Méthodes numériques pour les processus markoviens déterministes par morceaux

Résumé : Les processus markoviens déterministes par morceaux (PMDM) ont été introduits dans la littérature par M.H.A. Davis en tant que classe générale de modèles stochastiques non-diffusifs. Les PMDM sont des processus hybrides caractérisés par des trajectoires déterministes entrecoupées de sauts aléatoires. Dans cette thèse, nous développons des méthodes numériques adaptées aux PMDM en nous basant sur la quantification d'une chaîne de Markov sous-jacente au PMDM. Nous abordons successivement trois problèmes : l'approximation d'espérances de fonctionnelles d'un PMDM, l'approximation des moments et de la distribution d'un temps de sortie et le problème de l'arrêt optimal partiellement observé. Dans cette dernière partie, nous abordons également la question du filtrage d'un PMDM et établissons l'équation de programmation dynamique du problème d'arrêt optimal. Nous prouvons la convergence de toutes nos méthodes (avec le plus souvent des bornes de la vitesse de convergence) et les illustrons par des exemples numériques.
Type de document :
Thèse
Probability. Université Bordeaux 1, 2012. French. <NNT : 2012BOR14534>


https://tel.archives-ouvertes.fr/tel-00733731
Contributeur : Adrien Brandejsky <>
Soumis le : mercredi 19 septembre 2012 - 13:44:51
Dernière modification le : mercredi 29 octobre 2014 - 13:28:59

Identifiants

  • HAL Id : tel-00733731, version 1

Collections

Citation

Adrien Brandejsky. Méthodes numériques pour les processus markoviens déterministes par morceaux. Probability. Université Bordeaux 1, 2012. French. <NNT : 2012BOR14534>. <tel-00733731>

Exporter

Partager

Métriques

Consultation de
la notice

177

Téléchargement du document

137