Dongarra. Automated empirical
optimizations of software and the ATLAS project. Parallel Computing, 27(1-
2):3–35, 2001.

[142] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In
PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference on Programming
language design and implementation, pages 30–44, New York, NY, USA, 1991.
ACM.

BIBLIOGRAPHY 191

[143] Michael Joseph Wolfe. Optimizing supercompilers for supercomputers. PhD the-
sis, Champaign, IL, USA, 1982. AAI8303027.

[144] J. Yang, K. Skadron, M.-L. Soffa, and K. Whitehouse. Feasibility of dynamic bi-
nary parallelization. http://www.usenix.org/event/hotpar11/poster.html,
may 2011.

[145] Efe Yardımcı and Michael Franz. Dynamic parallelization and mapping of binary
executables on hierarchical platforms. In Proceedings of the 3rd conference on
Computing frontiers, CF ’06, pages 127–138, New York, NY, USA, 2006. ACM.

[146] Hongtao Zhong, Mojtaba Mehrara, Steven A. Lieberman, and Scott A. Mahlke.
Uncovering hidden loop level parallelism in sequential applications. In HPCA,
pages 290–301, 2008.

[147] Chuan-Qi Zhu and Pen-Chung Yew. A scheme to enforce data dependence on
large multiprocessor systems. IEEE Trans. Softw. Eng., 13:726–739, June 1987.

http://www.usenix.org/event/hotpar11/poster.html

	Title
	Table of Contents
	Résumé en Français
	Introduction
	Basic Concepts and Related Work
	Static Methods
	Polyhedral Parallelization
	Binary Code Parallelization and Rewriting

	Static-Dynamic Collaborative Methods
	Iterative Compilation
	Hybrid Code Selection

	Dynamic Methods
	Dynamic Code Selection
	The Inspector/Executor Model
	Thread-Level Speculation
	Binary Code Parsing
	Inline Code Generation and Transformation

	The Polyhedral Model
	Mathematical Background and Notations
	Scope and SCoP
	Statement and Iteration Vector
	Iteration Domain
	Access Functions
	Schedule
	Data Dependence
	Transformation
	Code Generation
	Extensions to the Polyhedral Model
	Tools

	Conclusion

	Binary Code Parallelization
	Introduction
	Decompiling x86-64 Executables
	Basic Analysis
	Memory Access Description
	Induction Variable Resolution
	Tracking Stack Slots
	Branch Conditions and Block Constraints

	Polyhedral Parallelization
	Memory Accesses
	Operations
	Scalar References
	Parallelization
	Reverting the Outlining
	Live-in Registers
	Live-out Registers
	Implementation

	Evaluation
	Loop Coverage
	Binary-to-binary vs. Source-to-source
	Binary-to-binary vs. Hand-Parallelization

	Extension to Complex Codes
	Extension to Parametric Codes
	Extension to Polynomial Codes
	In-Place Parallelization

	Related Work
	Decompilation and Address Expressions
	Parallelization and Transformation Strategy

	Conclusion and Perspectives

	Code Version Selection
	Introduction
	Selection Framework Overview
	Generating Different Code Versions
	Profiling the Code Versions
	Strategy 1
	Strategy 2
	Parametric Ranking Table

	Runtime Selection
	Iteration Count Measurement
	Load Balance
	Predicting the Execution Time
	Discussion

	Experiments
	Dynamic Scheduling of Regular Codes
	Execution Context Characteristics
	Execution Time Gains
	Accuracy

	Conclusion and Perspectives

	Speculative Parallelization
	Introduction
	Overview
	Speculations
	General overview
	Evaluation Environment
	Chunking

	Online Profiling
	Inspector Profiling
	Profiling on a Sample
	Chosen Solution

	Dependence Construction
	Scheduling
	PLUTO
	Offline Profiling and Scheduling
	Generic Schedules
	Dependence Testing
	Chosen Solution

	Code Generation
	Runtime Compilation
	Hybrid Code Generation
	Static Code Generation
	Chosen Solution

	Speculation Verification
	Parallel Speculation Verification
	Verification Implementation
	Test Implementation
	Chosen Solution

	Commit and Rollback
	Transactions and Chunks
	fork-based Transactional System
	memcpy-based Transactional System
	Interrupting the Threads
	Rollback Strategies
	Chosen Solution

	Putting it all Together
	Overview
	Evaluation

	Conclusion and Perspectives

	Conclusion and Perspectives
	Contributions
	Future work

	Bibliography

