L. Cartes-2d-d-'iwv-de-la-figure-6, 30 au-dessus du réseau R6 nous montrent qu'il y a également une apparition à 0h de vapeur d'eau sur ce réseau le plus à l'Ouest, mais celle-ci épargne encore la région la plus à l'Est. Pour 4h et 8h, nous remarquons que la vapeur d'eau Figure 7.13: Résultats tomographiques (densité de vapeur d'eau en g/m 3 ) pour la coupe d'altitudes à 500m, pour la coupe à longitude constante 7, 54° ainsi que les coupes à latitude constante 48.54° et 48.96°. 2 juillet, pp.8-14, 2007.

/. Si-l-'on-regarde-les-coupes-verticales-est and . Ouest, nous remarquons que nous avons encore une accumulation d'humidité à l'entrée de la vallée aux alentours de 7.5° à 8°. Dans la vallée elle-même, coupe Nord/Sud, de l'humidité se retrouve également au sol avec toutefois des valeurs moins importantes au centre (48.5°). Nous pouvons noter encore une fois les faibles valeurs sur les reliefs

H. K. Baltink, H. Van-der-marel, and A. G. Van-der-hoeven, Integrated atmospheric water vapor estimates from a regional GPS network, Journal of Geophysical Research, vol.17, issue.2, pp.402510-1029, 2002.
DOI : 10.1029/2000JD000094

L. J. Battan, Radar observation of the atmosphere, 1973.

M. Berenguer, D. Sempere-torres, C. Corral, and R. Sánchez-diezma, A Fuzzy Logic Technique for Identifying Nonprecipitating Echoes in Radar Scans, Journal of Atmospheric and Oceanic Technology, vol.23, issue.9, pp.1157-1180, 2006.
DOI : 10.1175/JTECH1914.1

M. Bevis, S. Businger, T. A. Herring, C. Rocken, R. A. Anthes et al., GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, Journal of Geophysical Research, vol.91, issue.6, pp.15787-15801, 1992.
DOI : 10.1029/92JD01517

M. Bevis, S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes et al., GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, Journal of Applied Meteorology, vol.33, issue.3, pp.379-386, 1994.
DOI : 10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2

J. Boehm, A. Niell, P. Tregoning, and H. Schuh, Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophysical Research Letters, vol.32, issue.7, pp.10-1029, 2006.
DOI : 10.1029/2005GL025546

J. Boehm, B. Werl, and H. Schuh, Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, Journal of Geophysical Research: Solid Earth, vol.107, issue.B2, pp.10-1029, 2006.
DOI : 10.1029/2005JB003629

S. Businger, S. R. Chiswell, M. Bevis, J. Duan, R. A. Anthes et al., The Promise of GPS in Atmospheric Monitoring, Bulletin of the American Meteorological Society, vol.77, issue.1, pp.5-18, 1996.
DOI : 10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2

C. Champollion, F. Masson, M. Bouin, A. Walpersdorf, E. Doerflinger et al., GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment, Atmospheric Research, vol.74, issue.1-4, pp.1-4, 2005.
DOI : 10.1016/j.atmosres.2004.04.003

URL : https://hal.archives-ouvertes.fr/hal-00017446

C. Champollion, Quantification de la vapeur d'eau troposphérique par GPS (modèles 2D et tomographies 3D) ? Application aux précipitations intenses, II Sciences et techniques du Languedoc, 2005.

G. Chen and T. Herring, Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, B9), pp.20489-20502, 1997.
DOI : 10.1029/97JB01739

T. L. Clark, A small-scale dynamic model using a terrain-following coordinate transformation, Journal of Computational Physics, vol.24, issue.2, pp.186-215, 1977.
DOI : 10.1016/0021-9991(77)90057-2

T. L. Clark, Numerical Simulations with a Three-Dimensional Cloud Model: Lateral Boundary Condition Experiments and Multicellular Severe Storm Simulations, Journal of the Atmospheric Sciences, vol.36, issue.11, pp.2191-2215, 1979.
DOI : 10.1175/1520-0469(1979)036<2191:NSWATD>2.0.CO;2

T. L. Clark and W. Hall, The Design of Smooth, Conservative Vertical Grids for Interactive Grid Nesting with Stretching, Journal of Applied Meteorology, vol.35, issue.6, pp.1040-1046, 1996.
DOI : 10.1175/1520-0450(1996)035<1040:TDOSCV>2.0.CO;2

J. Davis, T. Herring, I. Shapiro, A. Rogers, and G. Elgered, Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Science, vol.20, issue.18, pp.1593-1607, 1985.
DOI : 10.1029/RS020i006p01593

J. Duan, M. Bevis, P. Fang, Y. Bock, S. Chiswell et al., GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water, GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water, pp.830-838, 1996.
DOI : 10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2

P. Elósegui, A. Ruis, J. L. Davis, G. Ruffini, S. J. Keihm et al., An experiment for estimation of the spatial and temporal variations of water vapor using GPS data, Physics and Chemistry of the Earth, vol.23, issue.1, pp.125-130, 1998.
DOI : 10.1016/S0079-1946(97)00254-1

T. R. Emardson and H. J. Derks, On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere, Meteorological Applications, vol.76, issue.1, pp.1-12, 1999.
DOI : 10.1017/S1350482700001377

A. Flores, Atmospheric Tomography using satellite Radio Signals, Doctoral thesis, Departament de Teoria del Senyal I Communicacions, 1999.

A. Flores, G. Ruffini, and A. Rius, 4D tropospheric tomography using GPS slant wet delays, 4D tropospheric tomography using GPS slant wet delays, pp.223-234, 2000.
DOI : 10.1007/s00585-000-0223-7

URL : https://hal.archives-ouvertes.fr/hal-00316576

L. P. Gradinarsky and J. P. , Ground-Based GPS Tomography of Water Vapor: Analysis of Simulated and Real Data, 1B), pp.551-560, 2004.
DOI : 10.2151/jmsj.2004.551

G. Guerova, J. Bettems, E. Brockmann, and M. Ch, Assimilation of COST 716 Near-Real Time GPS data in the nonhydrostatic limited area model used at MeteoSwiss. Meteorology and atmospheric physics, 2005.

K. Hirahara, Local GPS tropospheric tomography, Earth Planets Space, pp.935-939, 2000.

K. E. Kerry and K. A. Hawick, Spatial interpolation on distributed, High-Performance Computers, 1997.

R. W. King and Y. Bock, Documentation for the GAMIT GPS Analysis Software, release 10, 2000.

G. Lee, Y. H. Cho, K. E. Kim, and I. Zawadzki, Identification and removal of non precipitation echos using the characteristics of radar echoes, 2005.

Y. Liou, C. Huang, and Y. Teng, Precipitable water observed by ground-based GPS receivers and microwave radiometry, Earth Planets Space, pp.445-450, 2000.

J. S. Marshall and W. M. Palmer, THE DISTRIBUTION OF RAINDROPS WITH SIZE, Journal of Meteorology, vol.5, issue.4, pp.165-166, 1948.
DOI : 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2

V. B. Mendes, G. Prates, L. Santoa, and R. B. Langley, An evaluation of the accuracy of models for the determination of the weighted mean temperature of the atmosphere, Proceedings of ION 2000, National Technical Meeting, pp.433-438, 2000.

W. Menke, Geophysical Data Analysis: Discrete Inverse Theory, 1989.

J. Nicol, G. Delrieu, D. Faure, and P. Tabary, Radar observation of intense rain vents during the Bollène, Sixth International Symposium on Hydrological Applications of Weather Radar, 2002.

A. E. Niell, Global mapping functions for the atmosphere delay at radio wavelengths, Journal of Geophysical Research: Solid Earth, vol.15, issue.B2, pp.3227-3246, 1996.
DOI : 10.1029/95JB03048

A. E. Niell, Improved atmospheric mapping functions for VLBI and GPS, Earth Planets Space, pp.699-702, 2000.

T. Nilsson and L. Gradinarsky, Water vapor tomography using GPS phase observations: simulation results, IEEE Transactions on Geoscience and Remote Sensing, vol.44, issue.10, p.10, 2006.
DOI : 10.1109/TGRS.2006.877755

R. Pacione, E. Fionda, R. Ferrara, R. Lanotte, C. Sciarretta et al., Comparison of atmospheric parameters derived from GPS, VLBI and a ground-based microwave radiometer in Italy, Physics and Chemistry of the Earth, Parts A/B/C, vol.27, issue.4-5, pp.309-316, 2002.
DOI : 10.1016/S1474-7065(02)00005-0

J. Saastamoinen, Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, The use of Artificial Satellites for Geodesy, Geophysical Monograph Am. Geophys, vol.15, pp.247-251, 1972.

A. Tarantola, Inverse Problem Theory and methods for model parameter estimation, 2005.
DOI : 10.1137/1.9780898717921

P. Tregoning, R. Boers, D. O-'brien, and M. Hendy, Accuracy of absolute precipitable water vapor estimates from GPS observations, Journal of Geophysical Research: Atmospheres, vol.38, issue.46, pp.701-28710, 1998.
DOI : 10.1029/98JD02516

M. Troller, A. Geiger, E. Brockmann, J. Bettems, B. Burki et al., Tomographic determination of the spatial distribution of water vapor using GPS observations, Advances in Space Research, vol.37, issue.12, pp.2211-2217, 2006.
DOI : 10.1016/j.asr.2005.07.002

J. Van-baelen, Comparison of Clear Air Atmospheric Radar Techniques For the Study of Atmospheric Dynamics in The Troposphere and the Stratosphere, 1990.

J. Van-baelen, J. Aubagnac, and A. Dabas, Comparison of Near???Real Time Estimates of Integrated Water Vapor Derived with GPS, Radiosondes, and Microwave Radiometer, Journal of Atmospheric and Oceanic Technology, vol.22, issue.2, pp.201-210, 2005.
DOI : 10.1175/JTECH-1697.1

A. Walpersdorf, E. Calais, J. Haase, L. Eymard, M. Desbois et al., Atmospheric gradients estimated by GPS compared to a high resolution numerical weather prediction (NWP) model, Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, vol.26, issue.3, pp.147-152, 2001.
DOI : 10.1016/S1464-1895(01)00038-2

A. Walpersdorf, O. Bock, E. Doerflinger, F. Masson, J. Van-baelen et al., Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results, Physics and Chemistry of the Earth, Parts A/B/C, vol.29, issue.2-3, pp.201-211, 2004.
DOI : 10.1016/j.pce.2004.01.002

URL : https://hal.archives-ouvertes.fr/hal-00110000

S. M. Wesson and G. G. Pegram, Radar rainfall image repair techniques, Hydrology and Earth System Sciences, vol.8, issue.2, pp.220-234, 2004.
DOI : 10.5194/hess-8-220-2004

URL : https://hal.archives-ouvertes.fr/hal-00304905