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Introduction
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1.3 Following Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Motivation and Problem Statement

Immutably, digital communication aims at providing increasingly higher data rates to users. In the
particular case of wireless environments and mobile receivers, challenges are numerous. Given a
transmit power, the transmission is subject to a physical bandwidth limit and propagation issues
such as both time and frequency fading. Sophisticated signal processing techniques have been
developed for decades and allow reaching these limits while ensuring reliable communications.
Hence, further improvements become insignificant and costly.

For over ten years, using multiple antennas at both the transmitter and the receiver has been
shown to linearly boost the channel capacity by the number of independent sub-channels possibly
established, without requiring additional spectral resources.

In order to achieve the 3GPP LTE and 3GPP LTE-A requirements, spatial multiplexing-MIMO
communication schemes have been implemented. In such a configuration, a linear superposition
of separately transmitted information symbols is observed by the receiver, due to multiple trans-
mit antennas that simultaneously send independent data streams. The detector seeks to recover
the transmitted symbols while approaching the channel capacity, which corresponds to an inverse
problem with a finite-alphabet constraint. The design of detection schemes with high performance,
low latency and applicable computational complexity is a challenging research topic due to the
power and latency limitations of mobile communication systems.

The challenge of demultiplexing the transmitted symbols via spatial multiplexing techniques,
i.e., detection techniques, stands as one of the main limiting factors of these systems. It makes
the detector step in wireless communication systems a key point. In particular, despite its large
computational complexity and latency, incorrect choices would lead to a dramatic performance
loss.

Ideally, such a research subject aims to achieve near-optimum performance at the detection step,
while offering polynomial computational complexity. The primary goal of this work is to provide
a solution to this problem, while carefully considering implementation issues. Parallel and non
NP-hard algorithms selection are strongly favoured. Also, an efficient performance/complexity
trade-off in the LTE(-A) background is achieved.
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1.2 Outline and Contributions

The present work has been split into four distinct chapters.

Chapter 2 presents the background and briefly introduces useful preliminaries, notations and
considerations with an increasing level of details. The LTE(-A) norm is considered and leads to
remarks, assumptions of limitations that go with the flow. Starting from a simple SISO system,
general tools are introduced provided they are useful to the rest of the presented work. Thus,
some points that might be considered as fundamentals in a different background are made smaller
or even overlooked. In particular, time, frequency and space dimensions are addressed through
channel coding, OFDM and MIMO schemes, respectively. The classical system model introduction
follows the general detection problematic.

The heart of the subject is addressed in Chapter 3. It consists in making an inventory of the
main existing solutions, which offers an academical interest. The most promising trends are ex-
plored in depth and their behaviour in our background is further discussed, by restricting the
discussion to general remarks. Thus, some techniques are clearly overlooked. The classical QR
decomposition-based decision-feedback detectors and sphere decoding techniques are introduced.
Also, both layer and symbol re-ordering are presented. Implementation issues are considered
which logically brings about the introduction of particular sphere decoding like techniques. Fur-
ther issues explain the interest in lattice-reduction-aided techniques, particularly promising when
associated with a neighbourhood study. By aiming at shifting a large part of the detector’s com-
putational complexity to the preprocessing step, the combination of the lattice-reduction and an
efficiently centred sphere decoding is explored. Finally, an original detector is proposed and its
advantage over existing solutions is exposed.

Chapter 4 might have been addressed in Chapter 5 since it constitutes a practical requirement.
However, the soft-decision extension of any detector presented in the previous chapter is not neces-
sarily straightforward and induces a significant impact on the detector computational complexity,
on system performance or both of them. Consequently, it is the object of a whole chapter where
the main trends are described and discussed. With this slant, the log-likelihood ratios calculation
is detailed first and the standard approximations are stated. Subsequently, the classical detection
algorithms updates are introduced, namely the maximum-likelihood, linear and decision-feedback
detectors. The soft-decision extension is also presented in the case of the lattice-reduction-aided
linear detectors and of the sphere decoder. In the case of the association of both lattice-reduction
and sphere decoder, new issues arise, which induces particular considerations.

Chapter 5 is closely related to our background and in particular to the 3GPP LTE(-A) norm
requirements. First, the particular aspects that have been considered in the present work are pre-
sented. In particular, LTE(-A) norm parameters are introduced, which induces some convenient
assumptions and limitations. Their exploration offers an advantage over a general study, namely a
computational complexity and latency reduction. For example, the provided precoding for spatial
multiplexing-MIMO systems with OFDM modulation are considered and induce computational
complexity reduction at the preprocessing step.

1.3 Following Publications

The present work has led to the publication of several national and international articles. A list
of selected communications is given below.
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The hard-decision near-maximum-likelihood detector is the key part of the present work. Since it
constitutes an active research field, it requires a complete state-of-the-art review of the existing
solutions and promising ideas. The preprocessing step of QR decomposition-based algorithms has
been generally neglected in the literature, such as one contribution has been presented in the
following international publication:

[Aub09a] Aubert S., Nouvel F., and Nafkha A. Complexity gain of QR Decompo-
sition based Sphere Decoder in LTE receivers, Vehicular Technology Conference,
IEEE, 2009.

[Aub09b] Aubert S., Nouvel F., and Nafkha A. Décodeur Sphérique associé à une
Décomposition QR à Complexité Réduite dans les Systèmes MIMO OFDM, Groupe
d’Études du Traitement du Signal et des Images, 2009.

Through the novel and promising association of both the lattice-reduction and a sphere decoding
techniques, original techniques were described and led to the filing of two European patents owned
by ST-Ericsson:

[Aub11a] Aubert S. Detection process for a receiver of a wireless MIMO commu-
nication system, European Patent, 2011.

[Aub11b] Aubert S. Detection process for a receiver of a wireless MIMO commu-
nication system, and receiver for the same, European Patent, 2011.

A state-of-the art overview of the main existing trends is proposed, by means of a pedagogi-
cal point of view, in:

[Aub11c] Aubert S., and Mohaisen M. From Linear Equalization to Lattice-Reduction-
Aided Sphere-Detector as an answer to the MIMO Detection problematic in Spa-
tial Multiplexing Systems, Vehicular Technologies, 978-953-307-976-9, INTECH, Feb.
2011.

The soft-decision near-maximum-likelihood detector is an essential step due to practical require-
ments. In numerous famous publications, this point is not addressed since it is not necessary
from an academic point of view. One contribution was presented in the following international
publication:

[Aub11d] Aubert S., Ancora A., and Nouvel F. Multi-Level Log-Likelihood Ratio
Clipping in a Soft-Decision Near-Maximum Likelihood Detector, International Con-
ference on Digital Telecommunications, April 2011.

Its commercial application was previously protected through the filing of one European patent
owned by ST-Ericsson:

[Aub10a] Aubert S., Ancora A. Process for performing log-Likelihood-ratio clipping in
a soft-decision near-ML detector, and detector for doing the same, European Patent,
Feb. 2010.

The present work relies on a specific background, namely the LTE(-A) norm. In particular,
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the OFDM requirement induces computational complexity reduction in the preprocessing step,
thus leading to the following international publications:

[Aub11e] Aubert S., Tournois J., and Nouvel F. On the Implementation of MIMO-
OFDM Schemes Using Perturbation of the QR Decomposition: Application to 3GPP
LTE-A Systems, Acoustics, Speech, and Signal Processing, International Conference
on, May 2011.

Implementation issues have also been considered. In particular, the potential parallelism of the
preprocessing step has been addressed in the following international publications:

[Aub10b] Aubert S., Mohaisen M., Nouvel F., and Chang K. Parallel QR Decompo-
sition in LTE-A Systems, Signal Processing Advances in Wireless Communication,
IEEE Workshop on, May 2010.

Finally, the OFDM particular case and the MIMO precoding scheme, respectively, have led to
the filing of two European patents owned by ST-Ericsson:

[Aub11f] Aubert S. Process for performing QR decomposition of a channel matrix in a
MIMO wireless communication system, and receiver for the same, European Patent,
2011.

[Aub11g] Aubert S., and Ancora A. Precoding Matrix Index selection process for
a MIMO receiver based on a near-ML detection, and apparatus for doing the same,
European Patent, 2011.
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2.1 Wireless Communication Systems

To introduce basic principles used in this manuscript, a complex baseband Single-Input Single-
Output (SISO) system is first considered. By introducing the convolution operation ∗, the
continuous-time system is described through the relation:

y (t) = x (t) ∗ h (t) + n (t) =

∫ ∞
−∞

x (τ)h (t− τ) dτ + n (t) , (2.1)

where y (t) is the received signal at time t, x (t) is the transmitted signal, h (t) is the channel impulse
response and n (t) is a corrupting noise - that characterises imperfect electronic components or
some interfering signals.
A discrete-time system results in a sampled version of the aforementioned continuous-time signals:

yk = xk ∗ hk + nk =
∑
l∈Z

xlhk−l + nk, (2.2)

where - among others - yk = y (kT ), where k is an integer and T is the sampling period.

For the sake of simplicity and without loss of generality since Orthogonal Frequency-Division
Multiplexing (OFDM) techniques are considered in the present manuscript, the narrow-band flat-
fading assumption is admitted. The filter convolution operation thus becomes a trivial multiplica-
tion [Pro95] operation and - for each sampling period - the equivalent SISO system simply reads:

y = hx+ n, (2.3)
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Figure 2.1: 4-QAM, 16-QAM and 64-QAM modulation constellations for LTE(-A) down-
link [3GP09c].

where y is the received symbol, h is the channel coefficient, the transmitted symbol x is drawn
from a finite constellation set ξ and n is an Additive White Gaussian Noise (AWGN).
In the present work and due to LTE(-A) requirements, only square |ξ|-ary QAM constellations
are considered, with |ξ| = 2, 4, 16, 64. Each symbol is mapped from a bit pattern of length
log2 {|ξ|} = 1, 2, 4, 6, as depicted in Figure 2.1. The average power of the presented constellation
is ensured to be normalized to one, thus the available transmit power is not exceeded. The symbols
are mapped using Gray labelling. Subsequently two nearest neighbours only differ in a single bit
while they can easily be mistaken thus leading to a smaller BER PB , given a SER PS .

In wireless communications, the transmission is subject to fading. It results in an important
variation of the attenuation experienced by a signal, over a certain propagation link. In partic-
ular, a fading in time, frequency or both arise. A differentiation must be made between slow
fading - that may be resolved by the system - and fast-fading - that may lead to irreparable data
loss. The coefficient h denotes the complex attenuation factor of the transmission link. At first,
h is modelled as a random process, according to a Rayleigh distribution. This way, the channel
coefficient is randomly generated by a zero mean and unit variance complex Gaussian distribution:

h v CN (0, 1) . (2.4)

The signal hx is considered to be randomly corrupted by the noise term n. In the present work,
it is randomly generated by a zero mean and σ2

n variance complex Gaussian distribution:

n v CN
(
0, σ2

n

)
, (2.5)

where σ2
n is the power spectral density, also commonly denoted as N0 [Pro95]. We refer to the

average SNR at the receiver:

E {(hx)∗(hx)}
E {n∗n}

=
E {x∗x}E {h∗h}

E {n∗n}
=
ES
N0

, (2.6)
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where E {·} denotes the expectation and ES is the average symbol energy, due to independence
between x and h and to the unit variance of the channel. The SNR is an essential quantity for
performance estimation, under the AWGN assumption [Bar03c].

In the sequel, classical results are introduced. Also, coherent detection is assumed, namely the
carrier phase is considered to be perfectly recovered. In practical applications, the carrier phase
is estimated with a Phase-Locked Loop (PLL) circuit [Ses09].
In the SISO AWGN (no presence of channel) case, the exact SER expression for |ξ|-QAM modu-
lations - and for an even number of bits per symbol since square constellations are considered in
the LTE(-A) standard - is determined from the SER expression for a

√
|ξ|-PAM [Pro95]:

P

√
|ξ|-PAM

S = 2

(
1− 1√

|ξ|

)
Q

(√
3

|ξ| − 1

ES
N0

)
, (2.7)

where the Q-function [Pro95] reads:

Q (z) =
1√
2π

∫ ∞
z

e
−t2

2 dt, z ≥ 0, (2.8)

and with

P
|ξ|-QAM
S = 1−

(
1− P

√
|ξ|-PAM

S

)2

. (2.9)

Since it is clear - with independent errors on bits - that PS = 1− (1− PB)
log2{|ξ|} in the |ξ|-QAM

case, the BER is well-approximated for small PB [Pro95] as:

PB ≈
PS

log2 {|ξ|}
. (2.10)

By assuming the knowledge of the instantaneous channel realization h, the corresponding instan-
taneous SNR reads γ = |h|2ES/N0. Thus, the mean error probability is calculated by averaging
over all channel realizations:

P
|ξ|-QAM,Rayleigh
S =

∫ ∞
0

P
|ξ|-QAM,AWGN
S p (γ) dγ, (2.11)

where
p (γ) =

1

ES/N0
e
−γ

ES/N0 . (2.12)

Subsequently, in the SISO case and in presence of a Rayleigh slow fading channel, the exact SER
expression for a |ξ|-QAM modulation is obtained through an integration by parts and a change of
variables [Pro95]:

P
|ξ|-QAM,Rayleigh
S = 2

√
|ξ| − 1√
|ξ|

(
1− 1

s

)
−

(√
|ξ| − 1√
|ξ|

)2(
2

πs
tan−1

{
1

s

}
− 1

s
+

1

2

)
, (2.13)

where

s =

√
1 +

2 (|ξ| − 1)

3 log2 {|ξ|}
. (2.14)

As introduced in [Pro95, Shi06] and when adapted to the SISO case, the theoretical SER is strongly
related to the minimal distance - between two symbols within the constellation - and the number
of nearest neighbours - the definition is given below -, denoted as dmin and Ne, respectively. In
particular, it reads:

d2
min = min

x1,x2∈ξ, x1 6=x2

|h (x1 − x2)|2 , (2.15)
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and

Ne =

|ξ|∑
i=1

Nei , (2.16)

where Nei is the number of nearest neighbours of xi, namely the symbols that are set at a distance
dmin from xi. Assuming Maximum-Likelihood (ML) detection at the receiver, the corresponding
SER reads [Pro95]:

PS ≈
1

|ξ|

 |ξ|∑
i=1

Nei

Q

(
dmin

√
ES
2N0

)
, (2.17)

thus clearly exhibiting the point that the introduced error probability is the mean error probability.
For example in the 16-QAM case, a difference must be made between a symbol inside, on the border
or on the corner of the constellation since the number of the nearest neighbours is different for
each case. Consequently, their particular SER read:

P
|ξ|-QAM,corner
S ≈ 2Q

{√
ES
5N0

}
, (2.18)

P
|ξ|-QAM,border
S ≈ 3Q

{√
ES
5N0

}
, (2.19)

P
|ξ|-QAM,inside
S ≈ 4Q

{√
ES
5N0

}
. (2.20)

In conclusion, while high order modulations offer large spectral efficiencies, a significant vulnera-
bility to interference is induced, leading to a decreased capacity. According to this consideration,
there exists an efficient modulation/data rate - addressed in Section 2.2 - that reaches (in theory)
the system capacity. The modulation choice is made depending on any selected Modulation and
Coding Scheme (MCS) given channel conditions and required data rate.

In the LTE(-A) downlink case [3GP09c], |ξ|-QAM modulations with Gray mapping can be par-
titioned into square subsets with a minimum mean intra-subset Euclidean distance. It is clearly
depicted in Figure 2.1. In particular, any |ξ|-QAM constellation may be represented as a weighted
sum of 4-QAM constellations [Tar03], leading to the expression below:

x|ξ|−QAM =

log2{|ξ|}−1∑
i=0

2i

(√
2

2

)
x4−QAM
i (2.21)

where x|ξ|−QAM belong to a |ξ|-QAM constellation. The multi-level bit mapping nature of a QAM
constellation induces different symbol characterization by different mean Euclidean distances.
Hence, bits are subject to different levels of protection against noise and amplitude impairments,
depending on their position within the bit sequence.

2.2 Theoretical Aspects of Channel Coding

The objective of digital communication systems is to transmit a source information to a sink over
a channel with the highest reliability, namely with the lowest probability of error. This simple
and general idea has rallied researchers for decades, from the founding theoretical formulation
established by Shannon [Sha48] to the "astonishingly" efficient iterative turbo codes [Ber93].
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At the beginning, Shannon introduced the concept of coding. Directly from the fundamental
noisy-channel coding theorem [Sha48], the definition of the channel capacity is offered:

C = log2

{
1 + |h|2 ES

N0

}
. (2.22)

This is the capacity for an AWGN memoryless channel, according to the notations in Equa-
tion (2.3) and with complex-valued variables.

Subsequently, the Shannon theorem states that given a noisy channel with channel capacity C

and information transmitted at a rate of R, then if R < C there exist codes that allow the prob-
ability of error at the receiver to be made arbitrarily small. Thus, the concept of channel coding
had been introduced. In particular and in order to achieve channel capacity, the practical way of
processing lies in providing redundancy - the basic idea - and interleaving - for practical reasons
only -, denoted as channel coding.

Although Shannon works were the first to provide an upper bound on the reliable transmis-
sions rate, it did not bring convenient code design. It led to an active research field, initiated
by Hamming [Ham50] in 1950. By focusing on the performance-complexity optimization, modern
capacity-approaching codes lie in probabilistic coding schemes [Cos07] and a sequence of signifi-
cant advances in this field is provided.
A first acceptable solution was offered by convolutional codes [Eli55] at the expense of an exponen-
tial complexity (see Section 2.7.3) - in the code lengths - with the use of a Viterbi decoder [Vit67].
While it is a first practically feasible solution - for relatively small length of codes -, it offers
performance that remains far away - of about 3 dB - from the Shannon limit.
Later, Low-Density Parity-Check (LDPC) codes have been introduced in [Gal62]. The advanta-
geous iterative nature of the associated - bipartite graph-based - decoders makes them rediscovered
nowadays [Ric01] due to their low complexity.
More recently, Berrou et al. introduced turbo codes in [Ber93]. This approach offers near-Shannon
limit performance [Ber96]. However, its leads to a high-complexity - even if iterative thus ad-
justable - implementation. The BCJR decoder that is proposed in [Bah74] can be used. The
first iteration is similar to the Viterbi decoder, thus its computational complexity as well. While
their advantage over LDPC codes is not clearly stated, turbo codes are nowadays included in the
LTE(-A) standard [3GP10]. Consequently, they are considered in the present work and clearly
introduced in the sequel.

As depicted in Figure 2.2, turbo encoders consist of a - parallel in the present case - concate-
nation of two identical rate- 1

2 convolutional encoders - denoted as E1 and E2 -, by introducing the
convenient D-transform, where D is a delay. It returns to the - well-known in the digital filtering
field - Z-transform in the modulo-two domain, with each D being replaced by z−1. In particular,
E1 processes the input data while E2 processes a pseudo-randomly interleaved [3GP10] version of
the same data. The codeword produced at the output of the turbo encoder is a concatenation of
its unmodified input ul - commonly denoted as systematic bits - and of the two convoluted signals
ul,(1) and ul,(2) - commonly denoted as parity bits -, thus resulting in a coded sequence of bits blk.
Each constituent encoder is required to be terminated by tail bits [3GP10] that do not contain in-
formation, thus reducing their efficiency for small blocks. In particular in Figure 2.2, the nominal
code rate of the turbo code is 1

3 .

In such schemes, soft-decisions of coded symbols are typically produced from the detector out-
put, plus any available side information, and passed on to the decoder in the form of bit-wise
Log-Likelihood Ratios (LLR). In the latter, the sign and the magnitude represent the decision
and the reliability, respectively. This aspect will be further introduced in Section 4.1.1. From the
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Figure 2.3: Structure of iterative turbo decoder (thick lines describe the iterative procedure).

decoder point of view, a close-to-zero reliability corresponds to an unreliable bit.
While a hard-decoder provides an estimation of the transmitted symbol by making decision with
a memoryless slicer, a soft-decoder proceeds differently. In particular, it makes decisions over a
range of intermediate values, thus considering the reliability of each input that the slicer would
waste in the uncoded case. Consequently, a soft-decision decoder performs better in the presence
of corrupted data than its hard-decision counterpart. The difference from a performance point of
view is denoted as coding gain.
The optimal decoder for turbo codes would ideally be the Maximum A Posteriori (MAP) decoder.
However the number of states in the trellis of a turbo code is large due to the length of the inter-
leaver, thus making an optimal decoding infeasible for significant block sizes. Consequently, the
interest of iterative decoding arises [Ber93] and relies on a - suboptimal - separate while coopera-
tive decoding. This key point is depicted in Figure 2.3.

In Figure 2.3, the vector observation at the channel’s output Λ(blk) = [Λ(blk)0,Λ(blk)1,Λ(blk)2] [Bar03c]
is turbo decoded. In particular, the receiver iterates between two low-complexity A Posteriori
Probability (APP) convolutional decoders - BCJR Decoders 1 and 2 in the present work -, by
first ignoring Λ(blk)2. The APP decoder simultaneously generates an APP LLR value for each
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information bit and extrinsic LLRs for each information (see Section 4.1.1), which subsequently
feed the other decoder as a priori information after suitable (de)interleaving [Ses09]. Thus, the
two decoders cooperate by iteratively exchanging the extrinsic information via the (de)interleaver.
Finally, the APP LLR estimates are obtained by adding both the systematic and extrinsic LLRs.

At each iteration within the decoder, the detection belief of the decoded bit increases. After
an efficient number of iterations - typically 10-20 [Cos98, Bar03c] and 10 in the present work -,
the APP LLR output can be used to obtain final hard decision estimates of the information bits.

2.3 Orthogonal Frequency-Division Multiplexing

The main interest in the use of multi-carrier techniques lies in the aforementioned multipath
propagation nature of wireless transmissions, and in particular the channel impulse response length
L. We consider a trivial communication system. It is defined by the sequences x[k], h[k] and n[k]

of the sampled transmitted signal, the channel impulse response and the AWGN, respectively. We
denote TU as the symbol duration. At the rate of 1/TU , the received signal reads:

y[k] =

L−1∑
τ=0

h[τ ]x[k − τ ] + n[k] = h[0]x[k] +

L−1∑
τ=1

h[τ ]x[k − τ ]︸ ︷︷ ︸
ISI

+n[k]. (2.23)

Equation (2.23) exhibits the point that the generated Inter-Symbol Interference (ISI) grows up
with L, given a sampling rate of 1/TU . This aspect would require a complex equalization proce-
dure, namely a computational complexity of O

(
L2
)
.

As presented in [Ses09, Wan00], multi-carrier communication systems were first introduced in
the 1960s [Cha66, Sal67], with the first OFDM - that is a special case of multi-carrier transmis-
sion - patent being filed at Bell Labs in 1966. Initially, only analogue design was proposed [Wan00],
using banks of sinusoidal signal generators and demodulators to process the signal for the multi-
ple sub-channels. In 1971, the Discrete Fourier Transform (DFT) was proposed in [Wei71], which
made OFDM implementation cost-effective.

The typical block diagrams of an OFDM system are depicted in Figures 2.4 and 2.5.

At the OFDM transmitter pictured in Figure 2.4, a serial stream of binary signals is first demul-
tiplexed - through a Serial to Parallel (S/P) converter - into parallel streams bk. Subsequently,
each parallel data stream is independently - by assuming that feedback informations are available
- QAM-modulated, as stated by ξ0, ξ1, ξN−2 and ξN−1 blocks in Figure 2.4. The sub-channel
gain may differ between sub-carriers, which induces different carried data-rates. As a result, the
frequency-domain complex symbols vector Xk is produced, where the subscript k is the index of
an OFDM symbol. An Inverse Fast Fourier Transform (IFFT)-based schemes is computed on each
set of symbols, which results in a set of N time-domain complex samples xk.
In practical systems, the number of processed sub-carriers N - namely the FFT/IFFT sizes - is
greater than the number of modulated sub-carriers NU - namely the number of useful sub-carriers
-, i.e.:

N ≥ NU , (2.24)

with the unmodulated sub-carriers being padded with zeros [Ses09].
The Cyclic Prefix (CP) - of size G - adding is also depicted. The output of the IFFT is then
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Figure 2.4: OFDM transmitter.

Parallel-to-Serial (P/S) converted for transmission through the frequency-selective channel. Fi-
nally, the signal is converted to a baseband signal through a Digital-to-Analog Converter (DAC).
This step is came down to a Radio Frequency (RF) front end block in the figure.

At the OFDM receiver pictured in Figure 2.5, the reverse operations are performed to demodulate
the OFDM signal. Assuming that time and frequency synchronization are achieved, the baseband
signals are then sampled and digitised using an Analog-to-Digital Converter (ADC) that performs
the reverse operation of a DAC. This step is came down to a RF front end block in the figure. A
number of samples G corresponding to the length of the CP are removed, such that only an ISI-
free block of samples is passed to the DFT. Among the N parallel streams output from the Fast
Fourier Transform (FFT), the modulated subset of N sub-carriers is selected and further processed
by the receiver. This returns N parallel streams. Each of them is converted to a binary stream
using an appropriate symbol detector, symbolized by ξ−1

0 , ξ−1
1 , ξ−1

N−2 and ξ−1
N−1 blocks in Figure 2.5.

In order to achieve a full ISI removal, G must be at least equal to L. The drawback of this
solution lies in the induced loss of spectral efficiency.
It could be demonstrated, through the introduction of the unitary DFT matrix:

F =
1√
N
e−

j2π
N (km), 0 ≤ k,m ≤ N − 1, (2.25)

that the circular convolution is transformed by means of an FFT into a multiplicative operation
in the frequency domain [Ses09, Ben02]. Hence, the transmitted signal over a frequency selective
channel is converted into a transmission over N parallel flat-fading channels in the frequency
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Figure 2.5: OFDM receiver.

domain: 
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yk,1
...

yk,N−1

 =


xk,0 0 · · · 0

0 xk,1
. . . 0

0 · · · 0 xk,N−1



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...
Hk,N−1

+


nk,0
nk,1
...

nk,N−1

 . (2.26)

Consequently, the channel filter convolution becomes one complex multiplication per sub-carrier,
thus leading to a simplified (sub-carrier by sub-carrier) equalization scheme. This consideration
is made under the assumption that the time-varying channel impulse response remains roughly
constant during the transmission of each modulated OFDM symbol, which induces system im-
pairments in the case of extreme fading conditions.

The OFDM scheme is sensitive to Doppler shifting, which leads time synchronisation errors and
subsequently a loss of orthogonality of its sub-carriers. Also, high Peak-to-Average-Power Ratio
(PAPR) [Han04, Ses09] arises. It is due to constructive and destructive combinations of indepen-
dent sub-carriers and leads to increased non-linear distortions. Nevertheless, induced advantages
are numerous.
One of the major advantages in the OFDM implementation lies in the introduction of the DFT [Wei71]
that induces the use of the low-complexity FFT/IFFT [Bur91]. We recall that the FFT/IFFT
order is N . In particular, it is required to be a power of two and again N ≥ NU .
While it induces high sensitivity to time synchronization errors, the orthogonality of sub-carriers
- despite their overlapping spectra through cardinal sinus properties (0 values at each 1/TU ) -
avoids the need to separate the carriers by means of guard-bands. Therefore, OFDM is spectrally
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highly efficient.
In OFDM, the high-rate stream of data symbols is actually converted into a low-rate stream of
data symbols. The resulting increased QAM symbol duration - by a factor of approximately N
- is such that it becomes significantly longer than the channel impulse response length. Thus,
ISI are drastically reduced. Consequently, the OFDM modulation scheme has been shown to be
particularly convenient in the multi-path environment where ISI are induced by the channel time
characteristics (see Section 2.6). In addition and for complete ISI elimination, a guard period is
introduced. It consists in adding a CP by duplicating the last G samples of the IFFT output and
appending them at the beginning of x, which has been shown to change the linear convolution
into a circular one [Wan00].
An additional advantage makes the OFDM suitable for LTE(-A) requirements. The parametriza-
tion allows the system designer to balance tolerance of Doppler and delay spread depending on the
deployment scenario [Ses09]. In particular, the sub-channel gain may differ between sub-carriers,
thus inducing different carried data-rates. Therefore and based on feedback informations: mod-
ulation, channel coding and power allocation are advantageously applied independently to each
sub-carrier.
Finally and while MU is not considered in the present work, it should be noted that a multiple-
access scheme is achieved in a straightforward manner by assigning different OFDM sub-channels
to different users. It is denoted as Orthogonal Frequency-Division Multiple-Access (OFDMA), the
latter being used - among others - in the LTE(-A).
These factors together have made OFDM a choice technology for the LTE(-A) (among others)
downlink.

2.4 MIMO Schemes

2.4.1 Array Gain

By assuming the Channel State Information (CSI) availability at the transmitter with sufficient
quality - namely in low mobility scenarii -, a convenient eigen-mode of the channel can be ad-
dressed, thus resulting in the concentration of energy in one or more directions [God97]. Conse-
quently, the general idea of beamforming lies in leading to a well defined directional pattern. Its
approach is similar in multiple antennas receivers except that the transmit beamforming cannot
simultaneously maximize the signal level at all of the received antennas [Fos98].
That is why in the MIMO case, the precoding aims at minimizing the transmit power neces-
sary for achieving the transmission at a given data rate. It can be considered as a multi-stream
beamforming, which is made possible through constructive addition of the transmitted signals at
different antennas. Again, the CSI must be known at the transmitter, with all well-known asso-
ciated issues. Such a scheme advantageously catches a large part of the detector’s computational
complexity since it makes the receiver perceive almost independent parallel streams. Since the
Inter-Layer Interferences (ILI) are mainly reduced, low-complexity classical detection schemes are
efficient.
When taken to extremes, a Singular Value Decomposition (SVD) of the channel matrix can be
processed in order to transmit data into the eigen-modes of the channel [Ral98]. Such a scheme is
denoted SVD-MIMO and allows - in an ideal manner - the transmit signal separation into parallel
streams.
Also and although it is out of our scope, array gain allows multiple User Equipments (UE) - lo-
cated in different directions - to be served simultaneously [Ses09] (so-called Multiple-User-MIMO
(MU-MIMO)), which is denoted as Space-Division Multiple Access (SDMA).
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2.4.2 Diversity Gain

As a complementary point of view to both the time and frequency diversities, the spatial diversity
can be offered by multi-antenna techniques thus improving the transmission robustness against
fading. In such a scheme, there is no increase of the spectral efficiency compared to the SISO
case. With no CSI knowledge at the transmitter, the channel is made to be fully orthogonal -
or near orthogonal, according to the number of antennas - through the use of Space-Time Block
Codes (STBC) [Ala98], thus making low-complexity classical detection schemes efficient. In each
STBC block, some data is transmitted over a certain time interval, which corresponds to a certain
code rate. During this time interval, the channel is considered to be constant, which is a strong
constraint in extreme scenarii. Otherwise, the orthogonality of the code is not guaranteed.
In order to provide additional coding gain, Space-Time Treillis Codes (STTC) relies on Treillis
coding at the transmitter [Tar98] which induces a large computational complexity.

2.4.3 Spatial Multiplexing Gain

When both time and frequency diversities are sufficient, the SM scheme increases the system’s
spectral efficiency by splitting a high rate signal into multiple low rate streams that are transmitted
in parallel, through parallel sub-channels. These multiple streams can be transmitted to a single
user on multiple spatial layers created by combinations of the available antennas. A layer ν being
defined as a spatial stream, the number of SM data streams is:

ν = min {nR, nT } . (2.27)

Spatial multiplexing can also be used for simultaneous transmission to multiple receivers, known
as space-division multiple access. By scheduling receivers with different spatial signatures, good
separability can be assured.
Due to the impact of symbol ordering - within the transmitted signal - on the set of sub-channel
gains, a first practical Spatial Multiplexing-MIMO (SM-MIMO) scheme has been proposed and
is denoted as BLAST [Fos96]. The interesting aspect is that it achieves acceptable performance
while employing a sub-optimal detector. Two different scheme may be used: Diagonal-BLAST
(D-BLAST) and Vertical-BLAST (V-BLAST) that will be further introduced in 2.7. None of
these rely on CSI knowledge at the transmitter.
In the present work, the low complexity Bit-Interleaved Coded Modulation (BICM) [Cai98] strat-
egy is considered. It consists in encoding, interleaving and modulating any transmitted block
that is subsequently mapped onto the transmit antenna. The main object of the detector step is
approaching the channel capacity with a polynomial computational complexity (see Section 2.7.3)
at the receiver.

2.5 System Model Introduction and Notations

In the present work, the Single-User MIMO (SU-MIMO) assumption is considered. The presented
results can be straight-forwardly extended to MU-MIMO systems with detectors that do not rely
on a finite-alphabet constraint assumption (see Section 2.7.2). Otherwise, additional knowledge
- such as user received energies and transmission delays - is necessary [Pro95] and properties -
namely system dimensions and channel correlation [Ses09] - of encountered systems differ, thus
inducing different calibrations.
Consider a nT -transmit and nR-receive nT × nR MIMO system model associated to the (k, l)-
th Resource-Element (RE) in the grid-represented Resource-Block (RB) - the RB allocation will
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be detailed in Section 5.1.2. By considering that the channel is flat-fading within each RE, the
corresponding nR-dimensional complex received vector yk,l reads:

yk,l = Hk,lxk,l + nk,l, (2.28)

where 0 ≤ k ≤ 6, 0 ≤ l < NU (see Section 2.3), and NU ∈ {72, 180, 300, 600, 1200} [3GP07].
The channel Hk,l is a nR × nT complex valued matrix and is assumed to be perfectly known at
the receiver, unless otherwise specified. The nR-dimensional complex vector nk,l is an AWGN of
variance σ2

n/2 for each dimension. The entries of the transmitted symbol vector xk,l are indepen-
dently drawn from a complex constellation set ξ and such that xk,l belongs to the set ξnT .

Each channel input blk ∈ {±1}log2{|ξ|} is assigned to a symbol according to any encoding scheme,
where n is any given layer (see Section 2.4.3) and k is any bit position within the corresponding
symbol. The whole symbols vector is mapped from a block of bit stream cm, by denoting m as
the number of bits of the codeword with 1 ≤ m ≤ ν log2{|ξ|}. At this step, the uncoded or coded
case is not distinguished. The block code may consider channel coding through the addition of
redundancy and correlation, by introducing the code rate R ≤ 1 - where R = 1 makes c correspond
to uncoded bits -, and interleaving [Ben98]. By applying an efficient modulation and code rate
scheme, the channel capacity is almost achieved at any SNR point [Ber93].

At this point, the vital aspects have been introduced and are now put together. In particular
in Figure 2.6, the general structure of the considered SM-MIMO-OFDM system is depicted in
a block-diagram manner. We shed light on the DownLink (DL) transmission introduced in the
LTE(-A) standard [3GP07].
From a global point of view, a digital source is communicating over a MIMO channel Hk,l to a

digital sink. At the transmitter, also denoted as DL encoding, parallel independent raw bit streams
ul are independently turbo encoded - according to what was previously defined in Section 2.2 -
at a desired rate through puncturing. The resulting codewords blk are then pseudo-interleaved,
scrambled and QAM modulated, such as complex-valued constellation symbols are fed to the layer
mapper block. Inside this block, the latter symbols are mapped onto one or several transmission
layers. The corresponding output is then eventually precoded (see Section 5.1.3) on each layer
for transmission on the antenna ports. Finally and for each antenna port, a time-domain OFDM
signal is generated for each antenna port, as defined beforehand in Section 2.3. The MIMO chan-
nel is modelled in accordance with the notations of Equation (2.28). At the receiver, that is also
denoted as DL decoding, the inverse operations are processed. Particular attention will be paid
to the Detection/Antenna mapping block since it is the object of the present work.

In a MIMO system and by assuming the aforementioned distribution of the complex channel
matrix [Tel99], the ergodic channel capacity of the equivalent transmission model Equation (2.28)
reads:

C = E

{
log2 det

(
InR +

ES
N0

Hk,lH
H
k,l

)}
, (2.29)

where the expectation is processed over the entries of Hk,l and N0 is the noise spectral density.

For the case of i.i.d. noise at the receiver and with perfect CSI at both the transmitter and
the receiver - which allow for an SVD -, the expression above rewrites [Tel99]:

C =

ν∑
i=1

log2

(
1 + λi

ES
N0

)
, (2.30)

by assuming water filling power allocation [Tse05] where λi are the singular values of the channel
matrix. This equation clearly shows that the capacity grows linearly with the number of layers,
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Figure 2.6: Overview of DL baseband signal, SM-MIMO-OFDM scheme.

which was claimed in Section 2.4.3.

In the MIMO case, the global SNR at the receiver is written as:

SNR =
ES
N0

=
E
{
xHk,lH

H
k,lHk,lxk,l

}
E
{
nHk,lnk,l

} . (2.31)

In the present work, simulation results are provided in the form of BER curves as a function of the
average energy per bit - denoted as Eb - to the power spectral density ratio. The ratio Eb/N0 is
useful in the comparison of the BER performance of different digital modulation schemes without
taking bandwidth into account. As introduced in [Hoc03], it can be advantageously seen as a
normalized measure of the SNR, thus leading - without considering the spectral efficiency loss due
to channel coding - to the relation:

Eb
N0

∣∣∣∣
dB

=
ES
N0

∣∣∣∣
dB

+ 10 log10

nR
nT log2 {|ξ|}

. (2.32)

Consequently, by considering an equal number of transmit and receive antennas and since the
capacity grows linearly with the number of layers, capacity for a given constellation is attained at
approximatively [Hoc03] the same Eb/N0 whatever the number of antennas.

In some scenarii, it may be advantageous to catch the benefits of the spatial diversity and of
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the spatial multiplexing gain. In the rest of the manuscript and unless otherwise specified, the
SM-MIMO design will be considered.

2.6 General MIMO Channel Model

Due to reflection and scattering in the environment, radio wave propagation is commonly described
by a finite number of L distinct paths - that denote the arriving signal at the receiver -, in the
continuation of ITU channel models [M.197]. In particular, each path approximates a cluster of
paths with similar delays. Thus, h (t, τ) denotes time-varying complex baseband impulse response
- at time instant t and delay τ - for the radio channel and may be written as the well-known
tapped-delay line model [3GP09a]:

h (t, τ) =

L−1∑
i=0

ai (t) δ (t, τi), (2.33)

where ai and δ (·) denote any path amplitude and the delta function, respectively. Due to scattering
of each wave in the vicinity of a moving mobile, each path approximates the superposition of a
large number of scattered waves with approximately the same delay. Paths of similar amplitudes
interfere constructively and destructively, thus inducing frequency fading.
The channel coherence bandwidth BC denotes the minimum frequency separation required for a
sufficient change in the channel magnitude so that it becomes uncorrelated from its previous value.
It induces a distinction between a flat-fading - the channel coherence bandwidth of the channel
is larger than the signal bandwidth - and a frequency-selective fading - the coherence bandwidth
of the channel is smaller. Subsequently, the level of frequency diversity depends on the ratio of
the system bandwidth to the channel coherence bandwidth [Ray97]. As a rule of thumb, the 50%

coherence bandwidth can be estimated from the maximum excess delay of the latest significant
multi-path tap [Pro95, Yee93]:

BC ∝
1

τRMS
. (2.34)

The Wide-Sense Stationary Uncorrelated Scattering (WSSUS) channel model, introduced by
Bello [Bel63] is a classical assumption for the computation of tap gains of the discrete-time
representation of a slowly time-varying multipath channel experienced in mobile communica-
tions [Hoe92]. According to this, each path module |ai| is subject to time-varying fading, which is
modelled by varying Rayleigh distributed amplitudes. A mobile receiver induces a Doppler spread,
i.e. temporal correlation of the process h (t, τ). It is commonly modelled according to Jakes model-
based Doppler power spectrum Sai (f) [Jak74]. By introducing the maximum occurring Doppler
frequency:

fd,max = v
fc
c
, (2.35)

where v, fc and c denote the mobile speed, the carrier frequency and the propagation speed,
respectively. The Doppler power spectrum reads:

Sai (f) =


1

πfd,max

√
1−
(

f
fd,max

)2
for |f | ≤ fd,max,

0 otherwise.
(2.36)

A motion at the receiver causes a Doppler shift, itself inducing time fading.
The channel coherence time TC denotes the minimum time required for a sufficient channel mag-
nitude change such as it becomes uncorrelated from its previous value. It induces a distinction
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between slow and fast fading. Slow fading - the coherence time of the channel is large compared
to the delay constraint of the channel - is when the amplitude and phase change - imposed by the
channel - can be considered as roughly constant over the period of use. Fast fading - the coherence
time of the channel is small relative to the delay constraint of the channel - is when the amplitude
and phase vary considerably over the period of use. As a rule of thumb, the level of time diversity
can be estimated by relating the OFDM symbol duration with the channel coherence time. The
latter depends on the maximum occurring Doppler frequency [Ray97]:

TC ∝
1

fd,max
(2.37)

Spatial correlation arises due to spatial scattering conditions. Despite its simplicity, the correlation-
based analytical Kronecker model is used in the 3GPP standard [3GP09d]. By considering the
correlation between transmit antennas and between receive antennas as independent, the transmit
and receive correlation matrices can be denoted T and R, respectively. With this assumption,
the spatially correlated channel rewrites Hcorr = R1/2HT1/2, where T and R result in Toeplitz
structure matrices and read:

T =


1 · · · αl

2
T /(nT−1)2

...
. . .

...

(αl
2
T /(nT−1)2)∗ · · · 1

 , R =


1 · · · βl

2
R/(nR−1)2

...
. . .

...

(βl
2
R/(nR−1)2)∗ · · · 1

 , (2.38)

where lT = {0, · · · , nT − 1}, lR = {0, · · · , nR− 1} and α and β represent the fading correlation
between two adjacent transmit and receive antenna elements, respectively, averaged over all pos-
sible orientations of the two antennas in a given wave-field [Dur99]. This simplistic model (only a
single coefficient per transmit or receive antenna) will be further discussed in Section 5.1.1.
A strong spatial correlation will increase correlation between column-vectors in the MIMO channel
matrix. Consequently, it induces ill-conditioned channel matrices. Numerous tools may be used to
measure a matrix orthogonality or conditioning. In the present work, the level of space diversity
depends on the Orthogonal Deficiency (OD) measurement [Zha07b] that reads:

OD (Hk,l) = 1−
det
(

(Hk,l)
H
Hk,l

)
∏nT
j=1 ‖(Hk,l):,j‖2

, (2.39)

where 0 ≤ OD (Hk,l) ≤ 1 and OD (Hk,l) = 0 iff Hk,l is a unitary matrix. Also, by defining
σmax (Hk,l) and σmin (Hk,l) as the maximal and minimal singular values of Hk,l , the conditioning
number reads:

κ (Hk,l) =
σmax (Hk,l)

σmin (Hk,l)
, . (2.40)

where κ (Hk,l) ≥ 1 and κ (Hk,l) = 1 if Hk,l is a unitary matrix. According to the MIMO system
capacity definition introduced in Section 2.5, it is obvious that it is solely the spatial correlation
characteristics of the MIMO channel Hk,l that determine the theoretical capacity as a function of
the SNR.

2.7 Detection Problematic and Background

From the receiver point of view, the general detection problematic can be summarized as how to
separate the transmitted symbols, while taking into consideration that they appear as a linear
superposition of separately transmitted streams.
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(a) (b)

Figure 2.7: Example of 2-dimensional real lattices with orthogonal bases (a) and correlated bases
(b).

The quality of any detector is determined by its ability in recovering the transmitted symbols
while approaching the channel capacity [Ber93], which corresponds to an inverse problem with a
finite-alphabet constraint [Lar09]. This the case for the Maximum-Likelihood Detector (MLD).

2.7.1 Maximum Likelihood

For the sake of readability, the system model introduced in Equation (2.28) is re-defined as fol-
lowing:

y = Hx + n, (2.41)

from this chapter to Chapter 4 and otherwise specified.
Working on the transmitted vector x, H generates the complex lattice:

L(H) = {z = Hx|x ∈ ξnT } = {x1H1,: + x2H2,: + · · ·+ xnTHnT ,:|xk ∈ ξ} , (2.42)

where the columns of H, {H:,1,H:,2, · · · ,H:,nT }, are known as the basis vectors of the lattice
L ∈ CnR [Lov86]. Also, nT and nR refer to the rank and dimension of the lattice L, respectively,
and the lattice is said to be full-rank if nT = nR.

Figure 2.7(a) shows an example of a 2-dimensional real lattice whose basis vectors are H:,1 =

[0.39 0.59]T and H:,2 = [−0.59 0.39]T , and Figure 2.7(b) shows another example of a lattice with
basis vectors H:,1 = [0.39 0.60]T and H:,2 = [0.50 0.30]T . The elements of the transmitted vector
x are drawn independently from the real constellation set {−3,−1, 1, 3}. The OD of the lattices
depicted in Figure 2.7(a) and Figure 2.7(b) are 1 and 2.28, respectively. This indicates that the
first set of basis vectors is perfectly orthogonal while the second set is correlated, which implies
ILIs and induces among others the advantage of joint detectors. The form of the resulting Voronoi
regions of the different lattice points - an example is indicated in gray in Figure 2.7 - also indi-
cates the orthogonality of the basis; when the basis vectors are orthogonal with equal norms, the
resulting Voronoi regions are squares, otherwise different shapes are obtained.
In light of the above and from a geometrical point of view, the signal detection problem is defined
as finding the lattice point ẑ = Hx̂, such that ‖y − ẑ‖2 is minimized, where ‖·‖ is the Euclidean
norm and x̂ is the estimate of the transmitted vector x.

The optimum detector for the transmit vector estimation is the well-known MLD [Van76]. MLD
employs a brute-force search to find the vector xk such that the a-posteriori probability P {xk |y} , k ∈
J1; |ξ|nT K, is maximized; that is:

x̂ML = arg max
x∈ξnT

{P {xk|y}} . (2.43)
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G QξnT {·} x̂
y x̃

Figure 2.8: Block diagram of the linear detection algorithms.

After some basic probability manipulations and by assuming equally likely symbols, the optimiza-
tion problem in Equation (2.43) is reduced to:

x̂ML = arg max
x∈ξnT

{p (y|xk)} , (2.44)

where p (y|xk) is the probability density function of y given xk. By assuming that the elements of
the noise vector n are i.i.d. and follow Gaussian distribution, the noise covariance matrix becomes
Σn = σ2

nInR . As a consequence, the received vector is modelled as a multivariate Gaussian
random variable whose mean is Hxk and covariance matrix is Σn. The optimization problem in
Equation (2.44) thus rewrites as follows:

x̂ML = arg max
x∈ξnT

{
1

πnR det (Σn)
exp−(y−Hxk)HΣ−1

n (y−Hxk)

}
= arg min

x∈ξnT

{
‖y −Hxk‖2

}
. (2.45)

This result coincides with the conjuncture based on the lattice theory given above in this section.

By focusing on hard-decision detection, the MLD offers optimal performance.
However and for mobile communications systems that are computationally and latency limited,
MLD is infeasible. More details are provided in Section 2.7.3.

Differently to MLD, Linear Detectors (LD) do not consider the finite-alphabet constraint [Lar09].

2.7.2 Linear Detection

The idea behind LD schemes is to treat the received vector by a filtering matrix G, constructed
using a performance-based criterion, as depicted in Figure 2.8 [Pau03, Win04, Sch06]. The well-
known Zero-Forcing (ZF) and Minimum-Mean Square Error (MMSE) performance criteria are
considered in the Linear ZF (LZF) and Linear MMSE (LMMSE) detectors.

LZF detector treats the received vector by the pseudo-inverse of the channel matrix, result-
ing in the full cancellation of interference with coloured noise. The detector in matrix form is
given by:

GZF =
(
HHH

)−1
HH = H†, (2.46)

where (·)H is the Hermitian transpose and (·)† the pseudo-inverse.
Figure 2.9 depicts a geometrical representation of the LZF detector. Geometrically, to obtain the
k-th detector’s output, the received vector is processed as follows:

x̃k = Gk,:y =

(
(H:,k)⊥

)H
‖(H:,k)⊥‖2

y = xk + µk, (2.47)

whereGk,: is the k-th row ofG, (H:,k)⊥ is the perpendicular component ofH:,k on the interference
space, and µk equals Gk,:n. Note that (H:,k)⊥ equals

(
H:,k − (Hk,:)

||), where (H:,k)|| is the
parallel component of H:,k to the interference subspace. Then, the mean and variance of the
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Figure 2.9: Geometrical representation of the linear ZF detection algorithm.

noise µk at the output of the LZF detector are 0 and ‖Gk,:‖2 σ2
n, respectively. When the channel

matrix is ill-conditioned, e.g. if a couple of more of columns of the channel matrix are correlated,
(H:,k)|| becomes large, and the noise is consequently amplified. To alleviate the noise enhancement
problem induced by the ZF equalization, LMMSE can be used. The MMSE algorithm optimally
balances the residual interference and noise enhancement at the output of the detector. This is
accomplished by the filtering matrix GMMSE given by:

GMMSE = arg min
G

{
E
{
‖Gy − x‖2

}}
. (2.48)

Due to the orthogonality between the received vector and the error vector given in Equation (2.48),
we have:

E
{

(GMMSEy − x)yH
}

= 0, (2.49)

and by extending the left side of Equation (2.49), it directly follows that:

GMMSE =
(
Φ−1

xx + HHΦ−1
nnH

)−1
HHΦ−1

nn =

(
HHH +

σ2
n

σ2
x

InT

)−1

HH , (2.50)

where Φnn = σ2
nInR and Φxx = σ2

xInT and denote the covariance matrices of the noise and the
transmitted vectors, respectively. Theoretically and at high SNR, the LMMSE optimum filtering
converges to the LZF solution. However, Mohaisen et al. show in [Moh09b] that the improvement
by the LMMSE detector over the LZF detector is not only dependent on the plain value of the
noise variance, but also on how close σ2

n is to the singular values of the channel matrix. They
proved that the ratio between the condition number of the filtering matrices of the linear MMSE
and ZF detectors is approximated as follows:

κ(GMMSE)

κ(GZF)
≈

1 +
σ2
n

σ2
max(H)

1 +
σ2
n

σ2
min(H)

, (2.51)

where σmin (H) and σmax (H) are the minimal and maximal singular values of the channel matrix
H, which is different from the noise variance σ2

n.

Figure 2.10 shows the uncoded BER of the LDs in a 4× 4 SM-MIMO-Single Carrier (SC) system,
using 4-QAM signalling. Although the BER performance of LMMSE is close to that of MLD for
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Figure 2.10: Uncoded BER as a function of Eb/N0, Complex Rayleigh 4×4 SM-MIMO-SC system,
LZF, LMMSE and ML detectors, 4-QAM modulations at each layer.

low Eb/N0 values, the error rate curves of the two linear detection algorithms have a slope of −1,
viz. diversity order equals one, whereas the diversity order of the MLD equals nR = 4. Thus LDs
lead to poor performance.

The advantage of one receiver compared to others comes from the - meticulous - study of
its cost while meeting specific requirements, e.g. the achievable throughput. Since the concept
of algorithm complexity plays a leading role in the present work, a clear introduction of the used
definitions and notations is necessary.

2.7.3 Computational Complexity Assumptions

The O {·} notation is widely used in the analysis of algorithms to describe an algorithm’s usage
of computational resources as a function of the length of its input. By designated f (n) and g (n)

as two functions defined on some subset of the real numbers, its formal definition reads:

f (n) =
n→a

O{g (n)} ⇔ f (n)

g (n)
→
n→a

c ∈ R, (2.52)

where a is any real number.
The polynomial complexity class is denoted as the set of algorithms such that their complexity is
O
(
nk
)
and varies with n, with k being real constant.

The exponential complexity class is denoted as the set of algorithms such that their complexity is
O (kn) and varies with n.
The NP-hard class is denoted as the set of algorithms such that their complexities are not deter-
ministic and lead to an exponential complexity in the worst-case, while a given solution can be
checked for correctness in a polynomial time.

The Computational Complexity is denoted as the cost of an algorithm which is widely used to
measure the efficiency of the algorithm.
The cost of an algorithm is the product of the execution time - i.e. time complexity - and the
number of processors employed. In [Li 99], the problem of time/processor complexity is summa-
rized and its issues highlighted. We consider the useful example of matrix multiplication of size
n. The corresponding total computational complexity can be summarized as follow:
– in O(n3) time complexity by using 1 processor;
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– in O(n2) time complexity by using n processors;
– in O(n) time complexity by using n2 processors;
– in O(log n) time complexity by using O(n2.8074) processors [Li 98];
– in O(1) time complexity by using n3 processors.
The number of parallel processors is a key factor in LTE(-A) inner receivers. To simplify the archi-
tecture and reach high computational applications, ST-Ericsson (ST-E) strategy relies on highly
parallel DSP architectures allowing to operate on 16 16-bit words vectors, namely the Embedded
Vector Processor (EVP) processor [van05]. Since the LTE(-A) SM-MIMO-OFDM background
makes a rule to provide up to 8× 8 antennas in the downlink, we consider in the present work a
feasible trade-off consisting in n2 available processors. A matrix multiplication time complexity
thus becomes O(n).

While a number of FLoating-point OPerations (FLOP) is a common measure of the cost of com-
puting - and in particular in the estimation of various algorithms’ computational complexities -,
it induces the same weight for both a real addition and square root. Thus, it sheds light on the
necessity to introduce relevant computational complexity assumptions. In particular, the time
complexity generally depends on a specific hardware target. The results of the present work rely
on Digital Signal Processing (DSP)-oriented assumptions that are introduced below.
First and foremost, real additions ADDRR are neglected since they are seen as being processed
in parallel with real multiplications MULRR - this is assumed in the present work. Such a con-
sideration is possible due to the assumption of using parallel processors. In particular, a Multiply
ACcumulate (MAC) operation simultaneously performs a real addition and a real multiplication.
Also and from a DSP implementation point of view, a real division DIVRR is considered to be
equivalent to 16 real multiplications since its trivial implementation is realized with a conditional
add/subtract non-restoring division algorithm. As its name implies, the algorithm functions by
adding (subtracting) the divisor to (from) the dividend. In particular, it depends on the previously
generated quotient bit. Each add/subtract operation produces a new partial remainder - which
will be used in the next step - over the assumed format of the 16-bit words.
Concerning the real square root SQRTRR weight approximation, it relies on the general principle
of the normalization of the dynamic between 1

4 and 1, which makes Taylor series available. For
the sake of understanding, more details are provided just in the sequel through a trivial example.
To estimate the square root of a number using only simple arithmetic, the Taylor series of the
square root function provides a convenient method. Namely, the Taylor expansion around a2 is
given by: √

a2 + x =

∞∑
n=0

(−1)n(2n)!xn

(1− 2n)n!24na2n−1
. (2.53)

In practice, this provides an efficient estimate of a number’s square root. In particular, a 5th order
Taylor series is widely considered, which requires approximately 32 real multiplications.

The basic operations are summarized in Table 2.1, where {·}RR, {·}RC and {·}CC denote real/real,
real/complex and complex-complex operations, respectively.

Various receivers are presented in the present work. In accordance with the aforementioned
assumptions, their computational complexities are introduced - unless otherwise specified - as a
function of real multiplication equivalence. Also and for the sake of comparability, the O{·} no-
tation will only be used for discussion.

In particular and by referring to Section 2.7.1, the computational complexity of the MLD is
known to be exponential in the modulation set size |ξ|. The computational complexity of LDs
(see Section 2.7.2) is polynomial in nT .
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Complex operations Real operations MUL

1 ADDCC 2 ADDRR 0 MULRR

1 ADDRC 1 ADDRR 0 MULRR

1 ADDRR 1 ADDRR 0 MULRR

1 MULCC 4 MULRR 4 MULRR

1 MULRC 2 MULRR 2 MULRR

1 MULRR 1 MULRR 1 MULRR

1 DIVCC 6 MULRR + 2 DIVRR 38 MULRR

1 DIVRC 2 DIVRR 32 MULRR

1 DIVRR 1 DIVRR 16 MULRR

1 SQRTRR 1 SQRTRR 32 MULRR

Table 2.1: Computational complexities equivalences.

Neither the MLD - computationally infeasible - nor LDs - that offer poor performance - are
retained for implementation. Anyway, they are considered as reference detectors in the sequel.
In the following chapter, we review the conventional (sub-)optimal detection algorithms [Wan05],
and analyse their advantages and inconveniences.
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3.1 Decision-Feedback Detector

Although linear detection approaches are attractive in terms of computational complexity, they
lead to degradation in BER performance due to the independent detection of x components.
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Superior performance can be obtained if pseudo-linear approaches are employed, as in the Decision-
Feedback Detection (DFD) algorithms. Their general principle relies on successive detection of
symbols, where already-detected components of x are subtracted from the received vector. This
leads to a system with less interferences. In the following two sections, we introduce two categories
of DFD algorithms.

3.1.1 Vertical-Bell Labs Layered Space-Time Transmission

In V-BLAST, symbols are detected successively using the aforementioned linear detection ap-
proaches. At the end of each iteration, the already-detected component of x is subtracted from
the received vector [Wol98, Hay05]. Also, the corresponding column of the matrix H is removed.
When decision-feedback approach is used, error propagation becomes a challenging issue. There-
fore, the order in which symbols are detected has a great impact on the system performance.
The idea behind the ZF-based V-BLAST (ZF-VB) algorithm is to detect first the components of
x that suffer the least noise amplification. For the first decision, the pseudo-inverse - i.e. G equals
H† (see Equation 2.46) - of the matrix H is obtained. By assuming that the noise components
are i.i.d. and that noise is independent of x, then the row of G with the least Euclidean norm
corresponds to the required component of x. That is:

k1 = arg minj (‖Gj,:‖2) and x̃k1 = Gk1,:y
(1), (3.1)

where y(1) = y. The superscript indicates the iteration number and x̂k1 = Qξ {x̃k1} is the
decision for the k1-th component of x, where Qξ {·} is the quantification operator to the nearest
constellation symbol. The interference due to the k1-th symbol is then cancelled out as follows:

y(2) = y(1) − x̂k1H:,k1 and H(2) = [· · · ,H:,k1−1,H:,k1+1, · · · ] . (3.2)

This strategy is repeated up to the last component of x.

In analogy with the linear detection approaches, MMSE-based V-BLAST (MMSE-VB) improves
the BER performance, by alleviating the noise enhancement problem. Therefore, the filtering
matrix G(i) at the i -th iteration is given by:

G(i) =

((
H(i)

)H
H(i) +

σ2
n

σ2
x

InT

)−1 (
H(i)

)H
, (3.3)

rather than
(
H(i)

)†
in the case of ZF-VB.

Figure 3.1 shows the uncoded BER performance of the different V-BLAST detection algorithms. In
the assorted V-BLAST schemes, the symbols are detected in an ascending order - i.e. x1,x2, · · · ,xnT
- without considering their noise conditions. Obviously, signal ordering leads to improvements for
both the ZF-VB and MMSE-VB algorithms, and the improvement is larger in the case of the
MMSE-VB algorithm. This point will be detailed in Section 3.1.3. Despite its performance ad-
vantage over ZF-VB, neither of them achieve a diversity order that is larger than 1. This indicates
less error propagation in the case of MMSE-VB, compared to other V-BLAST detection algo-
rithms.

The computational complexity of the BLAST detection algorithm - both ZF-VB and MMSE-
VB - is O(n4

T ) [Has00], which is infeasible due to power and latency limitations of the mobile
communication systems. Even though several techniques are proposed to reduce the complexity
of the BLAST detection algorithm, it is still complex [Has00, Ben03, Zhu04].
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3.1.2 QR Decomposition-based Detectors

Generally, the main idea relies on splitting the detector’s computational complexity into a pre-
processing step - that depends on the channel only - and the detection step itself - that depends
on data. That is why the preprocessing cost is not considered in the detection process since it
is subject to large computational complexity reductions, due to the coherence bandwidth and to
practical requirements.

The channel matrix H is first decomposed using the QR Decomposition (QRD) method. Hence,
it is decomposed into the multiplication of a unitary matrix Q ∈ CnR×nT , i.e. Q has orthonor-
mal columns or equivalently QHQ = InT , and an upper-triangular matrix R ∈ CnT×nT ; that is
H = QR. Then, the received symbol vector y is multiplied with QH prior to the symbol detection
step, and Equation (2.41) - y = Hx + n - reads:

QHy = QHQRx + QHn = Rx + QHn, (3.4)

which rewrites:
ỹ = Rx + ñ, (3.5)

where ỹ = QHy and ñ = QHn. The matrix Q is unitary, which remains the expectation and the
covariance of the noise unaffected.
The matrix R structure being upper triangular, the transmitted symbol vector x could be esti-
mated from the vector ỹ and the matrix R by employing the Gauss elimination algorithm [Hig02].
In particular and due to the upper triangular structure of R, ỹnT is ILI-free. Thus it is used to
estimate x̂nT . By assuming correct previous decisions, the interference can be perfectly cancelled
in each step.

Multiple classical QRD algorithms may be used and offer variable implementation advantages.
The Gram-Schmidt (GS) orthogonalization is frequently used in communication systems. The
GS-based QRD algorithm consists of two steps, namely orthogonalization and normalization. In
the orthogonalization step, a normal vector of the matrix Q that is already normalized (in the
normalization step) is obtained and the remaining columns of Q are orthogonalized to the ob-
tained column. Note that the matrix Q is initiated to H. Therefore, the corresponding row of the
matrix R is obtained from Q [Aub10]. The stable GS algorithm has been introduced through a
minor update of the classical GS algorithm [Hig02].
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The HouseHolder (HH) triangularization constitutes another classical QRD technique used to
obtain the upper triangular matrix R, from which the matrix Q can be obtained if required. The
idea behind the HH technique is to obtain the matrix R using a reflection matrix. This reflection
matrix, also known as Householder matrix, is used to cancel all the elements of a vector except
its first element that is assigned as the norm of the vector. Therefore, the columns of the matrix
H are treated iteratively to obtain the R matrix [Aub10].

The Givens Rotations (GR) can also be employed to factorize the matrix H [Hog07]. This
technique is usually used in embedded systems because of its numerical stability [Lue07] and
its well-suited implementation [Goe91]. The general principle of this technique is to cancel the
elements of the matrix H so that a triangular form is obtained. Therefore, the GR technique is
the only technique that is not iterative and, hence, has a parallelism capability that is explored in
the sequel.

The Parallel Givens Rotations (PGR) technique allows independent operations in the QRD pro-
cess so that the processing speed is increased [Aub10]. An example of the PGR is explained in
the case of a 4× 4 real matrix. The conventional GR technique obtains the following matrix:

R =


R1,1 R1,2 R3,1 R4,1

01 R2,2 R3,2 R4,2

02 04 R3,3 R4,3

03 05 06 R4,4

 , (3.6)

where the entriesRi,j represent the elements ofH that are modified during the QRD. The notation
0k represents the order k in which the corresponding elements of the matrix H are cancelled out
and such that {Ri,j | 1 ≤ i 6= j ≤ nT } ⊂ C and {Ri,i | 1 ≤ i ≤ nT } ⊂ R. Hence, it should be noted
that 6 sequential and dependent steps are necessary for the cancellation stage of a 4×4 real matrix.
Equation (3.7) illustrates the PGR technique to obtain the triangular matrix R from H:

R =


R1,1 R1,2 R3,1 R4,1

01 R2,2 R3,2 R4,2

02 03 R3,3 R4,3

03 04 05 R4,4

 , (3.7)

where two elements are simultaneously cancelled at the third step due to their independence.
Hence, a parallelization gain is obtained, which increases with the size of the matrix H.

It is also shown in [Aub10] that the matrix Q does not need to be explicitly obtained, thus
offering a significant computational complexity reduction with no performance loss. The corre-
sponding lemma and its proof are recalled here.

Lemma 1. Consider a modified nR×(nT+1) input matrix constructed as [H y] and with nR ≥ nT ,
the QRD process on first nT rows results in a nT × (nT + 1) triangular matrix corresponding to
[R ỹ], with ỹ = QHy.

Proof. Let us consider the initialization step of the QRD algorithm by introducing the nR×(nT+1)

matrix:
Q = [H y] (3.8)

and the (nT + 1)× (nT + 1) matrix:
R = InT+1. (3.9)
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For the sake of simplicity and without loss of generality, let us consider the common GS technique.
By processing the QRD from columns 1 to nT , the following results are obtained:

Q = [Q y] and R =

[
R 0

0 1

]
. (3.10)

The QRD processing final step is realized at the nT +1 column. By considering the GS technique,
the R coefficients are obtained with the expression Ri,j = (Q

:,i
)HQ

:,j
, ∀i ∈ J1, nT K, ∀j ∈

J1, nT + 1K. Hence Ri,nT+1 = (Q
:,i

)HQ
:,nT+1

= (Q
:,i

)Hy at this step of the algorithm process.
From Equation (3.10): Q

:,i
= Q:,i, ∀i ∈ J1, nT K. ConsequentlyRi,nT+1 = QH

:,iy andR1:nT ,nT+1 =

[R ỹ].

Lemma 1 implies the input of the detection stage - i.e. ỹ and R - are obtained without explicitly
calculating the unitary matrix Q, thus leading to considerably reduced computational complexity
as shown in [Aub10].

By assuming that nR = nT = n, the computational complexity of the aforementioned QRD
algorithms is O(n3) [Aub10], which is feasible in practice.

3.1.3 Layers re-Ordering

Until now, the QRD-based DFD were assumed without considering signal ordering, i.e. the
transmitted signal was detected from the nT -th symbol to the first one. However, this order is
not unique and any detection order - among the nT ! distinct possibilities - can be chosen. It can
be modified by permuting elements of x and the corresponding columns of H prior to the QRD
through the introduction of the - orthonormal [Boe06] - permutation matrix P, leading to the
system model being rewritten as:

y = Hx + n = HPP−1x + n = HPxP + n. (3.11)

A well-suited ordering would combat error propagation - that induces a loss of diversity -, thus
leading to a significant performance improvement. The corresponding detector is denoted as Or-
dered Decision-Feedback Detector (ODFD). While the brute force solution lies in evaluating nT !

QRDs, this may be accomplished in a straightforward way by performing ≈ n2
T /2 QRDs of per-

mutations of H through the myopic optimization [Fos99]. Obviously, this solution is not retained.

Wübben et al. propose a heuristic approach - denoted as ZF-SQRD - that only depends on
the channel realization [Wue03]. While it does not ensure the optimal order and therefore the
BLAST performance [Dam03], it only requires a fraction of its computational complexity [Wue01].
Assuming correct decisions in all previous detection steps and unit expected average power of the
transmitted symbols, the SNR at the k-th layer (see Section 2.4.3) is given by [Boe06]:

SNRk =
Rk,k

σ2
n

. (3.12)

It is shown in [Fos99] that the minimum SNR - among all transmitted streams - is maximized by
selecting the next best - the least subject to leading to incorrect estimation - layer to be detected.
This criterion is also employed by the efficient ordering algorithm proposed in [Wue01], denoted
as ZF-SQRD in the present work. In particular, the diagonal elements R2

k,k are minimized in the
order they are calculated during the orthogonalization process, instead of being maximized in the
opposite order of detection. It is proposed in [Wue01] to find the permutation of H that minimizes
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each R2
k,k - with k running from 1 to nT -, leaving all R1:k−1,1:k−1 unchanged. This minimizes

the diagonal elements in every decomposition steps and thereby keeps maximal diagonal elements
R2
k+1:nT ,k+1:nT

in the following steps.

For more than two transmit antennas, this approach is no longer guaranteed to be optimal [Boe06].
In particular and since less interference needs to be suppressed by the linear MMSE filter in the
first step, it may already be said that the impact of sorting is much more pronounced for MMSE-
DFD [Boe06]. Thus, the efficiency of the ordering has been further improved through the extension
of the ZF-SQRD to the MMSE criterion, which is proposed in [Wue03]. It is denoted as MMSE-
SQRD in the present work.
By introducing the extended system model [Has00]:

Hext =

[
H

σnInT

]
and yext =

[
y

0nT

]
, (3.13)

the link with the ZF-SQRD is made obvious through the relation:

Gext,ZFyext =
(
HH

extHext
)−1

HH
extyext =

(
HHH + σ2

nInT
)−1

HHy = GMMSEy, (3.14)

where the ZF equalization onto the extended channel matrix equals the classical MMSE equaliza-
tion. By applying the ZF-SQRD onto the extended channel, it reads:

Hext = QextRext =

[
Q1

Q2

]
Rext, (3.15)

where the (nT + nR)×nT matrix Qext with orthonormal columns is partitioned into the nR×nT
- non-orthonormal - matrix Q1 and the nT × nT upper trianguler matrix Q2 [Wue03].

Assuming correct decisions in all previous detection steps, the SINR of the k-th layer is given
by [Boe06]:

SINRk =
(Rext)

2
k,k

σ2
n

− 1. (3.16)

The permutation must be chosen such that the corresponding SINR is maximized. In particular,
the diagonal elements (Rext)

2
k,k are minimized in the order they are calculated during the orthog-

onalization process instead of being maximized in the opposite order of detection. In [Wue03], it
is proposed to find the permutation of H that minimizes each (Rext)

2
k,k - with k running from 1

to nT -, leaving all (Rext)1:k−1,1:k−1 unchanged. This minimizes the diagonal elements in every
decomposition step and thereby keeps maximal diagonal elements (Rext)

2
k+1:nT ,k+1:nT

in the fol-
lowing steps.

While MMSE-SQRD offers a low-complexity solution [Wue03], the optimal ordering - thus the op-
timal performance - is not necessarily reached. Subsequently, the Post-Sorting-Algorithm (PSA)
is introduced in [Wue03]. It ensures the optimal sorting - and therefore the BLAST perfor-
mance [Dam03].
Clearly from Equations (3.13) and (3.15), the relation σnInT = Q2Rext arises and rewrites:

R−1
ext =

1

σn
Q2. (3.17)

Thus, it induces the following expression of the error covariance matrix:

Φ = σ2
n

(
HH

extHext
)−1

= σ2
nR
−1
extR

−H
ext = Q2Q

H
2 . (3.18)



3.1. Decision-Feedback Detector 41

Since Q2 is upper triangular, the k-th diagonal element of Φ reads:

Φk,k ∝
∥∥∥(Q2)k,:

∥∥∥2

. (3.19)

Consequently, if the optimum ordering has been achieved through the MMSE-SQRD, the last row
of Q2 must necessarily have the minimum norm of all rows. Otherwise and within the considered
sub-matrix, the row with the minimum norm is exchanged with the last row - as well as within
y -, thus destroying the upper triangular structure of Q2. Finally, it is made triangular again
through any QRD technique [Wue03, Lue07], which induce modifications of Q1.

The optimal ordering is given by MMSE ordering then PSA. The computational complexity
of both of the QRD, the SQRD and the PSA algorithms is cubic in the number of anten-
nas [Wue03, Bar08c]. However, the coefficient of the most significant term - w.r.t. assumptions
in [Wue03] - in the PSA computational complexity is large. Consequently and due to its small
performance gain [Mic05] - in particular in coded systems -, the PSA is discarded.

3.1.4 QR Decomposition-based Decision-Feedback Detector

The DFD scheme, that relies on the QRD of the channel matrix [Aub09], requires only a fraction
of the computational efforts required by the V-BLAST detection algorithm [Shi99]. This is why
QRD-based DFD is preferable for power and latency limited wireless communication systems.
Equation (3.5) also rewrites:

ỹ = (D + U)x + ñ, (3.20)

where the matrix D is a diagonal matrix whose diagonal elements are also those of R, and U

is strictly an upper triangular matrix. As a consequence, the MIMO system becomes spatially
causal, which implies that:

yk = Rk,kx̃k +

nT∑
i=k+1

Rk,ix̂i = Dk,kx̃k +

nT∑
i=k+1

Uk,ix̂i, (3.21)

where x̃k is a candidate symbol and x̂k is the estimate, both for the k−th component of x.
Therefore:

x̂k = Qξ
{
ỹk −

∑nT
i=k+1 Rk,ix̂i

Rk,k

}
= Qξ

{
ỹk −

∑nT
i=k+1 Uk,ix̂i

Dk,k

}
, (3.22)

where Qξ {·} denotes the quantization operation to the nearest constellation symbol ξ.

The QRD-based detection algorithm is depicted in Figure 3.2, and is denoted as ZF-QRD DFD.
Note that the feedback loop is equivalent to (D + U)

−1
= R−1. Due to the structure of the matrix

R, the last component of x - i.e. xnT - is ILI-free. Hence, it can be detected first. The already-
detected component of x is cancelled out to detect the following component. This technique is
repeated up to the first component of x, i.e. x1 [Wue01, Wue03, Moh09a]. Figure 3.3 depicts
the uncoded BER performance of the the QRD-based DFD algorithms. The MMSE-SQRD DFD
algorithm has the best performance but its diversity order converges to unity for high Eb/N0 values.

The computational complexity of the detection step itself - in the (S)QRD-based DFD - is
square in the number of antennas. Thus, the SQRD-based scheme has much lower computa-
tional complexity than the V-BLAST algorithm and with tolerable degradation in the bit error
performance. It will be considered as a basis for discussion in the present work.
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x H +

n

QH + D Qξ{·} x̂

U

y ỹ ỹk x̃k x̂k

−

+

Figure 3.2: Block diagram of the QRD-based DFD algorithm.
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Figure 3.3: Uncoded BER as a function of Eb/N0, Complex Rayleigh 4×4 SM-MIMO-SC system,
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QAM modulations at each layer.

3.2 Sphere Decoder Techniques

Several tree-search detection algorithms that are proposed in the literature achieve quasi-ML
performance while requiring lower computational complexity. In these techniques, the lattice
search problem is presented as a tree where nodes represent the symbols’ candidates [Agr02]. In
this section, we introduce two tree-search algorithms and discuss their advantages and drawbacks.

3.2.1 Depth-First Search

The Sphere Decoder (SD) was proposed in the literature to solve several lattice search prob-
lems [Bou03]. Based on Hassibi and Vikalo analysis, the SD achieves quasi-ML performance with
polynomial average computational complexity for a large range of SNR [Has01]. Hence, instead of
testing all the hypotheses of the transmitted vector, the SD restricts the search in Equation (2.42)
to the lattice points that lie in the hypersphere of radius d and that is implicitly centred around
the unconstrained ZF estimate. Therefore by introducing the QRD:

x̂SD = arg min
x∈ξnT

{
‖y −Hx‖2 ≤ d2

}
= arg min

x∈ξnT

{
‖ỹ −Rx‖2 ≤ d2

}
. (3.23)

The depth-first search strategy aims at considering a single node, that is then extended while
the corresponding accumulated metric lies inside the sphere radius. The tree search starts at the
top-level of the tree with the first child node. This node corresponds to the symbol transmitted by
the nT -th antenna. The accumulative metric in Equation (3.23) is then calculated partially and
successively, where the Cumulated Euclidean Distance (CED) δnT at the nT -th detection level is
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given by [Vik04]:
δnT = |ynT −RnT ,nT x̃nT |

2
, (3.24)

where x̃nT denotes the candidate at level nT . The accumulative metric at the k-th detection level
is given as follows:

δk = δk+1 +

∣∣∣∣∣ỹk −
nT∑

i=k+1

Rk,ix̂i −Rk,kx̃k

∣∣∣∣∣
2

, (3.25)

where x̂i denotes the considered estimate at previous levels. The respect of the sphere constraint
by the explored symbols is then tested. The scan continues by trying the next possible symbol and
progressively stepping down the tree [Aub09]. At the bottom level of the tree, the last remaining
element has to be chosen and is denoted as the Babai Point (BP). Consequently, the BP is the
first point found with a depth-first search SD and its formal definition is provided in [Agr02].
Actually, this solution is referred to QRD-based DFD in the communication theory [Dam03]. If
δ1 ≤ d2 still holds then a complete candidate symbol vector has been found and meets the sphere
constraint. Subsequently, the tree exploration continues by back-tracking to previously considered
symbols and scanning in a different direction.

One important drawback in this kind of the SD algorithm - comprising the Viterbo and Boutros
algorithm [Vit99] - is the choice of the initial value of the search radius. If this radius is chosen
too small, there may be no solution for the algorithm (no point inside the hypersphere) and if the
radius is chosen too large, the number of explored points may be very high and the algorithm will
be inefficient, acting like the ML algorithm. Although there are some methods for deciding on the
initial value of the radius [Has01, Hoc03], there is not yet any one method that works well in all
different applications. In all algorithms that rely on a fixed radius, it is still possible that no valid
point is found inside the hypersphere. In those cases, the search procedure must be repeated with
a larger radius. This reiteration dramatically increases the detector latency. In fading channels,
the choice of this radius is even more difficult [Vit99] because of the rapid changes in the channel
condition. Thus, the initial value of this radius must be determined more frequently.

3.2.2 Symbols re-Ordering

The order in which hypotheses are tested at each detection level is defined by the employed search
strategy, namely Fincke-Pohst (FP) [Fin85] or Schnorr-Euchner (SE) [Sch94]. By introducing the
unconstrained ILI-free signal x̃k at layer k - that corresponds to the BP after quantization to the
nearest constellation symbol:

x̃k =
ỹk −

∑nT
i=k+1 Rk,ix̂i

Rk,k
, (3.26)

the SE strategy orders the hypotheses based on their Euclidean distance from x̃k at each layer;
closer hypothesis being tested first. On the other hand, the FP strategy tests the hypotheses at
each layer without considering the distance from x̃k.
Figure 3.4 shows the details of these two strategies for a 6-PAM constellation where the numbers
inside the constellation points represent the order in which hypotheses are tested.

The advantage of the SE-based SD [Agr02, Dam03, Bur05, Guo06, Bar06b] over the FP-based
SD [Dam00, Has01, Has05] has been widely presented. In particular, it is clear that employing
the SE strategy leads to reduction in the computational complexity - which turns out to be inde-
pendent of radius d - since the most probable hypothesis for any considered layer - independently
of others - is tested first. This aspect is addressed in the next section.
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Figure 3.4: Search strategies employed by the SD, FP strategy (a) and SE strategy (b).
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Figure 3.5: An example of the tree representation of the SD in a 2×2 system for |ξ| = 4 and using
the SE strategy.

3.2.3 Adaptative Radius and Tree Pruning

The search optimization - for a depth-first search tree exploration - is presented and aims at
decreasing the average number of visited nodes during the detection process. This step takes
advantage of the degrees of freedom that are given to construct the tree.
An efficient way of solving the initial radius choice issue - discussed in Section 3.2.1 - relies on
the use of an adaptative radius. Therefore, setting a proper initial radius becomes useless. At
the beginning of the tree search, d2 is initiated to infinity and the sphere constraint is shrunk
through the tree exploration. In particular, it is at least updated to the accumulative metric of
the first-found lattice point (the BP).
By using the SE strategy, child nodes are ordered by their Partial Euclidean Distances (PED)
ascendantly. Thus, the search can be terminated as soon as a node’s CED exceeds the current
sphere constraint since the next ordered node at top level would exceed the last CED. They are
denoted as pruned. In this way and after each iteration of the SD the search, the square radius
can be tightened to exclude unnecessary nodes [Aub09], thus expediting the tree search with no
performance degradation.

An example of the tree representation of the SD for nT = nR = 2 is provided in Figure 3.5,
where the dashed lines represent the scanned nodes. The use of the SE enumeration method in
the search phase reduces the number of visited nodes, which in turn reduces the computational
complexity of the processing. The early termination condition is also pictured. The SD is termi-
nated when no more lattice points can be obtained with an accumulative metric smaller than that
of the already-found one.

3.2.4 Average and Worst-Case Computational Complexity

It could be shown that the BER performance of the SD coincides with that of the optimum de-
tector. However, some drawbacks remain. In particular, its computational complexity is variable
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Figure 3.6: An example of the tree representation of the K-Best in a 2×2 system for |ξ| = 4 and
using the SE strategy.

and depends on both the conditionality of the channel matrix and the noise variance, where the
worst-case computational complexity of the SD is consequently comparable with that of MLD that
is exponential. The worst-case complexity of the SD is therefore exponential which is infeasible in
computational power limited communication systems [Dai05]. In fact, Jaldén and Otterson show
in [Jal05] that even the average complexity of the SD is exponential for a fixed SNR value.
Also, the SD has a sequential nature because it requires the update of the search radius every
time a new lattice point with smaller accumulative metric is found. This limits the possibility
of parallel processing and hence reduces the detection throughput, i.e. increases the detection
latency.
To set a fixed computational complexity at the detection stage and allow a parallel process-
ing [Gra95], the K-Best algorithm - also equivalently denoted as QRD with M-algorithm [And84]
- was proposed first for implementation in [Won02]. The K-Best algorithm is a general solution
for implementation, and several related complexity reduction techniques are introduced in the
following sections.

3.2.5 Fixed Computational Complexity

In the K-Best detection algorithm, only a fixed number K of symbol candidates is retained at
each detection level [And84, Kim05]. Such a tree search strategy is denoted as a breadth first
search - which is different from a metric first search - and the tree is constructed layer by layer.
An example of the tree representation of the SD for nT = nR = 2 is provided in Figure 3.6. At
the first detection level, the root node is extended to all the possible candidates of xnT - thus x2

-, the accumulative metrics of the resulting branches are calculated and the best K candidates
with the smallest metrics are retained for the next detection level. In the example, K = 2. At
the second detection level, the retained K candidates at the previous level are extended to all
possible candidates. The resulting K|ξ| - 8 in the example - branches are sorted according to their
accumulative metrics where the K branches with the smallest accumulative metrics are retained
for the next detection level. This strategy is repeated down to the last detection level.

By employing the K-Best algorithm, near-ML BER performance are reached for a sufficient K
value, as depicted in Figure 3.7. Simultaneously, the computational complexity of the detection
algorithm becomes fixed and dependent only on the size of the modulation set |ξ| and the number
of transmit antennas nT . It also makes a parallel implementation possible. Note that the overall
number of visited nodes by the K-Best algorithm is |ξ|+ (nT − 1)K|ξ|.

Although the conventional K-Best has an advantageous fixed complexity, it does not take into
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Figure 3.7: Uncoded BER as a function of Eb/N0, Complex Rayleigh 4×4 SM-MIMO-SC system,
K-Best algorithm for multiple K values and ML detectors, 4-QAM modulations at each layer.

consideration the noise and channel conditions. Thus, unnecessary computations are usually done
when the channel is well-conditioned and the signal to noise ratio is high. Also, for high |ξ| and
nT , the computational complexity of the K-Best algorithm becomes high.

3.2.6 Adaptive Computational Complexity

While it was not introduced in Section 3.1.3, (ZF/MMSE-)SQRD has also been shown to have
a significant impact of the tree search construction. In particular, the SD structure can be ad-
vantageously modified in order to avoid unnecessary visited nodes, thus leading to an efficient
performance versus computational complexity trade-off.
Several algorithms are proposed in the literature to resolve this. A solution that lies on applying a
variableK has been widely studied and is denoted as the dynamicK-Best algorithm [Li 08, Rog09].
It offers promising performance results in the case of a SQRD preprocessing step. These algo-
rithms reduce the number of retained candidates at each detection level with tolerable degradation
in the performance [Kaw06, Jeo06, Moh10] and references therein. In [Moh09c], two algorithms
are proposed. In addition to reducing the computational complexity of the K-Best algorithm,
they either reduce the processing delay by parallelizing the detection stage or reduce the hardware
requirements by iteratively processing the K-Best algorithm. While a variable K also implies a
variable computational complexity, a particular case has to be introduced.

The Fixed-complexity Sphere Decoder (FSD) is proposed by Barbero et al. to overcome the
aforementioned drawbacks of SDs. The FSD achieves a quasi-ML performance by performing the
following two-stage tree search [Bar08b, Bar08a]:
– Full expansion: In the first p levels, a full expansion is performed, where all symbol replica
candidates are retained to the following levels;

– Single expansion: A single expansion of each retained branch is done in the remaining (nT − p)
levels, where only the symbol replica candidate with the lowest accumulative metric is considered
for next levels.

Because all possible symbol candidates are retained in the first p levels, the reliability of the signals
detected in these levels does not affect the final detection performance compared to MLD. There-
fore, signals with the least robustness are detected in the full expansion stage. On the other hand,
in the remaining (nT − p) levels, signals are sorted based on their reliability, where signals with
the least noise amplification are detected first. In the conventional FSD, the V-BLAST algorithm
is employed to obtain the required signal ordering by the FSD.
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Figure 3.8: Uncoded BER as a function of Eb/N0, Complex Rayleigh 4×4 SM-MIMO-SC system,
FSD algorithms with p = 1 and ML detectors, 4-QAM modulations at each layer.

Figure 3.8 depicts the uncoded BER performance of the FSD for p = 1 in 4×4 SM-MIMO-SC
system using 4-QAM. Results show that the ordering has a crucial effect on the the performance of
the FSD. For instance, both the performance and the attained diversity order are degraded when
the ordering stage is skipped or when a non-optimal signal ordering is used. A low complexity FSD
ordering scheme that requires a fraction of the computations of the V-BLAST scheme is proposed
in [Moh09a], where a close to optimum performance was achieved by embedding the sorting stage
in the QR factorization of the channel matrix.

The FSD is retained by ST-E for 2 × 2 systems that are supported by the LTE standard.
It is also claimed by Barbero et al. to be efficient for 4 × 4 systems that are supported by the
LTE-A standard. However, FSDs offer limited performance in front of ill-conditioned channels.
Also, its computational complexity depends on the constellation size, thus leading to a significant
worst-case - with 64-QAM constellations - computational complexity (see Section 5.3.3).

Nevertheless, it is a separate improvement in the SD’s computational complexity that is not
sufficient while it is efficient. It is not discarded since it can be applied to the - also general - solu-
tion that is proposed in the present work. All the aforementioned SD-like techniques - including
the FSD [Bar06b] - are subject to a smart optimization that is introduced in the sequel.

3.2.7 Equivalent Formula Leading to Minimum-Mean Square Error-
Centred Sphere Decoder

The SD principle can be advantageously extended. By introducing the BP definition [Agr02],
it corresponds to - in the case of a depth-first search algorithm - the first solution offered by
the algorithm. The induced BP with the aforementioned techniques is thus - implicitly - a ZF-
(S)QRD DFD. Clearly with a breadth first search algorithm, the BP corresponds to the solution
that would be directly reached, without neighbourhood study. Another useful notation that has
to be introduced is the equation of an (nT −1)− sphere centred on xC and of radius d. Any signal
that lies inside of this sphere is such that ‖xC − x‖2 ≤ d2, where x is any possible hypothesis.
Generally, the SD formula is centred on the unconstrained ZF solution and the corresponding
detector is denoted in the sequel as the naïve SD. Consequently, a fundamental optimization may
be considered by introducing an efficient search center that results in an already close-to-optimal
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BP. In other words, a solution that is already close to the ML solution is obtained. This way, it is
clear that the size of the neighbourhood study can be decreased without affecting the outcome of
the search process. In the case of the K-Best algorithm where the neighbourhood size is fixed, it
will induce a performance improvement for a given K or a reduction of K for a given target BER.
The classical SD expression Equation (3.23) can be re-arranged, leading to an exact formula that
was first proposed by Wong et al., aiming at optimizations for a VLSI implementation through an
efficient PED expression and early pruned nodes [Won02]:

xZF-(S)QRD SD = arg min
x∈ξnT

‖ReZF‖2, (3.27)

where eZF = x̃ZF − x and x̃ZF = (HHH)−1HHy. Equation (3.27) clearly exhibits the point
that the naïve SD is unconstrained ZF-centred and implicitly corresponds to a ZF-(S)QRD DFD
procedure with a neighbourhood study at each layer.
The main idea proposed by [Hoc03, Cui05, Wan08] is to choose a closer-to-ML BP than the
ZF-(S)QRD, which is the case of the MMSE-(S)QRD solution. For the sake of clearness with
definitions, we say that two ML equations are equivalent if the lattice points argument output of
the minimum distance are the same, even in the case of different metrics. Two ML equations are
equivalent iff:

arg min
x∈ξnT

{‖y −Hx‖2} = arg min
x∈ξnT

{‖y −Hx‖2 + c}, (3.28)

where c is a constant.
In particular, Cui et al. [Cui05] propose a general equivalent minimization problem: x̂ML =

arg min
x∈ξnT

{‖y−Hx‖2 +αxHx}, by assuming that x are constant-modulus signals. This assumption

holds true in the case of 4-QAMmodulation and is not directly applicable to 16-QAM and 64-QAM
modulations, even if this assumption is not limiting since a QAM constellation can be considered
as a linear sum of 4-QAM points [Cui05].

This expression has been applied to the K-Best algorithm by Wang et al. in the case of the
unconstrained MMSE-centre, which leads to an MMSE-(S)QRD procedure with a neighbourhood
study at each layer [Wan08]. In this case, the equivalent ML equation is rewritten as:

x̂ML = arg min
x∈ξnT

(xC − x)
H (

HHH + σ2
nInT

)
(xC − x) . (3.29)

Finally and through the use of the Cholesky Factorization (CF) of HHH + σ2
nInT - that simulta-

neously reads UHU - in the MMSE case (HHH in the ZF case), the ML expression is equivalently
rewritten as:

x̂LD SD = arg min
x∈ξnTC

{∥∥∥Ũ (x̃− x)
∥∥∥2
}
,

where

UHU =

{
HHH in the ZF case,
HHH + σ2

nInT in the MMSE case,
(3.30)

and by noting that U is upper triangular with real diagonal elements and x̃ is any - consistently
with the U expression - LD unconstrained linear estimate.

While the introduced definition is strictly correct with constant-modulus signals only, it can be
shown - consistently with what is proposed in [Cui05] - that the assumption can be advantageously
soften. In particular, by considering that it is respected in mean for a large nT - which is done
in [Cui05] and in the sequel - convenient results are achieved, namely a tolerable degradation arise
in the bit error performance. Consequently and in the present solution, only the metric expres-
sion has been modified compared to the classical K-Best. Consequently, there is no impact on
computational complexity and conclusions provided in Section 3.2.5 still hold.



3.3. Lattice-Reduction-Aided Techniques 49

Figure 3.9: (a) Figure 3.10: (b) Figure 3.11: (c) Figure 3.12: (d) Figure 3.13: (e)

Figure 3.14: Undisturbed received signals and decision areas of (a) MLD, (b) LD, (c) DFD, (d)
LRA-LD and (e) LRA-DFD [Wue04].

3.3 Lattice-Reduction-Aided Techniques

For higher dimensions, a close-to-ML estimate can be correctly provided with a reasonable com-
plexity using a Lattice-Reduction-Aided (LRA) detection technique.

3.3.1 Problem Statement and Summary

As proposed in [Yao02], LRA techniques are used to transform any MIMO channel into a better-
conditioned (short basis vectors norms and roughly orthogonal) equivalent MIMO channel, namely
generating the same lattice points. Although classical low-complexity DLs - and even (O)DFD - fail
to achieve full diversity as depicted in [Wue04], they can be applied to this equivalent (the exact def-
inition will be introduced thereafter) channel and significantly improve performance [Win03a]. In
particular, it has been shown that LRA detectors achieve the full diversity [Tah05, Lin06, Gan09].
By assuming i < j, Figure 3.14 depicts the decision regions in a trivial two-dimensional case and
demonstrate to the reader the reason why LRA detection algorithms offer better performance
by approaching the optimal ML decision areas [Wue04]. From a singular value theory point of
view, when the lattice basis is reduced, its singular values becomes much closer to others with
equal singular values for orthogonal basis. Therefore, the power of the system will be distributed
almost equally on the singular values and the system becomes more immune against the noise
enhancement problem when the singular values are inverted during the equalization process.

To this end, various reduction algorithms, namely the optimal (the orthogonality is maximized)
but NP-hard Minkowski [Lam91], Korkine-Zolotareff [Lam91] algorithms [Agr02], the well-known
LLL reduction [Len82], and Seysen’s [Sey93, Lam91] Lattice-Reduction (LR) algorithm are pro-
posed.

3.3.2 Lattice Reduction

By interpreting the columns H:,i of H as a generator basis, note that H is also known as the
lattice basis whose columns are referred to as "basis vectors", the lattice Λ(H) is defined as all
the complex integer combinations of H:,i, i.e.:

Λ(H) ,

{
nT∑
i=1

aiH:,i | ai ∈ ZC

}
, (3.31)

where ZC is the set of complex integers that reads: ZC = Z + jZ, j2 = −1.
The lattice Λ(H̃) generated by the matrix H̃ and the lattice generated by the matrixH are identical
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Figure 3.15: LRA detector bloc scheme.

iff all the lattice points are the same. The two aforementioned bases generate an identical lattices
iff H̃ = HT, where the nT × nT transformation matrix is unimodular [Agr02], i.e. T ∈ ZnT×nTC
and such that |det(T)| = 1.
Using the reduced channel basis H̃ = HT and introducing z = T−1x, the system model given in
Equation (5.5) can be rewritten as [Wue04]:

y = H̃z + n. (3.32)

The idea behind LRA equalizers and detectors relies on the identical system model given above.
The detection is then performed with respect to the reduced channel matrix (H̃), which is now
roughly orthogonal by definition, and to the equivalent transmitted signal that still belongs to an
integer lattice since T is unimodular [Wue04]. Finally, the estimated x̂ in the original problem is
computed with the relationship x̃ = Tẑ and by hard-limiting x̃ to a valid symbol vector. These
steps are summarized in the block scheme in Figure 3.15.
In the sequel, the main aspects of the LLL Algorithm (LA) and the Seysen’s Algorithm (SA) are
briefly described and compared.

3.3.2.1 LLL Algorithm

The LA is a local approach that transforms an input basis H into an LLL-reduced basis H̃ that
satisfies both of the orthogonality and norm reduction conditions, respectively:

|<{µi,j}|, |={µi,j}| ≤ 1
2 , ∀ 1 ≤ j < i ≤ nT , (3.33)

where µi,j ,
<H:,i, H̃:,j>

‖H̃:,j‖2
, and

‖H̃:,i‖2 = (δ − |µi,i−1|2)‖H̃:,i−1‖2, ∀ 1 < i ≤ nT , (3.34)

where δ, with 1
2 < δ < 1, is a factor selected to achieve a good quality-complexity trade-off [Len82].

In the present work, δ is assumed to be δ = 3
4 , as commonly suggested, and H̃:,i = H̃:,i −∑i−2

j=1{dµi,jcH:,j}. Another classical result consists in directly considering the Complex LA (CLA)
that saves an average of nearly 50% in computational complexity compared to the straightforward
real model system extension and with negligible performance degradation [Gan09].
It is shown in [Wue04] that the QRD output of H - Q and R - is a possible starting point for the
LA, and it has been introduced [Bar08c] that the SQRD provides a better starting point since it
finally leads to a significant reduction in the expected computational complexity [Wue04] and in
the corresponding variance [Ges08].
By denoting the latter algorithm as the Sorted QRD-based LA (SLA), two points are depicted in
Figure 3.16 (a-c) under DSP implementation-oriented assumptions on computational complexities
(see [Aub10] for details).
Instead of applying the LA to only the basis H, a simultaneous reduction of the basis H and the
dual basis H# = H(HHH)−1 [Wue07] may be processed.
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Figure 3.16: PDF (a) and CDF (b) of ln{MUL} for the LA, SLA and SA, and average and
maximum total number ofMUL for the LA, SLA and SA as a function of the number of antennas
n (c).

3.3.2.2 Seysen’s Algorithm

To start, let us introduce the Seysen’s orthogonality measure [Sey93]:

S(H̃) ,
nT∑
i=1

∥∥∥H̃:,i

∥∥∥2 ∥∥∥H̃#
:,i

∥∥∥2

, (3.35)

where H̃#
:,i is the i-th basis vector of the dual lattice, i.e. H̃#HH̃ = InT .

The SA is a global approach that transforms an input basis H (and its dual basis H#) into a
Seysen-reduced basis H̃ that (locally) minimizes S and that satisfies, ∀ 1 ≤ i 6= j ≤ nT [See07]:

λi,j ,

⌊
1
2

(
H̃#H

:,j H̃#
:,i

‖H̃#
:,i‖2

−
H̃H

:,jH̃:,i

‖H̃#
:,j‖2

)⌉
= 0. (3.36)

By denoting E {·} and max{·} as the expectation and the maximum opertors, respectively, the SA’s
computational complexity is depicted in Figure 3.16 (a-c) as a function ofMUL (see Section 2.7.3),
which allows for some discussion.

3.3.2.3 Concluding Remarks

The aforementioned LR techniques have been presented and both their performances (orthogonal-
ity of the obtained lattice) [Wue07] and computational complexities [Bar08c] have been compared
when applied to MIMO detection in the Open-Loop (OL) case. In Figure 3.17 (a-f), the orthog-
onal deficiency (see Equation (2.39)), conditioning number (see Equation (2.40)) and Seysen’s
orthogonality measure (see Equation (3.36)) of the reduced basis provided by the SA compared
to the LA and SLA are depicted. These are known to be popular measures of the quality of a
basis for data detection [Win03a]. However, this orthogonality gain is obtained at the expense of a
higher computational complexity, in particular compared to the SLA. Moreover, it has been shown
that an uncoded BER performance improvement is gained in the case of LRA-LD only [Wue07].
In particular, in the case of LRA-DFD detectors, both LA and SA yield almost the same perfor-
mance [Bar08c].

According to the curves depicted in Figure 3.16 (c), the mean computational complexities of
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Figure 3.17: PDF (a-c) and CDF (d-f) of ln(cond) (a, d), ln(od) (b, e) and ln(S) (c, f) by
application of the LA, SLA and SA and compared to the original basis.

LA, SLA and SA are 1.6 · 104, 1.1 · 104 and 1.4 · 105 respectively in the case of a 4 × 4 complex
matrix. The computed variance of the computational complexities of LA, SLA and SA are 3 · 107,
2.3 · 107 and 2.4 · 109 respectively, which illustrate the aforementioned reduction in the mean
computational complexity and in the corresponding variance and consequently highlight the SLA
advantage over other LR techniques. Also and interestingly, it is proven in [Jal08] that the com-
putational complexity of the LA - whether it is QRD or SQRD based - decreases exponentially,
which is clear from Figure 3.16 and advantageous in the algorithm calibration.

In Figure 3.17, the Probability Density Function (PDF) and Cumulative Density Function (CDF)
of ln(OD), ln(κ) and ln(S) for LA, SLA and SA are depicted and compared to the performance
without LR. It can be observed that both LA and SLA offer exactly the same performance, with
the only difference being their computational complexities. Also, there is a tiny improvement in
the OD when SA is used as compared to (S)LA. This point will be discussed in the sequel.

The LRA algorithm preprocessing step has been exposed and implies some minor modifications
in the detection step.

3.3.3 Lattice-Reduction-Aided Detectors

The key idea behind LRA detection schemes is understanding that the finite set of transmitted
symbols ξnT can be interpreted as the De-normalized, Shifted then Scaled (DSS) version of the
infinite integer subset ZnTC ⊂ ZnTC [Win03a], i.e.:

ξnT = 2a
(
ZnTC + 1

2T
−11nTC

)
, (3.37)

and reciprocally as the re-Scaled, re-Shifted then Normalized (SSN) version of the set of trans-
mitted symbols:

ZnTC = 1
2aξ

nT − 1
2T
−11nTC , (3.38)
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y DSS {·} (H̃)† QZnTC
{·} T SSN {·} QξnT {·} x̂

yZ z̃Z ẑZ x̃Z x̃

Figure 3.18: LRA-ZF detector block scheme.

where a is a power normalization coefficient (i.e. 1/
√

2, 1/
√

10 and 1/
√

42 for 4-QAM, 16-QAM
and 64-QAM constellations, respectively) and 1nTC ∈ ZnTC is a complex displacement vector (i.e.
1nTC = [1 + j, · · · , 1 + j]T in the complex case).
Here a general notation is introduced. Starting from the system equation, it can be rewritten
equivalently by de-normalizing, dividing by two and subtracting H1nTC /2 from both sides:

y

2a
−

H1nTC
2

=
Hx

2a
+

n

2a
−

H1nTC
2
⇔ 1

2

(y
a
−H1nTC

)
= H

1

2

(x
a
− 1nTC

)
+

1

2a
n, (3.39)

where H1nTC is a simple matrix-vector product that is be computed for each channel realization.
By introducing the DSS signals yZ = 1

2

(
y
a −H1nTC

)
= DSS {y} and xZ = 1

2

(
x
a − 1nTC

)
= DSS {x},

which makes both belonging to HZnTC and ZnTC , respectively, the expression reads:

yZ = HxZ +
n

2a
. (3.40)

This intermediate step defines the symbols vector in the reduced transformed constellation through
the relation zZ = T−1xZ ∈ T−1ZnT ⊂ ZnT . Finally, the lattice-reduced channel and reduced
constellation expression can be introduced:

yZ = H̃zZ +
n

2a
. (3.41)

The LRA detection steps comprise the ẑZ estimation of zZ with respect to yZ and the mapping
of these estimates to the corresponding symbols belonging to the ξnT constellation through the T
matrix. In order to finally obtain the x̂ estimation of x, the DSS x̃Z signal is obtained following
the z̃Z quantization with respect to ZnTC and SSN again.
The estimation for the transmitted signal is x̂ = QξnT {x̃}, as described in the block scheme in
Figure 3.18 in the case of the LRA-ZF solution. It can be globally rewritten as:

x̂ = QξnT
{
a
(

2TQZnTC
{z̃Z}+ 1nTC

)}
, (3.42)

where QZnTC
{·} denotes the quantization operation of the nT -th dimensional integer lattice, for

which the per-component quantization is QZnTC
{x} = [bx1e , · · · , bxnT e]

T , where b·e denotes the
rounding to the nearest integer.

Due to its performance versus complexity, the LA is a widely used reduction algorithm. This is
because SA requires a high amount of additional computations compared to the LA to achieve a
small, even negligible, gain in the BER performance [Bar08c], as depicted in Figure 3.17. Based
on this conjecture, LA will be considered as the chosen LR technique in the remaining part of the
chapter.
Subsequently to the aforementioned points, the SLA computational complexity is shown in [Jal08]
to be upper-bounded by distinguishing the SQRD preprocessing step and the two LA related con-
ditions. In particular and while the SQRD offers a polynomial complexity, the key point of the
SLA computational complexity estimation lies in the knowledge of the number of iterations for
both conditions. Since the number of iterations depends on the condition number of the channel
matrix, it is consequently unbounded [Jal08], which leads to the conclusion that the worst-case
computational complexity of the LA in the OL case is exponential in the number of antennas.
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Nevertheless, the mean number of iterations (and consequently the mean total computational
complexity) has also been shown to be polynomial [Jal08] and, therefore, a thresholded-based
version of the algorithm offers convenient results. That is, the algorithm is terminated when the
number of iterations exceeds a pre-defined threshold.

In the case of LRA-LD, the quantization is performed on z instead of x. The unconstrained
LRA-ZF equalized signal z̃LRA-ZF is denoted as:

(H̃HH̃)−1H̃Hy and simultaneously reads T−1x̃ZF, (3.43)

Consequently, the constrained LRA-ZF estimate is:

x̂ = QξnT {TQZnT {z̃LRA-ZF}}. (3.44)

Identically, the constrained LRA-MMSE estimate is:

x̂ = QξnT {TQZnT {z̃LRA-MMSE}}, (3.45)

by denoting the unconstrained LRA-MMSE equalized signal as:

z̃LRA-MMSE = (H̃HH̃ + σ2
nT

HT)−1H̃Hy. (3.46)

It is shown in [Wue04] that the consideration of the MMSE criterion, by reducing the extended
channel matrix Hext - introduced in Section 3.1.3 that leads to H̃ext - and considering the extended
received vector yext, offers both an important performance improvement and further reduction in
the computational complexity compared to the straightforward solution. We remember that in
this case, not only the H̃ conditioning is considered but also the noise amplification, which is of
particular interest in the case of the LRA-MMSE linear detector. In the sequel, this LRA-LD is
denoted as an LRA-MMSE Extended (LRA-MMSEE) detector.

The imperfect orthogonality of the reduced channel matrix leads to the advantageous use of DFD
techniques [Wue04], due to the remaining presence of ILI. By considering the QRD output of the
SLA - Q̃ and R̃ - and in accordance with the operation described in Section 3.1.2, the modified
received vector simultaneously reads:

Q̃Hy and R̃z + Q̃Hn. (3.47)

The DFD procedure can then be performed in order to iteratively obtain the ẑ estimate. In
analogy with the LRA-LD, the extended system model can be considered. As a consequence, it
leads to the LRA-MMSE-QRD estimate that can be obtained via rewriting simultaneously the
modified received vector such that:

Q̃H
extyext and R̃extz + ñ, (3.48)

where ñ is a noise term that also includes residual interferences.

Figure 3.19 shows the uncoded BER performance versus Eb/N0 (in dB) of some well-established
LRA-(pseudo) LDs, for a 4 × 4 SM-MIMO-SC system, using 4-QAM modulation (a, c) and 16-
QAM (b, d) at each layer. The aforementioned results are compared to some reference results;
namely, ZF, MMSE, ZF-QRD DFD, MMSE-QRD DFD and ML detectors. It has been shown
that the (S)LA-based LRA-LDs achieve full diversity [Tah05] and consequently offer a strong im-
provement compared to the common LDs.

The advantages of LRA-(pseudo)LDs are numerous. First, they constitute efficient detectors
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Figure 3.19: Uncoded BER as a function of Eb/N0, Complex Rayleigh 4 × 4 SM-MIMO-SC
system, ZF, MMSE, LRA-ZF, LRA-MMSE, LRA-MMSEE and ML detectors (a,b), ZF-QRD
DFD, MMSE-QRD DFD, LRA-ZF-QRD DFD, LRA-MMSE-QRD DFD and ML detectors (c,d),
4-QAM modulations at each layer (a,c) and 16-QAM modulations at each layer (b,d).

in the sense of the high quality of their hard output - in particular, the ML diversity is reached
within a constant offset - while offering a low overall computational complexity. In particular
and despite the NP-hard nature of (S)LA (SA is not retained), its computational complexity
is polynomial in mean and decreases exponentially, which is advantageous for implementation.
These points are demonstrated in [Jal08]. Also and by noticing that the LR preprocessing step is
data-independent, a promising aspect concerns the OFDM extension that would offer a significant
computational complexity decrease due to the coherence bandwidth (see Section 2.6). This aspect
is further addressed in Section 5.2.2.

However, there remain some important drawbacks. In particular, the aforementioned SNR offset
is important in the case of high order modulations, namely 16-QAM and 64-QAM. Another is
the sequential nature of the (S)LA due to its iterative running, which consequently limits the
possibility of parallel processing.

For a reasonable K, a dramatic diversity loss is observed in Figure 3.7. For a low complexity
solution such as LRA-(pseudo)LDs, a large SNR offset can eventually be observed in Figure 3.19.
Consequently, the association of both to compensate for each of their drawbacks becomes obvious.
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3.4 Lattice-Reduction-Aided Sphere Decoder

At this point and while it seems to be computationally expensive to cascade two NP-hard algo-
rithms, the promising perspective of combining both a better-conditioned channel and a neigh-
bourhood study arise. It relies on achieving the ML diversity through an LRA-(pseudo)LD and on
reducing the remaining SNR offset through an additional SD technique. This idea senses that the
neighbourhood size would be significantly reduced - compared to results presented in Section 3.2
- while reaching near-ML performance.

3.4.1 Problem Statement

Differently than LRA-LD and LRA-(O)DFD receivers - that only require a trivial quantization
step at each layer -, the application of an SD detector that follows an LR technique is not straight-
forward. The main issue lies in the consideration of the set of all possibly transmitted symbol
vectors in the reduced constellation. Unfortunately, it can not be predetermined since it does not
depend on the considered constellation only, but also on the channel - actually the T−1 matrix.
This aspect leads to two major drawbacks.
– First, the geometry of constellations in the reduced domain may be rather complex and even
induce non-adjacent symbols, despite the regularity of QAM constellations. In particular and
in presence of noise, some candidates may not map to any existing constellation points in the
original domain [Qi 07];

– Second, the reduced domain does not regard the boundary region used for QAM constella-
tions [Win03b], thus inducing no limitation in the neighbourhood size.

A brute-force solution to determine the set of all possibly transmitted vectors in the reduced
domain - denoted as Z : Z:,i ∈ ZnTC , ∀i ∈ J1, |ξ|nT K - is to first get the set of all possibly
transmitted vectors in the original domain - denoted as X : X:,i ∈ ξnT , ∀i ∈ J1, |ξ|nT K - and then
apply the relation:

Z = T−1X, (3.49)

for each channel realization. Clearly, this possibility is not feasible since it corresponds to the
computational complexity of the ML detector. To avoid this problem, some solutions are offered
in the literature, which are addressed in Section 3.4.3.

3.4.2 Lattice-Reduction-Aided Detection in the Reduced Domain

While the idea of combining both an LR and an SD was first proposed by Zhao et al. in [Zha06],
Qi et al. [Qi 07] introduced in detail a novel scheme - denoted as LRA-SD algorithm - where a
particular attention to neighbourhood exploration was paid. This algorithm was then enhanced
by Roger et al. [Rog09] by - among others - associating both an LR and a K-Best, thus rendering
it suitable for implementation.

In the case of a Reduced-Domain Neighbourhood (RDN) study, the equivalent channel matrix
H̃ is considered. In accordance with Section 3.3.3, it is remembered to be only roughly - and
not exactly - orthogonal, thus not completely ILI-free. Consequently, neither LRA-LD nor LRA-
(O)DFD detectors are optimal since the mutual influence of the transformed z signal is still
present. This discussion exhibits the interest of SD-like techniques to still improve LRA detectors
performance. Also and since H̃ is nevertheless almost orthogonal, it is clear that to achieve the
ML performance, an RDN study size would be smaller than an Original-Domain Neighbourhood
(ODN) one.
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First, the basic idea is reintroduced. It attempts to make the LR theory appropriate for ap-
plication in complexity - and latency - limited communication systems. The normalize-shift-scale
step, that has been previously introduced, will not be addressed again. Starting from Equa-
tion (3.41), both sides of the reduced channel and reduced constellation can be left-multiplied by
Q̃H . Therefore, a new relation is obtained:

Q̃Hy = R̃z + n, (3.50)

which allows an SD scheme to be introduced, and eventually a K-Best. At this moment, the
critical point of the neighbourhood generation in the reduced constellation has to be introduced
in detail.

3.4.3 Reduced-Domain Neighbourhood Generation

As presented above, the geometry of constellations in the reduced domain is non-regular and in-
finite. In particular, the vicinity of a lattice point in the reduced constellation could be mapped
- in the original domain - onto the same signal point, thus leading to the inefficient processing
of useless solutions. While this simply induces some wasted resources, its unbounded nature is
prohibitive and must be addressed. In particular, the expected computational complexity reduc-
tion of the SD may be lost, due to the complexity incurred by the much larger space that the
decoder needs to cover [Dam03]. Thus, the neighbourhood study - and in particular its size re-
duction [Sha08, Rog09] - is a key point for implementation.

Zhao et al. offer a possible radius expression in the reduced lattice from the radius expression in
the original constellation d through the Cauchy-Schwarz inequality [Zha06]:

(zi − z̃i)
2 ≤ ‖(R̃−1):,i‖2‖R̃ (z− z̃) ‖2 ≤ ‖(R̃−1):,i‖2d2. (3.51)

This idea leads to an upper bound of the explored neighbourhood and accordingly a reduction
in the number of tested candidates. However, this solution is not suitable for implementation.
Again, the reason lies in the choice of the initial value of the search radius [Vit99], with dramatic
consequence as well in the original and reduced domains.

Although it is simple, convenient boundaries control constraints are proposed by Roger et al..
By denoting boundaries in the original constellation xmin and xmax, the reduced constellation
boundaries can be obtained through the relation z = T−1x that implies zmax,l = max{

(
T−1

)
l,:
x}

for a given layer l. The exact solution for the real case is given in [Rog09] and can be extended to
the complex case:

zmax,l =xmax

∑
j∈P l

(
T−1

)
l,j

+ xmin

∑
j∈N l

(
T−1

)
l,j
, (3.52)

zmin l =xmin

∑
j∈P l

(
T−1

)
l,j

+ xmax

∑
j∈N l

(
T−1

)
l,j
, (3.53)

where P l and N l stand for the set of indices j corresponding to positive and negative entries (l, j)

of T−1, respectively. This solution is exact and does not induce performance degradation.

In accordance with the discussion in Section 3.2.2, an inside of bounds zig-zag strategy - even
simplistic - is efficient and has been widely adopted [Zha06, Sha08, Rog09]. It is also the case in
the present work. Starting from any - unconstrained - LRA-ZF solution, a neighbourhood is con-
sidered at each layer and leads to the RDN LRA-SD technique that corresponds to the LRA-DFD
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BP. In particular, the RDN generation at each layer k is processed for a bounded number of N
possibilities and in a SE manner - with an increasing distance from z̃k. This technique provides a
set of displacements generating a neighbourhood, denoted as Zk,:, and such as:

Zk,: =QZCnT
{z̃k} ,

QZCnT
{z̃k}+ 1,QZCnT

{z̃k}+ j,QZCnT
{z̃k} − 1,QZCnT

{z̃k} − j,

QZCnT
{z̃k}+ 2,QZCnT

{z̃k}+ 2j,QZCnT
{z̃k} − 2,QZCnT

{z̃k} − 2j,

· · · . (3.54)

The SE strategy reaches the correct decision early - leading to a safe early termination criterion.
Thus it is advantageously retained in the present work.

3.4.4 Reduced-Domain Neighbourhood Lattice-Reduction-Aided Zero-
Forcing-Centred Sphere Decoder

Now that the issue of RDN study has been addressed, a second aspect has to be highlighted. It
has just been stated that the original LRA-SD is implicitly - unconstrained - LRA-ZF-centred,
and leads to an LRA-DFD procedure with an RDN study at each layer. The exact formula has
not been clearly provided but is implicitly used by any LRA-SD [Qi 07, Sha08, Rog09] and may
even be considered as an incremental extension of Equation (3.27):

ẑLRA-ZF SD = arg min
z∈ZnTC

‖R̃eLRA-ZF‖2, (3.55)

where eLRA-ZF = z̃LRA-ZF − z and z̃LRA-ZF =
(
H̃HH̃

)−1

H̃y.

The main advantage of the LRA-ZF-centred K-Best lies in its computational complexity that
is independent of the constellation size |ξ|, which is not the case with the naïve K-Best presented
in Section 3.2.5. This favourable aspect - in particular for required [3GP09d] high order constella-
tions - arises while reaching the ML performance, as depicted in Figure 3.20. Also, LRA detectors
performance - in the case of K-Best - are less sensitive to ill-conditioned channel matrices due to
the LR effect while it is a dramatical aspect for classical K-Best [Rog08].
However, benefits are limited with the widely used 4-QAM modulation due to elimination of
nearby lattice points during the quantization step [Zha06]. The reason lies in the aforementioned
geometry of constellations in the reduced domain. In particular, many lattice points considered in
the RDN would be associated with the same constellation point after quantization in the original
constellation. Also, a large RDN size is still necessary for reaching the ML performance.

Thus, the present work has led to an original solution.

3.4.5 Reduced-Domain Neighbourhood Lattice-Reduction-Aided Minimum-
Mean Square Error-Centred Sphere Decoder

The drawback presented above is expected to be bypassed through the consideration of - to the
best of the author’s knowledge - the most accurate (closest to optimum) BP, namely the LRA-
MMSE DFD. No convincing formula has been proposed until now, even if Jaldén et al. propose
an LRA-MMSE-centred solution through the relation [Jal09]:

ẑα,LRA-MMSE SD = arg min
z∈ZnTC

{∥∥∥R̃−1R−†H†y − z
∥∥∥2
}

= arg min
z∈ZnTC

{
‖z̃LRA-MMSE − z‖2

}
, (3.56)
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for all regularization factor α, and in particular for α = σ2
n.

While it is true that such a detector consists in an RDN study around the unconstrained LRA-
MMSE estimate, the provided solution will be the constrained LRA-MMSE DFD plus a list of
candidates in its neighbourhood. The considered metric is non-equivalent to the ML expression
and would not lead to a near-ML solution. In particular, the ML performance is not efficiently
reached while the RDN size grows.

An efficient solution has been derived from Equation (3.30), under the assumption of using
constant-modulus constellations. It consists in an unconstrained LRA-MMSE-centred search that
leads to an LRA-MMSE DFD procedure with an RDN study at each layer. The equivalent ML
equation reads:

ẑLRA-LD SD = arg min
z∈ZnTC

{∥∥∥R̃ (z̃− z)
∥∥∥2
}
,

where

R̃HR̃ =

{
H̃HH̃ in the LRA-ZF case,
H̃HH̃ + σ2

nT
HT in the LRA-MMSE case,

(3.57)

and by noting that R̃ is upper triangular with real diagonal elements and z̃ is any - consistently
with the R̃ expression - LRA-LD unconstrained linear estimate.

Proof. Let us introduce any term c
′
s.t.

∥∥∥y − H̃z
∥∥∥2

+ c
′

=
∥∥∥R̃ (z̃− z)

∥∥∥, where z̃ is any LRA-LD
unconstrained linear estimate:

c
′

=
∥∥∥R̃ (z̃− z)

∥∥∥2

−
∥∥∥y − H̃z

∥∥∥2

= (z̃− z)
H
R̃HR̃ (z̃− z)−

(
y − H̃z

)H (
y − H̃z

)
(a)
= z̃HG̃z̃− z̃HG̃z− zHG̃z̃ + zHG̃z− yHy + yHH̃z + zHH̃Hy − zHH̃HH̃z

(b)
= yHH̃G̃−1G̃G̃−1H̃Hy − yHH̃G̃−1G̃z− zG̃G̃−1H̃Hy + zHG̃z− yHy

+ yHH̃z + zHH̃Hy − zHH̃HH̃z,

(c)
= yHH̃G̃−1H̃Hy + zHG̃z− yHy − zHH̃HH̃z

= yHH̃G̃−1H̃Hy + zH
(
G̃− H̃HH̃

)
z− yHy, (3.58)

where in (a), we substitute R̃HR̃ and G̃, in (b), we introduce z̃ = G̃−1H̃Hy and z̃H = yHH̃G̃−1

and where in (c):

G̃ =

{
H̃HH̃ in the LRA-ZF case,
H̃HH̃ + σ2

nT
HT in the LRA-MMSE case.

(3.59)

In the LRA-ZF case, H̃G̃−1H̃H = H̃H̃−1(H̃H)−1H̃H = InR and G̃ − H̃HH̃ = 0, consequently
c′ = 0.
In the LRA-MMSE case, c′ = yH(H̃(H̃HH̃ + σ2

nT
HT)−1H̃H − InR)y + σ2

nz
HTHTz, which is a

constant term in x iff the signal x entries are of constant modulus since σ2
nz
HTHTz = σ2

nx
Hx.

The formula introduced in Equation (3.57) offers an equivalent metric, similarly to what is pro-
vided in Section 3.2.7. The difference - and in particular the interest in the LRA case - lies in the
nature of the neighbourhood study.
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As depicted in Figure 3.20, near-ML performance is achieved while the neighbourhood size is
drastically reduced - as well as the corresponding scheme computational complexity - due to the
prior calculation of a closer-to-ML solution. Thus, it results in a performance improvement for a
fixed computational complexity. With 16-QAM modulations, a neighbourhood size processed with
a 2-Best achieves very-near MLD performance with the RDN LRA-MMSEE method. It is not the
case otherwise, in particular with ODN-based techniques unless with a 16-Best. Also and with
the RDN LRA-ZF method, a 4-Best neighbourhood study is not enough for achieving near-MLD
performance since an SNR offset remains.
Interestingly, it should be noted that its computational complexity is still independent of the con-
stellation size. It is an important aspect that sets up the advantage of the RDN LRA-MMSEE
K-Best hard-detector.

3.4.6 Original-Domain Neighbourhood Lattice-Reduction-Aided Minimum-
Mean Square Error-Centred Sphere Decoder

Even if the issue of the RDN study has been addressed above, it relies on numerous intricate and
sequential steps that have to be added in the receptor. As a consequence, the detector latency is
increased and it does not offer a strong performance improvement in the 4-QAM case, due - as
previously discussed - to wasted resource. Also, some particular system configurations - among
others, well-conditioned channels and high SNR - do not require such a scheme.
Consequently, a bypassed solution is proposed and allow for the use of an efficient sphere centre,
namely an LRA-ZF point, with an ODN study. The preprocessing step remain strictly the same
and provided an unconstrained LRA-LD estimate. It consists in rearranging the ML expression
such that:

x̂LRA-ZF SD = arg min
x∈ξnT

∥∥∥R̃′ (Tz̃LRA-ZF − x)
∥∥∥2

, (3.60)

where R̃
′
is the CF - or equivalently [Zim07] the QRD output - of R̃T−1, making an ODN

study possible since the search is made in ξnT . Also, since the unconstrained LRA-ZF estimate
is considered, there is no quantization in the reduced domain either. This solution is denoted as
ODN LRA-ZF K-Best.

Proof. By reconsidering Equation (3.57), the ML expression can be equivalently rearranged:

x̂LRA-ZF SD = arg min
x∈ξnT

∥∥∥R̃ (z̃LRA-ZF − z)
∥∥∥2

= arg min
x∈ξnT

∥∥∥R̃ (T−1Tz̃LRA-ZF −T−1x
)∥∥∥2

= arg min
x∈ξnT

∥∥∥R̃T−1 (Tz̃LRA-ZF − x)
∥∥∥2

. (3.61)

The idea is now to make all the x entries iteratively independent - from previous layers - through
the triangular shape induced by a CF/QRD output:

x̂LRA-ZF SD = arg min
x∈ξnT

∥∥∥R̃′ (TzLRA-ZF − x)
∥∥∥2

(3.62)

where R̃
′
is the CF/QRD output of R̃T−1.

The cleverness of the presented technique comes from the slicing of the SD by bypassing the
neighbourhood study in the reduced domain, if advantageous. Also and similarly to what has
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Figure 3.20: Uncoded BER as a function of Eb/N0, Complex Rayleigh 4×4 SM-MIMO-SC system,
(ODN LRA-)ZF 2/4(16)-Best, (ODN LRA-)MMSE 2/4(16)-Best, RDN LRA-ZF 2/4-Best, RDN
LRA-MMSE 2/4-Best and ML detectors, 4-QAM modulations at each layer (a,c) and 16-QAM
modulations at each layer (b,d).

been done in Section 3.4.5, a novel formula may be proposed, centred on an unconstrained LRA-
MMSE solution. In general terms, the ML expression equivalently rewrites:

x̂LRA-LD SD = arg min
x∈ξnTC

{∥∥∥R̃′ (Tz̃− x)
∥∥∥2
}
,

where

R̃HR̃ =

{
H̃HH̃ in the LRA-ZF case,
H̃HH̃ + σ2

nT
HT in the LRA-MMSE case,

(3.63)

and (
R̃
′
)H (

R̃
′
)

=
(
T−1

)H
R̃HR̃T−1, (3.64)

by noting that R̃
′
is upper triangular with real diagonal elements and z̃ is any - consistently with

the R̃ expression - LRA-LD unconstrained linear estimate.

By rearranging Equation (3.64), it is clear that it comes down on the classical SD expres-
sion with ODN study. Consequently, the performance of this detector - and thus its advantages
and drawbacks - will be similar while the whole preprocessing step remains those of the efficient
LRA-MMSEE K-Best. In particular, this solution outperforms the solution introduced in Sec-
tion 3.4.5 in the 4-QAM case - and in the 4-QAM case only -, while reusing the computational
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complexity of the preprocessing step, thus leading to an efficient re-use of available resources.
Also, while it can be noted that the QRD computational complexity of a quasi-triangular matrix
may be reduced compared to a classical QRD, it is not addressed in the present work.

At this step, the point of hard-decision detectors has been addressed. In the sequel, the soft-
decision extension is eventually shown to be - relatively - straight-forward with some of the tech-
niques introduced above. In the next chapter, each hard-decision detector is re-introduced by
including the soft-decision aspect. In particular, the question is how to maintain in soft-decision
the promising hard-decision performance of a detector.
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In order to approach the channel capacity, redundancy and interleaving provide a practical way
of processing. This is denoted as channel coding. In such schemes, soft-decisions, i.e. weighted
decisions, of coded symbols are produced at the detector output. Consequently and compared to
hard-decision, a performance improvement is induced [Ber93]. This aspect is a strong practical
requirement and leads to considerations that are addressed in the present Chapter.

4.1 Log-Likelihood Ratios Generation

4.1.1 Log-Likelihood Ratio Definition

Soft-decisions of coded symbols are typically produced from the detector’s output, plus any avail-
able side information, and passed on to the decoder in the form of bit-wise LLRs. In the latter, the
sign represents the decision and the magnitude the reliability. In the classical considerations that
are introduced below, the logical {0, 1} bit patterns are respectively mapped onto the set of ampli-
tude levels B = {+1,−1} - through an antipodal bit-to-symbol mapping, such as BPSK [3GP09b]
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and due to the AWGN statistical properties [Bar03c] -, denoted as the channel’s input. The BPSK
modulation assumption has been made for the sake of simplicity and can be extended to any QAM
constellation.

Before making an observation, the a priori probabilities for the bit blk - related to the l-th trans-
mitted symbol and to the k-th bit inside - read Pr

{
blk = −1

}
and Pr

{
blk = +1

}
. The probability

distribution of the random binary variable blk is uniquely specified by the parameter Pr
{
blk = −1

}
since Pr

{
blk = +1

}
= 1− Pr

{
blk = −1

}
. Thus, by introducing the conventional log ratio:

r = log
Pr
{
blk = −1

}
Pr
{
blk = +1

} , (4.1)

its sign gives an estimate of the most likely bit value while its magnitude indicates the reliability
of this estimate. Clearly from Equation (4.1):

r =



0, blk = −1 and blk = +1 are equally likely,
> 0, blk = −1 is more likely than blk = +1,

< 0, blk = +1 is more likely than blk = −1,

+∞, blk = −1,

−∞, blk = +1.

(4.2)

After making an observation, the A Posteriori Probability (APP) of blk arises and is conditioned
on the received signal y. For the ML decoder - not for the MAP decoder since the whole bits
sequence is not considered -, it is defined as:

log
Pr
{
blk = −1 | y

}
Pr
{
blk = +1 | y

} , (4.3)

which - by denoting f(y | blk = i) s.t. i ∈ B as a conditional PDF [Bar03c] and through the Bayes’
theory - rewrites:

log
f(y | blk = −1) Pr

{
blk = −1

}
/Pr {y}

f(y | blk = +1) Pr
{
blk = +1

}
/Pr {y}

. (4.4)

We assume that the a priori probabilities read Pr
{
blk = −1

}
= Pr

{
blk = +1

}
, which is true due

to scrambling. Thus and through the logarithm introduction, Equation (4.4) simplifies to:

log
f(y | blk = −1)

f(y | blk = +1)
. (4.5)

The received vector can be modelled as a multivariate Gaussian random variable. Thus, similarly
to Equation (2.44) and starting from Equation (4.5), the LLRs at the detector’s output - also
named channel observations in Section 2.2 and denoted here as Λ(blk | y,H) are fed to a turbo
decoder - simplify to the expression:

Λ(blk | y,H) = log

∑
x∈X−1

k,n
e

1
2 (y−Hx)HΦ−1

nn(y−Hx)

∑
x∈X+1

k,n
e

1
2 (y−Hx)HΦ−1

nn(y−Hx)
, (4.6)

where Xik,n, i ∈ B is the set of the 2nT log2{|ξ|}−1 bit vectors x such that:

X−1
k,n =

{
x,blk = −1

}
,

X+1
k,n =

{
x,blk = +1

}
. (4.7)
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Under the assumption of statistically independent code bits - also ensured by interleaving and
which implies splitting up joint probabilities into products [Zim07] - the LLRs at the detector’s
output can be calculated through the well-known [Hoc03, Hag96] relation:

Λ(blk | y,H) = log

∑
x∈X−1

k,n
e
− 1

2σ2n
(‖y−Hx‖2)

∑
x∈X+1

k,n
e
− 1

2σ2n
(‖y−Hx‖2)

, (4.8)

where we recall (see Section 2.5) that σ2
n is the noise variance. Despite aforementioned complexity-

reducing derivations, solving Equation (4.8) still requires an infeasible sum over 2nT log2{|ξ|}−1

terms for both the numerator and denominator. As an answer, a classical further simplification is
possible for implementation.

4.1.2 Max-Log Approximation

For the sake of DSP implementation, the max-log approximation of the extrinsic LLR is commonly
considered. It relies on the Jacobian logarithm [Rob95] defined as:

jaclog {d1 + d2} , log
{
ed1 + ed2

}
= max {d1, d2}+ log

{
1 + e−|d1−d2|

}
≈ max {d1, d2} . (4.9)

While the term log
{

1 + e−|d1−d2|
}

- denoted as the residual term - can be stored in an one-
dimensional Look-Up Table (LUT), it is shown in [Rob95] that only a tiny performance degradation
occurs. This result is extended to

log

{
n∑
i=1

e−d
2
i

}
= log

{
emax{−d2i}

}
+ log

{
e−|d

2
1−max{−d2i}| + · · ·+ 1 + · · ·+ e−|d

2
n−max{−d2i}|

}
= log

{
e−min{d2i}

}
+ log

{
e−|d

2
1+min{d2i}| + · · ·+ 1 + · · ·+ e−|d

2
n+min{d2i}|

}
≈ −min

{
d2
i

}
. (4.10)

In the present work, this approximation is considered. The APP in Equation (4.8) thus rewrites:

Λ(blk | y,H) ≈ − min
x∈X−1

k,n

{
1

2σ2
n

(‖y −Hx‖2)

}
+ min

x∈X+1
k,n

{
1

2σ2
n

(‖y −Hx‖2)

}
, (4.11)

where the minimum element is obtained by successively applying the simple min{·} operator -
over two values.

4.2 Classical Algorithms Update

4.2.1 Maximum Likelihood

By noting that the max-log approximation is particularly appropriate in the high SNR range -
that induces y to be very close to Hx in at least one case -, the optimal APP LLR of the bit blk
becomes advantageously approximated by:

Λ(blk | y,H) ≈ − 1

2σ2
n

(
− min

x∈X−1
k,n

{
‖y −Hx‖2

}
+ min

x∈X+1
k,n

{
‖y −Hx‖2

})
. (4.12)
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While it is not optimal, the soft-output MLD with the max-log approximation will be considered
as the reference solution, according to a performance point of view.
However and despite the aforementioned simplifications, 4.12 is not feasible due to its exponential
computational complexity. In particular and similarly to the discussion in Section 2.7, |ξ|nT
hypotheses have to be considered within each min term and for each bit sequence blk.

4.2.2 Linear Detectors

Aiming at suppressing ILI and in accordance with Section 2.7, LDs - including ZF and MMSE -
decouple the whole MIMO detection step into a set of independent MISO detection steps, layer by
layer. Following advantages and drawbacks of LDs by comparison to the MLD (see Section 2.7.2),
both the ZF and MMSE approaches offer a low overall computational complexity. In particular, the
|ξ|nT Euclidean distance computations - required in Equation 4.12 - are advantageously applied
on scalars. Given a layer l and through [But04, Col04, See04, Fer08], the LLR approximates:

Λ(blk | ỹl,GLD) ≈ − 1

2(σLD)2
l

(
− min

xl∈X−1
k,l

{
|ỹl − xl|2

}
+ min

xl∈X+1
k,l

{
|ỹl − xl|2

})
, (4.13)

where ỹ = GLDy and, compared to Equation (4.12), norms have been replaced by absolute values.
The LLR expression is a function of the equalization matrix, that is recalled to read:

GLD =

{
GZF =

(
HHH

)−1
HH in the ZF case,

GMMSE =
(
HHH + σ2

nInT
)−1

HH in the MMSE case.
(4.14)

In the MMSE case only and because GMMSEH 6= InT , residual ILIs remain and - dually - diagonal
elements of GMMSEH are not exactly one-valued. The latter aspect makes the MMSE detector
biased, thus inducing - for its removal - the left-multiplication of GMMSE by the diagonal matrix
B such as its diagonal entries read [Col04]:

Bl,l =
SINRl + 1

SINRl
, (4.15)

where
SINRl =

1

σ2
n

[
(HHH + σ2

nInT )
−1
]
l,l

− 1. (4.16)

The unbiased expression of Equations (4.14) thus rewrites:

GLD =

{
GZF =

(
HHH

)−1
HH in the ZF case,

GMMSE = B
(
HHH + σ2

nInT
)−1

HH in the MMSE case.
(4.17)

While the ZF detector is less complex than the MMSE due to the required computation - for
each layer - of bias and SINR terms, the latter outperforms the ZF, which can be verified in Fig-
ure 4.1. In particular, this additional processing is negligible compared to the computation ofGLD.

In both the ZF and MMSE cases, the AWGN n has been coloured [Fer08] such as it becomesGLDn.
In particular and for each layer l, the diagonal entries of their covariance matrices read [Col04]:(σZF )2

l = σ2
n

∑nT
i=1

∣∣∣(GZF )l,i

∣∣∣2 in the ZF case,

(σMMSE)2
l =

(
(GMMSE)l,l − 1

)
/ (GMMSE)l,l in the MMSE case.

(4.18)
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From an implementation point of view, the computational complexity of the ZF and MMSE
metrics calculation can be further reduced by pointing out that:

|ỹl − xl|2 = <{ỹl − xl}2 + ={ỹl − xl}2 . (4.19)

On top of the separate - for each layer - LLR calculation, the considered QAM mapping prop-
erties induce that the metric can be separately computed through the in-phase and quadrature
components, i.e. real and imaginary parts, respectively. Thus, it leads to the following expression
of the LLR [Col04]:

Λ(blk | ỹl,GLD) ≈ 1

2(σLD)2
l

∆
(
blk | ỹl

)
, (4.20)

where the term ∆
(
blk | ỹl

)
can be efficiently replaced by a linear equation [Col04]. The latter is

a function of ỹl and depends on the bit position only.
We consider the 16-QAM constellation introduced in Figure 2.1 and its corresponding QAM
mapping. By considering the first bit position, its value indicates if the symbol is set in the right
or left part of the plane. Thus, the imaginary part in the metric computation remains constant
and finally cancels out in the LLR computation, according to Equation (4.13). By focusing on the
in-phase component of ỹl - related to bits 1 and 3 within a symbol -, three distinct cases must be
considered per symbol. In particular, it leads to:

∆
(
blk | ỹl

)
=


4<{ỹl} for k = 1 and |< {ỹl}| ≤ 2,

8<{ỹl} − 8sgn {< {ỹl}} for k = 1 and |< {ỹl}| ≥ 2,

8− 4<{ỹl} for k = 3 and ∀ <{ỹl} ,
(4.21)

where sgn(·) is the signum function.

While this approximation has been applied to the present work, it is not addressed in detail
since it is straight-forwardly applied from [Col04]. The only difference lies in the considered QAM
mapping for the constellations that have been introduced in Figure 2.1. Thus, the set of linear
equations for ∆

(
blk | ỹl

)
presented in [Col04] remains correct, only the bit position indexes have

been updated.

In this chapter, the - coded - BER performance of multiple detectors is provided for a 4× 4

SM-MIMO-SC system, for the two extreme 4-QAM and 64-QAM modulations. In the sequel and
unless otherwise specified, our simulation conditions rely on settings that are specified here once
and for all.
At the transmitter, data bits are first serial-to-parallel-converted into four data streams and are
segmented into blocks containing a selected number of bits per packet frame, according to the
employed MCS. Each information data sequence is independently turbo encoded, according to
the considerations in Section 2.2. While the original coding rate is R = 1

3 , the sequences are then
punctured, thus reaching the desired rate when the resultant encoded sequence is data-modulated.
In particular and according to the Fixed Reference Channel (FRC) specified in 3GPP reference
tests [3GP09d], the considered rates are R = 1

2 and R = 3
4 for 4-QAM and 64-QAM constella-

tions, respectively. Blocks of information bits are fed to the channel encoder, and subsequently
transmitted over a complex Rayleigh fading 4× 4 MIMO channel, by forcing to 1026 the number
of transmitted symbols per block, independently of the employed modulation. It presently cor-
responds to 1024 and 4608 transmitted bits per block, to within one rounding. By iterating 100
and 20 blocks with 4-QAM and 64-QAM constellations, respectively, approximatively 105 bits are
considered for each SNR value. Thus, we consider that it is sufficient for obtaining smooth curves
up to 10−3 BER. In a 4 × 4 SM-MIMO - SC or OFDM equally - system, there is a simple one-
to-one mapping between layers and transmit antenna ports. Thus the layer mapping/demapping
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Figure 4.1: BER as a function of Eb/N0, Complex Rayleigh 4 × 4 SM-MIMO-SC system, ZF,
MMSE and ML detectors, 4-QAM modulations at each layer (a) and 64-QAM modulations at
each layer (b).

blocks - introduced in Figure 2.6 - are transparent. Also, the OL mode is considered, thus no feed-
back loop is required. Then, SC transmissions only are simulated. There is no loss of generality
on the performance results. The impact of an OFDM modulation on the overall computational
complexity will be described in chapter 5. Last, for each block and according to the discussion in
Section 2.2, 10 iterations within the turbo decoder are performed.

In Figure 4.1, the BER performance of the aforementioned LDs and of the MLD introduced
in 4.2.1 are depicted and will be considered as references in the sequel. The performance gain
compared to uncoded transmission in clear by comparison to Figure 2.10.
With the use of 64-QAM modulations in a 4 × 4 system, the MLD has been approximated by a
ZF-SQRD-based 64-Best. Also, the max-log approximation in Equation (4.11) is employed when
possible. Otherwise - this aspect will be introduced in Section 4.4.3 -, the LLR magnitudes are set
to an arbitrary - and absolute - value of ±3. This is shown in [Zim07] to almost achieve the MLD
performance while being drastically faster to run. It is denoted in the present work as ≈ MLD.

As a conclusion, the presented solution for LDs is efficient for implementation in the sense of
its very low complexity that has been further reduced since both the Euclidean distances compu-
tation and the minimization step have been skipped in Equation (4.14).
Nevertheless and while the approximation in Equation (4.20) only induces a tiny performance loss,
the LDs performance is not sufficient. It is particularly true in presence of ill-conditioned channels,
which arise with transmit and/or the receive spatial correlation. Thus, advanced techniques are
necessary for achieving near-MLD performance.

4.2.3 Decision-Feedback Detector

The advantage of (O)DFDs over LDs for uncoded tranmissions has been stated in Section 3.1.4.
We recall that their interest lies in reducing the main drawback of LDs, namely ILIs. Here, the soft
interference cancellation is introduced but maintaining its advantage over soft-LDs is challenging.

Similarly to Section 3.1, the presented QRD-based detector allows an iterative computation of



4.3. Lattice-Reduction-Aided Linear Detectors 69

LLRs. In particular, their expression reads [Zim07]:

Λ(blk | ỹl, x̂l+1:nT ,R) ≈ − 1

2σ2
n

(
− min

xl∈X+1
k,l


∣∣∣∣∣ỹl −Rl,lxl −

nT∑
i=l+1

Rl,ix̂i

∣∣∣∣∣
2


+ min
xl∈X−1

k,l


∣∣∣∣∣ỹl −Rl,lxl −

nT∑
i=l+1

Rl,ix̂i

∣∣∣∣∣
2

)
, (4.22)

where ỹ = QHy. Also, the LLR is a function of R and of the previously detected symbol(s),
from the layer n + 1 to nT . However, conclusions about the interest of (O)DFDs presented in
Section 2.7 - in the hard-decision case - do not remain correct. It is for this reason that the LLR
expression relies on previous hard-decision (in opposition to soft-decision) - which is clear from
Equation (4.22) -, thus leading to a loss in the channel coding gain.

The issue presented above can be addressed - at great cost - by subtracting soft-estimates x̃

while using their variance. In particular, the residual noise is considered. The initial idea is pro-
posed in [Cho00] and further developed in [Bit06a]. The main steps are summarized in the sequel.
Namely, the LLR preferably reads:

Λ(blk | ỹl, x̃l+1:nT ,R) ≈ − 1

2(σDFD)2
l

(
− min

xl∈X+1
k,l


∣∣∣∣∣ỹl −Rl,lxl −

nT∑
i=l+1

Rl,ix̃i

∣∣∣∣∣
2


+ min
xl∈X−1

k,l


∣∣∣∣∣ỹl −Rl,lxl −

nT∑
i=l+1

Rl,ix̃i

∣∣∣∣∣
2

)
, (4.23)

where x̃i denotes the expectation of xi over the symbols in ξ, according to their a priori probability
of occurrence. Also, ILIs are considered in the noise power, which subsequently reads:

(σDFD)2
l = σ2

n +

nT∑
i=l+1

{
|Rl,i|2 var {xi}

}
, (4.24)

where var {·} denotes the variance of xi over the symbols in ξ, according to their probability of
occurrence.

In the - required - consideration of channel coding, (O)DFDs are very sub-optimal - in particular
for high-order modulations - due, among others [Zim07], to error propagation. Occasionally, it is
even worse than with MMSE [Zim06], in particular in the low SNR range. Moreover, this scheme
is computationally costly [Bit06a]. Consequently, this solution is not retained in the rest of the
present work.

4.3 Lattice-Reduction-Aided Linear Detectors

In the present section, a new step - that follows a hard-decision LRA detector - is introduced
and aims at providing soft-output LRA detectors. It is important to highlight that these steps
are completely separated, in particular for the comprehension of the techniques that are further
introduced in Section 4.5.
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y LRA-LD +

D

T QξnT {·} LLR Λ(blk | y)
ẑLRA-LD Lz Lx

Figure 4.2: Perturbation matrix method for achieving soft-decision LRA-LD.

4.3.1 Perturbation Method

As mentioned in [Mil06, Pon07] and subsequently to a hard-decision LRA-LD, a set of candidates
can be used to efficiently approximate the per-bit LLRs.
In particular, this list of possible solutions - unordered in the present case - is generated in the
reduced domain, and can be considered as an additional neighbourhood. This neighbourhood is
actually seen as a set of displacements D - determined off-line - that is denoted in [Mil06, Pon07]
as a fixed perturbation matrix and that is applied jointly on the whole symbols vector. It should
be noted that it is different to an SD technique, where the neighbourhood is generated layer by
layer.
We denote a list Lx of candidates that belong to the original domain and Lz when they belong
to the reduced domain. Also, L implicitly corresponds to Lx, unless otherwise specified. A neigh-
bourhood in the reduced domain is generated by applying a pre-determined set of displacements
- constituted of N nT -dimensional column vectors - around a quantized LRA-LD hard-output
ẑLRA-LD. In particular, N = 4nT + 1 and Lz reads:

Lz = ẑLRA-LD +


0 +1 −1 +j −j · · · 0 0 0 0

0 0 0 0 0 · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 0 0 0 0

0 0 0 0 0 · · · +1 −1 +j −j

 (4.25)

= ẑLRA-LD + D.

In Figure 4.2, the structure of the solution is presented in a block-diagram manner. While an
LRA-LD hard-estimate ẑLRA-LD is provided in the first block - in accordance to considerations
in Section 3.3 - a list of neighbour candidates is produced according to the discussion above.
Subsequently and similarly to Equation (3.44) or Equation (3.45), the list of candidates in the
reduced domain is transformed to the original one - and denoted as Lx - such as:

Lx = QξnT {TLz}, (4.26)

where the quantization step is necessary due to the presence of noise that induces that some can-
didates may not map to any existing constellation points in the original domain. Through Lx,
it is then possible to compute the LLR magnitudes by using the max-log approximation-based
Equation (4.11). However, this equation is not necessarily applicable. A classical solution consists
in the use of a clipping value otherwise, which is clearly stated in [Pon07]. This key aspect is
addressed in detail in Section 4.4.3. While it is proposed in [Mil06] to avoid repeated candidates
within the list through an union-based solution - that induce anyway wasted resources -, it is not
necessary for the LLR computation considered in the present work, namely with max-log approx-
imation.

Due to its very low computational complexity, the perturbation method is efficient for imple-
mentation and can be applied to any LRA-LD hard-output. Moreover, a parallel implementation
is clearly possible.
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However, its performance remains limited [Mil06, Pon07]. Additionally and while the columns of
D are ordered according to their increasing Euclidean norm [Mil06], the corresponding list out-
put in the original constellation is not ordered. Thus it still induces additional computations for
some of the smart techniques presented in Section 4.4 and does not necessarily reach the list of
candidates that offer the highest probability of being transmitted.

4.3.2 Nearest Neighbour Method

While applying fixed perturbations - to the LRA-LD estimate - offers an efficient low complexity
solution, the corresponding performance remains very sub-optimal. Even if a larger set of per-
turbation can be planned in order to reach the optimum, the presented solution outperforms the
latter with a different approach.

Strictly speaking, Ponnampalam et al. are the first to propose a distance-based additional -
subsequent to the LRA-LD step - neighbourhood study in the reduced domain to provide soft-
estimates for LRA-LDs. In particular, it relies on the search algorithm proposed in [Rei05], which
should be noted to be different to the LRA-ZF-centred SD introduced in Section 3.4. The algo-
rithm has been made suitable following an LR step - namely adjusted to the reduced domain - by
modifying the distance criterion, drawn from [Pon07]:

dz (z̃LRA-LD, z) =

nT∑
i=1

∥∥∥H̃:,i

∥∥∥2

σ2
n

|(z̃LRA-LD)i − zi|2. (4.27)

This relation is obtained by assuming that the inverse of the covariance matrix of ñ, that reads:

R−1 =
2

σ2
n

H̃HH̃, (4.28)

is diagonal, which is almost true since H̃ is almost orthogonal.

For each call of the algorithm in [Rei05] and until a list output Lx of size K is generated, the
nearest neighbour in the reduced domain is produced. In particular, the algorithm considers a list
of nodes in a tree search. The nearest neighbour is obtained w.r.t. Equation (4.27) and removed
from the input/output list while another candidate has been added to the latter, thus maintaining
a list of nodes. Clearly, the closest vector - that corresponds to the first nearest neighbour - to z̃

is ẑ.
Also and for each call of the algorithm as well, the candidate is checked if it belongs to the original
constellation, and if so it is added to Lx. In [Pon07], repeated candidates within the list are not
avoided.

Through the solution presented above, a significant performance improvement compared to Sec-
tion 4.3.1 is achieved. Nevertheless, the remaining SNR offset compared to optimum is still
large, even from 16-QAM constellations with complex 4 × 4 MIMO channels. In particular, the
optimal performance is not reached for a large neighbourhood study [Pon07]. It is due to the
expression 4.27 that has been provided with the assumption that the noise remains white after
equalization. However, this assumption is not completely true.
While not reaching the optimum performance, the presented solution is computationally costly.
In particular for large constellations that require numerous - up to 24 from 16-QAM constellations
with complex 4 × 4 MIMO channels [Pon07] - nearest neighbours explorations to only approach
it. Moreover and due to the iterative call of the nearest neighbour algorithm, such a solution does
not even offer parallel implementation. Thus the high latency of this solution cannot be reduced.
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4.3.3 Sphere-Decoder-based Neighbourhood Generation in the Original
Domain

To calculate the reliability information, the idea introduced by Zhang et al. corresponds in reality
to an additional neighbourhood study that is processed through an SD technique. In particular,
it is centred around the unconstrained LRA-ZF solution, which is recalled (see Section 3.3.3) to
be denoted as z̃LRA-ZF = (HHH+σ2

nInT )−1HHy. This idea is extended to any LRA-LD solution.
By discarding the classical issues of SD techniques, addressed in Section 2.7, we directly focus
on the principle of the proposed solution. In particular, the main difference compared to the
techniques presented in Sections 4.3.1 and 4.3.2 lies in the neighbourhood study that is processed
in the original domain - while the demonstration starts by considering the reduced domain -, thus
avoiding wasted resources.

By introducing a sphere constrain in the reduced domain dz - necessary due to the infinite nature
of the reduced lattice -, a list of neighbours Lz centred around z̃LRA-LD - z̃LRA-ZF in [Zha07a] - is
such as:

Lz =
{
z, ‖z− z̃LRA-LD‖2 < d2

z

}
, (4.29)

where z is a hypothetical value in the reduced domain. A direct estimation of Lx can be obtained
by left-multiplying each of the symbol to detect by correct rows of T−1. Clearly, Equation (4.29)
is equivalent to the relation:

Lx =
{
x,
∥∥T−1x− z̃LRA-LD

∥∥2
< d2

z

}
, (4.30)

where x is a hypothetical value in the original domain and where we note that the sphere constraint
remains unchanged.
Similarly to the general issue of the neighbourhood generation in the reduced domain, addressed in
the beginning of Section 3.4, Lx cannot be determined straight-forwardly, unless jointly. Again, it
is due to T−1 that mixes x entries. Thus, a reduced complexity approach is proposed in [Zha07a].
Namely, a possibility for solving Equation (4.30) layer by layer - by making the current detected
symbol independent of the remaining to-detect symbols - relies on introducing the QRD of T−1.
By denoting T−1 = (QT−1)(RT−1), then the following relation is obtained:

Lx =

{
x,
∥∥∥(RT−1)x− (QT−1)

H
z̃LRA-LD

∥∥∥2
}
. (4.31)

Starting from the lowest layer, a classical tree-search method can be employed. In simulations,
we decide to use the K-Best algorithm, which is strictly similar to the Fixed Point Algorithm in-
troduced in [Zha07a]. For this reason and in order to insist on the separate neighbourhood study
following the LR step, the present detector is denoted as LRA-ZF+K-Best. Also in [Zha07a], the
hard decision candidate ẑLRA-ZF is added to the candidate list.

In Figure 4.3, the structure of the solution is presented in a block-diagram manner. The - un-
quantized - LRA-LD estimate and the QRD block’s output are simultaneously fed to a K-Best
detector that generates the list of solutions Lx in the original domain. Similarly to Figure 4.2,
the latter makes possible the computation of some of the LLR magnitudes.

In Figure 4.4, the BER performance of the LRA-ZF+K-Best, with K=2 and 4 in the 4-QAM
case and K=4 and 16 in the 64-QAM case, are depicted and compared to the reference MLD. The
max-log approximation in Equation (4.11) is employed when possible. Otherwise - this aspect will
be introduced in Section 4.4.3 -, the LLR magnitudes are set to an arbitrary - and absolute - value
of ±3.
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Figure 4.3: Additional neighbourhood study for achieving soft-decision LRA-LD.
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While the solution introduced in [Zha07a] in the LRA-ZF case can be extended to any - ac-
tually not only LRA-ZF or LRA-MMSE - (sub-)optimal hard-solution, it only aims at generating
a neighbourhood study for the sake of generating soft-output. It is different from the LRA-SD
algorithm introduced in Section 2.7. In particular, the employed metrics are not even equivalent
to the ML metric. Consequently and when K increases, there is no performance improvement in
the sense of the quality of the hard-output detector: the only performance improvement lies in
the LLR calculation that is thus made more frequently through the max-log approximation.
Concerning the computational complexity aspect, it should be noted that an additional QRD -
of T−1 - is necessary. Nevertheless and since it is a part of the preprocessing step anyway, the
inversion of T can be achieved with a very-low complexity by directly processing it within the LR
algorithm [Rog10]. Moreover, the T−1 entries are all Gaussian. While this aspect has not been
investigated, it will induce a decreased computational complexity compared to a classical QRD.

By summarizing the idea presented in the present section that aims at offering soft-output LRA
techniques and while there are multiple means to this end, each presented solution consists in
generating a neighbourhood set. Consequently, the direct association - not the LRA-LD+K-Best
- of both the LR step and an SD technique is retained. This way, the advantages of their combi-
nation - presented in Section 2.7 - will anyway decrease an additional neighbourhood study size,
this time aiming at generating soft-output.

4.4 List Sphere Decoder

While it has been claimed in Section 3.2 that the SD aims at reaching the ML hard-estimate only
- thus offering the sign of the corresponding bits -, it is not sufficient from now on. Here, its
purpose consists in solving the max-log approximation in Equation (4.11) for each bit, thus also
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including the reliability of their sign.

With this aim in view, a straight-forward modification of the SD algorithm is sufficient. In
particular, it relies on providing a list Lx of |Lx| solutions at the SD output. In the case of the
K-Best algorithm, the latter is even directly available. Such an algorithm is denoted as a List SD
(LSD) and the soft-output are generated from Lx. Namely, Equation (4.11) rewrites:

Λ(blk | y,H) ≈ − 1

2σ2
n

(
− min

x∈(Lx)+1
k,l

{
‖y −Hx‖2

}
+ min

x∈(Lx)−1
k,l

{
‖y −Hx‖2

})
, (4.32)

where

(Lx)
+1
k,l =

{
x ∈ Lx,b

l
k = +1

}
,

(Lx)
−1
k,l =

{
x ∈ Lx,b

l
k = −1

}
. (4.33)

Also, we denote here as an hypothesis the bit blk that is mapped from the candidate estimate
- within Lx - that corresponds to the smallest Euclidean distance, namely the detector’s hard-
estimate. Since the list output of the K-Best LSD is ordered, thus blk is mapped from (Lx):,1.
Similarly, a counter-hypothesis for each bit blk is the symbol such as the bit sign is opposite -
again within Lx. Clearly, Lx contains at least an hypothesis for each bit and not necessarily its
corresponding counter-hypothesis.
Thus and as previously mentioned is Sections 4.3.1 and 4.3.3, the max-log approximation is not
always directly applicable. It is due to a certain number of missing counter-hypotheses, which
depends on multiple parameters, clearly including |Lx| as depicted in [Aub11a]. This key aspect
will be theoretically introduced in Section 4.4.3.

In the sequel, multiple technical solutions with different approaches are introduced and discussed.
In particular, the main trends rely on the list construction or on the management of the missing
LLR magnitudes.

4.4.1 Bit Flipping

Certainly the most obvious idea lies in solving Equation (4.11) anyway for each bit position. For
that, a solution for each missing counter-hypothesis is obtained.

This aspect was initially evaluated by Wang et. al in [Wan04]. With this aim in view, their
straight-forward approach is to reverse the undetermined bit magnitudes in the ML hard-estimate.
This operation is denoted as bit flipping. Subsequently, the Euclidean distance of the resulting
counter-hypothesis can be obtained. Thus the max-log approximation in Equation (4.11) is appli-
cable for all the received bit sequence.

However, this method is computationally demanding and low-quality counter-hypotheses are often
provided [Mil08] since it relies on the independence of each bit within the sequence. Due to the
coupling between layers, it is a strong assumption, which is highlighted in [Zim07]. Consequently,
this approach overestimates the reliability of the bits due to the assumed orthogonality of the
channel. Clearly, the performance loss will be decreased through a joint flipping of a certain
number of bits, even if it leads to an exponential computational complexity in the number of
bits. While the bit flipping solution is thus expected to work better with LRA detectors - due to
significant reduction of ILIs (see Section 3.3.2) -, this possibility is not trivial since it requires to
estimate the LLRs in the reduced domain. Consequently, this solution has not been retained in
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accordance to conclusions in [Zim07].

In [Wat04], a similar approach lies in performing a separate tree search for each missing counter-
hypothesis. It is denoted as chase decoding. It maintains the time complexity (see Section 2.7.3)
due to the parallel processing of sub-detectors. In [Pak10], some improvements in the number of
(depth first) tree search - thus the computational complexity - are proposed. Among others, it is
based on the QAM constellations structure (see Section 2.1) and on a - specific in [Pak10] - layers
re-ordering (see Section 3.1.3).

The present solution has been retained for current ST-E detectors for 2× 2 systems supported by
the LTE standard. One of the advantages of such an architecture lies in its flexibility, that allows
devices to switch between the multiple wireless applications with no additional design [Pak10].
However and while it offers near-MLD performance, it requires an heavy complexity, even for 2×2

systems. While it claimed to be under investigation for up to 4 × 4 systems in [Pak10], different
approaches will be shown in the present work to be more promising.

Despite their high level of likeness, the bit flipping solution is different from bit-negating- in-
troduced in [Bar08d] from [Wan06] - that is generally seen as a candidate adding in the literature.
With this aim in view, a counter-hypothesis is generated by taking the MAP estimate, flipping the
concerned bit and calculating the Euclidean distance of the resulting hypothesis [Wan04]. This
approach is specifically detailed in the next section.

4.4.2 Candidate Adding

Bäro et al. early encountered the problematic aspect of missing counter-hypotheses within Lx on
performance. As an answer, they propose to adapt the LSD by introducing a bit-wise approach
in the tree construction. Thus, the reliability of the soft-output is highly impacted [Bar03b]. For
the sake of consistency with the vocabulary in the literature, the term of path is employed and
should not be confused with the notation in Section 2.6. Here, it simply denotes a branch in a
tree search that connects a set of nodes, by starting from the root node. Clearly, it corresponds
to a complete symbols vector when its size is the same as the total number of layers.

Along the tree construction, some nodes are disregarded due to the sphere constraint. As a
consequence, some paths refer to symbols vectors that have been precociously - up to a layer that
is lower than ν - terminated, and some counter-hypotheses will be missing within the detector’s
list output. Thus, the shortened paths are eventually extended, according to some assumptions
that are introduced below. This extension is denoted as path augmentation and arises when the
detector processes itself (not within a distinct step).

The aforementioned tree search extension is realized according to a distance criterion, with the
knowledge of a soft-LD [Bar03b] - the soft-ZF in [Guo06] - and/or a priori information [Bar03b].
The decision to complete the exploration of an - incomplete - candidate is made possible by rewrit-
ing the APP LLR Λ as an additive metric [Bar03b]. This way and by assuming that a path of
size n has been already explored, the path’s metric up to this point reads [Bar03b]:

Λ(blk)n =

nT∑
l=n+1

Λl, (4.34)
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where

Λl =

∣∣∣∣∣∣ỹl −Rl,lxl −
nT∑

j=l+1

Rl,jx̃j

∣∣∣∣∣∣
2

, (4.35)

and where we recall - from Equation (4.14) - that the soft-LD reads x̃ = GLDy.
The path augmentation solution proceeds iteratively. When the necessity of augmenting a path
occurs at the first iteration, no a priori information is available. As an alternative, the aug-
mentation is made through the - unconstrained [Bit06b, Guo06] - LD solution. Thus and by
considering the extension of a path from the nth layer - down to the first layer -, the metric
increment reads [Bar03a]:

Λ(blk)n,LD =

nT∑
l=n+1

∣∣∣∣∣∣ỹl −Rl,lxl −
nT∑

j=l+1

Rl,jx̃j

∣∣∣∣∣∣
2

. (4.36)

In the case of the a priori solution, the metric increment reads [Bar03a]:

Λ(blk)n,a priori =

nT∑
l=n+1

∣∣∣∣∣∣ỹl −Rl,l (xl + x̄l)−
nT∑

j=l+1

Rl,jx̃j

∣∣∣∣∣∣
2

, (4.37)

where we recall from Section 4.2.3 that x̄l corresponds to soft symbols - for the layer l - and de-
notes the expectation of xl over the symbols in ξ [Bit06b], according to their a priori probability
of occurrence.

Also, the application to theK-Best LSD or the FSD are considered in [Won05, Guo06] and [Bar08d],
respectively. It is straight-forward, and smart implementation schemes are possible [Guo06].

Interestingly, the offered performance improvement is shown in [Bit06b] to be very attractive,
even if it is not significant when no a priori information is available [Zim07].
However, this solution is very demanding, as claimed in [Won05, Bit06b] but only in a general
discussion. Moreover, the path augmentation is made iteratively and, at the first iteration, the
poor-performance soft-LD [Bar03a] can only be used. Consequently, despite contributive efforts in
the computational complexity reduction and while a parallel implementation is possible [Guo06]
- thus maintaining the latency of the hard-decision detector through major modifications -, this
solution is not retained for implementation.

It is consistent with conclusions in [Zim07], where is larger K - in the K-Best LSD - is claimed
to be preferable in order to reach a larger number of full-length paths. The remaining missing
counter-hypotheses have to be treated. An efficient possibility is described in the sequel.

4.4.3 Log-Likelihood Ratio Clipping

A very low-cost while efficient solution lies in setting the - unknown - magnitude of the concerned
bits to a predefined value. In accordance with the related state of the art, this strategy will be
called in the sequel LLR Clipping (LC) to a value Λclip(blk). As it is clearly stated in the latter
symbol, the LC value only depends on the bit position, not on the received signal. In the present
section, the significant impact of an accurate LC on performance is discussed.

Initially, it has been stated that the number of missing counter-hypotheses depends - among
others - on |Lx|. Simultaneously, the accuracy of the LC value is also a function of the list size.
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Beyond this consideration, a discussion is necessary.
Intuitively, we can consider that the soft-information about a bit blk is mostly contained in Lx.
Indeed, if there are many entries in Lx such as blk = +1, then it can be concluded that the likely
value for blk is one with a large reliability. Whereas if there are few entries in Lx with blk = +1,
then the likely value is one with a small reliability. In particular when no counter-hypothesis arise
in Lx for a bit, Hochwald et al. propose a solution that consists in an extremely large LC [Hoc03]
due to their high improbability.
Clearly in this scenario, the corresponding bit sign is particularly unreliable when a large |Lx|
has been processed. Indeed, its counter-hypothesis does not appear within the list, despite its
large size. Thus it should be clipped to a large value. In the case of a small |Lx|, more counter-
hypotheses are missing within the list input. Due to the partial nature of the study, the bit sign
is not completely improbable, leading to choosing a small clipping value.

In order to address this aspect, numerous techniques have been proposed and studied. The main
trends are introduced in the sequel.

4.4.3.1 Fixed Log-Likelihood Ratio Clipping

In accordance with the idea above, it has been widely proposed in the literature [Hoc03, de 05,
Pon07, Qi 07, Myl07] to set the magnitude of the impacted bits to a fixed predefined value. This
solution is denoted in the present work as Fixed LC (FLC).
In accordance with the aforementioned considerations on LC, extreme scenarii have been consid-
ered. Namely, Hochwald et al. first proposed a solution that solves their high improbability by
setting Λclip(blk) to an extremely large value [Hoc03]. Λclip(blk) = ±128 is considered as a reference.
However, this solution is too agressive. In reality, there exists an optimal LC value that is a function
of the list size. This aspect can be demonstrated in theory through the introduction of the mutual
information I{blk,Λclip(blk)} of any bit amplitude and any corresponding LC value [de 05, Ravil].
By assuming that the bit sign in the LC is correct and Pr{blk = +1} = Pr{blk = −1} = 1

2 , the
mutual information reads:

I(blk,Λclip(blk)) = 1− 1
2

(
log2

{
1 + e−Λclip(blk)

}
+ log2

{
1 + eΛclip(blk)

})
. (4.38)

Subsequently, the impact of the clipping value choice can be observed. In particular, a solution
for determining the LC setting relies on maximizing the mutual information.
Figure 4.5 plots the mutual information between blk and the clipped detector output Λclip(blk),
versus the clipping value Λclip(blk) and for different values of Pr{Λclip(blk)}. Also, the maximal
mutual information - for each Pr{Λclip(blk)} value - is pointed out by diamond marks and indicates
the optimal clipping value and its evolution is plotted in a dashed style.

Consequently, it is clear that there exists an optimal value - the mutual information is maxi-
mized - that depends on Pr{Λclip(blk)}. Of course in this trivial scenario, it depends only on the
number of missing counter-hypotheses, which is clearly related to |Lx|. Also, while an efficient
balance - that will be introduced in the sequel - can been found at intermediate clipping values,
it has to be noticed that the FLC choice has a significant impact on the coded performance.
In particular and by referring again to Figure 4.5, choosing an exceedingly high (higher than its
optimum) LC induces the decoder to assume a reliability that is too high for the bits with missing
counter-hypotheses. In the case that this assumption is false, soft decisions on other bits must
be compromised in order to meet the code constraints, leading to error propagation [de 05]. As
a consequence, the performance is drastically decreased. This aspect will be corroborated by the
performance curves in Figure 4.6 with Λclip(blk) = ±128.
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Figure 4.5: Mutual information versus clipping value Λclip(blk) for multiple Pr{Λclip(blk)} values.

Reversly, setting the clipping level too low (lower than its optimum) limits the mutual information
at the detector output. It can be seen as making the channel decoder largely ignore the clipped
values [de 05]. Thus it prevents error correction at these bit positions and a part of the channel
coding gain is lost.
Consequently, the optimal LC level strongly depends of the system configuration as well as the
employed detector calibration.

Ideally, Λclip(blk) should be different for each channel bit, such that the mutual information is max-
imized [de 05]. Nevertheless, a simple while robust proposal has been introduced [Hoc03, Qi 07].
Namely, the FLC is such as Λclip(blk) = ±8, based on the argument that a missing counter-
hypothesis from the list of candidates makes the corresponding bit unlikely. As previously dis-
cussed, such a FLC value is efficient in the case of large |Lx| only and it is even rather large
according to Figure 4.5. This simple while efficient technique will be considered as a convenient -
at least as a reference - solution [Myl07, Mil08].
Another reasonably balanced FLC is commonly employed. Namely, the FLC value can be chosen
such as Λclip(blk) = ±3 and offers convenient performance [de 05]. Again, it has been previously
discussed that such a FLC value is efficient in the case of small |Lx| only.

In Figure 4.6, the BER performance of the K-Best LSD, with K=4 in the 4-QAM case and
K=4 and 16 in the 64-QAM case, are depicted and compared to the reference MLD. The max-log
approximation in Equation (4.11) is employed when possible. Otherwise, the employed FLC are
±128, ±8 and ±3, respectively.

As it is depicted in Figure 4.6, improved performance are offered with Λclip(blk) = ±8 com-
pared to Λclip(blk) = ±3, in particular when the study size |Lx| increases. Nevertheless, when
|Lx| is large compared to the modulation order - namely |Lx|=4 and 16 for 4-QAM and 64-QAM
modulations, respectively - few LLRs have to be clipped, thus limiting the impact on performance
of the selected FLC. The extreme FLC - namely Λclip(blk) = ±128 is immediately discarded. Then
Λclip(blk) = ±8 is retained - unless otherwise specified, according to the considered detector - in
Section 5.3.2. This simple while efficient technique will be considered as a convenient - at least as
a reference - solution in this work.

While the use of an appropriate FLC is very efficient in the sense of both the performance and
computational complexity, a fine calibration of Λclip(blk) is required. Otherwise, a performance
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Figure 4.6: BER as a function of Eb/N0, Complex Rayleigh 4× 4 SM-MIMO-SC system, K-Best
LSD detectors, 4-QAM modulations at each layer (a) and 64-QAM modulations at each layer (b).

loss occurs. Moreover, the FLC depends on the retained detector. Last but not least, it is an
absolute value that varies according to the propagation condition - in particular the SNR. Thus,
an enhanced solution is possible.
This is why the LC approach has been extended in order to take into consideration additional
available information. The solutions introduced in the sequel are denoted as Empirical LC (ELC).

4.4.3.2 Empirical Log-Likelihood Ratio Clipping

While the idea was first expressed in [Hoc03], Widdup et al. were actually the first to clearly
propose how to reuse important information available during the LSD processing, namely the
sphere constraint.
In particular, since the distance of only the best |Lx| solutions - regardless of their bit sign - are
known, the missing LLRs can be advantageously estimated from the knowledge that the distance
of the counter-hypotheses is at least as high as that of the worst known candidate [Wid04]. This
cost is exactly the radius d in the case of a depth-first search SD.
This solution is also denoted as the Last List Entry (LLE) [Mil08] in the case of a K-Best LSD.
In particular, the counter-hypothesis distance is replaced by the largest Euclidean distance within
Lx. Thus and by assuming that the hypothesis concerns a bit sign set to one, Equation (4.11) is
approximated by:

Λ(blk | y,H) ≈ − 1

2σ2
n

(
− min

x∈(Lx)+1
k,l

{
‖y −Hx‖2

}
+ ‖y −H(Lx):,K‖2

)
, (4.39)

where (Lx):,K denotes the last candidate within Lx.

Differently, Higuchi et al. introduced a Likelihood Function Generation(LFG) for selecting an
appropriate clipping value [Hig04, Kaw04]. Briefly, this solution uses a statistical study of the
minimal distance within the list and an empirical result. More details about the technique itself
are given just below.
First of all and within Lx, the minimum Euclidean distance is reached for each bit. Their sign is
considered. Thus, a minimal distance is obtained for each bit such as a total number of nT log2 {|ξ|}
distances are available from now on. At the same time and for each bit, the minimum distance -
such as both its hypothesis and its counter-hypothesis are available within Lx - is obtained. When
it exists, it is larger than in the case with no distinction in the bit sign [Hig04, Kaw04]. Then, we
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Figure 4.7: BER as a function of Eb/N0, Complex Rayleigh 4× 4 SM-MIMO-SC system, K-Best
LSD detectors, 4-QAM modulations at each layer (a) and 64-QAM modulations at each layer (b).

calculate the expectation among the - available - previous minimum Euclidean distances. Subse-
quently, this result is further averaged over multiple symbols, while it is not taken into account in
our simulations due to the lack of details in [Hig04, Kaw04].
Finally, this value is boosted by 50% [Hig04] or 100% [Kaw04] in order to increase its weight. This
exhibits the weakness of the solution, and more generally the weakness of ELC solutions that do
not rely on strong theoretical studies. Thus, the LFG-based ELC value is obtained.

In Figure 4.7, the BER performance of the K-Best LSD, with K=4 in the 4-QAM case and
K=4 and 16 in the 64-QAM case, are depicted and compared to the reference MLD. The max-log
approximation in Equation (4.11) is employed when possible. Otherwise, the employed ELC relies
on LLE and LFG, respectively.

The LLE solution introduced above requires only few additional computational complexities com-
pared to FLC techniques, which makes it interesting. Even if the largest Euclidean distance of the
counter-hypothesis is considered, such a clipping is not important enough compared to the fact
that the counter-hypothesis does not appear in Lx. It results in poor performance, as pictured in
Figure 4.7. It is claimed in [Mil08] to be due to the employed bound that is generally rather small,
causing a significant performance loss. By increasing the weight of the latter, the performance is
indeed improved and we regress to an absolute threshold.

The LFG solution introduced above is not computationally expensive, but more complex com-
pared to LLE. In particular and due to an averaging of statistical values over multiple symbols, a
larger latency is required. Moreover and as pictured in Figure 4.7, this solution offers unsatisfying
performance, in particular compared to FLC.

The solutions discussed in the present section lie in empirical results that do not rely on strong
theoretical considerations. Moreover, the corresponding performance improvements are not con-
vincing compared to the FLC while a - much - larger computational complexity is necessary. A
smarter solution is provided in the sequel.

4.4.3.3 Signal-to-Noise Ratio Aware Log-Likelihood Ratio Clipping

A smarter solution has been introduced by Milliner et al.. Interestingly and while both the FLC
and ELC solutions lie in empirical results, the SNR-aware LC (SLC) outperforms them by start-
ing from theoretical considerations while offering convincing performance.
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Figure 4.8: BER as a function of Eb/N0, Complex Rayleigh 4× 4 SM-MIMO-SC system, K-Best
LSD detectors, 4-QAM modulations at each layer (a) and 64-QAM modulations at each layer (b).

As previously mentioned, it appeared that an accurate - even optimal in the sense of the mu-
tual information maximization - LC depends on various parameters. Based on our experience and
multiple publications [Mil08, Zim08, Aub11a], the LC value depends on the SNR, on |Lx| and on
the modulation scheme (not of the code rate, as clearly discussed in [Zim08]). However, the main
issue relies on how to take these factors into account.
Milliner et al. recently proposed an analytical expression - especially detailed in [Zim08] in the
particular case of BPSK - that is claimed to provide the optimal clipping value in the AWGN case
with BPSK modulations and for any arbitrary code rate. Starting from the exact LLR definition
- introduced in Equation (4.3) -, an approximation is proposed by assuming that y is independent
of H in mean [Mil08], thus introducing the BER - at the detector output - of a bit to be +1 and
-1.
In the SISO AWGN case, the exact SER expression for a

√
|ξ|-PAM - introduced in Equation (2.7)

- has been revisited by considering an effective SNR γi [Mil08]:

P

√
|ξ|-PAM

S (|Lx|, γi) = 2

(
1− 1√

|ξ|

)
Q

(√
3

|ξ| − 1

√
|Lx|γi

)
, (4.40)

where the Q-function has been previously defined in Equation (2.8) and

γi = R2
i,i

ES
N0

, (4.41)

is the instantaneous SNR for the i-th detection layer (i-th component of the received signal).
Similarly to Section 2.1, the QAM SER is deduced from the PAM SER, from which the QAM
BER expression can be easily obtained. The predicted error probability PB(|Lx|, γi) then yields
the SLC value for bits in the i-th detection layer:

Λclip,i(b
l
k) ≈ − lnP

|ξ|-QAM
B (|Lx|, γi). (4.42)

In Figure 4.8, the BER performance of the K-Best LSD, with K=4 in the 4-QAM case and K=4
and 16 in the 64-QAM case, are depicted and compared to the reference MLD. The max-log ap-
proximation in Equation (4.11) is employed when possible. Otherwise, the SLC introduced above
is employed.

This solution offers very convenient performance results compared to the solutions presented
above. In particular, it is very similar to the best FLC - between ±3 and ±8 - and it outperforms
any ELC solutions. However, it requires a non-negligible additional computational complexity.
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Figure 4.9: 16-QAM modulation constellations for LTE(-A) downlink [3GP09c].

Namely and as clearly stated in [Mil08], the computation of Equation (4.42) involves the use of
the ln and of the Q-functions - while they can be approximated by LUTs - and of various basic
operations that represent a demanding - while linear (147MUL (see Section 2.7.3)) in the number
of layers - computational complexity.
Still another drawback remains. Due to the AWGN channel assumption, the technique is no longer
optimal with neither a Rayleigh nor a realistic channel. This explains the SNR offset observed in
Figure 4.8.

Also, the whole bit sequence is considered. In particular, the additional knowledge about the
bit position is not taken into account, which is shown to be advantageous in the sequel.

4.4.3.4 Multi-level Log-Likelihood Ratio Clipping

An original approach lies in taking into account the - multi-level bits-to-symbol mapping - nature
of QAM constellations and is denoted as Multi-level LC (MLC).

As stated at the end of Section 2.1, this multi-level bit mapping aspect induces different symbols
to be characterized by different mean Euclidean distances. Hence, different levels of protection
against noise and amplitude impairments - depending on their position within the bit sequence -
arise. In Figure 4.9, the 16-QAM example - introduced first in Figure 2.1 - is recalled. In particular
for this case, two levels exist comprising Most Significant Bits (MSB) - with a bold representation
- and Least Significant Bits (LSB) for each signal point.

For 64-QAM constellations, three levels of protection exist while only one exists for 4-QAM
constellations. The latter not actually being multi-level mapping since the protection level is the
same among the codeword. In the sequel, for the sake of simplicity and without loss of generality,
the 16-QAM case will only be considered.
In the specific LTE(-A) downlink case [3GP09c], QAM constellations with a multi-level Gray map-
ping can be partitioned into square subsets with minimum mean intra-subset Euclidean distances.
Namely and as depicted in Figure 4.9, the MSBs of a signal point determine in which subset it is
located.
In [de 05], the multi-level bit mapping had already been considered in order to reduce the de-
tector’s computational complexity, which becomes nearly independent of the signal constellation
size. Nevertheless, there is no link with the LLR calculation, and in particular with the LC. The
idea of applying a distinct LC according to the bit position is novel in this context. It is justified
in the sequel and will be shown to offer improved performance.
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Figure 4.10: Separated ΛLSB(blk | y) and ΛMSB(blk | y) representation of Λ(blk | y) as a function
of both the real and imaginary parts of any transmitted symbol, for multiple SNR values, 4 × 4

AWGN MIMO system, 16-QAM modulation on each layer, 800 distinct values per bit weight.

This idea has been inspired from the point that the distribution of the MSBs and LSBs is differ-
ent and even particularly advantageous. While analytical expressions are introduced in [Wan02],
Figure 4.10 directly depicts the multi-level impact on the LLRs distribution. The trivial example
of a 4 × 4 AWGN MIMO channel is considered, with 16-QAM modulations on each layer. The
simulation results are provided from a soft-output MLD with the max-log approximation.

As shown in Figure 4.10 and theoretically confirmed in [Wan02], the LLRs present a distinct
behaviour according to their bit index and the SNR. Namely there is no maximal value for MSBs,
while - importantly - there is a maximal value for positive LSBs. Also and consistently with
previous discussions in Section 4.4.3.3, this maximal value is different according to the SNR. The
idea presented here consists in taking advantage of this additional knowledge in order to apply dif-
ferent LC - according to the level of protection of the concerned bits - to generate lower-distortion
approximated LLR.

Through a SNR normalization, the positive LSBs are shown in [Aub11a] to still be upper bounded
by a constant value in the Rayleigh channel case. Thus and similarly to [Mil08], the MLC technique
is SNR-aware and also considers the modulation order - in the sense of its particular multi-level bit
mapping. It does not consider the list size and offers an optimization by only taking into account
the additional knowledge about the position of the concerned bits.
In particular, the positive LSB-positioned LLRs have been shown to offer a constant maximal
magnitude, through a SNR normalization step. Concerning the negative LSBs and the MSBs,
the LLRs still depend on the SNR. This point is illustrated in Figure 4.11, where the maximum
normalized LLRs from the soft-decision MLD output are plotted as a function of SNR, for different
bit positions.

From Figure 4.11, an efficient ΛLSB
+

clip (blk) is obtained. Also, it is highlighted in [Aub11a] that it is
constant over the SNR range and independent of the number of to-be-clipped bits. This is not the
case for the other bit positions that depend on the SNR and on the number of to-be-clipped bits.
Nevertheless, it should be noted that from Figure 4.11 the absolute LC for MSBs is approximated
as:

ΛMSB−

clip (blk) ≈ −ΛMSB+

clip (blk). (4.43)



84 Chapter 4. Soft-Decision Near Maximum-Likelihood detectors

−10 0 10 20 30
−20

−10

0

10

20

SNR [dB]

m
a
x
{L

L
R
}

E
s
/
N

0

Maximal normalized LLR evolution

ΛMSB+

clip (blk)

ΛMSB−

clip (blk)

ΛLSB
+

clip (blk)

ΛLSB
−

clip (blk)

Figure 4.11: Maximal normalized LLR evolution as a function of SNR, 4 × 4 MIMO Rayleigh
channel, 1000|ξ|ν

2 simulations per bit weight and per SNR value.

In Figure 4.12, the BER performance of the K-Best LSD, with K=4 and 16 in the 16-QAM case
is depicted and compared to the reference MLD. The max-log approximation in Equation (4.11) is
employed when possible. Otherwise, the MLC introduced above is employed. In order to simply
illustrate the performance improvement in the choice of distinct LCs, we consider two distinct
FLCs. Namely, FLCs of ±2 and ±3 are considered for LSBs and MSBs, respectively. These are
compared to the reference FLC of ±3 for all the bit positions.

In the same vein as Section 4.4.3.1, the use of an appropriate FLC is very efficient in the
sense of both the performance and computational complexity even though a fine calibration of
Λclip(blk) is required. Although its performance improvement remains lower than that of SLC, the
latter does not vindicate the corresponding additional computation complexity. Further details
on how to enhance the MLC technique are introduced in [Aub11a].

Thus, the solution presented above is retained for implementation. Moreover, there is no loss
of generality in its use. Namely, the MLC does not preclude its combination with any more
advanced technique.

4.5 Lattice-Reduction-Aided Sphere Decoder

In the present section, a new step is introduced and aims to provide soft-output LRA detec-
tors. Contrary to Section 4.3 the LRA detector and the soft-decision generation are processed
simultaneously.

4.5.1 Randomized Lattice Decoding

Even if it is not specifically intended for this purpose, the randomized lattice decoding [Liu10] -
first proposed in [Rag87] and extended to the closest vector problem in Klein’s works [Kle00] -
allows for soft-decision by generating a neighbourhood around the LRA-DFD solution. Namely,
the quantization operation is randomized at each layer within the DFD processing. In particular,
the quantization to the nearest symbol in the reduced domain - which is a rounding operation -
is replaced by the quantization to a random Gaussian integer.
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Figure 4.12: BER as a function of Eb/N0, Complex Rayleigh 4×4 SM-MIMO-SC system, K-Best
LSD detectors, 16-QAM modulations at each layer.

We introduce the discrete random variable Z that belongs to ZC and the complex floor and ceiling
operators - the real and imaginary parts are rounded independently - b·c and d·e, respectively. The
random quantization ẑ of z̃ - thus not necessarily QZC{z̃} - is made through the discrete Gaussian
distribution [Kle00]: Pr {Z = bz̃c − i} = 1

se
− 1
σ2 (z̃−bz̃c+i)2 ,

Pr {Z = dz̃e+ i} = 1
se
− 1
σ2 (dz̃e−z̃+i)2 ,

(4.44)

where i ∈ NC - by denoting NC as the set of complex natural integers that reads NC = N + jN -
and σ2 is a parameter that controls the variance of the resulting discrete and complex Gaussian
distribution. Also, it is normalized such as:

s =
∑
i∈NC

{e−
1
σ2 (z̃−bz̃c+i)2}+

∑
i∈NC

{e−
1
σ2 (dz̃e−z̃+i)2}. (4.45)

Thus and as it is remarked in [Liu10], a large σ2 induces a large neighbourhood study, while a
small σ2 induces a small neighbourhood study, up to the classical quantization to the nearest
Gaussian when it is zeros-valued.

The presented solution is an interesting and original theoretical tool. In particular, theoreti-
cal expressions of both its performance and computational complexity can be expressed [Liu10],
which offers an academic interest.
However, how to choose an accurate - verily optimal - σ2 is an important drawback. In reality,
this issue is similar to the selection of the radius of classical SDs, which has been addressed in
Section 3.2. Even by assuming that the optimal variance can be correctly reached, the latter
depends on the propagation conditions, thus implying a variable computational complexity. We
recall that it is an important issue for implementation.
Also and while both the QRD and LR steps are proceed only once, N distinct DFDs are processed
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according to the rounding operation introduced in Equation (4.44) [Liu10]. Thus, the correspond-
ing computational complexity is O(4Nn2), when considering the processing step only. On top of
that, the random aspect leads to duplicate solutions that induce wasted resources. Namely, N
distinct DFDs will offer N

′
distinct candidates, where N

′ ≤ N . In particular in simulations and
with N = 25, N

′ ≈ 10 in mean. While non completely removing this aspect, a solution lies in
increasing the variance σ2.
From the performance point of view and differently from [Kle00], an optimal σ2 is given in [Liu10]
according to the list size N . It offers near-optimum performance in the uncoded case, even for
large dimensional systems and high order modulations.

However and - again - while such a detector offers an academic interest, we decided not to retain
it for practical applications. This is due to the aforementioned random computational complexity
and wasted resources, even if a parallel implementation is clearly possible.
Also, in order to retain the quality of the hard-output of the LRA detector in the case of soft
decision, a very high computational complexity is needed.

4.5.2 Sphere-Decoder-based Neighbourhood Generation in the Reduced
Domain

The size of the stored list has been shown to impact the LLR choice. In particular in the case of
LRA-SD techniques, the neighbourhood size has been drastically decreased due to the LR step.
Consequently, a large part of information is not available from now on. That is why some addi-
tional information, aiming at more efficiently clipping missing LLRs, has been reached within the
LR step. However, this novel solution has not been protected for the moment, thus inducing the
non-disclosure of this idea.

It was shown in the present chapter that the extension to soft-decision of LRA only - with no
neighbourhood study - detectors is inefficient or at least very intricate. However, this chapter
relies on general studies. The interest of the technical choices that are proposed in the present
work are further detailed in the next chapter. In particular, the computational complexity results
are detailed with practical considerations.
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5.1 LTE(-A) Downlink Standard

5.1.1 Practical Requirements of MIMO Channel Models

As partially evoked in Section 2.5 and according to the 3GPP LTE(-A) standard [3GP09d], a
grid-represented RB is transmitted through the entire channel bandwidth that varies in both the
frequency and time domains. Thus, the transmission is impacted by the coherence bandwidth
and coherence time, respectively. These phenomena are induced by multi-path propagation and
Doppler effect, respectively, as introduced in Section 2.6. A small coherence bandwidth or time
corresponds to a strong fading, which imply a reduction of the correlation between two channel
matrices associated to adjacent REs, namely neighbour REs within the RB. With an abuse of no-
tation for the sake of simplicity, the channel that is associated to an adjacent RE will be denoted
as adjacent channel in the sequel. Also, we define the correlation between two matrices as the
measure of dependence between these two matrices, namely by dividing their covariance by the
product of their own variances.

Due to reflection and scattering in the environment - as theoretically introduced in 2.6 -, channel
responses are commonly approximated by a finite number of distinct paths. Paths of similar am-
plitudes interfere constructively and destructively, thus inducing frequency fading.
In the present work, the simulation results are provided according to 3GPP LTE(-A) channel
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Excess tap delay [ns] 0 30 70 90 110 190 410
Relative power [dB] 0.0 -1.0 -2.0 -3.0 -8.0 -17.2 -20.8

Excess tap delay [ns] 0 30 150 310 370 710 1090 1730 2510
Relative power [dB] 0.0 -1.5 -1.4 -3.6 -0.6 -9.1 -7.0 -12.0 -16.9

Excess tap delay [ns] 0 50 120 200 230 500 1600 2300 5000
Relative power [dB] -1.0 -1.0 -1.0 0.0 0.0 0.0 -3.0 -5.0 -7.0

Table 5.1: EPA, EVA and ETU tapped delay line model details.

models [3GP09d] that have been chosen as simplifications or typical realisations of the COST 259
model [Cor01]. The evaluation of LTE(-A) detectors requires channel modelling with increased
bandwidth - compared to general UMTS models - due to the radio channel frequency response
which depends on the delay resolution of the receiver. In 3GPP, the 20 MHz LTE(-A) channel
models were based on a synthesis of existing models such as the ITU and 3GPP models. Sub-
sequently, extended wideband models with low, medium, and large delay spread values could be
identified.
The low delay spread gives an Extended Pedestrian A (EPA) model which is employed in an
urban environment with fairly small cell sizes (τRMS = 43 ns). The medium delay spread gives an
Extended Vehicular A (EVA) model which corresponds to a medium delay spread environnement
(τRMS = 357 ns). The large delay spread gives an Extended Typical Urban (ETU) model which
has a large maximum excess delay and applies to some extreme urban, suburban, and rural cases.
While it seldom occurs, it remains important in evaluating LTE(-A) performance in the most chal-
lenging environments (τRMS = 991 ns). The tapped delay line model is characterized in Table 5.1.

As specified in [3GP09a], the models introduced in Table 5.1 can be specifically simplified
to allow for more efficient and less complex simulations and testing. The simplification should be
done with a specific time resolution ∆T , with

∆T =
1

fS
, (5.1)

where fS is one sub-carrier bandwidth in the OFDM symbol, namely 1/(NTU ) (see Section 2.3).
In order to avoid confusion and in accordance to 3GPP standard rules, we clearly state that the
channel profiles are re-sampled at delays {0, ∆T, 2∆T, 3∆T}.
This sampling is accomplished such that all taps belonging to the interval:](

i− 1

2

)
∆T ;

(
i+

1

2

)
∆T

]
, (5.2)

would be sampled into the tap positioned at delay i∆T for all non-negative integers i [3GP09a].
Only the taps that correspond to a power within 25 dB of the strongest are retained [3GP09a].
Tap powers should be normalized so that the sum of all tap powers is equal to 1 [3GP09a]. All taps
should have a classical Doppler spectrum and no direct path Doppler spectrum, thus resulting in
Rayleigh fading - in opposition to Rician fading.
Also, for a frequency hopping or multi-carrier system and to take into account the frequency cor-
relation of the channel model, the ∆T should be set in order to be compatible with a sampling
frequency of 30.72 MHz [Ses09], which is the entire channel bandwidth. Namely, ∆T = 32.6 ns
for the maximum allowed number of sub-carriers. Also, it remains compatible with UMTS where
the sampling frequency of 3.84 MHz is one eighth of the LTE(-A) sampling frequency.
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EPA fd,max=5 Hz
EVA fd,max=70 Hz
ETU fd,max=300 Hz

Table 5.2: Channel model parameters.

Simultaneously and as theoretically introduced in 2.6, a motion of the receiver causes a Doppler
shift inducing time fading.
In the present work, the simulation results are provided according to 3GPP LTE(-A) channel
models [3GP09d]. The propagation conditions are obtained for low, medium, and high maximal
Doppler frequencies, namely 5 Hz, 70 Hz and 300 Hz [3GP09d]. According to Equation (2.35)
and at a carrier frequency of 2.5 GHz, the corresponding mobile speeds are 2, 30 and 130 km/h,
respectively. The maximum Doppler frequencies fd,max are summarized in Table 5.2.
The MIMO minimum performance requirement is specified in [3GP09d]. It provides - with

64-QAM constellations - the consideration of up to a 70 Hz maximal Doppler frequency. Conse-
quently in the present work, the worst-case simulations would rely on a 70 Hz maximal Doppler
frequency.

Spatial correlation arises due to spatial scattering conditions, as theoretically introduced in 2.6.
In the present work, the simulation results are provided according to 3GPP LTE(-A) channel
models [3GP09d]. Namely, the Kronecker model is considered. It is a correlation-based analytical
model where correlation at the transmitter and at the receiver can be separated. The correlation
matrices are clearly stated in [3GP09d] in the 4× 4 MIMO case. Consistent with the expressions
introduced in Equation (2.38), the eNodeB (eNB) - equivalent in UMTS to the Base Station (BS)
- and the UE correlation matrices, respectively, are defined as follows:

ReNB =
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. (5.3)

Subsequently and accordingly to [3GP09d], the spatial correlation is defined as:

Rspat = ReNB ⊗RUE, (5.4)

where ⊗ is the Kronecker product.
The low correlation case actually represents a case where the antennas are fully uncorrelated. The
medium correlation is achieved by means of orthogonal polarization. The high correlation case
the eNB and UE antenna arrays are co-polarized and have small inter-antenna distances of 1.5
and 0.5 wavelengths respectively [Ses09]. The α and β coefficients - that are employed in the low,
medium and high correlation cases - are summarized in Table 5.3 from [3GP09d].

The entire channel bandwidth - associated to the whole grid-represented RB - induces mul-
tiple channel matrices. By considering a channel matrix at the position (k, l) - that is associated
to the (k, l)-th RE -, it is denoted as Hk,l as in Equation (2.28). Consequently, a channel matrix
Hk′ ,l′ varies more or less - in both the time and frequency domains - compared to an adjacent
channel Hk,l. Thus, its corresponding level of correlation with Hk,l is more or less important.
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Low correlation α=0 β=0
Medium correlation α=0.3 β=0.9
High correlation α=0.9 β=0.9

Table 5.3: Spatial correlation between the antennas at the eNB and the UE.
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Figure 5.1: Mobile multipath channel gain in dB, EPA model, FFT size of 2048.

In Figure 5.1, the absolute values in dB of an entire SISO LTE(-A) channel are plotted. The EVA
model and an FFT size of 2048 are considered for all the three figures. Also, multiple maximal
Doppler frequencies - namely of 5 Hz, 70 Hz and 300 Hz, respectively - are depicted. Consistently
the introductive discussion of this section, a low maximal Doppler frequency leads to a quasi-
constant channel matrix in time while strong fading in time occurs with a large maximal Doppler
frequency.
Clearly from Figure 5.1, there exist different possibilities for selecting an adjacent channel. Namely
an RE can be adjacent in frequency, in time or even in both. This aspect will be further developed
in Sections 5.2.1 and 5.2.2.

It is important to specify realistic propagation conditions for the evaluation of LTE(-A) per-
formance. Nevertheless, it is mainly provided here with the aim to provide - in particular in
Sections 5.2.1 and 5.2.2 - a contributive computational complexity decrease at the preprocessing
step, with practical considerations.

5.1.2 Downlink LTE(-A) Resource Allocation

In the LTE(-A) DL and following Section 5.1.1, OFDM transmissions - theoretically introduced
in Section 2.3 - can be described by a two-dimensional - in time and frequency - grid of REs. The
whole grid is denoted as an RB and we consider that the channel is flat-fading within each RE. This
particular structure aims at simplifying the multiplexing of the Reference Signals (RS) [Ses09],
which are employed for the MIMO channel estimation through additional interpolation.

In the present work and according to the 3GPP LTE(-A) standard [3GP09d], the entire chan-
nel bandwidth, i.e. 30.72 MHz, can be divided in up to 2048 sub-channels. A set of sub-channels
on each end is used as a guard tone, and the rest - 1200 tones in the case of an FFT size N of 2048
- are used to transmit data and are thus denoted as data sub-carriers or tones equally. The FFT
size N and the number of data sub-carriers NU - according to the bandwidth - are summarized
in Table 5.4 from [3GP07]. Notations were introduced in Section 2.3. These choices rely on the
simplification of the Radio Frequency (RF) chain commonly used for UMTS and LTE(-A). As an
example, the sampling frequency is 30.72 MHz = 8 · 3.84 MHz, thus it corresponds to eight times
the sampling frequency of UMTS.
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Transmission bandwidth (MHz) 1.4 3 5 10 20
Sub-frame duration 0.5 ms
Sub-carrier spacing 15 kHz
N 128 256 512 1024 2048
NU 72 180 300 600 1200

Table 5.4: DL OFDM modulation parameters.

Data sub-carriers 72 180 300 600 1200
RBs per slot 6 15 25 50 100

Table 5.5: Number of RBs per slot range.

By taking into account the aspect that one slot duration is 0.5 ms and corresponds to 7 OFDM
symbols, the symbol duration TU is chosen as 71.43 µs. An additional guard interval is not consid-
ered in the present case. The allocation base unit in an RB is 1 ms per 180 kHz, thus sub-carriers
are grouped by 12 - 12 sub-carriers times 15 kHz - within an RB. Consequently, the number of
RBs per slot is comprised between 6 - with a 1.4 MHz transmission bandwidth - and 100 - with a
20 MHz transmission bandwidth -, as it is summarized in Table 5.5.

According to [3GP07] and by denoting Rn as the RE that is used for transmitting an RS at
the antenna port n, Figure 5.2 illustrates their specific mapping. When an RE is used to transmit
an RS at one antenna port n and at the position (k, l), the corresponding RE - thus also at the
position (k, l) - on the other antenna ports is set to zero, thus inducing orthogonal received RSs
and consequently avoiding interference. It is depicted by dashed REs. Also, Figure 5.2 illustrates
the - previously introduced - RB allocation that we recall to be constituted of 14 OFDM symbols
- in time - and of 12 data sub-carriers - in frequency.

The DL RB in LTE(-A) possesses dimensions - in more than space - of frequency and time.
The two-dimensional grid bandwidth - 180 kHz - and duration - 1 ms - allow for challenging a
system’s sensitivity to frequency fading and Doppler, respectively. Simultaneously and in Sec-
tion 5.2, it will allow us to address the decrease in the computational complexity due to coherence
bandwidth or time. In the next section, another LTE(-A) standard requirement induces further
decreases in computational complexity and some basic concepts are introduced.

5.1.3 Closed-Loop Mode for Spatial Multiplexing

Consistently with Section 2.5, consider a nT -transmit and nR-receive nT × nR SM-MIMO-SC
system. The transmitted signal x is pre-multiplied by a nT × ν matrix W, by having previously
introduced (see Section 2.4.3) the number of layers ν. It is denoted as the precoding matrix. It
is chosen from a finite set of possible matrices W = {W1, · · · ,Wl}. The corresponding index of
the chosen precoding matrix is then send back to the transmitter using dlog2{l}e bits of feedback
through an assumed zero-delay link, where d·e denotes the rounding toward plus infinity. As a
consequence, the equivalent system model reads:

y = HWx + n, (5.5)
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Figure 5.2: Time-frequency RB with RS positions according to the antenna port, case of four
antenna ports.

where the notations remain those introduced in Equation (2.28).
By considering the system model introduced in Equation (5.5), two main issues arise. The first
is how to design the set W. Due to its setting by the 3GPP LTE(-A) standard [3GP07] - as
introduced in the sequel -, it is not addressed in the present work and the codebooks from the
standard are directly introduced. Anyway, it relies on general considerations provided in [Lov05b].
The second is the selection of an accurate precoding matrix from a - finite - codebook of matrices
W.

In the LTE(-A) standard, precoding for SM is only used in combination with layer mapping
that supports two or four antenna ports [3GP07].
In the case of a transmission on two antenna ports, the precoding matrix W shall be selected from
Table 5.6 configured in both the eNB and the UE [3GP07]. Briefly, it should be noted that this
table is designed such as to yield codebooks with large minimum distances, by considering them
with a rotated DFT form [Lov05a].

For transmission on four antenna ports, the precoding matrix W shall be similarly selected
from a table available in [3GP07]. The quantity W

{s}
n denotes the matrix defined by the columns

given by the set {s} from the expression:

W{s}
n = I4 − 2

U:,n(U:,n)H

(U:,n)HU:,n
, (5.6)

where the vector U:,n is given by a table available in [3GP07] that is not recalled in the present
work.
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Codebook index Number of layers
1 2

0
[
1

0

]
1√
2

[
1 0

0 1

]
1

[
0

1

]
1
2

[
1 1

1 −1

]
2 1√

2

[
1

1

]
1
2

[
1 1

j −j

]
3 1√

2

[
1

−1

]
-

4 1√
2

[
1

j

]
-

5 1√
2

[
1

−j

]
-

Table 5.6: SM precoding codebooks for 2 transmit antennas.

As previously evoked, the efficiency - from a performance point of view - of the selection cri-
terion depends on the receiver. In this section, two different receivers are briefly considered,
namely the MLD and the MMSE LD.
To the best of the author’s knowledge, no analytical expression of the probability of error is
available for the MLD. Nevertheless, a high SNR upper bound can be obtained through the in-
troduction of the received minimum squared distance d2

min of the multidimensional constellation
ξnT . It reads:

d2
min = min

x1,x2∈ξnT
x1 6=x2

‖HW(x1 − x2)‖2. (5.7)

The ML-Selection Criterion (ML-SC) [Lov05b] consists in choosing W such that:

W = arg max
Wi∈W

{
d2

min

}
. (5.8)

In the case of a MMSE LD, the selection criterion is based on the capacity (or mutual information
I) maximization. The mutual information reads:

I(W) = log2

{
det
(
σ2
nInT + (HW)HHW

)}
. (5.9)

The Capacity-Selection Criterion (C-SC) [Lov05b] consists in choosing W such that:

W = arg max
Wi∈W

{I(Wi)} . (5.10)

Exceptionally in the present work, the discussion offers a distinct - from the 4× 4 MIMO system
- study that aims at exhibiting the behaviour of the LR step - in particular the (S)LA - in the
Closed-Loop (CL) mode. It is due to the fact that precoding for SM is only used in combination
with layer mapping that supports two or four antenna ports in the LTE(-A) standard [3GP07],
consistently with the codebooks previously introduced. Thus, only the 2×2 and 4×2-dimensional
MIMO systems have been considered at the present date of publication.

As introduced in [Zha07b], the performance gain of LDs can be estimated through the OD mea-
surement - introduced in Equation (2.39) - of the effective channel matrix. In Figure 5.3, the CDF
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Figure 5.3: CDF of the OD, for a 2× 2 MIMO (a) and a 4× 2 MIMO (b) precoding schemes.

of the OD of HW is depicted for the ML-SC and C-SC CL modes. It should be noted that it is
independent of SNR. It is compared to the reference OL mode, namely the OD of H.

Clearly from Figure 5.3, an appropriate precoding bounds the OD of the effective channel
HW - this aspect is demonstrated in [Tep04] - with a 4 × 2 MIMO system. Also, the bounding
limit depends on the employed codebook and criterion.

The proposed LRA-MMSEE K-Best detector is still straightforwardly applied in the CL mode,
in particular the LR step. Nevertheless and interestingly, this particular mode will induce a
computational complexity decrease, as clearly stated in Section 5.2.3.

5.2 Computational Complexity Reduction

Until now, the data-dependent LSD’s computational complexity has been reduced to its max-
imum. In particular, a large part of the detector’s computational complexity has been shifted
to the preprocessing step. The arising coherence bandwidth or time induce correlations between
adjacent channels in frequency or time, respectively. Consequently, the preprocessing step is sub-
ject to a significant computational complexity decrease, by considering this additional available
information. The concerned steps are the (S)QRD and the LR. Contributive solutions provid-
ing computational complexity decrease have been proposed and are summarized in the following
sections.

5.2.1 QR Decomposition Preprocessing

In the present section, the advantage of shifting the detector’s computational complexity to the
preprocessing step is addressed for the (S)QRD.
While in the literature - and as strongly recalled in Section 3.1.2 - some classical (S)QRD algo-
rithms have been widely considered, the straightforward mono-carrier to multi-carriers extension
is not satisfying. Namely, it leads to a dramatic overall - over a whole RB - computational com-
plexity since the full-(S)QRD remains a demanding step [Aub10] that must be done NU times
for each time slot. As evoked in Sections 2.6 and 5.1.1, adjacent channel matrices are subject to
correlation in time, frequency or both.
Consequently in practical applications, a solution that provides the Qk′,l′ and Rk′,l′ output, from
any correlated Qk,l and Rk,l input and from the channel variation ∆H = Hk′,l′ − Hk,l, would
be computationally advantageous. In particular, if it maintains the performance. The interest is
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even obvious if we consider the trivial case of a channel - thus its (S)QRD output - as constant
over a certain number of REs. With this aim in view and to the best of the authors’ knowledge,
two main trends have been explored in the literature, by discarding the solution that consists in
considering the QRD output as constant within the coherence bandwidth or time.

Cescato et al. were interested in such a consideration early on. The technical solution that
they propose lies in the interpolation of full-QRDs - processed for only a limited number of REs
- through the Laurent Polynomial [CDA05, Wue06]. A smart additional and invertible mapping
makes this kind of interpolation applicable in [CDA05]. In [Wue06], this technique has been ex-
tended to the SQRD. Little success is offered, unless at the cost of a computationally expensive
calibration [CDA05, Wue06]. Otherwise, a performance floor is observed in the high SNR range.
Gor et al. [Gor06] propose another solution that lies in a direct tracking of the matrix Rk,l - in-
stead of classically tracking the channel matrix Hk,l at each RS position. Subsequently, the QRD
at each RE position is obtained from a full-QRD at each RS position. This solution is by nature
different since it consists in bypassing the QRD computation that is addressed in the present
section. Moreover, this absolute threshold-based solution involves a specific system configuration,
leading to implementation issues and in particular a weak robustness.
In the sequel, a novel approach is considered. It constitutes the first theoretical expression for
answering the aforementioned aspect. In particular, it relies on the matrix perturbation theory,
that is a field of linear algebra. It focuses on the extension of known results of perturbed matri-
ces, initiated by Kato in [Kat70]. We are interested in additively perturbed matrices, i.e. of the
form H̃ = H + ∆H . Stewart [Ste92] studied the series expansion of perturbations of the identity
matrix, and showed how to extend this result to perturbations of arbitrary matrices for Lower-
Upper (LU), Cholesky and QR factorizations. In this section, we focus on QR perturbation theory.

Dopico and Molera [Dop06] have stated that the series expansion of Cholesky factors can be
recursively defined as follows. We recall this result and provide a proof.

Theorem 5.2.1 (CF series expansion). We denote H ∈ CnT×nT - thus square - an Hermitian
positive definite matrix ( i.e. symmetric with real positive eigenvalues) with CF H = UHU, and EH
another Hermitian matrix, called perturbation. We consider the Hermitian matrix H̃ = H + EH
and set F = U−HEHU−1. Given any matrix A, we define AÛ as the matrix:

Aij =


1
2Aii, ∀i = j

Aij , ∀i < j

0, ∀i > j.

(5.11)

We denote |F| as the matrix that has {|Fij |}i,j as coefficients. If its spectral radius - i.e. its
maximal eigenvalue - ρ(|F|) < 1, then H̃ is positive definite and has a CF H̃ = ŨHŨ, with

Ũ =

(
InT +

∞∑
i=1

Ui

)
U, (5.12)

and the following upper triangular matrices:{
U1 = FÛ
Ui = (−UH

1 Ui−1 −UH
2 Ui−2 − · · · −UH

i−1U1)Û for i ≥ 2.
(5.13)

The existence of this CF is proven in [Dop06]. In the following proof and in addition to [Dop06],
the details of how Ũ is computed are given. To the best of the author’s knowledge, these have
not been previously given in the literature until [Aub11b].
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Proof. We denote H as a square and non-singular (det{H} 6= 0) complex matrix, such that
H = UHU is a CF. Also, we denote ||.|| as any consistent matrix norm. Namely, it should verify
that if |H| < |B|, then ||H|| < ||B|| and ||HB|| < ||H||||B||. As an example, the Frobenius norm
could be used while it is not the case in this demonstration in order to maintain the generality of
the proposed solution.
We assume that ||F|| < 1. Dopico and Molera show in [Dop06] that the perturbed identity InT +F

is positive definite and has a CF: InT + F = (UI)
HUI . This yields:

H̃ = UH(InT + U−HEHU−1)U = UH(UI)
HUIU = ŨHŨ, (5.14)

which is a CF of H̃ since UI is upper-triangular.
Moreover, ρ(|F|) ≤ ||F||. Note that in [Dop06], the spectral radius is used. It is valid for a wider
set of matrices. However in practice, checking the condition with the Frobenius norm is low-
computational while not affecting the proof. In the sequel, we will restrict to matrices verifying
||F|| < 1 for this norm.
Since H̃ = ŨHŨ, we can focus on the basic CF of perturbations of the identity matrix InT + F.

We multiply the perturbation matrix F by a complex factor z ∈ C to have some control on the
amplitude of the perturbation. The introduction of this new variable z allows for some interesting
complex analysis results. We compute the CF of the perturbation of identity:

InT + zF = (UI)
H(z)UI(z), (5.15)

where UI(z) is a complex function of z, and UI(1) = UI . These factors exist when ρ(|zF |) < 1,
i.e. inside the disc DF

C = {z ∈ C, |z| < 1
ρ(|F |)}.

Moreover, it can be shown, by studying the CF algorithm, that UI(z) is a rational function of z
when ρ(|F |) 6= 0. Therefore, the coefficients of UI(z) are analytic functions of z in DF

C , and the
Taylor series of UI(z) around 0 are power series in DF

C .

We write U =
∑∞
i=0 Uiz

i, which leads - by using the power series multiplication rule - to:

InT + zF = UH(z)U(z) = (

∞∑
i=0

(Ui)
Hzi)(

∞∑
j=0

Ujz
j) =

∞∑
i=0

(

i∑
j=0

(Uj)
HUi−j)z

i. (5.16)

Subsequently and by matching the terms with the same power of z, we get:
InT = (U0)HU0, (i = 0)
F = (U0)HU1 + (U1)HU0, (i = 1)
0 = (U0)HUi + (U1)HUi−1 + . . .+ (Ui−1)HU1 + (Ui)

H(U0)H , (i ≥ 2)
(5.17)

All the Ui’s are upper triangular and the previous equations lead to their definitions. In particular
and for i = 0, we get U0 = InT . Next - for i = 1 -, F = U1 + (U1)H , and we get U1 = FÛ , as
defined in Theorem 5.2.1. Finally for i ≥ 2, we get Ui+(Ui)

H = −(U1)HUi−1−. . .−(Ui−1)HU1,
and - similarly to the simpler case k = 1 - Ui = (−(U1)HUi−1 − . . .− (Ui−1)HU1)Û .
Finally, Ũ = (InT +

∑∞
i=1 Ui)U is obtained for z = 1.

In this section, we now focus on the QRD. Namely, the perturbation of H - that can be seen as
the QR product - is treated. The novelty lies in the extension of the previous result to the QRD.
This way, it allows the acquisition of "perturbed" Q and R factors, thus taking advantage of the
correlation between adjacent channels.
By introducing B = HHH and B̃ = H̃HH̃ with H̃ = H + EH , we get:

B̃ = HHH + HHEH + (EH)HH + (EH)HEH (5.18)

= HHH + HHEH + (EH)HH +O(‖EH‖2). (5.19)
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Since H is necessarily QR decomposable, it rewrites H = QR, with the notations introduced in
Section 3.1.2. This yields B = HHH = RHR, which can thus be considered as a CF of B.
Now, we computeR−HB̃R−1 = InT +R−H(HHEH+(EH)HH+EHHEH)R−1, and setEB = HHEH+

(EH)HH + EHHEH , which is also Hermitian. Theorem 5.2.1 can be applied to B + EB as soon as
the condition ρ(|FB |) < 1 is satisfied for:

FB = R−H(HHEH + (EH)HH + (EH)HEH)R−1. (5.20)

Subsequently and for F = FB , the key expression - for a QRD - arise from Equation (5.12) and
reads:

R̃ =

(
InT +

∞∑
i=1

Ri

)
R. (5.21)

In particular, the first approximation orders of R factors read:
R̃0 = R

R̃1 = (InT + FÛ )R

R̃2 = (InT + FÛ − (FH
Û
FÛ )Û )R.

(5.22)

Subsequently, Q̃ may be obtained as H̃R̃−1, and simplified by introducing some approxima-
tions [Ste92]. As an example with the first approximation order of Q, we are able to compute Q̃1:

Q̃1 = H̃R̃−1
1

= (H + EH)R−1(InT + FÛ )−1

= (Q + EHR−1)(InT − FÛ )

≈ Q(InT − FÛ ) + EHR−1.

(5.23)

By considering the expression given above, it should be noted that - by neglecting the residual
(EH)HEH = O(‖EH‖2) - the first order formula corresponds to an existing result that is pro-
posed by Stewart [Ste92]. How to obtain a convenient formulation about the expression of Q is
not further addressed since its proposed application - namely the LSD - relies on R̃ only.

The only required statement in Theorem 5.2.1 is that the spectral radius - that is recalled to
be the maximal eigenvalue - of |F| is smaller than 1. It is not reasonable in practice to check
this computationally expensive condition that is of the order of a full-QRD. Fortunately, Theo-
rem 5.2.1 remains valid if the condition is replaced by ||F|| < 1 - under the condition that it is
a consistent norm - which is a novel approach. The Frobenius norm is one of these norms. The
Frobenius norm-based criterion is an efficient low-complexity tool - drastically cheaper to compute
while providing a satisfying simplification of the algorithm - as further detailed.

Equation (5.21) is applicable to our context. At this point, it is convenient to make use of the
notations specified in Section 2.5, in particular in Equation (2.28). While the expression is exact -
namely it tends to the exact full-QRD Rk′,l′ output towards infinity - when the series converges,
a dramatic accuracy loss is observed when the series diverges. Consequently, the convergence
criterion has been considered in the solution proposed in [Aub11b]. As previously suggested in
the formula’s demonstration, the convergence criterion is advantageously replaced by the squared
Frobenius norm ‖F‖2F = Trace{FHF} of F, defined as:

F = R−Hk,l (HH
k,lEH + (EH)HHk,l + (EH)HEH)R−1

k,l . (5.24)

Thus, deciding whether the proposed formula should be applied or not can then be done in a low-
computational way. Our solution introduces the variable choice of the nth order of the series to be
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C T

full-QRD [Aub10] 4n3 + 30n2 + 32n 4n3 + 30n2 + 32n

VIQRD cn3 + 8n2 + 22
3 n

2
3n

3 + 8n2 + cn

Table 5.7: C and T equivalence, expressed in MUL.

considered. It is set depending on whether the convergence criterion is respected or not. Namely,
different series orders ndv and ncv are selected, according to the divergence or convergence of the
series, respectively. We have:

Rk′,l′ =

(
InT +

nend∑
i=1

Ui

)
Rk,l, (5.25)

with nend chosen as ndv or ncv. The existence of an efficient couple (ndv, ncv) has been shown
by simulations, in the practical case. It will be introduced in the sequel and the corresponding
technique is denoted as the Variable Incremental QR Decomposition (VIQRD) [Aub11b].

The algorithm proposed in the previous section is generic and allows for the consideration of
an adjacent channel in time or in both time and frequency domains. In the case of an adjacent RE
in the frequency domain, additional memory for channel coefficients storage is not needed. That
is why, without loss of generality, we focus on the frequency domain neighbourhood in this section.

The computational complexity of the GS-based full-QRD has been theoretically obtained [Aub10]
and is displayed in Table 5.7. Herein, for the sake of readability in the computational complexity
expressions, we consider nR = nT = n and introduce the auxiliary constant c = (74 + 6ncv(ncv −
1))/3. While we recall - from Section 3.2.7 - that the Q calculation is unnecessary for the SD
detector, it is necessary within any full-QRD algorithm. Thus the computational complexity that
is summarized in [Aub10] cannot be reduced.
The computational complexity of the VIQRD algorithm can be split into the inversion of Rk,l,
the convergence criterion computation and comparison to 1 and finally the series calculation. By
assuming that ndv ≤ ncv, its maximal computational complexity C has been theoretically obtained
and is introduced in Table 5.7.

It is clear from Table 5.7 that both the full-QRD and the VIQRD offer a O(n3) total com-
putational complexity. Nevertheless, we introduce a comparison parameter in order to make a
distinction between them, namely the time complexity T . It has been strongly introduced in Sec-
tion 2.7.3 and we recall that it is related to the number of processors available for implementation.
According to the discussion introduced in Section 2.7.3 from [Li 99], the time/processor complexity
trade-off is summarized. By considering a highly parallel DSP architecture allowing to operate on
16 16-bit words vectors - and since the LTE(-A) norm requires to provide up to 8× 8 antennas in
the DL - any matrix multiplication time complexity within the VIQRD algorithm becomes O(n)

(see Section 2.7.3). Thus, this discussion still holds true with an EVP (see Section 2.7.3).
This parallel architecture will significantly reduce the time complexity of the VIQRD since parallel
calculations are allowed. It is not the case of the full-QRD [Aub10] due to the iterative nature of
the related algorithms [Aub10]. The main part of the time complexity effort lies in the Rk,l matrix
inversion, despite simplifications induced by real diagonal entries. Its maximal time complexity
has been theoretically obtained and is given in Table 5.2. Thus it is clear that our algorithm
implementation offers a reduced time complexity compared to full-QRD.
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From now on, the full-QRD/VIQRD mixing over a whole RB is presented. By considering p

as the ratio of full-QRD processing within the RB, and dually (1 − p) the ratio of VIQRD pro-
cessed, the total time complexity reads:

TMixed = p(4n3 +O(n2)) + (1− p)(2

3
n3 +O(n2)). (5.26)

In Figure 5.4, the time complexity advantage of the proposed solution is highlighted through nu-
merical evaluations. In particular, for p=1/2, the time complexity over an RB is significantly
reduced, namely by a factor of 42%, independently of the channel matrix size.

In Figure 5.5, the uncoded BER performance of the QRD-based K-Best LSD is depicted with
the use of 4-QAM modulations in a 4× 4 system. The neighbourhood size K is set to 1, 2, 3 and
4, similarly to Figure 3.7. The full-QRD and the aforementioned - (ndv, ncv) = (1, 2) and p=1/2
- mixed solution are considered and compared to the reference MLD. The simulation results are
provided according to 3GPP LTE channel models. We focus on the EVA model - that corresponds
to a medium delay spread environment - and on a mobile speed of 50 km/h with a carrier fre-
quency of 2 GHz. The entire channel bandwidth has been divided into 512 sub-channels, which
leads to 300 tones allocated to data transmission.

The performance in Figure 5.5 confirms the efficiency of the proposed solution technique. As
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it is depicted - and with the aforementioned system configuration and VIQRD calibration - the
42% time complexity decrease is achieved at the price of a SNR loss compared to the reference
full-QRD-based 4-Best, which is the closest-to-MLD. The - small - inaccuracy of the proposed
solution impacts the performance of the SD when it is near-MLD. It is particularly clear in the
high SNR range. It is due to the detector nature itself that is not robust to imperfect channel
estimation - or computation. This sensitivity disappears with a smaller neighbourhood study.
Also, the performance loss between reference and proposed solutions will be reduced through the
fixed point step that will introduce quantification noise.

However, the proposed solution only offers a tiny performance improvement compared to a con-
stant QRD over a certain number - that is required to be efficiently estimated - of REs. It is
particularly true in the worst-case computational complexity configuration - the maximal number
of sub-carriers - where the maximal correlation in frequency arises and thus the coherence band-
width is large.

The occurring trade-off leads to a discussion about the accepted performance loss that depends on
the system requirements. This idea is retained as a possible alternative. While this preprocessing
step - as previously claimed - offers a possible time complexity decrease, more advantageous results
are provided in the sequel.

5.2.2 Lattice-Reduction Preprocessing

In the present section, the advantage of shifting the detector’s computational complexity to the
preprocessing step is addressed for the LR.
Similarly to the section above, the full-(S)LA is not straightforwardly applied on each channel
within the RB. Namely, the correlation between adjacent channels is exploited. To the best of the
author’s knowledge, only one main trend has been explored in the literature.

Precisely, we denote two adjacent channels H1 and H2. Consistently with Section 3.3.2, their
reduced forms read H̃1 and H̃2 and their transformation matrices read T1 and T2, respectively.
We apply the (S)LA on the pre-reduced matrix [Mur08, Mur09], which means that the (S)LA is
applied on the matrix H2T1. Due to the lattice definition stated in Section 3.3.2, it is equivalent -
it generates the same lattice points - to directly applying it on H2. This way, the accurate reduced
matrix H̃2 is obtained through the transformation matrix T

′

2 [Mur08, Mur09] - different from T2

- such that:
T2 = T

′

2T1. (5.27)

Advantageously when correlation arises, a large number of swapping and reduction inside the
(S)LA have been previously - occasionally on the adjacent channel - done, thus inducing a decrease
in the computational complexity [Mur08, Mur09]. The two additional matrix multiplications have
been taken into account in the simulation results that are depicted in the sequel. It is important
to note that this solution is exact and does not introduce performance loss.

In [Naj11], two different methods are discussed. The first is the exact technique proposed
in [Mur08, Mur09] and introduced just above. Nevertheless, an additional theoretical study -
through the 1st order autoregressive model - is offered in [Naj11].
The second induces more savings in the computational complexity. However, it only relies on the
use of the same matrix T over a certain number of adjacent channels [Naj11]. The accurate H̃ is
subsequently deduced from the relation H̃ = HT. With this aim in view, the LR step is or is not
applied according to a condition that relies on the OD criterion [Naj11]. However, such a solution
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Figure 5.6: CDF of the number of equivalent MUL of the SLA with or without pre-reduction.

is suboptimal and it is only interesting in high-correlation scenarii.
Also, a mix of both these methods is discussed but is not satisfying either.

In Figure 5.6, the MMSE-SQRD-based (see Section 3.1.3) SLA (see Section 3.3.2.1) with pre-
reduction is depicted. In the simulations, the pre-reduction aspect has been directly considered
in time, the reason will become clear in the sequel. Consequently, each channel Hk,l - except for
k = 1 -, is pre-reduced by the matrix Tk−1,l that corresponds to the SLA of the previous channel.
It is compared to the reference - without pre-reduction - QRD-based LA, thus denoted as full-
LA. The CDF of the number of equivalent MUL of the SLA is depicted. In the simulations, we
consider the worst-case - that induces the least correlated H1 and H2 in time - maximal Doppler
frequency, namely 70 Hz according to Section 5.1.1. Also, the worst-case - that induces the least
correlated H1 and H2 in frequency - ETU channel model is employed. While it offers conve-
nient correlation in frequency, an FFT size of 2048 is considered since it corresponds to the most
demanding configuration, thus justifying further studies in the computational complexity decrease.

Clearly from Figure 5.6, the presented solution offers a significant computational complexity
decrease in mean. Even the maximum computational complexity is reduced, while it is not theo-
retically stated neither in the present literature nor in this work. Consequently, the NP-hard nature
of the (S)LA is still relevant and must be discussed for implementation. In particular, a thresh-
olded variant of the (S)LA is required. Consistent with Section 3.3.2, the (S)LA’s computational
complexity decreases exponentially. By considering the pre-reduced solution, the computational
complexity decreases more rapidly compared to the reference one. Thus, the pre-reduced SLA can
be thresholded more efficiently, even if a tiny performance loss still occurs.
While taking advantage of correlation in frequency is efficient - namely, for 95% of SLA calls, a
computational complexity decrease by a factor of 2.6 arises - simulations show that taking advan-
tage of correlation in time leads to a higher computational complexity decrease. Namely and for
95% of SLA calls, a computational complexity decrease by a factor of 3.5 is obtained.
Nevertheless in this case and as claimed in Section 5.1.1, an additional memory cost is required.
It consists in storing one additional T matrix - namely the previous one in time -, by interestingly
noting that its entries are all Gaussian - complex, with real and imaginary integer parts - which
induces to a reasonable cost. In particular with a 4 × 4 MIMO scheme, T is made of 16 entries
that are signed integers. The maximal occurring - signed - value being lower to 8 (in absolute
value), 4 bits are sufficient for each entry, thus inducing a - low - additional memory cost of 64 bits.
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Further improvements are possible. In particular, a smart extension of this idea can be proposed
and offers a further computational complexity decrease, again with no performance loss. However,
this novel solution has not been protected for the moment, thus inducing the non-disclosure of
this idea.
Also and depending on the environnement or the available resources, a more agressive threshold
may be used. Thus, it leads to an important complexity decrease even if a performance loss occurs.

As a conclusion, this solution is retained and is considered to be of high interest. It leads to
a promising - since this study remains an algorithmic study - detector for the 4 × 4 SM-MIMO-
OFDM scheme with the LTE(-A) standard. In particular, the advantage of shifting the detector’s
computational complexity to the preprocessing step clearly arises here.

5.2.3 Lattice-Reduction Preprocessing in the Closed-Loop Mode

In the present section, the advantage of shifting the detector’s computational complexity to the
preprocessing step is addressed for the LR in the CL mode.
Similarly to the section above, a decrease in the computational complexity is expected due to prac-
tical requirements. But here, differently, it does not rely on correlation between adjacent channels.
In particular, CL mode allows for precoding, which offers an advantageous aspect when set prior
to the LR step. Namely, it makes the effective channel better conditioned, thus decreasing the
computational complexity of the (S)LA.

It is due to the large part of likeness between the impact of the precoding and of the LR step on
the equivalent channel. Nevertheless, it should be noted that this method is different since the
LR step is processed in reception only, while the CL mode requires a feedback loop. In Figure 5.7,
the idea of (S)LA applied with precoding is depicted in a block-scheme manner. It is constituted
of a simplified version of Figure 3.15 - with the same notations - and the selection process of a
precoding matrix W is added, consistently with Section 5.1.3.

As a consequence, the pre-multiplication by a precoding matrix W leads to a better conditioned -

x T−1 ˜(HW) +

n

Detector x̂

˜(HW)zz y

Choose
W ∈ W

Select
W ∈ W

index

Figure 5.7: LRA detector bloc-scheme with precoding.

compared to H and according to the selected criterion (see Section 5.1.3) - effective channel matrix
HW. Consequently, a lower number of swapping and reduction inside of the (S)LA is required,
thus leading to a computational complexity decrease to obtain the reduced channel matrix ˜(HW).
Moreover, the (S)LA improves the conditioning of the reduced channel matrix compared to the
precoding step alone, thus improving the corresponding detector’s performance. It is due to the
finiteness of the available codebooks, introduced in Section 5.1.3.
Both the performance and computational complexity aspects will be discussed through simula-
tions in the sequel. Also, a particular attention will be paid to computational complexity bounds
of both the SLA and SA, which is an essential aspect for implementation.
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Figure 5.8: CDF of the OD, for a 2× 2 MIMO (a) and a 4× 2 MIMO (b) precoding schemes.

In Figure 5.8, the CDF of the computational complexity of the LA is depicted, with both the
ML and capacity selection criteria. It is compared to the reference - with no LR - CL mode, also
with both the introduced criteria. In addition, the SA has been depicted in order to eventually
soften the choice of the (S)LA - versus SA - for the LR step, previously introduced in Section 3.3.2.
In the simulations, the 2 × 2 and 4 × 2 - available - modes have been considered and 1.000.000
i.i.d. channel matrices have been drawn, which is large enough for providing relevant simulation
result about - OD and computational complexity - upper bounds.

As depicted, the LR step following an appropriate precoding offers improved OD of the equivalent
channel matrix. It should be noted that with both the 2×2 and the 4×2 systems, there is no gain
- from an OD criterion point of view - with SA compared to (S)LA. It is due to the dimension of
the study that consists in reducing only matrices made of two column vectors. Consequently, the
most accurate - while most complex - SA does not offer improved performance.

In Figure 5.9, the CDF of the computational complexity of the LA and the SA is depicted,
with both the ML and capacity selection criteria. It is compared to the reference - with no LR
- CL mode, also with both the introduced criteria. In the simulations, the 2 × 2 and 4 × 2 -
available - modes have been considered and 1.000.000 i.i.d. channel matrices have been drawn.
The maximal number of MUL is pointed out by markers.

Obviously, the mean computational complexity is decreased in both the 2× 2 and 4× 2 MIMO
systems, by assuming that the accurate selection criterion has been employed.
Last but not the least, while the upper bounded computational complexity of the (S)LA/SA does
not change in 2× 2 MIMO systems compared to the OL mode, it is decreased in 4× 2 systems. It
is due to the OD bound - away from 1 - in 4× 2 MIMO systems, exhibited in Section 5.1.3. The
link between the OD bound - made away from 1 - and the C-SC (see Figure 5.3) is demonstrated
in [Ma 08]. This aspect vindicates that we expected the computational complexity of the LR step
to be bounded also. To the best of the author’s knowledge, this interesting aspect has not been
theoretically shown in the literature nor in the present work.
Moreover, a better computational complexity decrease arises with LA compared to SA, thus en-
dorsing the choice of the (S)LA at the LR step, as introduced in Section 3.3.2.

The aforementioned discussion about the mean and maximal computational complexities is clearly
summarized in Tables 5.8 and 5.9, subsequently to Figure 5.9. The simulation setup remains un-
changed.
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Figure 5.9: CDF of ln(MUL) for LA-based and SA-based LR, for a 2× 2 MIMO (a) and a 4× 2

MIMO (b) precoding schemes.

OL CL C-SC CL ML-SC

mean max mean max mean max
LA 223 1225 165 1224 227 1226
SA 1373 3200 1233 3200 1381 3200

Table 5.8: Mean and maximum complexities in OL, CL C-SC and CL ML-SC cases, in Complex
2× 2 MIMO case.

In 2 × 2 MIMO systems, a mean computational complexity decrease of up to 26% occurs for
LA-based LR, by considering the C-SC. Simultaneously, the upper bound of the computational
complexity remains unchanged.

In 4 × 2 MIMO systems, a mean computational complexity decrease of up to 58% occurs for
LA-based LR, by considering the C-SC.
Simultaneously, the upper bound of the computational complexity is decreased, despite the finite-
ness aspect of the codebook required by the LTE(-A) standard. The decrease is significant, namely
39% for LA-based LR, by considering the C-SC.

The proposed LRA-MMSEE K-Best detector still straightforwardly applies in the CL mode, in
particular the LR step. Nevertheless, this particular mode will induce a computational complexity
decrease. Since the system calibration relies on the worst-case computational complexity - namely
the 4× 4 SM scheme and OL mode - and for a fixed clock rate, the CL mode will offer a reduced
consumption in the LR step - according to the presented algorithmic choices. It should be further
noted that, interestingly, the introduced results on the computational complexity are independent
of SNR, consistently with the claimed advantages of shifting the computational complexity to the
preprocessing step.
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OL CL C-SC CL ML-SC

mean max mean max mean max
LA 223 1226 159 509 176 746
SA 1373 3200 971 1856 1079 2304

Table 5.9: Mean and maximum complexities in OL, CL C-SC and CL ML-SC cases, in Complex
4× 2 MIMO case.

5.3 Performance and Computational Complexity Evaluation
of the Proposed Solution

By aiming at assessing the conclusions brought by the previous sections, the performance and
computational complexity of the proposed detector are evaluated and discussed.

5.3.1 Simulation Setup

With this aim in view and for the sake of comparability with the literature, the simulation setup of
the provided scenario is clearly stated. While the general aspects are only recalled from previous
sections, some particular - required or induced by the LTE(-A) standard - features are clearly
established.

In this section, the simulation results are provided following the system overview that has been
previously introduced in Figure 2.6. The general simulation setup remains unchanged compared to
what is stated in Chapter 4 and in particular in Section 4.2.2. We recall here the most important
ones.
The - coded - BER performance of the proposed LRA-MMSEE K-Best detector is provided for
a 4× 4 SM-MIMO-OFDM system, for the two extreme 4-QAM and 64-QAM modulations. Even
at this final step, the academic Rayleigh fading MIMO channel is considered since it has been
widely introduced - in Section 5.2 - that practical propagation environments do not impact the
performance, although they lead to computational complexity decrease. Concerning the OFDM
modulation, the worst-case configuration is considered. Namely, an FFT size of 2048 sub-carriers
that leads to 1200 data sub-carriers (see Section 5.1.2).

Nevertheless, practical requirements and normative aspects from the LTE(-A) standard induce
some special features.
At the transmitter, data bits are first serial-to-parallel-converted into four data streams. Each
information data sequence is independently turbo encoded, according to the considerations in
Section 2.2. While the original coding rate is R = 1

3 , the sequences are then punctured - through
a Rate-Matching (RM) algorithm [3GP10] - to obtain the desired coding rate. Thus the desired
rate is reached when the resultant encoded sequence is data-modulated. In particular, the RM
algorithm selects certain bits for transmission. Since they are determined based on the available
physical resources, the RM generates puncturing patterns of arbitrary rates. More details are
provided in [3GP10]. In accordance to the standard [3GP09d], the considered rates are R = 1

2

and R = 3
4 for 4-QAM and 64-QAM constellations, respectively. It is recalled to be denoted as

the MCS.
On top of channel coding, each block of data is further protected against transmission errors
by adding a Cyclic Redundancy Check (CRC) [3GP10]. By relying on the CRC processing,
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ACK/NACK responses are generated, thus indicating the correct or incorrect reception of a block,
respectively.
In order to make the most of the system capacity and coverage - given a power of transmission -
for each user, the information data rate is adapted according to the quality of the channel link, at
the transmitter. In the LTE(-A) standard [3GP09b], the UE can be configured to report Channel
Quality Indicators (CQI). The CQI reports are derived from the DL received signal quality, typi-
cally based on measurements of the DL RSs [Ses09]. Subsequently, it is possible for the eNodeB
to play on an appropriate MCS for the DL transmissions, by means of a CQI value. It is stated
in the standard [3GP09b] but not recalled here. This is commonly referred to as link adaptation
and is typically based on Adaptive Modulation and Coding (AMC) [Ses09]. Also, this feature is
not considered in the present simulation results. Thus at the transmitter, the four data streams
are segmented into blocks containing a selected number of bits per packet frame, according to the
aforementioned MCS.
In the presence of services tolerating higher transfer delays, the Hybrid-Automatic Repeat reQuest
(HARQ) retransmission of packets may be configured [Ses09]. Subsequently and in response to DL
data packets, two ACK/NACK bits are transmitted in case of a two codeword DL transmission.
In the case of retransmission through the HARQ - due to the occurrence of an incorrectly received
block -, LLR values of preceding receptions are combined with the current ones. By proceeding
this way, the SNR in a code block is increased, thus improving the performance. This feature is
not considered in the present simulation results.

According to the conclusions brought through the previous sections, the proposed solution is
clearly stated. This detector is denoted as soft-decision RDN LRA-MMSEE K-Best. It incorpo-
rates numerous blocks that have been presented in detail in this work. In particular, the whole
detector is split into four main distinct parts:
– The preprocessing step, which includes the MMSE-SQRD prior to SLA algorithms. It is recalled
to exclusively depend on the channel H and - the noise σ2

n - that leads to an efficient detection
by some re-arrangements (see Sections 3.1.3 and 3.3.2);

– The loading step, which aims at centring the search phase around an advantageous close-to-
optimal solution, namely the LRA-MMSEE LD (see Section 3.3.3);

– The detection step, which depends - among others - on data. It consists in a K-Best - in
the reduced domain - SD technique. Thus it is a neighbourhood search that generates a K-
dimensional list of solutions (see Section 4.4);

– The LLR generation block, which strictly speaking constitutes the soft detection step (see Sec-
tion 4.4.3.1).

In Figure 5.10, the complete description of the structure of the soft-decision RDN LRA-MMSE
K-Best detector is depicted in a block-scheme manner. The detector’s parameters are clearly
stated. In particular, they are split into:
– The input: y, H and σ2

n;
– The output: Λ(blk | y,H);
– The parameters: K, which is the search size in the original neighbourhood; N , which is the
search size in the reduced neighbourhood; ξ, which is the constellation set; Λclip(blk), which is
the clipping value for the LLRs that cannot be calculated explicitly.

Within the proposed solution, a particular attention has been paid to the detector’s architecture.
Namely, the detector’s computational complexity has been shifted to the preprocessing step as
much as possible, which clearly arises in its block-scheme in Figure 5.10. Such a strategic approach
turns out to be relevant from both its computational complexity and performance point of view.
This aspect is clearly stated in the next section.
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5.3.2 Parametric Study

We consider the simulation setup previously stated. The proposed detector is recalled - also from
Section 5.3.1 - to depend on parameters. Clearly, their choice will impact both the performance
and the computational complexity of the detector.

In Figure 5.11, the BER performance of the proposed soft-decision LRA-MMSEE K-Best de-
tector is depicted with K set to 4. It is compared to the K-Best with K set to 4 and 1 with the
4-QAM and 64-QAM modulations, respectively. It is due to similar computational complexities,
as stated in Table 5.10. Concerning only the proposed solution, the neighbourhood size in the re-
duced domain N is - as in Section 3.4.5 - set to 5. The max-log approximation in Equation (4.11)
is employed when possible. Otherwise, the employed FLC is ±8. Also, the reference MLD is
depicted for the sake of comparison.

As it is depicted, the soft-decision RDN LRA-MMSEE K-Best performance is very close to
the MLD, even with 64-QAM modulations. Namely, SNR offsets of 0.5 and 1.22 dB occur at a
BER of 10−2 with 4-QAM and 64-QAM modulations, respectively. To the best of the author’s
knowledge and for the 4× 4 SM-MIMO-OFDM scheme, the attained performance is very attrac-
tive compared to the techniques from the literature. Thus, it stands as an efficient solution in
comparison with existing techniques. As a example, we consider a reference detector that offers
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a similar computational complexity, namely the K-Best with an appropriate - of similar com-
putational complexity - K. The proposed detector outperforms the K-Best. In particular with
64-QAM modulations, it offers about 5 dB of SNR improvement.

The presented performance has been obtained by setting the detector’s parameters according
to the following:
– K has been set to 4. It is relatively small compared to what is required for most of the K-Best
LSD in order to approach the MLD performance. It is due to the LR preprocessing step that
reduces the ILIs (see Section 3.3.3);

– N has been set to 5. It is relatively small compared to what is required for most of the naïve
LRA K-Best LSDs in order to approach the MLD performance, in particular for high-order
modulations. It is due to the LRA-MMSEE loading step that centres the neighbourhood search
around a convenient - while suboptimal - solution (see Section 3.4.5);

– Λclip(blk) has been set to ±8. It is relatively large compared to what is required for most of
the naïve K-Best LSD (see Section 4.4). It is due to the efficiency of the hard-detector, that
aims at drastically reducing the neighbourhood search size. Namely, the latter is so small that
the number of missing counter-hypothesis - thus of to-be-clipped LLRs - becomes large, thus
becoming an issue for the soft-decision step. Consequently, the impact of an accurate clipping
value increases. In the present work, a simple FLC is used and is chosen to be large due to the
discussion in Section 4.4.3.1.

At this point, the required computational complexity of the proposed detector is provided. A
realistic environnement is considered. Thus and as introduced in Section 5.2.2, the computa-
tional complexity decrease is taken into account. Namely the MMSE-SQRD-based SLA with
pre-reduction in time is considered. The computational complexity decreases introduced in Sec-
tions 5.2.1 and 5.2.3 are not considered.
Since it aims at calibrating the receiver, their estimations are provided in the worst-case configura-
tion. Similarly to Section 5.2.2, the ETU channel model, a 70 Hz maximal Doppler frequency and
an FFT size of 2048 have been adopted. Also, the computational complexity of the preprocessing
step has been computed over a whole RB, then it has been taken down to an RE. Consequently,
the preprocessing step is achieved in 95% of the instances for a computational complexity of 1200
MUL (see Section 2.7.3).

The computational complexity of the RDN LRA-MMSEE K-Best detector can be provided in
an analytical manner:

2N min{K,N}n2
T + 2 min{K,N}n2

T + 2 min{K,N}nTnR + 4n3
T + 8n2

TnR

+30 min{K,N}nT − 4N min{K,N}+ 2 min{K,N}nR + 4nTnR + 4n2
T

+2N − 32 min{K,N}+ 1200. (5.28)

In Table 5.10, the computational complexities of the proposed detector are summarized. Ad-
vantageously, a constant - in the constellation size - computational complexity is obtained. By
considering the K-Best detector as a reference - which is common in the literature -, drastically
improved performance occurs with the RDN LRA-MMSSE K-Best detector. The advantage is
weaker for the 4-QAM modulation due to discussion is Section 3.4.4.

Consistently with discussion in Section 3.4, it possible to check in Table 5.10 that the com-
putational complexity of the soft-decision RDN LRA-MMSEE K-Best detector does not depend
on the constellation order |ξ| (concerning the most significant terms). It is the key point of this
advantageous solution over classical techniques for high order modulations. Also, it is independent
of the SNR. As a consequence, the proposed solution offers a computational complexity decrease
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MUL 4-QAM 16-QAM 64-QAM

K 4 4 16 1 4 64

K-Best 1940 3840 11616 3904 11032 153592
RDN LRA-MMSEE K-Best 3466 3466 3806 2446 3466 3806

Table 5.10: Computational complexities equivalences.

by a factor of 3.4 for 16-QAM and - above all - 44.3 for 64-QAM modulations.
It has been decided by simulations that an efficient computational complexity/performance trade-
off leads to setting the K to 4 and N to 5. It corresponds to a computational complexity of 3806
MUL for each call of the proposed solution, namely for each RE.

The computational complexity of the RDN LRA-MMSEE K-Best solution reaches a ceiling for K
greater than 5 due to the min{K,N} term within Equation (5.28).
While the parameters N , K and Λclip(blk) have been smartly - from simulations and for the pur-
pose of an efficient computational complexity/performance trade-off - calibrated, they rely on a
general 4× 4 system. As an example, lower N and K are required in the CL mode. Anyway and
while a small K - namely of 4 - has been chosen, it cannot be further reduced as is. According
to the employed FLC and since starting from a quasi-ML - the LRA-MMSEE - hard-decision,
the proposed solution offers a neighbourhood set output that is very concentrated around the
hard-decision. Thus, the number of missing counter-hypothesis is very important and Λclip(blk)

must be chosen as small. However and due to the efficiency of the hard-decision, the missing
counter-hypothesis are very unreliable and are set to ±8. K is increased for this reason only,
while a K set to 2 is sufficient in hard-decision for reaching the MLD performance, even with
64-QAM modulations.

In the next section, practical complexity measurements are provided in the LTE(-A) background.

5.3.3 Rate Estimation

The detection step is fully processed for each RE within the RB grid. As stated in Section 5.1.2, the
number of occupied sub-carriers is up to 1200, thus the worst-case - the highest-computational -
calibration requires the detection of 1200 REs per OFDM symbol. Also, we recall that the number
of OFDM symbols within one 1 ms is 14.
Simultaneously, the number of OFDM symbols dedicated to Physical Downlink Control Channel
(PDCCH) [3GP07] - that does not require detection - is comprised between 1 and 3. Thus, the
worst-case configuration requires the detection of 13 OFDM symbols that are dedicated to data
(and RSs). As depicted in Figure 5.2, the pattern of RSs is provided for four antenna ports that
do not require detection, either. We do not reconsider the PDCCH symbol that also contains RSs.
In the worst-case configuration, 5 ∗ 1200/3 = 2000 REs are not used for data transmission.
Consequently and by relying on the computational complexity from Section 5.3.2 with 64-QAM
modulations, the upper bound rate - with no parallelism consideration, thus the number of Million
of Operations Per Second (MOPS) equals the number of Million of Instructions Per Second (MIPS)
- of the proposed solution is:

CSoft-decision RDN LRA-MMSEE K-Best = 52.578 GIPS. (5.29)

Within this rate and by considering the detector’s block in Figure 5.10, 37% of the effort is re-
quired at the preprocessing step, 20% at the loading step, 22% for the neighbourhood search and
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21% for the LLRs computation.

We claim that - to the best of the author’s knowledge and at the present date of publication - the
introduced computational complexity offers a very competitive performance-complexity trade-off,
among the existing detectors in 4 × 4 SM-MIMO-OFDM systems and in the OL mode. Also, it
positively answers the multiple implementation issues.
Even the promising FSD is gone over - in particular with 64-QAM constellation - since its com-
putational complexity depends on the constellation size. By way of an indication and without
specific simplifications through the implementation step, the FSD in 4 × 4 systems - calibrated
with K = {1, 1, 1, |ξ|} for all the layers in [Bar06a] - offers an upper bound rate of 95.091 GIPS.

Along the present work, a particular attention has been paid to the detector’s architecture.
Namely, the computational complexity has been shifted to the preprocessing step as much as
possible, thus inducing an almost constant - in the constellation size (see Section 5.3.2) - compu-
tational complexity, while offering near-MLD performance. Such a strategic approach has been
shown to be advantageous from both a computational complexity and performance point of view.
Consequently, the soft-decision RDN LRA-MMSEE K-Best compares to existing 4× 4 detectors
as a very efficient solution.
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This thesis has addressed the challenge of demultiplexing the transmitted symbols via spatial
multiplexing-MIMO techniques. Discussions and conclusions have been provided by focusing on
4×4 systems. The overall objective was to reach near-optimum performance at the detection step,
while offering polynomial computational complexity. While providing a solution to this problem,
careful consideration of implementation issues and an efficient performance/complexity trade-off
within the LTE(-A) framework were considered.

6.1 Conclusion and contributions

Particular attention was paid to the detector’s architecture. Namely, the computational complex-
ity was shifted to the preprocessing step as much as possible. With this aim in view, the present
work has led to numerous contributions throughout the previous chapters.

In Chapter 3, an inventory of the existing solutions was presented. Contributive results have
then been provided at the preprocessing step.
Particular attention was paid to parallelism capabilities of the QR decomposition in [Aub10].
Also, a smart arrangement in the QR decomposition bypasses the explicit computation of Q, thus
leading to savings in the computational complexity [Aub10].
The results presented in the previous chapters have led to combining three distinct solutions, aim-
ing at shifting a large part of the detector’s computational complexity to the preprocessing step.
In particular and through a neighbourhood search centred on an efficient lattice reduction-aided
solution, an original hard-decision detector was introduced (see Section 3.4.5). It was shown to
offer a promising computational complexity/performance trade-off.

In Chapter 4, an inventory of the existing solutions was presented. Contributive result were
then provided at the log-likelihood ratio generation step.
By considering a multi-level log-likelihood ratio clipping - from 16-QAM -, a novel technique was
proposed and allows for low distortion approximated log-likelihood ratio computation at the out-
put of a soft-decision near-maximum-likelihood detector [Aub11a]. This low-computational and
general optimization was shown to offer a significant performance gain.

In Chapter 5, an overview of the practical and normative requirements was presented. Con-
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tributive results were then provided at the preprocessing step.
A novel solution that takes advantage of the channel correlation, by using the matrix perturbation
theory applied to the QR decomposition, was proposed in [Aub11b]. It was shown to lead to time
complexity savings while keeping close to the reference full-QR decomposition performance.
In Section 5.2.3, we investigated the impact of linear precoding prior to the classical lattice re-
duction algorithms. For a 4× 2 scheme and under the capacity-selection criterion, the mean and
maximal computational complexities of the LLL-based lattice reduction algorithm decrease by
28% and 58%, respectively. It is an advantageous implementation aspect.

Based on the results presented in the previous chapters, our choices in the detector’s architec-
ture have been shown to be a winning strategy for both computational complexity and perfor-
mance. Namely, the proposed solution leads to an almost constant - in the constellation size
(see Section 5.3.2), thus advantageous for high-order constellations - computational complexity,
while offering near-maximum-likelihood performance. Consequently, the proposed soft-decision
detector compares to existing 4 × 4 detectors as a very efficient solution. For achieving near-
maximum-likelihood performance, it offers a computational complexity decrease by a factor of
44.3 for 64-QAM modulations compared to the K-Best.

Clearly, the advantage of one receiver compared to others comes from the - implementation oriented
- study of its cost while meeting specific achievable throughput. We claim that the introduced
computational complexity offers a very attractive performance-complexity trade-off, among the
existing detectors in 4× 4 spatial multiplexing-MIMO systems and in the open-loop mode.
In addition to the exhibited convenient performance/computational complexity trade-off, the pro-
posed solution is adaptable to the closed-loop mode. With the same aim in view, it is a multi-
standard application. Namely and due to the flexibility of the architecture, no additional effort in
the design is required to target a specific mode or other wireless applications. Consequently, the
proposed detector stands as an efficient solution in comparison with existing techniques.

A downside still remains in that the proposed solution is computationally demanding. Following
the present work, the main goal remaining is to further decrease its computational complexity -
through additional studies, optimisations and smarter techniques - while maintaining the present
performance. The evoked additional decrease in the computational complexity could be reached
through further studies, for which some ideas are stated in the sequel.

6.2 Future Work

It should be noted that the presented solution is very general and is subject to multiple optimiza-
tions, that have not been explored for the moment.

6.2.1 Algorithmic aspects

Preprocessing We focus on the preprocessing step:
– By considering the (sorted) QR decomposition step, Givens Rotations can be made square root
and division free [Goe91], which is particularly convenient for implementation. Also, the QR
decomposition introduced in Section 5.2.1 can be advantageously used within the coherence
bandwidth or time, while it was not considered in the simulation results in Section 5.3.2;

– By considering the sorted QR decomposition step, a computational complexity decrease - with
no performance degradation - is possible through the re-use of adjacent channel output P
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within the coherence bandwidth or time, similarly to what is done for the lattice reduction in
Section 5.2.2;

– By considering the lattice reduction step, a computational complexity decrease with no per-
formance degradation has been shown to be possible in Section 5.2.2. Nevertheless, further
computational complexity decrease with no performance degradation is possible, as evoked in
Section 5.2.2. Also, computational complexity decrease with performance degradation may be
considered since the computational complexity of the (sorted)LLL algorithm’s computational
complexity decreases exponentially [Jal08], thus leading to a more aggressive trade-off.

Detection We focus on the detection step, and in particular the neighbourhood search.

– The Schnorr-Euchner enumeration allows for early termination of the tree search phase since
child nodes are ordered according to their increasing partial Euclidean distances. Thus, the
search can be terminated as soon as a node’s cumulated Euclidean distance exceeds the current
sphere constraint since the next ordered node at the top level would exceed the last cumulated
Euclidean distance;

– Classically, the Schnorr-Euchner enumeration can be optimized through a look-up table while
it introduces an additional computational complexity/performance study;

– A dynamicK choice is possible - and even necessary - and was not considered. In particular with
the sorted QR decomposition ordering, a large computational complexity reduction is expected
- with a very tiny performance loss - by judiciously calibrating the K parameter at each layer.
It is especially true with a large number of layers. The extreme (K = |ξ| at top layers, K=1
elsewhere) case of the famous fixed-complexity sphere decoder has been shown to be convenient
for implementation [Bar06a]. However, it is not convenient with 64-QAM constellations. Also,
it was not considered when associated to lattice reduction.

Log-Likelihood Ratio Generation We focus on the soft-decision extension step. While the
near-maximum-likelihood detectors have been widely studied in the literature, hard-decision de-
tectors have been generally addressed since it is a practical consideration. The most promising
possible further improvements concern this block within the proposed detector. In particular in
the present work, the soft-decision extension was neglected in the sense that the brute-force -
while already efficient - fixed log-likelihood ratio clipping was considered. Anyway, some smart
solutions is proposed in the literature:

– The search phase can be constructed to make possible the explicit calculation of each log-
likelihood ratio, as stated in Sections 4.4.1 and 4.4.2. This way, the computational complexity
of the neighbourhood search is recalled to increase, even if the performance is improved. While
no convincing solution was provided until now, the consideration of a mixed method between
log-likelihood ratio clipping and a bit-wise approach in the tree construction should be efficient.
As a consequence and by assuming that the tree construction has been perfectly done, the
neighbourhood size would be reduced to K=2;

– Additional knowledge in the log-likelihood ratio computation can be used. In particular, dis-
tances within the list of solutions could be considered. This way, the performance would be
improved and the neighbourhood size would again be reduced;

– As stated in Section 4.5.2, some information aiming at clipping missing log-likelihood ratios
more efficiently is available from the lattice reduction step. Thus, it makes some optimizations
possible in the log-likelihood ratio clipping.



114 Chapter 6. Conclusion & Future work

6.2.2 Implementation Aspects and Practical Considerations

Implementation Aspects Concerning the proposed detector’s implementation phase, the ar-
chitecture study and the estimation of the numbers of required gates are still necessary for a
hardware implementation.
In particular, the proposed solution offers a potential parallelism, which induces a best-case re-
duction of the rate estimation (see Section 5.3.3) by a factor of 16 - by assuming 16-bit words - on
an EVP (see Section 2.7.3). We summarize the presence or lack of parallel implementation within
the proposed architecture:
– No potential parallelism arises within the sorted QR decomposition due to the ordering;
– No potential parallelism arises within the LLL algorithm due to its iterative nature;
– A large amount of potential parallelism arises from the tree exploration due to breadth first
search that leads to the tree to be constructed layer by layer.

Practical Considerations From a global point of view, the K, N and Λclip(blk) parameters
(see Section 5.3.2) are subject to a judicious calibration, according to:
– The channel propagation condition, since - and among others - the preprocessing computational
complexity depends on the coherence bandwidth or time;

– The system characteristics, since a different calibration is required between the open-loop and
closed-loop modes.

The proposed solution is designed as a multi-standard detector that allows devices to switch be-
tween the wideband code-division multiple-access and the LTE(-A) standards, within the UMTS.
In particular, its efficiency has been demonstrated and remains valid as soon as a MIMO scheme
arises, even if it is still more attractive with the use of OFDM.
Interestingly, the presented results are worst-case computational complexities. In particular, the
open-loop mode was considered. The presented analysis offers a worst-case result that would be
significantly improved through the closed-loop mode consideration, as studied in Section 5.2.3.

The proposed detector can be extended to multi-user-MIMO systems, by assuming that addi-
tional knowledge - such as user received energies and transmission delays - is available.
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Résumé 
 

Cette thèse traite des systèmes MIMO à multiplexage spatial, 
associés à la modulation OFDM. L’étude s’attarde 
particulièrement sur les systèmes 4x4, inclus ou à l’étude dans 
les normes 3GPP LTE et 3GPP LTE-A. Ces dimensions 
particulières nécessitent une étude de conception poussée du 
récepteur. Il s’agit notamment de proposer des détecteurs qui 
affichent à la fois de bonnes performances, une faible latence et 
une complexité de calcul réalisable dans un système 
embarqué. 
 
Le défi consiste plus particulièrement à proposer un détecteur 
offrant des performances quasi-optimales, tout en ne 
nécessitant qu’une complexité de calcul polynomiale. Une 
attention particulière est prêtée aux problèmes d’implantation. 
Ainsi, avantage est donné aux algorithmes à complexité fixe et 
permettant la réalisation d’opérations en parallèle. En réponse 
aux problématiques rencontrées, l’architecture du détecteur 
requiert une attention particulière. Le choix stratégique adopté 
est de chercher à transférer au prétraitement - qui ne dépend 
pas des données - le plus possible de complexité de calcul. 
 
Au cours de ce travail et suite à l’introduction du contexte 
général et des principaux pré-requis, l’inventaire des grandes 
tendances dans la littérature en ce qui concerne les détecteurs 
à décision dure est fait. Ils constituent le cœur du sujet et un 
détecteur original est proposé, incluant notamment les aspects 
de réduction de réseau et de décodage sphérique. Son 
avantage par rapport aux techniques existantes est ainsi 
démontré, et les résultats prometteurs sont maintenus lors de 
son extension à la décision souple. Comme attendu, le choix de 
transférer au prétraitement la complexité de calcul s’avère 
gagnant. Notamment, la réduction de complexité de calcul qu’il 
permet est présentée dans cette thèse. 
 
Parmi les principaux résultats, ce travail a débouché sur la 
proposition d’un détecteur original, qui a démontré un 
compromis entre performance et complexité de calcul efficace. 
Notamment, il requiert une complexité de calcul presque 
constante - selon les tailles de constellation -, tout en offrant 
des performances proches du maximum de vraisemblance. Par 
conséquent, le détecteur à décision souple proposé se 
positionne par rapport à l’état de l’art comme une solution d’une 
grande efficacité dans les systèmes 4x4. 
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Abstract 
 

In this thesis, spatial multiplexing-MIMO communication 
schemes with OFDM modulation are considered with a focus on 
4x4 systems. In order to achieve the 3GPP LTE and 3GPP 
LTE-A requirements, the design of detector’s architecture with 
high performance, low latency and applicable computational 
complexity is a challenging research topic at the receiver due to 
the power and latency limitations of mobile communication 
systems. 
 
The challenge consists in providing a detector that achieves 
near-optimum performance, while offering polynomial 
computational complexity. Simultaneously, implementation 
aspects are carefully considered, thus parallel and fixed 
computational complexity algorithms are strongly favoured. 
As an answer to the encountered issues, particular attention is 
paid to the detector’s architecture. In particular, the adopted 
strategy lies in shifting as much as possible of the 
computational complexity to the preprocessing step that is data-
independent. 
 
Throughout the present work and in addition to the background 
and preliminaries introduction, an inventory of the main existing 
hard-decision solutions is introduced. It presents the heart of 
the subject and an original detector is subsequently proposed. It 
includes - among others - both lattice reduction and sphere 
decoding aspects. Its advantage over the existing techniques is 
presented and is shown to be preserved through its soft-
decision extension. As expected, the strategic choice of shifting 
the computational complexity to the preprocessing step is 
shown to be winning. It is due to significant decrease in the 
computational complexity, which is addressed in this thesis. 
 
As a result, the present work has led to the proposal of an 
original detector that is promising from both the computational 
complexity and the performance points of view. Namely, it leads 
to an almost constant - in the constellation size - computational 
complexity, while offering near-maximum likelihood 
performance. Consequently, the proposed soft-decision 
detector compares to existing 4x4 detectors as a very efficient 
solution. 
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